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Abstract

High-resolution satellite imagery plays a crucial role in remote sensing, en-
abling a wide range of applications, such as land-use monitoring, urban
planning, precision agriculture, and environmental change detection. Super-
resolution is a computer vision task aimed at reconstructing high-resolution
images from their low-resolution counterparts. Applying it to multi-temporal,
multi-spectral satellite imagery, such as that provided by Sentinel-2, can yield
promising results; however, it is often not suitable as input for downstream
tasks, such as land-cover segmentation.

Multi-task learning offers a viable alternative, providing improved regu-
larization and better preservation of spatial structures when generating high-
resolution land-cover maps. Moreover, information carried by shared feature
representations proves more effective than relying on super-resolved RGB
images.

This work makes use of two datasets: one specifically designed for super-
resolution, and another suited for land-cover segmentation. After properly
adapting the FLAIR-2 dataset, it investigates super-resolution architectures
with the goal of extending and employing them to jointly perform segmen-
tation in a single forward pass. The main objective is to obtain 4× super-
resolved land-cover maps, supported by weighted combined loss functions.

The experiments involve fully convolutional networks (SRCNN, RCAN),
generative adversarial networks (ESRGAN), and vision transformers (SwinIR).
The study also explores the performance of pre-trained models, evaluates the
benefits of parameter-efficient fine-tuning techniques (such as LoRA), and ex-
amines adversarial multi-task learning strategies.

Finally, quantitative and qualitative results are presented, showing that
the proposed multi-task approach improves segmentation performance over
single-task baselines, particularly in the preservation of fine spatial struc-
tures. A discussion of the advantages, limitations, and future research direc-
tions for this approach is also provided.
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Chapter 1

Introduction

Because of the wide range of potential applications and research areas, among
which geology, climatology, urban planning, precision agriculture and de-
fense, the necessity of high-resolution images of the Earth’s surface has been
increasing over the years.

Unfortunately, free high-resolution images are rare, often outdated or lim-
ited in coverage and quality. Therefore, efforts have focused on producing
larger datasets and advanced techniques to overcome these issues, starting
from freely available low-resolution images, without relying on commercial
providers. The task that serves this purpose is called super-resolution.

The main goal of this thesis is to delve into the current state-of-the-art
for super-resolution (SR), starting from single-image approaches (SISR) and
extending the analysis to multi-image techniques (MISR), which leverage
time series. Different architectures will be compared and some improvements
will be proposed and evaluated, particularly focusing on multi-task learning
(MTL).

This introduction aims to support the reader by providing an overview of
the key terms and concepts.

1.1 The satellites

The Sentinels are a fleet of satellites delivering imagery to Copernicus [1],
the Earth observation component of the European Union Space programme.
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1 – Introduction

1.1.1 Sentinel-1
The Sentinel-1 mission [2] is part of the Copernicus Programme, developed
by the European Space Agency (ESA). It consists of a constellation of C-
band synthetic aperture radar (SAR) satellites: Sentinel-1A (launched in
2014) and Sentinel-1B (launched in 2016, currently inactive).

Unlike optical sensors, Sentinel-1 acquires data regardless of weather con-
ditions or daylight, making it particularly valuable for continuous Earth ob-
servation. It provides high-resolution radar imagery with applications in
land monitoring, agriculture, forestry, emergency response, flood mapping,
and surface deformation studies through interferometric SAR (InSAR), with
a revisit time of about 6 days at the equator (Figure 1.1).

Figure 1.1. An example of SAR data sourced from Sentinel-1.

For the sake of this project, data sourced from Sentinel-1 will not be
exploited.

1.1.2 Sentinel-2
The Sentinel-2 mission [3] complements Sentinel-1 with optical imaging capa-
bilities. It includes Sentinel-2A (launched in 2015) and Sentinel-2B (launched
in 2017), forming a twin-satellite constellation providing multi-spectral data
for Earth surface monitoring.

20



1.2 – The tasks

Figure 1.2. An example of optical data sourced from Sentinel-2.

Sentinel-2 carries a MultiSpectral Instrument (MSI) with 13 spectral bands
(from 443 nm to 2202 nm), spanning the visible, near-infrared (NIR), and
short-wave infrared (SWIR) regions (Table 1.1). It is primarily designed for
land monitoring, offering data for applications such as vegetation mapping,
land cover classification, agriculture, water bodies, and disaster management.
Its revisit time is approximately 5 days. An example is shown in Figure 1.2.

1.2 The tasks
As previously stated, throughout this work we will mainly focus on enhancing
super-resolution, and exploiting it to improve land cover segmentation in a
multi-task setting. The following subsections provide a clearer framework
following this brief introduction.

1.2.1 Single-Image Super-Resolution
The task of Single-Image Super-Resolution (SISR) is aimed at reconstruct-
ing a high-resolution image from its low-resolution counterpart. Given a
degradation process ILR = D(IHR), the objective is to learn a mapping
Fθ : ILR → ÎHR such that ÎHR ≈ IHR. As mentioned, developing efficient
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Table 1.1. Spectral characteristics of Sentinel-2A and Sentinel-2B
bands: central wavelength and bandwidth are expressed in nm, whereas
spatial resolution is in m.

Band Sentinel-2A Sentinel-2B Spatial Res.
Central Wav. Bandwidth Central Wav. Bandwidth

1 442.7 20 442.3 20 60
2 492.7 65 492.3 65 10
3 559.8 35 558.9 35 10
4 664.6 30 664.9 31 10
5 704.1 14 703.8 15 20
6 740.5 14 739.1 13 20
7 782.8 19 779.7 19 20
8 832.8 105 832.9 104 10
8a 864.7 21 864.0 21 20
9 945.1 19 943.2 20 60
10 1373.5 29 1376.9 29 60
11 1613.7 90 1610.4 94 20
12 2202.4 174 2185.7 184 20

and effective super-resolution algorithms has become increasingly important
in computer vision, because of its wide range of applications [4].

1.2.2 Multi-Image Super-Resolution
Multi-Image Super-Resolution (MISR) deals with datasets where multiple
low-resolution (LR) images correspond to the same high-resolution (HR)
patch. In this scenario, the model can extract more information and mitigate
issues related to cloudy weather or low image quality.

1.2.3 Semantic Segmentation and Land Cover Segmen-
tation

Semantic segmentation involves classifying each pixel of an image into prede-
fined categories. In the context of remote sensing, land cover segmentation
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aims to identify and map different surface types such as vegetation, water
bodies, urban areas, and bare soil. Accurate land cover segmentation is
crucial for applications in environmental monitoring, urban planning, and
resource management. Similarly to super-resolution, revisits may be useful
to deal with differences related to weather, seasons (especially for labels such
as vegetation and agricultural lands) and brightness.

1.2.4 Multi-Task Learning
Multi-task learning (MTL) is a paradigm where a single model is trained
to perform multiple related tasks simultaneously [5]. By sharing representa-
tions across tasks, MTL can improve generalization, leverage complementary
information, and reduce overfitting. In remote sensing and computer vision,
MTL is often used to jointly learn tasks such as semantic segmentation and
object detection. This approach allows models to benefit from shared fea-
tures while maintaining task-specific predictions via dedicated output heads.
In the present work, MTL will be applied to super-resolution and land cover
segmentation.
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Chapter 2

Related works

This chapter serves as a comprehensive review and summary of the related
literature. Starting from super-resolution foundations, different approaches
and architectures will be presented, focusing solely on supervised learning,
which is the core of the thesis.

2.1 Super-Resolution
Despite the existence of several algorithms based on sparse coding or interpo-
lation, such as Nearest Neighbour (NN) and Bilinear, Bicubic, and Lanczos,
deep learning and neural networks have proven to be more successful for SR.

The pioneer work was the Super-Resolution Convolutional Neural Network
(SRCNN) proposed by Dong et al. [6] in 2014, relying on a simple architecture
made of three convolutional layers (for patch extraction, non-linear mapping
and reconstruction).

In 2016, Dong et al. [7] proposed a re-designed version called Fast Super-
Resolution Convolutional Neural Network (FSRCNN), achieving an accelera-
tion of more than 40 times: this was made possible by removing the upscaling
bicubic interpolation, by exploiting an hourglass architecture made of shrink-
ing and expanding layers, and by using a final deconvolution layer to obtain
HR images, as depicted in Figure 2.1.

In the same year, Shi et al. [8] proposed ESPCN (Figure 2.2), which in-
cludes a novel sub-pixel convolution layer, instead of using deconvolution, to
super-resolve LR images into HR space with very little additional computa-
tion.

In 2017, a paper by Lim et al. [9], inspired by ResNet, used residual blocks
and claimed the benefit of removing batch normalization layer for SR task,

25



2 – Related works

Figure 2.1. Comparison between SRCNN and FSRCNN architectures.

Figure 2.2. ESPCN network by Shi et al.

introducing EDSR (Figure 2.3).
In 2018, Ahn et al. [10] presented CARN (Figure 2.4), leveraging on cas-

cading blocks to reduce the weight of computation.
Another excellent contribution came in the same year by Zhang et al. [11],

who exploited Channel Attention mechanism to rescale channel-wise features
by considering interdependencies among channels, and a RIR structure to
bypass low-frequency information through skip connections.

Beyond CNN-based architectures, Generative Adversarial Networks (GAN)
are regarded promising due to the increased realism of their outputs [12].
This is mainly due to the role of the discriminator, which has to distinguish
real images and those produced by the generator: to do so, adversarial loss
is employed.

After SRGAN (Figure 2.5), proposed in 2017 by Ledig et al. [13], again
inspired by ResNet with skip-connection, Wang et al. [14] improved the for-
mer version by introducing ESRGAN, based on Residual-in-Residual Dense
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Figure 2.3. Comparison among residual blocks in ResNet, SRResNet and EDSR.

Figure 2.4. CARN architecture.

Blocks (without batch normalization), prediction of relative realness and im-
provement in perceptual loss, in order to reduce hallucinations.

For the following years, we cite Real-ESRGAN (Figure 2.6) by Wang et
al. [15] and A-ESRGAN by Wei et al. [16]: the former aims to increase
discriminator capability, stabilize training and enhance details, while remov-
ing artifacts, thanks to a U-Net discriminator with spectral normalization
regularization, whereas the latter proposes a multi-scale attention U-Net dis-
criminator and achieves better visual quality and results on NIQE metrics
than contemporary state-of-the-art.

Another important approach in the field is represented by transformer-
based architectures. Following the groundbreaking paper "Attention Is All
You Need" by Vaswani et al. [17], transformers (which are depicted in Fig-
ure 2.7) gained popularity in computer vision thanks to Dosovitskyi et al.
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Figure 2.5. SRGAN architecture, leveraging adversarial learning and the
contribution of the discriminator.

Figure 2.6. Real-ESRGAN architecture by Wang et al.

[18] in 2020.
One year later, SwinIR was presented by Liang et al. [19] as a new state-

of-the-art model for image restoration. Based on the Swin Transformer, this
new architecture consists of three parts: shallow feature extraction, deep
feature extraction (made of RSTB, Residual Swin Transformer Blocks) and
high-quality image reconstruction. The same approach was improved by
Zhang et al. [20] in 2023, with their SwinFIR: among their contributions,
they made the model faster by using Fast Fourier Convolution.

After SwinIR, many other methods focused on transformers for SR, such as
ACT [21], which combines transformer and convolutional branches and intro-
duces a cross-scale attention module, RGT [22], which combines recursive-
generalization self-attention and local self-attention (hybrid adaptive inte-
gration), HAT [23], which combines channel attention and self-attention to
activate more pixel for reconstruction (Figure 2.8), DRCT [24], mitigating
spatial information loss and stabilizing information flow, and SRFormer [25],
introducing permuted self-attention.

28



2.1 – Super-Resolution

Figure 2.7. Transformer model architecture, by Vaswani et al.

Figure 2.8. HAT architecture by Chen et al.

Finally, due to the increasing popularity of Diffusion Models in image
generation, some studies delved into applying these architectures to super-
resolution. For example, SR3 by Saharia et al. [26], in 2021, achieved highly
photo-realistic outputs and visual quality, despite suffering from bias issues.
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2.2 Super-Resolution for Remote Sensing
The increasing interest in Earth observation led to the need for higher-
resolution imagery. SR for remote sensing poses its own challenges, due to
multispectrality, scarcity of free ground-truth images, attention to spectral
and geometrical preservation.

In literature, both single-image and multi-image approaches have been
applied to RS; here, we cite some methods specifically tailored to Sentinel-2.

In 2018, Lanaras et al. [27] described an EDSR network to super-resolve
the lower-resolution (20 m and 60 m) bands to 10 m, guided by higher-
resolution bands themselves.

In 2021, Gong et al. [28] proposed Enlighten-GAN, outperforming state-of-
the-art methods thanks to the enlighten blocks (Figure 2.9), and employing
cropping-and-clipping strategy to avoid the seam line.

Figure 2.9. Enlighten-GAN architecture

In 2023, a method proposed by Tarasiewicz et al. [29] demonstrated how
combining both multitemporal and multispectral data leads to more effective
super-resolution of Sentinel-2 images.

2.3 Semantic Segmentation and Land Cover
Among the foundational works in semantic segmentation, the U-Net archi-
tecture [30] introduced the encoder-decoder structure with skip connections
(Figure 2.10), which has since been widely adopted in remote sensing, as
well.

More recently, Transformer-based models such as Swin-Unet [31] have
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Figure 2.10. The original U-Net architecture

gained popularity, leveraging hierarchical self-attention to better capture
spatial dependencies. Another promising approach came from Garnot et
al. [32], who proposed a method for panoptic segmentation of satellite image
time series (SITS). Their model leverages a temporal self-attention encoder
to capture spatio-temporal patterns.

2.4 Multi-task Learning
Multi-task learning (MTL) was introduced by Caruana [5], who demon-
strated that jointly learning multiple related tasks in a single network can
improve generalization by leveraging shared representations. Ruder [33] pro-
vides a comprehensive survey of MTL, discussing several key benefits: im-
proved generalization by transferring knowledge across related tasks, reduced
overfitting, enhanced ability to learn robust features, and often faster con-
vergence during training. Additionally, another approach introduces task-
dependent uncertainty weighting for MTL, allowing a network to automati-
cally balance losses for heterogeneous tasks, as shown by Kendall et al. [34].
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Chapter 3

Dataset

As stated previously, the quantity of extensive, freely available datasets for
remote sensing application, and particularly to perform both super-resolution
and land cover segmentation, is limited. The present work was carried out
using two different datasets: S2NAIP [35] and FLAIR-2 [36].

3.1 S2NAIP
The former consists of aligned NAIP, Sentinel-2, Sentinel-1, and Landsat im-
ages spanning the entire continental US. NAIP is the high-resolution RGB
target, having a resolution of 512×512 pixels. For the scope of this work, only
NAIP and Sentinel-2 were used, since the land cover ground truth (GT) pro-
vided by this dataset is at a lower resolution than required (i.e. 10 m/pixel,
whereas the goal is to obtain a land cover map with a resolution of 2.5
m/pixel). Because of the huge number of samples in this dataset, exceeding
44 million, the provided urban subset was used, cutting the total to about
1.1 million samples. This allowed for faster training and reduced the number
of rural areas, which would have generated a strong bias. Some examples
can be observed in Figure 3.1.

Sentinel-2: This dataset uses the Sentinel-2 L1C imagery. Models that
accept RGB as input rely on the TCI files provided by ESA, which contain
an 8-bit image that was normalized by ESA to the 0-255 range. The image is
then pre-processed by dividing the 0-255 RGB values by 255, and retaining
the RGB order. On the other hand, for non-TCI bands, the 16-bit data is
divided by 8160 and then clipped to 0-1.
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Figure 3.1. Samples of Sentinel-2 revisits and NAIP high-resolution target
from S2NAIP by AllenAI.

NAIP: The NAIP images, which represent the HR ground truth in this
dataset, are 25% of the original NAIP resolution; this means that each image
(consisting of RGB channels only) is downsampled to 128×128px.

3.2 FLAIR-2
This dataset is sampled in France, countrywide, and is composed of over
20 billion annotated pixels of very high resolution (VHR) aerial imagery at
0.2 m/pixel, acquired over three years and different months. Aerial imagery
patches consist of 5 channels (RGB, NIR and aerial) and have corresponding
annotations for 19 semantic classes, 13 of which are used for this work. For
low-resolution, Sentinel-2 time series with 10 spectral band are provided as
40×40 super-patches, allowing for wider spatial and temporal context, as
well. More than 50,000 Sentinel-2 acquisitions with 10 m/pixel are available.

Aerial imagery (IMG): Each aerial patch contains five channels: blue,
green, red, near-infrared (NIR), and elevation. These are stored as floating
point values between 0 and 1. Metadata for each patch (acquisition time,
location, altitude, camera type) is provided in a dedicated JSON file.

Sentinel-2 imagery (SEN2): For each aerial patch, corresponding Sentinel-
2 super-areas are provided as time series of reflectance data in 10 spectral
bands. These are stored in 4D NumPy arrays of shape T × C × H × W ,
where T is the number of acquisitions, C the number of spectral channels,
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Figure 3.2. Samples from FLAIR-2 dataset: LR patch is the central
crop of Sentinel-2 super-patch.

and H, W the spatial dimensions. Data are stored in 16-bit unsigned integer
format. Associated files include:

– Masks: snow and cloud probability maps (0 - 100 scale).
– Products: text files listing acquisition details (platform, date, orbit, tile).
– Centroids: JSON files mapping aerial patch IDs to Sentinel-2 coordi-

nates, used for extracting super-patches (of default size 40×40 pixels, but
32×32 was used for the present work).

Annotations (MSK): Semantic segmentation masks are provided as single-
channel 8-bit images, with values ranging from 1 to 19 (Table 3.1). These
represent land cover classes, consistent with the CORINE Land Cover nomen-
clature. Annotations are limited to aerial patch boundaries and correspond
to the acquisition date of the aerial imagery. Temporal inconsistencies may
occur for dynamic features (e.g., riverbanks), as changes may happen between
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aerial and satellite acquisitions.
The dataset is mainly designed for land cover semantic segmentation and

multi-modal learning, leveraging both HR aerial imagery and multi-temporal,
multi-spectral Sentinel-2 data. Some samples are shown in Figure 3.2.

Table 3.1. Class distribution in the considered dataset (derived from
FLAIR-2 challenge). Classes from 13 to 18 were not evaluated, due to their
extremely low frequency, and were treated as ’other’.

Class Value Freq. (%)

building 1 8.14
pervious surface 2 8.25
impervious surface 3 13.72
bare soil 4 3.47
water 5 4.88
coniferous 6 2.74
deciduous 7 15.38
brushwood 8 6.95
vineyard 9 3.13
herbaceous vegetation 10 17.84
agricultural land 11 10.98
plowed land 12 3.88
swimming pool 13 0.01
snow 14 0.15
clear cut 15 0.15
mixed 16 0.05
ligneous 17 0.01
greenhouse 18 0.12
other 19 0.14
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Methodology

This chapter describes neural networks proposed to address super-resolution,
land cover segmentation and multi-task learning, as well as assumptions,
metrics and techniques that were adopted in order to mitigate issues related
to image quality and intrinsic problems of the tasks.

Because of the high number of samples provided by S2NAIP, leading to
long training time, this dataset was mainly used to compare super-resolution
networks, image quality and investigate the performance boost due to the
NIR channel. Moreover, since pre-trained ESRGAN models based on RRDB-
Net were available for download, they offered the chance to easily evaluate
fine-tuning on FLAIR-2.

On the other hand, U-Net and UTAE were used as baselines for land
cover segmentation of low resolution images, derived from Sentinel-2 40×40
patches. The network outputs were then cropped to obtain a 10×10 map.

4.1 Tools, software and libraries
In order to perform data processing, model development and training, and
geospatial analysis, several technologies were employed.

Firstly, QGIS (Quantum GIS) was used to visualize rasters, both for mul-
tispectral data and for segmentation labels, providing an interface to work
with satellite imagery. Additionally, Rasterio was essential to read and ma-
nipulate multispectral data in the Python environment.

Tasks and experiments were mainly carried out using Python and PyTorch
Lightning, which provides abstractions and wrappers to avoid writing boil-
erplate code for data modules, training, validation, checkpointing, testing,
offering many options for customization. Moreover, other Python libraries,
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such as Numpy, Matplotlib, OpenCV, Sklearn, Scipy, were employed for ar-
ray manipulation (e.g., reshaping, flattening), visualization (e.g., histograms,
image grids) and image processing (e.g., interpolation, resizing).

Computation related to experiments was executed on a HPC cluster, pro-
vided by LINKS Foundation. Specifically, jobs ran on a NVIDIA GeForce
RTX 2080 Ti GPU, with 11 GB of memory, and 64 GB of RAM. Further-
more, SLURM was used as a workload manager to schedule tasks efficiently
on the cluster. These tools altogether ensured fast data processing, model
training and inference, which was essential to handle the large number of
experiments.

4.2 Addressing dataset limitations and pre-
processing

Satellite imagery usually comes with specific challenges, and, despite being
qualitatively and quantitatively fine and complete, the present dataset is no
exception.

Cloud filtering: Clouds often have a negative influence on the model
ability to perform computer vision tasks. Cloud filtering is applied to the
Sentinel patches using the associated cloud and snow masks. Each patch
contains a mask indicating the presence of clouds or snow for each pixel and
acquisition date. Therefore, observations affected by clouds or snow are ex-
cluded from the dataset, retaining only cloud-free images. This ensures that
the model is trained and evaluated on clean satellite imagery, while further
processing such as monthly averaging or data augmentation is performed
only on these filtered observations. In other cases where this is not feasi-
ble, using revisits may be greatly beneficial in improving the quality of the
reconstruction.

Cropping: While segmentation labels match VHR ground-truth, LR
super-areas are larger, meaning they can provide context for our applica-
tion, but eventually need cropping. As mentioned, among the provided
metadata, there are centroids, which are particularly useful to obtain the
correctly centered crop and, finally, stitch patches for visualization. To sum
up, super-areas of variable size are first cropped to get a 32×32 patch, which
is fed to the network. The output is then cropped again, to match the target
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size (10×10 for LR tasks and 40×40 for SR tasks). An example is shown in
Figure 4.1.

Figure 4.1. An example of cropped output: the original super-resolved
128×128 image (on the left) and the cropped 40×40 version (on the right).

Normalization and histogram matching: In order to comply with the
guidelines for pre-processing Sentinel-2 data, bands values were divided by a
factor 10000. Because of the evident differences in brightness and colours dis-
tribution when compared to S2NAIP imagery (Figure 4.2, 4.3, 4.4), further
pre-processing was needed when using pre-trained GAN models. In particu-
lar, after computing mean and standard deviation for each RGB channel for
the two datasets, a transformation was applied to match colour distribution:
this ensured a better correspondence and led to more visually pleasing and
coherent results when testing pre-trained ESRGAN. The result of the trans-
formation is shown in Figure 4.5.
Let x be an input tensor with c channels, assume we know the per-channel
statistics (mean and standard deviation) of the two datasets FLAIR and
S2NAIP:

µc
flair, σc

flair, µc
s2naip, σc

s2naip (4.1)

for each channel c.
The transformation applied to each pixel/channel is:
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yc = xc − µc
flair

σc
flair

σc
s2naip + µc

s2naip (4.2)

Equivalently, in compact vector form:

y = Ds2naip D−1
flair

1
x − µflair

2
+ µs2naip (4.3)

where

Dflair = diag(σ1
flair, . . . , σc

flair), Ds2naip = diag(σ1
s2naip, . . . , σc

s2naip) (4.4)

Figure 4.2. Histograms showing the distribution of the red band.

Downsampling: Given the very high resolution of the labels and the
ground truth of the images (0.2 m/pixel), some tough downsampling was
needed. In spite of this, the visual quality of the ground truth is still high, and
shapes and colours are quite well defined, as shown in Figure 4.6. However,
some information may be lost on behalf of labels, especially in terms of finer
details (e.g., roads).

The target LC map was downsampled from 512×512 to 10×10 for experi-
ments starting from LR images and to 40×40 for MTL and HR segmentation,
in order to match output size (Figure 4.7). This was achieved by applying an
interpolation method based on majority voting: each pixel in the resulting
downsampled map is the mode of the corresponding area in the original map.

40



4.3 – Neural networks

Figure 4.3. Histograms showing the distribution of the green band.

Figure 4.4. Histograms showing the distribution of the blue band.

4.3 Neural networks
After carefully reviewing the existing literature and state-of-the-art archi-
tectures, four models were selected for both super-resolution and, therefore,
multi-task learning: SRCNN, ESRGAN, RCAN and SwinIR. They were all
evaluated with RGB, RGB + NIR and, finally, all available bands as in-
put channels, including SWIR bands resampled to 10 m/pixel; revisits were
treated as channels (hence, using Cimg × Nrev as the input dimensionality,
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Figure 4.5. A sample from FLAIR-2 before the transformation (on the
left) and after the transformation (on the right). The shift in bright-
ness is particularly evident, while the colours are adapted to the target
dataset distribution.

Figure 4.6. On the left, the downsampled image (2.5 m/pixel). On the right,
the original VHR image (0.2 m/pixel).

where Cimg denotes the number of image channels and Nrev the number of
revisits), as well. In MTL, segmentation head receives upsampled features
as input.

For segmentation, a simple U-Net was used for both low-resolution and
high-resolution images, whereas UTAE was evaluated to account for revisits.
These experiments were crucial in order to obtain the upper and lower bounds
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Figure 4.7. A visual example of the labels obtained by downsampling the
VHR (512×512) target (on the left), to 40×40 (in the middle), and 10×10
(on the right). As expected, finer details, such as roads (coloured in grey),
could not be fully preserved when reducing resolution by about 50 times.

of the baseline: HR image (2.5 m/pixel) and LR time series (10 m/pixel).

4.3.1 SRCNN

As the simplest architecture, SRCNN was already explored in the context
of S2NAIP. Taking as input low-resolution images and, optionally, a refer-
ence frame (computed as the pixel-wise median across revisits), it consists
of a shared double convolution encoder, followed by optional mask encoding.
Encodings are stacked across channels and passed through a fusion module,
which includes convolutional and residual layers. This effectively aggregates
temporal information.

The super-resolution module uses a PixelShuffle-based upsampler to in-
crease spatial resolution, followed by resizing to a fixed output size.

This model, represented in Figure 4.8, offers some clear advantages in
terms of simplicity, training and inference speed and size, but performance
are considered far from being state-of-the-art.
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Figure 4.8. Representation of chosen SRCNN architecture, including
image encoder, mask encoder, fusion, residual blocks, and PixelShuffle
super-resolution head.

4.3.2 ESRGAN

The generator of the selected ESRGAN model, SSR-RRDBNet (Figure 4.10),
is an enhanced super-resolution architecture based on the Residual-in-Residual
Dense Block (RRDB, Figure 4.9). Firstly, the model optionally applies pixel
unshuffle, a technique that rearranges spatial resolution into the channel di-
mension, and an initial convolution to extract features, followed by a trunk
composed of multiple RRDB blocks.

Figure 4.9. Residual in Residual Dense Block used in ESRGAN generator.

Each RRDB consists of three Residual Dense Blocks (RDBs), where dense
connections and residual scaling improve feature reuse and training stability.
The upsampling path performs successive interpolation-based scaling opera-
tions, followed by convolutional refinement. Depending on the desired output
resolution (e.g., ×8, or ×16), extra upsampling layers are added.

On the other hand, the discriminator consists of a U-Net–style architec-
ture (Figure 4.11) with spectral normalization, used in Real-ESRGAN [15].
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It combines downsampling and upsampling paths with optional skip connec-
tions, allowing it to capture both global structures and fine details.

Benefitting from adversarial training and considerably larger size, ESR-
GAN offers higher visual quality, at the cost of long training and inference
time.

Figure 4.10. Architecture of RRDB-based generator of ESRGAN.

Figure 4.11. Architecture of U-Net based discriminator.

4.3.3 RCAN
In order to evaluate state-of-the-art models in the context of remote sensing
applications, another convolutional model was selected: RCAN [11]. Feature
extraction begins with a 3×3 convolutional layer that expands the channel
dimension to 64 feature maps.

The core of the architecture consists of multiple Residual Groups, each
composed of several Residual Channel Attention Blocks (RCABs). Each
RCAB (Figure 4.13) contains two 3×3 convolutions followed by a Channel
Attention mechanism (Figure 4.12), implemented by global average pooling
and two 1×1 convolutions. This attention allows the network to dynamically
weigh each channel based on its contextual relevance.
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Figure 4.12. Channel attention mechanism

The extracted features are combined with the initial features through a
global residual connection, which facilitates optimization even in very deep
networks.

Figure 4.13. Residual Channel Attention Blocks

For the super-resolution task, the network employs an upsampling module
followed by a final convolution to reconstruct a high-resolution (HR) 128×128
RGB image.

Among purely convolutional networks, this model, shown in Figure 4.14,
represents a state-of-the-art solution, thanks to RCAB, although it does not
achieve the visual quality provided by GANs.

4.3.4 SwinIR
In SwinIR (Figure 4.15), the input image is first normalized using predefined
channel means, if available, and then scaled according to a specified range
(e.g., 1 or 255). The network begins with a shallow feature extraction block
(conv_first) that maps the input channels to a high-dimensional embedding
space using a 3×3 convolution.
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Figure 4.14. RCAN architecture

The core of the architecture consists of multiple Residual Swin Trans-
former Blocks (RSTBs), arranged in stages defined by the depths and num_heads
hyperparameters. Each block processes non-overlapping image patches us-
ing shifted window-based self-attention (window_size), enabling both local
and global context modeling. After feature extraction, the representation is
reassembled in image form using the patch_unembed module.

The stage of high-resolution image reconstruction varies depending on
the chosen upsampling method (options are pixelshuffle for classical SR,
nearest+conv for real-world SR, pixelshuffledirect to save parameters,
or none, for other tasks, such as image denoising).

Figure 4.15. SwinIR architecture
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4.3.5 Segmentation head for SR networks
As mentioned, in order to adapt the previously described SR networks to
perform MTL and output a LC map, a segmentation head was appended
(Figure 4.16). This was achieved by adding a convolutional layer followed by
an activation function and a final 1×1 convolutional layer. The input of the
segmentation head consists of upsampled features extracted before the super
resolution head.
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Figure 4.16. A representation of MTL architecture, with super resolution
and segmentation head. The network is able to produce a super-resolved
RGB image and a super-resolved LC map by taking LR images as input.

4.3.6 U-Net
The UNet class implements a semantic segmentation model based on the U-
Net architecture [30] with a ResNet encoder backbone, utilizing the SMP
(segmentation_models_pytorch) library. The model is designed to sup-
port two segmentation tasks: low-resolution satellite image segmentation
(LRSegmentation) and high-resolution aerial image segmentation (HRSegmentation),
adapting the number of input channels accordingly.

For these experiments, the encoder is a ResNet18 backbone truncated at
depth 3, providing intermediate feature maps. The decoder is customized
with channel dimensions (128, 64, 32) to progressively upsample and recon-
struct the segmentation mask. The final segmentation output has a number
of classes specified by the configuration.

The input passes through the encoder, producing a hierarchy of feature
maps that are then decoded. Finally, the segmentation head produces the
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class probability map. For LR segmentation, logits are cropped to 10×10, in
order to match the target before the loss computation.

The model is flexible to easily incorporate metadata via additional MLP
layers (however, these were not employed for the sake of the present work)
and supports switching between different input channels and tasks by con-
figuration, making it suitable for multi-source remote sensing segmentation
tasks.

4.3.7 UTAE

The UTAE architecture (Figure 4.17) includes an encoder, which extracts
multi-scale spatio-temporal features via a combination of convolutional lay-
ers and temporal self-attention modules. This design allows the network
to adaptively attend across different times in the image sequence, enabling
better modeling of temporal patterns.

The attention mechanism helps in weighing the contribution of different
timestamps depending on how informative they are for semantic level in the
data.

This model proved to be very effective when applied to satellite multi-
temporal inputs, especially for applications related to agriculture, such as
crop monitoring. This is due to the capability to carry critical information
that cannot be fully exploited when processing single images individually.

Figure 4.17. UTAE architecture
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4.3.8 Time Texture Flair
The previously cited paper by Garioud et al. [36] presented an interesting
architecture that employs both LR revisits (for the UTAE temporal branch)
and VHR images (for the U-Net texture branch), using a combined loss.
However, because of the input it takes, this model, depicted in Figure 4.18,
is not suited for our purposes.

Figure 4.18. Time Texture Flair architecture, as presented in the paper.

4.4 Losses
In order to efficiently train and compare models, different losses were ex-
plored and evaluated, both individually and in weighted combinations. Loss
selection was tailored to the specific task: super-resolution or segmentation.

4.4.1 Super-resolution
Pixel-wise loss: The most basic and widely used loss for image restora-
tion is the pixel-wise loss, typically implemented as L1 (Mean Absolute Error,
MAE) or L2 (Mean Squared Error, MSE). This loss directly penalizes the
differences between the predicted and GT pixel values, encouraging accurate
reconstruction at a low level.
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LL1 = 1
N

NØ
i=1

|yi − ŷi| (4.5)

LL2 = 1
N

NØ
i=1

(yi − ŷi)2 (4.6)

SSIM loss: Structural Similarity Index (SSIM) loss focuses on the per-
ceptual quality of the image by evaluating structural information, contrast,
and luminance. Using SSIM as a loss encourages the network to preserve
textures and edges, aligning with human visual perception.

LSSIM(x, y) = 1 − SSIM(x, y) (4.7)

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

(4.8)

Perceptual loss: Also known as feature loss, it compares high-level acti-
vations extracted from a pre-trained network (e.g., VGG19). By minimizing
the difference in feature space rather than pixel space, it promotes semantic
fidelity and perceptually convincing output.

Lperc =
Ø

l

1
ClHlWl

∥ϕl(y) − ϕl(ŷ)∥2
2 (4.9)

where ϕl(·) are features extracted by layer l of a pre-trained network (e.g.
VGG or AlexNet).

Adversarial loss: Used in GAN-based architectures, this loss introduces
a discriminator network to distinguish real from generated images. The gen-
erator is trained to fool the discriminator, leading to more realistic and nat-
ural results. However, adversarial loss may lead to instability and requires
careful balance with content loss.

For the generator:

LG
adv = −Eŷ [log D(ŷ)] (4.10)

For the discriminator:

LD
adv = −Ey [log D(y)] − Eŷ [log(1 − D(ŷ))] (4.11)
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CLIP loss: CLIP loss leverages the multi-modal feature space of OpenAI
CLIP model [37] to guide generation using textual or image embeddings. This
loss promotes alignment between image content and higher-level semantic
descriptions, helping enforce meaningful structures in a zero-shot or loosely
supervised setting.

LCLIP = 1 − fimg(ŷ) · ftext(t)
∥fimg(ŷ)∥ ∥ftext(t)∥

(4.12)

4.4.2 Segmentation
Dice loss: Dice loss is derived from the Dice Similarity Coefficient and is
particularly effective in handling class imbalance. It measures the overlap be-
tween predicted and ground-truth masks, favoring the correct segmentation
of small or underrepresented structures.

LDice = 1 − 2qN
i=1 pigi + ϵqN

i=1 pi + qN
i=1 gi + ϵ

, (4.13)

where pi ∈ [0,1] is the predicted probability, gi ∈ {0,1} is the label and ϵ
is used for numerical stabilization.

Cross-entropy loss: Widely used in classification tasks, cross-entropy
loss penalizes the divergence between predicted probability distributions and
one-hot encoded ground truths. For segmentation, it is applied pixel-wise
and is effective when class distributions are relatively balanced. On the
other hand, its weighted variant may be remarkably useful when the class
distribution is imbalanced.

LCE = − 1
N

NØ
i=1

CØ
c=1

yi,c log ŷi,c (4.14)

where yi,c is one-hot ground-truth, ŷi,c is predicted probability for class c.

The weighted version is:

LW CE = − 1
N

NØ
i=1

CØ
c=1

wc yi,c log ŷi,c (4.15)

with wc weight for each class.
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Focal loss: Designed to address extreme class imbalance, Focal loss down-
weights easy examples and focuses training on hard, misclassified pixels. It
introduces a modulating factor to the cross-entropy formulation, allowing the
model to learn from rare classes more effectively.

LF ocal = − 1
N

NØ
i=1

CØ
c=1

αc(1 − ŷi,c)γ yi,c log ŷi,c (4.16)

where γ > 0 is the focusing parameter that reduces the relative loss for
well-classified examples, and αc is a weighting factor for class balance.

4.5 Metrics
In terms of metrics, possibilities were wide and related to different goals.
For super-resolution, we aimed to evaluate pixel reconstruction accuracy,
structural preservation, image quality, and photorealism. For segmentation,
we mainly assessed Intersection over Union (IoU), yet we should cite F1-score,
precision, and recall to measure mask quality and class-wise performance.

4.5.1 Super-resolution
PSNR: Peak Signal-to-Noise Ratio is a traditional metric used to assess
the fidelity of image reconstruction. It quantifies the difference between the
pixel values of the generated and ground-truth images on a logarithmic scale.
Higher PSNR indicates better reconstruction quality.

PSNR = 10 · log10

A
MAX2

I

MSE

B
, where MSE = 1

MN

MØ
i=1

NØ
j=1

(I(i, j)−K(i, j))2

(4.17)

cPSNR: Color PSNR (cPSNR) is a variant of PSNR that compensates
for global brightness and color shifts between the prediction and the ground
truth, providing a more reliable assessment of super-resolution quality.

cPSNR = 10 log10

A 2552

cMSE

B
, (4.18)

cMSE = min
b

1
N

...ISR −
1
IHR + b

2...2
2 , (4.19)
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where b is a scalar bias optimized to minimize the mean squared error, ISR
is the super-resolved image, IHR is the high-resolution ground truth, and N
is the number of pixels.

SSIM: The Structural Similarity Index evaluates images based on struc-
tural information, contrast, and luminance. Unlike PSNR, SSIM aligns better
with perceptual quality and is more robust to small geometric transforma-
tions.

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

(4.20)

MS-SSIM: Multi-Scale SSIM extends SSIM by computing the index at
multiple image resolutions, capturing both global and local structural in-
formation. MS-SSIM is more consistent with human perception, especially
when fine and coarse details coexist.

MS-SSIM(x, y) =
MÙ

j=1

è
lj(x, y)αj · cj(x, y)βj · sj(x, y)γj

é
(4.21)

LPIPS: The Learned Perceptual Image Patch Similarity is a deep learning-
based metric that compares features extracted from deep networks such as
VGG. LPIPS correlates better with human judgment than traditional pixel-
based metrics.

LPIPS(x, y) =
Ø

l

1
HlWl

HlØ
h=1

WlØ
w=1

∥wl ⊙ (ϕl(x)hw − ϕl(y)hw)∥2
2 (4.22)

NIQE: Natural Image Quality Evaluator is a no-reference metric that
estimates the quality of an image without ground truth, using statistical
regularities of natural images. Lower NIQE scores generally indicate higher
perceptual quality.

NIQE(I) =
ñ

(µI − µn)⊤(ΣI + Σn)−1(µI − µn) (4.23)
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CLIP score: CLIP score [38] measures similarity in a joint text-image
embedding space provided by CLIP. It can be used to evaluate how well
the generated images align with semantic content or textual descriptions,
providing a zero-shot perceptual quality signal.

CLIP(I, T ) = fimg(I) · ftext(T )
∥fimg(I)∥ ∥ftext(T )∥ (4.24)

4.5.2 Segmentation
IoU: Intersection over Union (IoU), also known as the Jaccard Index,
measures the overlap between predicted and ground-truth masks. It is calcu-
lated per class and averaged (mIoU) to provide a robust segmentation quality
measure.

IoU = |P ∩ G|
|P ∪ G|

(4.25)

Precision and recall: Precision measures how many of the predicted
positive pixels are correct, while recall quantifies how many of the true pos-
itives are recovered. Analyzing both gives insight into the types of error the
model makes (over- vs under-segmentation).

Precision = TP

TP + FP
(4.26)

Recall = TP

TP + FN
(4.27)

F1-score: The F1-score combines precision and recall into a single metric.
It is particularly informative when dealing with imbalanced datasets, as it
balances false positives and false negatives.

F1 = 2 · Precision · Recall
Precision + Recall (4.28)
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Chapter 5

Experiments

All the following experiments were conducted on the FLAIR-2 dataset. When
training from scratch on LR images, input combinations of 3, 4 and 10 chan-
nels and 1, 2, 4 and 8 revisits were evaluated. As stated previously, revisits
were mostly treated as channels, whereas, for segmentation, using UTAE
allowed for effective temporal aggregation.

5.1 Super-resolution
Two of the chosen architectures, SRCNN and ESRGAN, were built identically
to those used for S2NAIP. Some pre-trained generators and discriminators
for ESRGAN were employed as well.

After that, RCAN and SwinIR were implemented and explored in order
to test modern architectures with remote sensing real-world images.

As an optimizer, AdamW was empirically selected, as it outperformed
Adam and SGD: learning rate was set to 0.0001, weight decay to 0.001 and
early stopping was used to prevent overfitting. In addition, combined loss
was evaluated as a way to optimize certain aspects of image quality and pos-
sibly increase human judgement, as one of the goals of this task is to evaluate
it together with quantitative metrics (which are reported in Tables 5.1–5.12).
Some examples of super-resolved images are shown in Figure 5.2.

For pre-trained ESRGAN, metrics show better image quality (low LPIPS),
but worse PSNR and SSIM. These models are optimal to reconstruct real-
istic details, but may be lacking in pixel-wise metrics, especially when not
fine-tuned (Figure 5.1). Furthermore, they sometimes generate artifacts and
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suffer instability: this is a well-known problem with GANs, and with this
network, as well, but it does not make these models less valuable and does
not have a remarkable impact for the goals of the present work.

Figure 5.1. Example of the output produced by the pre-trained ES-
RGAN model, with the super-resolved image on the left and the HR
target on the right. The model tends to overestimate the presence
of green areas and vegetation, while excelling at reconstructing fine
details and textures (e.g., trees).

Table 5.1. Results for super-resolution using Cimg = 3 (RGB) with a single
revisit (Nrev = 1). PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

Bilinear 13.795 0.313 0.309 22.814

SRCNN 18.234 0.399 0.278 23.094
RCAN 18.319 0.393 0.269 22.891
SwinIR 18.366 0.402 0.256 23.162

ESRGAN (pre-trained) 15.974 0.330 0.114 21.298
ESRGAN (adversarial) 18.284 0.374 0.131 22.884
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LR ESRGAN SwinIR HR GT

Figure 5.2. Some examples of super-resolution outputs. From left to right,
LR image, output by ESRGAN and SwinIR and HR target (which is the
result of downsampling from the original VHR target). The target is far
richer in details, being able to preserve them after downsampling, whereas
the starting LR image lost most of them. Therefore, the networks are not
able to learn and reconstruct some finer objects, such as cars, which are way
smaller than input resolution (10 m/pixel).

5.2 Land cover segmentation
For HR experiments and for UTAE, the FLAIR-2 provided implementations
were used, while a slightly smaller U-Net was empirically chosen for LR
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Table 5.2. Results for super-resolution using Cimg = 3 (RGB) with Nrev = 2.
PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

SRCNN 18.660 0.406 0.273 23.164
RCAN 18.845 0.413 0.271 23.252
SwinIR 18.814 0.413 0.262 23.268

ESRGAN (pre-trained) 16.236 0.323 0.098 21.370
ESRGAN (adversarial) 18.556 0.381 0.118 22.972

Table 5.3. Results for super-resolution using Cimg = 3 (RGB) with Nrev = 4.
PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

SRCNN 18.817 0.410 0.275 23.253
RCAN 18.987 0.415 0.268 23.320
SwinIR 18.935 0.416 0.260 23.414

ESRGAN (pre-trained) 15.722 0.342 0.100 21.685
ESRGAN (adversarial) 18.719 0.390 0.136 23.143

Table 5.4. Results for super-resolution using Cimg = 3 (RGB) with Nrev = 8.
PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

SRCNN 18.939 0.415 0.271 23.402
RCAN 19.060 0.416 0.267 23.398
SwinIR 18.930 0.419 0.256 23.461

ESRGAN (pre-trained) 14.481 0.336 0.105 21.752
ESRGAN (adversarial) 18.884 0.394 0.125 23.291
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Table 5.5. Results for super-resolution using Cimg = 4 (RGB + NIR) with
Nrev = 1. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

SRCNN 18.385 0.402 0.277 23.229
RCAN 18.521 0.404 0.272 23.218
SwinIR 18.238 0.402 0.263 23.191
ESRGAN 18.340 0.383 0.145 23.093

Table 5.6. Results for super-resolution using Cimg = 4 (RGB + NIR) with
Nrev = 2. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

SRCNN 18.637 0.406 0.275 23.171
RCAN 18.899 0.413 0.270 23.296
SwinIR 18.960 0.415 0.262 23.313
ESRGAN 18.664 0.387 0.133 23.105

Table 5.7. Results for super-resolution using Cimg = 4 (RGB + NIR) with
Nrev = 4. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

SRCNN 18.803 0.410 0.276 23.273
RCAN 18.981 0.414 0.268 23.321
SwinIR 19.004 0.416 0.262 23.380
ESRGAN 18.707 0.398 0.156 23.241

segmentation, mainly because of the smaller input size and to make it com-
parable with other SR models size.

All of these experiments were carried out with SGD optimizer and cross-
entropy loss: weighted versions were evaluated, but they did not perform
better than the standard one. The chosen learning rate was 0.001. The
entire set of hyperparameters matches the ones used by the original paper.
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Table 5.8. Results for super-resolution using Cimg = 4 (RGB + NIR) with
Nrev = 8. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

SRCNN 18.943 0.415 0.276 23.409
RCAN 19.178 0.419 0.265 23.489
SwinIR 18.932 0.417 0.268 23.402
ESRGAN 18.868 0.393 0.130 23.282

Table 5.9. Results for super-resolution using Cimg = 10 (all available bands)
with Nrev = 1. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

SRCNN 18.465 0.401 0.283 23.097
RCAN 18.649 0.404 0.272 23.260
SwinIR 18.500 0.405 0.260 23.227
ESRGAN 18.525 0.381 0.136 23.060

Table 5.10. Results for super-resolution using Cimg = 10 (all available
bands) with Nrev = 2. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

SRCNN 18.855 0.408 0.277 23.201
RCAN 18.917 0.413 0.271 23.294
SwinIR 18.902 0.413 0.261 23.286
ESRGAN 18.611 0.378 0.137 22.993

As a reference, we will also include results for bilinear interpolation applied
to LR image (Table 5.15) and results for segmentation performed on super-
resolved images (Table 5.16).

VHR and HR: The original result was obtained by employing the TXT-
Flair model. However, purely comparing to VHR segmentation (having a
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Table 5.11. Results for super-resolution using Cimg = 10 (all available
bands) with Nrev = 4. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

SRCNN 18.648 0.408 0.279 23.257
RCAN 18.950 0.412 0.269 23.262
SwinIR 18.979 0.414 0.263 23.330
ESRGAN 18.679 0.380 0.129 23.063

Table 5.12. Results for super-resolution using Cimg = 10 (all available
bands) with Nrev = 8. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑

SRCNN 18.771 0.414 0.276 23.407
RCAN 19.099 0.416 0.263 23.441
SwinIR 19.051 0.418 0.256 23.441
ESRGAN 18.862 0.380 0.119 23.103

resolution equal to 0.2 m/pixel) any results obtained from LR images would
be misleading and useless, so those results should be read as a reference and
not as a target for the present study. Indeed, using a simple U-Net on HR
single images is more fair, therefore this will be the upper bound. These
results are reported in Table 5.13.

Table 5.13. Results for HR (2.5 m/pixel) segmentation mIoU. Ex-
periment for VHR (0.2 m/pixel), which is not included in the table,
produced mIoU = 0.5506.

RGB RGB + NIR RGB + NIR + elevation
U-Net 0.3568 0.4061 0.4639

LR: As the lower bound of the baseline, the two models were compared, in
order to account for both single-image and multi-image, leveraging revisits.
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Both were fed LR images and produced LR segmentation maps in different
settings in terms of input channels (3, 4, 10) and revisits (1, 2, 4, 8), as shown
in Table 5.14.

A better reference to establish a comparison with the final multi-task
version consists of "squeezing" decoded features before the segmentation head,
in order to match them with a 40×40 map. Therefore, in this case, the net
outputs "super-resolved" logits thanks to bilinear interpolation: this is the
result that this work aims to improve, in terms of both quality and metrics,
and it is reported in Table 5.15.

Table 5.14. Comparing mIoU for LR U-Net e UTAE by varying Cimg and Nrev.

UNet (Nrev) UTAE (Nrev)
Cimg 1 2 4 8 1 2 4 8

3 0.2467 0.2636 0.2938 0.3006 0.2487 0.2729 0.3444 0.3704
4 0.2727 0.2876 0.2984 0.3157 0.2496 0.3206 0.3595 0.3807
10 0.3146 0.3306 0.3307 0.3424 0.3546 0.3641 0.3789 0.3994

Moreover, applying bilinear interpolation to features before the segmen-
tation head, i.e. generating HR output from LR input, often scores worse
results. However, the benefit that UTAE derives from temporal attention and
aggregation is remarkable, and it can be easily noticed for higher number of
revisits.

Table 5.15. Comparing mIoU for U-Net e UTAE by varying Cimg and Nrev
with bilinear interpolation applied to features.

UNet (Nrev) UTAE (Nrev)
Cimg 1 2 4 8 1 2 4 8

3 0.2428 0.266 0.2638 0.2982 0.2501 0.2763 0.3184 0.345
4 0.26 0.294 0.3011 0.3199 0.2804 0.3046 0.3355 0.3646
10 0.3054 0.3212 0.3152 0.3489 0.3219 0.3564 0.3697 0.4024

Of course, HR segmentation leads to much higher mIoU than LR segmen-
tation, and even additional channels and revisits are not easily bridging the
gap.
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SR: With the goal of investigating the contribution of SR to downstream
tasks, super-resolved images were used as input for LC segmentation. In
particular, this step required new full datasets, consisting of the output of the
best performing SwinIR (in terms of metrics) and both pre-trained and best
performing ESRGAN (in terms of visual quality). U-Net was then trained
and tested on the resulting dataset (Table 5.16).

Table 5.16. Comparing mIoU for U-Net trained on datasets made of
super-resolved images (output of selected networks), with different num-
bers of channels and revisits. Results prove to be vastly inferior to those
achieved by multi-task learning

Network Channels Revisits mIoU ↑

SwinIR 3 1 0.2023
SwinIR 10 8 0.2778
ESRGAN (pre-trained) 3 1 0.2035
ESRGAN (adversarial) 10 8 0.2669

5.3 Multi-task learning
After obtaining a baseline, the next step consisted in applying SR models to
output a super-resolved LC map. This goal was achieved in different ways.

5.3.1 Training from scratch
First of all, SRCNN, RCAN and SwinIR were trained from scratch with
the addition of the segmentation head. Optimizing both tasks at the same
time was not straightforward, compared to having two separate, specialized
models, therefore different configurations of loss weights were evaluated.

5.3.2 Pre-trained models
Because of the good visual performance provided by the ESRGAN archi-
tecture, their generators were used as a starting point for MTL. All layers
were frozen, except for the first convolution (to adapt to the colours and
brightness differences) and the segmentation head: as expected, since the
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net parameters adapt to segmentation, photorealism is spoiled and therefore
the advantage of having a GAN is canceled.

After this first experiment, the entire generator was frozen, and only the
segmentation head was trained. Unsurprisingly, extracted features were not
optimal as well, so further solutions had to be found in order to provide the
segmentation head with more information without adding too much weight
and complexity to the architecture.

Specifically, a promising strategy was extracting multi-scale features from
different layers of the frozen generator and concatenating them before feeding
the segmentation head. Two methods were used: at first, a 3×3 convolution
followed by a ReLU was inserted to extract information from the first layer,
from the body and from the first upsampler. These features were interpolated
to match the size of those generated by the second upsampler, and then
concatenated before feeding the segmentation head, as shown in Figure 5.3
and Figure 5.4.

LR 32×32
input

RRDB
Backbone

U
ps

am
pl

er

MS Feature
Extractor Concatenate

Segmentation
Head

HR 128×128
LC map

Super Resolution
Head

HR 128×128
RGB image

Figure 5.3. An image of customized RRDB generator with the addition of
a multiscale feature extractor followed by concatenation.
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feat_first_conv

feat_body

feat_up1

Conv2D

k3 n64

Conv2D

k3 n64

Conv2D

k3 n64

ReLU

ReLU

ReLU

Upsampler

Upsampler

Upsampler

feat_up2

Concatenate

Figure 5.4. The internal structure of multiscale feature extractor, fol-
lowed by concatenate block.

For the second method, an interesting idea came from Low-Rank Adap-
tation (LoRA) [39], which is state-of-the-art for Parameter-Efficient Fine-
Tuning PEFT in Large Language Models (LLM). LoRA introduces a simple
yet powerful mechanism to adapt a pre-trained model by injecting train-
able low-rank matrices into existing weight layers, while keeping the original
weights frozen (Figure 5.5): the main intuition is to constrain the update of
large weight matrices to a low-dimensional subspace, allowing the model to
learn task-specific knowledge without modifying the full set of parameters.

In terms of size, none of these methods represented more than 2% of the
original RRDB parameters, making them very lightweight solutions.

5.3.3 Adversarial multi-task learning
In the end, ESRGAN was trained from scratch using the discriminator, hav-
ing to balance the role of the adversarial loss and the contribution of the
cross entropy loss. This approach proved successful, allowing to generate
good quality images while extracting useful features for segmentation.

5.3.4 Results for multi-task learning
Similarly to super-resolution, also in multi-task learning the impact of consid-
ering all the channels is noticeable, but not as remarkable as in segmentation:
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Figure 5.5. LoRA reparametrization: only A and B are trained, while
pre-trained ESRGAN weights are not.

this can be explained by the stronger relationship that exists between some
Sentinel bands and some types of LC classes.

For instance, in semantic segmentation tasks, the NIR band is crucial in
identifying vegetation, as plants exhibit high reflectance in this spectral re-
gion, distinguishing them from soil or buildings. Analogously, SWIR bands
are effective in detecting water, since it strongly absorbs in this range. In con-
trast, in SR tasks the goal is to reconstruct fine spatial details rather than to
separate semantic categories, so while additional channels may provide useful
information that slightly improve reconstruction quality, their contribution
is limited.

Furthermore, the absence of a specifically designed temporal attention
and temporal aggregation module makes the contribution of revisits inferior
compared to UTAE, which leverages them greatly.

Metrics for multi-task learning are reported in Tables 5.17–5.28, which also
include results for the ESRGAN model trained with different strategies (some
evaluated only on RGB inputs, i.e. Tables 5.17, 5.18, 5.19, and 5.20). The
tested approaches comprise a frozen generator with an added segmentation
head, multiscale feature extraction through convolutional layers, LoRA, and
finally full adversarial training with a discriminator.

In general, MTL is capable of outperforming standard LR in almost all the
considered cases, provided that the SR model is large and efficient enough.
Among the compared ones, SRCNN sometimes provides smaller or no ad-
vantage over UTAE, but largely wins against U-Net. Moreover, in some of
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Table 5.17. Results for multi-task learning (compared to segmentation) with
Cimg = 3 (RGB) using Nrev = 1. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.2428
UTAE — — — — 0.2501

SRCNN 18.273 0.375 0.246 22.685 0.2372
RCAN 18.360 0.397 0.265 22.953 0.2666
SwinIR 18.561 0.401 0.262 23.039 0.2674

ESRGAN (pre-trained) 15.974 0.330 0.114 21.298 0.1830
ESRGAN (multiscale feat.) 15.974 0.330 0.114 21.298 0.2572
ESRGAN (LoRA) 18.142 0.332 0.139 22.345 0.2631
ESRGAN (adversarial) 18.436 0.361 0.124 22.800 0.3068

Table 5.18. Results for multi-task learning (compared to segmentation) with
Cimg = 3 (RGB) using Nrev = 2. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.2660
UTAE — — — — 0.2766

SRCNN 18.650 0.378 0.247 22.697 0.2894
RCAN 18.886 0.405 0.268 22.978 0.3043
SwinIR 18.767 0.405 0.258 23.041 0.3041

ESRGAN (pre-trained) 16.236 0.323 0.098 21.370 0.1957
ESRGAN (multiscale feat.) 16.236 0.323 0.098 21.370 0.2659
ESRGAN (LoRA) 18.356 0.344 0.159 22.431 0.225
ESRGAN (adversarial) 18.610 0.366 0.127 22.756 0.2763

the settings, not only MTL improves segmentation, but it also helps regular-
ize super-resolution, achieving moderately superior results to the single task
scenario. The best performing model overall is SwinIR, that, considering
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Table 5.19. Results for multi-task learning (compared to segmentation) with
Cimg = 3 (RGB) using Nrev = 4. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.2638
UTAE — — — — 0.3184

SRCNN 18.794 0.384 0.257 22.791 0.3054
RCAN 18.947 0.408 0.270 23.077 0.3439
SwinIR 18.888 0.407 0.260 23.093 0.3261

ESRGAN (pre-trained) 15.722 0.342 0.100 21.685 0.2205
ESRGAN (multiscale feat.) 15.722 0.342 0.100 21.685 0.2762
ESRGAN (LoRA) 18.505 0.366 0.156 22.712 0.2501
ESRGAN (adversarial) 18.655 0.367 0.127 22.828 0.3401

Table 5.20. Results for multi-task learning (compared to segmentation) with
Cimg = 3 (RGB) using Nrev = 8. PSNR and cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.2982
UTAE — — — — 0.3450

SRCNN 19.084 0.390 0.250 22.967 0.3290
RCAN 19.173 0.413 0.266 23.217 0.3693
SwinIR 19.025 0.412 0.263 23.235 0.3574

ESRGAN (pre-trained) 14.481 0.336 0.105 21.752 0.2296
ESRGAN (multiscale feat.) 14.481 0.336 0.105 21.752 0.2725
ESRGAN (LoRA) 18.617 0.343 0.150 22.420 0.2975
ESRGAN (adversarial) 18.747 0.373 0.131 22.896 0.3614

mIoU, surpasses UTAE by up to 3.6 points and U-Net by up to 8.2 points,
but RCAN still scores better in some settings.

When frozen and equipped with the segmentation head only, ESRGAN
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Table 5.21. Results for multi-task learning (compared to segmen-
tation) with Cimg = 4 (RGB + NIR) using Nrev = 1. PSNR and
cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.2601
UTAE — — — — 0.2804

SRCNN 18.523 0.380 0.248 22.751 0.2799
RCAN 18.456 0.396 0.266 22.878 0.2999
SwinIR 18.609 0.401 0.264 23.081 0.3009

ESRGAN (adversarial) 18.182 0.360 0.132 22.763 0.2983

Table 5.22. Results for multi-task learning (compared to segmen-
tation) with Cimg = 4 (RGB + NIR) using Nrev = 2. PSNR and
cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.2940
UTAE — — — — 0.3046

SRCNN 18.687 0.378 0.252 22.693 0.3254
RCAN 18.829 0.404 0.268 22.955 0.3361
SwinIR 18.742 0.406 0.263 23.016 0.3305

ESRGAN (adversarial) 18.712 0.371 0.144 22.780 0.3405

performs poorly in terms of mIoU. On the other hand, some fine-tuning is
needed for the net to adapt to the new task, but it is not always enough to
be competitive with the baseline: LoRA has a slightly negative impact on
visual quality, but it improves the other metrics, whereas the method based
on multi-scale feature extraction preserves photorealism, since it leaves the
generator untouched. As mentioned before, the most promising approach for
GANs consists in multi-task adversarial training, thanks to the discriminator:
the downsides of this latter technique are indeed its instability and the need
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Table 5.23. Results for multi-task learning (compared to segmen-
tation) with Cimg = 4 (RGB + NIR) using Nrev = 4. PSNR and
cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.3011
UTAE — — — — 0.3355

SRCNN 18.822 0.382 0.251 22.810 0.3494
RCAN 18.967 0.408 0.270 23.092 0.3459
SwinIR 18.944 0.409 0.265 23.131 0.3443

ESRGAN (adversarial) 18.709 0.371 0.127 22.879 0.3419

Table 5.24. Results for multi-task learning (compared to segmen-
tation) with Cimg = 4 (RGB + NIR) using Nrev = 8. PSNR and
cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.3199
UTAE — — — — 0.3646

SRCNN 19.040 0.391 0.252 22.977 0.3309
RCAN 18.995 0.408 0.277 23.092 0.3310
SwinIR 19.045 0.413 0.261 23.206 0.3752

ESRGAN (adversarial) 18.797 0.378 0.134 22.985 0.3943

for longer training time, but it has potential to produce better visual quality
and segmentation output.

In the end, the benefit of using SR models is not only remarkable when
looking at quantitative metrics, but also evident when observing qualitative
results (Figure 5.6), which show better defined shapes and enhanced recon-
struction for smaller details.
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Table 5.25. Results for multi-task learning (compared to segmenta-
tion) with Cimg = 10 (all available bands) using Nrev = 1. PSNR and
cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.3054
UTAE — — — — 0.3219

SRCNN 18.494 0.377 0.252 22.730 0.3362
RCAN 18.426 0.394 0.266 22.887 0.3369
SwinIR 18.794 0.400 0.260 23.018 0.3580

ESRGAN (adversarial) 18.257 0.359 0.122 22.799 0.3586

Table 5.26. Results for multi-task learning (compared to segmenta-
tion) with Cimg = 10 (all available bands) using Nrev = 2. PSNR and
cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.3212
UTAE — — — — 0.3564

SRCNN 18.809 0.382 0.250 22.788 0.3572
RCAN 18.799 0.402 0.271 22.928 0.3660
SwinIR 18.770 0.406 0.264 23.124 0.3855

ESRGAN (adversarial) 18.743 0.368 0.124 22.819 0.3712
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Table 5.27. Results for multi-task learning (compared to segmenta-
tion) with Cimg = 10 (all available bands) using Nrev = 4. PSNR and
cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.3152
UTAE — — — — 0.3697

SRCNN 18.807 0.384 0.257 22.836 0.3646
RCAN 19.005 0.407 0.268 23.112 0.3990
SwinIR 18.948 0.410 0.263 23.160 0.3979

ESRGAN (adversarial) 18.702 0.379 0.146 22.926 0.3919

Table 5.28. Results for multi-task learning (compared to segmenta-
tion) with Cimg = 10 (all available bands) using Nrev = 8. PSNR and
cPSNR are reported in dB.

Method PSNR ↑ SSIM ↑ LPIPS ↓ cPSNR ↑ mIoU ↑

U-Net — — — — 0.3489
UTAE — — — — 0.4024

SRCNN 18.675 0.398 0.266 23.068 0.3908
RCAN 18.917 0.410 0.273 23.213 0.4032
SwinIR 19.064 0.411 0.261 23.184 0.4154

ESRGAN (adversarial) 18.833 0.381 0.133 22.974 0.3949
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VHR GT UTAE SwinIR GT labels

Figure 5.6. Some examples of land cover maps. From the left to the right,
VHR ground truth (0.2 m/pixel), results obtained by UTAE, results ob-
tained by SwinIR (both using 10 channels and 8 revisits) and GT labels
(2.5 m/pixel). Beyond quantitative metrics, the SR model is also remarkably
better at reconstructing shapes and details.
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Chapter 6

Conclusion

In summary, the present work compares different categories of SR architec-
tures and applies them to remote sensing, analyzing trade-offs, and enhancing
their potential to improve land cover segmentation.

The main idea that the thesis aims to investigate and validate is whether
and to what extent super-resolved features could be exploited by segmenta-
tion task, without the need for two different networks or decoders.

Overall, the best performing model for the SR task was SwinIR, which is
based on Vision Transformer architecture, but ESRGAN obtained remark-
able results in terms of visual quality and photorealism, yet scored the lowest
in pixel-wise metrics and produced more artifacts. This demonstrates the dif-
ferent goals of standard and adversarial networks in image generation and
restoration and the lack of correspondence between qualitative and quanti-
tative results.

Moreover, SR networks are effective in improving mIoU when equipped
with a segmentation head: the latter task benefits the most from architec-
tures that optimize traditional metrics, such as PSNR and SSIM, whereas it
needs some adaptation when extracting information from GANs.

6.1 Contributions
The key contributions of this thesis include:

1. A baseline for LR (10 m/pixel) and HR (2.5 m/pixel) land
cover segmentation on FLAIR-2 dataset, in order to obtain lower
and upper bounds for the experiments.
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2. A thorough comparison of different types of SR networks, an-
alyzing strengths, trade-offs, losses and metrics when fed with multi-
spectral and multi-temporal data.

3. Multi-task learning for SRCNN, RCAN and SwinIR, obtained
by training the full SR network from scratch with the addition of
a segmentation head: this showed to be effective in improving segmen-
tation results with respect to the LR baseline.

4. Multi-task learning for pre-trained GANs, performed by adding
a segmentation head to a frozen RRDB generator, and then including
lightweight multiscale features extractors. This allowed the net to
preserve photorealism while benefiting segmentation, despite having a
tiny number of trainable parameters, thanks to innovative techniques
such as LoRA.

5. MTL with adversarial training, performed by training ESRGAN
from scratch with both discriminator and segmentation head, overcom-
ing challenges related to instability.

6.2 Future works
Although numerous experiments and scenarios were considered, there is much
more left to be explored in how super-resolution can benefit other tasks. In
particular, interesting research topics may include:

• Using a bigger dataset specifically aimed at multi-task learning,
since FLAIR-2 was originally built for VHR land cover segmentation.
Furthermore, better-matched LR-HR pairs, avoiding downsampling, in-
terpolation, and cropping, could simplify the task and lead to better
results.

• Comparing modern architectures that are specifically designed
for remote sensing, although results scored by general-purpose models
look promising. This might include diffusion models (e.g. EDiffSR),
which were not considered in this work and pose their own challenges,
in terms of both results and computational cost.

• Multi-modal architectures: leveraging different sources such as SAR,
InSAR or metadata is an interesting option to add useful information.
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• Experimenting additional tasks (e.g., object detection) may further
regularize training, improve convergence and enhance results, helping
generate richer and versatile upscaled features.

• Additional losses and metrics, such as CLIP loss, which have been
shown to be effective in speeding up training and achieving better results.

In conclusion, super-resolution demonstrates significant potential to en-
hance related tasks such as segmentation and object detection, serving as a
valuable performance booster. Although it currently occupies a more niche
position compared to well-established fields like classification or segmenta-
tion, the findings of this work highlight that there remains considerable scope
for further exploration and application. This opens promising perspectives
for both academic research and industrial practice, where the integration of
super-resolution could provide tangible added value.
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