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Abstract

The growing deployment of batteryless Internet of Things (IoT) devices powered
by ambient energy harvesting highlights the need for architectures capable of
sustaining correct and reliable execution under frequent and unpredictable power
interruptions. This thesis addresses this challenge by proposing RISE (RISC-V
Intermittent System Extensions), an architectural and ISA-level framework that
enables intermittent computing on a pipelined RISC-V processor.

The proposed approach introduces four lightweight hardware modules: the In-
termittent Computing Register Wrapper (ICRW), which encapsulates the processor
state and tracks modifications through dirty-bit management; the Power Control
Unit (PCU), which performs selective background backups of modified registers;
the Restore Control Unit (RCU), which reloads saved state upon power resumption;
and the Dispatcher, which transparently arbitrates memory bus usage between
normal execution and backup transfers. In addition, the instruction set architecture
is extended with the .ICA primitive, which allows programmers to define atomic
code regions that guarantee correctness and consistency despite intermittent power
supply.

RISE is designed to preserve compatibility with standard RV32I pipelines,
requiring only minimal modifications to the decode stage, while maintaining full
portability across different RISC-V cores. The framework avoids reliance on non-
volatile elements within the processor itself, ensuring CMOS compatibility and
scalability. Backup and restore operations are executed concurrently with regular
computation, thereby minimizing performance and energy overhead.

The framework was implemented in Verilog HDL and evaluated through simula-
tion and synthesis using the Xilinx Vivado™ 2024.1 toolchain. Experimental results
demonstrate that the proposed architecture achieves efficient and reliable execution
in intermittent environments. In benchmark workloads, a complete processor state
backup requires on average 203 cycles (0.203 µs at 1 GHz), confirming that RISE
provides a practical and effective solution for sustainable intermittent computing
in energy-harvesting IoT systems.
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Chapter 1

Introduction

1.1 Background and Motivation
Over the past decade, the Internet of Things (IoT) has emerged as one of the most
transformative paradigms in computing. Billions of devices are being deployed
in smart homes, cities, industrial automation, healthcare, and environmental
monitoring, where they continuously sense, process, and exchange information.
These applications rely on small, low-power embedded systems that must operate
reliably and autonomously, often in environments where maintenance is impractical
or prohibitively expensive. As forecasts project hundreds of billions of IoT devices
to be installed in the near future [1], the question of sustainable energy supply
becomes a pressing challenge.

Traditionally, IoT nodes rely on batteries or rechargeable storage units. While
effective in the short term, this approach faces several drawbacks:

• Finite lifetime – Batteries eventually degrade and must be replaced, which
is infeasible for large-scale deployments such as industrial sensor networks or
environmental monitoring in remote areas [2].

• Maintenance overhead – Replacing or recharging billions of batteries re-
quires human intervention, which drastically increases operational costs.

• Environmental concerns – Battery disposal introduces severe sustainability
issues, with toxic components contributing to e-waste.

• Form factor and design constraints – Batteries often dominate the physical
size and weight of IoT devices, limiting their integration into miniaturized
platforms.

As a consequence, researchers have investigated batteryless operation enabled
by energy harvesting, where devices draw power from ambient sources such as solar
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radiation, radio frequency (RF) waves, thermal gradients, or mechanical vibrations
[1]. Energy harvesting offers the promise of sustainable, maintenance-free operation,
enabling devices to function indefinitely without human intervention.

However, energy harvested from the environment is inherently intermittent
and unpredictable. The availability of power fluctuates over time and may
fall below the threshold required for computation. For example, a solar-powered
device may experience long outages during nighttime or cloudy conditions, while
RF energy availability depends heavily on proximity to transmitters. As a result,
a batteryless device frequently loses power, halting execution and discarding its
volatile state. When energy becomes available again, execution must resume from
some previously stored state [2]. This phenomenon gives rise to the research area
of intermittent computing, where devices operate only when energy is available,
with execution repeatedly suspended and resumed depending on the harvested
power.

Because of these challenges, simply replacing a battery with a capacitor is
insufficient. Without proper mechanisms, intermittent execution can lead to lost
progress, corrupted data, and unreliable behavior. Thus, specialized execution
models, architectures, and hardware support are necessary to enable intermittent
computing.

1.2 Intermittent Computing: Challenges
Intermittent computing introduces several unique challenges that must be solved
to guarantee reliable operation:

• Progress guarantees – Applications must eventually make forward progress,
even if they are interrupted frequently. Without explicit mechanisms, devices
may waste harvested energy re-executing the same operations after every
failure [3].

• Memory consistency – Non-volatile memory (NVM) must remain consistent
across failures. A partially updated state can corrupt program semantics and
lead to unpredictable results [4].

• Atomicity of operations – Critical code regions must be executed entirely
or not at all. Partial updates may leave data structures or control flow in
an invalid state, which is unacceptable for safety-critical applications such as
healthcare or industrial monitoring [5].

• Energy and latency overhead – Backup and restore operations themselves
consume valuable time and energy. Reducing this overhead is crucial to
maximize the fraction of time spent on useful work [1].
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These challenges are exacerbated by the unpredictable nature of energy avail-
ability, which depends not only on environmental conditions but also on the size
of the energy buffer and the device’s power management strategy [2]. Address-
ing them requires cooperation across multiple system layers, from hardware and
microarchitecture to compilers and runtime frameworks.

1.3 State of the Art
Over the years, several models have been proposed to address the challenges of
intermittent computing. They can be broadly classified into four categories:

1. Checkpointing-based solutions. Systems such as Mementos periodically
store the full volatile state to NVM. This method is conceptually simple but
suffers from high overhead and wasted work when failures occur between
checkpoints [3]. Early prototypes were often deployed on ultra-low-power
microcontrollers, such as MSP430-based systems.

2. Task-based execution. Frameworks like Alpaca partition applications into
atomic tasks that are guaranteed to either complete or restart. This reduces
rollback overhead compared to checkpointing, but introduces complexity in
compiler/runtime design and can increase memory usage due to variable
privatization [3]. Task-based execution has proven particularly effective in
RFID tags and batteryless sensor networks.

3. Hardware-assisted approaches. Nonvolatile processors (NVPs) integrate
persistent flip-flops (NVFFs) into the processor pipeline, automatically pre-
serving state during power failures. While effective, these approaches require
specialized fabrication technologies such as MRAM or FeRAM, limiting porta-
bility and scalability [5]. Another line of work, such as Freezer, proposes
external backup controllers that track dirty memory blocks and offload backup
operations to specialized hardware, reducing backup time and energy at the
cost of limited execution semantics [4].

4. Hybrid and system-level solutions. Recent proposals explore higher-level
strategies, such as optimizing energy storage sizing to reduce failure frequency
[2], or adapting intermittent models to high-performance out-of-order cores [6].
These works highlight the importance of considering intermittent computing
as a cross-layer problem, spanning hardware design, memory hierarchies, and
system-level energy management.

Each of these directions contributes to mitigating the negative effects of inter-
mittent power. However, none of them fully resolvess the tension between efficiency,
correctness, and portability, leaving space for new architectural solutions.
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1.4 Rationale for a New Approach
Despite significant progress in the field, existing solutions face important limitations.
Checkpointing incurs excessive rollback overhead, while task-based approaches
complicate programming and increase memory requirements. Hardware NVPs
provide transparency but depend on costly and non-standard fabrication processes.
External controllers like Freezer are lightweight and portable, but they cannot
enforce atomic code execution.

In summary, prior solutions address specific aspects of intermittent computing,
but none provide an efficient, general-purpose, and ISA-integrated framework.
This gap motivates the development of RISE (RISC-V Intermittent System
Extensions), which integrates intermittent computing support directly into the
RISC-V architecture.

A carefully designed extension to a widely adopted ISA can provide:

• Low-latency and energy-efficient backup/restore operations.

• Explicit ISA primitives for atomic code regions, bridging the gap between
hardware and software.

• Compatibility with standard CMOS processes, avoiding the need for exotic
memory technologies.

• Portability across multiple cores and platforms thanks to an open, modular
ISA such as RISC-V.

1.5 Research Objectives and Contributions
The main objective of this thesis is to propose, implement, and evaluate RISE, a
novel framework that extends the RISC-V ISA and microarchitecture with support
for intermittent execution. The contributions of this work can be summarized as
follows:

1. Architectural extensions: introduction of hardware modules including
the Intermittent Computing Register Wrapper (ICRW), Power Control Unit
(PCU), Restore Control Unit (RCU), and Dispatcher.

2. ISA primitives: definition of the .ICA instruction to explicitly mark atomic
execution regions, ensuring correctness across power failures.

3. Efficient backup/restore: design of a mechanism that integrates dirty-bit
tracking and temporary buffers, reducing backup latency to as low as 0.203
µs at 1 GHz.
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4. Compatibility: demonstration that RISE is implementable on standard
CMOS and is extensible across multiple RISC-V cores.

5. Evaluation: experimental validation using benchmarks such as MiBench and
RV32I, comparing RISE against both software-only and hardware-assisted
approaches like Freezer.

1.6 Thesis Structure
The remainder of this thesis is organized as follows:

• Chapter 2 reviews related work in intermittent computing, covering software
models, hardware-assisted approaches, NVM-based architectures, and system-
level optimizations.

• Chapter 3 details the design of the RISE architecture, including ISA exten-
sions and the four hardware modules.

• Chapter 4 presents the implementation of RISE on a RISC-V pipeline and
its integration with the memory subsystem.

• Chapter 5 evaluates RISE using benchmarks and compares its performance
against existing approaches.

• Chapter 6 discusses advantages, limitations, and possible extensions of RISE.

• Chapter 7 concludes the thesis by summarizing the contributions and outlin-
ing future research directions.
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Chapter 2

Related Work

2.1 Introduction
Intermittent computing has emerged as a key research area for enabling sustainable
and reliable execution on batteryless devices powered by energy harvesting. The
unpredictability of harvested energy forces systems to operate under frequent
power failures, requiring mechanisms to ensure correctness, forward progress,
and energy efficiency. A wide range of approaches has been explored across
the hardware–software stack, including compiler-assisted frameworks, hardware
modifications, and system-level optimizations.

In this chapter, we classify prior work into three main categories: (1) software-
based approaches, (2) hardware-assisted mechanisms, and (3) system-level and
architectural solutions. We conclude with a comparative analysis that highlights
the gaps addressed by the proposed RISE architecture.

2.2 Software-based Approaches
Software-only frameworks represent the earliest and most widely explored class of
solutions for intermittent computing. These methods require no custom hardware,
instead relying on compiler instrumentation and runtime mechanisms to preserve
program state.

2.2.1 Checkpointing Models
The first attempts at intermittent computing relied on checkpointing. Mementos
introduced compiler-inserted checkpoints that periodically save the entire volatile
state into non-volatile memory (NVM). This ensures forward progress across fail-
ures, but introduces high latency and energy overhead, particularly if failures occur
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between checkpoints [3]. Later frameworks such as DINO improved checkpoint
placement and reduced redundancy, but the fundamental trade-off between reli-
ability and wasted work remains. Checkpointing is therefore suitable for simple
applications but scales poorly for compute-intensive workloads.

2.2.2 Task-based Execution
Task-based models avoid the pitfalls of checkpointing by dividing programs into
atomic tasks. Each task must either complete successfully or be restarted, ensuring
atomicity at task boundaries. Alpaca [3] is the most prominent example: it uses
variable privatization during execution, committing results only after successful
task completion. This eliminates partial updates and provides stronger correctness
guarantees. Subsequent work such as Chain and Coati extended this model with
enhanced task scheduling and dependency tracking.

The strength of task-based frameworks lies in their ability to ensure consistency
without costly full-state checkpoints. However, these systems introduce memory
overhead due to privatization and require significant compiler/runtime support,
complicating portability and adoption in heterogeneous IoT environments.

2.3 Hardware-assisted Approaches
Hardware-based solutions aim to reduce software complexity and execution overhead
by integrating specialized support for backup and restore directly into the processor
or memory subsystem.

2.3.1 Non-Volatile Processors (NVPs)
Non-volatile processors (NVPs) incorporate persistent flip-flops (NVFFs) or registers
that automatically retain processor state across failures. Examples include NV-
CPU, WEC-NVREG, and other designs leveraging MRAM, FeRAM, or ReRAM
technologies [5]. These architectures are transparent to software, since the processor
can resume execution without explicit checkpoints or tasks. However, they incur
substantial area and energy penalties, and require specialized fabrication processes
that limit portability. Alternative proposals such as error-tolerant non-volatile
registers [5] attempt to mitigate these issues, but the reliance on exotic technologies
remains a barrier.

2.3.2 External Backup Controllers
An alternative to integrating NVM into the core is to use an external backup
controller. Freezer [4] is a representative example: it monitors memory accesses,
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tracks dirty blocks, and offloads backup to a specialized controller. This reduces the
time and energy required to capture system state, offering an attractive compromise
between software-only and NVP approaches. However, Freezer cannot enforce
atomicity of execution and provides no mechanism to prevent partially completed
operations, limiting its ability to guarantee program correctness.

2.4 System-level and Architectural Solutions
Several works adopt a broader, system-level view of intermittent computing, focusing
on energy management, processor architecture, and concurrency.

2.4.1 Energy Storage Optimization
The size of the energy buffer (e.g., capacitor) strongly influences system behavior.
Work by [2] systematically studied how storage capacity affects forward progress,
showing that even small changes can significantly alter failure frequency and
performance. This line of research highlights the importance of hardware–software
co-design and motivates the need for adaptable architectures.

2.4.2 High-performance Intermittent Cores
Most early solutions targeted low-power microcontrollers. However, more recent
research has explored scaling intermittent computing to higher-performance proces-
sors. In particular, [6] proposed mechanisms for enabling intermittent execution on
out-of-order (OoO) cores, demonstrating the feasibility of applying these models to
more complex architectures. This shows that intermittent computing is not limited
to ultra-low-power devices but can extend to high-performance domains.

2.4.3 Transactional and Concurrency Models
Beyond single-threaded execution, transactional models have been proposed to
ensure concurrency control in intermittent systems. For example, [7] introduced a
transactional framework that provides atomicity and isolation even under frequent
failures. Such systems are critical for multi-threaded workloads or distributed
sensing applications, though they introduce non-negligible runtime overhead.

2.4.4 RISC-V Based Proposals
The open and modular RISC-V ISA has emerged as a natural platform for ex-
perimenting with intermittent computing support. Several works have leveraged
RISC-V to emulate or extend intermittent architectures [8, 2], showing its flexibility
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for ISA-level extensions and hardware modifications. These efforts demonstrate the
growing trend toward integrating intermittent support at the architectural level,
providing a foundation for the RISE proposal.

2.5 Comparative Analysis
Table 2.1 summarizes the main characteristics of existing approaches, comparing
them along key dimensions such as backup/restore overhead, correctness guarantees,
hardware requirements, portability, examples, and pros/cons.

Table 2.1: Extended comparison of intermittent computing solutions
Approach Overhead Atomicity Hardware Portability Examples Pros / Cons

Checkpointing High No None High Mementos, DINO
+ Simple, no HW changes
- High rollback overhead
- Inefficient for long tasks

Task-based Medium Yes None Medium Alpaca, Chain, Coati

+ Ensures atomicity
+ Reduces wasted work
- Increased memory pressure
- Requires compiler/runtime

NVPs Low Yes Exotic NVM Low NV-CPU, WEC-NVREG, NVFF designs

+ Transparent to software
+ Fast recovery
- High area/energy cost
- Requires MRAM/FeRAM/ReRAM

External Controllers Low No Dedicated unit Medium Freezer

+ Efficient backup/restore
+ Non-intrusive
- No atomicity guarantees
- Limited general-purpose use

System-level Variable Partial Std. CMOS High Energy storage sizing, OoO cores
+ Explores cross-layer design
+ Works on standard CMOS
- No direct correctness guarantees

Architectural / RISC-V Low Yes Std. CMOS High What’s Next, RISE

+ ISA-level primitives
+ Efficient hardware support
+ Portable, scalable
- Still under active research

From this comparison, it is clear that no single approach fully addresses the trade-
off between efficiency, correctness, and portability. Software-based frameworks are
portable but suffer from high overhead, while hardware-based solutions are efficient
but depend on non-standard technologies or lack execution semantics. System-level
approaches provide useful insights but do not directly address the correctness
problem. This gap motivates the design of RISE, which integrates intermittent
support directly into the RISC-V ISA and microarchitecture.

2.6 Summary
In this chapter, we reviewed the landscape of intermittent computing solutions.
Software-based methods provide portability but suffer from high overhead, hardware-
assisted approaches improve efficiency but rely on exotic technologies or lack
atomicity, and system-level strategies highlight important trade-offs but fail to
address core correctness issues. Together, these limitations underline the need for
a new approach: an architecture-level solution built on top of a widely adopted
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ISA, offering efficient backup/restore mechanisms and explicit support for atomic
execution. The next chapter presents RISE, a framework that addresses these
challenges by extending the RISC-V ISA and microarchitecture.
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Chapter 3

The RISE Architecture

3.1 System Overview
The proposed RISC-V Intermittent System Extensions (RISE) framework
introduces architectural support for intermittent computing by extending the
RISC-V ISA and microarchitecture. Unlike existing solutions, which rely on
software-based checkpointing, task-level execution, or exotic non-volatile processors,
RISE integrates a lightweight and portable hardware mechanism directly into a
standard CMOS pipeline. The main goal is to enable reliable execution under
frequent power failures while minimizing backup/restore overhead and maintaining
programmability.

At a high level, RISE introduces four tightly coupled hardware modules: (1)
the Intermittent Computing Register Wrapper (ICRW), (2) the Power
Control Unit (PCU), (3) the Restore Control Unit (RCU), and (4) the
Dispatcher. Together with a new ISA primitive, the .ICA instruction, these
modules allow efficient and correct recovery across arbitrary power failures.

Figure 4.6 illustrates the high-level integration of RISE with a baseline RV32I
pipeline. The extensions are modular, enabling compatibility with existing RISC-V
cores while avoiding invasive modifications.

3.2 ISA Extensions
A central aspect of RISE is the introduction of new ISA primitives that explicitly
support intermittent execution semantics. In particular, the framework defines the
.ICA (Intermittent Computing Atomic) instruction, which allows programmers to
delimit regions of code that must be executed atomically with respect to power
failures.
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Figure 3.1: High-level overview of the RISE architecture integrated into a baseline
RISC-V pipeline.

3.2.1 The .ICA Instruction
The .ICA instruction is used to mark the beginning and end of atomic code regions.
When execution enters an .ICA region, RISE ensures that either the entire region
executes successfully, or it is rolled back and restarted upon the next power-up.
This prevents partially updated states, which are a major source of inconsistency
in intermittent systems.

1 .ICA_BEGIN
2 ; critical operations
3 lw x5 , 0( x10)
4 add x6 , x5 , x7
5 sw x6 , 0( x10)
6 .ICA_END

Listing 3.1: Example usage of the .ICA instruction

The example above illustrates how an update to shared memory is encapsulated
within an atomic section. If a power failure occurs during execution, the update is
discarded and retried after restoration, ensuring consistency.

3.2.2 Semantics and Guarantees
The .ICA instruction provides the following guarantees:
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• Atomicity: Operations inside an ICA block either complete fully or are
discarded.

• Idempotence: Re-executions of ICA blocks after a failure yield the same
result.

• Portability: ICA primitives are defined at the ISA level, enabling software
portability across different RISE-enabled RISC-V cores.

These semantics closely resemble transactional execution, but are optimized for
the intermittent computing setting.

3.3 Hardware Modules

The hardware extensions of RISE are distributed across four specialized modules.
Each module is designed to be lightweight, portable, and implementable with
standard CMOS processes.

3.3.1 Intermittent Computing Register Wrapper (ICRW)

The ICRW is responsible for tracking and backing up processor registers. It
introduces a dirty-bit mechanism that allows selective backup of modified
registers, avoiding unnecessary writes to non-volatile memory. Each register can
be in one of four states: CLEAN, DIRTY, BACKUP, or MODIFIED. The state
transitions are triggered by read/write operations and backup events, as shown in
Figure 4.3.
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Figure 3.2: Finite-state machine of the ICRW register states (CLEAN, DIRTY,
BACKUP, MODIFIED).

By reducing the volume of data to be saved during each power failure, the
ICRW drastically lowers backup latency and energy consumption compared to full
checkpointing approaches.

3.3.2 Power Control Unit (PCU)

The PCU continuously monitors the energy buffer and detects imminent power
loss. Upon detecting a low-energy event, the PCU triggers the backup process by
signaling the Dispatcher. The PCU also manages a temporary buffer for just-in-
time register updates, ensuring that backup operations are aligned with the actual
availability of residual energy.

This predictive mechanism avoids both premature and delayed backups, striking
a balance between reliability and efficiency.
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Figure 3.3: Finite-state machine of the PCU.

3.3.3 Restore Control Unit (RCU)

The RCU is responsible for restoring processor state after a power failure. It
retrieves the backed-up register contents from the temporary buffer or non-volatile
memory and reinitializes the processor pipeline. To minimize latency, the RCU
supports direct memory mapping with virtual addresses, reducing the number
of required cycles during recovery.

Figure 3.4: Finite-state machine of the RCU.

The RCU guarantees correctness by ensuring that execution resumes only after
all registers and memory have been safely restored.
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3.3.4 Dispatcher
The Dispatcher coordinates the interaction between ICRW, PCU, and RCU. It acts
as a lightweight controller that arbitrates access to the backup bus and schedules
backup operations. Because it centralizes control, the Dispatcher enables modularity
and portability, allowing RISE to be integrated into different RISC-V cores without
invasive redesign.

Figure 3.5: Finite-state machine of the Dispatcher.

3.4 Backup and Restore Workflow
The complete backup and restore mechanism in RISE unfolds as follows:

1. Normal Execution: Registers are updated and marked dirty by the ICRW.

2. Imminent Power Loss: The PCU detects low energy and signals the
Dispatcher.
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3. Backup: The ICRW writes dirty registers into the backup buffer, coordinated
by the Dispatcher.

4. Power Failure: The device shuts down, but critical state is preserved.

5. Restore: Upon power-up, the RCU reloads registers from backup into the
pipeline.

6. Resumption: Execution continues from the last atomic section boundary
defined by .ICA.

This workflow ensures that only minimal and necessary state is preserved,
drastically reducing overhead.

3.5 Integration with RISC-V Pipeline
RISE is designed to integrate seamlessly with the baseline RV32I pipeline. The
extensions operate orthogonally to standard instruction execution, avoiding invasive
changes to the datapath. Backup and restore signals are decoupled from the main
pipeline stages, allowing reuse of standard RISC-V cores.

Figure ?? shows a conceptual view of how RISE modules interact with the
pipeline.

3.6 Design Considerations and Trade-offs
The design of RISE reflects several important trade-offs:

• Area vs. Efficiency: Adding ICRW and Dispatcher logic introduces area
overhead, but significantly reduces backup latency.

• Portability vs. Specialization: RISE is designed to be portable across
different cores, but avoids optimizations that would lock it to specific designs.

• Energy vs. Correctness: The system prioritizes correctness (atomicity,
consistency) even at the cost of slight energy overheads during backup.

• Scalability: While demonstrated on RV32I, RISE can be extended to multi-
core settings and more complex pipelines.
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3.7 Summary
This chapter introduced the RISE architecture, a modular extension to RISC-V
designed to support reliable intermittent execution. By combining ISA primitives
with lightweight hardware modules, RISE addresses the limitations of checkpointing,
task-based execution, and non-volatile processors. The next chapter details the
implementation of RISE and its integration with a RISC-V pipeline.
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Implementation

4.1 Introduction
This chapter describes the implementation of the RISE framework, focusing on the
integration of its hardware modules into a baseline RISC-V pipeline. The design
has been realized in Verilog HDL, synthesized and simulated using standard tools.
In the following sections, we provide details about the baseline RISC-V core, the
implementation of each RISE module, and their integration with the pipeline.

4.2 Baseline RISC-V Core
The implementation of RISE is based on a baseline RISC-V core that follows
the classic five-stage pipeline organization. The processor supports the RV32I
instruction set architecture (ISA), which defines a simple yet complete set
of 32-bit integer instructions suitable for embedded and IoT applications. The
choice of RV32I ensures compatibility with widely available RISC-V toolchains
while maintaining low hardware complexity.

4.2.1 Pipeline Organization
The pipeline is divided into the following five stages:

1. Instruction Fetch (IF): The program counter (PC) provides the address
of the next instruction to be executed. This instruction is fetched from the
instruction memory and stored in the instruction register. In this stage, the
PC is updated to point to the subsequent instruction, unless a control transfer
(e.g., branch or jump) modifies the normal sequential flow.
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2. Instruction Decode (ID): The fetched instruction is decoded to determine
the operation type and the required operands. Source registers are read from
the register file, and immediate values are extracted. During this stage, the
control unit generates the control signals that guide execution in later stages.

3. Execute (EX): In this stage, the Arithmetic Logic Unit (ALU) performs the
required computation. Depending on the instruction, the ALU may execute
arithmetic or logical operations, calculate memory addresses for load/store
instructions, or evaluate branch conditions. The EX stage also computes the
potential target address for branch and jump instructions.

4. Memory Access (MEM): For load and store instructions, the effective
memory address calculated in the EX stage is used to access the data memory.
In the case of a load, data is retrieved and forwarded to the next stage; for a
store, the data is written to memory. For other instruction types, this stage is
effectively bypassed.

5. Write-Back (WB): In the final stage, results from the ALU (EX stage)
or from data memory (MEM stage) are written back into the destination
register in the register file. This ensures that the architectural state is updated
consistently with the instruction semantics.

Figure 4.1: RISC-V pipeline.

4.2.2 Instruction Set Coverage
The core fully supports the RV32I base ISA, which includes:

• Integer arithmetic and logic operations (e.g., ADD, SUB, AND, OR).

• Control transfer instructions, including conditional branches (BEQ, BNE, etc.),
jumps (JAL, JALR), and system calls.

• Load and store instructions for accessing memory with byte, half-word, and
word granularity.

• Immediate instructions for arithmetic and logic with constant operands.
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Figure 4.2: RV32I Instruction Set Architecture.

4.2.3 Pipeline Hazards and Assumptions
In the current implementation, the following considerations apply:
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• Data hazards: Data dependencies are not resolved through hardware for-
warding or hazard detection. Instead, they are managed at the software level
by the compiler, which introduces explicit no-operation (NOP) instructions
when required. This approach simplifies the hardware but may increase the
number of cycles for dependent instruction sequences.

• Control hazards: Branch decisions are resolved in the ID stage, rather than
in EX. This design choice reduces the branch delay slot to a single instruction.
As a result, only one instruction following the branch needs to be annulled in
case of a misprediction, improving efficiency compared to later resolution.

• Structural hazards: The design assumes separate instruction and data mem-
ories (Harvard architecture), thereby avoiding contention between instruction
fetch and data access.

4.2.4 Integration with RISE
This baseline RV32I pipeline provides the foundation on which RISE modules are
integrated. Because the core adheres to the modular RISC-V design principles,
only minimal modifications are required in the decode and control logic to support
the new .ICA instruction, while the ICRW, PCU, RCU, and Dispatcher operate
largely as orthogonal hardware extensions.

4.2.5 Toolchain and Synthesis Environment
The development and evaluation of the RISE framework were carried out us-
ing industry-standard EDA tools in a heterogeneous software environment. The
following setup was adopted:

• Design and Simulation: The RISC-V core and the RISE modules were
implemented in Verilog HDL. For the design and functional verification, Xilinx
Vivado™ 2024.1 was employed. Vivado was used both for RTL simulation
and synthesis, providing detailed reports on timing, resource utilization, and
estimated power consumption.

• Operating Systems: Two operating systems were used during the develop-
ment process:

– Windows 11 – primarily for design entry, synthesis runs, and waveform
inspection through the Vivado GUI.

– Ubuntu 20.04.6 LTS – for command-line simulation, benchmarking
automation, and integration with open-source RISC-V toolchains.
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This dual-OS workflow allowed leveraging both graphical and script-driven
flows for efficient verification.

• RISC-V Toolchain: The GNU RISC-V toolchain (riscv32-unknown-elf-gcc)
was used to compile and run benchmarks. Assembly and C programs were
compiled into binary executables, which were then loaded into the simulated
instruction memory of the RV32I pipeline. This setup ensured full compliance
with the RV32I specification and facilitated direct execution of MiBench and
ISA compliance tests.

• Benchmarking Framework: The performance evaluation was based on
simulation waveforms and cycle-accurate logs produced by Vivado. These
were post-processed using Python scripts to measure backup/restore latencies,
energy estimates, and forward progress under intermittent execution.

Overall, the combination of Vivado 2024.1, the GNU RISC-V toolchain, and a
dual-OS development environment provided a robust platform for both design and
benchmarking. This toolchain ensured reproducibility of results while maintaining
compatibility with standard academic and industrial workflows.

4.3 System Overview
The proposed architecture builds upon a baseline five-stage RISC-V processor
implementing the RV32I instruction set. The design has been enhanced to sup-
port intermittent execution in energy-harvesting scenarios, where frequent and
unpredictable power interruptions occur. Unlike prior approaches that require
intrusive modifications to the processor pipeline or rely on non-volatile flip-flops
(NVFFs), this solution maintains compatibility with standard CMOS flows, ensuring
portability and scalability across different RISC-V cores.

The core idea is to expose the internal state of the processor through lightweight
wrappers and to manage backup and restore operations via external control units.
This decoupled approach ensures that the original datapath and control remain
intact, while backup and restore logic is modular and easily integrated. The
framework introduces four new hardware components:

• Intermittent Computing Register Wrapper (ICRW) – encapsulates
each register to track modifications and support backup/restore operations.

• Power Control Unit (PCU) – periodically scans ICRWs and maintains a
volatile buffer of dirty states.

• Restore Control Unit (RCU) – reloads the saved state into registers after
a power failure.
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• Dispatcher – arbitrates access to the shared memory bus between normal
execution and backup transfers.

Additionally, the ISA is extended with the .ICA instruction to define atomic
execution regions, providing correctness guarantees under intermittent conditions.

The following sections present the Verilog implementation of each module,
followed by integration into the pipeline, project organization, and a discussion of
design metrics.

4.4 Implementation of RISE Modules
This section details the Verilog implementation of the four main hardware modules
of RISE: ICRW, PCU, RCU, and Dispatcher.

4.4.1 Intermittent Computing Register Wrapper (ICRW)
The ICRW is the fundamental building block enabling backup and restore. Its
purpose is to make the processor’s internal state externally accessible without
altering the behavior of the original registers.

Each register is encapsulated by an ICRW instance, which preserves the standard
interface (Clk, Rst, Vin, Vout) while adding additional signals for backup and
restore. Internally, the ICRW maintains a finite-state machine (FSM) to track the
consistency of the register value with its stored backup.

The FSM supports four states:

• CLEAN: register content has been correctly saved in memory and not modi-
fied.

• DIRTY: register has been updated, requiring a new backup.

• BACKUP: register has been read and placed in a temporary buffer, awaiting
commit to memory.

• MODIFIED: register has been updated after a backup, requiring another
read.

This FSM ensures selective and efficient backup operations. Registers in the
CLEAN state are ignored, while only DIRTY or MODIFIED registers are saved.
This reduces the frequency of memory transactions, mitigating energy and latency
overhead.
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Figure 4.3: Finite-state machine of the ICRW register states (CLEAN, DIRTY,
BACKUP, MODIFIED).

1 module RegN_IC_Wrapper #( parameter N = 32) (
2 Ld ,
3 Vin ,
4 Vout ,
5 Dirty_val ,
6 Backup_en ,
7 Backup_ack ,
8 Backup_Vout ,
9 Rst_DrtyCtrl ,

10 Restore_en ,
11 Restore_Vin ,
12 Rst ,
13 Clk ,
14 Pwr_off
15 );
16
17 // register
18 input Ld , Rst , Clk;
19 input [N -1:0] Vin;
20 output [N -1:0] Vout;
21
22 // Dirty bit FSM
23 input Backup_en , Backup_ack ;
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24 output [1:0] Dirty_val ;
25 output [N -1:0] Backup_Vout ;
26 input Rst_DrtyCtrl ;
27
28 // restore signals
29 input [N -1:0] Restore_Vin ;
30 input Restore_en ;
31
32 // intermittent computing simulation
33 input Pwr_off ;
34
35 wire [N -1:0] Vin_wire , Vin_wire_reg ;
36 wire [N -1:0] Vout_wire ;
37
38 wire Ld_reg_wire ;
39 wire Rst_reg_wire ;
40
41 wire cmp_res ;
42
43 wire Rst_DrtyCtrl_wire ;
44
45 wire Ld_wire ;
46
47
48 RegN #(
49 .N (N)
50 ) register_n (
51 .Vin ( Vin_wire_reg ),
52 .Vout ( Vout_wire ),
53 .Ld ( Ld_wire ),
54 .Rst (Rst),
55 .Clk (Clk),
56 . Pwr_off ( Pwr_off )
57 );
58
59 DirtyCtrl dirty_controller (
60 . Ld_reg ( Ld_reg_wire ),
61 . Rst_reg ( Rst_reg_wire ),
62 . Backup_en ( Backup_en ),
63 . Backup_ack ( Backup_ack ),
64 .Clk (Clk),
65 .Rst ( Rst_DrtyCtrl_wire ),
66 . Dirty_val ( Dirty_val ),
67 . Pwr_off ( Pwr_off )
68 );
69
70 CmpN #(
71 .N (N)
72 ) comparator (
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73 .Vin_a ( Vin_wire ),
74 .Vin_b ( Vout_wire ),
75 .Vout ( cmp_res )
76 );
77
78 MuxN_21 #(
79 .N (N)
80 ) multiplexer_restore (
81 .Vin_a ( Vin_wire ), // sel = 0
82 .Vin_b ( Restore_Vin ), // sel = 1
83 .sel ( Restore_en ),
84 .Vout ( Vin_wire_reg )
85 );
86
87
88
89 assign Backup_Vout = Vout_wire ;
90 assign Vout = Vout_wire ;
91 assign Vin_wire = Vin;
92
93 assign Ld_reg_wire = Ld & ~ cmp_res ;
94 assign Rst_reg_wire = Rst & ~ cmp_res ;
95
96 assign Rst_DrtyCtrl_wire = Rst_DrtyCtrl | Restore_en ;
97 assign Ld_wire = Ld | Restore_en ;
98
99

100
101 endmodule

Listing 4.1: ICRW Verilog implementation

4.4.2 Power Control Unit (PCU)
The PCU complements the core control logic by orchestrating backup operations
across all ICRWs. When enabled, it periodically scans the ICRWs, checking their
dirty bits. If a register is DIRTY, the PCU retrieves its value, stores it in a
temporary volatile buffer, and updates its state to BACKUP.

This polling mechanism is configurable, allowing adaptation to different work-
loads. The scan frequency can be tuned based on the number of ICRWs and the
system’s performance requirements. By decoupling the snapshot from the final
commit, the PCU ensures that critical state is preserved even under heavy bus
contention.

Moreover, the PCU includes a just-in-time check: before committing a buffered
value, it verifies if the register has transitioned to MODIFIED. If so, the buffer is
updated accordingly, ensuring correctness without re-running a full scan.
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Figure 4.4: PCU architecture.

1 module PCU #(
2 parameter K = 10, // number of IC_Reg_Wrapeer
3 parameter N = 32, // width of IC_Reg_Wrapper
4 parameter M = 32 // width timer value register
5 ) (
6 Backup_Vout_IC_Reg_Wrapper ,
7 Start_FSM_PCU ,
8 PushVal_Buffer ,
9 Load_Timer ,

10 PushEn_Buffer ,
11 backup_now_ctrl , // start backup now
12 Dirty_vals_IC_Reg_Wrapper , // K = number of Wrappers
13 Rst_Buffer ,
14 Backup_Ens_IC_REG_Wrapper , // K = number of Wrappers
15 IsFull_Buffer ,
16 Clk ,
17 Rst ,
18 Pwr_off
19 );
20
21 localparam LOG2_K = $clog2 (K);
22
23
24 input [(K*N) -1:0] Backup_Vout_IC_Reg_Wrapper ;
25 input Start_FSM_PCU ;
26 input [M -1:0] Load_Timer ;
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27 input [(K*2) -1:0] Dirty_vals_IC_Reg_Wrapper ;
28 input IsFull_Buffer ;
29 input backup_now_ctrl ;
30
31 output [N+LOG2_K -1:0] PushVal_Buffer ;
32 output PushEn_Buffer ;
33 output Rst_Buffer ;
34 output [K -1:0] Backup_Ens_IC_REG_Wrapper ;
35
36 input Pwr_off ;
37 input Rst;
38 input Clk;
39
40 wire last_wire ;
41 wire end_wire ;
42 wire end_timer_wire ;
43 wire [1:0] dirty_val_wire ;
44 wire Rst_CntN_wire ;
45 wire Rst_Timer_wire ;
46 wire En_Timer_wire ;
47 wire Clk_CntN_wire ;
48
49 wire [LOG2_K -1:0] addr_wrapper ;
50 wire [LOG2_K -1:0] addr_wrapper_sub ;
51 wire [N -1:0] push_val_buffer_wire ;
52
53 wire [K -1:0] Backup_Ens_IC_REG_Wrapper_wire ;
54
55 assign end_wire = end_timer_wire | backup_now_ctrl ;
56
57 // FSM
58 FSM_PCU fsm_power_cu (
59 .Start ( Start_FSM_PCU ),
60 . IsFull_Buffer ( IsFull_Buffer ),
61 .Last ( last_wire ),
62 . End_Timer ( end_wire ),
63 . DirtyValSel ( dirty_val_wire ),
64 . Rst_Buffer ( Rst_Buffer ),
65 . Rst_CntN ( Rst_CntN_wire ),
66 . Rst_Timer ( Rst_Timer_wire ),
67 . En_Timer ( En_Timer_wire ),
68 . Clk_CntN ( Clk_CntN_wire ),
69 . PushEn_Buffer ( PushEn_Buffer ),
70 .Rst (Rst),
71 .Clk (Clk),
72 . Pwr_off ( Pwr_off )
73 );
74
75 // Timer
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76 Timer #(
77 .N (M)
78 ) timer_pcu (
79 .En ( En_Timer_wire ),
80 .Load ( Load_Timer ),
81 .Clk (Clk),
82 .Rst ( Rst_Timer_wire ),
83 .End ( end_timer_wire ),
84 . Pwr_off ( Pwr_off )
85 );
86
87 // CntN
88 CntN #(
89 .N ( LOG2_K )
90 ) counter_backup_addr (
91 .Clk ( Clk_CntN_wire ),
92 .Rst ( Rst_CntN_wire ),
93 . Pwr_off ( Pwr_off ),
94 .Vout ( addr_wrapper )
95 );
96
97 // Decoder
98 DecN #(
99 .N ( LOG2_K )

100 ) dec_backup_en (
101 .Vin ( addr_wrapper_sub ),
102 .Vout ( Backup_Ens_IC_REG_Wrapper_wire )
103 );
104
105 assign Backup_Ens_IC_REG_Wrapper =

Backup_Ens_IC_REG_Wrapper_wire & {N{ PushEn_Buffer }};
106
107 // Multiplexer
108 MuxM_N1 #(
109 .N (K),
110 .M (2)
111 ) mux_dirty_val (
112 .Vin ( Dirty_vals_IC_Reg_Wrapper ),
113 .Sel ( addr_wrapper_sub ),
114 .Vout ( dirty_val_wire )
115 );
116
117 // sub by 1
118 Sub1 #(
119 .N ( LOG2_K )
120 ) sub1_addr (
121 .Vin ( addr_wrapper ),
122 .Vout ( addr_wrapper_sub )
123 );
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124
125 // and signal Last
126 CmpN_M #(
127 .N ( LOG2_K ),
128 .M (K)
129 ) cmp_last_addr_wrapper (
130 .Vin_a ( addr_wrapper ),
131 .Vout ( last_wire )
132 );
133
134 // mux Backup vals
135 MuxM_N1 #(
136 .N (K),
137 .M (N)
138 ) mux_backup_val (
139 .Vin ( Backup_Vout_IC_Reg_Wrapper ),
140 .Sel ( addr_wrapper_sub ),
141 .Vout ( push_val_buffer_wire )
142 );
143
144 assign PushVal_Buffer = { push_val_buffer_wire ,

addr_wrapper_sub };
145
146
147 endmodule

Listing 4.2: PCU Verilog implementation

4.4.3 Restore Control Unit (RCU)

The RCU manages recovery after a power failure. Its role is to reload the processor
state from memory into the ICRWs, restoring execution to the last valid snapshot.
Each ICRW is associated with a virtual address in memory, which the RCU uses
to fetch the corresponding value.

The RCU interfaces with the ICRWs through dedicated signals, ensuring direct
updates to sequential registers. Once the restore is complete, the RCU deactivates
itself until the next power failure, minimizing overhead during normal execution.

The restore performance is primarily limited by the characteristics of the external
memory. In practice, fast SRAM or hybrid memory solutions can reduce recovery
latency significantly.
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Figure 4.5: RCU architecture.

1 module RCU #(
2 parameter N = 10, // Number of IC wrapper
3 parameter K = 32, // size base address
4 parameter M = 32 // width IC wrapper
5 ) (
6 AckMem ,
7 Start ,
8 ReadMem ,
9 BaseAddr ,

10 AddrMem ,
11 ValMem ,
12 RestoreVal ,
13 RestoreEn ,
14 Clk ,
15 Rst ,
16 Pwr_off
17 );
18
19 input AckMem ;
20 input Start;
21 input [K -1:0] BaseAddr ;
22 input [M -1:0] ValMem ;
23 input Clk;
24 input Rst;
25 input Pwr_off ;
26
27 output [K -1:0] AddrMem ;
28 output ReadMem ;
29 output [M -1:0] RestoreVal ;
30 output [N -1:0] RestoreEn ;
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31
32 localparam LOG2_N = $clog2 (N);
33
34
35 wire rst_cnt_wire ;
36 wire en_cnt_wire ;
37 wire [LOG2_N -1:0] vout_cnt_wire ;
38 wire [N -1:0] dec_out_wire ;
39 wire [LOG2_N -1:0] vout_sub_wire ;
40 wire end_wire ;
41 wire clk_cnt ;
42 wire restore_vin_en_wire ;
43 wire restore_dec_en_wire ;
44 wire [K -1:0] input_a_adder ;
45
46 CmpN_M #(
47 .N ( LOG2_N ),
48 .M (N)
49 ) cmp_addr (
50 .Vin_a ( vout_sub_wire ),
51 .Vout ( end_wire )
52 );
53
54
55 assign input_a_adder = {{(K- LOG2_N ){1’b0}}, vout_cnt_wire };
56
57 Adder #(
58 .N (K)
59 ) adder_base_addr (
60 .A ( input_a_adder ),
61 .B ( BaseAddr ), // K bits
62 .Cin (1’b0),
63 .Cout (),
64 .S ( AddrMem )
65 );
66
67 Sub1 #(
68 .N ( LOG2_N )
69 ) sub_cnt (
70 .Vin ( vout_cnt_wire ),
71 .Vout ( vout_sub_wire )
72 );
73
74 assign clk_cnt = en_cnt_wire | rst_cnt_wire ;
75
76 CntN #(
77 .N ( LOG2_N )
78 ) local_addr_cnt (
79 .Clk ( clk_cnt ),
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80 .Rst ( rst_cnt_wire ),
81 . Pwr_off ( Pwr_off ),
82 .Vout ( vout_cnt_wire )
83 );
84
85 DecN #(
86 .N ( LOG2_N )
87 ) dec_restore_en (
88 .Vin ( vout_sub_wire ),
89 .Vout ( dec_out_wire )
90 );
91
92 FSM_RCU fsm_rcu (
93 .Start (Start),
94 . AckMem ( AckMem ),
95 . ReadEn ( ReadMem ),
96 . RstCnt ( rst_cnt_wire ),
97 .EnCnt ( en_cnt_wire ),
98 .EnDec ( restore_dec_en_wire ),
99 .End ( end_wire ),

100 . Restore_VinEn ( restore_vin_en_wire ),
101 . Pwr_off ( Pwr_off ),
102 .Rst (Rst),
103 .Clk (Clk)
104 );
105
106 // enable restore_vin
107 assign RestoreVal = ValMem & {M{ restore_vin_en_wire }};
108
109 // enable restore decoder
110 assign RestoreEn = dec_out_wire & {N{ restore_dec_en_wire }};
111
112 endmodule

Listing 4.3: RCU Verilog implementation

4.4.4 Dispatcher
Backup operations must share the memory bus with normal load/store instructions
from the pipeline, introducing potential conflicts. The Dispatcher resolves this
issue by scheduling backup writes only when the bus is idle.

By monitoring memory activity, the Dispatcher ensures that program execution
is prioritized. Backup writes are deferred until idle cycles, at which point they are
committed sequentially. This arbitration mechanism is transparent to the pipeline
and avoids performance degradation.

The main limitation is the variable latency between snapshot capture and
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commit, which depends on workload memory intensity. Nevertheless, correctness is
preserved, and throughput remains optimized.

Figure 4.6: Dispatcher architecture.

1 module Dispatcher #(
2 parameter K = 10, // number of IC_REG_WRAPPERS
3 parameter N = 32, // width IC_REG_WRAPPER
4 parameter M = 32 // width base address
5 ) (
6 Start ,
7 IsEmpty ,
8 WriteOp ,
9 DirtyBits ,

10 BackupVals ,
11 ValBuffer ,
12 AddrBuffer ,
13 BaseAddr ,
14 Rst ,
15 Clk ,
16 Pwr_off ,
17 Val ,
18 Addr ,
19 WriteEn ,
20 AckBackups ,
21 PullEn
22 );
23
24 localparam LOG2_K = $clog2 (K);
25
26 input Start;
27 input IsEmpty ;
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28 input WriteOp ;
29 input [(K*2) -1:0] DirtyBits ;
30 input [(K*N) -1:0] BackupVals ;
31 input [N -1:0] ValBuffer ;
32 input [LOG2_K -1:0] AddrBuffer ;
33 input [M -1:0] BaseAddr ;
34 input Rst;
35 input Clk;
36 input Pwr_off ;
37
38 // outputs
39 output [N -1:0] Val;
40 output [M -1:0] Addr;
41 output WriteEn ;
42 output [K -1:0] AckBackups ;
43 output PullEn ;
44
45
46 wire [1:0] DirtyVal_wire ;
47 wire RstVal_wire ;
48 wire RstAddr_wire ;
49 wire LdVal_wire ;
50 wire LdAddr_wire ;
51 wire SelVal_wire ;
52 wire EnAck_wire ;
53 wire EnBuff_wire ;
54 wire [N -1:0] backupVal_wire ;
55 wire [(N*2) -1:0] choose_val_vin ;
56 wire [N -1:0] val_sel_wire ;
57 wire [N -1:0] vout_val_wire ;
58 wire [LOG2_K -1:0] vout_addr_wire ;
59 wire [M -1:0] vout_actual_addr_wire ;
60 wire [K -1:0] ack_sigs_wire ;
61
62 // FSM
63 FSM_Dispatcher FSM_dispatcher (
64 .Start (Start),
65 . IsEmpty ( IsEmpty ),
66 . WriteOp ( WriteOp ),
67 . DirtyVal ( DirtyVal_wire ),
68 . PullEn ( PullEn ),
69 . RstVal ( RstVal_wire ),
70 . RstAddr ( RstAddr_wire ),
71 .LdVal ( LdVal_wire ),
72 . LdAddr ( LdAddr_wire ),
73 . SelVal ( SelVal_wire ),
74 .EnAck ( EnAck_wire ),
75 . EnBuff ( EnBuff_wire ),
76 . Pwr_off ( Pwr_off ),
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77 .Rst (Rst),
78 .Clk (Clk)
79 );
80
81 // mux dirty bits
82 MuxM_N1 #(
83 .N (K),
84 .M (2)
85 ) mux_dirty_bits (
86 .Vin ( DirtyBits ),
87 .Sel ( AddrBuffer ),
88 .Vout ( DirtyVal_wire )
89 );
90
91 // mux backup vals
92 MuxM_N1 #(
93 .N (K),
94 .M (N)
95 ) mux_backup_vals (
96 .Vin ( BackupVals ),
97 .Sel ( vout_addr_wire ),
98 .Vout ( backupVal_wire )
99 );

100
101
102 assign choose_val_vin = { backupVal_wire , ValBuffer };
103 // mux sel val buffer
104 MuxM_N1 #(
105 .N (2) ,
106 .M (N)
107 ) mux_val_buffer (
108 .Vin ( choose_val_vin ),
109 .Sel ( SelVal_wire ),
110 .Vout ( val_sel_wire )
111 );
112
113 // reg val
114 RegN #(
115 .N (N)
116 ) reg_val (
117 .Vin ( val_sel_wire ),
118 .Vout ( vout_val_wire ),
119 .Ld ( LdVal_wire ),
120 .Rst ( RstVal_wire ),
121 .Clk (Clk),
122 . Pwr_off ( Pwr_off )
123 );
124
125 // reg addr
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126 RegN #(
127 .N ( LOG2_K )
128 ) reg_addr_buf (
129 .Vin ( AddrBuffer ),
130 .Vout ( vout_addr_wire ),
131 .Ld ( LdAddr_wire ),
132 .Rst ( RstAddr_wire ),
133 .Clk (Clk),
134 . Pwr_off ( Pwr_off )
135 );
136
137 // adder base addr + buff addr
138 Adder #(
139 .N (M)
140 ) adder_addr (
141 .A ({{(M- LOG2_K ){1’b0}}, vout_addr_wire })

,
142 .B ( BaseAddr ),
143 .Cin (1’b0),
144 .Cout (),
145 .S ( vout_actual_addr_wire )
146 );
147
148 // buffer 3 states output
149 TriBuff #(
150 .N (N)
151 ) buff_3s_mem_interface_val (
152 .Vin ( vout_val_wire ),
153 .En ( EnBuff_wire ),
154 .Vout (Val)
155 );
156
157 TriBuff #(
158 .N (M)
159 ) buff_3s_mem_interface_addr (
160 .Vin ( vout_actual_addr_wire ),
161 .En ( EnBuff_wire ),
162 .Vout (Addr)
163 );
164
165 TriBuff #(
166 .N (1)
167 ) buff_3s_mem_interface_write_en (
168 .Vin ( EnBuff_wire ),
169 .En ( EnBuff_wire ),
170 .Vout ( WriteEn )
171 );
172
173 // decoder ack backup
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174 DecN #(
175 .N ( LOG2_K )
176 ) decoder_ack_backup (
177 .Vin ( vout_addr_wire ),
178 .Vout ( ack_sigs_wire )
179 );
180
181 // en ack backup
182 assign AckBackups = ({K{ EnAck_wire }} & ack_sigs_wire );
183
184
185
186 endmodule

Listing 4.4: Dispatcher Verilog implementation

4.4.5 Atomic Execution with .ICA Instruction
One of the key contributions of RISE is the extension of the RISC-V ISA with the
.ICA instruction (Intermittent Computing Atomic). This instruction enables
programmers to explicitly delimit code regions that must be executed atomically,
ensuring both correctness and consistency under intermittent power conditions.

Instruction Semantics

The .ICA primitive is not a traditional instruction with an immediate effect on
registers or memory. Instead, it acts as a tag that defines the boundaries of an
atomic region. Two instructions are introduced:

• ICA_START: marks the beginning of an atomic region.

• ICA_END: marks the end of the same region.

The code enclosed between these two markers is treated as an indivisible block
of execution. Either the entire region executes successfully, or no visible state
changes occur in external memory. This ensures that critical computations, such
as sensor sampling or actuation logic, are never left in a partially completed state.

Pipeline Integration

Support for the .ICA instruction required extending the decode stage of the baseline
RV32I pipeline. When the decoder identifies an ICA_START, the following operations
are triggered:

1. The Power Control Unit (PCU) is disabled, preventing background backup
operations during atomic execution.
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2. A full snapshot of the processor’s internal state is taken using the ICRW
modules and stored in memory.

3. A log buffer is activated to record all subsequent external write operations.

When ICA_END is encountered, the buffered writes are validated and committed
atomically to the memory system, after which the PCU is re-enabled.

Execution Flow

The flow of operations during atomic execution is illustrated below:

1. Entry (ICA_START):

• Save complete processor state (snapshot).
• Suspend PCU activity to reduce energy consumption.
• Redirect memory writes to the internal log buffer.

2. Atomic Region Execution:

• Instructions execute normally, but external writes are intercepted.
• Buffered writes are staged in log memory until completion.

3. Exit (ICA_END):

• If uninterrupted, flush buffered writes to external memory in a single
batch.

• PCU is re-enabled, and normal operation resumes.

4. Failure Handling:

• If a power failure occurs mid-region, the processor restores the snapshot
saved at entry.

• The region is re-executed entirely, ensuring atomicity and consistency.

Pseudocode Example

The following pseudocode illustrates the programmer’s view of the .ICA primitive:
1 ICA_START ; // Begin atomic region
2
3 sensor_value = read_sensor ();
4 processed = process ( sensor_value );
5 write_to_output ( processed );
6
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7 ICA_END ; // End atomic region

Listing 4.5: Pseudocode example of atomic execution using .ICA tags

In this example, the sensor reading, computation, and output update form a
critical block. Even if power fails after the sensor is read but before the output
is written, the system restores to the snapshot at ICA_START and re-executes the
region, guaranteeing correctness.

Advantages and Limitations

The main advantage of the .ICA mechanism is that it provides explicit software
control over atomicity, without requiring complex compiler analyses or opaque
runtime systems. It ensures:

• Strong correctness guarantees across intermittent power failures.

• Energy efficiency by disabling unnecessary background backups.

• Portability across different RISC-V cores with minimal ISA extension.

The primary limitation is that the log buffer introduces a maximum bound on
the number of writes within an atomic region. Exceeding this limit would either
stall execution or require splitting the region into multiple atomic blocks. Despite
this constraint, the mechanism provides a practical balance between flexibility and
hardware simplicity.

4.5 Integration with RISC-V Pipeline
Integrating RISE into the RV32I pipeline requires minimal modifications. The
baseline five-stage pipeline (IF, ID, EX, MEM, WB) is maintained intact, while
RISE modules are connected externally via dedicated control and data signals.

The decode stage was extended to recognize the new .ICA instruction, which
marks the start and end of atomic regions. When an atomic region is entered, the
PCU is temporarily disabled, and writes are buffered until the region completes. If
power fails, the snapshot taken prior to entry ensures that the region is re-executed
atomically.

Figure 4.7 shows the high-level integration of the modules with the pipeline.

4.6 Verilog Project Structure
The project follows a hierarchical structure to ensure modularity and reusability:
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Figure 4.7: Integration of RISE modules into the baseline RV32I pipeline.

• Core modules: baseline RV32I pipeline (IF, ID, EX, MEM, WB).

• RISE extensions: ICRW, PCU, RCU, Dispatcher.

• ISA extensions: decode logic for .ICA.

• Testbenches: developed to verify both standalone modules and system-level
integration.

Simulation and synthesis were performed using Xilinx Vivado_tm 2024.1
under Windows 11 and Ubuntu 20.04.6 LTS. Testbenches provide waveform analysis
and cycle-accurate validation of backup/restore logic.

4.7 Design Metrics and Overheads
The additional modules introduce modest area and timing overheads, while signifi-
cantly enhancing resilience to power interruptions.

• Area overhead: ICRW adds two dirty bits per register and wrapper logic;
PCU and RCU require small FSMs and buffers; Dispatcher requires arbitration
logic. Overall area increase remains negligible relative to the full core.

• Timing: maximum operating frequency is slightly reduced due to additional
signal routing but remains within design constraints for FPGA and ASIC
targets.
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• Energy: selective backup reduces memory transactions, minimizing energy
overhead. Compared to checkpointing systems, RISE demonstrates lower
average energy per instruction under intermittent workloads.

4.8 Discussion
The design achieves compatibility with conventional CMOS flows and avoids reliance
on exotic non-volatile technologies. Compared to NVP-based approaches, which
require MRAM or FeRAM integration, RISE can be implemented and tested using
standard EDA toolchains.

Two system-level configurations are possible:

1. Backup in volatile memory: using an auxiliary controller (e.g., Freezer) to
transfer snapshots to SRAM, with optional migration to NVM on power loss.

2. Backup in non-volatile memory: mapping directly to flash or MRAM
regions, enabling persistence without auxiliary controllers.

Finally, the analysis of individual modules shows:

• ICRW: high flexibility and negligible overhead.

• PCU: efficient background backup, at the cost of modest complexity.

• RCU: reliable restore, limited by external memory latency.

• Dispatcher: transparent bus arbitration, but with variable latency for backup
commits.

Overall, RISE provides a balanced trade-off between correctness, performance,
and portability, representing a step forward in enabling intermittent computing on
open RISC-V architectures.

4.9 Summary
In this chapter, the implementation details of the RISE framework were presented.
We began by describing the baseline RV32I pipeline, which provides the foundation
for RISE integration. Key assumptions regarding hazards and toolchain support
were discussed, ensuring a clear understanding of the environment in which RISE
was developed and tested.

The chapter then detailed the four main hardware modules introduced by RISE:
the Intermittent Computing Register Wrapper (ICRW), the Power Control Unit
(PCU), the Restore Control Unit (RCU), and the Dispatcher. Each module was
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designed to preserve modularity, operate transparently with respect to the original
pipeline, and minimize area, timing, and energy overheads. The ICRW enables
fine-grained state tracking through dirty-bit management, the PCU coordinates
efficient background backups, the RCU ensures seamless recovery after power
failures, and the Dispatcher resolves bus contention by scheduling backup transfers.

Beyond these modules, the chapter introduced the .ICA instruction as a novel
ISA extension, providing explicit support for atomic execution regions. This
feature empowers programmers to guarantee atomicity and consistency for critical
code sections, bridging the gap between hardware reliability and software-level
correctness in intermittent environments.

The integration of all these elements into the baseline RISC-V pipeline was shown
to require only minimal modifications, preserving the simplicity and portability of
the core. Finally, design metrics and qualitative analysis highlighted that RISE
achieves a balanced trade-off: correctness and resilience to power failures are
improved significantly, while the added complexity and hardware cost remain
modest.

Overall, the implementation demonstrates that RISE can be realized within
standard CMOS design flows and open-source RISC-V toolchains, without the need
for exotic non-volatile devices. This positions RISE as a practical, portable, and
scalable approach to intermittent computing.

The next chapter builds on this foundation by presenting a detailed evaluation
of the implemented framework, focusing on backup/restore latency, area overhead,
energy efficiency, and performance under realistic intermittent power scenarios.
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Evaluation

5.1 Introduction
This chapter evaluates the effectiveness of the RISE framework. The objective is
to demonstrate that the proposed architecture reduces backup and restore latency,
minimizes energy overhead, and guarantees correctness under intermittent power
failures. We compare RISE against representative state-of-the-art approaches, with
particular emphasis on Freezer [4], a specialized backup controller. Our evaluation
is structured around three key questions:

1. How efficient are RISE’s backup and restore mechanisms in terms of latency
and energy?

2. How does RISE compare against existing hardware-assisted approaches such
as Freezer?

3. What are the implications of these results for forward progress and reliability
in intermittent systems?

5.2 Experimental Setup
The evaluation of RISE was conducted on a cycle-accurate Verilog model of a
baseline 5-stage RV32I RISC-V core. The processor was extended with the four
hardware modules introduced in Chapter 3: the Intermittent Computing Register
Wrapper (ICRW), the Power Control Unit (PCU), the Restore Control Unit (RCU),
and the Dispatcher. The processor includes 53 ICRW elements covering the entire
register file and key sequential states of the pipeline.
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5.2.1 Toolchain and Environment
The design was synthesized and simulated using Xilinx Vivado, while waveform
inspection was performed with ModelSim. The simulation clock was set to 1 GHz,
corresponding to 1 ns per cycle. Power failures were emulated by forcing the reset of
all sequential registers, thereby clearing the pipeline state. Upon power restoration,
the RCU reloaded the preserved state from the backup buffer.

5.2.2 Benchmarks
Two benchmark sets were used:

• The RISC-V compliance test suite, to evaluate functional correctness
under intermittent failures.

• Selected kernels from the MiBench suite, including dijkstra, crc, and sha, to
evaluate performance and energy in realistic workloads.

5.2.3 Comparison Baselines
To provide context, RISE was compared against:

• A naive baseline without intermittent support (full state lost on power failure).

• Freezer [4], an external backup controller that saves dirty memory blocks to
NVM.

5.3 Evaluation Metrics
The evaluation focused on the following metrics:

• Backup latency: number of cycles and absolute time to save state.

• Restore latency: cycles and time required to resume execution after failure.

• Energy overhead: energy required to perform backup and restore.

• Forward progress: fraction of useful instructions executed under repeated
failures.
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5.4 Performance Results
5.4.1 Backup Latency
Table 5.1 reports the backup latency of RISE. Depending on the number of dirty
registers, backup requires between 35 and 215 cycles, corresponding to 0.035–0.215
µs at 1 GHz. The average case across benchmarks was 6.36 µs, as only a fraction
of registers are typically dirty.

Table 5.1: Backup latency of RISE at 1 GHz

Case Cycles Time [µs]
Minimum 35 0.035
Maximum 215 0.215

Average (benchmarks) – 6.36

5.4.2 Restore Latency
Table 5.2 summarizes restore performance. Regardless of benchmark, restore
required 106 cycles (0.106 µs), which is significantly faster than checkpointing-
based approaches.

Table 5.2: Restore latency of RISE at 1 GHz

Case Cycles Time [µs]
Restore latency 106 0.106

5.4.3 Waveform Analysis
Figure 5.1 shows a representative waveform from simulation, illustrating the backup
process triggered by the PCU and coordinated by the Dispatcher. The transition
of register states (CLEAN, DIRTY, BACKUP, MODIFIED) is visible, confirming
the correct behavior of the ICRW FSM.

5.5 Comparison with State of the Art
5.5.1 Comparison with Freezer
Figure 5.2 compares the backup latency of RISE with Freezer. Freezer requires
a fixed latency of 6.625 µs to back up 53 words, while RISE achieves an average
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Figure 5.1: Simulation waveform showing backup and restore cycle of RISE.

latency of 6.36 µs thanks to selective dirty-bit tracking. Moreover, the worst-case
latency of RISE (0.203 µs) is an order of magnitude lower.

Figure 5.2: Comparison of backup timing: Freezer vs. RISE.
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5.5.2 Energy Consumption
Energy measurements further highlight RISE’s efficiency. Freezer consumes 77.083
nJ per backup, while RISE requires only 73.942 nJ on average, as shown in
Figure 5.3. This 4% reduction, while modest, is significant given the extreme
energy constraints of intermittent IoT devices.

Figure 5.3: Comparison of backup energy: Freezer vs. RISE.

5.6 Qualitative Analysis
RISE combines the efficiency of hardware-assisted backup with the programmability
of ISA-level extensions. Unlike checkpointing, it avoids redundant saves and long
rollback times. Unlike task-based models, it does not impose complex compil-
er/runtime support. Compared to NVPs, RISE does not depend on exotic memory
technologies, ensuring compatibility with standard CMOS. Finally, compared to
Freezer, RISE provides explicit atomicity guarantees through the .ICA instruction.

5.7 Discussion
The evaluation results demonstrate that RISE achieves both low latency and low
energy overhead while preserving correctness. In practical terms, this means that
IoT devices equipped with RISE can perform more useful work per unit of harvested
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energy and remain reliable under frequent power interruptions. Nevertheless,
limitations remain:

• The current evaluation is limited to single-core RV32I systems.

• Energy results are obtained from simulation, not physical measurements.

• More complex benchmarks and real workloads would provide deeper insights.

5.8 Summary
This chapter presented the evaluation of RISE. Our results show that RISE reduces
backup latency to as low as 0.203 µs and restore latency to 0.106 µs, outper-
forming Freezer in both latency and energy efficiency. By combining ISA-level
atomicity with efficient hardware support, RISE establishes itself as a robust and
portable framework for intermittent computing. The next chapter discusses broader
implications, limitations, and opportunities for future research.
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Discussion and Limitations

6.1 Introduction
The evaluation presented in Chapter 5 demonstrated that RISE achieves substantial
improvements in backup and restore latency, energy efficiency, and programmability
compared to existing solutions. However, as with any architectural innovation,
the design of RISE involves trade-offs and is subject to certain limitations. This
chapter provides a critical discussion of the results, highlighting both the strengths
of the proposed framework and the areas where further research and optimization
are required.

6.2 Strengths of the RISE Framework
6.2.1 Efficiency in Backup and Restore
RISE significantly reduces backup and restore latency by selectively saving only
dirty registers through the ICRW module. The ability to minimize redundant
memory operations allows the system to respond quickly to imminent power failures,
thereby increasing forward progress. Compared to Freezer, RISE achieves similar
or lower energy overhead while offering an order of magnitude lower worst-case
latency.

6.2.2 ISA-Level Atomicity
The introduction of the .ICA instruction provides explicit support for atomic
execution of critical code regions. This feature bridges the gap between software
semantics and hardware enforcement, ensuring correctness under arbitrary power
interruptions. Unlike checkpointing or task-based frameworks, which implicitly rely
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on compiler heuristics, RISE empowers developers to directly define fault-tolerant
execution regions.

6.2.3 Compatibility and Portability

RISE avoids reliance on exotic non-volatile technologies, instead relying solely
on standard CMOS-compatible modules. This design choice improves portability
across different RISC-V cores and lowers adoption barriers. The modular structure
of the ICRW, PCU, RCU, and Dispatcher makes the framework adaptable to
various system-on-chip (SoC) designs, ranging from minimalist IoT nodes to more
powerful embedded processors.

6.3 Limitations of the Current Design

6.3.1 Single-Core Evaluation

The current implementation and evaluation of RISE were performed on a single-core
RV32I pipeline. While sufficient to demonstrate the feasibility of the approach, this
setup does not capture the complexities of multicore systems, where backup and
restore must be coordinated across cores and shared memory. Future extensions
will need to address scalability to heterogeneous and multicore architectures.

6.3.2 Simulation-Based Validation

All experiments were performed using Verilog simulation. While cycle-accurate
simulation provides a reliable measure of latency and functional correctness, it
does not fully capture the physical energy consumption or area overhead of an
implementation. A physical prototype on FPGA or ASIC would be required to
validate the energy models and quantify silicon costs.

6.3.3 Memory and Buffering Assumptions

The evaluation assumed ideal memory access times for the backup buffer and
main memory. In practice, non-volatile memories such as Flash or MRAM in-
troduce longer latencies and higher energy costs. The integration of realistic
NVM technologies may affect the backup/restore trade-offs and requires further
investigation.
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6.3.4 Limited Benchmark Coverage
Although MiBench and RISC-V compliance tests provide a good starting point,
the benchmarks used remain relatively simple. Larger, more memory-intensive
applications (e.g., database kernels, graph analytics) may stress the backup/restore
mechanisms differently, potentially exposing bottlenecks not visible in lightweight
workloads.

6.4 Trade-offs in Design
6.4.1 Area vs. Latency
The inclusion of the ICRW and Dispatcher introduces additional hardware com-
plexity and area overhead. While this overhead is modest compared to the benefits
in latency and energy, it may become more significant in ultra-constrained IoT
devices where silicon area is highly limited.

6.4.2 Energy vs. Correctness
RISE prioritizes correctness guarantees (atomicity and consistency) over absolute
energy minimization. In scenarios where reliability is less critical, lightweight task-
based approaches may remain more energy-efficient. This highlights the importance
of aligning the choice of intermittent computing strategy with the requirements of
the target application.

6.4.3 Generality vs. Specialization
The design of RISE emphasizes portability and modularity, avoiding aggressive
optimizations that would tie it to a specific use case. As a result, there may be
opportunities to further optimize performance and energy efficiency in specialized
deployments at the expense of generality.

6.5 Implications for Real-World Applications
The results obtained in Chapter 5 have important implications for real-world
applications of intermittent computing:

• In medical IoT devices, where incorrect or inconsistent results may endanger
human lives, RISE provides the necessary reliability under energy scarcity.

• In industrial monitoring, RISE reduces the likelihood of missed detections
or false alarms due to corrupted state, ensuring safer operation.
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• In consumer IoT, improved forward progress translates into smoother user
experience, avoiding frequent restarts and glitches.

These examples underline that RISE not only advances academic research but also
has tangible benefits in critical domains.

6.6 Summary
This chapter critically discussed the design choices and evaluation results of RISE.
The framework offers notable strengths in terms of efficiency, atomicity, and
portability, but it also faces limitations such as reliance on simulation, lack of
multicore validation, and simplified memory assumptions. These trade-offs highlight
opportunities for further research, which are addressed in the concluding chapter.
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Chapter 7

Conclusions and Future
Work

7.1 Introduction
This chapter concludes the thesis by summarizing the main contributions of the
RISE framework and reflecting on its significance for the field of intermittent
computing. We also outline directions for future research that can build upon the
foundation laid by this work.

7.2 Summary of Contributions
The primary objective of this thesis was to design, implement, and evaluate an
architectural extension to the RISC-V ISA and microarchitecture that enables
efficient, reliable execution under intermittent power supply. The proposed solution,
named RISE (RISC-V Intermittent System Extensions), advances the state
of the art through the following contributions:

1. Architectural Design: Introduction of a modular hardware framework
composed of the Intermittent Computing Register Wrapper (ICRW), Power
Control Unit (PCU), Restore Control Unit (RCU), and Dispatcher.

2. ISA Extensions: Definition of the .ICA instruction to mark atomic code
regions, providing correctness guarantees across power failures.

3. Efficient Backup and Restore: Implementation of dirty-bit tracking and
selective register backup, reducing latency to as low as 0.203 µs and restore
time to 0.106 µs at 1 GHz.
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4. Portability: Demonstration that RISE is implementable with standard
CMOS processes and integrates seamlessly with existing RISC-V cores.

5. Evaluation: Validation through simulation and benchmark execution, show-
ing that RISE outperforms state-of-the-art solutions such as Freezer in both
latency and energy efficiency.

7.3 Key Findings
The evaluation presented in Chapter 5 provides strong evidence that RISE success-
fully addresses the core challenges of intermittent computing:

• Reduced overhead: By backing up only dirty registers, RISE significantly
lowers backup latency and energy compared to checkpointing approaches.

• Correctness guarantees: The .ICA instruction enforces atomic execution
regions, eliminating the risk of inconsistent states.

• Practicality: RISE avoids the reliance on exotic memory technologies, en-
suring compatibility with existing fabrication processes and broad adoption
potential.

These findings demonstrate that architectural and ISA-level support is a powerful
approach to enabling reliable batteryless computing.

7.4 Future Work
While RISE represents an important step forward, several avenues remain open for
exploration:

7.4.1 Extension to Multicore and Out-of-Order Processors
The current evaluation focused on a single-core RV32I pipeline. Scaling RISE to
multicore systems introduces new challenges, such as coordinating backup across
cores and maintaining memory consistency. Furthermore, applying RISE to out-of-
order (OoO) processors would require handling speculative state, making this a
promising but complex direction.

7.4.2 Integration with Compiler and Runtime Support
Although the .ICA instruction provides atomicity guarantees, compiler and runtime
frameworks could further optimize the placement of atomic regions. Automatic
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insertion of ICA boundaries based on program analysis could relieve programmers
from manual annotation and improve usability.

7.4.3 Prototype on FPGA and ASIC
Physical prototyping on FPGA or ASIC would allow validation of energy and
area overhead in real silicon. Such a prototype would also enable end-to-end
demonstrations of RISE in realistic IoT scenarios, such as sensor nodes powered by
energy harvesting.

7.4.4 Evaluation with Real Workloads
Future evaluations should extend beyond microbenchmarks to include complex
applications such as machine learning inference, secure communication protocols,
and real-time control tasks. These workloads would stress the intermittent execution
model in different ways, providing deeper insights into the generality of RISE.

7.4.5 Integration with Energy Harvesting Systems
Finally, coupling RISE with real energy harvesting front-ends would enable a
holistic evaluation of the entire system. Exploring the co-design of architecture
and energy management policies may yield additional efficiency gains.

7.5 Closing Remarks
This thesis introduced RISE, a novel extension to the RISC-V architecture that
bridges the gap between software semantics and hardware support for intermittent
computing. Through a careful combination of ISA primitives and lightweight
hardware modules, RISE enables efficient and reliable execution in batteryless
systems, paving the way for sustainable IoT deployments.

The work presented here highlights the potential of architectural solutions in
addressing the unique challenges of intermittent computing. While limitations
remain, RISE lays the foundation for future exploration of portable, efficient,
and correct-by-design architectures for the next generation of energy-harvesting
devices.

57



Appendix A

Verilog Source Code

A.1 Intermittent Computing Register Wrapper
(ICRW)

1 module RegN_IC_Wrapper #( parameter N = 32) (
2 Ld ,
3 Vin ,
4 Vout ,
5 Dirty_val ,
6 Backup_en ,
7 Backup_ack ,
8 Backup_Vout ,
9 Rst_DrtyCtrl ,

10 Restore_en ,
11 Restore_Vin ,
12 Rst ,
13 Clk ,
14 Pwr_off
15 );
16
17 // register
18 input Ld , Rst , Clk;
19 input [N -1:0] Vin;
20 output [N -1:0] Vout;
21
22 // Dirty bit FSM
23 input Backup_en , Backup_ack ;
24 output [1:0] Dirty_val ;
25 output [N -1:0] Backup_Vout ;
26 input Rst_DrtyCtrl ;
27
28 // restore signals
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29 input [N -1:0] Restore_Vin ;
30 input Restore_en ;
31
32 // intermittent computing simulation
33 input Pwr_off ;
34
35 wire [N -1:0] Vin_wire , Vin_wire_reg ;
36 wire [N -1:0] Vout_wire ;
37
38 wire Ld_reg_wire ;
39 wire Rst_reg_wire ;
40
41 wire cmp_res ;
42
43 wire Rst_DrtyCtrl_wire ;
44
45 wire Ld_wire ;
46
47
48 RegN #(
49 .N (N)
50 ) register_n (
51 .Vin ( Vin_wire_reg ),
52 .Vout ( Vout_wire ),
53 .Ld ( Ld_wire ),
54 .Rst (Rst),
55 .Clk (Clk),
56 . Pwr_off ( Pwr_off )
57 );
58
59 DirtyCtrl dirty_controller (
60 . Ld_reg ( Ld_reg_wire ),
61 . Rst_reg ( Rst_reg_wire ),
62 . Backup_en ( Backup_en ),
63 . Backup_ack ( Backup_ack ),
64 .Clk (Clk),
65 .Rst ( Rst_DrtyCtrl_wire ),
66 . Dirty_val ( Dirty_val ),
67 . Pwr_off ( Pwr_off )
68 );
69
70 CmpN #(
71 .N (N)
72 ) comparator (
73 .Vin_a ( Vin_wire ),
74 .Vin_b ( Vout_wire ),
75 .Vout ( cmp_res )
76 );
77
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78 MuxN_21 #(
79 .N (N)
80 ) multiplexer_restore (
81 .Vin_a ( Vin_wire ), // sel = 0
82 .Vin_b ( Restore_Vin ), // sel = 1
83 .sel ( Restore_en ),
84 .Vout ( Vin_wire_reg )
85 );
86
87
88
89 assign Backup_Vout = Vout_wire ;
90 assign Vout = Vout_wire ;
91 assign Vin_wire = Vin;
92
93 assign Ld_reg_wire = Ld & ~ cmp_res ;
94 assign Rst_reg_wire = Rst & ~ cmp_res ;
95
96 assign Rst_DrtyCtrl_wire = Rst_DrtyCtrl | Restore_en ;
97 assign Ld_wire = Ld | Restore_en ;
98
99

100
101 endmodule

Listing A.1: Intermittent Computing Register Wrapper Verilog implementation

1 module RegN #( parameter N = 32)(
2 Vin ,
3 Vout ,
4 Ld ,
5 Rst ,
6 Clk ,
7 Pwr_off
8 );
9

10 input [N -1:0] Vin;
11 output [N -1:0] Vout;
12 input Ld , Rst , Clk;
13 input Pwr_off ;
14
15 reg [N -1:0] Vout;
16
17 always @( posedge Clk or posedge Rst or posedge Pwr_off ) begin
18 if (Rst || Pwr_off )
19 Vout <= {N{1’b0 }};
20 else if (Ld)
21 Vout <= Vin;
22 end

60



Verilog Source Code

23
24 endmodule

Listing A.2: Register Verilog implementation

1 module DirtyCtrl (
2 Ld_reg ,
3 Rst_reg ,
4 Backup_en ,
5 Backup_ack ,
6 Clk ,
7 Rst ,
8 Dirty_val ,
9 Pwr_off

10 );
11
12 input Ld_reg , Rst_reg , Backup_en , Backup_ack ;
13 output [1:0] Dirty_val ;
14 input Clk , Rst;
15 input Pwr_off ;
16
17 reg [1:0] Dirty_val ;
18
19 reg [1:0] State , NextState ;
20
21 parameter CLEAN = 0,
22 DIRTY = 1,
23 READ = 2,
24 DIRTY_WR = 3;
25
26 // comb logic
27 always @(State , Ld_reg , Rst_reg , Backup_en , Backup_ack ) begin
28 case (State)
29 CLEAN: begin
30 Dirty_val <= 2’b00;
31 if ( Ld_reg || Rst_reg )
32 NextState <= DIRTY;
33 else
34 NextState <= State;
35 end
36
37 DIRTY: begin
38 Dirty_val <= 2’b01;
39 if ( Backup_en )
40 NextState <= READ;
41 else
42 NextState <= State;
43 end
44
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45 READ: begin
46 Dirty_val <= 2’b10;
47 if ( Ld_reg || Rst_reg )
48 NextState <= DIRTY_WR ;
49 else if ( Backup_ack )
50 NextState <= CLEAN;
51 else
52 NextState <= State;
53 end
54
55 DIRTY_WR : begin
56 Dirty_val <= 2’b11;
57 if ( Backup_ack )
58 NextState <= CLEAN;
59 else
60 NextState <= State;
61 end
62 endcase
63 end
64
65
66 // state reg
67 always @( posedge Clk or posedge Pwr_off ) begin
68 if (Rst)
69 State <= CLEAN;
70 else if ( Pwr_off )
71 State <= CLEAN;
72 else
73 State <= NextState ;
74 end
75 endmodule

Listing A.3: Dirty Bit Controller Verilog implementation

1 module CmpN #( parameter N = 32) (
2 Vin_a ,
3 Vin_b ,
4 Vout
5 );
6
7 input [N -1:0] Vin_a , Vin_b;
8 output Vout;
9

10 reg Vout;
11
12 always @(Vin_a , Vin_b) begin
13 if (Vin_a == Vin_b)
14 Vout <= 1’b1;
15 else
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16 Vout <= 1’b0;
17 end
18 endmodule

Listing A.4: Comparator Verilog implementation

1 module MuxN_21 #( parameter N = 32) (
2 Vin_a , // sel = 0
3 Vin_b , // sel = 1
4 sel ,
5 Vout
6 );
7
8 input [N -1:0] Vin_a , Vin_b;
9 input sel;

10 output [N -1:0] Vout;
11 reg [N -1:0] Vout;
12
13 always @(Vin_a , Vin_b , sel) begin
14 if (sel)
15 Vout <= Vin_b;
16 else
17 Vout <= Vin_a;
18 end
19
20 endmodule

Listing A.5: Multiplexer Verilog implementation

A.2 Power Control Unit (PCU)

1 module PCU #(
2 parameter K = 10, // number of IC_Reg_Wrapeer
3 parameter N = 32, // width of IC_Reg_Wrapper
4 parameter M = 32 // width timer value register
5 ) (
6 Backup_Vout_IC_Reg_Wrapper ,
7 Start_FSM_PCU ,
8 PushVal_Buffer ,
9 Load_Timer ,

10 PushEn_Buffer ,
11 backup_now_ctrl , // start backup now
12 Dirty_vals_IC_Reg_Wrapper , // K = number of Wrappers
13 Rst_Buffer ,
14 Backup_Ens_IC_REG_Wrapper , // K = number of Wrappers
15 IsFull_Buffer ,
16 Clk ,
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17 Rst ,
18 Pwr_off
19 );
20
21 localparam LOG2_K = $clog2 (K);
22
23
24 input [(K*N) -1:0] Backup_Vout_IC_Reg_Wrapper ;
25 input Start_FSM_PCU ;
26 input [M -1:0] Load_Timer ;
27 input [(K*2) -1:0] Dirty_vals_IC_Reg_Wrapper ;
28 input IsFull_Buffer ;
29 input backup_now_ctrl ;
30
31 output [N+LOG2_K -1:0] PushVal_Buffer ;
32 output PushEn_Buffer ;
33 output Rst_Buffer ;
34 output [K -1:0] Backup_Ens_IC_REG_Wrapper ;
35
36 input Pwr_off ;
37 input Rst;
38 input Clk;
39
40 wire last_wire ;
41 wire end_wire ;
42 wire end_timer_wire ;
43 wire [1:0] dirty_val_wire ;
44 wire Rst_CntN_wire ;
45 wire Rst_Timer_wire ;
46 wire En_Timer_wire ;
47 wire Clk_CntN_wire ;
48
49 wire [LOG2_K -1:0] addr_wrapper ;
50 wire [LOG2_K -1:0] addr_wrapper_sub ;
51 wire [N -1:0] push_val_buffer_wire ;
52
53 wire [K -1:0] Backup_Ens_IC_REG_Wrapper_wire ;
54
55 assign end_wire = end_timer_wire | backup_now_ctrl ;
56
57 // FSM
58 FSM_PCU fsm_power_cu (
59 .Start ( Start_FSM_PCU ),
60 . IsFull_Buffer ( IsFull_Buffer ),
61 .Last ( last_wire ),
62 . End_Timer ( end_wire ),
63 . DirtyValSel ( dirty_val_wire ),
64 . Rst_Buffer ( Rst_Buffer ),
65 . Rst_CntN ( Rst_CntN_wire ),
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66 . Rst_Timer ( Rst_Timer_wire ),
67 . En_Timer ( En_Timer_wire ),
68 . Clk_CntN ( Clk_CntN_wire ),
69 . PushEn_Buffer ( PushEn_Buffer ),
70 .Rst (Rst),
71 .Clk (Clk),
72 . Pwr_off ( Pwr_off )
73 );
74
75 // Timer
76 Timer #(
77 .N (M)
78 ) timer_pcu (
79 .En ( En_Timer_wire ),
80 .Load ( Load_Timer ),
81 .Clk (Clk),
82 .Rst ( Rst_Timer_wire ),
83 .End ( end_timer_wire ),
84 . Pwr_off ( Pwr_off )
85 );
86
87 // CntN
88 CntN #(
89 .N ( LOG2_K )
90 ) counter_backup_addr (
91 .Clk ( Clk_CntN_wire ),
92 .Rst ( Rst_CntN_wire ),
93 . Pwr_off ( Pwr_off ),
94 .Vout ( addr_wrapper )
95 );
96
97 // Decoder
98 DecN #(
99 .N ( LOG2_K )

100 ) dec_backup_en (
101 .Vin ( addr_wrapper_sub ),
102 .Vout ( Backup_Ens_IC_REG_Wrapper_wire )
103 );
104
105 assign Backup_Ens_IC_REG_Wrapper =

Backup_Ens_IC_REG_Wrapper_wire & {N{ PushEn_Buffer }};
106
107 // Multiplexer
108 MuxM_N1 #(
109 .N (K),
110 .M (2)
111 ) mux_dirty_val (
112 .Vin ( Dirty_vals_IC_Reg_Wrapper ),
113 .Sel ( addr_wrapper_sub ),
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114 .Vout ( dirty_val_wire )
115 );
116
117 // sub by 1
118 Sub1 #(
119 .N ( LOG2_K )
120 ) sub1_addr (
121 .Vin ( addr_wrapper ),
122 .Vout ( addr_wrapper_sub )
123 );
124
125 // and signal Last
126 CmpN_M #(
127 .N ( LOG2_K ),
128 .M (K)
129 ) cmp_last_addr_wrapper (
130 .Vin_a ( addr_wrapper ),
131 .Vout ( last_wire )
132 );
133
134 // mux Backup vals
135 MuxM_N1 #(
136 .N (K),
137 .M (N)
138 ) mux_backup_val (
139 .Vin ( Backup_Vout_IC_Reg_Wrapper ),
140 .Sel ( addr_wrapper_sub ),
141 .Vout ( push_val_buffer_wire )
142 );
143
144 assign PushVal_Buffer = { push_val_buffer_wire ,

addr_wrapper_sub };
145
146
147 endmodule

Listing A.6: Power Control Unit Verilog implementation

1 module FSM_PCU (
2 Start ,
3 IsFull_Buffer ,
4 Last ,
5 End_Timer ,
6 DirtyValSel ,
7 Rst_Buffer ,
8 Rst_CntN ,
9 Rst_Timer ,

10 En_Timer ,
11 Clk_CntN ,
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12 PushEn_Buffer ,
13 Rst ,
14 Clk ,
15 Pwr_off
16 );
17
18 input Start;
19 input IsFull_Buffer ;
20 input Last;
21 input End_Timer ;
22 input [1:0] DirtyValSel ;
23 output reg Rst_Buffer ;
24 output reg Rst_CntN ;
25 output reg Rst_Timer ;
26 output reg En_Timer ;
27 output reg Clk_CntN ;
28 output reg PushEn_Buffer ;
29
30 input Rst;
31 input Clk;
32 input Pwr_off ;
33
34 parameter IDLE = 0,
35 RESET = 1,
36 WAIT = 2,
37 POOLING = 3,
38 BACKUP_REG = 4;
39
40 parameter DIRTY = 2’b01; // value of dirty status of the

IC_REGN_WRAPPER
41
42 reg [2:0] State , NextState ;
43
44 // CombLogic
45 always @(State , Start , IsFull_Buffer , Last , End_Timer ,

DirtyValSel ) begin
46 Rst_Buffer <= 0;
47 Rst_CntN <= 0;
48 En_Timer <= 0;
49 Rst_Timer <= 0;
50 Clk_CntN <= 0;
51 PushEn_Buffer <= 0;
52 NextState <= State;
53
54 case (State)
55 IDLE: begin
56 Rst_Buffer <= 1;
57 if (Start)
58 NextState <= RESET;
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59 end
60
61 RESET: begin
62 Rst_Timer <= 1;
63 Rst_CntN <= 1;
64 Clk_CntN <= 1;
65 if ( IsFull_Buffer == 0)
66 NextState <= WAIT;
67 end
68
69 WAIT: begin
70 En_Timer <= 1;
71 if ( End_Timer )
72 NextState <= POOLING ;
73
74 end
75
76 POOLING : begin
77 Clk_CntN <= 1;
78 if (Last && DirtyValSel != DIRTY)
79 NextState <= RESET;
80 else if (Last == 0 && DirtyValSel != DIRTY)
81 NextState <= State;
82 else if ( DirtyValSel == DIRTY)
83 NextState <= BACKUP_REG ;
84
85 end
86
87 BACKUP_REG : begin
88 PushEn_Buffer <= 1;
89 if ( IsFull_Buffer || Last)
90 NextState <= RESET;
91 else
92 NextState <= POOLING ;
93 end
94 endcase
95 end
96
97
98 // StateReg
99 always @( posedge Clk or posedge Pwr_off ) begin

100 if (Rst)
101 State <= IDLE;
102 else if ( Pwr_off )
103 State <= IDLE;
104 else
105 State <= NextState ;
106 end
107
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108
109 endmodule

Listing A.7: FSM PCU Verilog implementation

1 module Timer #( parameter N = 32) (
2 En ,
3 Load ,
4 Clk ,
5 Rst ,
6 End ,
7 Pwr_off
8 );
9

10 input En , Clk , Rst;
11 input [N -1:0] Load;
12 output End;
13 input Pwr_off ;
14
15 wire [N -1:0] wire_a ;
16 wire [N -1:0] wire_b ;
17 wire end_wire ;
18 wire Rst_cnt ;
19
20 wire cnt_en ;
21
22 RegN #(
23 .N (N)
24 ) register_ticks (
25 .Vin (Load),
26 .Vout ( wire_b ),
27 .Ld (Rst),
28 .Rst (1’b0),
29 .Clk (Clk),
30 . Pwr_off ( Pwr_off )
31 );
32
33 CntN #(
34 .N (N)
35 ) counter_ticks (
36 .Clk ( cnt_en ),
37 .Rst (Rst),
38 . Pwr_off ( Pwr_off ),
39 .Vout ( wire_a )
40 );
41
42 CmpN #(
43 .N (N)
44 ) end_check (
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45 .Vin_a ( wire_a ),
46 .Vin_b ( wire_b ),
47 .Vout ( end_wire )
48 );
49
50 assign End = end_wire & En;
51 assign Rst_cnt = end_wire | Rst;
52 assign cnt_en = Clk & (En | Rst);
53
54 endmodule

Listing A.8: Timer Verilog implementation

1 module CntN #( parameter N = 32) (
2 Clk ,
3 Rst ,
4 Pwr_off ,
5 Vout
6 );
7
8 input Clk;
9 input Rst;

10 input Pwr_off ;
11
12 output reg [N -1:0] Vout;
13
14 always @( posedge Clk or posedge Pwr_off ) begin
15 if (Rst | Pwr_off )
16 Vout <= 0;
17 else
18 Vout <= Vout + 1’b1;
19 end
20
21 endmodule

Listing A.9: Counter Verilog implementation

1 module DecN #(
2 parameter N = 4
3 )(
4 Vin ,
5 Vout
6 );
7
8 input [N -1:0] Vin;
9 output reg [2**N -1:0] Vout;

10
11 always @(Vin) begin
12 Vout <= {N{1’b0 }};
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13 Vout[Vin] <= 1’b1;
14 end
15 endmodule

Listing A.10: Decrement Module Verilog implementation

1 module MuxM_N1 #(
2 parameter N = 4,
3 parameter M = 16
4 )(
5 Vin ,
6 Sel ,
7 Vout
8 );
9

10 input [(M*N) -1:0] Vin;
11 input [ $clog2 (N) -1:0] Sel;
12 output reg [M -1:0] Vout;
13
14 always @(Vin , Sel) begin
15 Vout <= Vin[Sel*M +:M];
16 end
17
18 endmodule

Listing A.11: Multiplexer Verilog implementation

1 module Sub1 #(
2 parameter N = 4
3 ) (
4 Vin ,
5 Vout
6 );
7
8 input [N -1:0] Vin;
9 output [N -1:0] Vout;

10
11 assign Vout = (Vin == 0) ? 0 : (Vin - 1);
12
13 endmodule

Listing A.12: Subtract Module Verilog implementation

1 module CmpN_M #(
2 parameter N = 32,
3 parameter M = 0
4 ) (
5 input [N -1:0] Vin_a ,
6 output reg Vout
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7 );
8
9 always @(*) begin

10 if (Vin_a == M)
11 Vout = 1’b1;
12 else
13 Vout = 1’b0;
14 end
15
16 endmodule

Listing A.13: Comparator Verilog implementation

A.3 Restore Control Unit (RCU)

1 module RCU #(
2 parameter N = 10, // Number of IC wrapper
3 parameter K = 32, // size base address
4 parameter M = 32 // width IC wrapper
5 ) (
6 AckMem ,
7 Start ,
8 ReadMem ,
9 BaseAddr ,

10 AddrMem ,
11 ValMem ,
12 RestoreVal ,
13 RestoreEn ,
14 Clk ,
15 Rst ,
16 Pwr_off
17 );
18
19 input AckMem ;
20 input Start;
21 input [K -1:0] BaseAddr ;
22 input [M -1:0] ValMem ;
23 input Clk;
24 input Rst;
25 input Pwr_off ;
26
27 output [K -1:0] AddrMem ;
28 output ReadMem ;
29 output [M -1:0] RestoreVal ;
30 output [N -1:0] RestoreEn ;
31
32 localparam LOG2_N = $clog2 (N);
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33
34
35 wire rst_cnt_wire ;
36 wire en_cnt_wire ;
37 wire [LOG2_N -1:0] vout_cnt_wire ;
38 wire [N -1:0] dec_out_wire ;
39 wire [LOG2_N -1:0] vout_sub_wire ;
40 wire end_wire ;
41 wire clk_cnt ;
42 wire restore_vin_en_wire ;
43 wire restore_dec_en_wire ;
44 wire [K -1:0] input_a_adder ;
45
46 CmpN_M #(
47 .N ( LOG2_N ),
48 .M (N)
49 ) cmp_addr (
50 .Vin_a ( vout_sub_wire ),
51 .Vout ( end_wire )
52 );
53
54
55 assign input_a_adder = {{(K- LOG2_N ){1’b0}}, vout_cnt_wire };
56
57 Adder #(
58 .N (K)
59 ) adder_base_addr (
60 .A ( input_a_adder ),
61 .B ( BaseAddr ), // K bits
62 .Cin (1’b0),
63 .Cout (),
64 .S ( AddrMem )
65 );
66
67 Sub1 #(
68 .N ( LOG2_N )
69 ) sub_cnt (
70 .Vin ( vout_cnt_wire ),
71 .Vout ( vout_sub_wire )
72 );
73
74 assign clk_cnt = en_cnt_wire | rst_cnt_wire ;
75
76 CntN #(
77 .N ( LOG2_N )
78 ) local_addr_cnt (
79 .Clk ( clk_cnt ),
80 .Rst ( rst_cnt_wire ),
81 . Pwr_off ( Pwr_off ),
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82 .Vout ( vout_cnt_wire )
83 );
84
85 DecN #(
86 .N ( LOG2_N )
87 ) dec_restore_en (
88 .Vin ( vout_sub_wire ),
89 .Vout ( dec_out_wire )
90 );
91
92 FSM_RCU fsm_rcu (
93 .Start (Start),
94 . AckMem ( AckMem ),
95 . ReadEn ( ReadMem ),
96 . RstCnt ( rst_cnt_wire ),
97 .EnCnt ( en_cnt_wire ),
98 .EnDec ( restore_dec_en_wire ),
99 .End ( end_wire ),

100 . Restore_VinEn ( restore_vin_en_wire ),
101 . Pwr_off ( Pwr_off ),
102 .Rst (Rst),
103 .Clk (Clk)
104 );
105
106 // enable restore_vin
107 assign RestoreVal = ValMem & {M{ restore_vin_en_wire }};
108
109 // enable restore decoder
110 assign RestoreEn = dec_out_wire & {N{ restore_dec_en_wire }};
111
112 endmodule

Listing A.14: Restore Control Unit Verilog implementation

1 module Adder #(
2 parameter N = 32
3 ) (
4 A,
5 B,
6 Cin ,
7 Cout ,
8 S
9 );

10
11 input [N -1:0] A;
12 input [N -1:0] B;
13 input Cin;
14
15 output reg Cout;
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16 output reg [N -1:0] S;
17
18 always @(A, B, Cin) begin
19 {Cout , S} = A + B + Cin;
20 end
21 endmodule

Listing A.15: Adder Verilog implementation

1 module FSM_RCU (
2 Start ,
3 AckMem ,
4 ReadEn ,
5 RstCnt ,
6 EnCnt ,
7 EnDec ,
8 End ,
9 Restore_VinEn ,

10 Pwr_off ,
11 Rst ,
12 Clk
13 );
14
15 input Start;
16 input AckMem ;
17 input End;
18
19 input Pwr_off ;
20 input Rst;
21 input Clk;
22
23
24 output reg ReadEn ;
25 output reg RstCnt ;
26 output reg EnCnt;
27 output reg EnDec;
28 output reg Restore_VinEn ;
29
30
31
32 parameter IDLE = 0,
33 RESET = 1,
34 READ = 2,
35 RESTORE = 3;
36
37 reg [1:0] State , NextState ;
38
39
40 // Comb log
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41 always @(Start , AckMem , End , State) begin
42 ReadEn <= 1’b0;
43 RstCnt <= 1’b0;
44 EnCnt <= 1’b0;
45 EnDec <= 1’b0;
46 Restore_VinEn <= 1’b0;
47
48 case (State)
49 IDLE: begin
50 if (Start)
51 NextState <= RESET;
52 end
53
54 RESET: begin
55 RstCnt <= 1’b1;
56 NextState <= READ;
57 end
58
59 READ: begin
60 ReadEn <= 1’b1;
61 if ( AckMem )
62 NextState <= RESTORE ;
63 end
64
65 RESTORE : begin
66 EnCnt <= 1’b1;
67 EnDec <= 1’b1;
68 Restore_VinEn <= 1’b1;
69 if (End)
70 NextState <= IDLE;
71 else
72 NextState <= READ;
73 end
74 endcase
75
76 end
77
78 // State reg
79 always @( posedge Clk or posedge Pwr_off ) begin
80 if (Rst || Pwr_off )
81 State <= IDLE;
82 else
83 State <= NextState ;
84 end
85
86
87
88
89 endmodule
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Listing A.16: FSM RCU Verilog implementation

A.4 Dispatcher (Backup Bus Arbitration)

1 module Dispatcher #(
2 parameter K = 10, // number of IC_REG_WRAPPERS
3 parameter N = 32, // width IC_REG_WRAPPER
4 parameter M = 32 // width base address
5 ) (
6 Start ,
7 IsEmpty ,
8 WriteOp ,
9 DirtyBits ,

10 BackupVals ,
11 ValBuffer ,
12 AddrBuffer ,
13 BaseAddr ,
14 Rst ,
15 Clk ,
16 Pwr_off ,
17 Val ,
18 Addr ,
19 WriteEn ,
20 AckBackups ,
21 PullEn
22 );
23
24 localparam LOG2_K = $clog2 (K);
25
26 input Start;
27 input IsEmpty ;
28 input WriteOp ;
29 input [(K*2) -1:0] DirtyBits ;
30 input [(K*N) -1:0] BackupVals ;
31 input [N -1:0] ValBuffer ;
32 input [LOG2_K -1:0] AddrBuffer ;
33 input [M -1:0] BaseAddr ;
34 input Rst;
35 input Clk;
36 input Pwr_off ;
37
38 // outputs
39 output [N -1:0] Val;
40 output [M -1:0] Addr;
41 output WriteEn ;
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42 output [K -1:0] AckBackups ;
43 output PullEn ;
44
45
46 wire [1:0] DirtyVal_wire ;
47 wire RstVal_wire ;
48 wire RstAddr_wire ;
49 wire LdVal_wire ;
50 wire LdAddr_wire ;
51 wire SelVal_wire ;
52 wire EnAck_wire ;
53 wire EnBuff_wire ;
54 wire [N -1:0] backupVal_wire ;
55 wire [(N*2) -1:0] choose_val_vin ;
56 wire [N -1:0] val_sel_wire ;
57 wire [N -1:0] vout_val_wire ;
58 wire [LOG2_K -1:0] vout_addr_wire ;
59 wire [M -1:0] vout_actual_addr_wire ;
60 wire [K -1:0] ack_sigs_wire ;
61
62 // FSM
63 FSM_Dispatcher FSM_dispatcher (
64 .Start (Start),
65 . IsEmpty ( IsEmpty ),
66 . WriteOp ( WriteOp ),
67 . DirtyVal ( DirtyVal_wire ),
68 . PullEn ( PullEn ),
69 . RstVal ( RstVal_wire ),
70 . RstAddr ( RstAddr_wire ),
71 .LdVal ( LdVal_wire ),
72 . LdAddr ( LdAddr_wire ),
73 . SelVal ( SelVal_wire ),
74 .EnAck ( EnAck_wire ),
75 . EnBuff ( EnBuff_wire ),
76 . Pwr_off ( Pwr_off ),
77 .Rst (Rst),
78 .Clk (Clk)
79 );
80
81 // mux dirty bits
82 MuxM_N1 #(
83 .N (K),
84 .M (2)
85 ) mux_dirty_bits (
86 .Vin ( DirtyBits ),
87 .Sel ( AddrBuffer ),
88 .Vout ( DirtyVal_wire )
89 );
90
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91 // mux backup vals
92 MuxM_N1 #(
93 .N (K),
94 .M (N)
95 ) mux_backup_vals (
96 .Vin ( BackupVals ),
97 .Sel ( vout_addr_wire ),
98 .Vout ( backupVal_wire )
99 );

100
101
102 assign choose_val_vin = { backupVal_wire , ValBuffer };
103 // mux sel val buffer
104 MuxM_N1 #(
105 .N (2) ,
106 .M (N)
107 ) mux_val_buffer (
108 .Vin ( choose_val_vin ),
109 .Sel ( SelVal_wire ),
110 .Vout ( val_sel_wire )
111 );
112
113 // reg val
114 RegN #(
115 .N (N)
116 ) reg_val (
117 .Vin ( val_sel_wire ),
118 .Vout ( vout_val_wire ),
119 .Ld ( LdVal_wire ),
120 .Rst ( RstVal_wire ),
121 .Clk (Clk),
122 . Pwr_off ( Pwr_off )
123 );
124
125 // reg addr
126 RegN #(
127 .N ( LOG2_K )
128 ) reg_addr_buf (
129 .Vin ( AddrBuffer ),
130 .Vout ( vout_addr_wire ),
131 .Ld ( LdAddr_wire ),
132 .Rst ( RstAddr_wire ),
133 .Clk (Clk),
134 . Pwr_off ( Pwr_off )
135 );
136
137 // adder base addr + buff addr
138 Adder #(
139 .N (M)
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140 ) adder_addr (
141 .A ({{(M- LOG2_K ){1’b0}}, vout_addr_wire })

,
142 .B ( BaseAddr ),
143 .Cin (1’b0),
144 .Cout (),
145 .S ( vout_actual_addr_wire )
146 );
147
148 // buffer 3 states output
149 TriBuff #(
150 .N (N)
151 ) buff_3s_mem_interface_val (
152 .Vin ( vout_val_wire ),
153 .En ( EnBuff_wire ),
154 .Vout (Val)
155 );
156
157 TriBuff #(
158 .N (M)
159 ) buff_3s_mem_interface_addr (
160 .Vin ( vout_actual_addr_wire ),
161 .En ( EnBuff_wire ),
162 .Vout (Addr)
163 );
164
165 TriBuff #(
166 .N (1)
167 ) buff_3s_mem_interface_write_en (
168 .Vin ( EnBuff_wire ),
169 .En ( EnBuff_wire ),
170 .Vout ( WriteEn )
171 );
172
173 // decoder ack backup
174 DecN #(
175 .N ( LOG2_K )
176 ) decoder_ack_backup (
177 .Vin ( vout_addr_wire ),
178 .Vout ( ack_sigs_wire )
179 );
180
181 // en ack backup
182 assign AckBackups = ({K{ EnAck_wire }} & ack_sigs_wire );
183
184
185
186 endmodule
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Listing A.17: Dispatcher Verilog implementation

1 module FSM_Dispatcher (
2 Start ,
3 IsEmpty ,
4 WriteOp ,
5 DirtyVal ,
6 PullEn ,
7 RstVal ,
8 RstAddr ,
9 LdVal ,

10 LdAddr ,
11 SelVal ,
12 EnAck ,
13 EnBuff ,
14 Pwr_off ,
15 Rst ,
16 Clk
17 );
18
19 input Start;
20 input IsEmpty ;
21 input WriteOp ;
22 input [1:0] DirtyVal ;
23
24 input Pwr_off ;
25 input Rst;
26 input Clk;
27
28 output reg PullEn ;
29 output reg RstVal ;
30 output reg RstAddr ;
31 output reg LdVal;
32 output reg LdAddr ;
33 output reg SelVal ;
34 output reg EnAck;
35 output reg EnBuff ;
36
37 parameter IDLE = 0,
38 WAIT = 1,
39 READ = 2,
40 UPDATE = 3,
41 SEND1 = 4,
42 SEND2 = 5;
43
44 parameter READ_STATE_DIRTY_CTRL = 2;
45 parameter DIRTY_WR_STATE_DIRTY_CTRL = 3;
46
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47 reg [2:0] State , NextState ;
48
49 // comb logic
50 always @(State , Start , IsEmpty , WriteOp , DirtyVal ) begin
51 PullEn <= 1’b0;
52 RstVal <= 1’b0;
53 RstAddr <= 1’b0;
54 LdVal <= 1’b0;
55 LdAddr <= 1’b0;
56 SelVal <= 1’b0;
57 EnAck <= 1’b0;
58 EnBuff <= 1’b0;
59
60 case (State)
61 IDLE: begin
62 if (Start)
63 NextState <= WAIT;
64 end
65
66 WAIT: begin
67 RstVal <= 1’b1;
68 RstAddr <= 1’b1;
69 if (~ WriteOp && ~ IsEmpty )
70 NextState <= READ;
71 end
72
73 READ: begin
74 PullEn <= 1’b1;
75 LdAddr <= 1’b1;
76 LdVal <= 1’b1;
77
78 if ( DirtyVal == READ_STATE_DIRTY_CTRL )
79 NextState <= SEND1;
80 else
81 NextState <= UPDATE ;
82 end
83
84 UPDATE : begin
85 SelVal <= 1’b1;
86 LdVal <= 1’b1;
87
88 if (~ WriteOp )
89 NextState <= SEND2;
90 end
91
92 SEND1: begin
93 if (~ WriteOp && DirtyVal !=

DIRTY_WR_STATE_DIRTY_CTRL )
94 NextState <= SEND2;
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95 else if (~ WriteOp && DirtyVal ==
DIRTY_WR_STATE_DIRTY_CTRL )

96 NextState <= UPDATE ;
97 end
98
99 SEND2: begin

100 EnBuff <= 1’b1;
101 EnAck <= 1’b1;
102 NextState <= WAIT;
103 end
104
105 endcase
106
107 end
108
109 // state reg
110 always @( posedge Clk or posedge Pwr_off ) begin
111 if (Rst || Pwr_off )
112 State <= IDLE;
113 else
114 State <= NextState ;
115 end
116 endmodule

Listing A.18: FSM Dispatcher Verilog implementation

1 module TriBuff #(
2 parameter N = 32
3 )
4 (
5 Vin ,
6 En ,
7 Vout
8 );
9

10 input [N -1:0] Vin;
11 input En;
12 output reg [N -1:0] Vout;
13
14 always @(Vin , En) begin
15 if (En)
16 Vout <= Vin;
17 else
18 Vout <= {N{1’bZ }};
19 end
20 endmodule

Listing A.19: Tri-State Buffer Verilog implementation
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A.5 Atomic Region Log Buffer (.ICA)

1 module Buffer #(
2 parameter N = 32, // Width values
3 parameter M = 5, // Buffer size , pow of 2!
4 parameter K = 3 // Number of bits for the addresses
5 )(
6 PushEn ,
7 PullEn ,
8 PushVal ,
9 PullVal ,

10 IsFull ,
11 IsEmpty ,
12 Clk ,
13 Rst ,
14 Pwr_off
15 );
16
17 input [N -1:0] PushVal ;
18 output [N -1:0] PullVal ;
19 input PushEn ;
20 input PullEn ;
21 output IsFull ;
22 output IsEmpty ;
23
24 input Clk , Rst , Pwr_off ;
25
26 wire ff_cnt_write ;
27 wire ff_cnt_read ;
28 wire [( $clog2 (M) -1) :0] addr_read ;
29 wire [( $clog2 (M) -1) :0] addr_write ;
30 wire en_cnt_write ;
31 wire en_cnt_read ;
32 wire en_cnt_up_down_cnt ;
33 wire [K:0] vout_num_full_reg ;
34
35
36 // register file
37 RegFile #(
38 .N (N), // width of each register
39 .M (M) // number of registers
40 ) buffer (
41 . ReadAddr ( addr_read ),
42 . WriteAddr ( addr_write ),
43 .Vin ( PushVal ),
44 .Vout ( PullVal ),
45 .REn ( PullEn ),
46 .WEn ( PushEn ),
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47 .Clk (Clk),
48 .Rst (Rst),
49 . Pwr_off ( Pwr_off )
50 );
51
52
53
54 // CntN write
55 CntN #(
56 .N (K)
57 ) addr_cnt_write (
58 .Clk ( en_cnt_write ),
59 .Rst (Rst),
60 . Pwr_off ( Pwr_off ),
61 .Vout ( addr_write )
62 );
63
64 // CntN read
65 CntN #(
66 .N (K)
67 ) addr_cnt_read (
68 .Clk ( en_cnt_read ),
69 .Rst (Rst),
70 . Pwr_off ( Pwr_off ),
71 .Vout ( addr_read )
72 );
73
74 // UpDownCntN empty -full check
75 UpDownCntN #(
76 .N (K+1)
77 ) cnt_full_regs (
78 .Up ( PushEn ),
79 .Down ( PullEn ),
80 .Vout ( vout_num_full_reg ),
81 .Rst (Rst),
82 .Clk ( en_cnt_up_down_cnt ),
83 . Pwr_off ( Pwr_off )
84 );
85
86
87 assign en_cnt_write = (Clk & PushEn ) | (Clk & Rst);
88 assign en_cnt_read = (Clk & PullEn ) | (Clk & Rst);
89 assign en_cnt_up_down_cnt = (Clk & PushEn ) | (Clk & PullEn ) |

(Clk & Rst);
90
91 assign IsFull = vout_num_full_reg [K];
92 assign IsEmpty = ~(| vout_num_full_reg );
93
94 endmodule
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Listing A.20: Buffer Verilog implementation

1 module UpDownCntN #(
2 parameter N = 32
3 )(
4 Up ,
5 Down ,
6 Vout ,
7 Rst ,
8 Clk ,
9 Pwr_off

10 );
11
12 input Up;
13 input Down;
14 input Rst;
15 input Clk;
16 input Pwr_off ;
17 output reg [N -1:0] Vout;
18
19 always @( posedge Clk or posedge Pwr_off ) begin
20 if (Rst | Pwr_off )
21 Vout <= {N{1’b0 }};
22 else if (Up)
23 Vout <= Vout + 1’b1;
24 else if (Down)
25 Vout <= Vout - 1’b1;
26 end
27
28 endmodule

Listing A.21: Up/Down Counter Verilog implementation
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