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Summary

Spiking Neural Networks (SNNs) have gained significant attention as energy ef-
ficient computational models capable of processing information through sparse,
event-driven signaling. Their temporal processing abilities and compatibility with
neuromorphic hardware make them suitable for applications that require fast re-
sponse and low power consumption, including robotics, biomedical monitoring,
edge intelligence, and space systems. Despite these advantages, real hardware
deployments expose SNNs to numerous reliability risks arising from manufacturing
imperfections, thermal variability, radiation exposure, or device aging. These phys-
ical factors can corrupt internal variables or permanently damage computational
elements. Although SNNs are often assumed to be resilient due to their biological
inspiration, the degree to which they tolerate hardware faults during training
remains largely unexplored. Understanding how such faults influence both the
learning dynamics and final model performance is essential for the development of
reliable neuromorphic systems.

This thesis provides a systematic investigation of the robustness of SNNs when
hardware-inspired faults are introduced during training. Previous research has
focused mostly on injecting faults during inference. In contrast, this study examines
how faults interact with the learning process itself. Two common error sources from
neuromorphic hardware are modeled. Bit-flip faults represent transient disruptions
caused by phenomena such as radiation-induced single-event upsets. Stuck-at faults
represent permanent failures that may occur due to aging or physical degradation.
Unlike studies that consider only weight corruption, this work injects faults into a
wide variety of SNN components. These include synaptic weights, gradients, input
spike tensors, hidden activations, membrane potentials, membrane decay constants
(β), and firing thresholds. By including both learnable parameters and internal
state variables, the framework captures a realistic spectrum of error behaviors that
may arise in physical SNN hardware.

A training-time fault injection framework was developed to support this analysis.
The injector is integrated directly into the PyTorch training loop and operates
at the level of individual tensor elements, enabling localized and realistic error
modeling. At each training iteration, the framework receives a list of all eligible

ii



parameters and state variables, including weights, gradients, input spikes, hidden
activations, membrane potentials, β values, and firing thresholds. One element is
then selected uniformly at random, reflecting the assumption that hardware faults
occur independently of software-defined structure. Once a target is chosen, either
a bit-flip or stuck-at operation is applied. Bit-flip faults toggle a specific bit within
the numerical representation of the value, simulating transient soft errors. Stuck-at
faults overwrite the entire value with either an all-zero or all-one pattern, emulating
permanent hardware failures caused by aging or physical degradation.

The injector is capable of modeling both temporary and long-lasting disrup-
tions. Transient faults, introduced via bit-flips, typically affect the tensor only
momentarily and may be overwritten by subsequent computations or parameter
updates. Permanent faults, implemented through stuck-at assignments, persist for
the remainder of training unless manually reinitialized. During training, each fault
event is logged along with its type, affected parameter, bit position, layer index,
and the value before and after corruption. At the end of every epoch, the validation
accuracy of the faulty model is recorded and compared with that of an identical
fault-free baseline. The difference between these two values forms the basis of the
impact measurement used throughout the analysis. By aggregating these differences
across multiple training runs and fault occurrences, the study evaluates average
fault impact as a function of fault type, bit position, layer depth, and injection
epoch. Although faults generally reduce accuracy, occasional positive changes were
observed, possibly because small disturbances can sometimes counteract overfitting
and act as unintended regularizers.

Experiments are carried out on three benchmark datasets that represent visual,
auditory, and temporal neuromorphic tasks. These datasets are NMNIST, AudioM-
NIST, and the Spiking Heidelberg Digits (SHD). For each dataset, a fully connected
SNN model is trained using surrogate gradient descent, and the proposed injector
is applied throughout training. The results reveal several consistent sensitivity
patterns across the models. One important observation is related to the timing
of the fault. Faults that occur at later stages of training cause significantly larger
accuracy degradation than those that occur early. Early faults are often overwritten
or compensated for by subsequent parameter updates. However, once the model has
stabilized, faults become more persistent and influence the final decision boundaries
more strongly.

Another prominent pattern involves the sensitivity of different parameter types.
Faults in weights, β values, and firing thresholds consistently produce the largest
accuracy drops. These components strongly influence neuron dynamics and there-
fore represent critical points of failure. On the other hand, faults in activations,
membrane potentials, or input events tend to have smaller effects because these
variables are temporary and recalculated frequently. The analysis also shows a clear
relationship between fault impact and layer depth in most experiments. Faults
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in later layers often result in larger deviations than faults in earlier layers. The
effect is particularly visible in the AudioMNIST and SHD experiments and reflects
the fact that disruptions occurring closer to the output stage have a more direct
influence on classification.

Despite these common trends, the results also reveal significant variations
between the models. The NMNIST network shows strong resilience to both
transient and permanent faults. Most injected faults produce almost no measurable
degradation in this model. In contrast, the AudioMNIST and SHD networks
exhibit much clearer patterns of vulnerability. Their accuracy reductions reach
values around one to one and a half percentage points in the stuck-at experiments,
and the differences between fault types and layers become more pronounced.
These findings demonstrate that SNN robustness is strongly dependent on the
dataset and architecture. Therefore, conclusions derived from a single configuration
may not generalize across all neuromorphic workloads. Beyond the empirical
results, this thesis provides a training-time fault injection framework that enables
controlled examination of how SNNs respond to disruptions while learning. Because
faults are introduced directly into the optimization process, the tool captures
interactions between learning dynamics and hardware-inspired errors that inference-
only analyses cannot reveal. This makes the injector not only a diagnostic tool for
understanding fault behavior but also a potential component of robustness-oriented
training strategies.

Future work may extend the experimental scope to broader datasets and ad-
ditional SNN architectures, allowing a deeper assessment of how data complexity
and network structure influence fault sensitivity. The injector could also be inte-
grated into training pipelines that intentionally introduce noise or faults to improve
robustness. Finally, applying the approach to hardware-in-the-loop experiments
would help validate the findings on real neuromorphic devices and support the
development of standardized benchmarks for resilient SNN design.
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Chapter 1

Introduction

SNNs have gained increasing attention as a promising alternative to conventional
neural models due to their event driven computation, temporal encoding capabili-
ties, and compatibility with neuromorphic hardware. By processing information
through sparse spike based dynamics rather than continuous activations, SNNs
enable low power and real time computation suitable for embedded and edge level
platforms. These properties make SNNs strong candidates for applications requir-
ing fast sensory response, autonomous processing, and strict energy constraints,
including brain-inspired robotics, biomedical signal interpretation, and low power
edge intelligence. In addition to their efficiency, the temporal and biologically
inspired nature of SNN offers advantages in adaptability and functional robustness,
particularly when deployed on unreliable or noise prone hardware. Such character-
istics have recently motivated interest in SNNs for mission critical scenarios that
demand both energy efficiency and resilience.

Although SNNs share common computational principles, their resilience to
faults is far from uniform. Differences in architecture depth, parameter distribution,
neuron model configuration, and dataset characteristics can lead to markedly
different fault sensitivities. As a result, understanding fault behavior requires not
only analyzing injected faults in isolation, but also examining how these architectural
and dataset-specific factors influence the way errors propagate through the network.
This motivates a systematic evaluation across multiple SNN models trained on
diverse datasets, allowing a more complete characterization of the conditions under
which SNNs become vulnerable or remain robust.

A prominent example of such scenarios is space and aerospace systems, where
electronic components are continuously exposed to radiation, thermal variability,
and aging effects that induce hardware level faults. These reliability hazards di-
rectly affect autonomous onboard systems used in satellite navigation, planetary
exploration, and deep space missions, where hardware interventions are impossi-
ble and energy budgets are severely limited. While SNNs present a compelling
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computational model for these conditions, their resilience under hardware faults
remains insufficiently characterized. Consequently, assessing how SNNs behave
when internal parameters are corrupted is crucial before these models can be safely
deployed in fault prone environments.

Although SNNs are often assumed to inherit the robustness of biological neural
systems, recent empirical studies indicate that hardware level faults can signifi-
cantly degrade classification accuracy, disrupt spike timing, or induce persistent
malfunctioning neurons, particularly when injected after the training phase. Exist-
ing research primarily analyzes fault impact at the inference stage, overlooking the
network’s potential to adapt to faulty conditions during learning. Since learning
mechanisms such as surrogate gradient based updates or STDP modify neuron and
synapse behavior over time, injecting faults during training may allow the model
to compensate for malfunctioning components, thereby improving post-deployment
resilience [1][2]. However, the extent to which training time faults enhance or
degrade final model robustness remains insufficiently explored.

This thesis addresses this gap by investigating the impact of hardware induced
faults introduced during the training phase of SNNs, addressing the limited focus
in prior work on post training fault analysis. Faults are modeled at the bit level
and encompass both transient perturbations and permanent defects, allowing the
study to approximate realistic error mechanisms such as radiation induced flips
or long term device degradation. Instead of restricting fault modeling to weights
alone, the proposed framework injects faults into a broad set of learnable and
run time elements that captures how diverse fault locations influence learning
trajectories. By introducing faults while the network is actively adjusting its
parameters through surrogate gradient learning, the study examines whether SNNs
can maintain functional performance in the presence of corrupted components. The
methodology is evaluated across three benchmark datasets which are NMNIST,
AudioMNIST, and SHD that covers visual, auditory, and temporal neuromorphic
tasks to assess how fault sensitivity varies across modalities. Overall, this study
provides a unified perspective on fault behavior during learning, highlights the
differing effects of transient and permanent faults, and offers insights relevant to
deploying low power neuromorphic systems in fault prone environments.

The remainder of this thesis is organized as follows. Chapter 2 presents the
necessary background on Spiking Neural Networks, fault models, and the datasets
used throughout this work. Chapter 3 introduces the methodological framework,
including data preprocessing pipelines, model architectures, and the proposed fault
injection strategy applied during training. Chapter 4 will present the experimental
setup, evaluation metrics, and observed results across different fault scenarios and
datasets. Finally, Chapter 5 will summarize the findings, and outline potential
directions for future research on resilient neuromorphic learning systems.
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Chapter 2

Background Research

2.1 Spiking Neural Network (SNN)

SNNs represent the third generation of artificial neural networks, inspired by the
information processing principles of biological neural systems. Unlike conventional
artificial or deep neural networks, which operate on continuous real valued acti-
vations, SNNs communicate using discrete events known as spikes. Each spike
corresponds to a binary and temporally localized signal, allowing information to be
represented not only by the presence or absence of a spike but also by its precise
timing [3]. This temporal dimension introduces richer dynamics and enables the
processing of event based or time varying data such as sound, vision, or sensory
signals in neuromorphic systems.

From a computational standpoint, SNNs incorporate time as an explicit variable
into the neural processing model. Each neuron maintains a membrane potential
that evolves according to the timing and polarity of incoming spikes, the synaptic
strength of its connections, and its intrinsic parameters such as membrane decay
and firing threshold. When this potential exceeds a threshold, the neuron emits a
spike and resets, propagating activity to downstream neurons. This event driven
mechanism makes computation inherently sparse and asynchronous, as operations
occur only when spikes are present, rather than at every simulation step [3] [4] .

Compared to deep neural networks, which require continuous and dense matrix
multiplications, SNNs exhibit remarkable energy efficiency and biological plausi-
bility. The discrete, event driven nature of spike processing reduces redundant
operations and enables in memory computation, where memory and processing
occur locally within the same neuron-synapse structure. Such characteristics make
SNNs particularly attractive for neuromorphic hardware implementations [5]. These
platforms exploit the sparse, temporal, and parallel properties of SNNs to deliver
high performance at ultra-low power, ideal for embedded or edge AI applications
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where energy and latency constraints dominate.

Beyond hardware efficiency, SNNs also introduce a new representational paradigm
which is computation through spike timing and temporal codes. Instead of static
feature activations, information is carried by spatiotemporal spike patterns, which
can naturally encode dynamic sensory data and support temporal reasoning. This
capability allows SNNs to bridge the gap between neuroscience and machine learn-
ing, offering models that are not only computationally efficient but also closer to
the principles of biological learning and perception.

However, training SNNs remains a major challenge due to the non-differentiable
nature of spike generation. The discontinuous spiking function prevents direct
use of traditional gradient based learning methods such as backpropagation. To
address this, several learning paradigms have emerged. This paradigms are ranging
from biologically motivated local rules such as STDP to differentiable surrogate
gradient techniques that approximate spike derivatives. These developments have
gradually improved the trainability of SNNs and opened new research directions in
temporal pattern recognition, sensor fusion, and fault-resilient computing [3, 5].

In summary, SNNs combine temporal computation, event-driven sparsity, and
neuromorphic efficiency within a unified framework. They serve as a promising
computational paradigm that not only enhances energy efficiency but also deepens
the connection between artificial and biological intelligence. It is bridging theoretical
neuroscience, algorithmic design, and hardware realization [3, 5].

2.1.1 Biological Inspiration

The architecture of SNNs is directly inspired by the human brain’s neuronal
communication mechanism. Neurons communicate via discrete electrical impulses
that are called spikes [3]. Each neuron maintains a membrane potential that
integrates incoming synaptic currents over time. When the potential exceeds a
specific threshold, the neuron fires a spike, transmitting it to connected neurons via
synapses. Then, the potential resets, and the neuron enters a brief refractory period
before it can fire again [6]. This process mirrors biological signal transmission
observed in cortical circuits, where neurons encode sensory information through
spike timing rather than continuous voltage levels. The explicit modeling of
time in SNNs allows for dynamic behavior such as adaptation, inhibition, and
synchronization phenomena that are difficult to reproduce in conventional networks
[6].
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2.1.2 Neuron Types
Spiking neurons form the core computational units of SNNs. Unlike traditional
artificial neurons that process static and continuous signals, spiking neurons incor-
porate temporal dynamics, integrating incoming spikes over time and emitting an
output spike once a firing threshold is reached. This mechanism allows SNNs to
emulate the event driven computation observed in biological nervous systems [3, 5].

A commonly used spiking neuron model is the LIF neuron. The LIF neuron
models the membrane potential as a leaky capacitor that accumulates input currents
and gradually decays toward a resting value when no input is present. When the
potential exceeds a threshold, a spike is emitted and the neuron resets its state.
The membrane dynamics can be described by the differential equation:

τm
dVm(t)

dt
= − (Vm(t) − Vrest) + RmI(t), (2.1)

where Vm(t) is the membrane potential, I(t) is the input current, Rm the membrane
resistance, and Tm the membrane time constant.

This process is illustrated in Figure 2.1, where the top panel shows input spikes,
the middle panel shows membrane potential evolution, and the bottom panel
displays the resulting output spikes once the threshold is reached.

Figure 2.1: Illustration of Lapicque’s LIF neuron model showing the relationship
between input spikes, membrane potential dynamics, and output spikes [7].

To make simulation feasible in digital environments, continuous membrane
dynamics are often discretized over time. The discrete-time update of the membrane
potential at time step n can be expressed as:

Vm[n] =
β · Vm[n − 1] + W · sin[n], if Vm[n − 1] ≤ Vth

Vm[n − 1] − Vth + W · sin[n], if Vm[n − 1] > Vth

(2.2)

where β = e−∆t/τm represents the leak factor, W denotes the synaptic weights, and
sin[n] and sout[n] correspond to input and output spikes, respectively [6].
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Several variants of the LIF neuron have been developed to capture additional
biological behaviors. The ALIF model introduces an adaptation variable that
increases the firing threshold after each spike, representing neuronal fatigue and
promoting sparse activity [5]. Another biologically detailed model, the Izhikevich
neuron, combines computational efficiency with the ability to reproduce complex
firing patterns such as bursting, chattering, and spike-frequency adaptation [3].
The AdEx model further refines the dynamics by introducing an exponential term
to more accurately represent membrane depolarization near firing threshold [5].

Together, these neuron models define how individual spiking units integrate
inputs and generate discrete events, forming the microscopic foundation of all SNN
architectures.

2.1.3 Layer Types
While neuron models define individual dynamics, layer types determine how large
populations of neurons are connected and interact to process information. Each
layer specifies the flow of spikes through the network from input encoding to
high-level feature extraction and classification.

A conceptual overview of spike-based signal propagation within a layer is illus-
trated in Figure 2.2. Incoming spike trains (X1,<t, X2,<t, . . . , Xn,<t are weighted by
synaptic connections (W1,j, W2,j, . . . , Wn,j) and integrated by postsynaptic neurons
to produce output spikes (Xj,t).

Figure 2.2: Schematic representation of spike-based computation within a neuron
layer. Weighted input spikes are integrated to generate output spikes at time t [8].

The FC layer is the most basic structure in SNNs, where each neuron in one
layer is connected to every neuron in the next. It enables global integration of
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information but is computationally expensive for large-scale networks [5].
The Convolutional Layer introduces spatial locality by restricting connections

to a local receptive field, similar to the operation of biological visual cortices. This
makes SCNNs well suited for visual and auditory event based data, efficiently
capturing spatiotemporal correlations through shared weights and sparse spike
activations [3].

The Recurrent Layer extends temporal processing by allowing feedback connec-
tions, enabling neurons to retain memory of past inputs. This property enhances
the ability of SNNs to process sequential data such as speech or event streams [5,
3].

Collectively, these layer types define how spiking neurons are arranged and
interconnected to construct deep and functionally diverse SNN architectures capable
of performing complex cognitive tasks.

2.1.4 Parameters of SNN
The behavior of a SNN is largely determined by several neuron level and layer
level parameters that govern its temporal and dynamic responses. The membrane
potential (Vm) represents the internal state of a neuron, integrating incoming spikes
over time and determining when a spike is generated. A spike occurs once this
potential surpasses the threshold (Vth), which defines the neuron’s firing condition.
A lower threshold increases sensitivity to inputs but may also lead to instability [6].
The membrane time constant (τm) regulates how quickly the potential decays toward
its resting value, effectively determining the leakiness of the neuron, while the
decay factor (β) serves as its discrete time approximation in simulation frameworks
[4]. Information transfer between neurons is modulated by synaptic weights, which
scale the influence of presynaptic activity. Together, these parameters shape how
rapidly and sensitively neurons respond to stimuli, ultimately defining the overall
temporal dynamics and computational properties of the SNN.

2.1.5 Learning Method
Learning in SNNs differs fundamentally from conventional ANNs, as information is
encoded in discrete spike events over time rather than in continuous activations.
Each neuron integrates incoming current into its membrane potential and emits a
spike once this potential exceeds a firing threshold, thereby transmitting information
through temporally precise events. However, this discrete and non-differentiable
spiking process makes it difficult to apply standard gradient-based optimization
methods directly.

To address this limitation, surrogate gradient methods are employed, which
approximate the derivative of the spike activation function with a continuous
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surrogate during backpropagation. This allows gradient-based learning in SNNs
analogous to ANNs, enabling efficient supervised training using loss functions such
as MSE or cross entropy. These methods make it feasible to train deep SNNs with
modern optimizers like Adam while maintaining temporal dynamics [6].

Alternatively, unsupervised biologically inspired rules such as STDP can be
used, where synaptic weights are adjusted based on the relative timing between
pre- and post-synaptic spikes:

∆w =
A+e−∆t/τ+ , if ∆t > 0

−A−e∆t/τ− , if ∆t < 0
(2.3)

where ∆t = tpost − tpre represents the temporal difference between spikes. In this
work, supervised learning with surrogate gradient-based backpropagation is used, as
it provides more stable convergence for large-scale datasets and facilitates consistent
comparison across fault injection scenarios [3].

2.1.6 Python Interface
Python provides a practical environment for implementing spiking neural networks,
offering high level tools that make it possible to translate theoretical SNN models
into executable simulations. Deep learning libraries such as PyTorch supply the
vectorized operations, automatic differentiation, and modular layer definitions
needed to construct and train network architectures. On top of these foundations,
specialized SNN oriented libraries extend PyTorch with components tailored to
spiking dynamics.

Among these, snnTorch is widely used for prototyping because it introduces
spiking neuron models such as the LIF unit directly as drop in layers. These
modules maintain membrane potentials over time, apply decay, generate spikes
when thresholds are crossed, and provide surrogate gradient approximations that
enable gradient based learning. In this way, fully connected, convolutional, or
recurrent architectures can be converted into SNN counterparts simply by replacing
conventional activation functions with spiking neuron layers.

Overall, the Python ecosystem provides a flexible interface for SNN development:
PyTorch defines the computational graph, SNN focused packages supply spiking
dynamics, and domain specific libraries prepare data in time structured formats.
This combination enables to prototype, analyze, and train SNN architectures
efficiently while maintaining consistency with standard machine learning workflows.

2.2 Fault Injection
Fault injection is a controlled testing methodology used to evaluate the reliability
and robustness of hardware and software systems by deliberately introducing faults
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into their computational process [6]. The technique aims to emulate real world
error conditions such as transient disturbances, permanent defects, or parametric
deviations in order to observe how the system reacts, recovers, or loses functionality
under fault [2]. Fault injection in SNNs enables researchers to simulate low level
hardware faults within neuron and synapse models, allowing the systematic study
of fault propagation, its impact on network behavior and performance [9]. Fault
injection can be applied both in hardware, by physically disturbing the circuit, and
in software, by simulating the effect of such faults within the model. Depending on
the required accuracy and controllability, the injection can be performed through
pure software simulation or hardware-based testing on physical devices.

2.2.1 Motivation

Fault injection studies are motivated by the increasing deployment of SNN based
accelerators in energy and latency constrained edge devices and by the corresponding
need to ensure dependability in safety critical applications [10]. Biological neural
systems are often cited for their robustness. However, empirical fault injection
experiments indicate that hardware implementations of both ANNs and SNNs can
be vulnerable to hardware level faults, particularly when faults occur after model
training and deployment [9]. This vulnerability arises because some faults can lead
to critical functional changes that are not mitigated by the network’s redundancy,
resulting in silent data corruption or significant drops in inference accuracy [11].
Consequently, systematic fault injection is required both to identify the most
critical fault types and locations and to quantify the limits of the network’s natural
resilience so that efficient mitigation strategies can be designed [1]. Performing
such studies at transistor level is computationally prohibitive for large networks.
Therefore, software-level fault injection is employed to emulate hardware faults.

2.2.2 Techniques

Fault injection can be performed at different abstraction levels, ranging from
low-level hardware circuits to high-level software simulations. Depending on the
purpose of the study, faults may target electrical signals, memory elements, or
algorithmic variables that represent neuron or synapse behavior. Faults can be
categorized in several complementary ways, such as by duration (transient or
permanent), by functional impact (dead or saturated neurons, timing variations, or
parametric drifts), or by their physical location in the system (weights, thresholds, or
interconnects). [11]. Because these fault manifestations arise from different physical
mechanisms and occur across different operational contexts, various methodological
approaches have been developed to study them systematically.
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From a methodological perspective, two main approaches exist. Hardware-
based fault injection involves inducing real physical disturbances in neuromorphic
devices like voltage or clock glitches, or radiation exposure. While these methods
provide realistic insights, they are difficult to control and repeat. Software based or
simulation based fault injection, on the other hand, emulates hardware defects in a
modeled environment by manipulating internal variables such as weights, neuron
thresholds, or membrane potentials. This approach is preferred for its scalability,
repeatability, and precise control over injection timing and fault parameters. Instead
of replicating every transistor level detail, behavioral fault models are derived from
lower level analyses and implemented at the software level to mimic how physical
faults would alter neuron and synapse dynamics [12, 9]. This enables large scale,
systematic evaluation of SNN resilience while maintaining computational feasibility.

Because the total number of possible fault sites in a model can reach millions,
testing every location exhaustively is impractical. To address this, SFI is used.
In SFI, only a statistically representative subset of all possible faults is injected
according to a controlled sampling plan. This allows researchers to estimate network
reliability with quantifiable confidence while avoiding exhaustive enumeration. The
number of samples required to achieve statistically valid coverage is determined
using the standard finite population sampling equation, also known as the DATE09
statistical sampling formula:

n = N

1 + e2 · N−1
t2p(1−p)

where N is the total number of candidate fault locations, e is the allowable margin
of error, t is the value corresponding to the desired confidence level, and p is the
estimated probability of a fault occurrence. This formulation accounts for finite
population correction, ensuring that the selected sample size provides statistically
representative coverage of the entire fault space.[13]

By applying this sampling approach, fault injection experiments can balance
accuracy and computational efficiency, ensuring that reliability estimates remain
valid even when only a subset of all possible faults is tested [6]. Overall, simulation
based and statistically guided fault injection offers a reproducible and scalable
methodology for analyzing how SNNs respond to diverse hardware level fault
mechanisms.

2.2.3 Fault Injection During Training
Fault injection in SNNs can be performed at different stages of the learning process,
each providing complementary insights into the network’s reliability. Injecting
faults during training examines the system’s ability to adapt under faulty conditions,
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while after-training fault injection evaluates how well a trained and fixed model
maintains performance once learning [14].

During-training fault injection, also referred to as fault-aware training, uses the
adaptive learning behavior of SNNs to improve tolerance to hardware imperfections.
When faults are introduced concurrently with learning, SNNs can dynamically
adjust synaptic weights, firing thresholds, or membrane parameters to compensate
for malfunctioning neurons or synapses [14]. This adaptive process exploits mecha-
nisms such as STDP and surrogate-gradient learning, which allow the network to
reconfigure itself during training and learn to operate under imperfect hardware
conditions [15]. Empirical studies show that networks trained in the presence of
controlled perturbations exhibit improved post-deployment fault tolerance, as they
implicitly learn to compensate for unreliable components [16] [15].

This adaptive behavior parallels biological neuroplasticity, where damaged
synapses or neurons are functionally bypassed through local reorganization of
connectivity. Fault-aware training can reduce the effect of hardware variations,
slow changes in synaptic weights, and stuck-at defects by retraining around faulty
elements [16]. However, the ability to compensate depends on the type and duration
of the fault. Temporary faults can often be corrected during learning. In contrast,
permanent defects tend to cause lasting performance decrease that cannot be
recovered, even when the network adapts during training [15].

By contrast, after training fault injection evaluates system robustness once the
learning phase has been completed and model parameters are frozen. In this case,
the network no longer adapts, so injected faults directly affect inference accuracy
[15]. Experimental results indicate that SNNs trained using STDP or surrogate
gradient methods maintain their performance better than conventional ANNs when
exposed to post-training faults [16]. Nevertheless, severe or permanent hardware
faults can produce persistent misfiring or dead zones that propagate through the
network and cannot be mitigated without retraining [15].

During training fault injection measures the system’s ability to adapt and recover
while after training fault injection measures the ability to maintain correct operation
without adaptation. Combining both approaches provides a comprehensive view of
the fault tolerance of neuromorphic systems and helps guide the joint development
of robust learning algorithms and reliable hardware designs [17].

2.3 Fault Types
Faults in neuromorphic hardware can manifest in multiple ways depending on their
physical cause, temporal duration, and functional impact on neuron or synapse
behavior. At a high level, hardware faults may alter the electrical state, timing,
or functional connectivity of neurons and synapses, leading to abnormal network
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activity. Common fault manifestations include dead or inactive neurons, which
never fire due to disrupted membrane updates; saturated neurons, which remain
constantly active regardless of input; and timing variations, where delays or jitter
alter spike timing precision. Other effects such as synaptic or weight corruption
change connection strength or polarity, while parametric drifts cause gradual
deviations in leak constants or firing thresholds.

Figure 2.3: Illustration of common fault behaviors in spiking neurons: (top) dead
neuron, (middle) timing variations, (bottom) saturated neuron. Red dashed lines
indicate fault-free (golden) spikes, and blue solid lines represent faulty behavior
[10].

Figure 2.3 illustrates typical examples of these fault behaviors compared to fault-
free (golden) neuron activity. In the “dead neuron” case, no spikes are generated
despite stimulation, in “timing variations” spike events occur at irregular or shifted
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intervals and in “saturated neurons” continuous firing is observed regardless of
the input pattern. These behaviors represent distinct manifestations of underlying
hardware defects that can propagate through the network and disrupt functionality.

These behavioral anomalies can originate from different physical mechanisms and
are generally classified into two main categories: transient faults and permanent
faults [18]. The distinction between these two lies primarily in their duration,
recurrence, and persistence within the circuit. Transient faults are temporary
disturbances that may resolve spontaneously, while permanent faults represent
irreversible defects that persist throughout system operation.

2.3.1 Permanent Faults
Permanent faults, also referred to as hard faults, are irreversible hardware defects
that persist throughout operation. They typically originate from manufacturing
defects, transistor wear-out, electromigration, or prolonged exposure to stress factors
such as heat or voltage overstress [18]. Once a component becomes permanently
damaged, its electrical behavior deviates from the intended logic, affecting the
circuit’s long-term functionality. Depending on the affected site, these faults can
lead to various behaviors such as dead neurons that never fire, saturated neurons
that remain constantly active, or frozen synapses with weights that never update
during learning.

Among permanent faults, stuck-at faults represent the most commonly studied
model due to their prevalence in digital and neuromorphic circuits. In a stuck-
at fault, a signal line, neuron output, or synaptic weight is permanently fixed
to a logical ‘1’ or ‘0’ [19]. This type of fault may occur within neuron circuits
where a membrane potential fails to update or reset correctly or within synaptic
arrays where a weight value remains constant regardless of pre-synaptic activity.
Stuck-at faults are particularly detrimental because they persist across all time
steps, resulting in permanently inactive or continuously firing neurons that distort
information flow through the network. Even a small fraction of such faults can
significantly reduce classification accuracy [19]. At higher fault densities, global
network instability and biased firing patterns may arise, which cannot be corrected
without retraining. Because of their persistent nature, stuck-at faults define the
worst-case reliability limit of neuromorphic architectures and are therefore widely
used as a benchmark in resilience evaluation studies.

2.3.2 Transient Faults
Transient faults, also known as soft errors, are temporary disturbances that alter
circuit behavior for a brief period before the system returns to normal operation.
They are primarily caused by external or operational effects such as cosmic radiation,
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thermal noise, voltage fluctuations, or timing glitches [18]. In neuromorphic
systems, these transient effects can disturb signal transmission, modify stored
logic states, or briefly corrupt analog parameters such as membrane potential or
synaptic current. Other forms of transient behavior include timing variations,
where propagation delays cause spikes to occur earlier or later than expected, and
parametric fluctuations, where neuron thresholds or leak constants deviate slightly
due to electrical noise.

The most representative model of transient behavior is the bit-flip fault, which
inverts a single bit in the binary representation of a stored parameter. For example,
a bit-flip in the memory cell of a synaptic weight or neuron threshold changes the
encoded value from 0 to 1 or vice versa, corrupting the numerical precision of the
parameter [20]. Although such events are short-lived, they can have persistent
effects in SNNs due to the network’s temporal dynamics—small perturbations may
propagate over time, subtly altering firing rates or spike patterns across layers.
This cumulative effect can degrade the output distribution even after the transient
error disappears [20].

Transient faults are especially relevant for SNNs deployed in radiation-prone or
low-voltage environments, such as space applications or edge AI devices, where the
probability of soft errors is significantly higher. To assess their impact, researchers
often employ SFI, introducing random bit-flip events at controlled rates to model
realistic fault occurrences. These studies aim to quantify network sensitivity and
determine which parameters, layers, or neuron populations contribute most to error
propagation under transient fault conditions [11].
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Chapter 3

Methodology

In this chapter, the methodological approach taken to train a resilient SNN model
is described. The process involves preparing the datasets, designing the model
architecture, developing a fault injecting strategy and establishing the training of
SNN.

3.1 Data Preprocessing
NMNIST dataset was denoised using a temporal filter with a window of 10,000
µs to isolate the events. The denoised data was converted into 100 time bins
using the sensor size through a frame-based transformation to generate spike-frame
representations suitable to train SNN.

To prepare the AudioMNIST dataset, raw audio samples were standardized to
a fixed duration of 0.73 seconds (35,000 samples at 48 kHz) via truncation or zero
padding which is extending shorter signals by appending zeros so that all samples
share a consistent length. This guarantees uniform input size across dataset. Each
standardized audio sample was then converted into a representation that an SNN
can process more easily. Raw audio is simply a one-dimensional waveform showing
how air pressure changes over time, but this format does not explicitly show how
the energy of the sound is distributed across different frequencies. To extract this
information, a Mel filterbank transform was applied. The Mel filterbank first splits
the audio into many small overlapping time windows. For each window, it analyzes
how much energy the signal contains at different frequencies. These measurements
are then grouped into 40 “Mel bands” which are frequency ranges spaced according
to how humans perceive differences in frequency [5]. Performing this operation
across the entire signal produces a Mel-spectrogram, a two dimensional map in
which one axis represents time and the other represents frequency. Each value in
the map indicates the strength of the sound energy in a specific band at a given
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moment. In this work, windows of 25 ms with a 10 ms step between windows were
used, resulting in roughly 71 time frames for each sample. To make the values
easier to interpret, the spectrogram was converted from raw amplitude values
to the decibel (dB) scale, which compresses the dynamic range and corresponds
more closely to perceived loudness. Finally, each spectrogram was normalized
independently so that differences in recording volume do not affect the model and
all samples occupy a similar numeric range. To have data suitable for SNNs, the
normalized Mel-spectrogram values were binarized using a fixed threshold (T=0.9)
producing spike based inputs that represent temporal activations across frequency
bands. Finally, features were arranged by time steps so that each time frame
corresponds to one SNN step.

Each sample in SHD consists of spike events distributed across input neurons,
where the timing and location of each event correspond to frequency specific
responses from a simulated auditory system. To make the data suitable for
SNN processing, it was converted the raw spike events into fixed-length frame
representations. This transform divides the continuous spike stream into a fixed
number of temporal bins which was 100 for this work while preserving the temporal
structure of the events. The resulting tensors have dimensions that represent the
number of time steps, batch size, and input neurons.

The AudioMNIST dataset were split into training, validation, and test sets (70%,
20%, and 10%). The SHD and NMNIST data were in train and test sets so the
one-eighth of the train set randomly split into validation set. Finally, data loaders
were defined for each subset to enable efficient batching, shuffling and parallel data
processing.

3.2 Model Architecture
For the NMNIST dataset, a model was implemented as a two layer fully connected
SNN built with LIF neurons. More biologically detailed neuron models such as
adaptive or conductance based LIF could in principle capture richer dynamics
however they are computationally more complex than the standard LIF and are
less commonly used in large SNN architectures [4]. The standard LIF neuron was
adopted as it provides a practical trade-off between computational tractability for
implementation in large scale SNNs and sufficient biological realism to allow key
intrinsic dynamics, such as membrane decay (β) and firing threshold, to be treated
as learnable parameters. The network receives 17 × 17 × 2 event-based frames as
input and projects them to a hidden layer of 256 neurons, followed by an output
layer of 10 neurons corresponding to the digit classes. Training is performed with
MSE count loss and the Adam optimizer (learning rate =1 × 10−4).

A network initialized to be trained by AudioMNIST dataset follows a three layer
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fully connected architecture that processes Mel-spectrogram-based spike inputs.
Each layer consists of a linear transformation followed by a LIF neuron layer,
which models temporal integration and spike-based activation. The architecture
comprises an input layer of 40 units. The hidden layers contain 150 neurons, and
both the membrane decay constant (β) and firing threshold are trainable, allowing
the network to adapt its temporal dynamics during learning. The output layer
consists of 10 LIF neurons for digit classification. Training is conducted with MSE
count loss and the Adam optimizer (learning rate = 3 × 10−4). The model trained
with SHD is a multi-layer fully connected SNN. It consists of four feedforward layers
connected through LIF units, each parameterized by trainable membrane decay
constants (β) and firing thresholds (Vth). The hidden layers contain 170 neurons
and the output layer contains 20 neurons corresponding to the digit classes. Each
LIF layer captures temporal dependencies by maintaining membrane potential
states across time steps, thereby enabling the model to integrate incoming spikes
and generate dynamic spiking outputs. Training uses MSE count loss and the
Adam optimizer (learning rate =1 × 10−4).

Table 3.1: Model Architecture Summary

Model
Input Layer

Neurons

Number
of Hidden

Layers

Neurons
per Hidden

Layer
Output Layer

Neurons
NMNIST 578 1 256 10
AudioMNIST 40 2 150 10
SHD 700 3 170 20

3.3 Fault Injection Strategy
A comprehensive fault injection framework targeting both learnable and run-time
parameters is developed. The framework is designed to simulate realistic low-level
faults which may occur in digital hardware due to transient errors or permanent
defects.

Faults are introduced at the bit level, specifically targeting the 32-bit floating-
point representation of the selected value. Two distinct fault models were im-
plemented within the injection framework to represent transient and permanent
hardware errors. In the transient fault scenario, a randomly selected bit within
a chosen parameter is flipped at the randomly chosen batch time step and epoch.
Since these faults are momentary, the affected value can subsequently be updated
or corrected during training through backpropagation. In contrast, a stuck-at fault
is modeled as a permanent defect, where the selected bit is fixed to logic ‘0’ or
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‘1’ at the start of training and remains unchanged throughout the entire process.
This distinction allows the framework to capture both short-lived disturbances and
persistent hardware malfunctions within the same experimental setting.

To define the complete search space for fault injection during the training process,
a comprehensive candidate list is generated. This list enumerates every potential
fault site encountered during a single batch pass, targeting both the static, learnable
parameters and the dynamic, run-time variables of SNN. The full set of injection
targets, detailed in Table 3.2 and it includes weight elements, gradient entries,
per-time-step inputs, linear pre-activations, LIF membrane potentials, membrane
time constants (β), and firing thresholds. From this pool, the injector draws a
number of targets uniformly at random, ensuring that each parameter element
has an equal probability of being selected for corruption. The total length of the
candidate list defines the complete search space.

Table 3.2: Comprehensive Candidate List for Fault Injection

Target Type Description and Role in the SNN
Static/Learnable Parameters
Weight Elements The fundamental parameters of the net-

work updated during training

Gradient Entries The calculated error derivatives used dur-
ing backpropagation to update weights

LIF Firing Thresholds (Vth) The voltage threshold that triggers a spike

LIF Membrane Time Constants (β) The decay rate of the membrane potential

Dynamic/Run-time Variables
Per-Time-Step Inputs The input tensor fed into the network at

each time step

Linear Pre-activations The output of the linear transformation
before being processed by the LIF neuron

LIF Membrane Potentials The integrated potential state of the neu-
ron maintained across time steps

By using the Statistical Fault Injection (SFI) sampling formula [13] together
with the desired error margin, confidence level, and assumed fault probability, the
statistically justified number of fault injections was determined. In this study, the
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total population size N corresponds to the number of all possible fault locations in
the model, including every element of the weight tensors, gradient tensors, input
spikes, activations, membrane potentials, and neuron-specific parameters. The SFI
formula ensures that the selected sample size provides unbiased and representative
coverage across this population. The resulting value specifies how many faulty
samples must be analyzed to obtain statistically meaningful conclusions about
resilience. Instead of injecting a single fault into each model, which would require
an impractically large number of training sessions, multiple faults were introduced
within each run to balance computational efficiency with representativeness. The
chosen injection counts for the two distinct fault models reflect the specific nature
and typical distribution of the corresponding hardware errors.

In the bit-flip scenario, hundreds of random bit inversions were injected per model.
Applying faults in large batches is essential not only for achieving statistically
meaningful coverage across the extensive space of runtime and learnable parameters,
but also for accelerating the overall resilience analysis [21]. Because transient
faults manifest unpredictably and depend strongly on timing, wide and dense
sampling of the parameter space is required to capture their full range of effects.
Injecting many faults within each epoch therefore provides a practical and efficient
means of evaluating the network’s sensitivity to non-deterministic, time-dependent
failures[21].

Conversely, in the stuck-at case, only three randomly selected bits were forced
to fixed 0. Stuck-at faults model permanent defects, such as those caused by
manufacturing flaws or device aging. Such defects are generally sparse yet have
a catastrophic, permanent impact where they occur [21]. This low fault count is
intentionally selected to simulate the failure of a limited number of critical elements.
Three faults are injected instead of a single fault to ensure the experiment evaluates
the network’s generalized defect tolerance across different sparse locations, thereby
providing results with increased statistical robustness compared to isolating the
effect of a single failure event. Consequently, the network’s capacity for defect tol-
erance against multiple stuck-at faults is assessed while maintaining computational
feasibility and accurately representing the physical reality of hardware defects.

For each experiment, candidate fault locations are systematically identified.
A subset is then randomly selected for injection, ensuring proper coverage and
randomness. During model training, at each batch and time step, the framework
checks if any pending faults are scheduled for injection. When a fault condition is
met, the corresponding value is perturbed using the selected bit-level operation.
As shown in Figure 3.4, the framework supports fault injection targeting two main
parameter categories. The learnable parameter (weights, gradients and neuron
parameters β and Vth) faults are injected after backward pass. The run time
variable (inputs, activations, and membrane potentials) faults are injected during
forward pass at right time step batch and epoch. The original and corrupted values,
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Algorithm 1 Training-Time Fault Injection Procedure
1: Input: SNN model M , datasets
2: Output: Golden accuracy, faulty accuracies
3: Train M without faults to obtain the golden model accuracy.
4: Generate fault candidate list (weights, gradients, β, threshold, input, activation,

membrane).
5: Compute number of faulty models via DATE09 formula (95% confidence, 5%

error).
6: for each sampled faulty model do
7: if stuck-at experiment then
8: Select 3 random fault locations.
9: for each epoch do

10: Forward pass with input/activation/membrane faults.
11: Backpropagation.
12: Inject stuck-at faults with weights/gradients/β/thresholds.
13: end for
14: Evaluate inference accuracy vs. golden model.
15: else
16: Select ∼300 bit-flip faults, distribute across epochs.
17: for each epoch do
18: Forward pass with input/activation/membrane faults.
19: Backpropagation.
20: Inject stuck-at faults with weights/gradients/β/thresholds.
21: Record validation accuracy vs. golden model.
22: end for
23: end if
24: end for

along with metadata such as the bit index, layer, and parameter location, are
logged. By logging all injected faults and their effects, the framework enables a
thorough evaluation of the SNN’s fault tolerance, revealing both immediate and
accumulating impacts.

This methodology allows for a controlled, repeatable, and statistically justified
exploration of SNN vulnerability to hardware-level errors, and provides insights
into the resilience of spiking neural network models under realistic deployment
conditions.
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Figure 3.1: Fault Injection Diagram

3.4 Training Procedure
As shown in Figure 3.5, the network is first trained under fault-free conditions to
establish a baseline performance reference before introducing any faults. Following
this stage, a series of fault injected training runs are conducted. The number of
models is determined using the previously described statistical sampling method.
To ensure that each faulty model represents a consistent perturbation of the
golden model, a fixed random seed is used to control weight initialization, data
shuffling, and other stochastic components of training. This guarantees that the
only difference between the golden model and each faulty model is the injected
faults themselves. For each run, a distinct set of randomly selected fault locations
is applied, providing diverse coverage of potential fault scenarios across models.
Throughout all runs, the framework enforces the correct fault-injection schedule,
and every injected fault together with the corresponding model outputs is recorded
in detailed logs for subsequent analysis and comparison against the baseline model.
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Figure 3.2: Training Diagram

22



Chapter 4

Experiments and Results

4.1 Datasets
This section introduces three fundamental benchmark datasets NMNIST, AudioM-
NIST, and Spiking Heidelberg Digits (SHD). The following subsections detail the
unique generation methodologies, structural characteristics, and research utility of
each dataset.

4.1.1 NMNIST
The NMNIST dataset is a neuromorphic, event based version of the classical MNIST
dataset for handwritten digits. It was developed to provide a standardized and
biologically inspired benchmark for SNN research, addressing the lack of large,
publicly available datasets compatible with neuromorphic vision sensors [22]. It
retains the familiarity and simplicity of MNIST while enabling direct evaluation of
spike based algorithms under realistic, asynchronous sensory input conditions.

To generate NMNIST, an ATIS and a DVS type camera that records changes in
pixel intensity rather than absolute brightness values is used [22]. Each pixel in
the ATIS operates independently, producing a stream of discrete events whenever
a change in luminance occurs. An event encodes four pieces of information which
are the pixel’s x-coordinate, y-coordinate, the polarity of the brightness change,
and a timestamp with microsecond precision. Instead of moving the images on a
monitor, the authors physically moved the sensor itself using an automated pan–tilt
platform [22]. This movement reproduced three rapid, small amplitude eye-like
motions tracing a triangular path, each lasting approximately 100 milliseconds.
During each motion, the camera recorded the asynchronous stream of ON and
OFF events triggered by changes in pixel intensity caused by the relative motion
between the static image and the moving sensor.
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Figure 4.1: NMNIST Dataset [23]

This design choice avoided the temporal artifacts that arise when simulating
motion on computer screens and ensured that the recordings reflected real, con-
tinuous motion with biologically realistic noise characteristics. Each digit from
the original MNIST dataset was displayed on an LCD screen and recorded under
identical lighting and distance conditions. The complete dataset of 70,000 images
was converted. Each NMNIST sample corresponds to one handwritten digit from
the original MNIST dataset, but instead of a static 28×28 grayscale image, it is
represented as a spatio-temporal spike event stream lasting about 300 milliseconds
[22]. The spatial resolution remains 28×28 pixels to maintain consistency with the
original dataset, ensuring easy comparison across conventional and neuromorphic
models.

The resulting dataset retains the 10 class structure of MNIST but introduces
an additional temporal dimension and polarity channel [22]. On average, each
recording contains roughly 4,000 events, with approximately equal proportions
of ON and OFF events. This temporal structure makes NMNIST well-suited for
algorithms that exploit timing, such as spiking neurons.
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4.1.2 AudioMNIST
The AudioMNIST dataset is a publicly available speech dataset designed for
controlled experimentation in audio classification [24]. It was introduced as a simple
and carefully structured benchmark intended to play a role in the audio domain
similar to that of the MNIST dataset in computer vision. While MNIST provides
a standardized platform for evaluating image classifiers, AudioMNIST enables
systematic investigation of machine learning models on spoken digit recognition and
related acoustic tasks under well-defined conditions. The primary motivation behind
creating AudioMNIST was to establish a clean, small-scale, and well-balanced
dataset for studying how deep neural networks process, represent, and interpret
audio signals [24]. Existing large-scale speech datasets are often too complex for
controlled analysis, interpretability studies, or robustness testing. AudioMNIST
focuses on a narrow and clearly defined task that is recognition of digits zero through
nine allowing researchers to analyze model behavior without background noise,
or uncontrolled recording environments. Furthermore, AudioMNIST is designed
to support the development and evaluation of explainable artificial intelligence
methods for the audio domain.

AudioMNIST consists of 30,000 recordings, corresponding to approximately 9.5
hours of speech data. The dataset includes audio samples of digits 0 to 9, spoken
50 times each by 60 speakers resulting in a balanced and uniform dataset across all
ten digit classes [24]. Recordings were conducted in quiet office environments to
minimize background noise and ensure consistent audio quality. Speech samples
were captured using a RØDE NT-USB microphone as mono-channel signals with
a sampling frequency of 48 kHz, and stored in 16-bit integer format [24]. The
resulting files are single word audio sample of digits pronounced in English, offering
clear acoustic boundaries and minimal temporal overlap.

AudioMNIST supports a broad spectrum of research directions, ranging from
speech recognition and robustness analysis, and neuromorphic computation [24].
Its simplicity, balanced structure, and high quality recordings make it particularly
suitable for studies requiring controlled experimental conditions, including eval-
uating model robustness against noise, quantization errors, or hardware induced
faults.

4.1.3 SHD
The SHD dataset is one of the benchmark datasets that was specifically designed
for the systematic evaluation of SNNs, providing a biologically realistic and stan-
dardized dataset for auditory pattern recognition tasks. Unlike event converted
datasets such as NMNIST, SHD consists of spike sequences generated from real
speech recordings, making it a natural and temporally precise benchmark for testing
the capabilities of time based neural computation. It is modeled that how a human
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ear would respond to natural auditory input, producing spikes directly as the
output of a simulated human ear. This approach enables the dataset to combine
biological plausibility with machine learning practicality, allowing fair comparison
between conventional artificial neural networks and spiking models on equivalent
classification tasks [25].

The SHD dataset is derived from recordings of spoken digits from zero to nine,
produced by 12 male and 12 female speakers. Each audio sample was preprocessed
through a simulated human ear model, resulting in a temporally precise stream
of spikes distributed over 700 frequency channels [25]. These channels correspond
to the outputs of different frequency bands in the human ear filter bank, which
encodes how the human auditory system decomposes complex sounds across both
time and frequency. The dataset contains 8156 training samples and 2264 test
samples, each lasting approximately 1 second [25]. Every sample is represented
as a set of spike times and their corresponding channel indices. In contrast to
datasets that require pre-processing steps such as feature extraction or time window
slicing, the SHD dataset provides spike level data, removing the need for artificial
conversion between continuous and discrete representations [25].

A key feature of SHD is its biophysical realism and this makes it valuable for
investigating temporal coding and spike time learning rules, fault injection and
resilience under hardware inspired errors, spike based sequence classification, and
comparisons between SNN and ANN based recurrent or convolutional models using
identical input content. Additionally, it serves as an essential tool for testing how
neural architectures handle noise, delay, and fault perturbations in temporal spike
data.

4.2 Experiments
For each dataset, experiments were conducted under two hardware fault models:
permanent stuck-at faults and transient bit-flip faults. A fault-free baseline model
was first trained for each dataset to establish a reference for comparison. After
training, the total number of fault susceptible elements was quantified. Since
faults are injected at the bit level rather than per numerical parameter, the total
fault space is defined as the number of parameter elements multiplied by the bit
width of their floating-point representation. This count is further multiplied by the
number of simulation time steps. Based on the computed fault space, the number
of required fault-injected models was determined using statistical sampling with
95% confidence level and a 5% margin of error, ensuring representative coverage
without exhaustive enumeration. Each sampled model instance was then trained
independently under injected faults to analyze fault propagation across distinct
fault locations. Based on the computed fault space and statistical sampling criteria,
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Table 4.1: Parameter counts and sampled fault space for each dataset.

Parameter Type NMNIST AudioMNIST SHD

Weights 150528 30000 180200
Gradients 151060 30620 181260
β 266 310 530
Threshold 266 310 530
Input 106752 43520 38720
Activation 34048 39680 16960
Membrane 34048 39680 16960

Total 1526297600 589184000 1392512000
Sample Size 384 384 384

a total of 384 fault injected training runs were carried out for each dataset. For the
stuck-at fault experiments, three fault locations were randomly selected prior to the
start of each training run. The selected bits were permanently forced to zero from
the first epoch until the end of training, emulating irreversible hardware defects such
as persistent memory corruption. After training, the resulting inference accuracy
for each faulty model was recorded and compared against the corresponding golden
model to quantify degradation in final performance.

For the bit-flip experiments, each model was trained under approximately 300
transient faults. Instead of injecting all faults at once, faults were evenly distributed
across epochs such that the number of injected faults per epoch equaled the total
fault count divided by the number of training epochs. Each fault was assigned
a specific epoch, batch, and time step, ensuring precise injection timing during
training. Validation accuracy was recorded after each epoch, and the accuracies
corresponding to epochs in which faults were injected were compared against
the fault free validation trajectory of the golden model to analyze the impact of
transient faults on learning dynamics.

4.3 Results
Since faults were injected by selecting parameters uniformly based on the injectable
space at random, the distribution of observed faults naturally reflected the param-
eter counts of each component. As expected, input, activation, and membrane
variables—being the most numerous—appeared most frequently, whereas beta and
threshold parameters were encountered far less often due to their small parameter
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footprints. Weight and gradient faults were expected to occur at intermediate fre-
quencies; however, gradient-related faults appeared too rarely to support meaningful
conclusions.

To quantify the effect of the different fault characteristics on model robustness,
the accuracy recorded after each injected fault was compared with the correspond-
ing fault-free accuracy, and the resulting differences were aggregated for each fault
configuration. Importantly, these differences were not always negative. In several
cases, fault injections produced a slight increase in accuracy. This behavior is
consistent with known learning dynamics. Certain perturbations can unintention-
ally act as a form of stochastic regularization, disrupting overfitted parameter
configurations and thereby improving generalization on the validation set. In other
words, some faults introduce noise that counteracts overfitting, leading to higher
post-fault accuracy.

These aggregated deviations were then visualized across multiple dimensions,
including fault type, bit position, layer location, and injection epoch, allowing us
to characterize how different fault attributes influence overall model sensitivity.

4.3.1 Bit-Flip Fault
The experiments conducted on the AudioMNIST dataset reveal that the accuracy
degradation caused by bit-flip faults is strongly dependent on the epoch at which
the fault is injected. Faults introduced during the early stages of training tend to
produce only minor changes in accuracy, as the model parameters are still highly
dynamic and have not yet converged. In contrast, faults injected in later epochs
lead to substantially larger drops in accuracy, indicating that the network becomes
increasingly sensitive to faults as it approaches convergence. This behavior is
consistent with the underlying optimization dynamics: early in training, large
gradient magnitudes cause substantial parameter updates that can wash out the
effect of small disruptions, whereas in later epochs the gradients become smaller
and the loss landscape stabilizes, so injected faults are no longer overridden by
subsequent learning steps. Moreover, in some cases the injected fault altered the
optimization trajectory so severely that the model failed to continue meaningful
learning altogether, leading to abrupt plateaus in validation accuracy. As illustrated
in Figure 4.2., all fault types exhibit a similar trend: the negative impact on accuracy
consistently grows with the epoch index. This suggests that once the model has
formed a stable representation, even small numerical changes can significantly impair
performance, highlighting the importance of considering the temporal dimension of
training when assessing the fault resilience of SNNs.

In addition to the temporal sensitivity observed across epochs, the experiments
also reveal that the impact of bit-flip faults varies substantially across different
fault types. This indicates that the vulnerability of the network is not uniform
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Figure 4.2: Accuracy degradation caused by single bit-flip faults across different
epochs and fault types in the AudioMNIST SNN model.

across its internal components, but instead depends on the specific parameter
or state variable in which the fault occurs. Figure 4.3 illustrates this effect for
the AudioMNIST model, showing the average accuracy degradation produced by
single bit-flips across all bit positions and fault types. As the graph demonstrates,
bit-flips injected into weight parameters consistently produce larger accuracy drops
compared to those injected into activation, membrane, or input variables. This
pattern reflects the persistent and global influence of weights throughout inference,
whereas faults in transient state variables tend to remain localized and therefore
make a weaker overall effect. The relatively smaller impact observed for beta
and threshold parameters is primarily explained by their lower parameter count,
which leads to fewer fault injection events within these structures. Overall, these
results highlight that fault resilience in SNNs is strongly fault type dependent, with
weight storage structures emerging as the most influential contributors to accuracy
degradation under bit-flip faults.

A similar analysis was conducted on the SHD dataset to further examine how
different fault types influence the model’s resilience under bit-flip faults. Unlike
AudioMNIST, where weight related faults dominated the degradation pattern,
the SHD model exposes a more heterogeneous fault type sensitivity profile. As
shown in Figure 4.4, beta and threshold faults produce noticeably larger spikes in
accuracy degradation for several specific bit positions. This effect becomes more
visible in the SHD model because beta and threshold parameters exist in much
smaller quantities compared to other parameter types. With fewer parameters
available to absorb the disturbance, a single bit-flip in these components modifies
a larger fraction of their representational capacity, making the resulting deviation
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Figure 4.3: Accuracy degradation caused by single bit-flip faults across different
bit positions and fault types in the AudioMNIST SNN model.

Figure 4.4: Accuracy degradation caused by single bit-flip faults across different
bit positions and fault types in the SHD SNN model.

more effective. In contrast, faults injected into weights, activations, inputs, and
membrane variables continue to exhibit relatively small and consistent impacts
across most bit positions, reflecting the broader distribution of parameters within
these categories. Overall, these results show that the most effective fault types
are weight, beta, and threshold, which consistently produce the largest accuracy
drops across bit positions. These components are more susceptible than activation,
membrane, or input variables, making them the primary contributors to accuracy
degradation caused by bit-flip faults.
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Figure 4.5: Accuracy degradation caused by single bit-flip faults across different
layers and fault types in the SHD SNN model.

Moreover, how the sensitivity to bit-flip faults varies across different layers of
the network is examined. Figure 4.5 shows that faults injected into the deeper
layers (Layer 3 and Layer 4) consistently lead to larger drops in accuracy compared
to faults occurring in the earlier layers. This pattern aligns with the functional
role of later layers, which typically encode higher level and more discriminative
features. As a consequence, faults introduced at these stages directly disrupt
the final representations used for classification. In contrast, faults in the earlier
layers have a more limited impact, as subsequent layers can partially absorb
or compensate for small deviations in intermediate activations. Although the
magnitude of degradation still depends on the specific fault type, the overall trend
indicates that faults occurring deeper in the SHD model are inherently more
harmful, further emphasizing the structural factors that shape fault sensitivity in
SNNs.

In contrast to the pronounced sensitivity observed in SHD and AudioMNIST,
the NMNIST model exhibits a remarkably stable behavior under the same fault
injection conditions. As illustrated in Figure 4.6, faults applied to any layer or
parameter type in NMNIST result in accuracy changes that are effectively negligible,
remaining close to zero across all configurations. This indicates that the network’s
intermediate representations and synaptic parameters are highly resilient, such
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that injected faults fail to produce meaningful deviations in the model’s decision
process. While this confirms that fault impact can vary substantially across datasets
and architectural choices, the NMNIST results further demonstrate that these
differences can be strong enough to completely suppress the fault-related trends
observed in other models. In particular, although patterns such as the increasing
influence of faults in later epochs and the heightened sensitivity of weight, beta,
and threshold parameters appear consistently across several experiments, some
architectures remain sufficiently robust that these effects are not visibly expressed,
underscoring that fault sensitivity is ultimately model dependent.Overall, our
experiments reveal that single bit-flip faults can alter model accuracy by as much as
±3%, depending on the dataset, architectural configuration, and the location of the
fault. This shows that although many SNN architectures exhibit strong resilience,
bit-level disruptions are still capable of producing non-negligible deviations in
performance.

Figure 4.6: Accuracy degradation caused by single bit-flip faults across different
layers and fault types in the NMNIST SNN model.

4.3.2 Stuck-At Fault
To further understand how stuck-at faults influence the robustness of SNNs, the
average accuracy degradation across layers and bit positions for all three datasets
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are analysed. Figures 4.7–4.8 illustrate that, in both AudioMNIST and NMNIST,
faults injected into earlier layers have noticeably weaker impact compared to those
occurring in deeper layers. Although this trend is less pronounced than in the
bit-flip experiments, a consistent pattern emerges. The final layers contribute more
strongly to performance degradation, reflecting their role in producing higher level
representations that are directly tied to the classification decision.

Figure 4.7: Accuracy degradation caused by single stuck-at faults across different
layers and bit positions in the NMNIST SNN model.

In the SHD dataset, the behavior differs slightly. As shown in Figure 4.9, the
impact does not increase monotonically with the bit index, yet a subtle upward
tendency can be observed. Despite local fluctuations, higher index bits tend to
induce slightly larger deviations compared to lower index ones. This indicates that
stuck-at faults in certain numerical regions of the parameter representation can
have disproportionately greater influence, even if the effect is not strictly linear.

Across all datasets, the magnitude of accuracy degradation caused by stuck-at
faults is generally modest. It typically remaining within ±1.5%. This level of
disruption is noticeably smaller than the maximum effects observed under bit-flip
faults, yet still sufficient to reveal structural differences between architectures.
Taken together, the results show that while some models such as NMNIST remain
comparatively resilient, others exhibit clear layer and bit-dependent sensitivity.
These findings reinforce that stuck-at faults, despite their lower severity, can expose
underlying patterns of vulnerability shaped by model depth, representational
hierarchy, and dataset characteristics.
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Figure 4.8: Accuracy degradation caused by single stuck-at faults across different
bit positions and layers in the AudioMNIST SNN model.

Figure 4.9: Accuracy degradation caused by single stuck-at faults across different
bit positions and fault types in the SHD SNN model.
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Chapter 5

Conclusion and Future Work

This thesis explored the resilience of SNNs to hardware inspired faults injected
during training, addressing the lack of studies examining how learning dynamics
interact with internal errors. By injecting faults into weights, gradients, activations,
membrane potentials, input events, and neuron-specific parameters such as β
and threshold, this work provides a detailed characterization of how different
components of an SNN respond to faults that may arise in realistic neuromorphic
hardware.

The experimental results reveal several consistent patterns. Faults introduced
in the later stages of training produced significantly larger accuracy degradations
compared to those applied early on, indicating that networks become increasingly
sensitive as their representations stabilize. Certain parameter groups such as
weights, β, and threshold emerged as substantially more influential than others.
Faults affecting these components produced the most pronounced accuracy drops,
while activation, input, and membrane faults tended to have smaller effects due
to their transient nature. Layer depth also played an important role. In multiple
models, faults applied to later layers resulted in larger deviations, reflecting the
greater semantic importance of deeper representations.

Despite these common trends, the experiments also highlighted that fault sensi-
tivity is highly model dependent. While AudioMNIST and SHD exhibited clear
vulnerability patterns, the NMNIST model remained remarkably robust, with most
injected faults causing negligible degradation. This contrast demonstrates that
the resilience of an SNN is shaped not only by the fault type itself but by the
specific combination of network architecture, parameter distribution, and dataset
characteristics.

Beyond characterizing the fault sensitivity of the evaluated models, the fault
injection framework developed in this thesis provides a practical basis for future
research on resilient SNN design. Because the injector operates during training
and can target a wide range of model components, it enables controlled studies
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of how learning dynamics behave under faulty conditions. In doing so, the tool
serves as a foundation for systematically developing, evaluating, and benchmarking
robust neuromorphic learning systems.

In addition, extending the experimental analysis to a broader range of datasets
would help determine the generality of the observed fault resilience patterns. While
this thesis focused on three representative neuromorphic benchmarks spanning
visual, auditory, and temporal modalities, incorporating datasets with higher spatial
complexity, richer temporal structure, or larger class sets would provide a more
comprehensive understanding of how data characteristics shape fault behavior.

A second important direction is the exploration of alternative network archi-
tectures. The present work evaluated fully connected spiking models, yet modern
neuromorphic applications frequently rely on SCNNs, recurrent architectures, and
hybrid designs such as SCNNs or spiking attention mechanisms. Investigating these
architectures would reveal whether convolutional feature hierarchies, recurrent
temporal dependencies, or structured connectivity introduce different sensitivity
patterns compared to the FC models considered here. Similarly, expanding the
analysis to diverse neuron models such as adaptive LIF neurons, Izhikevich-type
dynamics, or multi-compartment neurons may uncover additional fault–response
behaviors arising from richer internal dynamics.

Beyond SNNs, the proposed fault injection framework can also be adapted to
non-spiking neural models, particularly CNNs. Comparing SNNs and CNNs under
identical fault settings would clarify whether spiking dynamics provide inherent
resilience advantages or whether the two paradigms exhibit similar vulnerabilities
across architectural components. Such cross-paradigm comparisons would be
valuable for understanding the robustness trade-offs between spiking and non-
spiking computation in fault-prone hardware environments.

Finally, leveraging the injector as part of the training process opens further
opportunities. By introducing controlled disturbances into the learning pipeline,
the tool enables the exploration of fault-aware optimization strategies based on
fault scheduling, and promotes robustness by intentionally exposing the model
to disruptive conditions in order to cultivate resilient internal representations. In
addition, integrating the injector into hardware-in-the-loop pipelines would allow
validation of the simulation based findings directly on neuromorphic processors,
ultimately contributing to the development of fault tolerant learning systems
suitable for safety-critical or resource constrained deployments.
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