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Chapter 1

Introduction

1.1 Context and Motivation

With the growing development and adoption of Artificial Intelligence in modern
days, the number of people using these tools and the demand for newer ways
to improve everyday tasks has increased in the last years. Web agents represent
some of the latest systems developed to allow users to delegate actions to these
tools, enabling them to perform tasks on their behalf across the web. Such tools
are revolutionizing the way of interacting with the web by automating repetitive
processes and allowing users to focus on other activities while the agent completes
their requests. By simply describing to the agent the desired task, the agent will
do the actions- such as performing clicks, filling forms and retrieving the required
data- on the behalf of the user.

The field of Automation Agent and more specifically Web Agent, is still relatively
new to the Al community, making it a stimulating and evolving area of research.
Earlier this year OpenAl[1] introduced its newest agent “Operator”, which enables
web navigation through conversational input into its own browser. This July they
fully released this with the name of “ChatGPT agent”. Shortly after, Anthropic
followed with the release of their own web agent through ClaudeAlI[2]. Lately
OpenAl introduced Atlas, a web assistant that can also perform actions on the
web, working as an agent. For now it is only available for macOS [3]. This
development demonstrates the engagement of big companies in such systems, but it
also highlights how much this field is emerging in the market and yet, how current
solutions are not affordable for all types of users.

Since this research area is still emerging, based on the novelty of the topic, the
available literature remains fragmentary, and many assumptions have yet to be
empirically verified through experimentation. From the new and broader field of
Human-ATl Interaction was born the subfield of Human-Agent Interaction. This
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new research field has new constraints to be considered and most importantly, still
needs to be discovered, mostly by testing this kind of system through user tests.
Several studies have attempted to identify the main issues in this domain and
associate to this ones some heuristics and guidelines to be respected, requiring also
some knowledge from other fields to be accounted for, like for example psychology
and ethics. Unlike other software, Al-powered systems, and so also Agents, must
conform to some social norms and behaviors, which adds further complexity to the
development and design of this kind of systems.

Another crucial aspect to consider is the security: developers must carefully define
what and how the agent can do the actions that the user wants to delegate. This
introduces additional constraints in the control field, another crucial point for
the agent, since the user must be in control whenever critical actions need to be
performed, particularly when critical operations are involved, such as financial
transactions. This tension between autonomy and control represents one of the most
challenging aspects of web agent design, making this a demanding and intellectually
stimulating research area.

1.2 Objectives of the thesis

Although web agents remain an unfamiliar topic for many people, their advantages
are concrete. With the help of agents, individuals who are not experienced with
the web -or people that have physical difficulties operating with electronic systems-
could complete complex tasks by providing a natural language prompt. The inter-
action paradigm with the agents is simple, yet effective, however it still requires
significant refinement to accurately identify and address user needs. Current web
agents are too limited in their functionality, which introduces potential risks for the
user. The way the agent interacts with the web and their decision-making process
is opaque and the user is left without any explanation on what the agent is doing.
This lack of transparency increases uncertainty and reduces user trust.

Given these challenges, this thesis aims to develop a three-modality agent that, by
learning from the user, can teach and collaborate with them to complete tasks on
the web. This approach lets the user be in control of the capabilities of the agent,
making its ecosystem grow with shared knowledge. The agent will be capable of
sharing this acquired knowledge to other users to then teach or collaborate with
them, thus enhancing overall usability and efficiency. Moreover, this thesis seeks to
evaluate the current guidelines for agents design and development, with particular
focus on trust, controllability and transparency, which are some focal points in the
development of agentic figures.

In summary, the main objectives of this thesis are:
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To design and implement three interconnected types of agent, each
one with a different interaction modality:
a Teach modality, where the user instructs the agent how to perform actions on
the web, allowing the system to increase its knowledge. A Learn modality, where
the user learns tasks that the agent already knows how to perform. A Collaborate
mode, where the user and the agent both work together to complete a task. These
modalities are designed to be interconnected, allowing seamless transitions between
them and creating a more immersive and continuous user experience.

To conduct a user study in order to evaluate the heuristics gathered:
the heuristics are gathered from the existing literature and then adapted to these
new interaction modalities that the agent will have. Participants will interact with
the different modalities in order to validate the system, allowing them and the
observer to identify new issues and opportunities within the system.

1.3 Structure of the thesis

The thesis structure follows the study of the main heuristics and issues related to
agents followed by the design and development of the three web agents, each one
with the different modality cited before. The work concludes with a user study
aimed at gathering insights and evaluating the different agent approaches. Finally,
the experimental data collected will be analyzed to draw conclusions for this thesis
work. In detail, the chapters of this thesis are organized as follows:

o Chapter 2 “Background and Main Issues for Agents” : this chapter provides a
brief overview of agents and examines the main issues that developers need
to face in the creation of them, including technical issues such as biases of
generative Al and ethical concerns. These topics are discussed by using real
examples, analyzing the current state of Web Agents.

o Chapter 3 “Design Guidelines” : by studying the latest academic paperwork
and existing heuristics, this chapter aims to create a table of guidelines for each
one of the interaction modalities. Both theoretical and practical perspectives
are considered to define the design principles of the agents. The work follows
the Microsoft guidelines for the agent creation integrating each guideline with
data from other research papers.

o Chapter 4 “Prototype Design” : Based on the analysis of the current Web
agents, this chapter aims to describe the choices behind the type of agent and
the considerations behind its design. After this it presents all the prototyping
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processes developed using Figmal4], detailing the choices behind each modality
feature.

Chapter 5 “Development” : starting from the architecture, this chapter de-
scribes all the development required for each component of the agent and the
different ways each modality is implemented in order to provide a seamless
experience for the user.

Chapter 6 “Model Performance Analysis” : this chapter aims to analyze the
models used to generate the answers leading to the final choices for the project.
In detail, for each prompt, the model is analyzed considering performance,
spendings, accuracy of the answer and token usage. The results are then
compared to identify the optimal model for each prompt.

Chapter 7 “ User Test” : this chapter describes all the procedures followed to
design and conduct the user tests. It details the experimental setup, participant
selection criteria, tasks assigned to participants, and the methodology used
for data collection and analysis. The results are then analyzed in relation to
the design objectives.

Chapter 8 “Conclusion and final considerations” : the final chapter draws
the conclusions of this thesis work, ending with final considerations in view
of future development ideas inspired by the insights obtained throughout the
project.



Chapter 2

Background

In this chapter is introduced the topic of Web agent, providing a brief overview
of what defines these systems, contextualizing their current state, and identifying
the main factors contributing to their rapid growth. It also discusses the primary
issues that currently affect agent design and deployment.

2.1 Introduction to Web Agents

On the 23rd of January 2025, OpenaAl [1] introduced its first web agent, Operator.
This agentic system was capable of navigating the web autonomously using its own
built-in browser. The navigation process is done by user prompts describing the
desired task to be achieved. This was just a starting point in this year, demon-
strating that major technology companies are now investing in agentic systems.
Web agents, however, remain a relatively new area of research, whose development
has accelerated significantly thanks to advancements in LLMs. Although existing
literature on web agents is fragmented, early works, such as Pavén and Corchado’s
“Agents for the Web” (2004) [5] offer valuable insights. They describe the concept
like this: “The notion of ‘web agent’, as the notion of agent, is rather fuzzy and
depends on the authors. [...]. As a starting point, we can consider that the term
‘web agent’ which refers to an autonomous entity, with processing capabilities,
and supporting web services.” They later explain that by “supporting,” they refer
to enhancing the functionality of existing web services, for example by enabling
personalization. This idea of automating user tasks to provide a more personalized
browsing experience can also be found in Luke et al’s 1997 publication, “ Ontology-
Based Web Agents” [6], which proposed an HTML extension for defining ontologies
to facilitate faster and more efficient web navigation.

Although these studies were published nearly two decades ago, they already pro-
vided some working examples of web agents, indicating that research in this area has
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long-standing foundations. Considering the constant growth of people navigating
the web, thanks also to the always growing number of devices connected to the
internet, combined with the increasing interest from both developer and end-users
in Al, agents have lately become a more discussed and studied topic.

At the beginning of this year, Yujia Qin et al. released UI-TARS [7], a native
GUI agent model that is capable of interacting seamlessly with GUIs. This system
employs a Visual Language model, taking screenshots of the environment and
determine the necessary actions to complete user requests. Using ULI-TARS as a
model for web navigation, Midscene.js [8], which is an open-source project, allows
the user to enhance their browsing experience providing this agent as a Google
Extension. The interface mimics a chatbot, allowing users to input text-based
queries that the agent interprets and executes by analyzing screenshots of the
current tab. These screenshots are then sent to the LLM model used in order to
train it for the future interactions

Later, at the end of September of this year, OpenAl released the ChatGPT Agent
(previously known as Operator) to Plus plan users. This release further demon-
strates the growing public and industrial interest in web agents. However, it also
highlights the urgent need for clear guidelines and frameworks for developing such
systems.

2.2 Main Issues with current Agent Design

The novelty of this topic, combined with the increasing integration of these kind of
systems with Al in the latest years, introduces a series of challenges that developers
must address while designing web agents. These developments have also given rise
to two emerging research domains within Human-Computer Interaction: Human-
Agent Interaction and Human-Al Interaction, which are deeply interconnected in
this context. In "Challenges in Human-Agent Communication', Bansal et al. [9]
discuss the key questions that developers must consider while developing agentic
systems. One of the central challenges involves establishing a shared knowledge
between both agent and user. Is fundamental for the agent, in this cases, to adapt
their general knowledge to what are the user necessities and goals.

When this common knowledge is not reached, it can undermine user trust, that
is a crucial dimension for users to choose whether or not to rely on a specific
agent. As explained by Baker et al. in "Human-Agent Teaming" [10] trust and
reliability are closely linked to each other.Moreover, when using multiple agents,
the presence of systems with low reliability, can also lower the trust of systems
that are considered reliable by the user. Another important point for Baker et al.,
is the context where the agent is used: in critical situations, errors have a more
significant impact that errors caused by other types of agents, so the system needs
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to be designed accordingly in order for the agent to feel reliable and trustful to the
user.

Another major challenge is explainability. Agents must provide reasoning for their
actions and decisions with an appropriate level of detail. Developers need to
understand their target user base and ensure that explanations are both accessible
and consistent across interactions. Furthermore, given the amount of different types
of interactions that agents con use, developers have to choose the most efficient
one. The answer given, then, has to be consistent through different calls, trying to
adapt their general mental models to the variety of users.

Security and privacy while navigating represent additional concern. Since Web
Agents often have total control over users’ browser, they pose risks of executing
unintended or harmful actions. Having the control over the personal browser also
raises privacy concerns, since most of the agents rely on screenshots to understand
what actions to perform on the interface. Additionally is important for the agent
to remember the previous interactions of the user with both agent and websites.
In this case, determining what data to store and for how long remains a key issue,
particularly when sensitive or personal information may be involved.

Finally, users consistently demand for transparency. As Bansal et al.[9] note,
transparency enables users to evaluate the correctness, robustness, and useful-
ness of these systems. However, achieving this transparency adds complexity to
development, as it requires integrating explainability metrics derived from XAI
research.

2.3 Summary of Insights

In "Agentic Web: Weaving the Next Web with AI Agents" [11], Yang et al. explain
that the emergency of Al Agents is causing a shift in what was before the web
navigation. This new way of navigating the web, the Agentic web, has started this
year, evolving from the previous version, which was the mobile web. They give
this definition, citing the page 4 of the paper, "The Agentic Web is a distributed,
interactive internet ecosystem in which autonomous software agents, often powered
by large language models, act as autonomous intermediaries that persistently
plan, coordinate, and execute goal-directed tasks. In this paradigm, web resources
and services are agent-accessible, enabling continuous agent-to-agent interaction,
dynamic information exchange, and value creation alongside traditional human-web
interactions.".

This work just describes the paradigm shift that is happening now in web navigation.
However, other studies highlight the potential risks associated with agentic systems.
Zhang et al., in "Characterizing Unintended Consequences in Human-GUI Agent
Collaboration for Web Browsing" [12], present a table with solutions for different
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types of Unintended Consequences that happen while using agentic figures: for
unintended consequences they refer to unexpected and negative outcomes from
the interactions with Web Agents. Even thought agents provide some mitigation
strategies to this scenarios, in the conclusion they suggest to rethink human-GUI
agent Interaction. This just proves that these kind of systems still need more work
and refinement.

This is extremely solidified also by the way agents fall for Dark patterns as explained
by Tang et al. [13]. Dark patterns are deceptive design patterns that hinders the
ability of users to make rational choices. After testing some web agents with 16
Dark patterns in a testing environment, they noticed that web agents are susceptible
to this kind of designs.

In conclusion, despite the numerous risks and open challenges across multiple
domains, the development of web agents remains essential for the evolution of the
web, that is now shifting from a generative Al-driven model toward an agentic-Al
one. Realizing this transition will require further research to ensure that these
systems are reliable, transparent, and accessible to all types of users.



Chapter 3

Design (Guidelines

The goal of this chapter is, starting from the current literature, to analyze the
general design principles that apply to agentic systems and to evaluate the main
challenges within Human-Agent Interaction. The discussion is inspired by several
influential works in the field. The chapter is then concluded with a brief analysis
of the table of Guidelines provided by Microsoft for Al infused systems in 2019,
which will later be adapted for our project in the following chapter.

3.1 General Design Principles for Web Agents

The rapid growth in the use of Al technologies has created a clear need for developers
to rely on structured design principles when building web agents. Weisz et al. in
“Design Principles for Generative Al Applications”, [14] provide a comprehensive
set of principles and strategies aimed at supporting the design process.

The main principles are the following:

e Design Responsibly - The system should solve real user issues. To do so
the design should be user-centered and should minimize user harms.

o Design for Mental Models - The Al system should share the same mental
model with the users, teaching them also how to appropriately use the system.

e Design for appropriate Trust & Reliance - Developers should calibrate
the user trust in the agent, explaining its role and also by letting them know
the issues that can happen with the outputs. In this way developers can avoid
overreliance on the system by the users.

e Design for Generative Variability - Users must be supported in managing
the natural variability of generative Al outputs.

9
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e Design for Co-Creation - Users should be able to meaningfully influence
outputs and collaborate with the system in order to craft the desired answer.

e Design for imperfection - The system should help users understand that
outputs may deviate from expectations and offer mechanisms for feedback,
correction. This allows the system to improve the outputs for the future
interactions.

These principles can be implemented through design decisions or by integrating
specific functionalities or features into the system. Overall, this framework provides
a good starting base for developers in order to assess what is needed for the Al
system from the start of the design process.

Nazli Cila in "Designing Human-Agent Collaborations: Commitment, responsive-
ness, and support" [15], similarly , proposes a set of "design considerations', that
are a list of questions framed as guiding considerations. The questions span these
collaboration qualities: code of conduct, task delegation, autonomy and control,
intelligibility, common ground, agents offering help and agent requesting help. For
each aspect, there is a set of considerations that are questions that can help design
a better agent. In the paper there are also shown some starting points for designer
that can help developing a web agent answering these questions.

Together, the contributions of Cila and Weisz et al. illustrate how the research
community is actively working to define the challenges faced by developers of
Al-infused systems and to provide early conceptual tools for addressing them.
These principles serve as an initial foundation for creating systems that respond to
users’ needs and mitigate common issues encountered during agent interaction.

3.2 Current challenges in Human-Agent Interac-
tion

The previous chapter introduced the main issues affecting web agents. As noted,
given the complexity of these systems, the problems that appear need work from
interdisciplinary fields in order to ensure a good quality service.
In "Challenges in Human-Agent Communication" [9], Bansal et al. identify key com-
munication challenges that arise between humans and agents. Figure 3.1 presents a
set of questions grouped into three broad categories: general communication issues,
challenges related to conveying information from users to agents, and challenges
related to conveying information from agents to users. These challenges may emerge
before, during, or after task execution.

For the first group, "General human-agent communication challenges', these
challenges relate to establishing a shared understanding between the agent and the
user. Insights from XAI research suggest that agents must make their behavior
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General human- '||||,
agent

communication . .
challenges x2 How should the agent convey consistent behavior?

X1 How should the agent help the human verify its behavior?

X3 How should the agent choose an appropriate level of detail?

X4 Which past interactions should the agent consider when communicating?

Challenges with ® U1 What should the agent achieve?
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kS information from a
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S
8! U3 What should the agent do differently next time?
£
5
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= conveying agent do? currently doing? achieved?
o information from
5 anagenttoa ) .
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g : about to do? to the environment?
Before During Execution After

Figure 3.1: Challenges for Human-Agent Communication from Bansal et al.
article "Challenges in Human-Agent Communication "[9]

transparent and comprehensible. Another important aspect is for the agent to
leverage knowledge from previous interactions to complete tasks asking just for the
needed information.

The second group, "Challenges with conveying information from a user to an
agent', has as its concern in allowing developers to design agents that enable the
user to provide the needed information to the agent. The first two are about the
user’s desire, so are about trying to disambiguate what is the user need from natural
language, that introduces ambiguity and imprecision. In addition, understanding
the user preferences is fundamental for creating a common ground between user
and agent. The final challenge in this group concerns feedback: systems should
allow users to refine or correct the agent’s output in order to improve it for the
following interactions.

The last group, Challenges with conveying information from an agent to a user",
focuses on making the user understand the agent’s capabilities, actions, if the goal
was achieved or if any side effect occurred. Bansal et al. emphasize lightweight
explanation mechanisms rather than extensive documentation, as the latter can
overwhelm or confuse users. The documentation, that anyway is important, can be
checked outside the scope of understanding the system’s capabilities. In addition,
special attention is required when the agent performs irreversible actions; in such
cases, explicit user confirmation is essential.
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Vera Liao et al., in "Questioning the Al: Informing Design Practices for Fxplainable
Al User Ezperience" [16], complement this perspective by proposing a structured
set of questions that systems should answer to support user understanding and
transparency of it to the users. As discussed earlier, XAl remains one of the central
challenges for web agents, and such frameworks can help developers identify what
must be explained for users to interact safely and effectively with Al-powered
systems.

These provided are just a subset of all the challenges that developers need to face
while developing Al powered Agents. Nonetheless, these works provide designers
with valuable tools to address these issues from the earliest stages of development,
underlining the importance, as noted in the previous subchapter by Weisz et al., to
adopt a human-centered approach into the design process.

3.3 Microsoft Guidelines for Human-AI Interac-
tion

In 2019, Amershi et al. presented at the CHI convention "Guidelines for Human-
AT Interaction" [17]. With over 2400 citations to date, this paper is considered
foundational in the design of Al infused systems. It introduces 18 design guidelines
that can generically be applied to any Al infused system, and so can also be
adapted for web agents. For this work they tested an initial set of 20 guidelines
using different systems; the testers were recruited from HCI and design distribution
lists at a large software company. After refinements, they produced the final list of
18 guidelines that can be used to evaluate existing products or to help develop new
ideas. Although 6 years have passed since this publication, their relevance remains
strong. In this subchapter are going to be analyzed the main ideas, without going
into detail; the next chapter will have the adapted version used to guide the design
of this thesis project.

As done by Bansal et al., they split the guidelines into groups depending on the
time that the guideline needs to be applied:

o Initially — in this category there are only two guidelines focused on explain-
ability. Users should understand the system’s capabilities and its level of
accuracy before interacting with it.

e During Interaction — for this category there are 4 guidelines. 2 guidelines
are about showing only the relevant information to the user, in order to not
increase their cognitive load and making the system understand when to act or
interrupt, based both on the environment and the task needed to be performed.
The other two are about respecting social norms, adjusting the experience on
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the context of the user and limiting social biases that usually happen within
generative Al

e When Wrong — five are the guidelines in this field. Three are about making
the system invocation, dismissal and correction efficient, allowing the user to
perform easily these actions. One is about disambiguating or degrading the
system’s capabilities when is on doubt and the last one is about explainability,
letting the user know why the system behaved like that.

e Over time — the last seven guidelines are about usage over time of the
system. The system should learn from the user interactions and remember
them, making easy for the end-user to make easy reference to that. The system
should also provide global controls in order to personalize the experience within
the agent. The system should allow the user to provide granular feedback. In
addition the system also should understand when the users’ actions can have
consequences in future interactions with the Al infused system and notify that.
To conclude the system should also update and change cautiously, limiting
disruptive changes in its behavior, and, when doing so, it should also notify
the user about those updates and changes.

In conclusion, Amershi et al. synthesized over two decades of best practices in
the field of HAII into 18 generic guidelines. As stated in the paper, they wanted to
provide a mix between generic and specialized guidelines, understanding that not
all of the issues that designers encounter are faced in this work. Even though not
all guidelines are applicable to all Al infused system, this work is still an important
starting point for all developers that are going to integrate Al in their projects.
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Chapter 4

Prototype Design

This chapter presents the process behind the design of the final project. Starting
from the work carried out in the previous chapter, it introduces the reworked table
of guidelines that is then used to support the design process. After analyzing the
current Web Agents, their designs and their main features, the chapter explains
the choice for the deployment platform. Finally, it illustrates and describes the
main features of the prototypes developed using Figma [4].

4.1 (Guidelines Developed for the Project

In the previous chapter were briefly explained the guidelines provided by Amershi
et al. from "Guidelines for Human-Al Interaction' [17]. From the beginning of this
project, their table was taken as a starting point to reason about solutions for this
thesis. Starting from these guidelines, the design process involved contextualizing
each guideline for the different agent modalities that formed the initial conceptual
basis of this project. Once this contextualization was completed, the process
concluded with a set of concrete implementation examples that could later be used
as references during the design and development phases.

Table 4.1 shows the final result obtained after several iterations and refinements.
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Guideline

‘Web-Agent Contextualization

Implementation Example

G1l: Make clear
what the system
can do.

Help the user under-
stand what the Al
system is capable of
doing.

Teacher: The system, acting as an instruc-
tional figure, should communicate that it can
highlight key concepts, provide step-by-step
explanations, and illustrate complex ideas
with visual cues. Users should understand
that the teacher-agent can adapt teaching
methods based on the user’s current knowl-
edge and offer multiple forms of guidance
(textual, visual, interactive).

Student: When acting as a learner, the
system should convey that it can ask clari-
fying questions, request examples from the
user, and signal when it needs more informa-
tion to improve its understanding. The user
should realize that the student-agent’s role
is to absorb input, refine its comprehension,
and become a more effective collaborator over
time.

Companion: In a supportive capacity, the
system should clarify that it can provide gen-
tle reminders, suggest relevant resources, of-
fer summaries of past sessions, and organize
the user’s learning trajectory. Users should
know that the companion-agent is there to
assist, guide, and streamline their journey
rather than lead it directly.

For the end users Bansal et al. suggest to
use light weight solutions to introduce capa-
bilities and limitations that are integrated
into an agent’s interface or behavior instead
of providing the documentation, that might
be too long and verbose, with a level of detail
that a normal user does not need.

Teacher: Include a “What I Can Do” info
page accessible via a help icon. This page lists
teaching methods—highlighting text, provid-
ing custom color-coded annotations, present-
ing step-by-step instructions, and linking to
external references. Include brief explanatory
tooltips or short demos (e.g., GIFs) to show
each capability in action.

Student: Present a short introductory panel
upon first interaction, explaining that the
agent can learn from user input. For exam-
ple, a pop-up might say: “I can learn from
your explanations, ask for more details if I'm
confused, and provide worked examples as I
understand your style.” Brief clickable exam-
ples (“Ask me about a topic, and I'll try to
clarify!”) illustrate these capabilities.
Companion: Offer a collapsible sidebar la-
beled “How I Can Help.” Expanding it re-
veals bullet points: “I can set reminders, sug-
gest further reading, summarize last week’s
progress, or highlight key concepts you might
have missed.” Next to each bullet, an icon or
small animation shows how the feature works,
ensuring the user grasps the companion-
agent’s supportive role.

Continued on next page

15




Prototype Design

Guideline

‘Web-Agent Contextualization
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G2: Make clear
how well the sys-
tem can do what
it can do.

Help the user under-
stand how often the
AT system may make
mistakes.

Teacher: The teaching-oriented agent
should communicate its level of certainty
when providing explanations or solutions. It
can indicate when it is confident, when it
is making a guess, or when it might need
the user to confirm information. This en-
sures the user understands that while the
agent is knowledgeable, its suggestions are
not guaranteed correct and may need double-
checking.

Student: In a learning role, the system
should show when it is unsure about its inter-
pretation of the user’s input. If it cannot fully
understand a concept or is not certain about
the next step, it should signal uncertainty,
prompting the user to clarify. This helps set
realistic expectations that the student-agent
may misunderstand or ask for verification.
Companion: A supportive companion agent
should regularly acknowledge when it might
be mistaken or lacks full confidence. For
example, it can say, “I’'m not entirely sure
about this recommendation,” or “You may
want to verify this source,” encouraging the
user to treat suggestions as starting points
rather than definitive truths.

Teacher: Include a small confidence indica-
tor (e.g., a subtle colored icon or bar) along-
side explanations. For example, after giving
an answer, a tooltip might appear: “Con-
fidence: Medium—Consider verifying with
a trusted reference.” If the teacher-agent is
uncertain, it might say, “I’'m not 100% sure.
Would you like to check a reference resource?”
Student: Introduce uncertainty messages in
the student-agent’s interactions. When the
agent is unsure about the user’s meaning, it
could display a brief message: “I’'m not com-
pletely sure I understand. Could you explain
further?” or “I might have misunderstood;
let’s break it down together.” This invites
the user to collaborate and refine the agent’s
understanding.

Companion: Provide disclaimers when of-
fering suggestions. For example, when the
companion recommends reading material, it
might say: “This article might help, but I’'m
not fully certain it is the best fit. Let me
know if you need something different.” In-
clude an option for users to mark feedback
on suggestions (“Was this helpful?”), gradu-
ally improving the companion’s accuracy and
ensuring transparency about its fallibility.

Continued on next page
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G3: Time services
based on context.
Time when to act
or interrupt based
on the user’s cur-
rent task and envi-
ronment

Teacher: The agent when behaving as a
teacher should know when to act in order
to provide useful information to the user as
a way for them to complete their tasks and
should stop when the user does not need its
help, to not provide useless tips that might
increase the time spent by the user learning.
In this case the agent should be capable of
understanding what are the needs for them
in order to comprehend and complete a task.
Student: The student should act when trig-
gered by an input of the user. The student
will start doing the actions that are requested
and the user will check if it is correct. If the
student is wrong the user will stop the exe-
cution and after that the system will ask for
clarifications to disambiguate with a more
detailed explanation. In case even this is
not enough the student will ask the user to
show to it the actions that are required to get
through that part. In this case the agent will
be a passive listener until the user completes
the task. If the user wants they can then
check if the system has learned that task by
doing a repetition.

Companion: As a companion it should act
when the user is performing recurrent actions
or when the knowledge of the agent is enough,
providing useful information to speed their
task completion leveraging their understand-
ing based on the previous interaction as said
by Bansal et al. [9]. It should also act when
the user is doing something unexpected or
that the companion has not adequate infor-
mation, asking the user to better understand
what the user is doing to improve the fu-
ture experience and learn their preferences.
It should stop when its help is not needed
or when the user says so, limiting the agent
capabilities.

Teacher: The teacher, depending on the
level of explainability that the user needs,
can change the type of interaction. When
the level is high it can show everything in
detail with texts, audio, video, etc. by also
doing the actions that the user wants to learn,
instead if the level is low it can teach the user
by giving only concise text explanations and
some graphical hints. When noticing that the
user is going out of the scope of the learning
the system can show little pop-up messages
or hints like “This is what you need to do
in this moment” or “This is what you are
searching for”, doing so using the best means
of communication (graphical, textual, audio,
video, etc.). Instead when the user is doing
the tasks correctly it can give them some
type of feedback to keep them engaged in
this process and letting them know that the
system is checking on their actions.
Student: After inserting the task, the sys-
tem will start doing it showing the various
actions in the website to the user through
highlights (using graphical features to show
the actions that the agent is doing). If wrong,
the user can block the agent that will ask
a follow up question, for example “What
was I doing wrong?” or “What step did I
do wrong?”. If the end-user explains the mis-
take, if the knowledge of the agent is enough
to understand what was wrong and how to
correct it, the student-modality will resume
their interactions and complete it with this
new added information. If not the student
will ask the user to show it and after that
the system will be passively looking at the
user’s interactions to learn from them.
Companion: The companion agent should
stop the execution when doing irreversible
actions that must need the approval of the
user (i.e. buying some tickets for a flight).
Also it can stop when noticing that the user
is going out of reach of the current task, ask-
ing for clarifications with questions like “I
noticed this ... Are you done with ..?”. The
companion should act when the user allows
its actions and does not stop that execution,
usually for easily automated tasks that do not
need particular attention and are reversible
(i.e. fill the fields of a form).

Continued on next page
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G4: Show contex-
tually relevant in-
formation.

Display information
relevant to the user’s
current task and en-
vironment.

Teacher: When behaving as a teacher the
agent should provide only the right amount
of information needed to the user to under-
stand how to complete a certain task based
on his level of knowledge and experience.
This knowledge must be gathered by pre-
vious interactions of different users and also
by the amount of knowledge gathered by the
user during their interaction with the website.
The interface should be minimal showing only
what is needed.

Student: The student agent should display
only the information useful for the user to
follow the agent interactions on the screen,
without having to see all of its “mental pro-
cesses”. When in doubt, the system should
provide only the right amount of information
for the user to teach the needed things to the
agent, excluding extra information that can
be redundant making the interaction more
natural and not invasive.

Companion: Acting as a Companion the
agent should understand from the context
and the previous interactions with the user
what the needed information is during a cer-
tain task execution and how the user prefers
it to be shown. In any case it should not block
the user from accessing relevant information,
instead it is necessary for it to support them
during their process making the carrying off
of the task easier and efficient. The compan-
ion should inform the user when they are
going out of the scope of their task, without
being too invasive, informing them gently .
When doing actions it should show the user
what they want to know to keep track of the
agent’s behavior.

Teacher: The teacher agent should interact
providing the right amount of information
and through the right type of communication
(video, text, audio, etc.). It will show mes-
sages like “Now you need to ... ” through pop-
ups, in order to guide the user throughout
the learning process. It will draw attention to
specific elements for example with circles or
by highlighting objects or icons that the user
needs to interact with, making everything
clear.

Student: The use of highlights to show the
agent interactions will be very important.
The student agent will ask only questions
when in doubt through the agent’s interface.
The agent will be capable of showing the ac-
tions that it is doing in the website through
the use of graphical features to call attention
to (highlighted mouse pointer i.e.). These
things will help the user see what is impor-
tant, to understand the agent’s behavior, fo-
cusing only on what is doing and not on how
the system is working.

Companion: The companion will show only
the suggested actions and a button that can
be clicked to open the complete interface,
only if the user needs extra information. The
interface will provide only the best sugges-
tions like “Do you need me to ...?”. When
in doubt the agent will ask questions to dis-
ambiguate like “Are you sure this is what
you are searching for? Do you not need to
... 7% When doing tasks based on the level of
proactivity that the user allows it can show
through accentuate the actions that the com-
panion is taking and how much time it will
take for it to complete them.

Continued on next page
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G5: Match rele-
vant social norms.
Ensure the experi-
ence is delivered in a
way that users would
expect, given their
social and cultural
context.

Teacher: Based on the target user, the agent
should express itself using understandable
and suitable vocabulary. The interactions
with the teacher should help the user under-
stand a new task based on the complexity of
the task itself and the capabilities of the them.
The agent should make for the user compre-
hensible explanations to understand what it
is doing, as said by Baker et al. [10] and at
the same time the agent should be capable
of understanding what the user needs. In
this case it gets more attention since people
tend to be more critical of agent supervisors
as stated by Baker et al., so it needs more
attention while developing this component in
order to not lose trust by the user.
Student: When behaving as a student, the
agent should not use terms that go beyond
the comprehension of the user or that might
be confusing. The agent should use a human-
like language to show its own doubts to the
user and should be capable of understanding
what they are saying when helping them out.
Also when doing the actions the behavior
should be human-like, so that a human can
follow that, allowing the user to understand
what the agent is doing based on the agent’s
means of communication.

Companion: As a companion the agent
should behave in a peer-to-peer communi-
cation, understanding what is the context
and using the information gathered before in
order to deliver the preferred way to commu-
nicate with a user effectively. When stopping
the user, the system should do politely and
not in an abruptive and definitive way, allow-
ing the user to resume where they left. The
language used will be the one that the user
uses to communicate with the website and
the agent.

Teacher: The teacher agent should use sim-
ple and understandable words, in order to
not limit the learning process only to peo-
ple that are specific to the domain. After
each interaction it can start using domain
specific words that the agent is sure that
they know based on the user’s previous inter-
actions. The teacher should start with the
basic knowledge and after a few interactions
it can assume the level of the user. In any
case the critical/domain specific terms will
always be highlighted so that the agent can
give a brief or more detailed explanation by
clicking on them, depending on the level of
detail that the user wants.

Student: The student agent should ask sim-
ple questions that can be understood by all
kinds of users that are trying to teach the
agent. In case of different mental models
shared it can ask follow up questions to the
user’s answers like “When referring to ..., do
you intend this ...?” and adapt accordingly.
As done by other means of teaching it should
focus on what the agent is doing in order for
them to understand what is happening in the
interface.

Companion: The companion agent should
help the users in already done tasks so it
should not exit this scope. By doing so it
should use terms that are understandable to
the user, and will do so based on the previous
shared knowledge with it.

Continued on mext page
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G6: Mitigate so-
cial biases.

Ensure the Al sys-
tem’s language and
behaviors do not re-
inforce undesirable
and unfair stereo-
types and biases

Teacher: When doing its explanations the
agent should use unbiased information gath-
ered from previous user’s interactions and
also other users. Its language should be in-
clusive in a way that any user does not feel
discouraged while using it and making them
feel welcomed.

Student: As a student the agent should refer
to the user using their shared preferences
in the configuration and not use the data
recorded by previous interactions with other
users that might be biased.

Companion: The companion agent should
refer to the user using their preferences and
should not use other user’s preferences for
suggestions that might reinforce some unde-
sired biased stereotypes; this behavior might
hinder the trust of the specific users.

We also need to consider in this case what
Baker et al. [10] said : "Individuals and
cultures are innately different from what they
know about agents and how they interact
with them". This means that the developers
also need to know these cultural differences
and individual differences and respect them
in order to not undermine the users’ trust in
the agent.

Teacher: When interacting for the first time,
the agent can be configured by the user for
the different ways of addressing them (pro-
nouns, age, etc...) and should start using
simple terms allowing the user to understand
everything, adapting the level of detail based
on the user’s knowledge. With all this in-
formation the agent should calibrate for the
next ones, allowing the user feedback to re-
calibrate.

Student: After the configuration asking the
preferences about pronouns, etc., the com-
panion agent should use these terms while
referring to the user. The data collected pre-
viously will not be used in case it reinforces
stereotypes.

Companion: After getting to know the user,
the agent should not give suggestions about
actions or ask questions to them that might
be biased. The model should recognize these
cases and should limit the agent’s capabili-
ties.

This thing will be done by the model, yet the
configuration phase to learn the user’s basic
preferences might be an important step to
create a good relationship between the agent
and the human. As said by Baker et al.,
transparency or agent behaviors can affect
human trust.

Continued on next page
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GT7: Support effi-
cient invocation.
Make it easy to in-
voke or request the
Al system’s services
when needed.

Teacher: The teacher agent should be reach-
able by any user, making it easy to invoke
also by new ones. From the past experience
of the teacher, the system should be capable
of understanding the needs of the user mak-
ing the interaction with the website and the
agent more enjoyable and efficient.
Student: As a user is approaching the sys-
tem for the first time it will be asked if they
want to teach the system some tasks, in or-
der for the agent to help them and other
users too while using the web by growing the
agent’s knowledge. The agent will be invoked
by using its own icon or interface and will be
easy and reachable.

Companion: When behaving as a compan-
ion, the agent should be easily available and
reachable by the user, allowing them to get
a first preview by looking at the suggested
tasks to let the companion execute based on
the context and on their previous interac-
tions. When allowed by the user the system
can recognize and stop the user from going
beyond the reach of their current task.

Teacher: The agent might be invoked
through an icon that by design choices can
be put in the bottom left corner (respect-
ing the Consistency and Standard Heuristic
of Nielsen [18]) that might open the agent
tab inside the same page or can be a Browser
extension that can be invoked from the exten-
sions bar. After that the interface should be
simple and standard (for this type of agent,
using an input for the text of the user i.e.)
and using ordinary words and icons that can
be recognized by every user.

Student: The agent might be invoked
through an agent interface (or an icon/ex-
tension i.e.) that the user can employ to
teach the agent specific actions. The inter-
face should be simple and standard (for this
type of agent, using an input for the text of
the user i.e.) and using ordinary words and
icons that can be recognized by every user.
Companion: The agent might be invoked
through an icon that by design choices can
be put in the bottom left corner (respecting
the Consistency and Standard Heuristic of
Nielsen) that might open the agent tab in-
side the same page (or an icon/extension i.e.).
After that the interface should be simple and
standard (using an input for the text i.e.)
and using standard words that can be recog-
nized by every user. The interface should also
provide some shortcuts for suggested tasks
that can be triggered by clicking on them,
allowing a more fast and enjoyable experi-
ence (Nielsen’s 7th Heuristic: Flexibility and
Efficiency of Use).

Continued on next page
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G8: Support effi-
cient dismissal.
Make it easy to dis-
miss or ignore unde-
sired Al system ser-
vices.

Teacher: The user when interacting with
the agent in this case should be capable of in-
terrupting in any moment the communication
with it without any risk or repercussion in
their navigation of the website. The interface
should provide a way to ignore certain ser-
vices that the teacher offers during the com-
munication with it. The agent should take
note of this type of suggestions to improve
user satisfaction and adapt their behavior
accordingly.

Student: When the interaction is stated,
the user can dismiss the session started with-
out any repercussion on their future interplay
easily. In case of questions the user does not
know the answer, they can stop at any mo-
ment deciding to provide or not any kind of
explanation. The agent should not make the
user feel bad for not knowing what they are
explaining, knowing that also the psycholog-
ical mechanisms are important on how the
users interact with the agentic figures. Like
Clila et al. [15] cite in their paper, the agent
has endless patience; not taking the things
personally is really important in this case,
making the user feel less pressure.
Companion: The user should be capable
of dismissing certain services offered by the
companion at any time. They should have
the capability to adjust the level of proactiv-
ity offered by the agent from the companion
interface, and it should learn from these types
of interactions with the users in order to im-
prove the level of satisfaction.

Teacher: The user in any moment should
be capable of interrupting the interaction
by clicking a specific icon that is universally
recognized as dismiss, for example an “X”
icon on the top right, or button in the chatbot
after the input is sent. After that the user will
be asked if they are sure that they want this
through a dialog, respecting the 5th Jakob’s
Heuristic [18].

Student: After starting a teaching session
to the agent, in any moment the user can
stop (by clicking into an icon i.e.). The agent
will ask them a follow up question asking
if the user is sure and why they wanted to
stop, receiving feedback for the user and to
learn the user’s preferences. The user is free
to provide an explanation if they want. If
they do so the agent will thank them for their
feedback.

Companion: Through the companion in-
terface the user can stop at any moment
what the agent is doing through the use of
icons or through the command setting or even
through the chat. This must be explained
to the user by a guided video, or shown on
the screen with a pop up during the first
interaction, in order for them not to feel dis-
oriented. If the agent asks questions about
the user’s interactions, they are free to not
answer them, without any repercussions on
the future communications with the agent.

Continued on next page
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G9: Support effi-
cient correction.
Make it easy to edit,
refine, or recover
when the AI system
is wrong.

Teacher: The teacher agent should have an
option to be corrected and to recover from
mistakes done. In this case the agent should
understand its mistake from the user’s feed-
back. In case its knowledge does not let
the agent recover from its mistake the agent
should notify the limits of its knowledge in
order to not undermine the user’s trust in
the agent.

Student: The interface should allow the user
to refine the agent by making it share the
same mental model with the user in order to
better understand the actions that are being
done on the website. When asked something
by the agent, the user should be capable of
editing their answer and correct the agent if
they notice that the system is doing the task
wrong.

Companion: When behaving as a compan-
ion the interface should allow the user to edit
the suggestions that the agent is making in
order to make the system better understand
the preferences about them. As doing so the
agent might ask follow up questions on the
changes in order to better grasp what is the
user mental model and improve this. This
behavior should also happen when the agent
asks for clarifications.

Teacher: After giving a wrong input the
user can use an icon, for example, to report
an inconsistency or a mistake done by the
agent in order for it to recover correctly from
this (if its current knowledge allows it). The
agent should give positive feedback to the
user, should apologize and then should give
a new and correct answer, with the degree of
certainty, allowing the user to assess by them-
selves the agent’s true capabilities. In case
the input is wrong the user can make easy
corrections about the previous interaction,
without having to repeat all the process.
Student: The agent will ask the user when
unsure about their behavior in the website,
and when wrong the user can correct that
using the text input, that can be a chatbot, as
done for the normal interaction. The user can
stop the agent’s action through an interface
for example with feedback buttons or through
the textbox. When submitting an answer the
user can edit that afterwards if the response
is not satisfying from both agent and user.
In case the agent was stopped during the
learning phase, through a repeat icon for
example, it can do again the step to show to
the user if the explanation given to it was
helpful.

Companion: This can be done through the
use of an icon or a chat that the user can em-
ploy to correct the agent. The agent should
answer positively to the user’s correction and
should assure them that their suggestion was
helpful, providing a feedback, like “Thank
you for correcting me, I will update your sug-
gestions now”. In case the actions done by the
companion are irreversible the agent should
notify the user before doing so. If the actions
are reversible the user can go back, i.e. by
using an icon. The same will happen when
the agent will ask for explanation when no-
tices unexpected behaviors of the user during
a specific task.

Continued on next page
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G10: Scope ser- | Teacher: The teacher agent should under- | Teacher: When unsure about the user’s
vices when in | stand when to degrade the services due to | goal the system can ask follow up questions
doubt. lack of information. In these cases should | like “Sorry, I do not understand what you
Engage in dis- | inform the user about how well the AI sys- | mean with ... Can you explain it again by
ambiguation or | tem performs different tasks by explaining | changing some words? This can help me

gracefully degrade
the Al system’s ser-
vices when uncertain
about a user’s goals.

its capabilities and limitations.

Student: In this case, the student agent,
when unsure, should try to disambiguate its
own doubts, asking permission to ask more
questions about the user’s actions, in order to
better understand their explanations/actions
on the web. In case it notices that the user is
going out of the scope of the teaching process
the agent should limit its capabilities limiting
eventual damage that a possible bad session
might cause to the entire system.
Companion: The companion, when unsure
about the user’s goals, should degrade its
services in order to offer a better service and
not overload the user with suggestions that
are useless. The companion might ask ques-
tions about the user’s preferences to better
understand their goal and deliver a better
service.

Also, as said by Baker et al. [10], the agent
should check for security when navigating, so
it must degrade its services when behaving
with unsafe websites or doing hazardous ac-
tions. Weisz et al. [14] in the section “Design
for Imperfection” say to make uncertainty vis-
ible: caution the user that outputs may not
align with their expectations.

understand better what you need.”. If this
will not change anything, the agent will show
a grade of uncertainty when teaching a user
the task, remembering them about its own
limitations and not to trust its output.
Student: When unsure about the user’s goal
the student agent can ask follow up questions
like “Sorry, I do not understand what you
mean with ... Can you explain it again by
changing some words? This can help me
understand better what I’'m going to learn.”.
If this will not change anything, the agent will
show a grade of uncertainty when learning
the task. The same will happen with the
follow up questions in case of doubts with
the task execution.

Companion: In case the agent is unsure
about what the user is doing can ask ques-
tions to better calibrate the user’s preferences
with questions like “What are you trying to
do?” or “Are you trying to ... 7”. When
unsure about the preferences the agent can
show a degree of precision near to the sug-
gestion (with a percentage i.e.) to help the
user understand if that might be needed or
not without having to read all the suggested
prompts.

Continued on mext page
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G11: Make clear
why the system
did what it did.
Enable the user to
access an explana-
tion of why the Al
system behaved as it
did.

Teacher: The agent behaving as a teacher
should explain his actions showing why it is
describing these actions based on the amount
of data collected and interactions showing
a degree of confidence of why the actions
performed are the right ones. The user should
be capable in any case to ask this information
to the agent, as also stated by Weisz et al.
in the section "Design for appropriate trust
& reliance: Provide rationales for outputs”
[14].

Student: The system, when behaving as
a student, should show what is doing and
in case the user wants can also answer why,
showing the degree of confidence based on
the data available. The student agent, when
asking questions about its own doubts to the
user, can explain to them why it is doing so,
showing its uncertainties, allowing the user
to better understand what are the limitations
that the student is facing. This will be done
to try and give a better answer to make the
agent learn what it needs to complete the
task during the interaction with the website.
Companion: The companion agent should
allow the user to understand why the agent
is giving certain suggestions to help them
based on data with a certain degree of cer-
tainty from their interactions and other users
with the same engagement in the website (re-
specting also the G6 from this table about
the biased data that might be collected). The
same will happen when the companion will
ask questions about the present task when
unsure about the user’s behavior.

The system usually struggles with answering
the why not question as seen by Vera Liao
et al. in “Questioning the Al: Informing
Design Practices for Explainable AI User
Ezperiences” [16]. They suggest the benefit
of interactive explanations, allowing users to
explicitly reference the contrastive outcome
and asking follow-up “What if” questions.
From Bansal et al. [9] can be seen in certain
scenarios the importance of real-time updates
from the agent, enabling the user to stay
informed about ongoing actions.

Teacher: When asked about the result, the
agent must respond with the information giv-
ing a degree of precision and showing the
source that has generated the answer for the
user, with a detailed description of all the
actions that are required to complete a task,
like “You need to do this ... in order to
achieve ...” The degree of certainty can be
shown with a percentage or a colored bar to
show the level of confidence of the agent for
example.

Student: When taking the actions the stu-
dent can show messages, for example on a
sidebar, describing what is doing (i.e. “Now
I’'m going to click on the login button to log
in into my personal profile”). The student
can explain why it asked specific questions
giving the source of the previous data col-
lected, for example with messages like “From
previous user interactions, I saw that to do

. you need to ...".

Companion: The companion can explain
why it asked specific questions when the in-
teraction was not something expected from a
specific user. When explaining a suggestion
it can show why with a text like “I saw that
you previously did ... so based on yours and
other users interactions I think you might
need ...”. When stopping them, the agent
should explain that it found that the user’s
specific actions were going out of the scope
of the task itself, asking in this case for clari-
fication. If the user needs some explanation
the agent might show the information that
it was used to generate the answer.

Continued on mext page
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G12: Remember | Teacher: The teacher agent should keep | Teacher: The interface can contain a specific
recent interac- | memory of the previous interactions, making | tab with previously learned tasks that can be
tions. it easy for the user to see their history. From | consulted by the user at any moment. The

Maintain short term
memory and allow
the user to make ef-
ficient references to
that memory.

this knowledge the system should understand
what could be the possible next requests
and if the user needs to refresh what they
have done, respecting Nielsen’s 6th Heuristic
about “Recognition rather than recall” [18].
Student: When performing as a student,
the agent should keep track of the previous
interactions in order to better understand
the behavior of a user inside of the website.
In this way it can learn the ways that a user
interacts with the website, and also to seek
for changes in their behavior and understand
why. The user can also see what they did in
the previous sessions with the agent to see if
it needs some help on some specific tasks or
steps.

Companion: In this case the companion
should remember the previous interaction of
the user in order to offer better suggestions
for its present tasks based on its knowledge
about the user’s preferences. This approach
will also allow to see if the user needs some
help to better learn how to complete a specific
task. In other cases this knowledge will help
understand if the user is going out of their
scope for the task completion.

In all these cases the agent must inform that
all the personal data is managed respecting
the GDPR. All this must be done, as said by
Bansal et al. [9], avoiding scraping sensitive
information or violating the site’s terms of
service while using the agent.

user can also see a level of confidence they
have gained with what they learned in the
previous interactions. In the same interface a
user can ask for a review of a specific learning
request that they made to the agent.
Student: The user can access at any time
the previous tasks that the agent learned with
them from the history page in the agent’s in-
terface (for example from the history logo
in the student’s home page). From a previ-
ous task page they can also access the asked
questions by the agent during the teaching
session through an interface that can show
this type of information in order for the user
to check if the agent is correctly following
what is important during this process and
to see if now the agent is doing the actions
correctly.

Companion: The user can access the previ-
ous interactions through the companion inter-
face divided in suggestions and in questions.
The suggestions are the ones used when the
agent is giving the user some tips or help
regarding what they are doing (like “These
were the previously used suggestions: ...”
i.e.). The questions tab can be consulted by
the user to check when and where the agent
thought they were going out of their scope
during a session with the companion.

Continued on next page
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G13: Learn from
user behavior.
Personalize the
user’s experience by
learning from their
actions over time.

Teacher: The teacher agent should know
what the user can and cannot do in order
to deliver only the needed information. It
should remember what the user learned and
in case it notices that the user is still not
friendly with what they learned it should pro-
vide a summary or a slim way to go through
it all again in a faster way and if needed to
repeat that again.

Student: As the user keeps teaching the
student, the agent will adapt its responses
based on what the user has taught it and
what the agent knows based on the reinforced
positive feedback of the user during the pre-
vious tasks learned, making this process feel
more smooth and effective. This will create a
shared mental model between them, that the
agent will use to make the interaction better.
Companion: When behaving as a compan-
ion the learning process is fundamental to
understand the user’s preferences and offer
better suggestions. The agent should keep
track of the past interaction with them and
understand their goal in order to make the
task completion easier for the user, like said
by Weisz et al. [14] (Teach the AI system
about the user, and Visualize the user’s jour-
ney) and to better understand if the user is
going out of the scope of the current task.

Teacher: As the user interacts with the
teacher, the agent understands the preferred
ways to communicate with them, based on
their actions. I.e., if the user already knows
how to perform a step, when explaining a task
that has that included, the agent will speed
up this process, since it is aware that the user
already knows how to do that specific thing.
Student: When interacting with the student,
the user will educate it on their preferred way
to interact based on how they collaborate
with the agent to make it learn new tasks.
As an example, with this type of interaction
the agent will better know if the user needs
slower reaction times to better see how the
agent is doing its actions on the website or
if the user needs extra focused objects to
distinguish what is happening (i.e. bigger or
brighter colors to underline what the agent
is writing in a text field).

Companion: The companion will learn the
user’s preferences, understanding how the
user uses the suggestions or how the user
wants to be stopped during an interaction
with the website. For example the user can
adapt the level of productivity of the agent,
granting a certain degree of responsibility and
so allowing certain actions to be automated
and others not (i.e. inserting personal data
can be automated, but the submission must
be done by the user itself) based on how the
user behaved previously. Also the agent will
show more frequent tasks that the user needs
to do based on the context they are used (i.e.
if the user in the home page of a website uses
more a specific suggestion, the agent will give
that suggestion as a ready prompt from the
home page of the agent).

Continued on mext page
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G14: Update and
adapt cautiously.

Limit disruptive
changes when up-
dating and adapting
the Al system’s
behaviors.

(As seen this is system wise)

Teacher: When behaving as a teacher, the
system should change gradually to make the
user learn and understand about the new
ways of the agent, allowing the user to adapt
gradually. This type of updates will not hin-
der the old users trust.

Student: The student agent when updating
should do so avoiding the introduction of
troublesome features that might change in
an unexpected way the interaction with the
user and that might be a cause of loss of trust
by them.

Companion: As a companion the new up-
dates should be applied slowly in a way to
get the user used to the new changes in a
gradual way and limit the disruptive changes
that might mislead the user based on their
previous interactions.

Teacher: When a function undergoes dras-
tic changes, the system will try to integrate
the changes gradually, allowing the old users
to adapt to this new behavior of the teacher,
without feeling disoriented or lost. For ex-
ample if the interface of the agent is going
to be changed, the system will do so gradu-
ally, keeping the key elements and changing
secondary items first and then the primary
ones.

Student: The student should limit the dis-
ruptive changes to control reduction of trust
caused by the process of understanding again
the capabilities of the agent. For example, if
the student updates the ways of showing its
interactions on screen, it should keep the key
elements that allow all the users to follow the
agent in this process (highlights, textual de-
scription i.e.), that, if removed, might cause
some uncertainty to the users.
Companion: If the companion will undergo
some changes, these ones should not be dis-
ruptive, allowing a gradual learning of the
new behaviors to the user. If the changes
are about the functionalities, for example
how the suggestions are made, these ones
must not change drastically (i.e. we cannot
remove the text input from the suggestion
system, without allowing the user to write a
suggestion).

Continued on next page
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G15: Encour- | Teacher: Allowing the user to give feedback | Teacher: After an interaction with the sys-
age granular | through an appropriate system (i.e. after | tem, the teacher can ask a few follow-up
feedback. each teaching interaction asking what the | questions to the user about that, like “Did

Enable the user to
provide feedback in-
dicating their prefer-
ences during regular
interaction with the
AT system.

user liked/not liked, giving a satisfaction rat-
ing) about the teacher agent can be a good
way to create a common ground and make
the future interactions better. In this way
the agent can learn what the specific user’s
preferences are.

Student: As a student, the system should
allow the user to give feedback to better un-
derstand the user’s preferences and learn the
preferred way to interact with them, fine
tuning its functionalities to give a better ex-
perience with them, and enhance its own
capabilities.

Companion: The system, when acting as
a companion, should give the user the pos-
sibility to provide useful feedback, allowing
in this way for the system to learn the user’s
preferences and improve their experience for
the next interactions, by training the agent
itself.

you enjoy this learning session?” or “Can you
give a rating to this session?” to have more
granular feedback and asking questions if the
rating is below a certain threshold. After
this the agent can also ask if the user has any
suggestions to make the agent better.
Student: The user after a session with the
student can give a feedback on how it be-
haved, with a text field or through a set
of questions that the user can answer like
“What rating will you give to this session?”,
or “Do you think that the agent completed
the task correctly?”. “Were you able to fol-
low my actions?” can be used to assess if the
agent’s actions were understandable. “Was
the agent capable of understanding what were
your inputs and the lesson given by you?, for
example, will be used in case the agent does
not know how to complete the task and asks
the user for help, and then it does that task
again with the new knowledge acquired. This
will help the agent in those disambiguation
cases where the agent has not enough under-
standing to complete the task.
Companion: The user can give feedback on
the accuracy of suggestions made by the com-
panion through the agent’s interface. This
can be done through textual, ratings, or other
methods, again asking follow up questions
as explained before for the teacher agent.
Instead for the student part the user can pro-
vide feedback on the agent’s proactivity and
how good it was recognizing when the user
was going outside the range of the task as
example. Each ready suggestion might have
a dismiss button, for example an X on the
top left, that can be clicked to remove that
one and be replaced by another one. When
doing so the user can then give a feedback on
why that specific suggestion was not useful,
allowing the system to fine tune the user’s
inclinations.

Continued on mext page
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G16: Convey the
consequences of
user actions.

Immediately update
or convey how user
actions will impact
future behaviors of
the AI system.

Teacher: When interacting with the teacher
agent, the system should notify the user
about how their actions might affect the fu-
ture interactions, allowing for them to roll
back in case they do not want to. This will
also happen after learning tasks, allowing the
agent to adapt to the new acquired or desired
knowledge of the user.

Student: The student agent should notify
the user when the actions that they are taking
are going to modify/reinforce specific mental
models based on the information gathered
from the user or that the user has given to
the system (through feedback i.e.). When
changing the agent’s settings the user will
be notified about eventual limitations or new
behaviors that the agent will have.
Companion: As information is given to
the companion agent, that can be both a
suggestion or a question, it should notify that
the provided preferences and interactions are
going to change the future suggestions and/or
behavior of the agent with them, in order to
better match the user’s preferences. The
user can in addition adjust how the system
behaves changing it from the settings page
of the companion.

The same will happen when changing the
settings of the agent, for anyone of the types
above (i.e. Adapting the proactivity of the
system to the desired one, Activate/Deacti-
vate specific functions of the agent, etc.).
Also it is important to let the user know
when the agent will take irreversible actions,
stopping before doing so and waiting for a
user response .

Teacher: When the agent is teaching some-
thing, after the task is finished it can ask if
the user learned that with questions like “Do
you feel confident now with the new learned
task?”. If so, the agent will say that for the
next interaction it will consider that learned
by the user and will adapt its own expla-
nations considering the fact that the user
already has that type of knowledge. Instead
when the user adapts the setting of the agent,
it will inform how those ones will affect its
behavior, allowing the user to accept that or
roll back.

Student: After a session, the student will
ask feedback to the user, for example “Were
you able to follow me during this session?”
and if the response is negative the agent can
ask “Would you like to change something?”,
allowing the user to write or to show the set-
tings page to allow the user to fine tune the
agent’s functionalities and properties. This
can also be done in the system’s interface.
When doing so the user will be notified about
how this will change how the agent will in-
teract with them, allowing them to roll back
or to accept these changes.

Companion: The feedback from the user
will be used to enhance their experience
with the companion, so the agent will notify
through messages that things will affect its
future behavior. For example, after finishing
a task, the agent can ask “Are you satisfied
with the task you gave me?”. This type of
feedback will help reinforce the agent’s capa-
bilities if the response is positive it will be
used as a suggestion when the context will
be matched. If not the user can then adapt
the future interactions to their preferred way.
The same will happen when the agent will
notice that the user is going out of the scope
of the task. As said for the agents above, the
behavior will be similar when changing the
behavior directly from the settings.

Continued on next page
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G17: Provide
global controls.
Allow the user to
globally customize
what the AI system
monitors and how it
behaves.

Teacher: The system, when behaving as a
teacher should provide the user a reachable
and easy to understand set of controls to let
the user personalize their experience with the
system, in order for them to get the desired
experience. The user can decide how much
the teacher is explaining and the level of
detail of the task explanation.

Student: The user should be capable of cus-
tomizing the behavior of the student agent,
adjusting to the desired level the proactivity
and the amount and type of data that it can
collect, reminding the user that all is done
respecting the GDPR rules. The user can
also adjust and choose how the system will
show the agent actions in the website, when
learning new tasks depending on the user
needs or preferences.

Companion: When the user interacts with
the companion agent, at any moment they
can be capable of customizing what the sys-
tem is monitoring, its level of proactivity and
the amount of data collected to give the user
useful suggestions to speed up their task com-
pletion process and not to be too invasive.
This would also be possible for the function-
alities that the agent offers when it is trying
to block the user from going out of the scope
of their actual task.

Teacher: The teacher’s interface can have
a “Settings” page where the user can see all
the active functionalities, the level of proac-
tivity of the agent in that exact moment, for
how much time the data is stored, the level
of detail, etc. From this interface they can
choose their preferred levels in order to have
a personalized experience. Also from this
page the user can access the personal data
that is stored and can choose how they want
it to be kept. The interface in any case will
assure the user that the data kept is only for
preferences and that is respecting the GDPR
rules, allowing them to manage their own
data according to this. For example if the
teacher knows the personal data of a user it
can use that to show some examples using
that data for teaching a task, instead of us-
ing some fake data (like filling a Name and
Surname field i.e.).

Student: From the student interface the
user can decide how proactive they want the
agent to be, the amount of data that it col-
lects. The agent must show that the data
collected is just for learning purposes and
that it is not kept in any way, respecting the
GDPR rules in the privacy section. The user
can, moreover, choose how they want the
agent to describe their actions in the website
(for example for certain users the text is dif-
ficult so they prefer an audio explanation for
each action that the agent is taking).
Companion: The user can access easily the
settings of the companion agent from a gear
icon that will lead them to the settings page.
From this page the user can choose the level
of proactivity, the amount of data stored and
the preferences, as done by the teacher/stu-
dent agent. The same will be done with the
GDPR rules as per the other agents above, al-
lowing the user at any moment to manipulate
their own data according to this.

At any moment the user can go back to pre-
defined options by clicking its button on the
system’s interface. This will be possible for
each agentic figure.

Continued on mext page
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G18: Notify users
about changes.
Inform the user
when the Al system
adds or updates its
capabilities.

Teacher: When the teacher agent is being
updated, it should notify the user about the
incoming changes, allowing them to under-
stand everything in a simple way, and if they
need a more detailed explanation, the system
can provide a more complete and complex
documentation. The changes should not be
too drastic in order for the user to get used
to the changes gradually.

Student: The student agent should notify
the changes that are going to be made in his
way of interacting with the user and the data
collected, being transparent with the user
and making them aware of the new agent’s
behavior.

Companion: The system, when behaving
as a companion, should notify the user about
the updates in its capabilities in order for
them to better use all the new functionali-
ties and to not be disoriented by the new
changes introduced by the system. This
should be done respecting the rule of trans-
parency, since ,as said by Baker et al. [10],
this characteristic is linked with trust by the
user.

Teacher: When new changes are being
added to the teacher agent, it should no-
tify the user about its new capabilities with
messages like “With the new updates I can
do...” or “Now I can ... Try it out.”. In
case of changes it should notify the user with
similar messages like “Now, if you want to
. you have to ... Ask me if you need some
help to understand this.” as an example.
Student: As new changes are being added
to the student, the system should notify the
user about its new capabilities with messages
like “With the new updates I can do ...”
or “Now I can ... Try it out.”. In case of
changes it should notify the user with similar
messages like “Now, if you want to ... you
have to ... Ask me if you need some help to
understand this.” as an example.
Companion: When new changes are being
added to the companion, the agent should
notify the user about its new capabilities with
messages like “With the new updates I can
do...” or “Now [ can ... Try it out.”. In
case of changes it should notify the user with
similar messages like “Now, if you want to
. you have to ... Ask me if you need some
help to understand this.” as an example.

Table 4.1: Microsoft Guidelines table adapted for this thesis

This table served as the starting point of the design process, enabling ideas to be
developed before moving on to detailed prototype creation. The "Contextualization'
column also integrates other important works that were previously cited and
particularly relevant. The "Implementation” column instead, gathers inspirations
from existing agents or features.
From this point on, the focus of the naming used in the table shifted from what
the agent was doing to what the user was doing, in order to make each modality
easier to understand from the user’s perspective. Consequently, the names were
changed as follows:

o from Student to Teach, since in this modality the user is teaching the agent;

o from Teacher to Learn, since in this modality the user is learning;

o from Companion to Collaborate, to reinforce the idea of completing a task

together.

This renaming supports clearer mental models and improves the readability of
the guidelines from a user-centered point of view.
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4.2 Study on current Web Agent Designs

Agents implement a variety of functionalities and features that differ depending
on the scope and context in which the system is used. However, even if current
implementations adopt different designs, the main types of deployment can be
summarized into two broad categories, based mainly on the paradigm used by the
agent to navigate the web:

1. Agent with built in browser: this type of agent provides its own browser within
the current browser tab, typically as a window embedded in the page. Usually,
it offers a text input to send requests. For example, Browserbase [19] 4.1
provides a code input and a headless browser inside the tab.

me % 0 fal

60w @ :
© 60:00 minues remaining | & e |[ % Usgrace | (@ |[ & (2]

6%
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Figure 4.1: Example of usage of Browserbase

A similar example is ChatGPT Agent, which uses the standard ChatGPT
interface with a chatbox to input the request using natural language. However,
unlike standard ChatGPT, it operates as an agent inside a headless browser.
The interface can have the browser running below the prompt or display the
chat on one side and the browser on the other, with the page always visible
on the screen.

2. Browser extension: Differently from the previous type, this one uses the user’s
own web browser and can manipulate the current tab to complete the task, by
opening the extension and using its interface. Usually the interface provides a
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text input where the user specifies the task that wants to complete, usually
using natural language. An example can be seen in figure 4.2.

Another relevant modality is the "Coding” one. As seen in the figure 4.1,
Browserbase itself supports it, allowing the user to send requests to the agent by
writing code. Another example can be Stagehand [20], which offers an SDK for
developers to control web agents. Also Midscene can operate with this paradigm
[8] by using the bridge mode: by using the “bridge mode,” the user can write code
(guided by the official documentation) to control the browser tab in which the
extension is active, allowing the agent to perform actions specified in the code.
This last option is more oriented towards developers, but it remains a particularly
interesting way to interact with agents and to gain a deeper understanding of how
an agent operates.

4.3 Choice of platform: web extension

Considering the paradigms noted above, the code-based modality was not selected
as the primary interaction mode for this thesis, due to the programming skills
required and the need to understand technical documentation, limiting the access
only to people with coding experience. Furthermore, this type of modality is
mainly used to create or integrate agents in other systems, rather than to provide
a general-purpose user-facing interface.

The final choice for this thesis project was to develop a web extension, more
specifically a Google Chrome extension, following an interaction approach similar
to already existing interfaces, such as that shown in Figure 4.2.

Both main approaches (built-in browser agents and extensions) provide a well-
acquainted modality of interaction, allowing the user to make the request to the
agent through a chat-like text message. However, creating and maintaining a
headless browser environment is more complex from a technical and infrastructural
point of view, whereas a browser extension simply interacts with the user’s current
tab in a more direct and seamless way.

With the extension-based approach, the user simply clicks on the agent icon and
can immediately request assistance with a task. There is no need to open the Web
Agent website, simplifying the invocation. This approach also lets users start from
their preferred search engine and existing tabs, instead of being constrained to the
one used inside a headless browser.

However, this choice also has important implications. Since the extension runs in
the user’s own browser, the agent can perform actions directly on the user’s behalf.
This could speed up processes such as logins and other kinds of actions that require
personal data, which are slowed down when using headless browsers. At the same
time, this capability introduces the risk that the agent may also perform harmful
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Figure 4.2: Midscene.js interface with the Browser opened

operations on the user’s behalf. As discussed in previous chapters, this situation
can easily lead to a loss of trust.

When operating in this modality, agents must detect the presence of potentially
harmful operations and either, notify the user or stop the execution of the action,
returning control to the user so that they can explicitly allow or dismiss the agent’s
behavior.

4.4 Design ideas and prototype

The design inspiration were inspired by the existing web agents implemented as a
Google Chrome extension, such as Midscene.js. The overall design is kept simple,
with a textbox where the user inserts their request for the agent. For the remaining
components the main goal was to respect a simple and minimal design, following
both Guidelines cited in the table 4.1, and integrating with the Nielsen’s Heuristics
for UI Design [18]. The following subsections analyze the main interfaces that were
prototyped using Figma.

The core concepts for each component functionalities were the following:

o Learn: in this modality, the agent was designed to provide a sequence of
steps to the user. For each step, the user performs a set of actions on the
website, and the agent records these interactions, allowing the user to receive
feedback. The agent also offers a series of hints that describe the actions
required to complete each step on the website, enabling a more gradual learning
process. In addition, there is an option for the agent to “show” the actions by
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highlighting the areas of the interface where the user needs to interact.

o Teach: In the teach modality, the user provides, using natural language,
the task they want to teach. After that, the user specifies the task step by
step, showing the agent the actions required to complete each step. For every
step, the agent then replays the actions by generating them, allowing the
user to verify their correctness. Once all steps have been performed, the user
completes the task, and all recorded data are stored in the knowledge of the
agent. This allows other users to later learn this task in Learn mode or to use
it to automate steps in Collaborate mode.

o Collaborate: In this modality, the use provides, by using natural language,
a task they want to accomplish. The agent, based on the current state of the
table,generates a set of steps that are needed to reach the goal. The agent
can automate individual steps by using the context of the page, but it always
leaves the final decision to the user, who can choose whether to automate a
step or not. The agent understands autonomously if the step is completed
and moves on until the end of the task is reached.

4.4.1 Prototype Architecture

This section describes the design developed during the prototyping phase, which
later serves as a reference for the development chapter. The main idea was to keep
the interface as minimal as possible and consistent with consolidated applications
and existing web agents. Starting from the Home page of the application, all
the different agent modalities are analyzed in sequence. The chosen operating
environment for the agent was a spreadsheet website.

Home

For the Home interface, as mentioned before, the structure was kept similar to the
existing agents that work as browser extensions. At the top there is the header
component showing in the middle the type of agent modality selected. By clicking
on this label, the user can switch between the different modalities. To the right of
the modality name, there are the History and the Settings button.

The History section keeps track of all the previous interactions of the user, allowing
the user to clear that. The Setting section lets the user personalize their experience,
for example by choosing the interface theme, and more importantly by entering
their personal API key, which is required to enable and use the agent.

Below the header there is a question that depends on the modality selected: for
example, as in the Figure 4.3, the question is “What do you want to learn today?”,
for the Learn modality. Inside the main text input, a placeholder hint suggests
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how to formulate the first part of the sentence, guiding the user in structuring
the request to the agent. Within the input area there is also a button to send the
request.
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Figure 4.3: Home page of the Learn modality

Finally there is a Card component that, depending on the selected modality,
contains some prompt suggestions. By clicking on a suggestion, it fills the text
field automatically with the corresponding text. This helps users speed up their
interactions with the agent and fills what would otherwise be an empty portion
of the interface. These texts change according to the selected modality, helping
to maintain consistency within this component across interfaces, even when the
agent’s modality changes.

Learn

In the Learn interface, the header and the text input area are the same as in
the Home page, thus maintaining consistency. The only change is that the size
of the text input is adjusted to fit the input, and the "send" button is replaced
by a “change” button. This button allows the user to reformulate the original
request and send a new one. In figure 4.4 is shown while the user has opened the
hint section of the second step. For each step, there is a step number, a textual
description of the step, and, when needed, a formula shown in bold. On the right
side, there is an icon telling the state of the step(for example, whether it is not yet
completed or already done).

The hints shown as a dialog in the website, are waiting for the user do to what is
written. If the user needs, can click the "Show me" button to make the agent show
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Figure 4.4: Learn modality interface

them the actions needed to complete the step. Finally, at the bottom of the agent
interface there is a button that allows the user to report errors.

Teach

As with the Learn modality, the header and the text field section are kept the same
in Teach, ensuring consistency among all modalities. Once the agent is started, the
user writes a brief description of the step that is going to perform inside the specific
textbox, such as the one shown in Figure 4.5, where the user is specifying the
second step. After entering the text, the user performs the corresponding actions
on the website and then clicks the "Stop" button in the interface to signal that the
step is completed. Next, the user clicks the button to start the learning process of
the agent: the agent resets the table or interface elements affected by the user’s
actions and, through a highlighted mouse pointer, replays the learned actions. For
example, in figure 4.6, the agent is replaying the actions for the first step. The
mouse pointer is surrounded by a colored highlight, which visually indicates the
level of confidence of the agent while executing those actions.

To end the teaching session, once all the steps have been provided and reviewed,
the user clicks the "End task" button. As in the Learn modality, an error report
button is provided at the bottom of the interface.

Collaborate

The layout of the Collaborate interface follows the same structure as the Home of
this modality, and is consistent with the other modalities. In this case, the agent
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Figure 4.5: Teach interface while inserting the second step text
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Figure 4.6: Teach interface while the agent is replaying the first step

provides a set of steps that can be either automated by the agent or manually
executed. The user can toggle whether a specific step should be automated by
clicking a dedicated switch next to it. Each step can be edited, deleted or have a
step below by click the buttons on the side left of the step text.

The agent in this modality detects when the user completes a task and, after that,
if the next step is marked as automated, proposes its automation through a popup
on screen. If the user clicks that popup, the step is automatically automated.
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During this automated execution, short explanations appear near the mouse cursor
on the page, as shown in Figure 4.7, to clarify what the agent is doing.
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Figure 4.7: Collaborate interface of the agent automating a step

The user is free to end the task at any time by clicking the "End" button at
the bottom of the list of steps. As in the other modalities, a report button is also
present at the bottom of this interface.
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Chapter 5
Development

In this chapter discusses the development process, starting from the technologies
used, then analyzing the implemented architecture with some focus on the main
components. The chapter, then, concludes with a description of the additional
features that enable AgentExtension, which is the name of the extension, to support
richer and more effective interactions with the user.

5.1 Technologies used

The choice of the technologies was a fundamental aspect of this project. The
main objective was to develop a Google Chrome Extension, following the official
documentation provided by Google [21]. For the user interface , the extension was
implemented using React [22] with T'SX [23] and Vite [24]. This configuration
made it possible to adopt the component design paradigms of React and rely on a
configuration-based build process, where simple commands are sufficient to rebuild
the extension after changes thanks to Vite.

For the GUI, HeroUI [25] was selected as the component library. HeroUI provides
dynamic, easy-to-use, and visually appealing components already integrated to
work with React. Moreover, it is straightforward to configure alongside Tailwind
CSS [26]. Tailwind was used to manipulate component styles directly from TSX
code, enabling a faster and more flexible development process.

to conclude, GitHub [27] was used to store and version the code, supporting parallel
work on different features. For this purpose, two repositories were create: one for
running the interface locally as a “web version,” used mainly to test individual
components on the localhost, and an official repository containing only the build-
ready code for the extension, since the functions called by this version were making
the web one crash.
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5.2 Structure of the project

As mentioned in the previous section, two repositories were used for this project:
one for the web version, which facilitated faster GUI development, and one for the
build version, containing all the code specific to the Chrome extension. What is
going to be analyzed in this chapter is the code of the extension, however, it is worth
to mention the need of a double repository, because it allows the integration of only
the GUI components by copying the component code, since as happened during
the testing, introducing functions for the managing a Google Chrome extension
made the web version crash.

Another important decision was to create a simple version of a spreadsheet website
for the agent to interact with. Initial experiments with existing web agents revealed
that they often struggled with understanding how complex spreadsheet platforms
are organized. For this reason, the Al logic in this project was tailored to work
specifically with the custom spreadsheet website developed for the thesis. This
website was deployed using GitHub, and will not be further analyzed in this thesis
work. The choice of a spreadsheet environment allowed testing of all components
in a challenging context, for both expert and novice users.

5.3 System Architecture

The system was developed adopting a single-page architecture for the extension.
The decision was primarily made to avoid routing errors or other types of issues that
might arise when building the extension. Furthermore, since all the components
shared common parameters and states, a single-page structure simplified reuse and
allowed for a better communication between the three different modalities. This
approach made the whole system connect and share information better.

Starting from the home page, each interface changes depending on whether a session
is active and, naturally, depending on the selected modality. Each modality (Learn,
Teach, Collaborate), as well as the Home view, has its own separated component,
all of which are invoked in the App.tsz file. This file defines all the useState
variables used to manage state across components and allowing for the different
components to display. In App.tsx, the header component is also managed, which
includes the switch that selects different agent modalities and shows the current
one, as well as the buttons that trigger modals for history and settings.

Another important aspect concerns data storage. All data are saved in the exten-
sion’s local storage, so the agent’s knowledge is currently managed individually
for each user and is not shared. Personal data, such as the user’s API key and
the different modalities history, are also stored there. The agent initialized with
a base knowledge, which consists of the four formulas supported by the custom
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spreadsheet website. This data was saved manually, since the agent does not create
or generate this base knowledge when fist installed. However, a file in the repository
contains this base knowledge, allowing new users to insert this data in case the
extension is installed on a new browser.

In the following subsections, the main interfaces are analyzed with brief descriptions
of relevant code features, accompanied by figures of the final UL

5.3.1 Home Interface

The home page contains, below the header component, a text field to submit the
user’s request, and, underneath it, a card containing up to 3 elements that help
the user perform requests more quickly, inserting the clicked text in the text box.
The only variation occurs in the Teach modality, where this card element contains
the last 3 tasks learned by the agent, in order for the user to not teach these again.
Figure 5.1 shows the home page for each of the three modalities, showing the
small differences in the interface. This choice was made, also, to keep the interface
consistent, and allowing the user to gain familiarity with the system more easily.
When opened, AgentExtension will show the home page of the Teach modality. By
clicking the name of the mode, the user can than switch to the wanted one.

) AgentExtension ® X

7 AgentExtension X x . AgentExtension | X

Teach D &

What do you want to teach me
today?

I want to teach how to...

¢ These are some of the latest tasks you
taught the system before

will teach you how to calculate the weighted
average of the grades

How to do the average

How to calculate the area of a triangle

(a) Teach modality

Learn 9 & Collaborate. O &

What do you want to learn today?

Show me how to...

¥ These are some of the tasks | can teach
you:
will teach you how to calculate the weighted
average of the grades
How to do the average

How to calculate the area of a triangle

(b) Learn modality

What do you want to do?

h want to ..

¢ These are some suggestions based on
your past interactions with the agent:

want to calculate the average weekly spendings

(¢) Collaborate

Figure 5.1: Home interfaces for all three modalities
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5.3.2 Learn Interface

The Learn interface keeps the text box at the top, resized to better fit the content,
allowing the user to modify its text by clicking and changing it. After the user
submits a task, the agent first assesses whether it already knows how to perform it.
As shown in Figure 5.2 (a), if the task is recognized, a set of steps is generated,
and shown below the task text box. . If the agent does not have that knowl-
edge(determined through an APT call to OpenAl), instead, a modal is displayed
asking the user whether they want to switch to the Teach modality to teach the
task (see Figure 5.5 (a)).

Once the assessment is completed and al the steps are generated, the agent initially
shows only the first step, as illustrated in Figure 5.2 (b).

. AgentExtension T x 7 AgentExtension X ox . AgentExtension RPN

X Learn D B X Learn

O] &3} X Learn 1O} i@'s‘

What do you want to learn today?

1 will teach you how to calculate the
weighted average of the grades

Sure, here are the steps that you need to take

-~

What do you want to learn today?

1 will teach you how to calculate the
weighted average of the grades

Sure, here are the steps that you need to take:

n cell C2, calculate the total weighted

What do you want to learn today?

1 will teach you how to calculate the
weighted average of the grades

Sure, here are the steps that you need to take:

In cell C2, calculate the weighted sum

points using the grades and weights.
i =WEIGHTEDSUM(A2:A10,B2:B10)
Loading steps 5)

of Grades by Weights.
=WEIGHTEDSUM(A2:A10,B2:B10)
Hint

In cell €3, sum all the weights

2 =SUM(B2,B3,B4,B5,86,B7,88,89,810) @

In cell C4, compute the weighted
average as weighted sum divided by
3. total weight @
=DIV(C2,C3)

(a) Assessment of the task  (b) First step is displayed (c) All steps completed

Figure 5.2: Variants of the Learn interface

Immediately after the first step is displayed, the component sends a message to
an injected JavaScript code in order to activate the recording of the user’s actions.
This functionality records all clicks and inputs, allowing the agent to check if the
performed actions are correct. If incorrect actions are performed, the agent displays
error popups in the current tab 5.6. If the user feels uncertain, they can click the
"Hints" button to open a dialog in the current tab that shows a description of all
the actions required to complete the step 5.8. The user can also allow the agent to
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visually demonstrate how to complete the step by clicking the "Show me" button
inside the hint dialog 5.7.

When the step is successfully completed, the user is notified through a congratulating
popup. After all steps have been completed (Figure 5.2), the agent injects a dialog
containing a congratulations message into the current tab. This dialog contains a
"Close" button that, if clicked, ends the session. After that button is clicked, the
history stored in the local storage is updated.

5.3.3 Teach Interface

In the Teach modality, the header and the text field at the top remain the same
as for the Learn interface, ensuring consistency. Below the text box, the layout
changes to support task teaching. This modality also begins with an assessment
to check whether the task is already known, using the same logic and a similar
interface to that used in Learn. If the task has already been taught, a modal
appears allowing the user either to teach it again or to return to the home of
Teach (Figure 5.5 (b)).If the task, instead, is part of the agent’s base knowledge,
the modal only shows a close button, preventing the user from modifying core
functions, which could compromise the integrity of the system. Before the teaching
session starts, the current state of the table is saved as a reference. This provides
the context to the agent, enabling it to adapt the taught task to future situations
when users want either to learn the task (in Learn mode) or to automate it (in
Collaborate mode).

Once the session begins, the user inserts in the step text box only a brief description
of what is going to perform, using natural language. After sending this step
description, the agent starts recording the user’s actions on the website. The
interface clearly indicates that recording is in progress, by placing the step inside a
card with a “Stop” button and a status message above it (Figure 5.3 (b)). The use
then performs the actions required to complete the step and, once they are done,
presses the "Stop" button.

After that, the interface shows a "Generate" button that starts the generations of
the agent’s steps. Clicking this button triggers a cleaning process that restores the
table to its previous state, removing the user’s actions. The agent then generates
actions based on the recorded data and the cleaned table state. When the actions
are ready, the user clicks the "Start" button inside the dialog injected to start the
agent’s replay 5.7. At any point, the user can stop the agent while it is showing
the actions, in order to block or prevent eventual errors or harmful actions.

Once the actions are completed (or the user has stopped the agent), the interface
waits for feedback, asking whether the actions were correct or if they need correction
(Figure 5.3 (e)). If the user indicates that the actions are wrong, the agent shows
a text box where the user can type a textual correction, which is then used to
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generate updated steps (Figure 5.3 (f)).

After the first step is created and validated by the user, they can end the task by
clicking the "End task". This button appears starting from the second step onward,
only during the step creation. All these interface transitions are performed with
dynamic animations and conditional rendering: different elements become visible
when certain variables reach specific values, and these counters are updated after
each key action, enabling a smooth teaching flow.

When the user ends the task, the History is updated and the task is saved in the
local storage, updating the set of known tasks. What are stored are: the task
description, the initial table state, and for each step, the step description and the
actions performed by the agent. In case the task was taught again, the previous
one is replaced by the new one.

5.3.4 Collaborate Interface

As for the other two modalities, the header and text box remain unchanged in
Collaborate. After the user submits a task, a loading spinner similar to the one
used in the other modalities is displayed while the steps are being generated. These
steps are derived from the current state of the table and are intended to guide
the user toward the completion of the task. The function responsible for this
generation also assesses each step, determining whether the agent already knows
how to perform it or not.

Once the steps are generated, each step is displayed inside a card. The current
step, which is marked with a spinner on the right side, could be completed by the
user, as seen in Figure 5.4 (b), or, if automatable, by the agent, by clicking the
"Generate Actions' button. If the step is not automatable, but the user attempts
to enable automation via the corresponding switch, the agent displays a modal
asking whether the user wants to teach that step first (Figure 5.5 (c)). If the user
agrees, the session changes into a teaching session, switching modality to Teach
and passing the step description as the task to be taught.

For each step the user is capable of, by clicking the respective icons on the card
(from left to right):

o edit the step text: clicking this icon changes the card into a text box, allowing
the user to update the text. For simplicity, when the text is changed, the step
is treated as unknown to the agent.

o delete the step: clicking this icon opens a confirmation modal to validate the
user’s choice.

e add a new step below: clicking this icon inserts a new text input below the
selected step. The user can close this input by clicking a close icon in the
same position.
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If the user decides to automate a step, the process starts with generating the
corresponding actions. Once these actions are ready, the interface displays a
simplified list of actions that the agent will perform. This list is intentionally
minimal, avoiding technical details (such as formulas) to keep the focus on the
main interactions. After the user presses the "Start agent' button (Figure 5.4 (c))
and confirms the operation through a dialog injected into the page (Figure 5.7 (b)),
the agent takes control of the current tab and performs the actions to complete
that step. In this modality, only the current step can be completed; the agent
moves on to the next step only after the current one has been completed, either by
the user or by the agent.

The user, at any moment, can decide to conclude the session by clicking in the "End
Task" button that is below the final step. This ensures that the user maintains full
control over the agent and can use this modality in a flexible way.

5.4 Other features

This section presents additional components and features that were essential for
the correct functioning of the project, but were not part of the Ul. Some of these
functionalities were mentioned in the previous subsections; here they are described
in a more focused way, without going into full implementation detail.

5.4.1 Injected Code

To communicate with the current page’s DOM and vice versa, the extension injected
into the current tab some JavaScript code. The injection happens only when the
agent is opened and it injects it only in the current tab (thanks to the wvite.config.ts
file). The most important injected scripts are the Recording and the Replaying
module.

The Recording functionality tracks user actions on the website. The actions
recorded are only two types:clicks and inputs. These values are either stored in the
extension’s local storage or sent via chrome.runtime.sendMessage. The recording
functions are used by the Teach mode in order to capture all the user’s actions
so that the agent can learn from them, and in the Learn modality, in order to
check whether the user’s actions match the generated learning steps of the agent.
The injected code listens for different messages from the extension and reacts
accordingly, for example by starting or stopping the recording, or sending specific
messages only when certain conditions are met (e.g., depending on the modality).
In addition, to maintain consistency, clicks on the same cell that re-open it for
editing, or move the text cursor, are not recorded. Text inputs, on the other hand,
are saved only after the Enter key is pressed, when another page element is clicked,
or when the cell loses focus (for example, when the user clicks on the agent).
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The replaying function, on the other hand, allows the extension to perform synthetic
actions inside the page. This pose some technical challenges because synthetic
clicks can be treated as suspicious by the page and blocked as harmful. When
the command to replay actions was sent from the extension, the clicks were not
performed. To avoid this, the replay is triggered by a component injected into the
page itself, which, by the page, is treated as safe. The replaying function is used in
all three of the agent modalities and works by going through a list of actions (each
defined by interaction type, element ID, and input value, which is empty in the
case of simple clicks) and performing them, one at the time. Various delays were
introduced, in order to make more understandable the actions performed.

Is worth noting that the DOM can also be manipulated by this codes. For example,
while a click is performed in a cell by the agent, its color becomes yellow, helping
the user follow better the actions.

5.4.2 Injected Components

Another key aspect is providing feedback directly within the current tab, rather
than only through the extension interface. For this reason, several Ul components
were built and then injected into the web page.

Each of these components had its own configuration file, which enables it to be
build as a standalone JavaScript [28] file, after being originally implemented as
React TSX components. These files can then be injected into the current tab
using the chrome.scripting.executeScript function. Several types of injected
components are used. Some are simple popups that notify the user, for example
when a replay finishes in Teach mode, when a step is completed by the user, or
when a step is completed by the agent in Learn mode 5.6. This popups had a timer
that removed these elements after few seconds, but could also be dismissed by a
simple click in the page.

Others components are more interactive, such as dialogs shown at key moments:
for instance, the dialog to start replaying actions in Teach mode or the dialog to
start an automated task in Collaborate mode (Figure 5.7). Closing these dialogs
sends different messages to the extension, triggering the corresponding events.

The more complex one is the Hint component. Once injected, can trigger events,
by clicking the "Show me" button discussed before, but more importantly can be
triggered by the user errors, changing color and showing which step was performed
incorrectly by the user, making the specific action text bold 5.8.

5.4.3 OpenAl Calls

The engine underlying the agent’s behavior is based on API calls to OpenAl. These
calls serve multiple purposes: assessing whether the agent already has knowledge
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of a given task, generating steps, hints and agent actions for automation. The
implementation details of these calls are not deeply analyzed in this chapter; instead,
the next chapter presents a series of experiments used to identify the most suitable
model among several ones. For this reason this API calls are going to be presented
briefly in the following chapter.

The most important aspect is, as cited before, all the calls are explicitly tailored to
the custom spreadsheet website created for this thesis. In each prompt, the model
is informed, as the first thing, that the environment is a spreadsheet-like website.
Then, the prompt constrains the OpenAl model’s capabilities in order to simulate
a realistic learning ecosystem. The prompts were iteratively refined to produce the
desired output while respecting the initial design objectives of this thesis project.
Finally, the choice of model had a strong impact on the quality and consistency of
the outputs. Different models produced different behaviors using the same prompts.
The work presented in the next chapter analyzes these differences and reports the
main results and conclusions derived from this experimentation.
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AgentExtension T x AgentExtension T X AgentExtension 'S
X Teach D B X Teach D B X Teach OB
What do you want to teach me What do you want to teach me What do you want to teach me
today? today? today?

1 will teach you how to calculate the

1 will teach you how to calculate the
weighted average of the grades

1 will teach you how to calculate the
weighted average of the grades

weighted average of the grades

What are the steps that I need to learn? What are the steps that | need to learn? What are the steps that | need to learn?

Now show me how to do this step

1 Do the weighted sum of grades and @ when you finish press stop.

] Do the weighted sum of grades and
weights into an empty cell

weights into an empty cell ~
Do the weighted sum of grades and

1 weights into an empty cell I will show to you if | learned the step. Press
Write here the step..

N
® Stop Generate to create my actions.
2.
End Task

(a) Second step insertion  (b) Agent recording actions (c) Generating the actions

AgentExtension X X % AgentExtension x X AgentExtension X X
x Teach D & X Teach O ® X Teach 0 &
What do you want to teach me What do you want to teach me What do you want to teach me
today? today?

today?

1 will teach you how to calculate the

1 will teach you how to calculate the
weighted average of the grades

1 will teach you how to calculate the
weighted average of the grades

weighted average of the grades

What are the steps that | need 1o learn? What are the steps that | need to learn?

What are the steps that | need to learn?
Do the weighted sum of grades and 1 Do the weighted sum of grades and

X J ] Do the weighted sum of grades and
weights into an empty cell - weights into an empty cell . weights into an empty cell ~

Showing actions... Is the step completed correctly?

What are the corrections that | need to do?

Write the correction here...

(d) Showing the learned ac-(e) Feedback after ending the (f) Correcting the wrong ac-
tions agent actions tions

Figure 5.3: Variants of the Teach interface
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AgentExtension X X AgentExtension X AgentExtension T X
X Collaborate O & X Collaborate O &8 X Collaborate & &3
What do you want to do? What do you want to do? What do you want to do?

| want to calculate the average Wanttofalaulaicliielaveiage

weekly spendings

| want to calculate the average

weekly spendings weekly spendings

This are the steps:

This are the steps: This are the steps:

Enter your weekly spending values L Enter your weekly spending values ®
into the sheet into the sheet ’ into the sheet

I - / W Automated " ® o
Calculate the average of the weekly Calculate the average of the weekly
nd >tep spendings in a cell

spendings in a cell

5 7 W Auomsted o ® M Z W Auomated o ®

Generating agent actions... Agent actions will be:

/A W  Auomated ® . 2. Write sum formula
o 3. Click cell C1

4. Write number of cells
End Task ;
End Tk 5 Cidk cll

6. Write division formula

End Task

Enter your weekly spending values ®

Calculate the average of the weekly

(a) Current step not automat- (b) Generating actions for an (¢) Agent ready to start col-
able autoamtable step laborating

Figure 5.4: Variants of the Collaborate interface
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. AgentExtension T x . AgentExtension T X% 7 AgentExtension X X

You already taught me a
| don't have this knowledge similar task. If you teach it
yet. Would you teach me how again the previous one will be
to do this task? overwritten. Do you want to
teach this? ) .
Enter your weekly spending values into the

Show me how to calculate the perimeter of sheet
adircle

Switch to Teach

If you want me to do this step, :

would you teach me first this ?

I will teach you how to calculate the

weighted average of the grades
(Slay in Collaborate) (Switch to Teach)

(a) Modal in Learn when a (b) Modal in Teach when the (¢) Modal in Collaborate to
task is unknown task was previously taught teach an unknown step

Figure 5.5: Modals used in the different modalities

Step 1 completed.
Good job!

| completed this step.

| finished my actions! Let's do the next one!

(a) Replay finished (b) Step completed by the (¢) Step completed by the
user agent

Wrong input
What you need to write in cell #C2 is Wrong cell selected

[:WEIGHTEDSUM(AZ:MO,BZ:BIO)J You need to click cell

(d) Wrong input (e) Wrong click

Figure 5.6: Example of popups used by extension to communicate with the user
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| finished reviewing your
actions. Press Start to continue

I'm ready to start
collaborating!

[ Close ] [ Start J

[ 4

(a) Start replay in Teach (b) Start automated task in Collaborate

Figure 5.7: Example of dialogs used in different modalities

1. Click cell C3. 1. Click cell C3.
2. Type 2. Type
~SUM(B2,B3,B4,B5,B6,B7,B8,B9,810). =SUM(B2,B3,B4,B5,B6,87,88,89,810).
Show Me Close Show Me
(a) Normal hints interface (b) Hints interface after a wrong action

Figure 5.8: Hints component
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Chapter 6
Model performance Analysis

With the release of GPT-5 by OpenAl [1] during the development of the project, it
became relevant to understand which model provided the most suitable responses
for AgentExtension. In this chapter are briefly described the prompts used in
this project, the experiments performed for each of them, the results obtained,
and the rationale behind the final model choices adopted in the latest version of
AgentExtension.

6.1 Scope of the experiment

From the beginning of the development, the only model used to perform the AT API
calls was GPT-40 of OpenaAl [1]. The prompts were iteratively refined through
empirical testing, adding constraints and clarifications until the responses matched
the desired behavior.Once satisfactory results were reached, the prompts were
considered stable.

On the 7th of August OpenAl released their new model family GPT-5, described
by the company as their “most advanced model for coding and agentic tasks.”
This raised the question of whether GPT-5 variants could outperform the already-
integrated GPT-40 in the API calls performed

The main idea, after this release, was to systematically test the existing prompts
against different models and compare them using various metrics, in order to find
which model delivered the best output for each prompt. All prompts used in
AgentExtension were tested, and are briefly summarized below:

o Assess task: used both in Learn and Teach modalities to determine whether
a task is already known by the agent. It is used to block the user from
re-teaching an already-known task or to detect when a user wants to learn a
task that is not yet known.
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o Generate Learn steps Actions: generates the list of steps for a Learn session.
For each step, it also produces a list of hints and the sequence of actions the
user must perform to complete that step.

o Generate teach Actions: generates actions that the agent should perform,
starting from the step that the user is teaching, the current state of the table
and the actions performed by the user, in order to check whether the agent
has correctly learned from that demonstration.

o Generate teach corrected actions: used when the user reports errors after the
agent’s generated actions. The user provides a textual correction, and the
agent updates the actions accordingly.

e Collaborate steps: in Collaborate mode, this prompt produces a list of steps
needed to complete a task based on the current state of the table. For each
step it performs an assessment (identical to the General assessment) in order
for the system to understand if a step is automatable or not by the Collaborate
mode.

o Generate Collaborate actions: generates a simplified list of action descriptions
for the user (to explain what the agent will do), together with the list of
actions that the agent will perform for the automation of the step.

6.2 Models chosen for the experiments

The models selected for the evaluation were GPT-40 and several configurations from
GPT-5: GPT-5 with low reasoning, GPT-5-mini with low and medium reasoning
and GPT-5-nano with low reasoning. Only models from OpenAi were tested. This
choices were based on initial empirical tests using the refined prompts on simple
tasks, comparing behavior across the available models.

GPT-40 provided good answers when generating the structured data needed for the
Learn and the actions for the Collaborate modality, but it showed some weaknesses
with knowledge assessment and Collaborate step generation. Tests with GPT-40-
mini revealed a noticeable decrease in response quality, despite better latency and
lower costs. For this reason, GPT-40-mini was excluded from further experiments.
GPT-5 is presented by OpenAl as particularly suitable for agentic applications. Its
invocation pattern is simpler than that of GPT-40, but it offers fewer fine-grained
control features. Initial tests suggested the opposite behavior compared to GPT-40:
GPT-5 performed well on assessments and on generating Collaborate steps, but
showed more issues with prompts deeply tied to actions and that required some
DOM context understanding.
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6.3 Experiments performed

In this section, after a brief description of each prompt, are discussed all the
different test scenarios performed, providing some insights behind these choices.
For each individual test case, the API call was executed 4 time in order to check
whether the model produced hallucinations or inconsistent outputs when the same
prompt was repeated.

Depending on the variables and interaction possibilities, different scenarios were
simulated to see how each model behaved. For every single execution, the following
data were saved into a file: input tokens, output tokens, cost, execution time, the
parameters used for the call, the run number (from 1 to 4), and the full output.

6.3.1 Learn and Teach Assessment

Initially, there were two separate functions — one for the Teach and one for the
Learn — that used almost identical prompts with minor differences, but produced
the same type of output. The prompt takes as input values:

e the task the user wants to learn or teach;
« the list of tasks that belong to the agent’s base knowledge;
o the list of the tasks that the agent learned from the user.

The prompts describe the environment and explain that the goal is to find if
there is a match between the user’s request and a tasks known by the agent. It
has to do so by ignoring unnecessary details of the request and focusing only on
whether the task itself is known.

The output returned from the prompt is a JSON object containing:

* code: a code indicating if the task is not known (1), a learned task (2) or part
of the base knowledge (3);

e match: if a match occurred, the text of task that matched with the user
request;

o index: if a match occurred, the index of the matching element in the corre-
sponding list (if there was no match it returns -1);

e score: a similarity score associated with the match.

The similarity score was not used in the final system, but during experimentation
it provided useful insight into the thresholds used by the models to identify matches.
For these tests, only the user request and the list of learned tasks were varied, since
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the base knowledge is fixed. Twelve test cases were defined, with tasks designed
to be more or less similar to existing learned tasks, in order to see how different
models respond to these subtle changes.

6.3.2 Collaborate step

This function, differently from the previous prompt, both generates a set of steps
and assesses if the system knows how to perform them. This prompt takes the
same inputs as the Learn and Teach assessments, with the addition of the current
table DOM. Including the DOM allows the call to detect whether there is a need
to insert data or whether the table is already sufficiently populated. The output is
a list of steps, each paired with an assessment result identical in format to the one
used by the Teach and Learn assessment prompts.

Again, twelve test cases were used, following a similar approach to the Assessment
prompts tests, except for the addition of the table DOM as another input value.
In four of these cases, the DOM was filled with the values values to test whether
the models would remove unnecessary “data insertion” steps when the table was
already populated.

6.3.3 Steps Learn

This function is triggered after the assessment call determines that there is a known
task the agent can use as a reference to teach the user their request. The parameters
that this prompt takes as inputs are:

e the task the user wants to learn;
o the current DOM of the table;
o the list of step descriptions from the matching task;

« the table DOM at the time the agent learned that task (taken from the
matching task);

o the list of actions grouped by step from the original learning session (also
taken from the matching task).

The output is the most structured of all prompts used for this project. The output
returned a JSON array where each element contains:

o step: a textual description of the step;
o formula: an optional formula to be inserted (only when needed);

e hints: a list of hints, one for each action to be performed;
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o actions: the list of actions that the user must perform to complete the step
(each being JSON object containing type of action, DOM selector and the
eventual input value).

Twelve test cases were used, varying the table DOM and actions list. Preliminary
tests showed that, when the first the reference column of the table for a formula was
fully filled during the original learning, the model sometimes generated formulas
referencing all rows, even when the current column was not full. For this reason,
multiple scenarios were defined to test the model’s adaptability to different table
states and learned-action references.

6.3.4 Teach Actions

This function is called when the user clicks the button to generate the agent actions
in Teach mode. The parameters that this prompt takes as inputs are:

o the task that the user is teaching;

 the step that the user is currently teaching;

e the current table DOM;

o the actions that the user performed to teach the agent.

The output, which is a JSON object, returns a list actions, where each action
includes:

o type: whether the action is a "click" or an "input";

o selector: the CSS selector of the element where the action needs to be per-
formed;

e value: the input value (present only if the type is input).

The test cases were four and all the parameters varied for this experiments. In two
of them were simulated multiple wrong inputs to check wether the model removes
the redundant and erroneous actions.

6.3.5 Teach Corrected Actions

This function is identical to the previous one, except for two parameters that are
added to the prompt: a textual correction that the user provides in order to correct
the agent’s actions and the wrong actions that the agent performed. The output
format is the same as for the Teach actions. The test cases mirror the previous
four, with the addition of corrections and wrong actions as input.
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6.3.6 Collaborate Actions

This prompt is used by the user to generate the agent’s actions to automate a step
in Collaborate mode. The prompt takes as inputs:

the job that the user wants to automate;

the current table DOM;

the list of step descriptions from the matching task;

the table DOM at the time the agent learned that task (taken from the
matching task);

the list of actions grouped by step from the original learning session (also
taken from the matching task).

The output is a JSON object containing:

e action__list: a list of brief, user-friendly descriptions of the actions that the
agent will perform;

e agent_actions: the detailed list of actions ( each one being a JSON object
containing type, selector and the optional input) to be executed by the agent.

Eight test cases were used, varying all input values. The tests focused on
verifying whether, from complex and multi-step jobs, the actions were generated
correctly, remaining consistent with the current table state.

6.4 Results and final choices

After all the tests were executed, each output had to be examined manually, since
there was no simple automatic way to consider generative differences and subtle
errors. However, errors were relatively easy to detect thanks to the results being
stored in a structured spreadsheet.

In this section, for each prompt, the main results are summarized with a discussion
on noteworthy aspect noted during the tests, followed by the final decisions regarding
model selection. In addition, to clarify, in the figures, “(m)” and “(1)” near the
model chosen indicate medium and low reasoning, respectively.

6.4.1 General Assessment

As mentioned earlier, the initially there were two separate prompts, one for Teach
and one Learn, even though they produced conceptually identical outputs. After
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Model Average spendir Average time  Average output t Accuracy % Total experiments | el Average spendin Average time  Average output t Accuracy % Total experiments

GPT-40 0,004661 4,83856 201,4583 89,58333 (0) 48 GPT-40 0,003448 1,562851 27,625 77,08333 48

GPT-5 0,000555 7,634042 14,5 83,67347 48 GPT-5 0,001018 5,354771 26 100 48
GPT-5-mini (m) 0,000214 8,393781 19,20833 100 48

GPT-5-mini (1) 0,000122 5775554 15,79167 91,83673 48

GPT-5-nano 2,27€-05 4,638395 1575 8,333333 48 GPT-5-nano 4,06E-05 3,477766 25,5625 66,66667 48

(a) Teach assessment (b) Learn assessment

Figure 6.1: Results of the assessment functions tests for a single task

running the experiments, the results showed that for Teach, no model achieved
100% accuracy, whereas for Learn, three models did, as it is shown in Figure 6.1.

Based on these results, the best-performing model for Learn was GPT-5-mini
with low reasoning.The choice between low and medium reasoning was guided by
response time: while costs were the same, the medium reasoning variant almost
doubled the response time. Starting from the Learn text, a new Generic Assessment
prompt was derived and fine-tuned until it worked equally well for both Learn and
Teach. The tests were repeated to confirm the correctness, achieving also a lower
average latency.

6.4.2 Collaborate Step generation

Initially, a single prompt was used to both generate the steps and assess them. The
results, however, were less promising than expected: the best-performing model,
GPT-5 reached only the 75% of accuracy, as shown in figure 6.2.

Model Average spendin Average time  Average output t Accuracy % Total experiments
GPT-40 0,05151 5,821189 97,54167 45,83333 48
GPT-5-mini (m) 0,003303 24,91967 139,72592 66,66667 48
GPT-5-mini (1) 0,003298 12,14824 136,125 58,33333 48
GPT-5-nano 5,41E-04 5,69976 100,2083 10,41667 48

Figure 6.2: Results of the Collaborate step generation

Analyzing the errors revealed that providing the list of known tasks as part of
the prompt biased the model toward splitting unknown tasks into combinations of
known ones. To avoid this behavior, the logic was separated into two prompts: one
to generate the list of steps to complete the task based on the current state of the
table DOM, and a second one to assess the steps, similar to the generic assessment,
but applied to a list of steps instead of a single task.

Considering the previous performance on the General Assessment prompt, GPT-
5-mini with low reasoning and GPT-40 were both tested again. As expected,
GPT-5-mini performed well, reaching the accuracy of 97%, with faster response

60



Model performance Analysis

time and almost similar comparable costs with the previous unique prompt version.
The only errors were caused by the insertion of multiple input, which, by prompt
request had to be splat into separate steps; instead , what happened was that
different topics inputs into the table were all merged into a single input step. Since
this limitation was considered acceptable, the final model adopted for this function,
composed now of two prompts, was GPT-5-mini with low reasoning.

6.4.3 Learn steps

For the Learn Steps prompt, the model selection was more straightforward. Being
the only model with 100% accuracy (6.3) , GPT-40 was chosen. The second-best
model, based on the outputs, was GPT-5, reaching only the 66% of accuracy. In
addition, GPT-40 had one of the best average response times, making it the second-
fastest model tested for this prompt, with only the drawback of its significantly
higher cost.

Model Average spending $ Average time Average output tokens Accuracy % Total experiments
GPT-5 0,026005 16,03617 390,0208 66,66667 48
GPT-5-mini (m) 0,006048 34,2705 417,4792 64,58333 48
GPT-5-mini (1) 0,006047 18,99473 416,4583 41,66667 48
GPT-5-nano 0,001044 7,149481 399,25 31,25 48

Figure 6.3: Results of the Learn steps tests

6.4.4 Teach Actions

For Teach Actions, results showed that only one model achieved 100% accuracy:
as for the previous analyzed prompt, GPT-40 (Figure 6.4) was chosen for this
prompt . Despite its higher cost, it also provided the fastest response times for this
prompt among all models, which can help the users feel more engaged during their
experience.

Model Average spendin Average time  Average output t Accuracy % Total experiments
GPT-5 0,012088 12,26829 78,5 93,75 16
GPT-5-mini (m) 0,002931 11,95736 84,4375 87,5 16
GPT-5-mini (1) 0,002944 6,533136 94,5 81,25 16
GPT-5-nano 0,000506 6,573548 134,5625 50 16

Figure 6.4: Results of the Teach actions generation tests
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6.4.5 Teach Corrected Actions

For Teach Corrected Actions, all models achieved 100% accuracy (Figure 6.5).
However, for consistency and robustness —especially in the presence of more
complex or unusual errors that could happen— the same model used for Teach
Actions was used. Therefore, GP'T-40 was also chosen for this prompt.

Model Average spendin Average time  Average output t Accuracy % Total experiments
GPT-5 0,012155 10,24006 70,5 100 16
GPT-5-mini (m) 0,002951 7,169596 70,5 100 16
GPT-5-mini (1) 0,002951 4,811668 70,5 100 16
GPT-5-nano 0,000486 6,121902 70,5 100 16

Figure 6.5: Results of the corrected Teach actions generations tests

6.4.6 Collaborate Actions

For Collaborate Actions, tests confirmed that, as seen for the other complex prompts,
GPT-40 provided the best-quality responses. However, the initial accuracy, which
was 87,5%, was still insufficient to guarantee a high-quality service to the end-users
(Figure 6.6).

Model Average spendin Average time  Average output t Accuracy % Total experiments
GPT-5 0,024472 14,33781 139,0313 50 32
GPT-5-mini (m) 0,005932 13,35942 129,5938 62,5 32
GPT-5-mini (1) 0,005941 11,05185 136,3438 56,25 32
GPT-5-nano 9,73E-04 7,520939 125,5625 15,625 32

Figure 6.6: Results of the Collaborate actions generations tests

To address this issue, the prompt itself was iteratively refined. The structure
and instructions were adjusted until GPT-40 consistently produced correct outputs
on the defined test cases.

6.4.7 Adoption of GPT-5 with medium reasoning

After concluding this automated test phase, additional stress tests were performed
to explore edge cases and complex interaction sequences. These tests revealed some
weaknesses of GPT-40 under specific conditions, especially in more demanding
scenarios that were not fully covered by the original test set.

62



Model performance Analysis

For this reason, the model for Learn Steps, Teach Actions, Teach Corrected Actions
and Collaborate Actions was switched to GPT-5 with medium reasoning. This
configuration was intentionally kept outside of the test cases, since its response time
is significantly higher and would have negatively impacted the users’ experience with
AgentExtension. Manual testing confirmed that GPT-5 with medium reasoning
provided more robust behavior for these complex situations. Fortunately, pricing
remains unaffected by the reasoning mode, which is affected only by the token
usage.
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Chapter 7

User Test

After the development was completed, it became necessary to validate the system.
This chapter presents the planning and design of the user test, followed by an
analysis of the results across several evaluation dimensions. These results are
then analyzed to provide useful insights into the strengths and weaknesses of
the proposed system, highlighting areas of success and those requiring further
improvement.

7.1 Planning

In this section, all the planning behind the user test conducted after the development
of AgentExtension is analyzed. Starting from the goals of these experiments, it
describes how the tests were designed, the type of data collected during the
evaluation, the experimental setup, the characteristics of the participants involved,
and the tasks they were required to complete. The test procedure is also detailed.

7.1.1 Study Overview

Were conducted a mixed-methods within-subject study to evaluate how users per-
ceived the different interaction modalities of AgentExtension —Teach, Collaborate,
and Learn— that was developed for this thesis. This study wants to assess how the
system influences users’ perceptions of controllability, trust, transparency —which
were important issues that web agents development face— and understanding when
collaborating with an intelligent Ul assistant.

Was kept a focus on the main issues that agentic figures had based on the table of
chapter 4 (4.1) where the main issues were understandability , controllability of
the agent at any moment, and user trust on these systems. The study was done
on a Spreadsheet-like web interface, as said before, developed only for this testing
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purpose. In this website were conducted the tests of AgentExtension and all of its
modalities.

7.1.2 Experimental Design

Each participant experienced the three interaction modalities (Teacher, Compan-
ion, Student) in counterbalanced order to mitigate learning and fatigue effects,
allowing to collect unbiased data from the users. The variables that were kept in
consideration for the analysis were the following:

o Independent Variable: Interaction Modality (3 levels).

e Dependent Variables: Perceived controllability, perceived understandability,
trust, transparency, usability (subjective), and task performance (objective).

o Mixed Data Sources: Behavioral logs, questionnaires, and post-study inter-
views.

This data was then analyzed to find both values and issues inside the system
and assess its correctness.

7.1.3 Prototype and Logging

The prototype was the Google Chrome AgentExtension that was developed with
the three modalities, capable of multimodal interaction (textual, visual, and ca-
pable of interacting with the current tab) and the browser-based Spreadsheet like
website. This website, as said in the previous chapters, was created to provide a
more simple version of already existing websites (Google Sheets, i.e.), keeping the
base functionalities (formulas, and cell manipulation) and allowing also a more
lightweight communication with the OpenAl API, thanks to a lighter DOM.

For research reproducibility and in-depth analysis, the system recorded:

User actions (cell edits, selections, formula insertions, time per action).

Agent generations (prompts, intermediate reasoning traces, final actions)

Agent actions (cell edits, selections, formula insertions)

Dialog events (invocation, correction, stop commands and finish commands).

System events (errors, delays, user interventions, cells cleaning).

65



User Test

All logs were timestamped and stored per condition, enabling replay and fine-
grained temporal analysis of user-agent interaction dynamics.
The tests were in addition recorded using a screen recording software. This was
done to let testers feel less observed and to allow a more natural behavior. For the
experiments was avoided camera recording that would have created some biases in
their interactions with the system, making the users feel more observed. The screen
recording furthermore helped to keep track also of all different kinds of interactions
happening during our examinations, especially of errors of the system. In addition
the audio was recorded, allowing for a better recollection of useful insights provided
during the think-aloud and final interview. At the end of each session, the facilitator
and participant jointly reviewed selected excerpts of the agent’s behavior to elicit
reflection-based feedback (similar to co-discovery or retrospective think-aloud).

7.1.4 Participants and Setup

For the experiments were recruited 18 participants (university students and office
workers) with varying experience in spreadsheet use and Al systems. Participants
were screened for basic digital literacy and familiarity with simple formula creation
and also with familiarity with AI. This information will then be used to analyze
the result using this to gain better insights.

All the testers, before starting the experiments, signed an informed consent allowing
also to record their interactions and the audio of the experiments through a screen
recording software. After this their demographic data was recorded (age, gender,
job, prior Al experience, prior Agent experience, Excel/Google Sheets expertise).
Participation lasted approximately 60 minutes and took place in a lab setting using
the experimenter’s laptop, allowing the use of an external mouse for users that
were not comfortable using the touch pad. The laptop was already configured with
the extension already installed and the API key already inserted in the settings
page of AgentExtension.

7.1.5 Tasks

For the experiments, each participant had to complete each one of the following
tasks, which are related to the specific modality :

1. Learn Mode: The agent explains and guides the participant in computing
the area of a triangle. The table is already filled with the base and height.

2. Collaborate Mode: The agent collaborates with the participant to calculate
the average of their weekly spendings. The table at the start of the experiment
is empty
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3. Teach Mode: The participant demonstrates to the agent how to perform the
weighted average of university grades, correcting it if necessary. The table at
the start of the experiment is already filled with the grades and weights.

The choice of the task order was counterbalanced, as said before, in order to limit
learning fatigue, allowing the collection of unbiased data. These tasks were chosen
to allow both experienced and unfamiliar users with a spreadsheet environment to
have a challenging assignment. All the tasks consisted of multiple steps and allowed
for different scenarios to unfold and a variety of data to be collected, allowing
better insights.

7.1.6 Procedures

1. Introduction (5 min): The facilitator presents the study goals, obtains
consent, provides a short overview of the agent’s capabilities and shows the
basic functionalities of the custom Spreadsheets website.

2. Training (5 min): Participants performed a brief tutorial task to familiarize
themselves with invoking, stopping the agent and understanding its interface
and components.

3. Task Phase (30 min): Participants completed the tasks in counterbalanced
order. A think-aloud and cooperative evaluation approach was used for each
task: the facilitator intervened only when the participant was stuck due to
agentic errors deriving from prompting results, noting those occurrences for
later analysis or when system errors occurred allowing the experiment to
recover from the previous state.

The cooperative approach was used only when testers had no proficiency with
a spreadsheet environment, letting them interact as much as possible alone
with the agent and helping only when necessary.

4. Retrospective Review (10 min): The participant and facilitator review selected
agent actions and generations to reflect on clarity, control, and appropriateness.

5. Post-condition Questionnaires (1 min): After each task, participants responded
to a SEQ (Single Ease Question) about the perceived task difficulty.

6. Post-condition Questionnaires (10 min): After each test, participants com-
pleted:
e SUS (System Usability Scale) — perceived usability.

o Trust, Controllability and Transparency Scales — custom Likert items
(table reference).
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7. Final Semi-Structured Interview (5 min): Participants were asked a final
interview with questions regarding their experience with the different agent
modalities and letting them provide some feedback on their experience with it.

7.2 Result analysis

This section presents the analysis of the experimental results. Several dimensions
were considered to obtain a well-rounded evaluation of the whole system. Table 7.1
reports in detail what are the dimensions used, the source or instrument for each
dimension, and an example of the metrics considered.

Dimension Source / Instru- Example Metric
ment
Usability SUS (A) SUS total score
Task difficulty SEQ 1-7 scale
Controllability Custom Likert (B) 1-5 scale
Trust Custom Likert (B) 1-5 scale
Transparency Custom Likert (B) 1-5 scale
Performance Logs Task outcome, error rate, time completion

(time analyzed also depending on proficiency
with spreadsheet environment and Al systems,
to obtain more homogeneous data)

Behavior Logs Number of corrections, agent stops, help re-
quests to interviewer
Reflection Interview (C) Thematic codes on trust and understanding

Table 7.1: Overview of Dimensions, Sources, and Example Metrics

7.2.1 SEQ score

After each task, users answered a Single Ease Question (SEQ) regarding the
perceived difficulty of the task, using a scale from 1 (Very Difficult) to 7 (Very
Easy).
In the Learn modality, results confirmed expectations: users found this modality
easy to understand and interact with. With the highest average score (6.611,
Figure 7.1), most users felt comfortable and did not ask for help during the progress
of the task. Only one user rated it a 5, which still corresponds to the minimum
positive evaluation.

The Collaborate modality also received positive feedback, with an average score
of 6.222. As shown in figure 7.2, most users rated the difficulty as a 6, with only
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SEQ score of Learn modality

W = Average SEQ score

Figure 7.1: SEQ scores for Learn modality

two users assigning a 4 and 5. As expected, this modality was perceived as easy,
although a few users expressed uncertainty regarding the automation switch and
functionality.

SEQ score of Collaborate modality

B = Average SEQ score

Figure 7.2: SEQ scores for Collaborate modality

For the Teach modality, a lower score was anticipated and indeed observed. As
it is intended, users approach this modality only after acquiring some familiarity
with the system, as it requires them understand the system’s functionalities and
mental model before teaching. This time the average score is 5,222, which is still a
passing grade, however, compared to the other modalities, and considering that
most of the users had to be guided in the completion of the task, it shows some
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technical issues within this mode. The distribution was wider, with most ratings
being 5 or 6. Three users gave a score of 7, but the presence of several 4s and even
two 3s, highlight the difficulties users face when interacting for the first time with
this modality (Figure 7.3).

SEQ score of Teach modality

== Ayerage SEQ score

Figure 7.3: SEQ scores for Teach modality

7.2.2 SUS score

The SUS results further confirm the positive trend, with an average score of 79.58.
Only three scores fell below the SUS threshold of 68, as it shows figure 7.4. Some
user motivated this low grades based on the fact that they were unfamiliar with Al
systems and therefore less trusting of such technologies. Others instead, consid-
ering mostly the Collaborate and Learn modality, considered the system helpful,
which motivate their higher grades. With more than thirteen scores above 80,
the general feedback is more than positive. Nevertheless, to reach the excellent
grade score, which score is above 80, improvements are fundamental to be made.
When analyzing per-question averages, all odd-numbered items scored above 3,
with Questions 3, 4, and 7 (which are illustrated in appendix A) scoring above
4, which is a notable achievement. The hightest-scoring was question 5, which
is about the functions being well implemented in the system, with an average of
4.68. Even-numbered questions, which are the negative statements, also scored
2 or lower. Analyzing the questions that had the most negative impact on the
final scores, considering the type of the question: the weakest odd-numbered was
Question 9, concerning user confidence while using the system, with an average of
3.31; Among the even-numbered items, the highest value corresponded to Question
10, which states that users would need to learn a lot before starting to use the
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SUS scores

B = SUS score threshold

100

75

50

25

Figure 7.4: Results of the corrected Teach actions generations tests

system, scoring an average of 2.

These results provide encouraging evidence of the quality achieved in the final
version of the this thesis project, allowing also to find the critical aspect to focus
when improving the system.

SUS Aeverage score for question

5

Questions

Figure 7.5: Average score of each question of the SUS
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7.2.3 Custom Likert

As discussed in section 2, in the subchapter about the main issues within agents, the
main challenges that this type of systems face are about, controllability provided
to the user, trust that the user has on the agent’s capabilities and transparency of
the system’s decisions and actions. For this reason, an additional questionnaire
was developed (some optional depending on the user’s interactions, as it can be
seen in appendix B) for each one of this challenges.

In figure 7.7 are illustrated the average scores for each question. The columns in
blue are the questions about controllability, the columns in red are about trust
while the columns in yellow are about transparency.

Average scores for Custom Likert questionnaire

5

Figure 7.6: Custom Likert average scores for each question

Regarding Controllability, in average, the users felt in control of the agent,
thanks to the functionalities provided. This dimension obtained the highest overall
average of 4.42, with all scores above 4. In second place followed Trust, with an
average of 4.29, and the lowest question still scoring a 4. Transparency scored the
lowest, with an average still of 4.04, which is still a great result, however suggesting
to improve it, since some users found the system’s capabilities and limits were not
so clear.

Figure 7.7 displays, instead, the aggregated sum for each user of the average of
each group of question. This graph will later be used in combination with other
data and results to derive additional insights. From the figure, it appears that,
aside from a few exceptions, users did not experience major issues related to the
typical challenges faced by web agents.
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Custom Likert: Controllability, Trust e Transparency Scores

Transparency Average [ TrustAverage [ Contallability Average

10

Figure 7.7: Custom Likert aggregated graph

7.2.4 Final interview

The questions used for the final interview are reported in the appendix C.For
the Learn modality, the questions focused on the injected interface components,
asking users for feedback on their usefulness. Both questions were asked only if
these components were activated during the experiments. Regarding the error
messages, None of the users found them intrusive; however, two suggested increasing
their display duration to better understand what went wrong. One of the users
encountered a bug that caused the error message to appear above the "completed
step" message, creating some confusion about what was happening. This issue will
be addressed in future versions of AgentExtension. All the users that used the
"Hint" component found it helpful, and No addition feedback were given for this
component.

For the Teach modality, the interview results highlighted the difficulties users faced
when completing the task. Eight users reported that writing the task steps was
challenging, explaining that they would not have understood how to write them
without the provided guidance. This also included splitting the task into multiple
steps. Users noted that the beginning was particularly confusing, as they were
unsure how to formulate the steps, and more importantly, what to write inside the
text. However, after submitting the first step, most of the users gained confidence
with the system and the teaching process; to support this, five users described the
teaching procedure as confusing, though only during the initial phase.

Regarding the Collaborate modality, some users initially found the buttons unclear,
particularly the switch related to the automation of the step. Although these
caused doubts at the start, most users reported that the meaning of the buttons
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became clear once the the button was clicked. Overall, the majority found them
understandable.

7.2.5 Result considerations

After running all the experiments, it was also useful to analyze the time needed by
each user to complete the tasks. As expected from the feedback, the Learn task
was the easiest and the fastest to complete, as it is shown in figure 7.8, with an
average of 2:20 minutes. An important observation concerns the delay between
sending the input and the user’s first interaction with the environment. Since the
system generally requires 40 to 50 seconds to generate an answer, users interacted
with the interface after an average of 1:02 minutes, which indicates how immediate
is for a user to understand what they need to do. Only two users took more than
4 minutes, which can be considered exceptional cases, caused probably by the
unfamiliarity with the environment.

Time completion for Learn modality

B = Averagetime
00:06:00
00:05:00

00:04:00

00:03:00

- I I I I I I I I_I
00:01:00 — . [ | I . .

Figure 7.8: Learn task time completions

A similar behavior was observed for the Collaborate task, with an average
completion time of 3:57 minutes. Considering also the time for the agent to
generate the actions, which usually is around 50 seconds , for the users was quite
intuitive to complete the task. Considering the 20 seconds required for the agent
to generate the actions, users initiated their first interaction after an average of 45
seconds, again indicating that the modality was understandable. Again, only two
users took more than 6 minutes to complete the task, so the distribution of the
time completion was homogeneous.

The Teach task yielded very different results, confirming the higher difficulty of
this modality. The average completion time of this modality was 11:19 minutes,
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Time completion for Collaborate modality
B = Averagetime
00:10:00

00:08:00

00:06:00

00:04:00
- I I I I I I I I
00:00:00 I

Figure 7.9: Teach task time completions

which is significantly longer than the pervious tasks. The time distribution is not
homogeneous, ranging from a minimum of 4:16 minutes to a maximum of 24:14
minutes, which is a considerable range of values. Additionally, after accepting the
task and confirming the intention to teach the task again, users waited an average
of 2:24 minutes before submitting the first step. This delay is substantially higher,
considering the 10 seconds for the assessment and an average of 15 seconds to
close the "Teach again". Part of this waiting time was caused by the necessity of
understanding how to formulate the step. However, the longest delay occurred after
users submitted the step: all participants were misled by the spinner displayed
next to it, assuming that the agent was still generating a response and therefore
waiting unnecessarily.

Although data was collected regarding spreadsheet proficiency and weekly Al
usage, the distribution shown in figure 7.11 does not reveal any clear correlation
between these factors and the various task completion times recorded. The dataset
is also too limited to draw reliable conclusions; therefore, additional testing will be
necessary to obtain more meaningful insights.

in conclusion, the overall feedback is highly positive, with only 2 tasks out of 54
not completed correctly. The most significant issue identified by all the users relates
to the spinner component, which was used inappropriately in all the modalities to
identify the current task and led users to believe that the agent was still generating
a response.

A bug was also discovered in the Learn modality: users who confirmed an input by
clicking another cell unintentionally triggered first the step completion that the
correction for the next step, overlapping this two popups. This should be fixed in
future versions. Another recurring observation was that some users clicked buttons
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Time completion for Teach modality
I = Averagetime

00:25:00

00:20:00

00:15:00

00:10:00

i LT I
00:00:00 I

Figure 7.10: Teach task time completions

W Spreadshest proficiency == Average use of Alin a week

days Al used in a weelk/Proficiency with a spreadhseet

Figure 7.11: User proficiency graph

very quickly without reading system messages, which occasionally led to errors.
Finally, user noted that the Teach modality does not provide a explicit feedback to
the user (e.g., a message or a popup) that the taught task was successfully stored.
Adding such feature would help the users understand the correct behavior or the
instances of errors while using of AgentExtension.
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Chapter 8

Conclusion

This final chapter presents the conclusions of the thesis, following a brief summary
of the work conducted. Focusing on both the development process and the results
of the user tests, this chapter analyzes the data and feedback collected throughout
the project and discusses the practical need for a system such as AgentExtension.
Drawing on the outcomes of the evaluation, it concludes with several suggestions
for future developments.

8.1 Summary of the project

This thesis aimed to develop a three-modality web agent capable of learning from
the users, teaching them and collaborating with them to accelerate task comple-
tions.

Staring from the current literature and from an analysis of state-of-the-art web
agents, a set of guidelines was derived, helping to address the main issues encoun-
tered while designing such systems - with a particular focus on controllability,
transparency and trust. Using the guideline table proposed by Amershi et al. [17],
each modality of the system was contextualized, and real implementation examples
were provided. After deciding to implement Agentextension as a Google Chrome
extension, prototype design began with a clear understanding of the environment
in which the agent would have been tested, which was a spreadsheet-based web
interface. For this part was stimulating thinking about the different modalities
functionalities and how they integrate within the whole system.

The prototype helped identify the necessary technologies. Once these were selected,
development proceeded, with the Ul designs following the initial prototype, along
with several refinements. One of the main demanding tasks faced while developing
AgentExtension was integrating a web interface into a Chrome extension while
enabling it to communicate with and manipulate the DOM.
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In parallel with the GUI development, prompt engineering was carried out to
design and refine the prompts used for OpenAl API calls, enhancing the agent
with Al capabilities. To ensure high-quality responses that empower the system,
several OpenAl models were tested and compared based on output quality, response
time, and cost. The final models were selected using this factors as a scale of
measurements, with a focus on the output quality and correctness.

The second goal of the thesis was to validate the system using heuristics and
guidelines derived from the literature studied at the beginning of this work. User
tests were therefore designed to evaluate each one of the modalities with a chal-
lenging task, allowing users to test AgentExtension’s functionality and assessing
its usability.

A total of 18 participants tested the system, providing an overall positive feed-
back.The SUS scores were high (with an average of 79.58), and only two tasks
out of 54 were not completed successfully. The tests also helped identifying the
main issues within the system: the inappropriate use of spinners, which users
misinterpreted as indicators that the agent was generating a response; and the need
for a more explanatory interface in the Teach modality, helping users understand,
in the first place, how the modality works and then how to write and structure
tasks independently.

In conclusion, this thesis demonstrated that a user-centered approach, combined
with the support of existing guidelines and heuristics, can significantly improve the
usability of agentic systems, which is further confirmed by the positive results of
the tests. At the same time, the research demonstrated the importance of refining
and expanding such guidelines within a rapidly evolving research field.

8.2 Future developments

Several bugs and usability issues emerged during the evaluation and should be
addressed in future versions of AgentExtension. First, there is the necessity to
remove the spinners that indicate the current task, because all the users found them
confusing. Second, the interface of the Teach modality needs to be re-designed.
As seen during the experiments, the focus of the users was not guided towards
the elements meant to clarify the teaching process, so re-thinking this interface
would improve its explainability. Additionally, more feedback messages should be
introduced, and users should be allowed to edit tasks and actions even in Teach
mode, which both are a violation of the Nielsen’s heuristics [18].

Looking further ahead instead, an interesting and challenging direction would be
integrating the system with image recognition and web-automation capabilities. At
present, the interface only works within the spreadsheet website designed for this
project, and the prompts are tailored specifically to that environment. A significant
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next step would be creating a system that can interact with the entire web and
work in real and dynamic environments. Adding a browser automation library,
such as Puppeteer [29], would allow the agent to perform more complex actions.
The challenge would then be adapting the model to generate correct actions to
navigate the web. Another important challenge concerns shared knowledge among
users. Currently, the agent known tasks are saved in the local storage, meaning
there is no need mechanism for detecting or preventing harmful operations, since
there is no real risk. A future system should incorporate functionalities capable of
detecting and blocking potentially dangerous interactions to ensure safe operation.
This would prevent users from teaching harmful actions as standard tasks, in order
to protect all users who interact with the system.

The results of the user tests highlighted the good quality and potential of Agen-
tExtension. In an environment where Al technologies and web agents are getting
increasing attention, this project represents a promising framework for future
research and further development.
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Appendix A

SUS questionnaire

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.

4. T think that I would need the support of a technical person to be able to use
this system.

I found the various functions in this system well integrated.

I thought there was too much inconsistency in this system.

Ne «

I would imagine that most people would learn to use this system very quickly.

oo

. I found the system very cumbersome to use.

N}

. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.
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Custom Likert

Controllability

1. I could easily interrupt the agent when repeating actions in Teach mode.
2. I could easily dismiss the agent after the task was completed.
3. The agent responds appropriately when I try to guide it in Teach mode.

4. T feel in control of the interactions with the agent.

Trust

—_

. I trust the agent’s reasoning when generating the steps in Learn mode.

\)

. I trust the agents when playing actions on the screen for the Learn mode.*

w

. I trust the agents when replaying actions on the screen for the Teach mode.

W

. I can rely on the agent performing steps on my behalf in Collaborate mode.

5. I would be comfortable using this agent without constant supervision.

Transparency

1. The capabilities and limits of the agent were clear.

[N}

. The agent explains its actions in a way I can understand.

w

. The agent explains the Errors in Learn mode in a way that I can understand.*

=~

. I understand why the agent provides specific steps and hints in Learn mode.*

5. I understand what are the actions that the agent performs in Learn mode.*
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6. I understand why the agent generates the actions for the Collaborate step.
7. I understood what the switch in the Collaborate mode did.

The questions with the "*" symbol are optional questions, since they depend on

the events that happened during the tests.
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Final interview

Learn modality related questions

1. Did you find the error messages too invasive? *

2. Did you find the hints helpful? *

Teach modality related questions

1. Was it easy to write the steps for the task? Was it clear to you how to split
the task into multiple steps?

2. Was the process of teaching a step confusing?

Collaborate modality related questions

1. Did you find it difficult to understand what the buttons did for each step?

The questions with the "*" symbol are optional questions, since they depend on

the events that happened during the tests.
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