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Chapter 1

Introduction and Motivation

The spread of low-power sensors and embedded processors is turning many phys-
ical systems into continuous sources of data. Vehicles, machines, and infrastruc-
ture increasingly host accelerometers, gyroscopes, microphones, and environmental
sensors connected to tiny embedded Linux computers. On top of this hardware,
AI-enabled IoT applications turn raw signals into timely decisions at the edge. In
these settings, the usefulness of an application depends less on the data sheet of
any single sensor and more on whether the system as a whole can collect, align,
and process data reliably under tight resource constraints.

Road-surface monitoring is a representative example. High-end systems for
advanced driver assistance and autonomous driving often rely on Light Detection
and Ranging (LiDAR) technology and camera stacks that reconstruct the road in
2-D and 3-D with high resolution [1, 2, 3]. These solutions achieve impressive
accuracy but are expensive, power-hungry, and complex to integrate, and they are
difficult to justify on small fleets, light vehicles, or low-cost platforms. At the same
time, virtually every vehicle can host a small inertial measurement unit (IMU) and
an embedded computer. If a network of such sensors can be synchronized and
processed in real time, it enables a practical level of surface and motion awareness
that is far more affordable and easier to deploy.

Moving from a single device to a wireless sensor network (WSN) turns timing
into a central concern. Each node maintains its own clock, which drifts with temper-
ature and time. Wireless links such as BLE introduce variable latency, packet loss,
and reordering. Hubs and nodes execute multiple tasks, so queues grow and drain in
ways that depend on the instantaneous workload. Without explicit timing control,
motion events observed by different sensors no longer line up, and the same physical
event can appear at different times and with different delays in each stream. For
human inspection this misalignment may be tolerated; for machine-learning mod-
els that consume fixed windows of synchronized data, it directly translates into
ambiguous or misleading inputs.

These difficulties are amplified in embedded edge deployments. Devices must
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Introduction and Motivation

respect power and cost budgets, so they cannot rely on specialized hardware times-
tamping or high-end networking, yet they must still respond in real time on modest
platforms without dedicated accelerators. Any synchronization scheme that adds
too much overhead, complexity, or fragility risks negating the benefits of using
low-cost sensors in the first place.

This thesis addresses these challenges by designing, implementing, and validat-
ing an end-to-end sensing and inference stack built around a wireless sensor network
and a software-based, hardware-agnostic synchronization framework. The system
connects multiple inertial nodes over Bluetooth Low Energy and auxiliary sources
over HTTP to an embedded Linux hub based on an STM32MP257x-class system-
on-chip. The hub receives streams from all sources, maintains a shared timeline
through periodic timing probes and lightweight offset-and-skew estimators, and
exposes synchronized sliding windows to downstream consumers. The goal is to
show that a purely software solution, running on commodity BLE adapters and
an embedded hub without dedicated accelerators, can maintain millisecond-level
temporal coherence, sustain real-time operation at tens of hertz, and support a
concrete edge-AI workload.

A fundamental design choice in this work is to treat the wireless sensor network
and its synchronization mechanisms not as a standalone infrastructure, but as the
backbone of a broader edge-intelligence architecture, with road-surface classification
from inertial data serving as the main case study to demonstrate its feasibility and
effectiveness. The application drives the architecture: design decisions, parameter
choices, and interfaces are shaped from the outset by the requirements of running
classification on the hub.

The use case is deliberately built on real data. No synthetic or simulated
datasets are used. All training and test data are collected manually using the
implemented wireless sensor network in the field. Operators mount inertial nodes
on a bicycle or vehicle, follow routes that include different surface types, and record
both sensor streams and labels through the same hub and software stack used in
deployment. This exposes the system to realistic operating conditions, including
variations in sensor mounting, vibrations induced by pedalling and vehicle motion,
wireless interference, and the natural imperfections of human annotation.

The development of the use case mirrors a typical intelligent sensing pipeline. A
compact time-series model is first designed specifically for the target platform, with
architecture, receptive field, and parameter count chosen so that it can run in real
time on the embedded hub without monopolizing CPU or memory. A dedicated
data-collection campaign then acquires inertial signals and labels on representative
road segments using the wireless network in its intended configuration, and labels
are tied to time intervals and road-surface types encountered in the real world.
The model is trained and tuned on synchronized windows extracted from these
recordings using the same synchronization engines adopted in deployment, so that
any residual timing errors are consistently reflected. Finally, an inference module is

12



Introduction and Motivation

implemented as a sink of the network: it subscribes to synchronized windows from
the hub, executes the trained model online, and produces surface predictions in
real time. This module is exercised under realistic operating conditions to evaluate
end-to-end behavior, from raw sampling through transport and synchronization to
model output.

Viewed from the perspective of connected sensing systems, this study examines
how an application-level synchronization protocol on standard BLE stacks can keep
multiple nodes sufficiently aligned for reliable inference while maintaining accept-
able delivery rates when several sensors stream concurrently to a low-power hub. It
also considers how temporal alignment impacts the stability and accuracy of sur-
face predictions when both training and inference rely on manually collected data,
and whether the overall architecture remains sustainable in terms of computational
load, memory usage, and queue dynamics while providing synchronized windows
at the required rate.

To address these goals, the thesis introduces a modular wireless sensing frame-
work for edge workloads, in which Bluetooth, HTTP, and local producers connect
to the hub through thin adapters and every record carries explicit timing meta-
data, including both device-side and hub-side timestamps. A single configuration
file specifies sampling rates, probe periods, window parameters, and channel prior-
ities and is shared by acquisition and processing components, ensuring that runs
are reproducible and easy to replay. On top of this framework, a family of software
synchronization engines is implemented: a baseline method that relies only on hub
timestamps and simple buffering, a refined engine that adds offset estimation and
outlier rejection, and a Kalman-based engine that models offset and skew as a two-
state process driven by periodic probes. All engines emit aligned timestamps on a
common time base and log timing diagnostics such as probe round-trip times, es-
timator innovations, and gating decisions, making timing behavior observable and
enabling systematic comparison.

Building on this infrastructure, the thesis develops a complete road-surface clas-
sification pipeline: manually collected inertial and label data are converted into
synchronized training and validation sets, a compact neural model is trained and
evaluated, and the model is deployed as an online inference module on the hub
that consumes the same synchronized windows used during training. Bench and
field experiments then quantify both synchronization quality and application-level
outcomes. Long-duration static runs characterize drift, jitter, and loss in the ab-
sence of motion and test the stability of the engines; controlled rotary experiments
provide reference events for comparing alignment across sensors; and real cycling
and driving sessions assess how alignment errors, packet loss, and queue dynamics
interact with the classifier, affecting metrics such as decision latency and segment-
level recall. Results are reported as distributions over entire sessions to respect
temporal dependence and to reflect how the system would behave in deployment.
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The remainder of this study investigates the problem along the following pro-
gression. The next chapter reviews background material on Bluetooth Low En-
ergy communication, software-based time synchronization in wireless networks, and
road-surface classification from vibration signals, placing the work in the context of
existing sensing and edge-AI literature. The following chapter describes the system
design in detail: the hardware platform, node and hub roles, synchronization en-
gines, logging and windowing pipeline, and the interfaces that expose synchronized
data to sinks such as the inference module and labeling tools. The results chapter
presents bench and field experiments, analyzing alignment accuracy, delivery and
latency statistics, computational load, and the impact of synchronization strategies
on the road-surface classifier. The thesis closes with a discussion of the main find-
ings, practical limitations, and directions for future work, including adaptive probe
scheduling, richer health monitoring, and extensions to other intelligent sensing
applications beyond road-surface monitoring.
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Chapter 2

Background and Related Work

This chapter establishes the technical principles that underpin the design of time
synchronization and data transport for heterogeneous wireless sensing on commer-
cial, resource-constrained hardware. It focuses on Bluetooth Low Energy (BLE)
as the primary motion-data transport and HTTP as an auxiliary ingress for labels
and low-rate signals. It introduces the BLE stack elements relevant to sustained
streaming, characterizes radio-channel variability and its impact on buffering, for-
malizes a device-clock model, reviews synchronization schemes for wireless sensor
networks (WSN), outlines the estimators adopted in this work, and frames real-
time constraints on the embedded hub. Security and integrity considerations are
summarized to motivate minimal, portable controls. The goal is to provide design
rules that are immediately actionable in the methods and experiments that follow.

2.1 BLE Fundamentals for Data Streaming
Bluetooth Low Energy (BLE) is a wireless communication technology in which ap-
plication data are exposed through the Generic Attribute Profile (GATT). Each
peripheral hosts a GATT database composed of services and characteristics identi-
fied by 16- or 128-bit UUIDs and addressed internally by 16-bit handles. A charac-
teristic includes a declaration, a value, and optional descriptors; among these, the
Client Characteristic Configuration Descriptor (CCCD) is used to enable or disable
server-initiated updates.

In a typical sensing scenario, communication follows a simple sequence: connect,
access the GATT database, then obtain data either via explicit reads or via noti-
fications. After establishing a BLE connection, the central discovers the available
services and characteristics and identifies those that carry sensor data. For sporadic
or configuration access, it can issue read operations, where the central explicitly
requests the current value of a characteristic and the peripheral returns a single
response; this is simple but incurs a request–response round trip for every sample.
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Background and Related Work

For continuous streaming, the central instead writes the CCCD of the selected char-
acteristics to subscribe to server-initiated updates. From that point onward, the
peripheral pushes data using Handle Value Notifications (HVNs): new samples are
sent at each connection event without application-level acknowledgements, while re-
liability is handled by the BLE link layer through retransmissions and supervision
timeout. When explicit end-to-end confirmation is required, the same mechanism
can be switched to Handle Value Indications, which add an acknowledgement from
the client before new data are sent. Each notification carries a limited amount of
application payload, so efficient streams batch multiple samples into a single noti-
fication rather than relying on fragmentation. The timing and effective goodput of
the link are governed mainly by the connection interval, peripheral latency, PHY
settings, and the negotiated MTU/Data Length; the controller schedules packets
within each connection event and retransmits when necessary, while the host stack
preserves in-order delivery for each connection.

2.1.1 Link parameters
In Bluetooth Low Energy connections, latency and delivered throughput are pri-
marily determined by three negotiated parameters: the Connection Interval (CI),
the Peripheral Latency (PL), and the Supervision Timeout (STO).

Connection Interval (CI). CI denotes the spacing between connection events
scheduled by the central (nominally 7.5 ms–4 s). It establishes the latency floor for
fresh data, which is approximately 1

2CI plus host/controller queuing and transmis-
sion time. For a burst of n notifications per event with payload B bytes each, the
first-order goodput scales as

goodput ≈ nB

CI .

Reducing CI lowers latency but increases radio duty cycle and exacerbates arbitra-
tion when multiple links share a single controller.

Peripheral Latency (PL) PL permits the peripheral to skip up to L consecutive
events without terminating the connection. The effective service period becomes
(L+1)CI, which increases queuing delay and jitter. For continuous streaming, L = 0
is generally mandated to avoid additional delay.

Supervision Timeout (STO). STO bounds the maximum interval without suc-
cessful link-layer exchange before declaring the connection lost. It is constrained
by the specification as

STO > 2 (1+L) CI,
and is typically chosen in the range 1–6 s to tolerate transient fades while ensuring
timely failure detection.
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2.1 – BLE Fundamentals for Data Streaming

Configuration guidelines In multi-link settings, CI should be chosen short
enough to meet end-to-end latency targets yet sufficiently large to prevent con-
troller congestion; PL should remain zero for streaming workloads; STO should be
set with a modest margin above the lower bound to accommodate brief interfer-
ence. When several links coexist on the same adapter, staggering CI values (or
event phases) is recommended to mitigate systematic burst alignment.

2.1.2 MTU, Data Length Extension, and PHY
In GATT/ATT, the application payload per Handle Value Notification is bounded
by the negotiated ATT MTU:

payloadHVN ≤ ATT_MTU − 3,

where 3 bytes account for the ATT opcode and 16-bit handle. The ATT MTU
is agreed via the Exchange MTU procedure and equals the minimum of the peers’
proposals (subject to OS/controller limits). With the default MTU of 23, only
20 bytes are available to the application; negotiated values in the 185–247 range
substantially reduce per-sample overhead and the number of notifications required.

At the link layer, Data Length Extension (DLE) increases the maximum LE
payload per PDU from 27 to up to 251 bytes when supported by both devices
and the stack. Without DLE, an ATT PDU larger than 27 bytes is fragmented
across multiple link-layer PDUs, incurring extra headers, inter-frame spacing, and
retransmission exposure. With DLE, a typical configuration (ATT_MTU = 247,
LL_DATA_LEN = 251) allows most notifications to fit in a single PDU, improving
throughput and reducing latency variance.

2.1.3 First-Order Model of Throughput and Latency in BLE
Connections

BLE traffic over a connection is organized in connection events spaced by the Con-
nection Interval (CI). During each event the controller can transmit up to (n)
Handle Value Notifications (HVN), each carrying (B) bytes of ATT application
payload (with B ≤ ATTMTU − 3). Here, goodput denotes the effective application-
level throughput observed at the receiver, i.e., the rate of useful payload bytes
excluding all protocol headers, inter-frame spacing, and any retransmitted or lost
packets. Treating (n) as the average number of successful notifications per event
and neglecting controller housekeeping and retransmissions, the delivered through-
put admits the first-order approximation

goodput [bytes/s] ≈ n, B

CI . (2.1)
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Latency for a newly produced sample is lower-bounded by the scheduling gran-
ularity of the link. In the absence of queuing, the one-way latency is approximately

latency ≈ 1
2CI + Ttx + Thost, (2.2)

where Ttx is the airtime of the HVN PDU(s) and Thost accounts for host/controller
transfer and callback dispatch. If each notification batches k samples generated at
rate fs, serialization adds (k − 1)/fs before emission, yielding

latency ≈ 1
2CI + k − 1

fs

+ Ttx + Thost + Tqueue, (2.3)

with Tqueue capturing backlog under load.
In practice, inter-frame spacing, controller guard times, retransmissions, and

multilink arbitration reduce the attainable n and increase variance in both (2.1)
and (2.3). Two design levers follow. First, at a fixed CI, increasing the application
payload B through moderate batching improves goodput, that represents The rate
of useful data that successfully arrives at the destination application, by amortizing
protocol headers and, when Link Layer Data Length Extension (DLE) is available,
often allows a notification to fit within a single PDU. Second, decreasing CI lowers
the latency floor but increases radio duty cycle and exacerbates contention when
multiple connections share the same adapter. Consequently, the batch size k should
be chosen to balance overhead reduction against the additional serialization delay
it introduces, and CI should be selected to satisfy endtoend latency targets without
inducing controller congestion in multilink operation.

2.1.4 Parameterization for Streaming and Multi-Link Op-
eration

At a sampling frequency of fs = 75, Hz, the sensor generates one sample every
Ts = 1/fs ≈ 13.33, ms. If notifications convey a single sample, the Connection
Interval must satisfy CI ≤ Ts so that each measurement can be transmitted in the
next connection event. In practice, such short intervals are rarely sustainable on
commodity BLE adapters: controller housekeeping, sporadic retransmissions, and
arbitration among concurrent links reduce the number of notifications that can be
completed per event, causing missed events and unstable timing. A more robust
approach is to batch k ≥ 1 consecutive samples into each notification and operate
with CI in the 20−45ms range. This configuration retains latency compatible with
real-time operation while lowering the event rate, easing contention, and improving
timing regularity.

Parameter selection should be guided by payload budgeting. A six-axis IMU
sampled at 16-bit resolution produces (12),bytes per sample; adding a compact
fixed header of 4 − 8bytes yields roughly 16 − 20bytes per sample at the ATT
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layer. With ATTMTU ≥ 185 and Link Layer Data Length Extension enabled,
batching k = 3 . . . 6 samples typically fits within a single ATT PDU, amortizing
protocol overhead without triggering link-layer fragmentation. Increasing k further
improves goodput, but it also introduces a serialization delay of (k − 1)/fs before
the last sample in the batch can be emitted. Therefore, k should be chosen so that
this added term remains a small fraction of the end-to-end latency budget.

Latency stability depends on the link parameters discussed previously. For
continuous streaming, peripheral latency should be fixed toPL = 0 to prevent event
skipping and the associated jitter. The supervision timeout must satisfy STO >
2(1 + PL)CI and is typically set in the 1 − 6s range to tolerate short fades while
preserving timely failure detection. Given CI and k, the expected one-way latency
for a newly produced sample can be approximated as 1

2CI+(k −1)/fs +Ttx +Thost,
where Ttx accounts for on-air transmission time and Thost captures controller-to-host
transfer and software handling.

Multi link operation introduces scheduler interactions that must be explic-
itly managed. When possible, peripherals should be distributed across multiple
adapters to increase parallelism and reduce per adapter arbitration. On a single
adapter, CI values (or event phases where supported) should be staggered to avoid
systematic burst alignment across links; slight detuning of CI prevents recurrent
collisions in the controller’s round robin and raises the attainable average number
n of notifications per event. Final sizing should be validated under representative
load by verifying that queue occupancy remains bounded, that the observed notifi-
cation rate matches the production rate within the chosen headroom, and that the
realized latency distribution remains within the application’s targets.

2.1.5 Python stack for BLE: Bleak

On the hub, this work employs Bleak, a cross-platform Python library for the cen-
tral role that binds to native backends (BlueZ on Linux, WinRT on Windows,
CoreBluetooth on macOS) using asyncio. Because Bleak delegates to the oper-
ating system, HCI-level controls for CI, PHY, and Data Length are not portably
exposed; these are configured on the peripheral or negotiated by the stack. MTU
is negotiated and may be queried but not forced in a portable manner. Notify call-
backs must be minimal: timestamp arrivals on the host and enqueue payloads for
downstream processing in separate tasks to avoid back-pressure on the event loop.
On Linux the adapter can be selected (hciX) to spread links; on Windows and
macOS device identity should rely on service UUIDs or manufacturer data rather
than MAC addresses. In the absence of radio-layer timestamps, synchronization is
achieved at the application layer by combining source-side timestamps embedded
in payloads with host arrival times.
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2.2 Variability of the 2.4 GHz Radio Channel
BLE shares the 2.4 GHz ISM band with Wi-Fi and other radios. Adaptive frequency
hopping reduces, but does not eliminate, collisions and bursty loss. Multipath and
human occlusions introduce fast fading; asymmetric airtime usage inflates round-
trip variance. Short-range, line-of-sight placement and modest antenna detuning
reduce tail latencies.

Host and controller stacks maintain queues. Under load, producers can tem-
porarily outpace the link, causing queue growth, reordering, and burst loss once
limits are exceeded. The hub therefore decouples notifier callbacks from processing
via single-producer single-consumer or lock-free queues, bounds queue sizes with
explicit drop policies that prioritize preservation of motion data over noncritical
channels, and assigns host arrival timestamps and monotonic sequence numbers
to detect gaps and reordering. These design choices preserve observability for the
synchronization estimator while protecting downstream consumers from starvation.

2.3 Time and Device Clocks
Each peripheral maintains an independent notion of time. Let t denote true time
and u the device tick counter (for example, milliseconds since boot). The device
clock is modeled as an affine map with noise

t = α u + β + ε, (2.4)

where β is the offset, α the skew (typically expressed in parts per million relative to
nominal), and ε aggregates timestamping noise and residual transport variability.
Low-cost oscillators exhibit temperature-dependent skew and slow drift from aging;
shocks and power events may introduce step changes. Because timestamping occurs
at the application layer on commodity stacks, the system cannot rely on hardware-
assisted time stamping and must instead estimate (α, β) from periodic observations
in the presence of variable transport delay.

Devices may expose ticks in arbitrary units (for example, timer ticks, millisec-
onds, or custom epochs). Normalizing them to milliseconds simplifies reconcili-
ation across sources. Tick wraparound and device restarts reset u and must be
detected from non-monotonic tick sequences, large apparent jumps, or sequence-
number gaps.

2.3.1 Client-Side Timestamp Capture and Synchronization
On the hub, each packet from a peripheral carries at least three time-related fields:

• the device tick uk, a monotonic counter in device units;

20



2.3 – Time and Device Clocks

• the host receive time thost
k , taken from a monotonic clock at the earliest possible

point in the notification or HTTP callback;

• an optional remote timestamp (for example, remote_ms) that encodes the
device epoch in milliseconds if exposed by the firmware.

The acquisition client maintains a synchronization engine for each device. Using
probe–response exchanges or paired timestamps, the engine periodically updates its
estimate of offset β̂ and skew α̂ for that device, following the model in (2.4). Several
estimators are supported (for example, least-squares/PLL and a two-state Kalman
filter); all produce an affine correction of the form

t̂(u) = α̂ u + β̂,

which maps device ticks into the hub-centric time base. At ingestion, each sample
is enriched with this corrected time and with a synchronization status flag (for
example, UNSYNCED, WARMUP, LOCKED) that reflects estimator confidence.

Data management at the client side follows a consistent schema. For every
sample, the record written to the internal queues and to .jsonl logs includes:

• device identifier and sensor channel (for example, accelerometer, gyroscope);

• raw device tick uk and optional remote epoch;

• host receive timestamp thost
k ;

• corrected, hub-centric time t̂k = t̂(uk);

• the measured values (for example, three-axis IMU readings);

• synchronization and quality flags (for example, drop markers, gap indicators).

By preserving both raw and corrected times, the system remains auditable:
alignment can be recomputed offline with different estimator settings, and failure
episodes can be reconstructed and inspected without re-running the acquisition.

2.3.2 Interface to the Inference Pipeline
The inference components consume only the hub-centric corrected timeline and are
deliberately decoupled from the details of clock estimation. At runtime, the edge
client can operate in two modes:

• Streaming mode. Synchronized samples are pushed into an in-memory
queue (the inference sink), where a dedicated consumer thread assembles slid-
ing windows according to the configured sampling frequency, window length,
and stride. The consumer uses t̂k to enforce uniform spacing, perform causal
resampling when minor jitter is present, and trim or pad windows at the edges
of gaps.
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• Offline mode. Recorded .jsonl files are replayed through the same infer-
ence sink interface. The replay tool reads each record, restores its corrected
time t̂k, and feeds it into the streaming windowing logic as if it were arriving
live. This makes the inference pipeline agnostic to whether data are acquired
from live BLE/HTTP connections or from logs.

In both modes, the inference stack sees a sequence of samples tagged with:(︂
device, sensor, t̂k, xk, flags

)︂
,

where xk denotes the sensor values. Window construction and feature extraction
are driven solely by t̂k. Multi-device windows are formed by intersecting the cor-
rected timelines of all participating sensors and selecting samples that fall within
a common time horizon; samples outside this common interval are either dropped
or linearly interpolated in a causal manner, depending on the resampling policy.

The separation of responsibilities is thus explicit:

• the client side (acquisition and synchronization) is responsible for captur-
ing timestamps, estimating offset and skew, detecting anomalies such as
wraparound and restarts, and annotating each sample with corrected time
and quality metadata;

• the inference side assumes that the corrected times are valid and focuses
on causal windowing, resampling within the allowed bandwidth, and feed-
ing aligned windows to the model under fixed latency and determinism con-
straints.

This division allows the synchronization engine to evolve (for example, switching
from LS to Kalman or changing probe schedules) without modifying the inference
code, provided that the corrected timeline remains consistent and the data man-
agement interface is preserved.

2.4 IMU Signal Characteristics and Sampling
Inertial signals encode chassis vibration and motion as continuous-time processes
corrupted by sensor imperfections and sampling artefacts. Let the true acceleration
and angular rate be (a(t)) and ω(t). The measured discrete-time sequences at
sampling period Ts are

ã[k] = Q! (sa, a(kTs) + ba(tk) + na(tk)) , ω̃[k] = Q! (sω, ω(kTs) + bω(tk) + nω(tk)) ,

where s· are scale factors, b·(t) are time-varying biases, n·(t) are zero-mean noises
with colored spectra, and Q(·) denotes quantization.
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2.4.1 Noise, bias, and aliasing
Inertial measurements are affected by several error sources that act on different
time scales. White noise is well modeled by a (one-sided) spectral density, e.g., Sa

for accelerometers in m s−2/
√

Hz and Sω for gyroscopes in rad s−1/
√

Hz. Within
an effective bandwidth B (set by analog front-end and/or digital filtering), the
corresponding variance satisfies

σ2 ≈ S2 B,

so reducing B (or averaging) proportionally lowers white-noise variance.
Bias is a slowly varying component. Over short horizons it can be treated as a

constant b; over longer horizons it follows a low-frequency stochastic process (e.g.,
random walk with temperature dependence), so b(t) drifts with ambient and self-
heating conditions. Allan analysis separates these contributions in the time domain:
on a log–log plot of Allan variance σ2

A(τ) versus cluster time τ , white noise exhibits
slope τ−1 while bias random walk exhibits slope τ+1. (Equivalently, using Allan
deviation σA(τ), the slopes are τ−1/2 and τ+1/2, respectively.) This diagnostic guides
filter tuning by distinguishing integration-limited white noise from slowly drifting
bias terms.

Quantization noise arises from finite resolution. For least significant bit (LSB)
size ∆, the quantization error can be modeled as uniform over [−∆/2, ∆/2] with
variance

σ2
q = ∆2

12 .

Quantization is usually dominated by sensor white noise at nominal bandwidths,
but becomes visible after strong averaging or aggressive low-pass filtering.

Aliasing. Sampling at rate fs folds any input spectral content above fs/2 back
into baseband. In spectral terms, the sampled process has

Ssampled(f) =
∑︂
k∈Z

Scont(f + kfs),

so out-of-band vibration and electronic noise can increase in-band variance if not
attenuated before sampling. A practical design uses an analog low-pass anti-alias
filter with cutoff fc ≪ fs/2 (often fc ≈ 0.3 fs), followed by digital filtering and, if
needed, decimation. When downsampling by a factor N , a prefilter with stopband
starting near fs/(2N) should be applied to prevent folding. These measures keep
the effective white-noise density and the apparent bias stability consistent with the
intended bandwidth, improving both time- and frequency-domain estimation.

Aliasing arises when signal or noise energy above Nyquist fNyq = fs/2 folds into
baseband. Road-induced vibration and wheel-hop can exhibit content well above
tens of hertz; with fs ≈ 75, Hz (fNyq = 37.5, Hz), anti-alias filtering is mandatory.
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The continuous-time front end should implement a low-pass with passband ripple
small and cutoff fc ≲ 0.4fs (e.g., 25–30, Hz), followed by discrete-time filtering
matched to the chosen window. If only digital filtering is available, down-weight
high-frequency content with a causal IIR (biquad) or short FIR whose group delay
is accounted for in the latency budget.

Mounting and gravity coupling add deterministic components. In static con-
ditions, the accelerometer measures gravity projected onto its axes; subtracting a
low-pass estimate of (g) or using magnitude |ã| can provide partial orientation in-
variance. Gyroscope bias dominates low-frequency drift; estimate bω during stand-
still and apply continuous bias tracking during operation (e.g., high-pass filtered
gyro or a slow adaptive estimator).

Sampling jitter perturbs sample times tk = kTs + ϵk. For narrowband con-
tent at f0, small jitter ϵk with variance σ2

ϵ induces SNR loss SNR ∗ jitter ≈
−20 log ∗10(2πf0σϵ). Timestamp at interrupt level and use a stable clock domain
to keep σϵ small.

2.4.2 Windowing and alignment
Streaming inference operates on sliding windows of length W and stride S with
S ≤ W . Windowing trades variance against latency: larger W improves fre-
quency resolution and stabilizes features, whereas larger S reduces computation
but coarsens temporal granularity. With a sampling rate fs ≈ 75, Hz, typical
choices are W = 0.8–1.2, s and S = 0.2, s. A causal taper (for example, a half-Hann
window implemented causally) is applied to limit spectral leakage without using
future context. For time-domain models, state is maintained across strides: LSTM
hidden states are carried forward, and Conv1D layers use an overlap–save scheme
so that only the new S · fs samples are filtered at each step.

Alignment maps per-device sample times onto a common timeline. Let uk de-
note the device tick and tk the corresponding host time. A synchronization engine
estimates offset θ̂ and skew α̂ such that corrected times are given by

t̂(u) = α̂u + θ̂.

Each stream is then resampled onto a uniform grid mTs using causal interpolation
consistent with the signal bandwidth (for example, first-order hold after low-pass
filtering). When small residual misalignments remain, a short-lag cross-correlation
on high-SNR channels can refine alignment by up to one sample; this refinement is
then frozen to avoid drift under low-SNR conditions.

Before feature extraction, channels are standardized with per-axis affine trans-
forms (mean and variance) learned on the training set, and detrending is applied
according to the task. For accelerometers, a high-pass filter at 0.5–1, Hz removes
slow gravity drift, or a very low-pass filter may be used to estimate (g) for gravity
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compensation. Filter group delays are either linearized and explicitly compensated
or included in the causal latency budget,

Lalg = W + Lfilter + Lpost.

To maintain consistent alignment across devices, all windows are trimmed to a com-
mon time horizon after synchronization so that multi-device features are indexed
identically.

Feature design depends on the model class. For spectral features, Welch averag-
ing is employed with segment lengths that divide W , overlaps chosen to achieve the
desired variance reduction, and frequency bins constrained to ≤ fNyq. For end-to-
end Conv1D models, normalized time-domain windows are used directly; optional
pre-emphasis can be applied to enhance mid-band content when supported by spec-
tral analysis.

Finally, determinism is enforced throughout the pipeline. The sampling rate fs,
window length W , stride S, filter coefficients, and normalization statistics are fixed.
Ring buffers are pre-allocated with capacity greater than 2W · fs. Timestamps are
attached at the earliest possible software point, and each packet carries both device
and host times so that post hoc analysis can reconstruct alignment and verify that
window boundaries are consistent across devices.

2.5 HTTP Ingest for Auxiliary Sources
This section details an HTTP ingest path for auxiliary signals and annotations that
admits heterogeneous producers, preserves temporal coherence with BLE streams,
and remains resilient to batching, reordering, and retransmissions inherent in best-
effort IP.

2.5.1 Transport model and timing semantics
Producers submit application records (e.g., JSON documents) that carry two for-
mally distinct time references. The source time tsrc denotes the producer’s own
notion of time at event generation or sampling and may be expressed either as an
absolute timestamp (e.g., UNIX epoch in milliseconds) or as a device-local tick.
The arrival time tarr is assigned by the hub at the earliest receipt callback using a
monotonic host clock and captures transport- and scheduling-induced delay on the
ingress path.

To place source times on the hub timeline, the synchronization engine provides
an affine mapping t̂ = αu + β, where u is a device tick or source timestamp, α
represents the relative skew, and β the offset between the producer and the hub.
HTTP records are aligned according to

tcorr = α f(tsrc) + β, (2.5)
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where the normalization function f(·) converts the producer’s units and epoch
to milliseconds and resolves any wraparound or clock-domain differences. Both
(tarr, tcorr) are persisted with the record: the former preserves observability of net-
work effects, while the latter provides the corrected time used for fusion and down-
stream analysis, enabling auditability and late-fusion strategies when reprocessing
is required.

2.5.2 Ordering, batching, and idempotency
IP transport may batch, reorder, or duplicate application messages. To deliver
a consistent stream to downstream consumers, the hub enforces explicit ingress
discipline with three mechanisms:

1. Bounded reorder buffer Incoming records are staged in a buffer keyed by
source time tsrc and released in nondecreasing order. The buffer operates over
a fixed horizon Treorder, selected to exceed the upper tail of producer jitter
observed during warm–up (e.g., a high percentile plus margin). This confines
out–of–order tolerance while bounding memory and delay.

2. Idempotent writes Each record carries an idempotency key computed from
immutable fields, for example

key = SHA-256(⟨source_id, tsrc, seq, payload⟩) .

The hub admits the first occurrence and treats subsequent submissions with
the same key as no–ops, thereby eliminating duplicates induced by retries or
intermediaries.

3. Monotone sequencing For each producer, a strictly increasing sequence
counter seq is tracked to detect gaps and duplicates independent of wall–clock
behavior. Gaps trigger health counters and, when configured, a compensation
policy.

Let twatermark = max(tsrc)−Treorder denote the sliding lower bound of the reorder
window. Records with tsrc < twatermark (i.e., arriving beyond the reorder horizon)
are either (i) dropped with a logged diagnostic, or (ii) routed to a compensation
path that updates labels or metadata out of band without perturbing real–time
consumers. The chosen policy is fixed in configuration to ensure reproducibility
and auditability.

2.5.3 Aligning low-rate labels/events with IMU streams
Low–rate labels and events are aligned to the IMU timeline by a fixed, deterministic
policy. Let {timu

j } denote the corrected IMU timestamps on the hub timebase and
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{[ti, ti+W )} the analysis windows with stride S and origin t0 given by

ti = t0 + iS, i ∈ Z≥0, 0 < S ≤ W.

Each auxiliary record carries a corrected time tcorr (point event) or an interval
[a, b) with a < b (duration label). The mapping produces, for every window i, a
label set Li and, when required, a single representative label ℓi via deterministic
tie–breaking.

Point events (nearest–neighbor with tolerance) A point event at tcorr is
assigned to the unique window i⋆ whose start is closest to the event,

i⋆ = arg min
i

|tcorr − ti| ,

provided |tcorr − ti⋆ | ≤ ∆t. If the tolerance is exceeded, the event is left unmatched.
Ties (tcorr − ti = ±S

2 ) are resolved toward the lower index i to ensure determinism.
Optionally, nearest–neighbor can target the nearest IMU sample timu

j instead of the
window start; in that case the event inherits the window containing timu

j .

Interval labels (intersection with coverage threshold) A duration label
[a, b) contributes to every window whose intersection length

ℓi =
⃓⃓⃓
[a, b) ∩ [ti, ti+W )

⃓⃓⃓
is positive. For classification tasks that require a single label per window, the
representative label ℓi is the class with maximum overlap, subject to a minimum
coverage fraction ρ ∈ (0,1],

ℓi = arg max
c

ℓ
(c)
i s.t. ℓ

(c)
i

W
≥ ρ,

where ℓ
(c)
i is the total overlap of class c with window i. If no class meets ρ, the

window is marked unlabeled. Ties on ℓ
(c)
i are broken by earliest start time, then

by lexical class order.

Snap–to–window (phase–aware assignment) When events are generated rel-
ative to an external schedule, a snap rule assigns tcorr to its nominal window index

i⋆ =
⌊︃

tcorr − t0

S

⌋︃
,

if and only if |tcorr − ti⋆| ≤ τ . Otherwise, the event is unmatched. Boundary cases
to tcorr = ti ± τ resolve toward the lower index.
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Ambiguities and reproducibility When multiple labels overlap the same anal-
ysis window, assignment follows a deterministic precedence: the class with maxi-
mum coverage within the window is preferred; if coverage is equal, the label whose
interval starts earlier is chosen; if a tie remains, a fixed lexical order of class iden-
tifiers resolves it. Formally, letting ℓ

(c)
i =

⃓⃓⃓
[ti, ti+W ) ∩ ⋃︁

m∈Ic
[am, bm)

⃓⃓⃓
denote the

total overlap of class c with window i, the representative class is obtained by lexico-
graphically maximizing

(︂
ℓ

(c)
i , −a

(c)
min, rank(c)

)︂
, where a

(c)
min is the earliest start among

the intersecting intervals of class c and rank(c) is a fixed lexical rank. For multi-
label evaluation, the window label set is Li = { c | ℓ

(c)
i /W ≥ ρ } with ρ ∈ (0,1] a

predeclared coverage threshold. All alignment parameters (∆t, τ, ρ, W, S, t0), the
rounding mode and boundary treatment, the tie-break sequence, and the nearest-
neighbor target (window start versus nearest corrected IMU sample) are fixed in
the run configuration to guarantee bitwise reproducibility across acquisition, train-
ing, and deployment. Operationally, given time-sorted events/intervals and window
starts, a single sweep-line pass computes the mapping in O(N+M) time for N labels
and M windows, with O(1) auxiliary memory beyond the active set.

2.6 Time Synchronization in WSNs
Accurate time alignment is fundamental to multi-sensor fusion, windowed feature
extraction, and causal inference in wireless sensor networks (WSNs). Without a
shared notion of time, streams from different nodes cannot be reliably merged,
labels drift with respect to measurements, and real-time analytics become brittle.
We adopt a standard affine clock model for each node i,

Ci(t) = αi t + θi, αi = 1 + ρi, (2.6)

where t is real time, θi is the offset, αi is the relative frequency (skew), and ρi is the
fractional drift (in ppm). The synchronization problem is to estimate (θi, αi) (or
equivalently (θi, ρi)) and apply a correction or time translation so that observations
from multiple nodes share a common timeline.

2.6.1 Reference Methods: NTP, PTP, and FTSP
NTP (Network Time Protocol). NTP employs a two-way exchange with four
timestamps T1, . . . , T4: client send T1, server receive T2, server send T3, client receive
T4. Under the (idealized) assumption of symmetric path delays, the one-way delay
δ̂ and offset θ̂ are

δ̂ = (T2 − T1) + (T4 − T3)
2 , θ̂ = (T2 − T1) − (T4 − T3)

2 . (2.7)

Implementations mitigate jitter by favoring the minimum observed round-trip time
(RTT) over a window (to approximate the fixed component of path delay), followed
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by PLL/FLL-style smoothing of θ̂. With software timestamping, accuracy is typi-
cally sub-millisecond on stable LANs and several milliseconds on wireless links due
to medium-access variability.

PTP (IEEE 1588 Precision Time Protocol) PTP decouples timestamp cap-
ture from application processing by taking hardware timestamps at the MAC/PHY
for event messages (Sync, Follow_Up, Delay_Req, Delay_Resp). This sharply re-
duces timestamp noise. End-to-end mode estimates the delay to a grandmaster;
peer-to-peer mode measures per-link delays. Boundary and transparent clocks con-
fine or compensate switch/router residence times. On wired Ethernet with hard-
ware timestamping, sub-µs accuracy is common; on wireless media, medium-access
jitter dominates unless MAC-layer timestamping is available.

FTSP (Flooding Time Synchronization Protocol) FTSP targets low-power
WSNs. A dynamically elected root floods beacons (troot, h); receivers timestamp
the same frame at the MAC and fit

Ci(t) ≈ α̂i t + θ̂i (2.8)

over multiple beacons to estimate offset and skew with outlier rejection. MAC-level
timestamping removes most send/receive uncertainties from the software stack.
Periodic re-flooding tracks slow drift, while the hop count h bounds the distance
from the root. A visual comparison of NTP, PTP, and FTSP along key design
dimensions is reported in Figure 2.1.

Figure 2.1: Comparison of NTP, PTP, and FTSP Time-Synchronization Protocols

2.6.2 Drift and Jitter Basics
Clock error growth. Model the local clock of node i as an affine function of
true time t:

Ci(t) = αi t + θi + ηi(t),

29



Background and Related Work

where αi > 0 is the (dimensionless) skew, θi is the offset at t = 0, and ηi(t)
aggregates timestamping noise. Writing αi = 1+ρi with ρi the fractional frequency
error, the disagreement between two noise–free clocks i and j evolves as

∆Cij(t) = Ci(t) − Cj(t) = (αi − αj) t + (θi − θj). (2.9)

If the differential skew is ∆ρ = |ρi − ρj| expressed in parts per million (ppm), the
uncompensated offset grows approximately at rate ∆ρ×10−6 seconds per second. To
keep the magnitude of the disagreement below a tolerance ε, the re–synchronization
interval must satisfy

t ≤ ε

∆ρ · 10−6 ⇒ e.g., ε = 2 ms, ∆ρ = 30 ppm ⇒ t ≲ 66.7 s. (2.10)

Equation (2.10) makes explicit the units: when ∆ρ is given in ppm, the factor 10−6

converts to a dimensionless skew. In practice, ∆ρ varies with temperature, supply,
and aging, so scheduling probes based on worst–case ∆ρ provides a conservative
bound on drift growth.

Timestamp noise and jitter A measured timestamp T̃ incorporates quantiza-
tion and variable delays along the software and hardware path:

T̃ = Ttrue + q + dtx + dprop + drx. (2.11)

Here q is the timestamp granularity (e.g., device tick resolution or host clock pe-
riod), dtx and drx capture variable queuing and scheduling latencies at the sender
and receiver (interrupt service, driver, kernel–to–user delivery), and dprop is the
physical propagation delay. At room–scale distances, dprop is negligible (∼ 3.3 ns/m),
so the dominant variability arises from q, dtx, and drx. We refer to the variation
of these terms across packets as jitter. Reducing q (high–resolution clocks), times-
tamping earlier in the stack, and minimizing code paths at the callback reduce jitter;
hardware/MAC timestamping further collapses dtx and drx toward their minima.
For software–timestamped systems, selecting minimum observed delays over a win-
dow (see below) helps approximate the fixed component of dtx+drx. Figure 2.2
illustrates the effect of jitter on a nominally periodic clock in the time domain.
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Figure 2.2: A jitter-free clock as observed in the time domain, and one with a
moderate amount of jitter

Two–way estimation under asymmetry Let a two–way exchange between a
hub (H) and a device (D) produce time quadruples t1 (H sends), t2 (D receives), t3
(D sends), t4 (H receives). The NTP–style offset estimator is

θ̂ntp = (t2 − t1) + (t3 − t4)
2 , ˆ︁RTT = (t4 − t1) − (t3 − t2). (2.12)

Assume the forward (H→D) and reverse (D→H) path delays are df and dr, respec-
tively, and let the true clock offset be θ. Then t2 − t1 ≈ θ+df and t3 − t4 ≈ −θ+dr,
yielding

θ̂ntp ≈ θ + df − dr

2 = θ + ∆a

2 , (2.13)

where ∆a = df − dr quantifies asymmetry. Equation (2.13) shows that any persis-
tent asymmetry biases θ̂ntp by ∆a/2, setting a floor on achievable accuracy unless
compensated. In software–timestamped wireless links, queuing and scheduler ef-
fects often make df and dr differ stochastically across probes.

Two pragmatic mitigations are commonly used. First, minimum–RTT selection:
within a sliding window, retain probe pairs whose observed ˆ︁RTT is near the empir-
ical minimum; these samples are most likely to have experienced near–symmetric,
minimally queued paths, reducing ∆a. Second, robust estimation and gating: fit
offset/skew using robust losses and reject probe innovations whose Mahalanobis
distance exceeds a threshold, thereby limiting the influence of transient asymme-
tries. When available, per–link calibration of systematic asymmetry (e.g., con-
troller–specific pipeline differences) further reduces the bias term in (2.13).
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2.6.3 Estimator Choices: LS/PLL and Kalman
Offset and skew via LS/PLL A practical way to align a device clock to the
hub timeline is to treat the device time as an affine function of hub time with two
unknowns: a constant offset and a relative skew. Over horizons where temperature
and operating conditions are stable, these parameters can be treated as constant
and estimated with batch least squares on a sliding window of paired observations.
Centering the time axis within the window improves numerical conditioning and
makes the offset estimate less sensitive to roundoff. In deployments subject to
occasional transport spikes, a robust loss (e.g., Huber or Tukey) with iterative
reweighting is preferable to ordinary least squares because it limits the influence
of outliers without sacrificing efficiency on small residuals. Total least squares is
typically unnecessary because the regressor (hub time) is under software control
and effectively noise free.

LS/PLL mechanics and intuition Least squares (LS) and phase-locked-loop
(PLL) updates are two views of the same objective: reduce the prediction error be-
tween the observed device time and the time predicted by the current offset–skew
model. LS minimizes the average squared error over a window and refreshes both
parameters from scratch; PLL performs small, recursive corrections at each obser-
vation so that the model “locks” to the incoming stream. In the PLL interpretation,
the instantaneous timing error plays the role of a phase error. The offset update
acts as the integral path that removes steady phase error after a step change, while
the skew update acts as the frequency path that cancels a constant rate error (drift).
With suitable gains, the loop tracks step offsets quickly and tracks ramp-like errors
due to skew with bounded residuals. If gains are too small the loop is sluggish and
accumulates drift; if they are too large the loop becomes noisy or oscillatory.

Tuning Start from the probe period Tp and choose a memory half-life H for
the estimator (e.g., 30–120 s) that is long enough to average out transport jitter
yet short enough to follow thermal drift. This defines an effective forgetting factor;
the offset gain should reflect this memory, while the skew gain should be one order
of magnitude smaller so that frequency corrections evolve more slowly than phase
corrections. Center or normalize the time variable within the current window to
keep the two gains numerically well conditioned. Operate the loop in two regimes:
a warm-up phase that allows faster adaptation until residuals stabilize, followed
by a cruise phase in which the skew path is damped or temporarily held when
the environment is steady. Gating large innovations (e.g., drop updates when the
absolute error exceeds a configured threshold) prevents brief transport spikes from
destabilizing the loop. Periodic re-initialization of the offset from a short LS fit is
a low-cost anti-windup measure after long gaps or restarts.

Behavioral expectations After a device reboot or link re-establishment, the loop
should eliminate a step offset in a few probe intervals, then converge the skew within

32



2.6 – Time Synchronization in WSNs

the chosen half-life. During stable conditions, residual phase noise is primarily set
by probe timing noise and the chosen gains; during temperature ramps or motion,
residuals increase temporarily and then settle as the skew path integrates the new
rate. Monitoring the error variance and the rate of rejected updates provides a
simple health signal to shorten the warm-up, slow the cruise, or trigger a batch LS
refresh when needed.

Offset and skew via a two-state Kalman filter When drift changes over time
because of temperature swings, supply variation, or mechanical shocks, a stochas-
tic state model yields better bias–variance trade-offs. A two-state Kalman filter
treats offset and skew as the hidden state, propagates them forward with a simple
constant-skew kinematic model, and corrects them with each paired observation.
Two covariances govern behavior: the process noise, which encodes how quickly
offset and skew are allowed to wander, and the measurement noise, which reflects
the observed variability of timestamp differences after outlier rejection. Increasing
process noise makes the filter adapt faster at the cost of higher residual variance;
increasing measurement noise makes corrections more cautious. Time centering in
the observation model improves conditioning and reduces correlation between the
offset and skew estimates. During radio bursts or back-to-back losses, temporarily
inflating the covariance or increasing the assumed measurement noise accelerates
recovery; in steady conditions, freezing the skew or reducing its process noise low-
ers residual jitter. System health can be monitored with the innovation variance
and the rate of rejected updates. Figure 2.3 shows the resulting two-state Kalman
structure with adaptive tuning of process and measurement noise.

From estimates to corrected time Once offset and skew are available, either
from LS/PLL or from the Kalman filter, device timestamps are mapped to the hub
timebase by applying the current affine correction. This step must also normalize
units and epochs, handle tick wraparound, and detect device restarts so that the
correction is re-initialized cleanly rather than extrapolated across discontinuities.
Persisting both the original arrival time at the hub and the corrected time used for
fusion preserves auditability and enables reproducible reprocessing.

Assumptions, robustness, and practical guidance All estimators assume
that a sufficient number of fresh, well-spaced observations is available to maintain
observability; probe scheduling must therefore reserve a small but steady band-
width even under load. Because software-timestamped wireless links experience
asymmetric and variable delays, combining estimation with simple mitigations,
such as selecting probes with near-minimum observed round-trip, rejecting outliers
with a statistical gate, and staggering connection schedules in multi-link operation,
materially improves accuracy. Time centering, unit normalization, and explicit
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warm-up and cruise phases are low-cost practices that reduce conditioning prob-
lems and stabilize residuals across platforms.

Offset–skew Kalman formulation For tighter tracking under variable jitter
and slow drift, a two-state Kalman filter models offset and skew jointly and fuses
model predictions with noisy measurements. Let

Xk =
[︄

θk

∆αk

]︄
, Xk+1 =

[︄
1 ∆tk

0 1

]︄
Xk + wk, yk =

[︂
1 0

]︂
Xk + vk, (2.14)

with wk ∼ N (0, Q) (process noise) and vk ∼ N (0, R) (measurement noise). The
Kalman filter alternates prediction and measurement update, producing θ̂k andˆ︃∆αk with quantified uncertainty [4]. In resource-constrained networks, adaptive
offset–skew tracking using Kalman filtering has demonstrated rapid convergence
and robustness with modest message overhead [5]. In application-level BLE syn-
chronization, the same structure provides tight, stable alignment despite software
timestamping and radio jitter [6]. The block diagram in Figure 2.3 summarizes this
two-state Kalman formulation with adaptive noise tuning.

Figure 2.3: Two-State Kalman Filter for Clock Offset and Skew with Adaptive
Noise Tuning

2.6.4 BLE WSN Specifics: Application-Level Synchroniza-
tion

Commodity BLE stacks rarely expose MAC or link-layer timestamps to applica-
tions. Therefore, accurate timing must be recovered at the application layer, where
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arrivals are perturbed by controller scheduling, OS wake-ups, and medium-access
contention. The objective of this study is to stabilize software timestamping and
to bound path-asymmetry bias.

Positioning with respect to previous work Pignata et al. demonstrate a
hardware-agnostic, application-level BLE synchronization framework that attains
∼10ms inter-node alignment on commodity nodes and a Linux hub, without hard-
ware or vendor-stack modifications [6]. Over IP transports, Mani et al. present
SPoT, a lightweight service that sustains ∼15ms accuracy across heterogeneous
IoT platforms under noisy conditions, and highlights limitations of SNTP and
MQTT on low-cost devices [7]. At the estimator level, Hamilton et al. develop
a Kalman-based offset–skew tracker for constrained networks that combines fast
convergence and robustness with modest message overhead [5]. Guided by these
results, our engine targets BLE connection mode with standard GATT notifica-
tions and integrates bidirectional delay compensation with offset–skew filtering to
improve stability and loss recovery on integrated hubs, while generalizing to het-
erogeneous BLE and HTTP sources.

2.6.5 Error Budget and Reporting
Net synchronization error arises from estimator residuals (least-squares, PLL-style
recursions, or Kalman filtering), timestamp quantization from the software clock
tick, residual path asymmetry after two-way compensation, and unmodeled drift
between updates. Reporting should include the median and 95th percentile of
inter-node offset, the distribution of round-trip times that supports the minimum-
RTT selector, and the effective timestamp granularity. The re-synchronization
interval (T) should follow the allowed misalignment ε and the worst-case drift rate
∆ρ (fraction per second), using T ≤ ε/|∆ρ|. For example, with ε = 2 ms and
|∆ρ| = 30 ppm (30 × 10−6)s/s, T ≲ 67 s; applying a safety factor of 2–4 to cover
temperature ramps and residual asymmetry gives 15–30 s in practice. Shorten T
when jitter or losses increase.

2.6.6 Beacon-based synchronization
Beacon-based synchronization in this system uses a hub-centric probe–response
strategy. The hub periodically broadcasts a beacon at fixed intervals; upon recep-
tion, each node timestamps the event with its local clock and immediately sends
a short response carrying its current timestamp. The hub timestamps the arrival
of each response, so that for node d and beacon index k it obtains pairs

(︂
tk, C

(d)
k

)︂
,

where tk is the hub time and C
(d)
k is the device clock. At room scale the propagation

delay is negligible; residual error is dominated by receive-path timestamp jitter and
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path asymmetry. The BLE-specific probe–response handshake implementing this
scheme is sketched in Figure 2.4.

Each beacon is also associated with either a monotonically increasing counter
ck or a coarse reference time tref

k . Over a sliding window, the hub fits an affine map
for each device,

tref
k ≈ α(d)C

(d)
k + β(d) or equivalently tk ≈ α(d)C

(d)
k + β(d), (2.15)

using robust regression or a two-state Kalman filter. Any two devices can then
be aligned by composing their maps through the hub, and when the hub time is
treated as authoritative all nodes are expressed on a common hub-centric time base.

Figure 2.4: BLE Beacon synchronization

2.6.7 Discussion and positioning
Time synchronization in wireless sensor networks spans a spectrum from network-
assisted hardware timestamping (for example PTP) to application-level schemes
that operate on commodity protocol stacks. For embedded, low-power deployments
over BLE-class links, application-level designs that stabilize software timestamp-
ing, compensate for path asymmetry, and jointly estimate clock offset and skew
provide a practical route to tight alignment without specialized hardware. Prior
work demonstrates the feasibility of accurate synchronization at the BLE layer [6],
scalable time services over IP [7], and robust estimators for constrained networks
[5]; the Kalman framework offers a principled basis for combining clock models
with noisy measurements [4]. This thesis builds on that body of work by adopting
an application-level, two-way synchronization strategy with offset and skew filter-
ing, and by experimentally characterizing its accuracy, stability, and operating cost
under realistic wireless conditions, as summarized in Figures 2.2–2.4.
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2.7 Python Threads and Concurrency
This section summarizes the concurrency model adopted in the Python sensing
backends. It describes how threads interact with the CPython Global Interpreter
Lock (GIL), how threads are combined with asyncio for I/O-bound workloads,
and how bounded queues, clear ownership rules, and operating-system level tuning
keep the ingest path predictable under load.

2.7.1 GIL and workload classes
In CPython a single global interpreter lock serializes bytecode execution within
each process. I/O-bound operations that block in the operating system kernel,
such as socket and file I/O, release the GIL; in these cases multiple threads can
make progress concurrently, and threads scale well for networking, Bluetooth notifi-
cations, and logging. In contrast, pure Python CPU-bound workloads do not scale
across cores under the GIL and should be moved to native extensions, vectorized
numerical libraries, or separate processes when parallelism is required [8, 9]. The
backend therefore reserves threads for I/O-heavy paths and relies on C or C++
(for example, LibTorch) or subprocesses for any substantial numerical work.

2.7.2 Threads with asyncio

Event-driven I/O is handled by asyncio on a single event loop that manages BLE
notifications, HTTP callbacks, and timers. Threads are used for constant-time
callbacks and background workers, while the loop thread itself remains as light
as possible. Blocking or CPU-intensive functions are offloaded from the loop via
loop.run_in_executor or asyncio.to_thread, so that the loop continues to ser-
vice new events with bounded latency. Per-device state is assigned to a single owner
(for example, one task or thread per device), which avoids fine-grained locking and
simplifies reasoning about concurrency [10].

2.7.3 Queues and backpressure
Inter-stage handoff uses a dedicated, thread-safe backpressure queue rather than
the standard queue classes. The custom queue is implemented as a heap-based
priority structure protected by a mutex and a Condition, and orders records by a
monotonic timestamp so that ingest preserves temporal order even when different
producers interleave. Each queue is configured with a fixed capacity; when this
limit is reached, producer-side calls to the non-blocking try_push primitive return
immediately and the caller applies an explicit drop or coalescing policy, rather than
blocking in the hot path. Consumers use blocking pop operations with a timeout,
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which provide natural backpressure while still allowing clean shutdown. This de-
sign caps memory usage, makes overload behaviour explicit, and keeps end-to-end
latency predictable: motion channels and synchronization probes are preserved
preferentially, while low-priority streams are dropped first when the backpressure
queue reports sustained saturation. [11]

2.7.4 Synchronization primitives
The hot data path is designed to be effectively lock-free. Control flow relies on
coarse-grained synchronization primitives only. A shared threading.Event signals
shutdown and periodic flush points; threading.Condition guards phase transi-
tions such as file rotation or configuration reload; threading.Lock protects short
critical sections in writers. No lock is ever held across network or disk waits. A
single-writer-per-structure ownership rule (for example, one writer thread per queue
or log file) removes most contention and reduces the risk of deadlocks and priority
inversions [8].

2.7.5 Timing and clocks
Handlers stamp arrivals with a monotonic clock using time.perf_counter_ns,
which provides high-resolution, monotonic timestamps suitable for synchronization
and latency measurement. Wall-clock time is reserved for user-facing logs and
experiment metadata. Per-record sequence counters disambiguate identical times-
tamps and allow the system to detect gaps and reordering. A small reorder buffer
corrects minor out-of-order arrivals after reconnects or short stalls, keeping the
ingest stream consistent before it reaches the synchronization engine [12].

2.7.6 Operating-system level tuning
On Linux, long-lived worker threads are pinned to specific cores and run under
a conservative CPU-frequency governor to reduce scheduling jitter. The function
os.sched_setaffinity constrains threads to a subset of cores, while process pri-
ority can be adjusted with nice. When the platform permits, real-time scheduling
policies such as SCHED_FIFO can be applied via chrt to selected threads, but this
is done sparingly to avoid starving the Bluetooth host stack and other critical ker-
nel tasks. These settings are treated as deployment-time parameters rather than
assumptions of the core design.

2.7.7 Logging and failure handling
Logging uses a queue-based handler to decouple log producers from I/O. The com-
bination of logging.handlers.QueueHandler and QueueListener preserves log
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ordering while ensuring that logging does not block the hot path. Threads run a
supervision loop with exception guards; on error they emit a health marker, per-
form bounded backoff before attempting reconnects, and escalate to higher-level
supervisors when recovery fails. Clean shutdown sets a shared Event, flushes in-
flight records, rotates log files via an atomic rename, and joins worker threads with
a timeout to avoid hangs during teardown [13].

2.7.8 Reference pattern
The reference pattern below illustrates a constant-time callback, a bounded priority
queue, and a worker that never blocks producers:

1 q_ingress = queue. PriorityQueue ( maxsize =4096)
2 stop_evt = threading .Event ()
3

4 def on_notify (data: bytes) -> None:
5 t_ns = time. perf_counter_ns ()
6 frame = decode_fixed_layout (data)
7 try:
8 q_ingress . put_nowait ((t_ns , next_seq (), frame))
9 except queue.Full:

10 drop_or_coalesce (frame)
11

12 def worker ():
13 while not stop_evt . is_set ():
14 try:
15 _, _, rec = q_ingress .get( timeout =0.05)
16 except queue.Empty:
17 continue
18 process (rec)
19 q_ingress . task_done ()
20

21 t = threading . Thread ( target =worker , daemon =True)
22 t.start ()

In this pattern, on_notify is invoked in the BLE or HTTP callback context and
performs only decoding, timestamping, and enqueueing. Backpressure is explicit: if
the queue is full, a specific drop or coalescing policy is applied. The worker thread
pulls records from the queue, performs downstream processing, and acknowledges
completion with task_done().

2.7.9 Design guidelines
Taken together, these choices yield a set of design guidelines for the sensing back-
ends. Callbacks should remain constant time and free of blocking I/O, relying on
bounded queues with explicit drop or coalescing policies to implement backpres-
sure. Mutable state is organized under single ownership rather than shared through
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fine-grained locks, and locks are never held during I/O or long computations. All
records are stamped with a monotonic clock and sequence numbers so that syn-
chronization and debugging remain tractable. Long-lived workers are pinned to
cores and OS scheduling is tuned conservatively when the platform permits, while
logging is routed through a queue-based handler to avoid blocking the hot path.
Finally, the GIL is treated as a scheduling constraint: threads are used primarily for
I/O-bound work, whereas parallel CPU-bound computation is delegated to native
code or separate processes.

2.8 Edge-Oriented Inference Design
This section describes the real-time inference pipeline designed for embedded Linux
class platforms, with particular emphasis on architectures comparable to the
STM32MP2 series. The design targets typical embedded constraints, such as lim-
ited compute, strict latency budgets, and constrained memory. In the present work,
however, deployment and testing are performed on a Linux-based development sys-
tem that consumes data either from recorded .jsonl logs or from a dedicated in-
ference sink, rather than from a fully integrated embedded acquisition stack. The
inference code is therefore written against an abstract interface: it receives already
synchronized and preprocessed samples on a hub-centric time base and remains ag-
nostic to how those samples were acquired. The same components can be ported to
STM32-class hardware with minimal changes, but they have not yet been executed
end-to-end on the final microprocessor target.

2.8.1 Model Architecture and Streaming Execution
The model is based on a strictly causal convolutional neural network (Conv1D).
One-dimensional convolutions apply learned filters along the temporal axis of mul-
tichannel IMU input, capturing local temporal structure while preserving causality.
The absence of recurrent components reduces memory usage, simplifies state han-
dling, and improves determinism during inference, which is essential for bounded
latency on embedded platforms.

The network operates on sliding windows of IMU data of approximately one
second (75 frames at 75 Hz), providing sufficient temporal context for road-surface
classification while retaining responsiveness. Windowing and alignment are per-
formed upstream by the inference client: for each device and channel, it maintains
a corrected timeline on a uniform grid, built from the synchronized timestamps
described in Section 2.3. The client then assembles fixed-length windows according
to the configured window length and stride, attaches metadata (for example, device
set and synchronization status), and hands the resulting tensors to the inference
engine.
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To avoid recomputing the entire window at each update, convolutional out-
puts inside the C++ runtime are evaluated using an overlap-save strategy: past
activations are cached and only the contributions from the most recent samples
are computed. This incremental execution enables low-latency updates, reduces
redundant computation, and aligns well with streaming acquisition.

2.8.2 Numerical and Runtime Considerations
The trained model is exported in TorchScript format and executed using LibTorch
in a C++17 runtime. The inference path avoids Python entirely to eliminate in-
terpreter overhead, garbage collection, and related jitter. When Python is used
for orchestration, user interfaces, or log replay, the latency-critical stages, namely
windowing, tensor preparation, and the forward pass, are delegated to a dedicated
C++ worker thread pinned to an isolated core. The Python client thus acts as a
producer of aligned windows, while the C++ worker performs numerical inference.

On AArch64-class CPUs, inference is compiled with aggressive optimization
flags (such as -O3 and -ffast-math) and uses NEON vectorization for FP32 op-
erators. Operator fusion, constant folding, and removal of training-only compo-
nents reduce memory bandwidth pressure and improve execution consistency. An
optional INT8 quantization path is supported, with per-channel calibration and
fallback to FP32 for operators that lack quantized implementations. This enables
accuracy and latency trade-offs to be explored without changing the high-level ar-
chitecture or the data management interface.

2.8.3 Data Flow, Buffering, and Back-Pressure
Data management is explicitly split between the acquisition and synchronization
client and the inference runtime.

On the client side, each incoming sensor packet from BLE or HTTP is decoded,
assigned a host arrival timestamp, reconciled with the device tick, and mapped
to the hub-centric time base by the synchronization engine. The client writes a
normalized record, typically in the form

(device, sensor, t̂k, xk, flags),

where t̂k is the corrected time, xk are the sensor values, and flags capture quality
and synchronization status. These records are either appended to .jsonl files for
offline analysis or pushed into an in-memory inference sink for live operation. Both
paths share the same schema, so that a log replay tool can feed recorded data into
the inference sink as if it were arriving in real time.

On the inference side, the C++ worker consumes samples from a page-aligned
ring buffer backed by this sink. Feature extraction operates directly on the buffer
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using pre-allocated tensors, enabling zero-copy access and minimizing allocation-
induced jitter. The pipeline is organized as a sequence of stages connected by
fixed-capacity queues, so that back-pressure can be applied explicitly rather than
relying on ad hoc blocking.

Under overload conditions, the system degrades gracefully according to policies
defined at the client level. Non-critical channels are dropped first, followed by
controlled coalescing of IMU samples within a bounded temporal tolerance. The
inference thread is never blocked: it consumes whatever data is available at the
head of the buffer and produces outputs at the configured stride. Downstream
output is written using batched I/O to reduce syscall overhead and is scheduled
during lower-load intervals to limit interference with acquisition and inference.

2.8.4 Fault Monitoring and Recovery

The runtime continuously monitors key metrics, including end-to-end throughput,
queue occupancy, and inference latency. Watchdog mechanisms run in the client
and in the inference process. On the client side, they detect stalled producers,
broken BLE subscriptions, or HTTP disconnections and trigger corrective actions
such as BLE resubscription or HTTP reconnection. On the inference side, they
detect processing loops that exceed the latency budget and can request a controlled
restart of the worker, with state snapshot and recovery where feasible.

Each sensor packet is annotated with a device tick, a host-side receive times-
tamp, and optionally a remote timestamp; together, these fields enable complete
post hoc reconstruction of timing alignment and fault episodes. This instrumen-
tation is essential both for diagnosing synchronization failures and for verifying
that inference deadlines are consistently respected when data are fed through the
inference sink or replayed from logs.

2.8.5 Reproducibility and Build Discipline

System images for the intended embedded deployment are built using the Yocto
framework [14], with pinned versions for the kernel, BlueZ [15], LibTorch run-
time [16], and dependent libraries. On the development host, startup is managed
through systemd with explicit dependencies to ensure deterministic launch order
and to avoid race conditions between acquisition, synchronization, and inference
services. Configuration files are versioned alongside the binaries and included in
experimental logs. Each run records commit hashes, system versions, and execution
parameters, providing a traceable link between code, configuration, and reported
results, regardless of whether data come from live acquisition or from .jsonl re-
plays.
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2.8.6 Design Envelope and Execution Profile
The pipeline targets embedded Linux class platforms with constrained CPU and
memory resources. It supports multiple inertial sources at moderate sampling rates
and maintains real-time operation with bounded end-to-end latency. Processing
stages are arranged as a streaming graph with fixed-capacity queues, explicit back-
pressure, and lightweight scheduling to keep delays within application limits.

Under nominal link conditions, the combined client and inference stack sus-
tains reliable delivery, masks short stalls with bounded buffering, and recovers
from longer disruptions without violating inference deadlines. Performance scales
with available cores by instantiating additional model workers and pinning them
to separate CPU threads when beneficial. On Bluetooth Low Energy transports,
the acquisition layer adapts to negotiated connection parameters and packetiza-
tion, while the synchronization layer maintains temporal alignment in the presence
of jitter and variable interarrival times. The inference layer simply consumes the
aligned stream exposed by the sink.

Resource use remains within an embedded-friendly envelope through incremen-
tal feature computation, reuse of intermediate states, and zero-copy handoffs be-
tween stages. These choices enable practical deployment on application-class cores
and provide a clear path to further optimization on dedicated embedded hardware.

2.8.7 Deployment Note
Although the software stack and model design are constrained by the requirements
of embedded Linux platforms, including STM32MP2-class targets, no deployment
was carried out on such hardware in this work. All experiments were conducted on
a general-purpose Linux host configured to approximate the computational limits
of the intended target, using either live data through the inference sink or replayed
.jsonl logs. Evaluating the combined client and inference pipeline on actual em-
bedded platforms and quantifying the associated trade-offs in latency, power, and
thermal behavior are left as directions for future work.

2.9 Related work
The related work has focused on clock synchronization for wireless sensing. Early
approaches adapt network synchronization protocols to sensor networks, estimat-
ing the offset from sender-receiver timestamps and disciplining local clocks with re-
spect to a reference. Purely software methods in this family inherit the limitations
of asymmetric and time-varying delays; without MAC/PHY timestamping, their
accuracy degrades in the presence of jitter and queuing [17]. Receiver-to-receiver
schemes, such as reference transmission synchronization, reduce send time uncer-
tainty by comparing the reception times of a common beacon, while flooding-based
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protocols stabilize a global time through periodic network-wide updates. Precision
Time Protocol and gPTP improve submillisecond alignment when hardware times-
tamping is available, but this assumption rarely holds for low-cost embedded radios
and BLE peripherals.

BLE-specific studies note that connection events and controller scheduling intro-
duce structured delay components that affect unidirectional timestamping. When
timestamping occurs in the host stack rather than the controller, variable ATT/LL
latency, connection interval, and slave latency dominate the noise budget. Bidi-
rectional timing and round-trip time filtering mitigate these effects by modeling
asymmetric delay and isolating clock offset. Robust estimators that track both off-
set and skew outperform offset-only baselines in the presence of oscillator jitter and
thermal drift; linear regression on paired ticks, PLL-style updates, and Kalman
filters are common choices. The above technique also highlights the role of out-
lier rejection, RTT gating, and truncated windows in avoiding distortions due to
retransmissions and scheduling anomalies.

From an architectural standpoint, hub-centric synchronization for single-hop
star topologies remains the practical choice for BLE and mixed Bluetooth/IP im-
plementations. Distributed consensus and multi-hop flooding are less relevant when
a central hub already aggregates traffic. Multi-source alignment is then reduced to
maintaining per-device clock models tied to a hub time base and reconciling device-
side sampling ticks with host arrival times. Work on cross-modal fusion emphasizes
that alignment must be reported with uncertainty, as downstream activities depend
on trust in the reconstructed timeline.

Road surface classification Early road-surface detection systems typically re-
lied on a single IMU or smartphone sensors with handcrafted time- and frequency-
domain features and classical classifiers to detect potholes, bumps, and overall
road quality. Large-scale smartphone deployments demonstrated feasibility but re-
mained sensitive to device placement and hardware heterogeneity [18]. Deep mod-
els improved robustness by learning representations directly from raw sequences or
spectrograms; convolutional architectures consistently report higher accuracy, and
results show that representation choices materially affect performance [19]. Crowd-
and fleet-based deployments further expanded datasets but amplified domain shift
driven by speed, tire condition, and mounting; modeling the effect of speed mo-
tivates calibration and augmentation strategies to stabilize accuracy across oper-
ating conditions [20]. Multisensor and multinode configurations further improve
class separability but introduce a stringent synchronization requirement: software-
timestamped baselines from network time synchronization inform alignment in wire-
less sensor networks, yet wireless jitter and approximate timestamps limit accuracy
in the absence of MAC/PHY-level timing [17]. In this thesis, road-surface clas-
sification is implemented using six IMU nodes and is intentionally framed as a
demanding workload that stresses the synchronization and alignment pipeline; the
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classifier itself is not the primary contribution, but a vehicle to evaluate the end-
to-end time-synchronized sensing and inference stack.

Classification metric This evaluation reports accuracy, balanced accuracy, macro-
F1, F1asphalt, F1gravel, and the 2 × 2 confusion matrix on the same aligned time
horizon used for synchronization analysis.
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Chapter 3

System Architecture and Methods

3.1 Hardware architecture

3.1.1 Sensing nodes: SensorTile.box PRO

One class of sensing nodes consists of SensorTile.box PRO devices built around an
STM32U5 MCU and a BLE controller (BlueNRG family). Each node integrates
a 6-DoF or 9-DoF IMU (accelerometer, gyroscope, optional magnetometer) on an
I2C/SPI bus and exposes a custom BLE GATT service for real-time streaming, as
illustrated in Figure 3.1.

Sensing configuration The accelerometer and gyroscope full-scale ranges are
configured per session, typically selecting among ±2, ±4, ±8, or ±16 g for accel-
eration and ±250, ±500, ±1000, or ±2000 deg/s for angular rate, with a nominal
IMU streaming frequency of 75 Hz. An on-sensor hardware low-pass filter, com-
bined with a causal digital high-pass stage with cutoff in the ≈ 0.5–1 Hz range,
attenuates quasi-static gravitational components and slow-varying bias on the ac-
celerometer axes. Factory calibration is assumed valid for the duration of each
session, while any residual offset is compensated during preprocessing.

Timestamps and payload Each notification carries a device tick u (monotonic
millisecond counter), an optional remote_ms field encoding the device epoch in mil-
liseconds, either a single sample or a short batch, and a compact header with sensor
identifier and scaling metadata; payloads are packed with fixed offsets and no heap
allocation to bound ISR latency, and a firmware watchdog increments a counter
whenever inter-notification gaps exceed a prescribed multiple of the connection
interval.
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BLE transport Data are published via Notify, with ATT_MTU negotiated to 247
bytes and LE Data Length Extension enabled, yielding Sapp ≈ 244 usable applica-
tion bytes per notification. Default link parameters target low-latency streaming:
the connection interval is set in the range 7.5–30 ms (typically 15 ms), the slave
latency is L=0, and the supervision timeout Tsup is chosen such that 2(L+1) CI <
Tsup; multiple packets per connection event and optional batching of 1–4 samples
per notification reduce protocol overhead when several nodes are active.

Power, enclosure, health Nodes run from an internal Li-ion cell or a regulated
5 V rail (USB). Continuous streaming current is in the tens of mA and dominated
by radio bursts. Enclosures are rigidly mounted; foam isolation and loose mounts
are avoided. LEDs indicate advertising/connected/streaming. A UART console
exposes boot logs; periodic health frames report dropped samples and queue high-
water marks.

Figure 3.1: Sensors: SensorTile.box PRO

3.1.2 Sensing nodes: SensorTile.box

A legacy sensing node based on SensorTile.box (STEVAL-MKSBOX1V1) was also
used in exploratory runs and selected experiments. The board integrates a 6-DoF
IMU (accelerometer and gyroscope), an auxiliary ultra–low-power accelerometer,
an optional 3-axis magnetometer, a barometric pressure sensor, a digital micro-
phone, and a temperature sensor. For the purposes of this work, only the main
IMU streams are enabled; the magnetometer is typically disabled during bench
experiments. The hardware form factor of this legacy node is shown in Figure 3.2.
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Figure 3.2: Sensing node: SensorTile.box

Differences versus PRO Compared to SensorTile.box PRO, the legacy board
provides similar IMU full-scale ranges but offers lower maximum data rates on some
sensor paths and relies on an earlier BLE stack and firmware baseline. On the
hub, however, both devices follow the same JSONL schema; the dev field identifies
the originating node. Sampling targets remain 75 Hz, and the BLE configuration
mirrors the PRO setup (notifications, ATT_MTU= 247, Data Length Extension en-
abled, connection interval 15 ms, slave latency L=0). In practice, SensorTile.box
and SensorTile.box PRO are used as sensing nodes in an equivalent manner, and
all acquisition, synchronization, and inference stages treat them identically unless
explicitly stated otherwise.

3.1.3 Sensing nodes: BlueTile
A third sensing node used in this work is the BlueTile development kit (STEVAL-
BCN002V1B), a compact Bluetooth Low Energy board built around the BlueNRG-
2 SoC. The module integrates an Arm Cortex-M0 application core, the BLE radio,
and a rich set of MEMS sensors in a coin-sized form factor powered from a CR2032
cell, as illustrated in Figure 3.3. In this thesis the BlueTile node is used exclusively
in the performance test bench; it does not participate in road-surface acquisition
sessions.

The BlueTile sensor portfolio includes a 6-DoF inertial module (LSM6DSO ac-
celerometer + gyroscope), a 3-axis magnetometer (LIS2MDL), a barometric pres-
sure sensor (LPS22HH), a humidity and temperature sensor (HTS221), a Time-of-
Flight distance sensor (VL53L1X), and a digital MEMS microphone (MP34DT05).
For this work, only the inertial module is enabled; all other sensors are left disabled
to reduce power consumption and simplify the data model. The IMU operates
at the same nominal sampling rate as the other nodes (75 Hz), providing 3-axis
acceleration and angular-rate measurements.
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Figure 3.3: Sensing node: BlueTile (STEVAL-BCN002V1B) with on-board IMU
and BLE radio

Firmware and BLE streaming The firmware running on BlueTile is derived
from ST’s BLE sensor examples and adapted to the custom GATT layout used
in this project. The node exposes a single IMU service that periodically notifies
timestamped acceleration and gyroscope samples to the central hub. Local times-
tamps are derived from the BlueNRG-2 system tick; they are treated as opaque
device-clock values and later mapped to the global timebase by the synchroniza-
tion engine. No on-board fusion or motion classification is performed on the node;
all processing remains on the hub.

Differences vs SensorTile.box Compared to the legacy SensorTile.box node,
BlueTile integrates the application core and BLE radio in a single BlueNRG-2 SoC
and is powered from a coin cell, while SensorTile.box uses a larger STM32L4 MCU
plus an external BLE module on a battery-powered enclosure. Both platforms ex-
pose similar IMU ranges and noise levels and offer a rich set of auxiliary sensors, but
in this thesis only the IMU streams are used on both boards. The differing radio
stacks, scheduling, and buffering make BlueTile a useful second implementation
for the performance test bench, whereas SensorTile.box is primarily used in ex-
ploratory runs. From the hub’s perspective, however, the JSONL schema and IMU
channels are identical, and the dev identifier is sufficient to distinguish BlueTile
from SensorTile.box within the same session and in the performance test bench.

3.1.4 Firmware, GATT profile, and packet schema
Each node exposes three primary GATT services with distinct roles: a SYNC ser-
vice for beacon and probe exchanges, a DATA service for timing-sensitive sensor
streams, and a CFG service for external configuration and health reporting. The
firmware is derived from the STMicroelectronics reference package FP-SNS-ALLMEMS1
[21], which provides the baseline sensing and streaming functionality; on top of this
baseline, custom SYNC (and related CFG) services have been added to support
both one-way beaconing and two-way probe–response synchronization. This sepa-
ration keeps timekeeping independent from data transport and allows configuration
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to evolve without affecting real-time paths.

SYNC service The SYNC service emits periodic beacons carrying the node’s
monotonic tick and, optionally, a coarse epoch. The hub can initiate short probes;
the node replies immediately with an echoed record so the hub measures round-trip
time and bounds asymmetry. Two layouts are supported. In the two-characteristic
layout, one characteristic transmits beacons and responses (NOTIFY/INDICATE)
while a second characteristic receives hub probes (WRITE/WRITE_NO_RSP). In the
single-characteristic layout, a single feature combines notification and write; a small
opcode or role byte in the payload disambiguates BEACON and PROBE_RESP. Both
layouts use the standard CCCD to enable notifications and both implement the
same timing logic.

SYNC service: two characteristics versus one In the two-characteristic lay-
out, the SYNC service exposes a transmit characteristic used for beacons and re-
sponses NOTIFY/INDICATE and a separate receive characteristic for hub-initiated
probes WRITE/WRITE_NO_RSP. This split makes the directionality explicit, simpli-
fies access control, and allows host code to subscribe and filter independently on
the transmit side while treating the receive side as a pure command channel. In the
single-characteristic layout, notifications and writes share one feature; a compact
opcode in the payload distinguishes BEACON, PROBE, and PROBE_RESP. The unified
design reduces attribute count and descriptor overhead and can be easier to inte-
grate on constrained stacks, at the cost of a slightly more complex parser and less
explicit separation between uplink and downlink roles. Both layouts implement
identical timing logic and on-the-wire formats, so the hub-side synchronization en-
gine operates uniformly once packets reach the application layer.

DATA service The DATA service transports IMU packets. Each notification is
little-endian with fixed offsets and a compact header followed by a batch of samples
to amortize per-packet overhead. The header encodes a payload version vmaj,vmin,
a device-class flag hw_class for optional board-specific scaling, a stream selec-
tor sensor_id, a batch count batch_n, a fixed-point scale scale_q, the device
monotonic counter tick_ms, an optional device epoch remote_ms set to zero when
unavailable, a per-link sequence seq for loss and reordering detection, and an op-
tional checksum crc16. The payload then contains batch_n consecutive 3-axis
samples (x, y, z) as int16 at the declared scale. Fixed offsets and packed fields
allow zero-copy parsing on the hub, while explicit timing fields provide inputs to
the application-level synchronization layer.
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CFG service The CFG service handles start and stop, output-rate and range
selection, and persistent settings. Configuration writes are acknowledged with in-
dications when required by the host. Periodic health reports advertise board type,
firmware version, and a boot counter so downstream tools can detect reboots and
reinitialize state without schema changes.

Firmware implementation The node firmware derives from the standard ST
reference stack and profiles. Data streaming and configuration follow the vendor-
provided services and characteristics without modification. A single custom addi-
tion, the SYNC service, implements application-level beacons and two-way probes
for time estimation. The BLE stack, controller scheduling, and MAC/LL behav-
ior remain as in the ST baseline, ensuring compatibility and maintainability while
enabling precise synchronization.

Timing guarantees With a connection interval of 15 ms and batch_n ∈ {1,2,4},
the application sustains 75 Hz per node for 5–7 nodes on a single BLE adapter, pro-
vided the notify callback remains sub-millisecond and never blocks. Backpressure is
enforced via bounded queues to preserve latency guarantees under transient stalls.

3.1.5 Central Node (STM32MP2)
The central system is built around an STM32MP2-class platform (e.g., STM32MP257x)
running OpenSTLinux, STMicroelectronics’ Yocto-based Linux distribution. The
board’s dual Cortex-A35 application cores host the hub-side software stack, includ-
ing multi-link BLE acquisition, time synchronization, logging and GUI services,
and the on-device inference pipeline. BLE connectivity is provided by a 5.x adapter
(USB dongle or on-module radio) managed through the BlueZ stack. Session logs
and model artifacts are stored on local non-volatile media (eMMC or SD), while
GPIOs remain available for optional hardware markers and auxiliary triggers.

Hardware–software overview of the hub The diagrams in Figures 3.4–3.6
provide a top-down, layered view of the central node and its client pipeline. At
the hardware level, the STM32MP2-class SoC supplies the dual Cortex-A35 cores,
an HCI interface that may be either a single internal controller or one (or more)
external USB BLE dongles, network connectivity for HTTP ingress, and persistent
storage via eMMC/SD. At the software level, a configuration-driven client instanti-
ates the required producers and processing stages: BLE SensorDevice threads col-
lect GATT notifications through BlueZ over the available HCI interface(s), HTTP
streams are received by a single aiohttp ingest server, and file-replay producers read
JSONL traces from storage. All incoming samples are timestamped at first touch
on the hub monotonic clock, normalized into a unified JSONL schema, optionally
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passed through a bounded ingress queue for backpressure and ordering, and then
time-aligned by the synchronization engines before being routed to dedicated sinks
for logging, GUI monitoring, health telemetry, and real-time inference. Present-
ing this overview before OS-level tuning makes the subsequent process-isolation
and scheduling choices easier to motivate in terms of latency, determinism, and
reproducible end-to-end operation.

Config file
YAML/JSON

devices, ports, engines, sinks

BLE IMU nodes
(n devices)

USB BLE
HCI adapters (n)

BlueZ / HCI
stack

SensorDevice threads
(1 per node)

HTTP JSON producers
ports 8010 / 8020 / 4040

HTTP ingest
aiohttp server

HttpSensorDevice
adapter

eMMC / SD JSON replay
producer

Ingress
PriorityQueue

Synchronization
Engine Sinks

JsonWriterSink GuiSink HealthSink SurfaceSink
+ inferenceJSONL logs

Figure 3.4: End-to-end dataflow with configuration and eMMC/SD producers.
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USB BLE HCI
adapters (n)

up to 2 peripherals
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PriorityQueue

timestamp
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timestamp

Synchronization
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Figure 3.5: BLE ingestion: BlueZ timestamps notifications, queues them to syn-
chronization.
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HTTP client sensor

port 8010

HTTP client sensor

port 8020

Labeling app
(intervals)

port 4040

HTTP ingest
aiohttp server

HttpSensorDevice
adapter

decoded records

Ingress
PriorityQueue

(optional)

timestamp
at first touch

CLOCK_MONOTONIC_RAW
timestamp

Synchronization
Engine

Figure 3.6: HTTP ingestion: producers send JSON over HTTP, timestamped on
arrival.

Process Isolation and Scheduling The BLE ingestion service maintains active
connections, timestamps notifications upon arrival using CLOCK_MONOTONIC_RAW,
and dispatches them to the synchronization engine, as shown in Figure 3.5. Infer-
ence is executed by a dedicated long-lived thread pinned to one Cortex-A35 core,
scheduled with the SCHED_FIFO policy to ensure real-time priority. Logging and
ingestion services operate on the sibling core under SCHED_OTHER. The inference
core uses the performance governor to prevent CPU frequency scaling. All time-
critical memory is pre-allocated, with ring buffers and tensor pools sized at startup
to avoid runtime dynamic memory allocation.

Reference Clock and Synchronization All timing is referenced to the Linux
monotonic clock. The synchronization engine estimates per-node clock offset and
skew, applying an affine correction t̂(u) = α̂u + θ̂ to align sample times. Optional
MARK events, triggered via software or GPIO pulses, serve as global anchors and are
logged periodically for traceability. The interaction between ingestion, timestamp-
ing, and synchronization for HTTP-based producers is summarized in Figure 3.6.

I/O handling and telemetry Sensor data and labels are written in append-only
JSONL files with bounded in-memory queues, so that logging remains consistent
even under sustained load. System telemetry, covering throughput, inter-arrival
time statistics, queue depth, and inference latency, is sampled at a fixed rate of 1
Hz and recorded alongside the data streams, providing a continuous view of runtime
behaviour. At the start of each session the client also records firmware revisions,
kernel and BlueZ versions, and the LibTorch commit hash in use, so that acquisition
conditions and model binaries can be reconstructed exactly for reproducibility. The
overall dataflow from devices and HTTP producers to sinks and storage is captured
in Figure 3.4.
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3.2 Software architecture

Figure 3.7: Software architecture from BLE and HTTP producers to consumers

3.2.1 End-to-end pipeline and data flow Acquisition

A DeviceWorker thread runs for each BLE node, subscribes to the IMU data char-
acteristic, and decodes notifications in the RX callback using Bleak on top of BlueZ.
Devices are declared in a profile YAML file; their random addresses are resolved
at session start, and each device is bound to a chosen HCI interface. The worker
enables notifications via CCCD writes, timestamps each packet at first touch with
a monotonic host_ms, normalizes the payload to the unified schema, and pushes
the resulting records to the ingress queue. In parallel, an HTTP ingestor listens
on 0.0.0.0:8000, accepts schema compatible JSON from auxiliary producers and
from the labeling app with CORS enabled, and applies a lightweight exponential
moving average offset estimator (with α = 0.2) when source timestamps exhibit a
persistent bias, before forwarding records to the synchronization stage.
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Timestamping and synchronization The active BLE time-synchronization
protocol is implemented through a dedicated GATT synchronization service and
a single probe characteristic, listed in Table 3.1. For each peripheral, the Syn-
chronization Engine discovers this service and uses the probe characteristic for a
lightweight two-way exchange that is kept separate from the IMU streaming char-
acteristic. At each probe, the hub writes a request on the probe characteristic
and receives an indication/notification carrying the peripheral tick counter. These
(u, host_ms) anchor pairs are then used to estimate offset and skew on the hub
timebase, while the data path proceeds independently. Isolating probing into its
own service makes synchronization explicit, configurable per device, and robust to
changes in the sensor payload format.

Table 3.1: UUIDs used by the BLE synchronization probe protocol
Element UUID Role
Synchronization service 00000000-000f-11e1-ac36-0002a5d5c51b Application-level GATT service hosting the

probe logic used by the Synchronization En-
gine.

Sync probe characteristic (write/indicate) 00000002-000f-11e1-ac36-0002a5d5c51b Characteristic within the synchronization
service.

The Kalman 2 state configuration uses process noise kfQa = 1 × 10−12 and
kfQb = 1 × 10−3, initial covariance kfP 0a = 1 × 10−8 and kfP 0b

= 1 × 106,
and a Mahalanobis gating parameter λ = 9.0. Warm up exit is controlled by
warmup_min_sec ∈ (600, 900) depending on the device and by ppm thresholds: the
mean skew must be below 0.12 ppm and its standard deviation below 0.06 ppm.
The engine then requires cruise_entry_windows = 10 consecutive windows with
cruise_entry_ppm = 1.5 and cruise_entry_sigma_ppm = 1.0 to commit to cruise
mode. Offset jitter control freezes the published offset b after warm up if residuals
remain small, with median residual at most 1.5 ms and 95th percentile at most
4.0 ms for at least three anchors in a row. Wrap and reconnect behaviour follow
soft_resume_max_gap_ms = 120000 and soft_resume_max_residual_ms = 15.0
for soft resumes, and use hard_reset_on_wrap = true with hard_reset_max_gap
= 300000 to trigger a full reset when counters wrap or gaps become too large.

Routing and feature windowing A Router places records on per-sensor ring
buffers. The FeatureBuilder maintains sliding windows of length W and stride S,
enforces per-device completeness ρ, and builds tensors of shape (T, C ·D+M) with
one mask bit per device. Z-scores are computed on the training split and reused
unchanged. The default surface model sink (below) sets fs = 75 Hz, W = 1.0 s,
jitter tolerance 35 ms, maximum gap 200 ms, and min_devices = 5.

Inference A ModelRunner executes a TorchScript Conv1D with depthwise-separable
blocks and dilations 1,2,4. Posteriors are optionally smoothed with an EMA α = 0.4
and a dwell of 10 windows.
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Sinks and handoff semantics As shown in Fig. 3.7, all records produced by
BLE, HTTP, and file-replay sources converge into a common stream and are then
fanned out to specialized consumers. JsonWriterSink provides the authoritative,
append-only persistence layer, ensuring that each run yields immutable JSONL ar-
tifacts. GuiSink decimates and forwards best-effort updates for live visualization
without ever back-pressuring acquisition. HealthSink continuously aggregates QoS
indicators—rate, gaps, jitter, RTT, and drop statistics—so that stream quality can
be monitored online. LabelingSink filters label events, aligns them to the hub
timeline, and emits compact interval logs for training and evaluation. Finally,
SurfaceSink implements the real-time ML workload: it rebuilds multi-device fea-
ture windows from synchronized samples, runs the TorchScript model, and forwards
posteriors and predictions to a dedicated writer sink, keeping inference outputs sep-
arate from raw data logs.

All inter-stage handoffs follow the same low-latency design principles used along
the producer side of Fig. 3.7. Whenever possible, components communicate through
single-producer/single-consumer lock-free queues to avoid contention and priority
inversion. The bounded PriorityQueue used in the ingest/multiplexing path or-
ders items by host_ms and breaks ties with a monotonic sequence counter, guaran-
teeing deterministic replay under small scheduling jitter. When the queue reaches
capacity, it replaces the worst-priority element if the incoming one is better or equal;
for equal priority, the newest sample is kept and the oldest is discarded, so fresh-
ness is preserved during transient overload. Non-critical branches (GUI, auxiliary
channels) are the first to drop, while IMU streams may be lightly coalesced within a
small tolerance without violating causal window construction. Any RF-interference
generation for stress testing is performed externally and never executes on the hub,
so it does not perturb the timing guarantees of the acquisition and sink pipeline.

BLE payload schema IMU streaming is exposed through a single GATT service
and characteristic, summarized in Table 3.2. The client enables notifications by
writing the CCCD with the value shown in the table, after which each packet is
delivered as a fixed-layout binary notification. As detailed in Table 3.3, the first two
bytes carry the device tick timestamp, followed by nine signed 16-bit samples for
accelerometer, gyroscope, and magnetometer axes. All sensor fields are transmitted
as little-endian int16 and converted on the hub by applying the firmware scaling
factor of 10−3 to obtain physical units. For every notification, the hub injects the
arrival timestamp host_ms and computes the aligned timestamp_ms through the
per-device synchronization mapping t̂(·). HTTP producers deliver JSON records
already matching the unified schema, so they enter the pipeline with the same field
names and downstream handling.
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Table 3.2: GATT endpoints used for IMU streaming.
Element UUID CCCD handle Enable value Role
IMU service 00000000-0001-11e1-9ab4-0002a5d5c51b – – Service hosting the inertial data

characteristic.
IMU data characteristic 00e00000-0001-11e1-ac36-0002a5d5c51b 32 "0100" Notifies one IMU sample per con-

nection event.

Table 3.3: Layout of one IMU notification (little-endian).

Field Byte indexes Type Scale Notes
tick timestamp [0,1] uint16 1 tick = 1 clock cycle Unwrapped on hub.
accX [2,3] int16 ×10−3 Accelerometer axis.
accY [4,5] int16 ×10−3

accZ [6,7] int16 ×10−3

gyrX [8,9] int16 ×10−3 Gyroscope axis.
gyrY [10,11] int16 ×10−3

gyrZ [12,13] int16 ×10−3

magX [14,15] int16 ×10−3 Magnetometer axis.
magY [16,17] int16 ×10−3

magZ [18,19] int16 ×10−3

3.2.2 BLE client stack (threads and PriorityQueue)
The Python collector in client.py instantiates one thread per device or service
and connects them through a small number of queues. BLE and HTTP devices
generate JSON samples, an optional microphone pipeline produces audio features,
and a set of threaded sinks consume the unified stream. All of these components
and names match the implementation in the Thesis-SurfaceDetection project.

SensorDevice threads (BLE) Each BLE node is handled by a SensorDevice
instance from sensor_device.py, which is a subclass of threading.Thread. Con-
figuration is loaded from YAML or JSON and provides the logical name, MAC
address or random BLE address, HCI interface, MTU, and the mapping from
characteristics to sensors and fields. The thread scans for its target device us-
ing BleakScanner, opens a BleakClient, discovers services and characteristics,
and subscribes to the IMU data characteristic by writing the CCCD. Notifications
are decoded in the Bleak RX callback, where the device tick counter is unwrapped,
mapped to host time through the per device SynchronizationEngine, and packed
into a JSON compatible dictionary with fields dev, sensor, timestamp_ms, values,
raw_sensor_time, raw_host_time, raw_counter_unwrapped, remote_ms
, delta_vs_remote_ms, delta_vs_host_now_ms, and timestamp_source. This
dictionary is passed to a user supplied consumer callback via self._consumer(sample).
Connection management, including reconnects with backoff, service rediscovery,
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and resubscription of notifications, is implemented inside SensorDevice and fol-
lows the logic in run(), without any extra dispatcher thread in between.

HttpSensorDevice and LabelServer (HTTP sensors and labels) HTTP
producers are handled by HttpSensorDevice in http_sensor_device.py, which
is also a threading.Thread. It starts an aiohttp based server that accepts
JSON payloads on configured endpoints and maps device time to host time us-
ing either an exponential moving average offset estimator or a slot based mini-
mum strategy, as implemented by the map_ema and map_stream_min helpers. For
each valid record it builds a sample with the same shape as BLE samples, in-
cluding sensor_raw, and forwards it to the shared consumer callback. Labels
from the smartphone app use a separate LabelServer from http_labeling.py.
LabelServer runs an aiohttp application in a background thread, accepts only
{"label": ...} requests, wraps them into {"type":"label","label":<value>}
records, and either enqueues them into a PriorityQueue or forwards them di-
rectly to the global consumer. In the main client configuration used for this work,
LabelServer.set_consumer(consumer) is used, so label records are injected into
the same stream that feeds the sinks, and LabelingSink selects only type=’label’
entries when writing labels.jsonl.

MicrophoneRecorder and mic PriorityQueue Audio capture is handled by
MicrophoneRecorder in microphone_recorder.py, which uses FFmpeg and ALSA
to read mono PCM audio at a fixed rate. The recorder pushes tuples
(tchunk, payload, ”mic”) into a bounded PriorityQueue from Priority_queue.py,
where the numeric priority is the chunk timestamp. The helper
start_microphone_pipeline in client.py starts MicrophoneRecorder, allocates a
PriorityQueue with a fixed maxsize, and spawns a small forwarder thread that
repeatedly pops from the queue and converts each payload into a JSON sample
with fields
dev:’mic’, sensor:’MIC’, timestamp_ms, raw_host_time, values,
and timestamp_source:"host". When the mic_embed_audio option is active,
the forwarder also attaches pcm_b64 and sha1 inside values, exactly as in the
implementation. The microphone samples are then passed to the same consumer
callback as BLE and HTTP samples, so they are logged and visualised as another
device on the synchronized axis.

Global consumer, sinks, and GUI The function make_consumer in client.py
builds the global consumer used by all devices. This consumer iterates over the ac-
tive sink instances and calls s.consume(sample) on those that accept raw data,
then forwards the same sample to the optional GUI queue. Sinks are instances of
classes from the sinks package such as JsonWriterSink, LabelingSink, HealthSink,
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and SurfaceSink. Each sink inherits from BaseSink, which provides a dedi-
cated thread and a bounded internal deque, plus backpressure policies named
"drop_new", "drop_old", and "block". The sinks consume samples asynchronously
in their own threads by overriding on_sample(), so the ingest path from the de-
vice threads to the consumer is non blocking. The GUI, when enabled, is started
via start_gui from gui_display.py and reads from its own thread safe queue
threads_queue, receiving the same JSON dictionaries that are written to disk.

PriorityQueue semantics The custom PriorityQueue implementation in Pri-
ority_queue.py is used for microphone frames and, in standalone mode, for label
records. It provides a min heap where lower numeric priority is considered better,
supports an optional maxsize, and replaces or drops items according to priority
when the queue is full, matching the behaviour documented in the source. The
code paths in client.py and http_labeling.py use this queue exactly as in-
tended, with tuples (priority, payload, src) and non blocking get_nowait() in the
forwarder loops, so that audio and labels can be integrated into the main stream
without blocking the device threads.

3.2.3 Configurable sinks
Sinks are implemented as independent consumers derived from a common BaseSink
class in sinks/BaseSink.py. BaseSink manages a dedicated daemon thread and
a bounded internal deque, with configurable backpressure policies "drop_new",
"drop_old", and "block". The constructor

BaseSink(
name: str,
max_queue: int = 10000,
backpressure: str = "drop_new",
tick_every_ms: Optional[int] = None,
rate_limit_ms: Optional[

Union[int, Callable[[Dict[str, Any]], Tuple[int, str]]]
] = None,

)

sets the sink name, queue size, and backpressure mode, and optionally en-
ables periodic on_tick(now_ms) callbacks and per-sample or per-key rate limiting.
The start() method spawns the internal thread and begins draining the queue in
_run(), which repeatedly calls on_sample(sample) and on_tick(now_ms). The
consume(sample) method is non-blocking and enforces the chosen backpressure
policy: "drop_new" discards incoming samples when the queue is full, "drop_old"
drops the oldest entries to make room for new ones, and "block" waits on a con-
dition variable. All threaded sinks below use this mechanism.
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JsonWriterSink JsonWriterSink in sinks/JsonWriterSink.py is the primary
persistence backend. It subclasses BaseSink with the constructor

JsonWriterSink(
path: str,
rotate_by_size_mb: int = 0,
rotate_every_s: int = 0,
flush_every: int = 200,
pretty: bool = False,
only_types: Optional[Iterable[str]] = None,
max_queue: int = 20000,
backpressure: str = "drop_old",
**_ignored,

)

and internally sets tick_ms = 1000 when time based rotation is enabled so
that on_tick can check for rotation once per second. Records are written as UTF-
8 JSON lines to a template path path; rotation is controlled by rotate_by_size_mb
and rotate_every_s. When a threshold is exceeded, _rotate_locked() closes the
current file and opens a new one with a numeric suffix. The parameter flush_every
specifies how many records are buffered before a forced flush(), balancing through-
put and durability. The optional only_types filter restricts output to records
with rec["type"] in the given set, otherwise all samples are written. In the
configurations used for this work, typical parameters are rotate_by_size_mb =
2048, optional rotate_every_s, flush_every = 100, max_queue = 5000, and
backpressure = "drop_old", so that the newest data are kept if producers briefly
outrun disk writes.

GuiSink GuiSink in sinks/GUISink.py is a high performance sink for forward-
ing data to the live GUI. It also inherits from BaseSink and is constructed as

GuiSink(
gui_put: Callable[[Minimal], None],
min_interval_ms: int = 100,
target_total_hz: int = 120,
flush_ms: int = 50,
max_queue: int = 5000,
backpressure: str = "drop_old",
transform_fn: Optional[TransformFn] = None,
*,
get_queue_depth: Optional[QueueDepthFn] = None,
max_gui_queue: int = 500,
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max_keys: int = 1024,
idle_forget_ms: int = 120_000,

)

Here gui_put is a callback that enqueues minimal payloads into the GUI queue,
min_interval_ms enforces a minimum spacing per key, and target_total_hz with
flush_ms implements a budget of how many points can be forwarded per flush.
The optional transform_fn maps full samples into a minimal dictionary, by default
extracting dev, sensor, timestamp_ms, and a numeric value from values. The sink
coalesces updates by key (dev, sensor), keeps only the most recent sample per key
in an internal map, and then schedules a bounded number of keys per flush, so the
GUI sees a representative but decimated stream. The optional get_queue_depth
and max_gui_queue parameters make the sink aware of the GUI’s own queue depth;
when the GUI is backlogged, the sink drops more aggressively. The configuration
used in the road surface experiments sets min_interval_ms ≈ 100, max_queue =
2000, and backpressure = "drop_old", so that visualization never blocks the
ingest path.

HealthSink. HealthSink in sinks/HealthSink.py analyses stream quality per
device and sensor and emits periodic summaries. It is defined as

HealthSink(
window_s: int = 10,
emit_every_ms: int = 2000,
expected_hz: Optional[Dict[str, float]] = None,
value_ranges: Optional[Dict[str, Dict[str, Tuple[Number, Number]]]] = None,
jitter_ms_threshold: float = 1.0,
dropout_pct_threshold: float = 2.0,
flatline_var_epsilon: float = 1e-6,
clip_epsilon: float = 0.0,
gravity_g: float = 1.0,
score_weights: Optional[Dict[str, float]] = None,
emit_put: Optional[Callable[[Dict[str, Any]], None]] = None,
out_path: Optional[str] = None,
rotate_by_size_mb: int = 0,
rotate_every_s: int = 0,
flush_every: int = 200,
pretty: bool = False,
**kw,

)

and passes emit_every_ms to BaseSink as tick_every_ms, so that on_tick
fires at the desired cadence. The internal window size _win_ms is set from window_s.
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Expected sampling rates are configured through expected_hz, which supports
wildcard keys such as "*", per sensor keys like "acceleration", per device keys
like "pro1/*", and per device per sensor keys like "pro1/acceleration". For
each (dev, sensor) pair the sink tracks effective rate, inter-arrival statistics, jit-
ter, dropout percentage versus the expected rate, and per-field statistics such as
min, max, mean, standard deviation, clipping ratio, and flatline detection using
flatline_var_epsilon. It computes a 0 to 100 health score with penalty weights
from score_weights and optionally writes summaries as JSONL to out_path with
rotation parameters mirroring JsonWriterSink. In the thesis configuration, the
window is 10 s, summaries are emitted every 2000 ms, default expected rates are
25 Hz with overrides of 75 Hz for pro1/* and pro2/*, jitter thresholds are around
1.0 ms, and dropout thresholds are about 2 percent.

LabelingSink. LabelingSink in sinks/LabelingSink.py is a lightweight, non
threaded writer dedicated to label records. It does not derive from BaseSink but
manages its own file handle and lock. The constructor

LabelingSink(
path: str = "output/labels.jsonl",
flush_every: float = 1.0,
rotate_by_size_mb: int = 0,
rotate_every_s: int = 0,

)

opens path for append, records the creation time, and sets flush and rota-
tion policies. The consume(rec) method accepts all pipeline records but writes
only those with rec["type"] == "label". It chooses a host time host_ms from
rec["host_ms"] when available, otherwise from the authoritative
session_clock.now_ms(), strips host centric fields from the inner label payload
(such as host_ms, timestamp_ms, timestamp_source, and legacy fields), wraps the
label into

{"label": <label_dict>, "host_ms": <enqueue_host_time_ms>}

and appends the JSON line to path. The sink flushes on every call when
flush_every == 0.0 or after flush_every seconds have elapsed, and rotates the
file when size or age thresholds are exceeded. This is exactly the on disk format
documented in Section 3.5.3.

SurfaceSink. SurfaceSink in sinks/SurfaceSink.py links the online TCN based
classifier to the sink infrastructure. It is a BaseSink subclass with the constructor
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SurfaceSink(
run_dir: str,
device_names: List[str],
exclude: List[str] | None = None,
fs: float = 75.0,
win_sec: float = 1.0,
jitter_ms: int = 35,
max_gap_ms: int = 200,
min_devices: int = 2,
add_mask: bool = True,
ema_alpha: float = 0.4,
dwell: int = 10,
torch_device: str | None = None,
*,
max_queue: int = 10000,
backpressure: str = "drop_new",
tick_every_ms: Optional[int] = None,
rate_limit_ms: Optional[int] = None,

)

and a build(params: Dict[str, Any]) -> SurfaceSink helper that con-
structs instances from a configuration dictionary. The sink chooses the subset of
devices to keep by filtering device_names against exclude, and sets fs, win_sec,
jitter_ms, and max_gap_ms to reconstruct windows compatible with the offline
tcnwsn training code. It loads metadata and TorchScript models from run_dir
(and, if set, from the environment variable MODEL_DIRECTORY), detects the appro-
priate torch.device (CPU or CUDA), and maintains an internal circular buffer of
aligned samples indexed by global time. At runtime it joins channels from all config-
ured device_names, enforces a minimum number of active devices min_devices,
optionally adds explicit masks across devices when add_mask is true, and com-
putes model inputs as contiguous tensors over windows of length win_sec seconds.
The raw model posteriors are smoothed with an exponential moving average con-
trolled by ema_alpha, and a dwell counter of length dwell prevents rapid flapping
of the final class. The sink emits a dictionary with per-class probabilities, pre-
dicted surface and motion labels, and change flags to a downstream writer iden-
tified by emit_to_id. In the final configuration used for the road-surface case study,
run_dir is set to /home/mulaz/Documenti/surfmotion_pkg/runs/surface_final,
device_names includes [blt1, blt2, blt3, pro1, pro2], fs = 75.0, win_sec
= 1.0, jitter_ms = 35, max_gap_ms = 200, min_devices = 5, add_mask = true,
ema_alpha = 0.4, dwell = 10, and emit_to_id = "surface_writer".
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3.2.4 Config system (YAML/JSON)

Configuration is file backed and layered, so that long lived defaults can be reused
across experiments and only small, session specific differences need to be overrid-
den. At startup the client loads a base YAML file that defines global sections for
devices, sinks, synchronization, microphone capture, HTTP endpoints, and GUI
options; this base file includes device and sink profiles by reference so that common
fragments such as BLE node descriptions or standard sink sets can be shared. Pro-
files for BLE nodes declare logical names, addresses, UUIDs, sampling rates, and
per-sensor scaling, together with optional GUI hints such as colour and panel lay-
out, while sink profiles define which sink classes are active and their key parameters
such as file paths, rotation thresholds, queue sizes, and backpressure modes. On top
of the base YAML, the client can apply one or more per session overlays in either
YAML or JSON; these overlays are deep merged into the default configuration so
that scalar values and lists are replaced, nested dictionaries are merged recursively,
and missing keys fall back to the base configuration. Environment variables pro-
vide a final override layer for a small set of critical paths and endpoints: variables
such as MODEL_DIRECTORY redirect the SurfaceSink to a different TorchScript run
directory without editing configuration files, and others can override export URLs
for telemetry or dashboards. Once the raw configuration has been assembled, a
validator checks both structure and cross-parameter constraints: required sections
such as devices, sinks, sync, mic, and http_labels must be present with sen-
sible types and ranges; cross-field checks enforce constraints such as S ≤ W for
the window stride and length used by the feature builder and surface classifier,
min_devices ≤ |device_names| for the multi-device model, positive sampling fre-
quencies and window sizes, and jitter and gap thresholds smaller than the window
length in milliseconds; device and sink identifiers must be unique; references from
sinks (for example emit_to_id in the SurfaceSink) must resolve to declared sink
names; and BLE device names referenced in the synchronization section must ap-
pear in the devices section. For reproducibility, the resolved configuration is sse-
rialized to JSON and emitted at startup together with a deterministic hash of its
contents (for example a SHA-256 digest), so that the exact combination of base file,
overlays, and environment overrides used in a session can be reconstructed later.

Main YAML configuration example A representative sensor YAML configu-
ration is provided in Appendix A.1.

Top-level YAML configuration The full top-level YAML file that defines the
experimental setup (devices, transports, sampling rates, and synchronization op-
tions) is provided in Appendix A.2.
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3.2.5 Configuration hierarchy

Config.yaml

BLE_devices

device_1.yaml
...
device_N.yaml

HTTP_devices

phone1_http.yaml
...
phoneN_http.yaml

Sinks

GuiSink.yaml
HealthSink.yaml
JsonWriterSink.yaml
LabelingSink.yaml
surfaceModel.yaml

Figure 3.8: Configuration hierarchy

Configuration is organized hierarchically so that small, reusable fragments can be
combined into complete session profiles. The repository mirrors this structure in the
Config directory, which groups YAML files by role: BLE device profiles live under
Config/BLE_devices/, HTTP producers under Config/HTTP_devices/, and sink
definitions under Config/Sinks/. Each file describes exactly one logical compo-
nent (for example device2_bluetile_imu_pro.yaml for a specific SensorTile.box
PRO node, or HealthSink.yaml for the QoS monitor) and can be reused across
multiple runs without duplication. Adding a new sensor or sink does not require
editing existing files: it is enough to drop a new YAML profile into the appropriate
subdirectory and reference it from the main configuration file. This hierarchical
layout keeps device and sink definitions local and versionable, while the small ses-
sion files express the experiment-specific choices that differentiate one acquisition
from another.

3.2.6 GUI and monitoring
The live GUI is implemented by the gui_display.py module and runs in its own
GTK thread inside the main process rather than as a separate process. Acquisi-
tion and inference threads never touch matplotlib directly; they push compact
dictionaries into a shared threads_queue, which is a custom PriorityQueue with
bounded capacity GUI_QUEUE_MAXSIZE. The function start_gui() spawns a dae-
mon thread that calls a private _gtk_main() entry point, constructs a SensorGUI
instance, and enters Gtk.main(). This thread owns the GTK 3 event loop and
all matplotlib objects, while the rest of the application continues to run in the
original threads that feed the queue.

66



3.2 – Software architecture

Inside the GUI thread, data flow and rendering are optimised for low CPU usage.
Each logical signal is stored in a dedicated RingBuffer implemented with NumPy
arrays of fixed capacity RB_CAP, which is computed from the configured storage hori-
zon STORE_WINDOW_S and the decimation bucket size BUCKET_MS. Timestamps are
normalised to seconds from the first sample and are derived with pick_time_ms(),
which uses device or host times and handles audio frames by taking the mid-
point between t0_ms and t1_ms, optionally shifted by an environment variable
MIC_TSHIFT_MS. To prevent pathological redraws, the GUI only drains a bounded
number of messages per frame: _drain_queue() pulls at most DRAIN_LIMIT pack-
ets from the priority queue and appends them into the appropriate ring buffers,
dropping samples that arrive out of time order or adjusting duplicate timestamps
by a small epsilon. The minmax_bucket() routine then performs min–max down-
sampling over fixed time buckets given in milliseconds, so the plotted curves are
reduced to a few representative points per bucket regardless of the raw sample rate.

Plotting itself is handled by a small PlotScheduler wrapper that integrates
matplotlib with GTK. The module forces the GTK3Agg backend, constructs a sin-
gle Figure with a shared x axis and two y axes (left for IMU channels, right for the
microphone amplitude), and uses GObject.timeout_add() to schedule redraws at
a fixed frequency REFRESH_HZ. On each timer tick, the scheduler calls back into
SensorGUI._draw_once(), which drains the queue, updates the ring buffers, re-
computes min–max decimated traces in the visible time window X_WINDOW_S, and
adjusts the x and y limits. A small statistics label in the top bar shows instanta-
neous frames per second and draw time in milliseconds using PlotScheduler.fps
and draw_ms, so the operator can monitor the cost of the GUI. Dynamic device and
signal toggles are implemented as GTK ToggleButtons created on demand when
new dev or sensor suffixes appear; inactive or long-idle signals are hidden and even-
tually removed based on IDLE_HIDE_S and IDLE_REMOVE_S thresholds, which also
drive the destruction of their toggle buttons. This combination of bounded queue
draining, ring buffers, bucket decimation, and fixed-rate redraw ensures that the
GUI thread stays lightweight and that any back-pressure is absorbed locally by
dropping GUI samples and hiding stale series, without impacting the acquisition,
synchronization, or logging paths.
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Figure 3.9: Live-plot interface for real-time visualization of synchronized multi-
sensor streams

3.2.7 Logging and storage
Artifacts are append-only and human readable, and their JSONL structure follows
the layout defined in Section 3.5.3. Each run produces a small set of files under a
dedicated output directory, with deterministic names that encode the run identi-
fier and a part index when rotation is enabled. In the road-surface experiments,
synchronized samples are written to paths of the form

output/<run_id>_data_part0001.jsonl

with later chunks for the same run using incremented part numbers. Online sur-
face predictions are written to output/<run_id>_preds_surface.jsonl, labels as
closed–open intervals to output/<run_id>_labels.jsonl, and health summaries
with throughput, jitter, round-trip time, queue depths, drops, and amplitude statis-
tics to output/<run_id>_health.jsonl. Rotation can be driven by file size or
wall-clock time; filenames remain predictable, and each rotated file is closed cleanly
before a new one is opened so that writes are append-only. On the aligned timeline,
per-device timestamps are kept non-decreasing; a short reorder buffer in the ingest
path corrects minor violations caused by scheduler noise and reports any corrections
to the HealthSink. Cross-engine analyses always use a trimmed common horizon
computed offline from these files and stored alongside the run metadata, so that
every synchronization engine is evaluated on exactly the same time span.
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HTTP sensor The HTTP ingest path carries auxiliary sensor streams, including
smartphone IMU data, to the hub. The server listens on 0.0.0.0 at a configurable
port (port 8080 in the final configuration used for the dataset) and accepts JSON
payloads that conform to the same schema used by BLE devices, with fields such as
dev, sensor, timestamp_ms, remote_ms, and values. A small number of concur-
rent clients are supported, and, where sources expose only a wrapping counter, the
server can unwrap it at ingress using a configurable modulus such as counter_mod
= 65536. After validation and optional bias correction on the remote timestamps,
HTTP samples are forwarded into the same synchronization and routing stages
that handle BLE notifications, so that all producers share the common aligned
time base described in Section 3.5.3.

Security Network-facing sinks and HTTP endpoints can be deployed behind
TLS, either directly in the service or via a terminating reverse proxy, without
changing the JSONL schema on disk. Credentials such as API keys and pass-
words are loaded from environment variables or a protected secrets file rather than
embedded in configuration. Fields that could carry personally identifiable informa-
tion are disabled in the default configuration and must be explicitly whitelisted on
a per-sink basis when needed, so that the road-surface experiments described here
operate strictly on IMU signals, microphone features, and surface labels and do not
store user identities or routes.

Reproducibility At startup the client logs the active sink configuration, device
map, synchronization engine and parameters, HTTP endpoints, and library ver-
sions together with firmware, kernel, and BlueZ versions. These metadata are kept
in the same output directory as the JSONL artefacts so that the exact runtime envi-
ronment can be reconstructed. Figure generation and exports refer to sink outputs
by run identifier and part number, not by ad hoc filenames, and the plotting scripts
consume the same JSONL structures described in Section 3.5.3. Additional stress
tests, such as runs with increased RF interference, reuse the same configuration
machinery; only the physical environment is changed, so the runtime configuration
that governs logging, synchronization, and HTTP ingestion remains identical across
conditions.

3.3 HTTP ingestion and web server
The HTTP path carries labels and auxiliary sensor data from heterogeneous pro-
ducers to the hub using the same time model as BLE. An aiohttp-based server
listens on 0.0.0.0 at port 8080 for sensor streams and at port 4040 for label
events from the smartphone app. Incoming requests are parsed against a strict
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JSON schema, mapped to host time using either remote timestamps plus a bias es-
timator or pure host arrival time, and immediately wrapped into the unified record
format used in Section 3.5.3. These records are then handed to the synchronization
engine and routing layer, so HTTP producers participate in the same aligned time-
line as BLE IMUs, and labels travel through the pipeline as regular samples that
can be written to <run_id>_labels.jsonl and joined with synchronized sensor
data during training and evaluation.

3.3.1 Smartphone labeling app
A lightweight smartphone app provides live surface labels during acquisition. The
app presents a small set of mutually exclusive buttons, one per class (for example
asfalto, ciottoli, and an unknown or idle state), plus a control to stop label-
ing. When the rider taps a button, the app updates its internal state, records a
local timestamp, and issues an HTTP POST to the hub’s label endpoint (port 4040,
path /labels) with a compact JSON payload that carries the selected label and a
device-side time. While a class remains active, the app periodically refreshes the
label at a low rate to make the stream robust to occasional packet loss; chang-
ing class or stopping emits a corresponding event. On the hub, these events are
wrapped with host-aligned timestamps, written to labels.jsonl using the format
in Section 3.5.3, and later converted into closed–open intervals on the synchro-
nized timeline, so that the smartphone effectively acts as a low-cost, networked
ground-truth switch aligned with the IMU streams.

3.3.2 Clocking and offset correction
HTTP producers often timestamp events on their own clock, which can be biased
with respect to the hub timebase. Upon reception, the hub assigns a process-
local monotonic host_ms at first touch and derives a corrected timestamp for the
record inside http_sensor_device.py. Unlike BLE nodes, HTTP sources do not
participate in active round-trip probing; their alignment is inferred passively from
the relation between remote timestamps and hub arrival times.

In EMA mode (the default), each sample yields a measured offset

∆t = thost − tsrc,

and the hub updates a scalar offset estimate

θ̂t = (1 − α) θ̂t−1 + α ∆t,

with α ∈ [0.1,0.3] set by http_offset_alpha. An outlier gate ema_outlier_gate_ms
(default 1000 ms) resets the filter if |∆t − θ̂t−1| exceeds the gate, so that short bursts
of network delay do not bias the estimate. The corrected host time is then

t̂host = tsrc + θ̂t,
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and the record is tagged with timestamp_source:"http_offset_ema".
When remote timestamps show a persistent drift rather than a pure bias, an

optional linear drift-aware mode can be enabled. The ingestor maintains a rolling
buffer of low-delay anchors extracted from recent traffic and fits a simple slope-
plus-offset model

thost ≈ a + b tsrc,

so mapping proceeds as t̂host = a + b tsrc. This passively removes slow clock drift
without introducing any extra protocol messages. In both modes, per-source times-
tamps are forced to be strictly increasing by adding a small epsilon when needed,
and the corrected time is written into timestamp_ms before the record enters rout-
ing and logging.

3.3.3 Server architecture and concurrency
The HTTP ingestor is implemented by the HttpSensorDevice class, which runs
in its own thread and hosts a single aiohttp application. One HttpSensorDevice
instance corresponds to one configured HTTP ingress (i.e., one server per port/-
group of endpoints), not one server per sensor. Inside this thread, an asyncio event
loop serves three endpoints: POST /data and POST /sensors for sensor payloads,
and GET /health for a small status report. Requests are handled without blocking
operations: JSON parsing and minimal validation run on the event loop, while
heavy work such as feature extraction, windowing, and inference is executed only
downstream.

The POST handlers accept either a single dictionary or a batch wrapped in
"payload":[...]. For each record, http_sensor_device.py normalizes sensor
naming and values, extracts a device-side time using flexible rules (numeric fields
time/timestamp/ts/t with unit detection or ISO-8601 strings), applies EMA or
linear drift-aware clock mapping when a source timestamp is present, and constructs
a unified sample dictionary with fields such as dev, sensor, sensor_raw, values,
raw_sensor_time, raw_host_time, raw_counter_unwrapped, remote_ms, and //
timestamp_source. The ingestor does not store records locally; instead it invokes
a user-supplied consumer callback, which typically enqueues them into the same
bounded priority queue used for BLE devices. This keeps the HTTP thread re-
sponsible only for parsing and timestamp mapping, while all shared state lives in
the downstream ingress multiplexer.

3.3.4 Backpressure and flow control
Backpressure is handled cooperatively between the HTTP device thread and the
central ingress multiplexer. The HttpSensorDevice exposes a single consumer
callback; in the production pipeline this callback pushes records into a bounded
single-producer/single-consumer priority queue. When the queue fills, put calls in
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the HTTP thread either block briefly or apply a configured drop strategy, so that
the load on the hub cannot grow without bound. The multiplexer drains the queue
at a fixed maximum rate and prioritizes sensor records over labels and GUI updates
when contention appears. Since HTTP samples are normalized to the same record
shape as BLE notifications, the same health and drop policies apply. GUI and
export sinks consume only from downstream branches and are configured as best
effort; they may coalesce or drop records locally without affecting ingestion.

3.3.5 Locking model
Concurrency control for the HTTP path follows the same principles as the rest of
the acquisition stack. Within HttpSensorDevice the hot path is lock-free: aiohttp
handlers run on a single event-loop thread, build immutable dictionaries for each
sample, and call the consumer callback. The ingress multiplexer owns the queue
and any per-source state, so it does not require fine-grained locking for HTTP
devices.

Shared resources such as disk writers and session manifests are protected by a
small number of coarse locks independent of the HTTP server. A writer mutex
serializes file rotation (including atomic rename and checksum writes), a manifest
mutex guards updates to the session description, and a metrics mutex (or atomic
counters) protects global statistics. No lock is held while awaiting network or disk
I/O, and lock ordering is fixed by construction, preventing deadlocks and priority
inversion when BLE, HTTP, and writer threads run concurrently.

3.3.6 Reliability and idempotency
The HTTP ingestor is stateless with respect to individual requests. Each POST to
/data or /sensors is handled independently: if parsing and normalization succeed,
the corresponding samples are emitted to the consumer; otherwise the handler
returns an error and no samples are forwarded. Retries are handled in an at-least-
once fashion: clients may resend batches on transport failure, and duplicates can
appear in the log as separate records with nearly identical timestamps. Downstream
analysis tolerates such rare duplicates by operating on time windows and enforcing
non-decreasing ordering when building features. On disk, writers use append-only
JSONL files with atomic rotation and flush-on-close, so that completed parts are
durable and verifiable.

3.3.7 Security and privacy
The HTTP sensor device includes simple security mechanisms suitable for lab
or field deployments behind a gateway. Requests can be authenticated with a
Bearer token: when auth_token is set in the configuration, the server expects
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an Authorization: Bearer <token> header and rejects unauthenticated calls.
Cross-origin access is controlled by a configurable CORS origin exposed through
standard Access-Control-Allow-* headers. Transport-level security is typically
provided by running the ingestor behind a TLS-terminating reverse proxy or by
binding it only on private interfaces; the JSONL schema on disk is unaffected by
whether TLS is enabled upstream. Payload validation accepts only known fields
and numeric values inside values; personally identifiable information is disabled
by default and must be explicitly whitelisted per sink when needed.

3.3.8 Latency and sizing
Handler service time for the HTTP path is kept small by design. For each request,
the server performs JSON parsing, timestamp extraction and unit detection, pas-
sive clock mapping (bias-only EMA by default, with an optional drift-aware linear
mode), value normalization, and a single callback into the consumer. All steps are
O(1) per record and do not block on I/O. End-to-end ingestion latency is therefore
dominated by producer scheduling, network RTT, and queueing under load. With
small batch sizes and sub-100 ms send periods, labels and auxiliary IMU streams
arrive within a fraction of a second of the corresponding BLE data, while CPU
utilization from the HTTP path remains well below the load generated by BLE
ingestion and inference.

3.3.9 Integration with the synchronization pipeline
After clock correction at ingress, HTTP records are indistinguishable from BLE
records inside the hub. The HttpSensorDevice assigns a logical dev identifier,
normalizes the sensor name to a family code such as ACC, GYR, MAG, MIC, or GPS
when possible, and outputs a corrected timestamp_ms on the host-aligned axis
together with host_ms and the raw source-side time (when available). These records
then enter the same routing layer and per-device ring buffers as BLE notifications,
participate in the same sliding windows used by the feature builder and surface
model, and are subject to identical masking and minimum device-count rules.

The global SynchronizationEngine consumes HTTP sources passively: when
a usable source timestamp is present, it treats remote_ms–host_ms pairs as anchors
for estimating an affine mapping to the hub timeline, using the same Baseline/Ba-
sic/Kalman engines selected for BLE devices. No protocol-specific probes are re-
quired on HTTP transport; alignment relies on the source-provided timestamps
plus the hub-side anchors already attached at ingress. When source timestamps
are absent or unreliable, the pipeline falls back to arrival-time ordering on host_ms.
Health telemetry reports per-source rate, gap statistics, queue depths, and basic
alignment diagnostics (e.g., residual bias trends), enabling the same dashboards to
monitor both BLE and HTTP producers.
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3.4 Time synchronization engines

This section specifies the three synchronization engines implemented in the Python
client and used throughout the experiments: Baseline, Basic, and Kalman 2 State.
All engines map a per–device timebase to a common host timeline and expose
health indicators such as offset, skew, and jitter.

Each device exposes a monotonically increasing counter uk, either a wrapping
tick counter rescaled by the nominal tick period or a millisecond counter such as
remote_ms when available. The host timestamps each packet at the earliest callback
with

thost
k = session_clock.now_ms(),

a process–local monotonic millisecond clock that is immune to wall–clock adjust-
ments. For every record the engine outputs a corrected host–timeline timestamp
t̂k and a compact set of online statistics that are written into the JSONL logs and
consumed by the analysis tools and by the road–surface classifier.

The three engines are exposed through a common Python interface in the
synchronization_engine package and selected from the configuration, but they
present a uniform API to the rest of the client.

3.4.1 Baseline

The Baseline engine represents the simplest clock model and serves both as a safe
fallback during acquisition and as a reference point in the evaluation.

Model engine Baseline assumes that device clocks have negligible skew on the
timescale of interest and differ from the host clock only by a constant offset. Let
uk denote device time in milliseconds (obtained by converting the raw tick counter
with the nominal tick period) and let thost

k be the host arrival time of an anchor
packet. A first valid anchor pair (uk, thost

k ) provides an estimate of the phase,

θ̂0 = thost
k − uk,

and all subsequent samples are projected to the host timeline via

t̂k = uk + θ̂0,

which corresponds to a fixed slope α = 1. If device time is unavailable or malformed,
the engine falls back to pure host timestamping with t̂k = thost

k , which provides an
upper bound on achievable alignment.
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Implementation and use In code, the Baseline engine maintains per–device
configuration parameters such as tick period, counter width and maximum accept-
able round–trip time. Device tick counters are unwrapped in software based on
the configured bit–width. Once the first trustworthy anchor is seen, the engine
stores the corresponding offset and enters a tracking state in which subsequent de-
vice times are simply shifted by this constant. No drift tracking is performed and
no further anchor processing is required. The Baseline engine is used for HTTP
producers that do not expose a stable device clock, as a robust mode whenever an-
chors are missing or corrupted, and as a reference engine in bench and field results,
capturing the behaviour of a system that relies on host timestamps plus a single
offset correction but does not actively track drift.

3.4.2 Basic engine
The Basic engine introduces skew estimation while remaining lightweight. It is
representative of LS/PLL–style software synchronizers proposed in the literature for
BLE sensor networks and provides an intermediate point between the fixed–offset
Baseline engine and the full Kalman filter.

Model Basic assumes an affine mapping between device and host time,

thost ≈ α u + θ,

where α is the relative rate, or skew, and θ the offset. Setting α = 1 and holding θ
constant recovers the Baseline model.

Estimation from anchors The implementation builds a stream of anchor pairs
(ui, thost

i ). In a passive configuration, anchors are derived directly from data noti-
fications; in an active configuration, explicit ping–pong messages are used and the
host–time component of the anchor is the midpoint of the request/response times-
tamps, which reduces asymmetry on the link. Over a sliding window of N recent
anchors stored in a ring buffer, the engine maintains running sums of ui, thost

i , u2
i

and uit
host
i and periodically recomputes the least–squares estimates

α̂ =
∑︁(ui − ū)(thost

i − t̄)∑︁(ui − ū)2 , θ̂ = t̄ − α̂ ū,

where ū and t̄ are window means. Robustness is obtained by computing residuals
ri = thost

i − (α̂ui + θ̂) and discarding outliers whose deviation from the median
residual exceeds a multiple of the median absolute deviation. When available, a
queuing surrogate such as round–trip time or inter–arrival time can be used to
prefer anchors recorded under low congestion.
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Online update, health and correction Each new anchor causes one sample to
be added to the ring buffer and one to be removed; the running sums are updated in
constant time. If the window becomes ill–conditioned, for example because anchors
span a very short time interval or because too many anchors are rejected as outliers,
the engine holds the previous (α̂, θ̂) and marks its state as degraded. For every data
packet with device time uk, Basic returns a corrected timestamp

t̂k = α̂uk + θ̂,

a residual rk = thost
k − t̂k when the host arrival time is available, and an estimate of

skew in parts per million,

ˆ︁skewppm = (α̂ − 1) · 106,

which is clamped to a configurable range to avoid reacting to spurious anchors.
These quantities are inserted into the JSONL records and later summarized by the
analysis tools.

3.4.3 Kalman 2 state engine
The Kalman engine implements the full two–state stochastic model introduced
in the background chapter and realizes it in code via a compact two–state filter
that tracks both offset and skew, adapts its resynchronization cadence and exposes
high–level health metrics.

State, observation, and noise The filter operates directly on unwrapped device
time uk in milliseconds and models the affine mapping as a time–varying line. The
state vector xk = [ ak, bk ]⊤ contains the current slope ak and offset bk such that
thost ≈ aku + bk. Process noise is modelled as a random walk,

xk+1 = xk + wk,

with zero–mean Gaussian wk and diagonal covariance that encodes the expected
wander of slope and offset over time. Each anchor provides a measurement of host
time at a known device time. For midpoint anchors built from ping–pong exchanges,
the measurement yk is the midpoint of the host–side request and response times
and the associated device time is the value carried by the reply. The measurement
equation is

yk = ukak + bk + vk,

where vk is Gaussian noise with variance Rk derived from the observed round–trip
time and a floor that accounts for residual jitter. The standard Kalman predic-
tion–update recursion is run in closed form for the two–state case, and the Joseph
update is used to preserve the positive semidefiniteness of the covariance matrix.
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Tuning, gating, and resync policy The Kalman engine is configured through
a small set of parameters that control the process noise on slope and offset, the
initial covariance, the Mahalanobis gating threshold used to reject inconsistent an-
chors, and the resynchronization cadence. In a typical setup, the engine operates
in a warm–up phase with frequent resynchronizations until the estimated skew
and its uncertainty fall below configured thresholds; once this happens it transi-
tions to a cruise phase in which anchors are requested less often. Large residuals
cause anchors to be rejected and can trigger a temporary increase of the assumed
measurement noise or covariance inflation to speed recovery. Soft and hard reset
policies distinguish between short gaps that can be bridged while preserving the
slope estimate and long outages that require a full rebootstrap.

Correction and health outputs For data packets, the engine evaluates the
current affine mapping at the device time and returns

t̂k = âkuk + b̂k.

From the slope it derives a skew estimate in ppm and a projected drift per day
in milliseconds. The engine also tracks innovation statistics such as the median
and p95 of the measurement residuals and of the underlying round–trip times. A
compact snapshot of this state is periodically written alongside sensor data and
later used by the analysis tools to characterize convergence, stability and response
to disturbances.

3.4.4 Metrics and complexity
Timing performance is summarized by a set of metrics computed on bench and
field logs. Offset error is quantified as the difference between corrected timestamps
and a chosen reference timeline, and is reported through robust summaries such as
median, 95th percentile and median absolute deviation. Cross–device lag is com-
puted by subtracting the aligned timelines of pairs of devices and examining the
distribution of this difference on the time interval where both engines provide valid
timestamps. Drift is characterized by windowed estimates of skew in parts per mil-
lion, obtained from the derivative of the corrected timeline with respect to device
time or directly from the engine’s skew estimate. Jitter is characterized through
statistics of inter–arrival times and, for the Kalman engine, through standardized
innovations. The associated Python tools process JSONL logs in a streaming fash-
ion and emit drift and lag summaries, together with the plots used in the results
chapter.

Quality–of–service is characterized by effective sampling frequency, drop rate,
reconnect count and maximum inter–arrival time, all computed from the corrected
timestamps and drop counters. These quantities are reported alongside timing
metrics for each engine and scenario.
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All three engines are designed for deployment on a resource–constrained hub and
maintain constant–time per–packet cost. Baseline performs a single addition and
uses constant memory. Basic maintains a ring buffer of a fixed number of anchors
and a small set of running sums but still updates in constant time. The Kalman
engine performs only a handful of operations on small two–dimensional vectors and
matrices for each anchor and uses constant memory. In all three cases, the com-
putational cost is negligible compared to BLE and HTTP I/O and to downstream
machine–learning inference on the hub.

3.4.5 Software implementation and deployment
The synchronization logic is isolated behind a small API. The engine exposes meth-
ods to mark when a synchronization request is sent, to update its state when a reply
carrying device time is received, to convert a raw device timestamp into aligned
host time, to report whether a new resynchronization is needed, and to export
a compact state description for monitoring and logging. BLE and HTTP device
handlers invoke these methods at the appropriate points in the protocol and never
manipulate offsets or skews directly.

The client logs JSON Lines with a consistent schema across engines. Each
record contains the device identifier, sensor name, aligned host timestamp, device
time in milliseconds when available, the raw host timestamp at callback entry, and
the name of the engine that produced the alignment. Engines enrich the records
with additional fields such as offset, skew in ppm, residuals or innovations, but the
core fields remain identical so that downstream tools and the road–surface pipeline
can process logs produced by different engines with the same code.

The acquisition process runs as a small set of cooperating threads. Each BLE
device has its own worker thread that handles notifications; another thread listens
over HTTP for labels and auxiliary sensors; a further thread can capture micro-
phone data directly on the hub; and one or more sink threads take care of logging
and visualization. All of these producers push records into bounded queues. The
synchronization engine sits in the ingest path and processes records without block-
ing. If back–pressure builds up, the system can safely discard work from non–critical
channels, for example live visualization, so that IMU streams remain intact.

All engines detect counter wraps, device resets and long gaps. Wraps are han-
dled by keeping an epoch count per counter width and adding the appropriate offset
when the raw value rolls over. After a reset or a long outage the engines reboot-
strap from fresh anchors and mark their state as degraded until enough consistent
anchors have been accumulated. The Kalman engine additionally freezes or slews
the published offset when residuals stay within or exceed configured thresholds and
automatically adjusts the resynchronization cadence between warm–up and cruise.
Together with the analysis tools, these safeguards ensure that the synchronized
timeline remains within the error budgets used in the bench and field case studies.
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3.5 Data acquisition and labeling
This section defines how raw signals and labels are produced, time aligned, and
packaged into datasets for analysis and reproducibility. All records follow a unified
JSONL schema with explicit device and host timing so that synchronization engines
can be compared and downstream audits can be repeated.

3.5.1 Scenarios and placement

Data are collected on public roads that are representative of the two target classes
asfalto and ciottoli. Sessions include urban segments, smooth arterial roads, and
historic-center stretches with cobblestones, driven or ridden at moderate speeds.
IMU nodes are rigidly mounted to the vehicle structure, for example on chassis
or body attachment points, to maximize coupling with vibrations; foam isolation
and loose mounts are avoided. Orientation is fixed for the duration of a session
and documented in the experiment notes; invariance to mounting is handled in
preprocessing and model design rather than by remounting sensors. A smartphone
can be used as an auxiliary source for HTTP streaming and voice notes and is held
in a fixed cradle to limit motion relative to the vehicle.

3.5.2 Smartphone and HTTP streams

Alongside BLE IMUs, the hub can ingest HTTP producers that push IMU-like
or metadata packets using the same unified schema as the BLE devices. Typical
HTTP sources include smartphone accelerometer and gyroscope streams, GPS fixes,
environmental sensors, and application-level events. Requests are handled by the
HttpSensorDevice (Section 3.3.3), which accepts either single records or batches,
stamps them on arrival with the hub’s monotonic clock, and normalizes them into
JSON objects with fields such as dev, sensor, timestamp_ms, remote_ms, and
values.

The logical device identifier dev is taken from the emit_dev configuration of
the HTTP ingester (for example "phone1" when the smartphone acts as a node).
The field sensor is a compact family code derived by the ingester from the orig-
inal sensor type, for example "ACC", "GYR", or "GPS". The payload in values is
parsed into canonical keys (accX, accY, accZ for accelerometers; gyrX, gyrY, gyrZ
for gyroscopes; latitude/longitude/altitude/accuracy for GPS), so that downstream
tools can treat HTTP and BLE samples uniformly. An optional device-side time is
extracted from generic fields such as time, timestamp, ts, or t; this time is con-
verted to milliseconds and used by the HTTP clock-mapping logic in Section 3.3.2.
The resulting aligned time is written into timestamp_ms, and timestamp_source
records whether it came from EMA or Wait-n-Sync mapping.
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All HTTP records, not only smartphone IMU streams, carry an additional
sensor_raw field that preserves the original sensor identifier supplied by the client
(for example accelerometer, linear_acceleration, gyroscope, or location). This field
is used solely for provenance and debugging; the pipeline logic relies on the nor-
malized sensor family code and on the canonical values keys. After clock correc-
tion at ingress, HTTP samples are indistinguishable from BLE samples inside the
pipeline and are written to the common JSONL log described in Section 3.5.3. In
the road-surface experiments, smartphone streams (ACC/GYR/GPS) are treated
as auxiliary: they are typically excluded from model training unless placement and
orientation are tightly controlled, but they remain useful for exploratory analy-
sis, for cross-checking surface transitions, and for validating that the synchronized
timeline is consistent across transports.

3.5.3 Dataset structure
Recordings are organised by session, and each session produces a small set of
append-only JSONL files. The processing pipeline depends only on the actual
JSON objects written by the acquisition client, which are described here for sensor
data, microphone frames, and labels.

Sensor samples are written by the JsonWriterSink directly from the dictionar-
ies emitted by the BLE and HTTP devices. A typical BLE IMU sample has the
following structure:

{
"dev": "<BLE device_id>",
"sensor": "<sensor_name>",
"timestamp_ms": <aligned_host_timestamp_ms>,
"values": {

"accX": <value_x>,
"accY": <value_y>,
"accZ": <value_z>

},
"raw_sensor_time": <device_raw_time>,
"raw_host_time": <host_time_at_callback>,
"raw_counter_unwrapped": <device_counter_unwrapped>,
"remote_ms": <device_time_ms>,
"delta_vs_remote_ms": <aligned_minus_device_ms>,
"delta_vs_host_now_ms": <aligned_minus_now_ms>,
"timestamp_source": "<remote|host|fallback>"

}

Here dev is the logical node name, sensor identifies the signal (for exam-
ple "acceleration" or "gyroscope"), and timestamp_ms is the corrected time
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on the host timeline returned by the selected synchronization engine. The field
values contains the sample payload with axis keys; in the IMU case these are
accelerometer or gyroscope components such as accX, accY, and accZ. The fields
raw_sensor_time, raw_host_time and raw_counter_unwrapped store the device
tick counter, the host time at callback entry, and the unwrapped counter respec-
tively. The field remote_ms is the device time expressed in milliseconds, while
delta_vs_remote_ms and delta_vs_host_now_ms quantify, in milliseconds, the
difference between the aligned timestamp and, respectively, the device clock and
the current host clock. The string timestamp_source records whether the align-
ment used remote device time, host time, or a fallback.

HTTP sensor sources use the same layout, with an additional sensor_raw field
that preserves the raw sensor name sent by the client:

{
"dev": "<HTTP device_id>",
"sensor": "<sensor_family>", // e.g. "ACC", "GYR", "GPS"
"sensor_raw": "<raw_sensor_name>", // e.g. "accelerometer", "location"
"timestamp_ms": <aligned_host_timestamp_ms>,
"values": {

"accX": <value_x>,
"accY": <value_y>,
"accZ": <value_z>

},
"raw_sensor_time": <device_raw_time>,
"raw_host_time": <host_time_at_arrival_ms>,
"raw_counter_unwrapped": <device_counter_unwrapped>,
"remote_ms": <mapped_time_ms>,
"delta_vs_remote_ms": <aligned_minus_remote_ms>,
"delta_vs_host_now_ms": <aligned_minus_now_ms>,
"timestamp_source": "<http_offset_ema|wait_n_sync>"

}

Embedded microphone dataset structure The on-board microphone on the
hub is logged as a regular sensor on the same synchronized axis. A typical audio
frame without embedding is encoded as:

{
"dev": "<device_id>",
"sensor": "microphone",
"timestamp_ms": <aligned_host_timestamp_ms>,
"values": {
"amplitude": <frame_rms_amplitude>,
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"peak": <frame_peak_amplitude>,
"n_samples": <frame_sample_count>
},
"raw_host_time": <host_time_at_capture_ms>,
"timestamp_source": "host"
}

Here dev identifies the microphone stream on the hub, sensor is ’microphone’,
timestamp_ms is the aligned time associated with the audio chunk on the common
host timeline, and values contains per-frame summary statistics: RMS amplitude
(amplitude), peak amplitude (peak), and the number of raw samples represented
by the frame (n_samples). The field raw_host_time stores the monotonic host
time at capture, and timestamp_source records that alignment is derived directly
from the host clock.

When microphone embedding is enabled, the client augments the payload with
the raw PCM encoded as base64 and an integrity checksum. A JSONL line with
embedding has the form:

{
"dev": "<device_id>",
"sensor": "microphone",
"timestamp_ms": <aligned_host_timestamp_ms>,
"values": {
"amplitude": <frame_rms_amplitude>,
"peak": <frame_peak_amplitude>,
"n_samples": <frame_sample_count>
"pcm_b64": "BASE64_PCM_PAYLOAD", #optional
"sha1": "HEX_SHA1_OF_RAW_PCM" #optional
},
"raw_host_time": <host_time_at_capture_ms>,
"timestamp_source": "host"
}

The microphone path therefore appears in the dataset as another producer that
writes synchronized records into the common JSONL log, with an extensible set
of per-frame descriptors controlled by command-line options. Microphone capture
is enabled at runtime with –mic, which starts a dedicated recorder thread that
pushes audio frames into the same priority queue as the BLE devices. The flags
–mic-device and –mic-rate select the ALSA input (for example hw:0,0) and the
sampling rate in hertz, while –mic-chunk-ms fixes the duration of each audio chunk
and thus the temporal resolution of the emitted frames. In the default configuration
the JSONL log carries only summary descriptors amplitude, peak and n_samples;
the option –mic-embed-audio additionally adds pcm_b64 and sha1 so that the raw
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waveform can be reconstructed directly from the log for short test runs. For long
acquisitions the preferred mode is instead to enable –mic-save-wav, which writes
the raw PCM to rolling WAV files on disk, with –mic-wav-dir selecting the output
directory. Offloading the full waveform to WAV keeps the JSONL stream compact,
reduces storage overhead compared to repeated base64 payloads, and provides a
clean input format for external speech-to-text models such as Vosk, which operate
on the audio files while the synchronized JSONL records retain only lightweight
per-frame descriptors.

All downstream tools, including the road-surface classifier, operate directly on
records with these schemas and treat any additional fields as optional metadata
that can be ignored without affecting core processing.

Labeling Dataset structure Labels are written by a separate LabelingSink
that subscribes to the same pipeline and filters only records with type="label".
The HTTP labeling server accepts POST requests of the form {"label": <value>},
wraps them with timing information on the hub, and enqueues records shaped as

{"type": "label", "label": <value>, ...}

The LabelingSink strips host-centric fields from this inner object and writes a
compact wrapper to labels.jsonl:

{
"label": {"type": "label", "label": <label_id>},
"host_ms": <host_timestamp_ms>
}

The inner label object always carries type:"label" and a label value that is any
JSON-serialisable payload; in the road-surface experiments this value is a simple
string such as "asfalto" or "ciottoli". The outer host_ms field is the hub’s
monotonic timestamp, in milliseconds, at enqueue time. When label edits are
produced by the smartphone app or by voice-note post-processing, they follow the
same JSONL shape; higher-level scripts then convert this stream of time-stamped
label events into interval labels on the synchronized axis for training and evaluation.

Quality-of-service summaries are written to a health log, typically health.jsonl.
Each record aggregates statistics over a fixed time window, such as effective sam-
pling rate per device and sensor, round-trip time and jitter summaries for synchro-
nization messages, drop counts, and maximum gaps. These health records allow
offline verification that each session meets the minimum requirements specified in
Section 3.7.2 and support the interpretation of outliers in machine-learning perfor-
mance.

This JSONL schema is shared across all case studies and synchronization en-
gines. Analysis scripts and the road-surface classification pipeline consume these
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files directly, so that figures and tables in the following chapters can be regener-
ated from raw logs by re-running the published command-line recipes or explored
offline. The same artefacts also define the temporal backbone for the external
speech-to-text pipeline, which aligns microphone-based transcripts to the synchro-
nized acquisition timeline.

3.5.4 Trigger protocols, labeling application, and ground
truth

Each session starts with a soft MARK event emitted by the hub and logged on all
streams, providing a shared anchor on the synchronized timeline. Surface labels
are defined on this hub timeline and derived primarily from operator input via a
smartphone labeling application, with route knowledge and offline signal inspection
used as consistency checks. The app presents a small set of mutually exclusive
buttons (for example asfalto (Asphalt), ciottoli (cobblestones), unknown) together
with a clear indication of the currently active class; when the operator taps a new
surface, the app updates its internal state and issues an HTTP POST to the hub’s
label endpoint (port 4040) with a compact JSON payload carrying the selected
label, optionally refreshing the active label at a low rate to make the stream robust
to occasional packet loss. On the hub, the HTTP handler wraps each incoming
label edit into a normalized record and forwards it to the LabelingSink, which
does not construct intervals; instead, it logs instantaneous events to labels.jsonl
with the schema of Section 3.5.3:

{
"label": {"type": "label", "label": <label_id>},
"host_ms": <host_timestamp_ms>
}

Here host_ms is the hub-side monotonic timestamp, in milliseconds, at enqueue
time on the synchronized axis (given by session_clock.now_ms()), and the inner
label object encodes the current class (for example "asfalto" or "ciottoli"),
so that labels.jsonl is a state-change log: a time-ordered sequence of “now the
label is X” events aligned with the sensor data. In parallel, the operator can record
short voice notes at key transitions (for example “start ciottoli” or “end ciottoli”);
audio is captured on the hub and processed offline with Vosk (see paragraph 3.5.4)
to obtain time-stamped transcriptions, and a deterministic parser maps relevant
phrases to label start/stop commands and reconciles them with the online app
labels, while route annotations for stretches known to be cobblestone provide an
additional check, especially on repeated runs. Final ground-truth intervals are
derived offline from this combined event stream: analysis scripts sort events by
host_ms, collapse redundant repetitions, and convert state changes into half-open
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segments ([t_start, t_end)) with class in asfalto, ciottoli; ambiguous or dis-
puted spans, identified by inconsistencies between the app log, route annotations,
and signal previews, are marked ignore and excluded from training and metrics.
When comparing different synchronization engines, both sensor samples and de-
rived label intervals are finally restricted to the common trimmed horizon on which
every engine provides valid corrected timestamps, so that all performance metrics
are computed on exactly the same time span and label set.

Vosk Speak-to-text model Vosk [22] is an open-source speech recognition
toolkit designed to run efficiently on a wide range of devices, including embed-
ded and edge platforms. It provides offline, on-device speech-to-text in multiple
languages, exposing simple APIs (for example Python and C++) that accept au-
dio streams and produce time-stamped word hypotheses. In this work, Vosk is used
to transcribe short voice notes recorded during the sessions, so that spoken phrases
like “start ciottoli” or “end asfalto” can be converted into structured events and
aligned with the rest of the dataset.

3.6 Machine learning pipeline
This section presents the end-to-end pipeline used to train and evaluate a compact
surface-classification model on synchronized inertial data. Surface classification
is used as a controlled workload to validate the time-alignment framework rather
than as a stand-alone contribution. The pipeline is hardware-agnostic: it consumes
multi-device logs aligned to a common timeline and supports heterogeneous sensors.
In the experimental runs, IMU streams were acquired over BLE and time-stamped
labels were delivered over HTTP.

3.6.1 Problem formulation
Let D = {1, . . . , D} be the set of active devices in a session. After resampling to a
common rate fs, each device d ∈ D provides a C-channel time series x(d)(t) ∈ RC

expressed on the global timebase produced by the synchronization engines. Ground-
truth labels are provided as time intervals

L =
{︂
(tstart

j , tend
j , yj)

}︂J

j=1
, yj ∈ {1, . . . , K},

where (tstart
j , tend

j ) delimits a segment with surface class yj.
Learning is cast as windowed sequence classification. For a window of dura-

tion W centered at time τ , the input tensor Xτ is obtained by stacking all device
channels over the interval [τ − W/2, τ + W/2]. After resampling, the window
contains

T =
⌊︂
Wfs

⌋︂
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time steps and is represented as Xτ ∈ RT ×(C·D). Typical configurations in this
work use fs ≈ 75 Hz and W ∈ [1.0,1.5] s, so that each window contains roughly
T ∈ [75,115] samples.

A training label yτ is assigned to the window if it overlaps a single ground-truth
interval with sufficient coverage. Let ∆(τ) be the length of the intersection between
the window and an interval (tstart

j , tend
j ). The window is assigned class yj if

∆(τ)
W

≥ γ

and there is no competing interval of a different class that also satisfies the coverage
constraint. In practice γ is set to values such as 0.5 or 0.7 so that more than half of
the window is dominated by a single surface type. Windows that straddle multiple
classes or fail the coverage criterion are discarded.

The formulation explicitly supports missing devices. If a device is inactive or
has insufficient data in a window, its channels are zero-filled after normalization.
In parallel, a binary mask channel per device encodes whether samples are real or
imputed, so that the model can learn to ignore artificial zeros and avoid leakage from
the imputation strategy. Denoting by m(d)(t) ∈ {0,1} the completeness indicator
for device d, the final input to the network for a window is

X̃τ ∈ RT ×(C·D+D),

obtained by concatenating the inertial channels and one mask channel per device
along the feature dimension. The classifier is trained to map each window X̃τ to a
probability distribution over the K surface classes.

3.6.2 Pre-training tools and label consolidation
Raw acquisitions are stored as JSONL logs that contain all streams on the unified
timebase: BLE IMU packets, optional auxiliary sensors, and HTTP messages used
for labeling. Each record carries a hub-side timestamp, a source identifier, and
a payload with device-specific fields. Before training, a set of pre-training tools
converts these raw logs into the interval labels L and the window indices used by
the classifier.

Label annotations are emitted by a mobile or desktop application as point events
over HTTP (on a dedicated labels endpoint). Each event contains at least a times-
tamp, a surface tag, and possibly a state flag (pressed, released) or a confidence
value. Two preprocessing steps are applied.

From points to intervals A label manager first converts the pointwise annota-
tions into consistent intervals on the global timebase. Events are sorted by their
timestamps and mapped to a canonical set of surface identifiers {1, . . . , K}. The
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manager maintains the current active class and opens a new interval when a tag
becomes active. An interval is closed when the user switches to a different surface,
an explicit "none" tag is received, or the session ends.

To reduce sensitivity to annotation jitter and short gaps, the tool applies simple
temporal heuristics:

• intervals shorter than a minimum duration Tmin (for example 1 to 2 s) are
discarded or merged with neighboring intervals of the same class;

• gaps shorter than a merge threshold Gmax (for example 0.5 s) between inter-
vals with the same label are bridged, yielding a single longer interval;

• isolated points that do not survive these rules are treated as spurious and
removed.

The output of this stage is the set L = {(tstart
j , tend

j , yj)} used in the problem for-
mulation: non-overlapping surface segments that cover the annotated portions of
the session.

Window index and dataset manifests A second tool builds the window index
used during training. Given the synchronized sensor streams, the interval labels L,
and a configuration file that specifies window length W , stride S, coverage threshold
γ, device completeness ρ, and minimum active devices m, the tool generates a dense
grid of candidate window centers τn. For each candidate, it:

• checks which devices satisfy the completeness threshold ρ over the window;

• computes the label coverage ratio ∆(τn)/W for each overlapping interval;

• assigns a class yτn if exactly one interval exceeds γ and at least m devices are
sufficiently complete.

Accepted windows are stored as entries in an index file (for example JSONL or
Parquet) that references the source log, device names, window center, and label.
The raw time series remain in the original acquisition files, so the index can be
regenerated or modified without duplicating data.

Additional tooling computes dataset-level summaries and sanity checks: his-
tograms of class durations, coverage per route or session, distributions of window
counts per class, and simple time plots that overlay intervals and labels. These re-
ports are used to verify that the point-to-interval conversion and window selection
behave as expected before any model is trained.
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3.6.3 Features and windowing
All streams are first aligned to the unified timeline produced by the synchronization
engines and resampled to the common rate fs. Resampling is performed indepen-
dently per device using zero-order hold or linear interpolation on short gaps. Short
gaps are filled by interpolation up to a maximum duration ∆tmax (for example 100
to 150 ms) chosen to avoid distorting the signal; longer gaps remain missing and
are handled via the mask channels. Signals are detrended and standardized per
device using z-scores computed strictly on the training split to prevent information
leakage across splits. The same per-device mean and standard deviation are reused
at validation and test time.

For accelerometers, two representations are supported. The simplest uses the
three raw axes (ax, ay, az) after mean removal. A second, more rotation-robust
representation decomposes the signal into the norm ∥a∥, a component along an
estimated gravity direction a∥, and a component in the orthogonal plane a⊥. The
gravity direction ĝ is estimated as a slowly varying vector, for example via low-pass
filtering of the accelerometer with a cut-off in the 0.3 to 0.5 Hz range. This repre-
sentation separates vertical loading from lateral vibrations and reduces sensitivity
to mounting orientation.

Optional spectral features can be computed as band-power estimates from Welch
segments over each window, for example using Hann windows with 50 percent
overlap and aggregating energy over a small number of frequency bands in the
0.5 to 20 Hz range. In practice, for real-time operation on the hub, the pipeline
typically relies on raw time-domain sequences and simple normalization to minimize
latency and computational overhead.

Windows are generated with a fixed length W and a stride S. The stride controls
both the density of training samples and the effective update rate at deployment:
small strides yield more overlapping windows and lower decision latency at the
cost of higher computation. Typical strides in this work range from 0.1 to 0.5 s.
A window is retained if two conditions are met. First, at least m devices must
satisfy a per-device completeness threshold ρ, defined as the minimum fraction of
non-missing samples within the window:

1
T

∑︂
t∈window

1{m(d)(t) = 1} ≥ ρ.

Second, label coverage must exceed the threshold γ so that the assigned class is
representative of most of the window.

Class imbalance across surfaces is mitigated by combining balanced sampling
of windows with a weighted loss function that down-weights frequent classes and
emphasizes rarer ones. During training, mini-batch sampling is biased to draw sim-
ilar numbers of windows per class when possible. Lightweight data augmentations
are applied in a way that preserves label semantics: amplitude scaling and jitter,
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small additive Gaussian noise, random per-device sub-sample time shifts to emulate
residual clock errors, and constrained 3D rotations of accelerometer axes that stay
consistent with plausible changes in mounting orientation. Time shifts are clipped
to a few samples so that augmentations remain compatible with the residual timing
error guaranteed by the synchronization pipeline.

3.6.4 Model (Conv1D)
The classifier is a compact one-dimensional convolutional network designed for
CPU-only inference and suitable for causal evaluation on the edge hub. Inputs
are arranged as (T, C · D + D), that is, all sensor channels concatenated with one
binary mask channel per device.

The backbone consists of three depth wise-separable Conv1D blocks with in-
creasing dilation factors, followed by a global temporal pooling head and a linear
classifier. Each block contains:

• a depthwise Conv1D with kernel size k and dilation d,

• a pointwise 1 × 1 Conv1D to mix channels,

• batch normalization,

• a nonlinearity Rectified Linear Unit(ReLU),

• and, for the first two blocks, dropout for regularization.
Depth wise-separable convolutions factor a standard convolution into a depthwise
operation (one filter per input channel) followed by a pointwise 1 × 1 convolution.
This factorization substantially reduces the number of parameters and multiply-
accumulate operations compared with a dense k × Cin × Cout convolution, leading
to lower latency and power consumption. In typical configurations, the first two
blocks use 64 channels, the last one 96 channels, kernel sizes between 5 and 9, and
dropout in the 0.1 to 0.3 range.

Dilation factors of 1, 2, and 4 increase the receptive field without increasing the
window length or the number of layers. As the dilation grows, each convolutional
kernel spans a larger temporal context, capturing longer-range patterns in the vi-
bration signal that are informative for distinguishing surfaces at different speeds
and wheel–road interactions. For example, with k = 7, three layers, and dilations
(1,2,4), the effective receptive field covers several tens of samples, corresponding to
multiple wheel revolutions at urban cycling speeds.

In the causal configuration used for online inference, the network uses left
padding so that predictions at time t depend only on samples at or before t. For
offline evaluation and ablation studies, symmetric padding can be used to approxi-
mate a "same" convolution and slightly improve accuracy by allowing the model to
see future context.
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Multi-device fusion is handled implicitly by stacking channels from all devices
and explicitly by passing the mask channels. An optional squeeze-and-excitation
(SE) block acts on the channel dimension and can be enabled to let the network
adaptively reweight devices and channel groups based on their contribution to the
current decision. After the convolutional backbone, a global average over time
produces a fixed-size embedding, which is fed to a fully connected layer that outputs
one logit per class. At deployment, frame-level probabilities are further processed
by an exponential moving average with a decay factor in the 0.8 to 0.95 range and
a minimum dwell-time rule that converts noisy frame-wise predictions into stable
surface segments.

The entire model is implemented in PyTorch and kept small enough (on the
order of 105 parameters) to fit comfortably on the edge hub while respecting real-
time constraints.

Input window
T × (C · D + M)

C channels per device,
D devices,

M mask channels

Causal DS-Conv block
(k = 5, d = 1)

Causal DS-Conv block
(k = 5, d = 2)

Causal DS-Conv block
(k = 5, d = 4)

Causal DS-Conv block
(k = 5, d = 8)

1 × 1 Conv
to K classes

Softmax
(last time step)

Receptive field

Figure 3.10: Overview of the causal Conv1D TCN: four causal DS-Conv blocks
(dilations 1, 2, 4, 8) followed by a 1x1 head and Softmax on the last time step.

Causal DS-Conv1D
(k = 5, d = {1,2,4,8})

GroupNorm

GELU

Dropout + residual

Causal padding
left zero-pad only
no future context

Figure 3.11: Internal structure of one causal DS-Conv block used in the TCN.

3.6.5 Training setup and metrics
The model is trained with categorical cross-entropy and class weights wk inversely
proportional to the empirical class frequencies, so that rare surfaces contribute
proportionally more to the objective. Optimization uses Adam or AdamW with
a learning-rate schedule (cosine decay or step decay) and early stopping based on
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validation macro-F1. Typical configurations use batch sizes between 64 and 128
windows, an initial learning rate around 10−3, and weight decay in the 10−4 to 10−2

range. Mini-batches mix windows across classes, sessions, and routes to improve
generalization and reduce overfitting to specific trajectories.

Normalization statistics (means and standard deviations per device and channel)
are estimated once on the training split and reused as fixed parameters at validation
and test time. Data splits are performed at the level of sessions, routes, or subjects
so that the model is always tested on unseen temporal sequences and mounting
conditions, avoiding optimistic estimates from overlapping trajectories. A typical
split dedicates 60 to 70 percent of sessions to training, 10 to 20 percent to validation,
and the remainder to testing.

Sample-wise metrics include accuracy, balanced accuracy, macro-precision, macro-
recall, macro-F1, and negative log-likelihood. Segment-wise metrics are computed
by grouping frame-wise predictions into contiguous segments and matching them to
ground-truth intervals using an intersection-over-union (IoU) threshold, for exam-
ple 0.5. This evaluates not only whether the model recognizes the correct surface
but also whether it localizes transitions at the right time. Segment-wise precision,
recall, and F1 are reported in addition to sample-wise scores.

For online use, decision latency is a key quantity. It is defined as the delay
from the start of a labeled interval to the first time the smoothed class probability
for the correct surface crosses the decision threshold and remains above it for the
required dwell period. This metric captures the trade-off between responsiveness
and stability in a way that is directly relevant for real-time applications. Latency
is reported jointly with accuracy to characterize the speed–accuracy trade-off.

Finally, the implementation is optimized for deployment on the edge hub. The
network remains compact and deterministic, and it supports both quantization-
aware training and post-training static quantization to 8-bit arithmetic when bene-
ficial for performance and energy. Export to TorchScript or ONNX allows running
the same model under a lightweight inference runtime on the STM32MP2 plat-
form. Runtime constraints are monitored as the number of processed windows per
second, the end-to-end latency per window, and the CPU utilization at the target
clock frequency. Under these constraints, the pipeline executes synchronized win-
dow extraction, Conv1D inference, and probability smoothing in real time on the
hub, reusing the same preprocessing and labeling rules adopted in offline training.
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3.7 Experimental setup and datasets

This section describes the experimental setups and datasets used to validate the
proposed framework across three complementary case studies. First, it introduces
the wood-plate impulse bench used to stress and compare the three synchroniza-
tion engines under controlled conditions, quantifying alignment error, latency, jitter,
loss, and throughput. Second, it details the bicycle acquisitions used to construct
the road-surface dataset, where synchronized inertial streams and HTTP annota-
tions support a concrete road-surface classification workload. Finally, it outlines a
heterogeneous-sensor scenario in which additional BLE and HTTP sources (such
as physiological and auxiliary motion sensors) are integrated on the same synchro-
nized timeline to demonstrate that the architecture generalizes beyond IMU-only
sensing.

3.7.1 Engine comparison: wood-plate impulse bench

The bench is designed to quantify synchronization accuracy, drift tracking, latency,
jitter, and loss under controlled kinematics and radio conditions. The rotary arm
generates repeatable motion and well-defined reference events that serve as a com-
mon ground truth for all devices. A DC motor drives a rigid arm that periodically
strikes a wooden board, while a current sensor on the motor supply detects the
instant of impact. The DC motor is actuated by an Arduino-class microcontroller,
which commands the motor driver and thus controls the rotation speed and im-
pact frequency. Seven IMU nodes (SensorTile.box and SensorTile.box PRO) are
mounted at equal radii on a wooden plate; their z axes are approximately normal to
the plate, and the axes are marked on the surface so that orientations can be repro-
duced between sessions. The control plate hosts the Arduino-class microcontroller,
the motor driver, and the associated wiring, and the arm carries a metal flag that
interrupts a photocell once per revolution. The hub timestamps pulses from the
photocell and the motor encoder on a wired GPIO, so that all reference times are
measured directly on the hub clock. Figure 3.12 illustrates this configuration: one
plate contains the motor, driver, microcontroller, and photocell, while the other
carries the IMU nodes arranged in a circle around the center of rotation. A side
view of the assembled rig is shown in Figure 3.13.
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Figure 3.12: Wood-plate impulse bench used to compare synchronization engines

Figure 3.13: Side view of the wooden test bench

Protocol The long-term bench experiment used to evaluate the synchronization
engines consists of a 12-hour sequence of controlled impacts. Every 3,600 seconds,
the arm driven by the DC motor delivers a highly repeatable shock to the shaft
to which the IMU nodes are rigidly mounted. Each impact generates a sharp,
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large-amplitude peak in the accelerometer signals on all three axes that is clearly
distinguishable from background vibrations. The accelerometer traces are win-
dowed and fitted with a Gaussian profile around each impact; the relative position
of the fitted maxima across devices provides a direct estimate of the peak-to-peak
time drift between sensors, and its evolution over the 12-hour period quantifies
long-term synchronization stability, as schematized in Figure 3.14.

Metrics Impulse peaks are first detected on the accelerometer magnitude after a
causal 5–50 Hz band-pass filter, using a ±5 s search window around each nominal
impact time n Tshock. For device d and event n, let τ (d)

n be this coarse peak time.
Around each detected impact, we extract a short window of the magnitude

signal m(d)(t) and fit a Gaussian profile

g(d)
n (t) = a(d)

n exp

⎛⎜⎝−

(︂
t − τ̂ (d)

n

)︂2

2 σ
(d)2
n

⎞⎟⎠ + b(d)
n ,

where a(d)
n is the peak amplitude, σ(d)

n the spread, b(d)
n a baseline term, and τ̂ (d)

n the
refined peak time. The parameters

(︂
a(d)

n , τ̂ (d)
n , σ(d)

n , b(d)
n

)︂
are estimated by non-linear

least squares initialized from τ (d)
n ; all timing metrics use the refined times τ̂ (d)

n .
The relative lag and period error for device d at event n are defined as

L(d)
n = τ̂ (d)

n − medianj{τ̂ (j)
n }, ∆T (d)

n =
(︂
τ̂ (d)

n − τ̂
(d)
n−1

)︂
− Tshock.

The peak-to-peak time drift at impact n is

Dn = max
d

τ̂ (d)
n − min

d
τ̂ (d)

n ,

that is, the time separation between the earliest and latest fitted peaks across
devices. For each synchronization engine, we report the median and 95th percentile
of |L|, |∆T |, and D over the common time horizon, together with effective sampling
rate, drop rate, maximum inter-arrival time, and windowed drift expressed in parts
per million (ppm). Figure 3.14 illustrates an example set of acceleration peaks
across devices and the corresponding geometric definition of the peak-to-peak drift
Dn.
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Figure 3.14: Acceleration peaks from multiple sensors (left) and schematic defini-
tion of the peak-to-peak time drift Dn across sensors (right).

Rationale The bench is intentionally non-laboratory: it preserves real host- and
link-level jitter, oscillator wander, and mounting variability while remaining re-
producible with commodity parts. This makes it a convenient intermediate step
between pure simulation and field experiments, and a controlled environment in
which differences between synchronization engines can be isolated and quantified.

3.7.2 Road-surface dataset: bicycle acquisition

To build and evaluate the road-surface case study, the same sensing stack was
mounted on a bicycle and ridden over different terrains. The goal is a low-cost,
home-reproducible pipeline that approximates real operating conditions rather than
an idealized laboratory setup.

Mounting and instrumentation Five IMU nodes are rigidly attached to the
bicycle frame at distinct locations using cable ties or adhesive tape. Their orien-
tations and positions are not controlled a priori but remain fixed across runs, as
the nodes are never removed once installed; the configuration is documented in the
session manifest and supported by photographs. An example mounting layout is
shown in Figure 3.15. The hub receives BLE notifications at 75Hz and timestamps
each packet at callback entry using CLOCK_MONOTONIC_RAW. The resulting dataset
stores raw tri-axial accelerometer and gyroscope samples together with corrected
timestamps produced by the two-state Kalman synchronization engine.
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Figure 3.15: Bicycle with mounted sensors, used in the road-surface detection use
case

Labeling application A custom labeling application, implemented in Flutter,
provides live annotation of the traversed surface. Flutter enables deployment of
the same codebase on Android and desktop, ensuring a consistent interface dur-
ing road tests. The operator selects the current surface class from a small set of
mutually exclusive states (e.g., asphalt, cobblestones) via a touch-based state ma-
chine. Screenshots of the main interface and configuration views are reported in
Figure 3.16.

The set of classes exposed as buttons is configurable. Surface classes are defined
in a small configuration structure in the Flutter code (e.g., an enumeration or a list
of descriptors with ID, label, and color). Adding a new class consists of inserting a
new entry in this list; the UI layer automatically renders a corresponding button,
and the new class ID is propagated in all outgoing label messages. This keeps the
labeling interface easily extensible without changing the underlying protocol.

At runtime, the app maintains the active class and records contiguous label in-
tervals with host timestamps and session metadata. It acts as an HTTP client and
periodically sends label updates to the hub over a lightweight JSON/HTTP API
(e.g., POST /labels on port 4040), including fields such as start time, end time,
class identifier, and session ID. The IP address (and port) of the hub are user-
configurable through a settings screen: the operator can edit the target IP/port via
text fields; the values are stored locally (e.g., in shared preferences) and reloaded
at startup, so that the app can be pointed to different hubs without recompilation.
A dwell-time filter and a 200ms debounce on state changes reduce flicker at class
boundaries and suppress accidental taps, so that only stable transitions generate
new intervals. The client buffers events on transient network failures and retries de-
livery, ensuring that the hub receives a complete, time-stamped sequence of surface
labels aligned with the sensor data.
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Figure 3.16: HTTP Labeler App

Labeling, preprocessing, and dataset splits

The primary classes are asfalto (asphalt) and ciottoli (cobblestones); additional
classes can be introduced by extending the label set, while unmodelled segments
(e.g., transitions, stops, or mixed surfaces) are tagged as unknown and excluded
from training. Labels are aligned to the sensor timeline by mapping host label times
to corrected sample times t̂∗

k and snapping each label boundary to the nearest sam-
ple within a tolerance δ∗

lab = 25 ms; segments shorter than 1 s after dwell filtering are
discarded to avoid unstable or ambiguous labels. Per-stream preprocessing removes
constant gyroscope bias, applies a 0.5–1 Hz high-pass filter to accelerometer chan-
nels to remove quasi-static components, optionally computes magnitude features,
and applies z-score normalization using running statistics estimated on training
data only. Training windows have a duration of 1.0 s with a stride of 0.2 s; each
window is assigned a surface label by majority vote over the samples it contains.
To avoid leakage between training and test sets, data are split by contiguous trips
rather than by random samples; each split contains whole trips that include both
surface classes when available. A representative excerpt of synchronized accelerom-
eter streams used for this classification task is shown in Figure 3.17.
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3.7.3 Comparison protocol
For each synchronization engine (Baseline, Basic, Kalman 2 state), we first run the
bench protocols and compute |L|, |∆T |, windowed drift in ppm, effective sampling
rate, and drop statistics. These long-run measurements are evaluated on a com-
mon time horizon where all engines provide valid corrected timestamps, ensuring a
fair comparison of their timing performance. Based on these results, the Kalman
2 state engine is selected as the reference for road experiments: bicycle logs are
re-stamped using its corrected timestamps t̂k, and the entire surface-classification
pipeline (splits, features, and model architecture) is trained and evaluated on this
Kalman-synchronized dataset. Classification results are reported in terms of accu-
racy, balanced accuracy, and per-class F1 on the held-out test split. An example of
synchronized three-axis accelerometer streams recorded during a bicycle training
session is provided in Figure 3.17.

Figure 3.17: Synchronized three-axis accelerometer streams from two BLE IMU
nodes recorded during a bicycle training session, showing alternating high-vibration
and steady riding phases

3.7.4 Heterogeneous-sensor case study
The third case study applies the same hub and synchronization framework to a
heterogeneous set of sensors, to verify that the architecture is sensor-agnostic and
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not tied to any single modality or device family. The results reported in this
subsection refer to one representative multi-device session collected with concurrent
BLE and HTTP sources. Photographs of the EEG headset and MetaWear bracelet
used in this session are shown in Figure 3.18.

Figure 3.18: Sensors used for third case study: EEG headset and Metawear wear-
able bracelet

Heterogeneous producers and signals To preserve continuity with the previ-
ous evaluations, a baseline BLE IMU node (dev=bcn-002) is retained in the session;
the focus of this case study, however, is the inclusion of sensing modalities beyond
conventional inertial data. The hub receives multi-channel scalar measurements
from the egg device, which reuses the same channel set adopted in earlier tests and
forwards each sample as a JSON message over HTTP to port 8020. A hub-local mi-
crophone producer is also enabled, providing an audio-derived amplitude envelope
as an additional non-IMU stream. Finally, MetaWear motion data are acquired on a
smartphone through a custom Flutter application and relayed to the hub as HTTP
POST JSON records on port 8010. All sources are ingested through the same uni-
fied pipeline, confirming that sensor heterogeneity is managed at the adapter level
while the core logging and synchronization infrastructure remains unchanged. The
resulting multi-modal acquisition layout is summarized in Figure 3.19.
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Figure 3.19: Acquisition of data from heterogeneous sensors

Flutter MetaWear acquisition and HTTP bridge MetaWear wearable mo-
tion data are collected through a custom Flutter application running on a smart-
phone. The application performs BLE scanning, filters peripherals by a user-
configurable name prefix (e.g., MetaWear), and allows the operator to select the
target device at run time; consequently, neither the device identifier nor the MAC
address is hard-coded, but both are determined dynamically from the scan re-
sults and can be overridden through the app settings if needed. After selection,
the app establishes a GATT connection and enables high-rate notifications for the
accelerometer and gyroscope characteristics. Each notification is decoded on the
phone and immediately mapped into the common JSONL record schema adopted
by the hub. The resulting records are relayed in real time to the hub via HTTP
POST to a server endpoint that is fully settable within the application (IP/host-
name and port, default port 8010). This smartphone-mediated bridge illustrates
how a non-BLE transport can be integrated through an adapter alone, while leav-
ing the hub-side ingestion and synchronization core unchanged. Figure 3.20 shows
the MetaWear acquisition app used to implement this BLE-to-HTTP bridge.
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Figure 3.20: Flutter application developed to connect BLE acquisition and HTTP
delivery

Integration pattern and synchronization Each source is incorporated via a
dedicated adapter that translates device specific packets into the unified JSONL
record format. Every record carries both a source side timestamp, expressed as
device ticks or local milliseconds, and a host side arrival timestamp. Once adapted,
streams enter the same ingestion queue and are processed uniformly by the synchro-
nization layer introduced earlier. Supporting additional modalities therefore does
not require any modification to the synchronization engines; only the adapters are
modality aware, and their role is limited to mapping raw payloads into the common
schema.

Log excerpt Listing 3.7.4 provides a compact excerpt from the session. It illus-
trates how non-IMU and IMU-like sources coexist in the same schema: a hub-local
audio record, a direct BLE IMU record, a MetaWear record bridged by Flutter and
sent over HTTP, and a high-rate analog channel.
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1 {" dev ":" mic "," sensor ":" MIC "," timestamp_ms ":50 ," raw_host_time
":2072 ," values ":{" amplitude ":0.0} ," timestamp_source ":"
host "}

2 {" dev ":" bcn -002" ," sensor ":" acceleration "," timestamp_ms
":50022 ," values ":{" accX ": -1.998 ," accY ": -0.342 ," accZ
":0.024} ," raw_sensor_time ":47509 ," raw_host_time ":50022 ,"
timestamp_source ":" host "}

3 {" dev ":" wearable "," sensor ":" ACC "," sensor_raw ":" accelerometer
"," timestamp_ms ":12747 ," values ":{" accX ": -3238.0 ," accY
":172.0 ," accZ ": -3208.0} ," raw_sensor_time ":1763822662841 ,"
raw_host_time ":12747 ," timestamp_source ":" http_offset_ema
"}

4 {" dev ":" egg "," sensor ":" channel_1 "," sensor_raw ":" channel_1 ","
timestamp_ms ":12391 ," values ":{"v ":502.014836} ,"
raw_sensor_time ":12391 ," raw_host_time ":12391 ,"
raw_counter_unwrapped ":12391 ," remote_ms ":12391.0 ,"
delta_vs_remote_ms ":0.1000000000003638 ,"
delta_vs_host_now_ms ":0 ," timestamp_source ":"
http_offset_ema "}

5 ...
6 {" dev ":" egg "," sensor ":" channel_12 "," sensor_raw ":" channel_12

"," timestamp_ms ":12391 ," values ":{"v ":680.235091} ,"
raw_sensor_time ":12391 ," raw_host_time ":12391 ,"
raw_counter_unwrapped ":12391 ," remote_ms ":12391.0 ,"
delta_vs_remote_ms ":0.2000000000007276 ,"
delta_vs_host_now_ms ":0 ," timestamp_source ":"
http_offset_ema "}

Rationale This case study illustrates that the framework scales naturally to het-
erogeneous sensing setups. New modalities are integrated by adding their descrip-
tors to the session configuration file, which instantiates the corresponding adapters
without requiring code changes in the hub. In the reported run, EEG streams
delivered over HTTP on port 8020, MetaWear inertial data forwarded through a
Flutter-based HTTP bridge on port 8010, audio features, and multi-channel ana-
log BLE signals are logged concurrently. Because all sources are mapped into the
common schema and processed by the same ingestion and synchronization pipeline,
the hub supports realistic multi-modal AIoT configurations without redesigning the
core system, as illustrated in Figures 3.18–3.19.
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Results and Discussion

4.1 Results

This section reports synchronization accuracy and stability, link throughput under
loss and latency, end-to-end classification behavior, and execution time on the em-
bedded hub. Results are organized by experiment and by synchronization engine
(Baseline, Basic, Kalman). All metrics and plots are generated from immutable
execution artifacts, so every figure and table can be reproduced by re-running the
corresponding analysis scripts on the archived session logs.

4.1.1 Sync accuracy and stability

On the bench setup described in Subsection 3.7.1, impulsive excitations highlight
the residual temporal offset of each engine, as illustrated in Figure 4.1. In this con-
text, the term device peaks denotes the sharp local maxima of the accelerometer
magnitude recorded by each IMU node at the instant of the mechanical impact.
Since all nodes observe the same physical event, the relative timing of these peaks
provides a direct visual measure of the remaining time-offset error between de-
vices and, consequently, of the effectiveness of the synchronization engine. Under
Kalman, device peaks co-locate within a single sample at 75Hz, and the subsequent
ring-down phases remain mutually aligned over time. With Basic, the main peak is
correctly aligned, but a persistent lag of a few samples emerges after the transient
and does not fully vanish. Baseline, instead, exhibits the same event tens of mil-
liseconds apart across devices, and the relative phase progressively drifts over the
session. These qualitative behaviors are consistent with the quantitative metrics
reported in Table 4.1.
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Figure 4.1: Alignment of a representative impulsive event across devices for
the three synchronization engines, showing near-perfect peak co-location under
Kalman, small residual lags under Basic, and pronounced misalignment with drift-
ing ring-down under Baseline

Table 4.1: Peak alignment error around impulsive events. One sample at 75 Hz
equals 13.33 ms.

Engine Median lag [samples] P95 lag [samples] Median [ms] P95 [ms]
Baseline 5.0 9.0 66.7 120.0
Basic 2.0 4.0 26.7 53.3
Kalman 0.3 0.8 4.0 10.7

Long-term stability is consistent with these short-term results. Uncorrected de-
vice clocks wander by hundreds of milliseconds within a session, yet under Kalman
the aligned waveforms remain synchronized at repeated events, indicating effective
tracking of both offset and slow skew. Basic reduces the drift but leaves a residual
phase error that slowly accumulates, while Baseline exhibits the full wander of the
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raw clocks. Table 4.2 reports the mean signed drift ∆t between each device timeline
and the reference produced by each engine; the sign indicates whether a device runs
ahead (negative) or behind (positive) the reference, while synchronization quality
depends on |∆t|. Baseline leaves large static offsets for all nodes (about 50–55 s
on the PRO devices, 10–12 s on the legacy BLE tiles, and ∼ 7.6 s on the BlueTile
node bcn-002), confirming that host-only timestamping does not align clocks. Ba-
sic reduces the bias on the PRO nodes and BlueTile, but behaves unstably on the
legacy tiles, which are pushed to roughly 57 s ahead of the reference, indicating
sensitivity to RTT noise and irregular probe cadence. Kalman consistently reduces
drift magnitude for every node, bringing the PRO devices and BlueTile into the
3–5 s range and keeping the tiles near ∼ 10 s without divergence. Overall, Kalman
is the only engine that improves alignment across the full heterogeneous fleet.

Table 4.2: Mean time drift ∆t per device for each synchronization engine.

Device Baseline [ms] Basic [ms] Kalman [ms]
bcn-002 7559.81 5801.64 2960.89
blt1 -12259.00 -57486.74 -11855.99
blt2 -11259.00 -57597.49 -10855.68
blt3 -10281.00 -57573.34 -9864.95
pro1 -50477.00 -33558.97 -4798.32
pro2 -54959.00 -30538.20 3238.60

Tables 4.3–4.5 summarize the extrema of ∆t over the same evaluation window
used for the means. Baseline applies no dynamic correction, so each device retains
an almost constant bias and min/max coincide. Basic converges to narrow steady-
state bands, but their centers differ widely across devices and can be far from zero
on the legacy tiles. Kalman converges reliably for all nodes and maintains tight
drift bands, demonstrating strong bias removal together with effective rejection of
RTT outliers.

Table 4.3: Minimum and maximum time drift ∆t per device for the Baseline engine.

Device Baseline min [ms] Baseline max [ms]
bcn-002 7560 7560
blt1 -12259 -12259
blt2 -11259 -11259
blt3 -10281 -10281
pro1 -50477 -50477
pro2 -54959 -54959
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Table 4.4: Minimum and maximum time drift ∆t per device for the Basic engine.

Device Basic min [ms] Basic max [ms]
bcn-002 5628 5975
blt1 -57499 -57474
blt2 -57635 -57559
blt3 -57620 -57527
pro1 -33812 -33305
pro2 -30688 -30388

Table 4.5: Minimum and maximum time drift ∆t per device for the Kalman engine.

Device Kalman min [ms] Kalman max [ms]
bcn-002 2936 2967
blt1 -11859 -11855
blt2 -10865 -10760
blt3 -9873 -9773
pro1 -4800 -4792
pro2 3239 3239

4.1.2 Link throughput under loss and latency
Throughput was evaluated by replaying controlled loss and latency profiles on the
BLE link while keeping the producers’ sampling rates fixed, and measuring the sus-
tained goodput at the hub. Figure 4.2 reports the delivered sample rate normalized
to the nominal 75Hz budget, while the corresponding RTT distributions used by
the synchronization probes closely track the configured latency profiles.

Baseline throughput decreases monotonically as losses increase, since the hub
has no mechanism to compensate for missing notifications beyond host-side buffer-
ing. The Basic engine introduces a probe/estimate loop that slightly reduces ef-
fective goodput at high loss, because additional control traffic competes with data
and RTT outliers trigger conservative estimator updates. Kalman maintains the
most stable delivered rate across all tested loss levels: its gating strategy rejects
pathological probes without inducing large resynchronization bursts, thereby keep-
ing control traffic bounded and preserving airtime for payload notifications. Under
added one-way latency, all engines preserve the delivered sample rate up to the sat-
uration point of the connection interval, but only Kalman maintains low-variance
offsets, indicating that skew estimation remains valid even when probe spacing
increases. Overall, these results show that Kalman offers the most favorable syn-
chronization–throughput trade-off under adverse link conditions, whereas Basic can
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become counterproductive for nodes experiencing irregular or bursty transport.

Figure 4.2: Comparison of throughput and loss between all engines

4.1.3 ML performance

All classification results use Kalman-aligned windows and session-wise splits, follow-
ing the protocol described in Subsection 3.7.2. Windowing, z-score normalization,
and EMA+dwell post-processing are identical across runs.

Headline results On Kalman-aligned windows, the best configuration (model_v4)
achieves an accuracy of (0.931), a balanced accuracy of (0.874), and a macro F_1-
score of (0.895) on the two-class task (asfalto, ciottoli), as reported in Table 4.6.
For comparison, model_v3 attains (0.919) accuracy and (0.879) macro F_1, while
the accelerometer-only ablation model_v5_onlyAcc degrades to (0.907) accuracy
and (0.859) macro F_1, confirming the benefit of the full inertial feature set and
optimized configuration in model_v4.

Table 4.6: Held-out metrics using Kalman-aligned windows.

Run Accuracy Balanced Acc Macro Precision Macro Recall Macro F1
model_v3 0.919 0.862 0.900 0.862 0.879
model_v4 (best) 0.931 0.874 0.923 0.874 0.895
model_v5_onlyAcc (ablation) 0.907 0.837 0.889 0.837 0.859
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Table 4.7: Per-class metrics on the same held-out split (model_v4).

Class Precision Recall F1
asfalto 0.910 0.771 0.834
ciottoli 0.935 0.978 0.956

Per-class breakdown (model_v4) The model is conservative on ciottoli: pre-
cision is high, but recall is lower because borderline segments are classified as
asphalt. This asymmetry is acceptable for the case study, where missing short
cobblestone intervals is less critical than avoiding false positives.

Decision latency. Decision latency is measured from the start of a labeled inter-
val to the first time the predicted class remains stable for three consecutive windows.
On the available transitions, the median latency is 0.387 s for both model_v3 and
model_v4. One long misclassification yields a large outlier (about 15.1 s). The
accelerometer-only ablation exhibits poor stability and much larger latencies.

Table 4.8: Decision latency with EMA+dwell (3 windows).

Run Median [s] Max observed [s]
model_v3 0.387 15.131
model_v4 0.387 15.131
model_v5_onlyAcc 18.072 46.253

The median decision time for model_v5_onlyAcc is much higher because the
accelerometer-only input without rotation-robust features yields weaker class sepa-
rability and higher variance near transitions. Posteriors are less peaked and oscillate
around the decision threshold, so EMA plus dwell requires more windows before a
stable crossing. Occasional misfires also reset the dwell counter, further delaying
the first sustained decision.

4.1.4 Ablations and sensitivity
Ablation and sensitivity experiments quantify the contribution of individual de-
sign choices. When mask channels are removed, macro recall drops by 2–4 points
on segments that contain device dropout, confirming that explicit visibility signals
help the model handle missing sensors. Disabling RTT gating increases the P95
offset tail by roughly 30% under congested links, as delayed packets are no longer
filtered out of the alignment updates. Freezing the skew term in the Kalman engine
increases median decision latency by about 90 ms in long sessions, indicating that
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skew tracking contributes to temporal consistency of the features. The window
length shows a broad optimum between 1.5 s and 2.5 s at 75 Hz; shorter windows
respond faster but are noisier around transitions, whereas longer windows dilute
short cobblestone segments. Rotation-robust features reduce between-mount vari-
ance and keep macro F1 within 0.5 points when devices are detached and reattached
between sessions, supporting the claim that the model generalizes over realistic
mounting changes.

4.2 Key findings
Improved temporal alignment produces more stable posteriors and shorter decision
latency. Cleaner boundaries reduce partial windows and label mixing, which raises
macro recall and macro F1. With Kalman alignment the classifier maintains co-
herent segments and reaches a stable decision in a median of 0.387 s, while the
accelerometer only ablation requires many more windows to cross the threshold.
The effect is strongest at regime boundaries where small timebase errors flip the
dominant class in short windows.

The dilation schedule 1 → 2 → 4 is sufficient at fs = 75 Hz for the target
window sizes. With three depthwise–separable blocks of kernel k = 7, the receptive
field

R ≈ 1 +
∑︂

i

(ki − 1)
∏︂
j<i

dilj = 1 + 6 + 12 + 48 = 67 samples

which is ≈ 0.89 s at 75 Hz. This span covers the dominant vibration envelopes
and transient responses that drive surface discrimination, yet it is short enough to
preserve responsiveness with causal padding. Larger dilations increase R without
improving accuracy on these signals and would raise compute and decision latency.
Smaller dilations reduce context and hurt separability on mixed segments.

4.3 Implications
The stack runs on a resource constrained hub with a single pinned CPU core for in-
ference and bounded queues everywhere else. Depthwise–separable Conv1D keeps
the operation count low. Quantization further reduces cycles and energy per de-
cision while preserving the evaluation protocol. Mask channels and per device
completeness checks make inference robust to dropout and late packets. When a
device disappears the mask prevents imputed zeros from leaking into the features,
which avoids systematic bias and limits the impact to a small confidence drop.
Back pressure policies ensure that GUI frames or non critical streams are dropped
before motion data so the model path remains real time.
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4.4 Comparison with prior art
The system delivers software only synchronization on commodity nodes. Offset
and skew are estimated from two way probes and paired timestamps on the hub
without hardware timestamping or vendor specific firmware. Hardware assisted
schemes that timestamp at the radio or share a reference clock can drive smaller
residuals in the presence of volatile RTT but require custom boards, tight vendor
integration, or wired triggers. The proposed approach trades a small residual jitter
for lower cost, easier maintenance, and device heterogeneity.

Measured goodput and latency fall in the expected BLE regime. Cruise points
with moderate payload and connection interval achieve a few kilobytes per second
with P95 latency on the order of one to two connection intervals. Stress points sat-
urate the link and show heavy tailed latency and loss, yet synchronization remains
stable as long as probes maintain observability. These values are consistent with
typical BLE notification behavior on 1M PHY and standard MTU sizes and match
the practical limits seen in field deployments.

4.5 Lessons learned
RF conditions dominate the tail. Multipath, interference, and body shadowing
inflate RTT variance and create burst loss. Annotator timing is another bound.
Human labels carry hundreds of milliseconds of uncertainty, which sets a floor for
apparent misalignment in field studies. Temperature shifts move oscillator skew
over tens of minutes. Without a temperature aware prior the estimator needs a
steady trickle of probes to track the drift.

Among the tunable parameters, the connection interval and payload size have
the largest impact on median latency and link utilization, while the probe period
controls the effective bandwidth of the estimator. RTT-based gating significantly
improves tail behavior by discarding stale probe exchanges under congestion. On
the learning side, the choice of window length and stride governs the trade-off
between update rate and decision latency; the EMA and dwell settings primarily
affect prediction stability; and the mask policy determines robustness to dropout.
Finally, rotation-robust features reduce variance across mounting configurations
and help preserve accuracy when devices are reattached between sessions.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis presented a software-synchronized wireless sensing framework that aligns
heterogeneous sources on a shared time base while sustaining real-time operation
on an embedded hub. The system ingests motion streams over Bluetooth Low
Energy (BLE) and labels or auxiliary signals (e.g., GPS and IMU) over HTTP,
reconciles source and hub times through a lightweight two-way probe protocol,
and exposes synchronized, windowed records for downstream tasks. The design is
hardware-agnostic and reproducible: each execution is driven by the configuration
file, produces immutable artifacts, and can be re-executed end-to-end on the target
platform.

The validity of the approach was demonstrated through three experiments. A
custom rotary-arm bench provided a controlled environment with reproducible im-
pulses and hub-timed reference events. On this bench, the Kalman engine aligned
peaks from multiple devices within roughly one sample at 75 Hz and preserved
alignment in the ring-down phase, whereas Baseline and Basic left residual lags
that are clearly visible in the waveforms. The road-surface case study exercised
the full pipeline in the field and confirmed that better alignment reduces partially
labeled windows at regime boundaries and stabilizes segment-level decisions. With
Kalman-aligned windows, the best Conv1D model achieved 0.935 accuracy, 0.874
balanced accuracy, and 0.923 macro F1 on the two-class task. A heterogeneous
session further showed that a single time base can fuse BLE motion, HTTP events,
and physiological streams while keeping CPU and memory usage within the limits
of an STM32MP257x-class hub.
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5.2 Future work
Several extensions can further strengthen the proposed framework. A first and
central direction is the systematic integration of additional communication tech-
nologies beyond BLE and HTTP, such as LoRa and Zigbee. The current adapter
pattern already isolates transport-specific details; consequently, new sources can be
supported by implementing corresponding adapters and declaring them in the ses-
sion configuration, without modifying the ingestion or synchronization core. In this
perspective, the configuration file should be extended to describe, for each HTTP
producer, the expected JSON payload structure and field mapping. Making the
decoding rules explicit in the configuration, analogously to the BLE sensor descrip-
tors, would eliminate remaining modality-specific assumptions, improve robustness
to schema evolution, and render the framework fully declarative with respect to
input formats.

A second direction concerns usability and deployment. Porting the current
desktop GUI to a lightweight web application would enable remote monitoring
from mobile devices and PCs, simplify operation in the field, and facilitate multi-
user access during experiments. A browser-based front end could reuse the existing
streaming back end while exposing the same live plots and device controls through
a platform-independent interface.

Beyond these priorities, several technical improvements are natural follow-ups.
On the hub side, the quality and determinism of host-side arrival timestamps can
be improved purely in software, for example by assigning real-time priorities to
acquisition threads, pinning critical processes to dedicated cores, and reducing con-
tention in the BLE and HTTP ingestion paths. At the adapter level, incorporating
transport-specific latency statistics into the metadata would enable more accurate
uncertainty modeling and more informative diagnostics, particularly under variable
network conditions.

From a systems perspective, adding optional compression, batching, and back-
pressure policies to adapters could reduce bandwidth and storage overhead for long
sessions while preserving alignment guarantees. Security and reproducibility could
be enhanced by integrating authenticated transports, explicit versioning of firmware
and configuration, and automated validation of manifests before acquisition. Fi-
nally, extending the benchmarking suite to cover a broader range of environmental
conditions, node counts, and mixed-modality workloads, together with stress tests
on the embedded hub, would provide tighter bounds on scalability and guide future
optimizations.

Overall, the most critical next step is to generalize ingestion by incorporating
new transport technologies and by making JSON-based configuration fully declar-
ative for all producers, so that additional heterogeneous sensing modalities can be
integrated into the existing synchronization core without further code changes.
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Appendix

A.1 YAML configuration file example
devices:

enabled: true | false
name: <sensor_name>
type: BLE_GENERIC
address: "F8:88:E3:3E:48:F7"
addr_type: random
iface: 0
mapping_guard_s: 0.08

characteristics:
- name: imu

service_uuid: "00000000-0001-11e1-9ab4-0002a5d5c51b"
uuid: "00e00000-0001-11e1-ac36-0002a5d5c51b"
cccd_handle: 32
enable_value: "0100"
sensors:

- name: acceleration
timestamp_indexes: [0, 1]
fields:

- { name: accX,
indexes: [2, 3],
signed: true,
post_processing: scale_1000 }

- { name: accY,
indexes: [4, 5],
signed: true,
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post_processing: scale_1000 }

- { name: accZ,
indexes: [6, 7],
signed: true,
post_processing: scale_1000 }

- name: gyroscope
timestamp_indexes: [0, 1]
fields:

- { name: gyrX,
indexes: [8, 9],
signed: true,
post_processing: scale_1000 }

- { name: gyrY,
indexes: [10, 11],
signed: true,
post_processing: scale_1000 }

- { name: gyrZ,
indexes: [12, 13],
signed: true,
post_processing: scale_1000 }

- name: magnetometer
timestamp_indexes: [0, 1]
fields:

- { name: magX,
indexes: [14, 15],
signed: true,
post_processing: scale_1000 }

- { name: magY,
indexes: [16, 17],
signed: true,
post_processing: scale_1000 }

- { name: magZ,
indexes: [18, 19],
signed: true,
post_processing: scale_1000 }
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synchronization:
type: active
engine: BasicApproach

service_uuid: "00000000-000f-11e1-ac36-0002a5d5c51b"
sync_handle: "00000002-000f-11e1-ac36-0002a5d5c51b"

timestamp_bytes: 2
timestamp_indexes: [0, 1]
tick_period_ms: 1.0

# legacy/basic scheduling knobs
resync_interval_ms: 5000
max_bad_delta_ms: 1500
rtt_gate_ms: 30.0

# engine internals / weights
max_rtt_ms: 60.0
r_floor_var: 0.60
hist_size: 200

# Kalman (slope+offset)
kalman_enabled: true
kf_Qa: 1e-12
kf_Qb: 1e-3
kf_P0_a: 1e-8
kf_P0_b: 1e6
gating_lambda: 9.0

# bootstrap offset
bootstrap_use_mean: true
bootstrap_min: 4

# warm-up → cruise cadence (for <10 ms/day)
auto_cadence: true
warmup_resync_ms: 1000
cruise_resync_ms: 7000
warmup_min_sec: 600
warmup_exit_ppm: 0.12
warmup_exit_sigma_ppm: 0.06
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# offset jitter control
freeze_b_after_warmup: true
freeze_resid_median_ms: 1.5
freeze_resid_p95_ms: 4.0
freeze_violation_anchors: 3
slew_threshold_ms: 3.0
reconnect_slew_ms: 150.0

# reconnection handling
soft_resume_max_gap_ms: 120000
soft_resume_max_residual_ms: 15.0
hard_reset_on_wrap: true

sinks:
json_writer:

class: JsonWriterSink
path: "logs/data.jsonl"
rotate_by_size_mb: 2048
max_queue: 5000
backpressure: drop_old

health:
class: HealthSink
out_path: "logs/health.jsonl"
window_s: 10
emit_every_ms: 2000

A.2 YAML main configuration
# =========================
# Sinks (outputs)
# =========================
sinks:

!include config/Sinks/ # include all files in the Sinks folder

# =========================
# Devices (inputs/sources)
# =========================
devices:

- !include config/BLE_devices/device1_bluetile_imu.yaml
- !include config/BLE_devices/device2_bluetile_imu.yaml
- !include config/BLE_devices/device3_bluetile_imu.yaml
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- !include config/HTTP_devices/phone1_http.yaml
- !include config/BLE_devices/device1_bluetile_imu_pro.yaml
- !include config/BLE_devices/device2_bluetile_imu_pro.yaml
- !include config/BLE_devices/device_blueNRG-Tile.yaml

# ========================
# Labeling device (for annotations)
# ========================
- type: HTTP_LABELS

name: labels
host: "0.0.0.0"
enabled: true
port: 4040
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