V4 xf} ~,
i Ea Y

Y _A»%‘g; Politecnico
\..illﬁ:iii <iami# di TOrino
\\‘\ 1859 sa

N

POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

A Multi-Agent AI Assistant for
Intelligent Research and
Neuromorphic Application
Development

Advisors

Prof. Gianvito Urgese

Dr. Vittorio Fra
Salvatore Tilocca

Candidate
Antonio Sirica

December 2025

“Buzz, stai volando!”
Woody

“Questo non e volare, ¢ cadere con stile.”

Buzz Lightyear

Abstract

Traditional computing architectures based on the von Neumann model face ineffi-
ciencies when processing massively parallel and event-driven Artificial Intelligence
(AI) workloads, suffering from memory—computation bottlenecks and high power
consumption. Neuromorphic computing, inspired by biological neural systems, ad-
dresses these challenges through asynchronous, event-driven processing with low
latency and high energy efficiency. Recent advances in neuromorphic hardware
have further promoted algorithm—hardware co-design to improve adaptability and
scalability in real-time and edge computing.

However, these benefits are often constrained by the lack of accessible develop-
ment tools, standardized methodologies, and comprehensive documentation. Exist-
ing implementations frequently derive from research prototypes tailored to specific
experiments rather than reusable, structured libraries, making new developments
complex and often dependent on expert intervention.

Large Language Models (LLMs) are increasingly employed to simplify program
synthesis and vibe coding in conventional AI workflows. Yet, their potential in
supporting neuromorphic system design remains unexplored. This thesis aims to
address the gap by extending emerging Al-driven development assistance to neu-
romorphic applications.

The proposed solution integrates into key stages of the MLOps lifecycle, sup-
porting code synthesis, model design, and optimization through the use of Lang-
Graph, a state-of-art graph-based multi-agent framework.

The approach relies on three branches: web search, academic search, and code
generation & validation. Each acts as a node in a unified LangGraph pipeline,
enabling contextual information retrieval, research knowledge extraction, and au-
tomated code generation with iterative self-correction.

The developed method was evaluated experimentally across all branches. It
achieved high scores on standard large language model metrics in both web and
academic search tasks, showing strong factual accuracy and completeness. The
results indicate a close alignment between generated content and reference material,
with performance generally within the 80-90% range. The evaluation followed
the LLM-as-a-Judge paradigm, employing GPT-5 to assess reliability, clarity, and
relevance.

The core component of code synthesis is organized around a central orchestra-
tor coordinating specialized agents. Each agent includes vector stores for domain
knowledge of snnTorch for spiking network simulation and the Neural Network
Intelligence (NNI) toolkit for automated optimization.

Code validation follows the four main dimensions adopted in the literature. i)
Functional correctness is tested through automated execution in isolated cloud en-
vironments. ii) Static code quality is verified with static type checking and module
consistency analysis. iii) Runtime performance metrics are collected to evaluate

5

efficiency. iv) Feedback-based evaluation incorporates expert input during synthe-
sis, enabling iterative refinement. These validation layers ensure the correctness
and robustness of the synthesis process. Reference-based normalization allows fair
performance comparisons across experiments.

Overall, the results confirm the system’s reliability and ability to generate accu-
rate, high-quality code across heterogeneous sources, demonstrating the feasibility
of agent-based systems to support neuromorphic applications development.

Contents

List of Figures 10
List of Tables 11
1 Introduction 13
2 Background 17
2.1 Artificial Neural Networks 18
2.1.1 Neural Network and Neuron Perceptron 18

2.1.2 Training Neural Network 19

2.1.3 Convolutional Neural Networks 20

2.1.4 Recurrent Neural Networks 21

2.2 Neuromorphic Engineering 24
2.2.1 Spiking Neural Networks 24

2.2.2 Biological Neurons and Their Structure 26

223 Neural Code 27

224 Neuron Modelo 28

2.2.5 Encoding and Decoding Spikes in SNNs 28

2.3 Large Language Models 30
2.3.1 Evolution of Large Language Models 31

2.3.2 The Attention mechanism 31

2.3.3 Applications of LLMs 33

2.3.4 Training Paradigms 35

2.3.5 State-of-the-Art Large Language Models 36

2.3.6 Limitations of LLMs, .. 36

2.4 Agents Orchestration Frameworks 37
24.1 LangChain. 37

24.2 LangGraph 38

2.4.3 State Management and Checkpointing 38

2.5 Information Retrieval in AI Systems 39
2.5.1 Traditional Information Retrieval Approaches 40

2.5.2 Semantic Search and Vector-Based Retrieval 40

7

2.5.3 Retrieval-Augmented Generation 41

2.5.4 Limitations and Challenges in Information Retrieval 42
2.6 Validation of Knowledge Produced by LLMs 43
2.6.1 The DeepEval Framework 44
2.7 Code Generation 45
2.7.1 LLMs for Code Generation 45
2.8 Code Validation 46
2.8.1 Evaluation of Code Generated by LLMs 46
2.8.2 Sandbox Execution and Safety 47
2.8.3 Code Static Analysis 47
2.9 Human-in-the-Loop 48
2.9.1 [Iterative Refinement 49
2.9.2 Benefits and Challenges 50
2.10 Open-Source Frameworks for LLMs Deployment 51
Materials and methods 53
3.1 snnTorch 55
3.1.1 Core Framework Components 56
3.1.2 Practical Architecture Patterns 56
3.2 Neural Network Intelligence (NNI) 57
3.3 In-Context Learning 58
3.4 Implementation of LangGraph 59
3.4.1 Web Search Branch 60
3.4.2 Academic Research Branch 65
3.4.3 Code Generation Branch 69
3.4.4 Graph Routing Logic 82
3.5 Usedtools 83
3.5.1 Agno Framework, 83
3.5.2 DeepEval 85
3.6 Models and Infrastructure 88
3.6.1 Large Language Models Used 88
3.6.2 Model Selection Rationale 91
3.6.3 Ollama Infrastructure 91
3.6.4 Used Hardware 92
Results and discussion 93
4.1 Information Retrieval Use Cases 93
4.1.1 Experiment 1: Web Search Branch 94
4.1.2 Experiment 2: Academic Search Branch: 96
4.2 Code Generation Use Cases 98

4.2.1 Experiment 3: Code Generation for SNN and NNI configuration 99
8

4.2.2

4.2.3

4.2.4

5 Conclusion

Bibliography

Experiment 4: Code Generation, Sandbox Execution, and

Iterative Correction 106
Experiment 5: Code Generation for Proprietary Script Com-
pletion 109
Experiment 6: Functional Correctness Validation via Golden-
Reference Comparison and Performance Injection 112
115
123

List of Figures

2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

Perceptron Architecture and Computational Flow 19
Intuitive Representation of the Backpropagation Algorithm in a Multi-
Layer Neural Network 21
Detailed Representation of the 2D Convolution Operation in Convo-
lutional Neural Networks 22
Comparative Architecture of Recurrent Neural Networks and Feed-
Forward Neural Networks 23
Visual Explanation of Spiking Neural Network (SNN) Architecture

with Winner-Take-All Inhibition 26
Anatomical Structure of a Biological Neuron: Principal Morpholog-

ical Components 30

Historical Evolution of Natural Language Processing and Large Lan-
guage Models: From Statistical Methods to Transformer-Based Sys-

tems . . .o 32
Attention Mechanism: Alignment Between Query and Context Rep-

resentations Lo 33
The full implemented Graph 59

10

List of Tables

3.1 Mapping of DeepEval Metrics to RAG Pipeline Components 87
3.2 Task-Specific Model Selection and Rationale 91
4.1 Experiment 1: DeepEval Metrics Summary 94
4.2 Experiment 2: DeepEval Metrics Summary 97

11

12

Chapter 1

Introduction

Neuromorphic computing represents a paradigm shift in how we approach arti-
ficial intelligence workloads and real-time processing systems. Unlike traditional
computing architectures rooted in the von Neumann model, neuromorphic systems
draw inspiration from biological neural structures to achieve fundamentally different
computational properties. These systems address critical inefficiencies in conven-
tional approaches through asynchronous, event-driven processing mechanisms that
naturally align with the sparse, temporal nature of real-world data and sensory
inputs.

The appeal of neuromorphic computing extends beyond theoretical elegance.
Contemporary challenges in Al deployment, particularly the memory, computation
bottleneck and escalating power consumption in data centers and edge devices, have
created renewed urgency for alternative computational substrates. Recent advances
in neuromorphic hardware, from Intel’s Loihi processors to emerging neuromorphic
chips, have demonstrated practical viability and prompted significant research into
algorithm—hardware co-design methodologies. These developments suggest that
neuromorphic systems could become mainstream components of modern comput-
ing infrastructure, particularly for latency-sensitive and energy-constrained appli-
cations.

Yet despite these promising advances, neuromorphic computing has not achieved
the widespread adoption enjoyed by conventional deep learning frameworks. A prin-
cipal obstacle lies in the accessibility and maturity of the development ecosystem.
Most existing neuromorphic implementations remain research prototypes, tightly
coupled to specific experimental scenarios and rarely designed for reusability or
modularity. Developers seeking to build neuromorphic applications face fragmented
documentation, limited standardized methodologies, and a steep learning curve that
often requires deep domain expertise or consultation with research specialists.

This friction between the potential of neuromorphic hardware and the practi-
cal barriers to development creates a significant gap. While conventional Al has
benefited from sophisticated development tools, from TensorFlow and PyTorch to

13

Introduction

specialized code generation assistants, the neuromorphic domain lacks comparable
infrastructure. The absence of accessible, structured libraries and development as-
sistance tools places neuromorphic computing at a disadvantage when competing
for developer attention and investment.

Recent breakthroughs in LLMs have demonstrated remarkable capabilities in
code synthesis, program generation, and Al-assisted development workflows. These
models can understand complex specifications, generate executable code, debug
implementations, and provide contextual assistance across diverse programming
domains. Their potential has been extensively validated in conventional Al work-
flows, where they accelerate development cycles and reduce the barrier to entry for
practitioners.

However, this transformative capability has remained separate from neuromor-
phic computing. The existing literature on LLM-assisted development focuses
almost exclusively on conventional neural network frameworks, cloud infrastruc-
ture, and standard software engineering tasks. The possibility of extending these
Al-driven development tools to neuromorphic applications, where domain-specific
knowledge, specialized libraries, and novel architectural patterns are required, re-
mains unexplored.

This thesis addresses this gap by investigating whether LLMs, when properly
augmented with domain knowledge and structured reasoning capabilities, can ef-
fectively support the design, implementation, and optimization of neuromorphic
systems. Rather than treating LLMs as isolated code generation tools, in this the-
sis is explored a multi-agent architecture capable of orchestrating diverse specialized
roles: searching and synthesizing research knowledge, validating implementations,
and generating code with iterative refinement.

The proposed approach integrates into the MLOps lifecycle through three com-
plementary branches. The web search and academic search branches provide con-
textual information retrieval and research knowledge extraction. The code gen-
eration and validation branch coordinates specialized agents that synthesize exe-
cutable implementations while maintaining correctness across multiple validation
dimensions.

This research demonstrates that structured, agent-based systems can bridge
the accessibility gap in neuromorphic computing development. By combining the
general reasoning capabilities of LLMs with domain-specific knowledge bases, auto-
mated validation frameworks, and multi-agent orchestration, a foundation for more
inclusive and efficient neuromorphic system development practices is established.

The primary contributions of this work are threefold. First, a comprehensive
multi-agent architecture for neuromorphic development assistance is presented,
demonstrating how LLMs can be effectively integrated into domain-specific de-
velopment workflows. Second, specialized agents focused on spiking neural net-
work simulation (using snnTorch) and automated optimization (using the Neural
Network Intelligence (NNI) toolkit) are developed and evaluated, showing how

14

Introduction

domain-specific vector stores and knowledge bases enhance code generation quality.
Third, rigorous evaluation frameworks tailored to distinct system branches is estab-
lished: for knowledge-based productions in the web and academic search branches,
DeepFEuval is employ, a state-of-the-art LLM-as-Judge framework, which achieved
results in the 80-90% range across key metrics including Faithfulness, Answer Rel-
evancy, Contextual Relevancy, and Hallucination Detection. For the code gener-
ation branch, qualitative validation spanning functional correctness, static code
quality, runtime performance, and expert-driven feedback implementation provides
a replicable methodology for assessing LL.M-assisted development tools in special-
ized domains.

15

16

Chapter 2

Background

The most challenging part of this work has been dealing with the orchestration of
heterogeneous processes involving large language models, information retrieval, and
generation, execution and evaluation. These systems are considered very promis-
ing from multiple perspectives, ranging from their adaptability in handling diverse
user inputs to their potential for integration into intelligent research and coding
workflows [1, 2]. At the same time, however, significant effort is required to align
different components, such as web research tools, academic search engines, vec-
tor databases, and sandboxed execution environments, into a unified and reliable
framework [1, 2].

While the integration of heterogeneous tasks such as retrieval-augmented gener-
ation, code assistance, and workflow management remains an open challenge, recent
studies have addressed specific components of this broader problem. Some works
have focused on optimizing the efficiency and scalability of retrieval-augmented
generation (RAG) pipelines [3], while others have investigated state management
and workflow orchestration mechanisms for large-scale Artificial Intelligence (AI)
applications [1, 2]. Parallel research efforts have explored the validation and im-
provement of LLM-generated code through techniques such as sandbox execution,
static analysis, and reflection [4, 3]. Finally, human-in-the-loop approaches have
been proposed to enable iterative refinement and alignment of system outputs with
user expectations [5].

In this background section, the goal is to review some of the most relevant stud-
ies and frameworks that have been proposed in these areas, while also presenting
an overview of the state-of-the-art tools and methodologies that currently support
intelligent research assistance and automated code generation and validation [1, 2,
3,4, 5].

17

Background

2.1 Artificial Neural Networks

The concept of Al emerged in the mid-twentieth century as scientists aimed to
design computational systems capable of reasoning in ways comparable to human
cognition. The term was formally introduced by John McCarthy during the 1956
Dartmouth Conference, marking the official establishment of Al as a scientific re-
search field [6]. Early AI systems relied on symbolic reasoning, encoding expert
knowledge in fixed logical rules; however, such methodologies proved inadequate
when confronted with complex and heterogeneous data environments.

In the 1980s, the paradigm of Machine Learning (ML) was proposed to address
these limitations. This approach shifted focus from explicitly programmed rule-
based models to data-driven methods capable of improving performance through
experience [7]. The pioneering work of Arthur Samuel demonstrated that com-
puters could autonomously learn patterns from data rather than relying solely on
predefined logic, laying the foundation for future development.

Around 2010, the field underwent a significant transformation with the emer-
gence of Deep Learning (DL). This new paradigm utilized hierarchical, multi-
layered neural networks capable of automatically extracting complex features from
raw data, fundamentally changing fields like computer vision and natural language
processing [8]. The extraordinary success of deep learning has been supported
by advances in computational power, large-scale labeled datasets, and optimized
training algorithms.

2.1.1 Neural Network and Neuron Perceptron

The foundational objective of AI was to develop computational models that emulate
the behavior of biological neurons. The perceptron, as one of the earliest such
models, produces an output of +1 or —1 based on a weighted sum of its inputs,
functioning as a linear classifier defined by [9]

h(x) = sign(w'x). (2.1)

The perceptron algorithm seeks a weight vector w that defines a hyperplane sep-
arating data points from different classes, maximizing the margin between them.
The figure 2.1 shows how perceptron works. This approach assumes linear sep-
arability; otherwise, the algorithm may not converge. To address this, multiple
perceptrons can be combined to form more complex, nonlinear functions.
Replacing the step function with a sigmoid activation leads to logistic regres-
sion, which models the probability of class membership and enables gradient-based
optimization. By stacking layers of perceptrons, one obtains a multilayer percep-
tron or feed-forward neural network, which can approximate nonlinear functions
and learn hierarchical representations [10]. The design of such networks aims to

18

2.1 — Artificial Neural Networks

balance expressive power with generalization, mitigating overfitting by controlling
model complexity and regularization [11].

Weights

Constant

Weighted
Sum

inputs —
Step Function

Figure 2.1: A perceptron is a foundational artificial neuron for binary classification.
Its architecture comprises four stages: (1) Input Layer with bias constant (1) and
n input features (z1, xs,...,x,), (2) Weight Multiplication where each input is
multiplied by corresponding weights (wq, w1, ..., w,), (3) Weighted Summation
aggregating all weighted inputs, and (4) Activation Function applying a step
function threshold to produce binary output. This architecture demonstrates how
linear combinations of inputs are transformed into discrete decisions through non-
linear thresholding [12].

2.1.2 Training Neural Network

Training a neural network involves determining the set of weights @ that minimize a
loss function, which quantifies the discrepancy between predicted and actual values.
For regression tasks, a common choice is the mean squared error:

o=+ 30— 00(2)? 2.2
i=1
where y; is the true value, gg(x;) is the network’s prediction, and n is the number
of samples [9].
Since the loss function is generally non-convex for neural networks, it is typically
minimized using the Gradient Descent algorithm. This iterative method updates
the weights by moving in the direction of the negative gradient of the loss:

oD — 9O — oVl (2.3)
19

Background

Here, a > 0 is the learning rate, a hyperparameter that controls the step size at
each iteration. Choosing an appropriate learning rate is crucial: a value too large
may cause the algorithm to overshoot minima, while a value too small can result
in slow convergence.

For large datasets, computing the gradient over the entire dataset at each step
is computationally expensive. To address this, Stochastic Gradient Descent (SGD)
is used, where the gradient is estimated using a small batch of samples. After all
batches are processed, one epoch is completed.

In feedforward neural networks, each neuron composes multiple functions, mak-
ing gradient computation complex. To automate this, the concept of a compu-
tational graph is introduced: an acyclic graph representing the composition of
functions computed by the network. This structure enables efficient calculation of
derivatives via backpropagation, where gradients are computed from the output
layer backward to the input, leveraging the chain rule, as shown in Figure 2.2. This
approach is efficient because outputs are typically scalars (such as the loss), while
inputs are often high-dimensional [11].

2.1.3 Convolutional Neural Networks

The integration of prior knowledge into convolutional filters allows neural networks
to leverage known properties of image data. In images, important information is of-
ten concentrated within local pixel neighborhoods, and similar visual patterns, such
as edges or textures, can appear at different positions within the frame. Convo-
lutional layers explicitly encode these assumptions in their architecture [14]. Each
neuron connects only to a small, localized region of the input, reflecting the idea
that nearby pixels are correlated. Moreover, the same set of weights (the convolu-
tional kernel) is shared across all spatial locations, enforcing translation invariance
and enabling the detection of identical features regardless of their position. This
design reduces the number of trainable parameters, enhances generalization, and
aligns with principles observed in biological visual systems.

Mathematically, the convolution operation between two functions f(t) and g(¢)
is defined as:

(Fe9)t) = [fr)glt —m)dr 24)

where (f * g)(t) is the result of convolving f with g, and ¢ is commonly called the
kernel or filter [15]. In image processing, the kernel is a small matrix of weights that
slides over the input tensor, computing local weighted sums to produce a feature
map.

After the convolution operation, which the Figure 2.3 describes, a non-linear
activation function such as the Rectified Linear Unit (ReLU) is typically applied to
introduce non-linearity. To further reduce the dimensionality and retain the most
salient features, pooling layers, such as max pooling, are used, which select the

20

2.1 — Artificial Neural Networks

Backpropagation

Error is sent back to
each neuron in backward

Gradient of error is direction

calculated with respect to
each weight

0\ 4‘0

’ Outputs Error - difference
x2 w —————— Error— betweenpredicted
Predicted output and actual
e' output output
InputLayer Hidden Layer Output Layer

Figure 2.2: This diagram illustrates the three-stage backpropagation mechanism
for neural network training: (1) Error Computation calculates the loss as the
difference between predicted output § and target output, (2) Error Signal Trans-
mission propagates the error backward through network layers in reverse order,
and (3) Gradient Calculation computes weight gradients using the chain rule.
The network comprises three layers: Input Layer (yellow neurons 1, xq, x3), Hidden
Layer (blue neurons with weights w), and Qutput Layer (red neuron producing 4).
This mechanism enables iterative weight updates that minimize prediction error
through gradient-based optimization [13].

maximum value within a specified region of the feature map [14]. This combination
of convolution, activation, and pooling enables convolutional neural networks to
efficiently learn hierarchical representations from data.

2.1.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are designed to model sequential data where
the output at each time step depends not only on the current input but also on
previous states. This is achieved by maintaining a hidden state that is updated
recursively as new inputs are processed. The basic RNN cell computes the hidden
state h; at time t using the following equation:

ht = tanh(Wxxt + Whht_1> (25)

where x; is the input at time t, W, and W), are weight matrices, and tanh is
a non-linear activation function [17]. RNNs are widely used for tasks such as

21

Background

Input Tensor Activation Map
wxhx3 wxhx2

Two 3 x 3 x 3 Filters

Activation
Function

—> f(wx+b) —— ”

Two filters (F, and F,) contain three Kernels each
for a total of 54 weights (2x3 x 3 =54), plusa
bias term for each filter = 56 trainable parameters

The output activation map now has a
depth of two because two filters were
convolved with the input.

L J L J

Convolution Operation Apply Activation
for a Single Filter Location

Figure 2.3: The text explains a diagram of how convolutional layers process a 3-
channel (RGB) input tensor of size w x h x 3. Two filters (F; and F3) are each
composed of three 3 x 3 kernels (one per input channel), giving 2 x 3 x 3 X 3 =
54 weight parameters plus 2 biases, for 56 trainable parameters in total. Each
filter performs a weighted sum plus bias followed by a nonlinearity (e.g., ReLU),
producing an output activation map. The resulting output has spatial dimensions
w X h and depth 2, equal to the number of filters. The main point is that a
convolutional layer’s output depth equals the number of filters, while its spatial
dimensions depend on filter size, stride, and padding, forming the basis of feature
extraction in CNNs for vision [16].

language modeling, event prediction, and time series analysis. The Figure 2.4
shows intuitively the difference between an RNN architecture and a Feed-Forward
one.

However, vanilla RNNs often suffer from the vanishing and exploding gradient
problems during training. The vanishing gradient problem occurs when gradients
become exceedingly small, making it difficult for the network to learn long-term
dependencies. Conversely, the exploding gradient problem arises when gradients
grow uncontrollably, leading to unstable training. Gradient clipping can help miti-
gate exploding gradients, while architectural innovations such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) cells address vanishing gradi-
ents by introducing gating mechanisms that regulate information flow [19].

LSTM cells enhance the memory capabilities of RNNs by maintaining both a
hidden state h; and a cell state ¢;. The gating system consists of input, forget,

22

2.1 — Artificial Neural Networks

Recurrent Neural Network Feed-Forward Neural Network

Figure 2.4: The text contrasts Recurrent Neural Networks (RNNs) with Feed-
Forward Neural Networks for sequence and temporal data. RNNs have recurrent
feedback connections that feed hidden activations back into the network at the next
time step, giving them a form of memory to capture temporal dependencies and
handle variable-length sequences (e.g., language, time series, speech). Feed-forward
networks have only forward, acyclic connections from input to output, are easier
to train and parallelize, but treat each input independently and cannot model
temporal dynamics. Thus, RNNs are generally preferred for sequence modeling
despite their higher computational complexity [18].

output, and gate gates, which are computed as follows:

it = O(Wi[ht_l, Slft]) (26)
fe = o(Wilhi—1, 7)) (2.7)
Oy — U(Wo[ht,h .Tt]) (28)
g = tanh(Wy[h; 1, 24]) (2.9)
The cell and hidden states are updated by:
= fexci1t i kg (2.10)
hy = o; * tanh(c;) (2.11)

To update the cell state ¢; at time step t, the previous cell state ¢;_; is first modu-
lated by the forget gate f;, which determines the extent to which past information
should be retained. Simultaneously, the input gate ¢, regulates how much new infor-
mation, derived from the current input z;, is incorporated into the cell state. This

23

Background

dual mechanism allows the LSTM to selectively preserve or overwrite information
as needed.

The hidden state h; is then computed by applying the output gate o, to the
transformed cell state, effectively controlling how much of the internal memory is
exposed to the next layer or as output. This gating structure enables the LSTM to
flexibly manage the flow of information across time steps.

A key reason why LSTMs mitigate the vanishing gradient problem is that,
during backpropagation, the gradient with respect to the cell state is propagated
primarily through element-wise multiplication by the forget gate f;. This avoids
repeated multiplication by weight matrices, which in traditional RNN can cause
gradients to diminish exponentially. As a result, LSTMs are able to maintain and
learn long-range dependencies, making them effective for modeling sequences with
extended temporal structure [17, 19, 20].

2.2 Neuromorphic Engineering

Neuromorphic computing is a computational paradigm designed to emulate the ar-
chitecture and behavior of biological nervous systems, such as the human brain. In
recent years, the use of Artificial Neural Networks (ANNs) has surged; however,
neuromorphic computing is increasingly gaining attention in the scientific commu-
nity as a more efficient and promising alternative [21].

Unlike traditional models that process information sequentially and continu-
ously, neuromorphic computing operates on asynchronous events. In this approach,
signals known as “spikes” are generated only when a change occurs [22].

The core elements of neuromorphic computing are spiking neurons, which col-
lectively form Spiking Neural Networkss (SNNs). Each neuron processes spikes
independently and remains inactive in the absence of input. This event-driven
method represents a significant departure from conventional ANNs, which contin-
uously process input signals. By emulating the brain’s mechanisms, neuromorphic
computing can enhance efficiency and potentially increase computational power for
specific tasks [22].

However, implementing these models is not without challenges. Hardware lim-
itations, in particular, pose significant obstacles and must be carefully considered
to fully leverage the advantages offered by neuromorphic technologies [21].

2.2.1 Spiking Neural Networks

Over the last decade, deep neural networks have achieved remarkable results across
various fields including language understanding and image recognition. However,
these advances come with substantial resource demands: modern AI models require

24

2.2 — Neuromorphic Engineering

large datasets, considerable computational power, and significant energy consump-
tion. For example, training large-scale language models such as GPT-3, which
contains 175 billion parameters, has been estimated to consume around 190,000
kWh of energy [23]. The overall energy consumption of Al data centers is projected
to reach 22 billion kWh by 2025, driven primarily by increasing model complexity
and the computational intensity of training procedures [24]. Between 2012 and
2019, the energy required to train state-of-the-art models increased nearly tenfold,
raising significant concerns about the environmental and economic sustainability of
current Al development practices [25].

It is important to distinguish between the energy costs associated with training
and those related to inference. Training represents the one-time, upfront energy
investment required to develop a model, often consuming vast resources during this
phase. Inference, on the other hand, corresponds to the energy expended every
time the trained model is deployed to perform tasks such as understanding lan-
guage, recognizing images, or making decisions in autonomous systems. In many
real-world scenarios, particularly those involving large-scale or real-time applica-
tions, the cumulative energy consumption during inference can surpass that of
training. Therefore, while training energy highlights the environmental footprint
of developing AI models, inference energy is a critical metric for assessing their
operational efficiency and sustainability in practical deployment contexts.

In a strong contrast, the human brain achieves remarkable computational ef-
ficiency by operating with only about 10 to 20 watts while processing complex
sensory information [26]. Neuromorphic engineering strives to close this efficiency
gap by designing systems inspired by the brain’s organization and function.

The essential components of neuromorphic technology consist of:

o Neuromorphic sensors: detect only changes in input signals rather than
continuously sampling, enabling much more efficient data capture [27].

e Neuromorphic algorithms: particularly SNNs, which process information
with discrete events or spikes, as shown in Figure 2.5, mimicking the brain’s
temporal coding and typically consuming far less energy than conventional
artificial neural networks [28].

e Neuromorphic hardware: specialized computing architectures that imple-
ment SNNs and brain-inspired computation, utilizing emerging device tech-
nologies such as memristors to improve speed and energy efficiency [29].

A central objective is to integrate the proven effectiveness of artificial neural
networks with the energy-saving capabilities of spiking networks. Advances have
shown that neuromorphic models running on dedicated platforms can significantly
reduce energy consumption and inference latency while maintaining competitive
accuracy [30].

25

Background

This evolution in computing paradigms is especially critical for applications
that require real-time processing under stringent power constraints, including au-
tonomous machines, wearable devices, and brain-machine interfaces [31].

WTA network
(lateral inhibition)

Figure 2.5: The text describes a neuromorphic algorithm based on spiking neural
networks that mimics biological neural computation using temporal spike dynam-
ics and event-driven processing. The architecture has four main components: an
Input Layer that encodes information in spike timing; Sensory/Encoder Neurons
that receive and propagate spike trains; Excitatory Neurons that integrate weighted
excitatory and modulating inputs; and Inhibitory Output Neurons that implement
lateral inhibition. A Winner-Take-All (WTA) mechanism among excitatory neu-
rons ensures that the neuron receiving the strongest input suppresses others, pro-
ducing a sparse, selective, and energy-efficient winner-driven response [32].

2.2.2 Biological Neurons and Their Structure

Biological neurons are the elementary signaling units within the nervous systems
of animals and humans, forming complex networks capable of adaptive computa-
tion. Neurons transmit information primarily via discrete electrical impulses, called
spikes or action potentials, facilitating communication between cells and through-
out neural circuits [33, 34].

A typical neuron consists of several key structural components: dendrites, the
soma, axon, and axon terminals. These elements underpin both signal integration
and communication within neural circuits [34].

e Dendrites: Dendrites are highly branched projections that receive chemical
or electrical signals from other neurons. The morphology and density of

26

2.2 — Neuromorphic Engineering

dendritic branching modulate a neuron’s integration properties and play a
pivotal role in the spatial and temporal summation of inputs [34, 35].

« Soma (Cell Body): The soma integrates incoming synaptic signals from the
dendrites and determines whether the total input surpasses a critical threshold
to generate an action potential. The dynamic interplay of excitatory and
inhibitory signals shapes the membrane potential and output response [33,

36].

o Axon: The axon is a long, slender projection that carries the action potential
from the cell body to distant targets. Axonal conduction properties affect
both the spatial reach and timing of neural signals [34, 33].

o Axon Terminals and Synapses: Axonal terminals form synapses, the junc-
tions across which signals are transmitted to adjacent neurons or effector cells,
commonly using neurotransmitters. The structure, distribution, and plastic-
ity of synapses are essential for learning and adaptation in neural circuits [33,
37, 35].

Neural learning and plasticity are mediated by activity-dependent changes in
synaptic strength, enabling adaptive behavior and experience-dependent circuit
refinement [35]. Modern computational models inspired by these principles offer
interpretable and efficient representations of neural processing [36].

2.2.3 Neural Code

The neural code refers to the mechanisms by which the human brain represents
and processes information, a topic that remains a central and unresolved challenge
in neuroscience [38, 39, 40]. Despite decades of research, it is widely accepted
that neural information encoding relies on three key principles: spikes, sparsity,
and static suppression. First, neurons communicate primarily through the gener-
ation and propagation of action potentials, or spikes, which are all-or-none events
that encode information in their timing and occurrence rather than their ampli-
tude [38, 40]. This discrete, event-based signaling is fundamentally different from
the continuous-valued representations used in conventional ANNs, and recent en-
gineering analyses suggest that discrete coding is essential for reliable information
transmission in the brain [40]. Second, neural activity is characteristically sparse,
with most neurons remaining quiescent for extended periods and only a small subset
active at any given time, a property that enhances memory efficiency and compu-
tational power [39, 41]. Third, static suppression mechanisms in sensory systems
enable neurons to preferentially respond to dynamic, changing stimuli while fil-
tering out static or redundant information, thereby optimizing sensory processing
[38]. In terms of computational models, both ANNs and SNNs can address similar

27

Background

tasks, but their neuron models differ fundamentally. ANNs compute a weighted
sum of inputs and apply a nonlinear activation function such as ReLU, resulting
in continuous-valued outputs. In contrast, SNNs accumulate weighted input spikes
to a membrane potential, and a spike is emitted only when this potential crosses a
threshold, making the output inherently event-driven and temporally precise [38,
40]. This distinction underpins the efficiency and biological plausibility of SNNs
for modeling real neural computation. The Figure 2.6 shows the anatomy of a
biological neuron.

2.2.4 Neuron Model

ANNs and SNNs are both capable of addressing similar computational tasks, but
they differ fundamentally in their neuron models. In ANNs, each neuron computes
a weighted sum of its inputs and passes this value through a non-linear activation
function, such as the ReLLU, to produce its output. This approach enables efficient
gradient-based learning and is well-suited for static data representations [42].

In contrast, SNNs employ a more biologically inspired neuron model. Here, the
weighted sum of inputs contributes to the neuron’s membrane potential U(¢). When
this potential reaches a defined threshold 6, the neuron emits a spike, transmitting
information to subsequent neurons. Inputs to SNNs are typically spikes that arrive
at different time instants, and the neuron’s output is event-driven rather than
continuous. This mechanism allows SNNs to process temporal and event-based
data efficiently, often resulting in lower energy consumption and more realistic
neuronal dynamics [43].

While both ANN and SNN architectures can achieve comparable performance
on certain tasks, SNNs offer advantages in terms of energy efficiency and biolog-
ical plausibility, especially for event-driven applications. However, training SNNs
remains challenging due to the non-differentiable nature of spike generation, requir-
ing specialized learning algorithms.

2.2.5 Encoding and Decoding Spikes in SNNs

SNNs process information using discrete spikes, inspired by biological neural sys-

tems. A central challenge is how to encode input data as spike trains and how to

decode spike outputs for interpretation. Recent research has advanced both encod-

ing and decoding strategies, optimizing SNNs for efficiency and accuracy [44].
Input Encoding: Three principal encoding schemes are widely used:

« Rate Coding: The intensity of the input is represented by the firing rate
or spike count within a time window. Higher input values yield more spikes.
This method is robust but can require longer time windows for accurate rep-
resentation [45].

28

2.2 — Neuromorphic Engineering

Temporal (Latency) Coding: Information is encoded in the timing of
spikes, such as the time-to-first-spike (TTFS) approach, where stronger inputs
cause earlier spikes. This enables rapid and energy-efficient computation, as
fewer spikes are needed [46].

Delta/Change Coding: Spikes are generated only when there is a change
in input intensity, capturing dynamic features and reducing redundancy. This
is particularly effective for event-based sensors like Dynamic Vision Sensors
(DVS) and silicon cochleas, which directly produce spike streams in response
to environmental changes [47].

Output Decoding: To interpret SNN outputs, several decoding strategies are
employed:

Rate Decoding: The predicted class is assigned to the neuron with the
highest firing rate.

Latency Decoding: The class is determined by the neuron that fires first.

Population Coding: Aggregates information from multiple neurons, over-
coming the limitations of individual firing rates and enabling more robust and
rapid processing.

Recent benchmarking studies have compared these encoding and decoding meth-
ods, highlighting trade-offs between speed, accuracy, and energy efficiency. For
example, time-to-first-spike coding can achieve high accuracy with minimal spikes,
while rate coding offers greater error tolerance and is more compatible with
backpropagation-based training [45, 46].

29

Background

Cell body ANATOMY

_ of a typical

@u&' neuron
Axon

fea

(“ S0) S
Dendriteg

)i i O

Terminals

Figure 2.6: The text describes a biological neuron and its four key parts: the cell
body, dendrites, axon, and axon terminals. The cell body houses the nucleus and
organelles, maintains vital functions, and helps generate action potentials. Den-
drites branch from the cell body to receive signals from other neurons at synapses.
The axon is a single long projection that carries electrical and chemical signals away
from the cell body, ending in axon terminals. These terminals form synapses with
other neurons and release neurotransmitters to transmit signals. This structure
underlies the directional flow of neural information where dendrites receive, the cell
body integrates, and the axon transmits, and serves as a biological inspiration for
artificial neural network design [48].

2.3 Large Language Models

Large Language Models (LLMs) are advanced systems capable of understanding
and producing human language. They are designed to process text in a way that
captures meaning and context, allowing them to generate coherent and relevant
responses or content. Essentially, LLMs can “read” and “write” in a manner that
closely resembles human communication. The utility of LLMs lies in their versatil-
ity. They can assist in generating written content, providing summaries, or creating
explanations on complex topics. They are also used in conversational contexts, of-
fering guidance, answering questions, or engaging in dialogue with users. Beyond
communication, LLMs support decision-making and information management by
extracting insights from large amounts of text or presenting information in an easily
understandable form. In essence, LLMs act as intelligent language assistants, ca-
pable of understanding human expression and aiding in tasks that involve reading,
writing, or reasoning with text, making them valuable across many areas of work
and daily life.

30

2.3 — Large Language Models

2.3.1 Evolution of Large Language Models

The evolution of Language Models into modern LLMs traces a path from early
statistical estimation to advanced neural architectures and alignment techniques
[49]. Initially, Language Models were understood as probabilistic models of natural
language, estimating the likelihood of word sequences, with early n-gram models
relying on the Markov assumption to approximate the probability of the next word
based on a small preceding context, but suffering from data sparsity and a lack of
semantic understanding.

The introduction of neural networks reframed next-word prediction as a clas-
sification problem, augmented by word embeddings that captured semantic rela-
tionships in dense vector spaces, replacing sparse one-hot encodings, and enabling
recurrent architectures such as RNNs and LSTMs [50] to handle longer contexts.

A transformative advance occurred with the Transformer architecture [51], which
addressed long-term dependency limitations and allowed parallelizable processing
through the self-attention mechanism, giving rise to decoder-only Transformers ex-
emplified by the GPT family. Models like GPT-2 [52] and GPT-3 [23] dramatically
scaled parameters (GPT-3 reaching 175B) and training data, confirming scaling
laws and demonstrating few-shot in-context learning, while highlighting inefficien-
cies in oversized yet undertrained models.

This prompted compute-optimal training, as in Chinchilla [53] (70B parame-
ters), which achieved superior performance by training on more tokens rather than
simply increasing model size.

The final evolutionary step involved aligning LLMs with human preferences and
practical utility, formalized through instruction tuning (improving zero-shot gen-
eralization, demonstrated by FLAN [54] and Reinforcement Learning with Human
Feedback (RLHF) as implemented in InstructGPT [55], producing models that are
Helpful, Honest, and Harmless (HHH).

This trajectory characterizes current accessible LLMs, including the LLaMA
family [56], which combine massive scale, semantic understanding, and alignment
strategies to serve as powerful, instruction-tuned conversational agents. The Figure
2.7 gives an idea of the exponential growth of the LLMs in the last years.

2.3.2 The Attention mechanism

The attention mechanism, which is central to LLMs, allows the model to dynami-
cally assign relevance to different tokens within an input sequence. This mechanism
overcomes the limitations of sequential architectures by enabling long-range depen-
dencies to be captured efficiently. Specifically, self-attention computes pairwise
interactions between all tokens in the sequence, permitting each token to attend to
any other regardless of positional distance. The Figure 2.8 shows a visual example
of attention computed in the context of words translation.

31

Background

G BardG [GPT-4® M Qurassic-742 (Claudd

Lm‘“

Evolutionary
Tree @

2023
C‘D OPT-TMLIZN -
E (ChatGPT|& BLOOMZ/%)| Galacticasy & L
G c
= EEr‘rou\'O
O N —— BLOOM) %
| Open-Source) 300 alM Y G
Closed-Source| U che) = b=
’ Tk e PalMG
Chinchilla/®
InstructGPTIE) GPT-NeoX[a
TR (@G
G N ® GG\ EreiOff Ewes.ou v)M
m 1| m
v
GPT-]
GPT-Neo|
2021
Ja
s T-36
2020
=
o| Fat@md FG ,_ ="
XLNet source
o0 E\ < c‘L::;l source ¥
GPT-2,&)) i o
2019 e i |m
G 5“"%‘ ¥ o)
: i GPT-1]
2018 @m ULMFiTRS Decoder-Tly e s Q&
~— — 7= & 0
— — g —
e 2 : . &

Figure 2.7: This timeline presents major technological milestones in NLP organized
into four eras: (1) Statistical Language Models (1990-2000) including N-grams,
(2) Neural Language Models (2000-2013) introducing Word2vec and RNN/LSTM
architectures, (3) Pre-trained Language Models (2013-2017) featuring the Atten-
tion Mechanism, Transformers, BERT, and GPT, and (4) Large Language Models
(2018-2023) encompassing GPT-2, GPT-3, ChatGPT, and GPT-4. The progres-
sion demonstrates the transition from static statistical representations to context-
dependent transformer models capable of complex reasoning and few-shot adapta-
tion [57].

The core computation is the scaled dot-product attention. Given input token
embeddings, three matrices are derived through parameterized linear projections:
queries (), keys K, and values V. The attention output is formulated as:

where dj, is the dimensionality of the key vectors and serves as a scaling factor to
stabilize gradients during training. The softmax normalizes the similarity scores
into a probability distribution, highlighting the most relevant tokens for each query.

32

2.3 — Large Language Models

Multi-head attention extends this formulation by computing several parallel
attention outputs, each with its own learned projections. These outputs are con-
catenated and linearly transformed to produce the final attended representation,
enabling the model to capture different semantic and syntactic aspects concurrently.

This architecture forms the basis of Transformers that power state-of-the-art
LLMs like GPT-4 of OpenAI and Cloude 4.5 of Anthropic [51, 58].

Important

[Comment] [se] passe [journée]

) e s oo cm

Unimportant

Figure 2.8: This diagram illustrates the attention mechanism’s core operation,
demonstrating how a model selectively focuses on relevant input elements when
processing a target token. The upper track shows French source tokens (Comment,
se, passe, ta, journée) with their importance weights visualized through a color
gradient bar (dark blue indicating high importance, light blue indicating low). The
lower track displays the corresponding English target tokens (How, was, your, day)
that the model attends to when generating the query. The connecting arrows repre-
sent, attention weights, showing which source tokens contribute most to predicting
each target token. This mechanism enables the model to capture long-range depen-
dencies and semantic correspondences between languages, forming the foundation
of sequence-to-sequence architectures and transformer models [59].

2.3.3 Applications of LLMs

LLMs have become increasingly prominent across research and industry, owing to
their ability to generate, analyze, and adapt human-like text for a wide variety
of purposes [60]. Their versatility extends from routine tasks, such as drafting
emails, translating text, or summarizing documents, to more advanced applications
involving programming assistance, data analysis, and content generation. This

33

Background

adaptability makes LLMs not only useful as personal assistants or customer service
agents but also as tools capable of managing and interpreting vast amounts of
information that would otherwise demand significant human effort.

In medicine, for instance, LLMs are beginning to reshape both healthcare deliv-
ery and research practices. By analyzing patient records alongside extensive med-
ical literature, they can provide clinicians with evidence-based recommendations,
support diagnostic reasoning, and suggest treatment strategies. Beyond clinical
practice, they facilitate patient engagement through conversational interfaces, offer
scalable tools for medical education such as training simulations and tailored learn-
ing resources, and contribute to public health initiatives by detecting outbreaks,
monitoring social responses, and disseminating accurate health information [60].

A similar transformative role is emerging in education. LLMs enable person-
alized learning by adapting materials to individual needs, while simultaneously
assisting teachers with tasks such as lesson planning, grading, and developing ac-
cessible content. They are particularly effective in language learning, where they
act as interactive conversation partners, capable of correcting grammar, guiding
vocabulary use, and enhancing fluency. By providing transcription services for the
hearing impaired or simplifying complex texts for learners with difficulties, they
also make education more inclusive.

In the sciences, LLMs help researchers navigate overwhelming volumes of lit-
erature by summarizing findings, highlighting patterns, and even generating new
hypotheses. Their ability to assist in drafting manuscripts and standardizing for-
matting further supports the research process, allowing teams across disciplines
to communicate more effectively. In mathematics, they complement this role by
breaking down complex problems, offering step-by-step explanations, and aiding
in the verification of proofs, thus bridging the gap between abstract theory and
applied contexts.

The legal field also benefits from LLMs, particularly in the processing and in-
terpretation of extensive documentation. They can analyze case law, explain legal
terminology, and support reasoning tasks, with domain-specific fine-tuning signif-
icantly enhancing their accuracy and practical utility. A similar pattern is seen
in finance, where models, such as FinGPT [61], demonstrate the value of tailoring
LLMs to industry-specific data. These systems support applications ranging from
robo-advising and algorithmic trading to more complex decision-making, highlight-
ing the importance of customization for high-stakes domains.

Finally, robotics represents another promising area of integration. Here, LLMs
improve human-robot interaction by enabling robots to understand instructions in
natural language and plan tasks accordingly. Their capacity to integrate infor-
mation from diverse sources also equips robots with the ability to adapt to new
environments, acquire new skills, and operate more collaboratively alongside hu-
mans [60].

34

2.3 — Large Language Models

Taken together, these applications illustrate how LLMs extend human capabil-
ities and introduce efficiencies across domains as diverse as healthcare, education,
law, science, and robotics. Yet, their rapid adoption also raises important challenges
concerning data quality, bias, and explainability. Addressing these issues will be
essential if LLMs are to realize their full potential as reliable and responsible tools
for advancing research, industry, and society.

2.3.4 Training Paradigms

LLMs are developed through a multi-stage training process that enables them to
acquire linguistic knowledge and adapt to different tasks. This process generally
includes three main phases: pretraining, fine-tuning, and instruction tuning.

In the first phase, known as pretraining, the model is exposed to very large col-
lections of unlabelled text data, as explained by [62]. During this stage, the model
learns through self-supervised objectives that do not require human annotation.
Two common objectives are causal language modeling [63], which trains the model
to predict the next token in a sequence as seen in GPT models, and masked lan-
guage modeling [63], which teaches the model to reconstruct hidden tokens within
a sentence as used in BERT. Through this large-scale learning process, the model
develops an extensive understanding of grammar, meaning, context, and factual
knowledge.

After pretraining, the model is adapted through fine-tuning. In this phase,
the model is trained on smaller, labeled datasets that focus on specific domains
or applications [64]. Fine-tuning allows the model to apply its general linguistic
and semantic knowledge to specialized tasks such as legal text analysis, biomedical
literature summarization, or program code generation. This step improves accuracy
and relevance within the target domain.

The third phase, instruction tuning, aims to make LLMs more responsive to
human instructions written in natural language [65]. Instead of using datasets de-
signed for a single task, instruction tuning relies on large collections of examples
where each task is paired with a clear written instruction, such as “Translate this
subsection into French” or “Summarize this article in three sentences.” These in-
structions are called prompts. A prompt is an input text provided to the model
that specifies the task or desired output. It serves as a guide that tells the model
what to do and how to respond in context.

By learning from many such examples, instruction-tuned models acquire the
ability to generalize to new tasks that they have never encountered before. This
ability, known as zero-shot generalization, allows users to interact with models
simply by providing well-formulated prompts. As a result, instruction tuning has
become a key step in developing LLMs that are more practical, interactive, and
adaptable to real-world applications.

35

Background

2.3.5 State-of-the-Art Large Language Models

The development of LLMs by leading organizations has profoundly influenced both
research and practical applications in artificial intelligence. Companies such as
OpenAl, Anthropic, Google, and Mistral have introduced models that differ in
scale, architecture, and focus, collectively shaping the state of the art. OpenAl’s
GPT series, for instance, has emphasized versatility and multimodal capabilities.
Anthropic’s Claude models prioritize safety and alignment, reflecting growing con-
cerns about ethical Al and reliable instruction-following. Google’s PaLLM series has
focused on scale and multilingual performance, demonstrating how massive mod-
els trained on extensive datasets can achieve competitive reasoning and language
understanding across diverse tasks. Open-source initiatives such as Mistral com-
plement these proprietary developments by providing accessible models with opti-
mized architectures, encouraging experimentation, transparency, and reproducibil-
ity in research. Within the last LLMs’ approaches we find MAKER: A framework
leveraging massively decomposed agentic processes (MDAPs) to achieve zero-error
execution in tasks requiring over one million steps [66].

Across these platforms, the benefits of modern LLMs are evident. They provide
high-quality natural language understanding, reasoning, and generation, and sup-
port a wide range of tasks, from summarization and translation to coding assistance
and domain-specific problem solving. Their availability, whether as API-accessible
proprietary systems or fully open-source models, facilitates rapid prototyping and
deployment in both academic and industrial contexts. At the same time, limitations
remain. Even state-of-the-art models can produce hallucinations, display biases in-
herited from training data, and underperform on tasks requiring nuanced domain
knowledge or low-resource language proficiency. Moreover, proprietary models of-
ten impose access and cost constraints, while open-source models shift the burden
of deployment, fine-tuning, and computational resources onto the user.

In sum, the current landscape reflects a dynamic interplay between capability,
accessibility, and responsibility. The evolution of LLMs illustrates both the techni-
cal progress achieved by leading companies and the ongoing challenges in reliability,
fairness, and ethical deployment. Understanding these trends is crucial for posi-
tioning research and applications within a rapidly developing and heterogeneous Al
ecosystem [67, 68, 69, 70].

2.3.6 Limitations of LLMs

Despite their impressive capabilities, Large Language Models have several inherent
limitations [71]. First, they can generate information that appears confident but
is factually incorrect, which poses challenges in reliability and trust. Second, they
are prone to biases, reflecting patterns present in their training data, which can
result in unfair, offensive, or otherwise undesirable outputs. Third, LLMs do not

36

2.4 — Agents Orchestration Frameworks

truly understand the content they produce; they rely on patterns in language rather
than reasoning or comprehension, limiting their ability to perform complex logical
or causal inference. Additionally, their responses can sometimes be inconsistent or
sensitive to small changes in input phrasing. Finally, LLMs require significant com-
putational resources for training and deployment, which can limit accessibility and
environmental sustainability. Recognizing these limitations is crucial when apply-
ing LLMs in real-world contexts, and it highlights the need for careful supervision,
evaluation, and ethical consideration.

2.4 Agents Orchestration Frameworks

An agent, in the context of artificial intelligence, is an autonomous computational
entity capable of perceiving its environment, making decisions, and executing ac-
tions to achieve specific goals, often by interacting with both digital and physical
resources. Modern agents are designed to operate within complex, dynamic envi-
ronments, leveraging a combination of internal reasoning, external tool usage, and
adaptive learning to fulfill user-defined objectives. The increasing complexity of
intelligent systems has created a strong need for frameworks capable of coordinat-
ing diverse computational tasks in a structured and reliable manner. Agents may
leverage various underlying models, including but not limited to LLMs, to perform
reasoning, generation, or prediction tasks. While LLMs can be powerful compo-
nents, achieving accurate and context-aware results often requires their integration
with external tools such as search engines, vector databases, and code execution
environments. Managing this integration demands workflow orchestration frame-
works, which provide mechanisms to define, execute, and monitor sequences of
operations while maintaining state, handling errors, and enabling iterative refine-
ment [60]. In the context of Al research and applications, orchestration frameworks
play a crucial role in bridging the gap between isolated model capabilities and end-
to-end solutions. They enable the design of pipelines that combine information
retrieval, summarization, reasoning, and code generation into coherent processes.
Moreover, they facilitate modularity, scalability, and reproducibility, essential qual-
ities for both experimental research and practical deployment [1]. This subsection
introduces the main frameworks relevant to this work, with particular focus on
LangChain and LangGraph, which leverage graph-based state management to or-
chestrate interactions between intelligent models and external resources [2].

2.4.1 LangChain

LangChain [72] is a widely adopted open-source framework designed to facilitate the
development of applications powered by LLMs. Its name reflects its core philoso-
phy: “Language”, referring to the central role of LLMs in processing and generating

37

Background

natural language, and “Chain”, emphasizing the composition of multiple compo-
nents into structured sequences or “chains” of operations. The framework’s primary
contribution lies in providing modular abstractions that simplify the integration of
LLMs with external resources such as APIs, databases, knowledge bases, and user-
defined tools. At its core, LangChain structures complex workflows into reusable
components, such as prompts, chains, memory, and agents, that can be composed
to build sophisticated pipelines. These abstractions enable developers to move
beyond isolated model queries, allowing LLMs to interact with structured data,
retrieve external information, and make tool-augmented decisions. LangChain’s
architecture also emphasizes extensibility and interoperability, making it possible
to integrate different model backends or adapt workflows to specialized domains
with minimal effort. Its ecosystem has rapidly grown to include connectors for
search engines, vector databases, and cloud services, positioning LangChain as a
foundational framework for building scalable and production-ready LLM applica-
tions.

2.4.2 LangGraph

LangGraph [73] is a framework built on top of LangChain that introduces a graph-
based approach to workflow orchestration for LLMs. While LangChain primarily
relies on linear “chains” of components to structure interactions, LangGraph ex-
tends this paradigm by allowing developers to define stateful graphs, where nodes
represent computational steps and edges determine dynamic transitions between
them. This design makes it possible to construct more flexible workflows that can
branch, loop, or adapt based on intermediate results, capabilities that are difficult
to achieve with LangChain’s linear architecture. Furthermore, LangGraph em-
phasizes persistent state management, enabling workflows to retain context across
multiple iterations and user interactions, which is particularly important in tasks
such as research assistance or code refinement. By combining graph flexibility with
LangChain’s modular components, LangGraph addresses the limitations of rigid
sequential pipelines and provides a more expressive orchestration framework. Im-
portantly, it is also a very active and rapidly evolving framework as of 2025, with
frequent updates, community contributions, and growing adoption in both research
and industry. This makes LangGraph a state-of-the-art choice for building com-
plex, adaptive applications where decisions must be routed dynamically and context
must be preserved over time.

2.4.3 State Management and Checkpointing

Modern conversational Al systems and multi-agent frameworks require sophisti-
cated mechanisms to maintain context across extended interactions and recover
from failures. State management preserves conversational history, intermediate

38

2.5 — Information Retrieval in Al Systems

computational results, and workflow progression in systems processing sequential,
dependent operations [74].

Unlike stateless architectures where each request is processed independently,
stateful systems maintain persistent memory enabling coherent multi-turn dialogues
and complex task decomposition. Traditional LLM serving operates statelessly,
necessitating reprocessing of complete conversation history with each request, re-
sulting in quadratic computational complexity as conversation length increases.
Stateful architectures address this through caching mechanisms achieving 1.5-2x
throughput increases and 60-75% latency reductions by reusing cached intermedi-
ate representations [74].

Graph-based orchestration frameworks such as LangGraph implement check-
pointing at each execution step, capturing conversation state, variables, and work-
flow progress as snapshots organized into threads representing independent conver-
sation instances. This enables human-in-the-loop intervention, time-travel debug-
ging, and automatic recovery from failures. State transitions occur through directed
graphs where nodes represent discrete operations and edges define valid transitions
based on conditional logic, providing explicit control while maintaining flexibility
for complex branching paths. Each node encapsulates specific functionality, such
as querying tools or invoking language models, with defined transition conditions
that determine subsequent states [75].

Message passing between nodes maintains ordered histories that serve as the
primary mechanism for context propagation. Advanced implementations employ
message reduction strategies, including context summarization and hierarchical
compression, to manage conversation history growth while maintaining sufficient
context for coherent behavior within finite context windows and computational
constraints.

2.5 Information Retrieval in AI Systems

The effectiveness of intelligent systems often depends not only on their ability to
generate language but also on their capacity to access, process, and integrate exter-
nal information. LLMs, despite being trained on massive datasets, are inherently
limited by the static nature of their training corpora and cannot continuously up-
date their knowledge or guarantee factual accuracy. This limitation makes Informa-
tion Retrieval (IR) a critical component in modern Al systems. By incorporating
retrieval mechanisms, models can dynamically access up-to-date, domain-specific,
or contextually relevant information, thereby extending their utility beyond the
scope of memorized knowledge [76].

In the context of LLM-based applications, information retrieval serves multi-
ple roles: enhancing factual reliability, grounding generative outputs in external
sources, and improving performance on knowledge-intensive tasks. This section

39

Background

reviews the main approaches and technologies for information retrieval in Al sys-
tems, progressing from foundational concepts to advanced integration strategies.
The following section begins by examining traditional retrieval approaches, then
explore modern vector-based methods, discuss specific retrieval tools, and conclude
with retrieval-augmented generation paradigms that synthesize these components
into cohesive systems.

2.5.1 Traditional Information Retrieval Approaches

Large language models are constrained by static training data, limiting their abil-
ity to access real-time information and verify outputs. Web research and academic
search tools address this limitation by integrating external information sources into
Al-driven applications. Web research tools, such as Google Search [77], Duck-
DuckGo [78], and Baidu [79], provide access to diverse internet content and can
be programmatically accessed through APIs or specialized wrappers, enabling Al
systems to retrieve up-to-date content from news, technical documentation, and
community forums. Retrieved content is processed through cleaning, parsing, and
filtering before integration into language model pipelines, ensuring relevance and
usability while grounding responses, reducing hallucinations, and adapting outputs
to dynamic user needs.

Academic search tools provide specialized access to peer-reviewed publications
and scholarly data, prioritizing domain-specific sources essential for reliable and
verifiable knowledge. Platforms such as Google Scholar [80], arXiv [81], and Seman-
tic Scholar offer structured access to metadata, abstracts, citation networks, and
full-text articles through programmatic APIs and libraries such as the scholarly
Python package [80] and the arXiv Python wrapper [81]. By incorporating author-
itative academic sources, Al systems improve factual grounding and credibility in
contexts demanding precision and reliability, including literature review, scientific
summarization, and evidence-based decision-making.

2.5.2 Semantic Search and Vector-Based Retrieval

Semantic search leverages embeddings, dense numerical vectors in high-dimensional
space, to represent text such that semantic similarity is captured by geometric
proximity, enabling retrieval of semantically related documents even without exact
keyword matches [82]. Embedding models, such as Sentence Transformers, encode
textual content into fixed-length vector representations that preserve semantic rela-
tionships, capturing subtle semantic distinctions, handling synonymy and polysemy;,
and generalizing across domains. The quality of embeddings directly impacts re-
trieval performance; modern models are trained on large corpora using contrastive
learning and representation learning techniques, with specialized variants available

40

2.5 — Information Retrieval in Al Systems

for different content types including general text, code (e.g., CodeBERT), and mul-
tilingual content.

CodeBERT exemplifies domain-specific embeddings for code: it is a bimodal
pre-trained model trained jointly on natural language and programming language
pairs, using masked language modeling and replaced token detection objectives
to capture code semantics such as variable scoping, function signatures, and API
usage patterns [83]. By learning shared representations across both modalities,
CodeBERT enables semantic code search where natural language queries can re-
trieve relevant code implementations, outperforming general-purpose embeddings
on code-related tasks.

Vector databases, or vectorstores, such as Chroma [84], FAISS (Facebook AI
Similarity Search) [85], Pinecone [86], and Weaviate [87] provide efficient storage
and retrieval of high-dimensional embeddings at scale through specialized indexing
structures optimized for similarity search operations [88]. These systems support
various similarity metrics including cosine similarity, Euclidean distance, and dot
product, and address key design considerations such as indexing efficiency, query
latency, and scalability to millions or billions of vectors. Advanced implementations
provide hybrid search capabilities combining vector similarity with keyword match-
ing, dynamic index updates, and distributed architectures for horizontal scaling.
When integrated with large language models in RAG pipelines, vector databases
enable fetching of relevant external documents to provide as context for model re-
sponses, improving factual accuracy, reducing hallucinations, and allowing domain-
specific adaptation without retraining [88].

2.5.3 Retrieval-Augmented Generation

RAG enhances Large Language Models by incorporating external knowledge sources
through an information retrieval mechanism, addressing fundamental limitations
including hallucination, outdated knowledge, and lack of transparent provenance
[89]. RAG merges the parametric knowledge encoded in LLM parameters with
dynamic, non-parametric memory represented by external sources, enabling con-
tinuous knowledge updates and domain-specific information integration without
retraining. The foundational architecture, introduced by Lewis et al., combines a
pre-trained sequence-to-sequence transformer as parametric memory with a dense
vector index as non-parametric memory, accessed through a neural retriever, en-
abling models to leverage both learned representations and explicit external knowl-
edge [76].

The RAG pipeline consists of three phases: indexing, retrieval, and generation

[39).

e During indexing, documents are preprocessed, segmented into manageable
chunks using fixed-size or semantic-aware strategies, and encoded into dense

41

Background

vector representations using embedding models before storage in vector databases
with efficient indexing structures.

o In the retrieval phase, user queries are encoded identically to index chunks,
and vector similarity search identifies the top-k most relevant document seg-
ments using metrics such as cosine similarity or Euclidean distance.

o During generation, retrieved documents are integrated with the user query
through prompt engineering; the combined context is fed to the language
model, which synthesizes a response grounded in both its parametric knowl-
edge and retrieved external information [89].

Advanced implementations incorporate re-ranking mechanisms [rerank2024], con-
text selection algorithms [90], and iterative refinement loops [91] to improve accu-
racy.

Context injection strategies determine how retrieved passages are integrated
into LLM prompts, commonly through direct concatenation or templated struc-
tures that clearly delineate context from queries. Effectiveness depends on pas-
sage ordering, total context volume relative to model context windows, and clarity
of usage instructions. RAG formulations differ in their conditioning approach:
sequence-level RAG conditions on identical documents throughout output gener-
ation, while token-level RAG allows different passages to inform different tokens,
enabling nuanced knowledge synthesis from multiple sources [76].

2.5.4 Limitations and Challenges in Information Retrieval

While information retrieval has become integral to modern Al systems, current
methodologies face several inherent limitations. Traditional IR approaches strug-
gle with biases arising from data imbalance, relevance judgment subjectivity, and
feedback loops that reinforce popular content [92]. With the integration of LLMs,
these problems intensify: IR systems may over-represent machine-generated con-
tent (source bias), propagate factual inaccuracies (factuality bias), and prioritize
popular items due to skewed training corpora (popularity bias).

Moreover, LLM-based retrievers often misinterpret user intent or contextual
dependencies, leading to instruction-hallucination and context-hallucination biases
[93]. Additional challenges include: (1) the cold-start problem for new or niche
domains with limited indexed content; (2) computational overhead of embedding
generation and similarity search at scale; (3) difficulties in maintaining consistency
across multi-hop retrieval scenarios; and (4) potential security vulnerabilities such
as prompt injection through retrieved content.

Addressing these limitations requires careful design of retrieval strategies, di-
verse training data, robust evaluation protocols, and hybrid approaches that com-
bine multiple retrieval methods. Future directions include developing bias-aware

42

2.6 — Validation of Knowledge Produced by LLMs

retrieval algorithms, implementing adversarial robustness measures, and design-
ing evaluation frameworks that assess fairness, accuracy, and robustness in LLM-
augmented information retrieval systems.

2.6 Validation of Knowledge Produced by LLMs

The generation of factual and accurate knowledge by LLMs represents a funda-
mental challenge in their deployment across high-stakes domains such as health-
care, legal analysis, and scientific research. While LLMs demonstrate remarkable
linguistic fluency and reasoning capabilities, they remain vulnerable to producing
factual inaccuracies, hallucinations, and knowledge inconsistencies, even when ar-
riving at seemingly correct final outputs [94]. The validation of LLM-generated
knowledge thus requires comprehensive frameworks that assess not only the cor-
rectness of final answers but also the factual integrity of intermediate reasoning
steps and the grounding of outputs in verifiable external sources.

Contemporary approaches to knowledge validation in LLMs encompass multiple
strategies that address different aspects of the factuality problem. RAG systems
enhance LLM outputs by integrating external knowledge sources, retrieving rel-
evant documents from trusted databases to ground model responses in verifiable
information [95]. This grounding process mitigates hallucinations by anchoring pre-
dictions to external evidence rather than relying solely on the model’s potentially
outdated or incomplete parametric knowledge. However, RAG systems introduce
their own validation challenges, including the need to verify retrieval quality, assess
the helpfulness of retrieved documents, and detect contradictions between external
knowledge and the model’s internal beliefs [95].

Beyond retrieval-based methods, specialized validation frameworks have emerged
to systematically evaluate factual accuracy throughout the reasoning process. The
RELIANCE framework (Reasoning Evaluation with Logical Integrity and Accuracy
for Confidence Enhancement) [96] addresses the critical vulnerability of factual in-
accuracies within intermediate reasoning steps by integrating three core compo-
nents: a specialized fact-checking classifier trained on counterfactually augmented
data, a reinforcement learning mechanism using Group Relative Policy Optimiza-
tion (GRPO) with multi-dimensional rewards, and a mechanistic interpretability
method that analyzes neural activations during reasoning [94]. Extensive evalua-
tion reveals that recent models like Claude-3.7 and GPT-ol demonstrate factual
reasoning accuracy of only 81.93% and 82.57% respectively, highlighting the per-
sistent challenges in ensuring factual robustness across reasoning chains [94].

Effective knowledge validation must address multiple dimensions of factuality,
including internal knowledge checking (assessing whether an LLM possesses rele-
vant knowledge for a query), helpfulness checking (determining whether retrieved
external documents assist or distract from accurate responses), and contradiction

43

Background

checking (identifying conflicts between external context and internal model beliefs)
[95]. Representation-based methods, which leverage the LLM’s internal represen-
tations rather than relying solely on prompting or probability-based approaches,
have demonstrated superior performance in these validation tasks, achieving accu-
racy improvements of up to 85% in informed helpfulness checking [95].

2.6.1 The DeepEval Framework

DeepEval provides a comprehensive, open-source evaluation framework specifically
designed for systematic testing and validation of LLM outputs, conceptualized as
"Pytest for LLMs" [97]. The framework addresses the critical need for standardized,
rigorous evaluation methodologies by offering research-backed metrics, synthetic
dataset generation capabilities, and seamless integration with continuous integra-
tion and deployment (CI/CD) pipelines [97].

The core architecture of DeepEval encompasses multiple evaluation dimensions
essential for validating LLM knowledge production. The framework implements
over 14 research-backed metrics covering diverse aspects of LLM performance, in-
cluding G-Eval for custom criteria evaluation with human-like accuracy, halluci-
nation detection, answer relevancy assessment, and specialized metrics for RAG
pipelines (faithfulness, contextual recall, contextual precision) and agentic systems
(tool correctness, task completion) [97]. These metrics utilize LLM-based evalua-
tion approaches combined with statistical methods and natural language processing
models that execute locally, providing both flexibility and privacy in the evaluation
process [97].

DeepEval’s G-Eval metric represents a particularly powerful validation tool,
employing chain-of-thought reasoning to evaluate LLM outputs based on custom
criteria specified by users. This metric allows practitioners to define evaluation
steps that check for factual contradictions, assess completeness, and verify align-
ment with expected outputs while accommodating nuances such as vague language
or opinion-based statements [97]. The framework supports both end-to-end evalu-
ation, treating the LLM application as a black box, and component-level evalua-
tion through non-intrusive tracing with the @observe decorator, enabling granular
assessment of individual components such as retrieval modules, tool calls, and rea-
soning agents [97].

The framework facilitates comprehensive validation workflows by enabling dataset-
level evaluation, where collections of test cases can be evaluated in parallel, and by
providing integration with the Confident AT platform [98] for full evaluation lifecy-
cle management, including dataset curation, benchmark comparison across model
iterations, metric fine-tuning, and real-time monitoring of production deployments
[97]. This integrated ecosystem supports iterative improvement cycles essential for
maintaining factual accuracy and reliability in deployed LLM systems, addressing
the critical need for continuous validation as models evolve and encounter diverse

44

2.7 — Code Generation

real-world inputs.

2.7 Code Generation

Code generation has long been a fundamental topic in computer science and soft-
ware engineering, concerned with automating the process of producing code from
specifications or descriptions of intent. Traditional approaches, including template-
based methods, domain-specific languages, and rule-based systems, provided lim-
ited flexibility and adaptability to diverse programming tasks. With the rapid
development of large language models in recent years, a new paradigm of neural
code generation has emerged, leveraging the semantic understanding and linguis-
tic capabilities of LLMs to automatically produce functional code from natural
language descriptions. These models demonstrate strong code comprehension and
writing abilities across multiple programming languages and paradigms, enabling
application to a wide variety of software engineering tasks and significantly enhanc-
ing developer productivity [99].

2.7.1 LLMs for Code Generation

Large language models have rapidly advanced code generation through a multi-
stage process. Prior to training, data preprocessing ensures that datasets from
open-source repositories are clean, standardized, and suitable for model learning.
During training, LLMs construct complex internal representations of syntax, se-
mantics, and interrelations among code elements. Post-training, LLMs generate
code by analyzing prompts, retrieving relevant patterns, assembling code fragments,
and producing final outputs [100]. Notable milestones including GitHub Copilot
(2021) and Replit Ghostwriter (2022) demonstrated the increasing ability of LLMs
to complete, explain, transform, and debug code.

As of 2025, leading models including OpenAl’s Codex, Anthropic’s Claude
Sonnet 4.5, Google’s Gemini 2.5 Pro, and Alibaba’s Qwen3-Coder have demon-
strated substantial improvements in reasoning, long-context understanding, and
autonomous problem-solving capabilities [101, 102, 103, 104]. These models excel
in generating, debugging, and refactoring complex multi-file codebases with mini-
mal human guidance.

Despite these advances, significant limitations persist. LLMs require substantial
computational resources, with large models demanding millions of GPU hours for
training [100]. They remain vulnerable to syntactic and semantic errors that can
produce incorrect or non-functional code, and bias in generated code is a docu-
mented concern, with studies reporting gender-biased outputs in a notable propor-
tion of cases. Security risks also arise from unsanitized training data, potentially
introducing vulnerabilities such as prompt injection or memory safety issues. These

45

Background

challenges underscore the need for careful evaluation and mitigation strategies to
ensure that LLM-based code generation is reliable, fair, and secure.

2.8 Code Validation

Despite extensive research on code generation applications, evaluation of LLM-
generated code has received comparatively less attention. A significant gap exists
between the proliferation of code generation applications and the development of
robust evaluation methodologies that rigorously assess code quality, correctness,
and fitness for production deployment. Bridging this gap requires systematic frame-
works for evaluating generated code along multiple dimensions, including functional
correctness, efficiency, maintainability, and security.

2.8.1 Evaluation of Code Generated by LLMs

The quality of software source code has been a central concern in software engi-
neering since the 1960s, with numerous metrics, methods, and models proposed for
evaluating code at the source level. These evaluation approaches form the founda-
tion of modern software quality assurance and improvement practices.

With the rise of LLMs capable of generating code, concerns about the reliabil-
ity of such code have emerged. Introducing unverified LLM-generated code into
software systems can result in critical failures or security breaches. Consequently,
recent research has focused on assessing LLM-generated code using established
software quality criteria [105].

Software quality comprises multiple characteristics, such as functional suitabil-
ity, performance efficiency, and compatibility, along with various sub-characteristics
according to ISO/IEC 25010 [106]. Studies evaluating LLM-generated code are of-
ten categorized based on these characteristics, particularly into functional correct-
ness, security, and other aspects [106].

Functional correctness is typically assessed using code evaluation metrics (CEMs).
Match-based metrics, adapted from machine translation, such as BLEU and Code-
BLEU [107], measure similarity between generated and reference code but may
fail to capture functional equivalence. Execution-based metrics evaluate code by
running it on test sets but can be computationally expensive.

LLMs trained on extensive code repositories have demonstrated impressive ca-
pabilities in generating functional source code. However, the security of such code
remains a significant concern. Recent empirical studies show that LLM-generated
code often incorporates common security vulnerabilities, including issues like cross-
site scripting and injection flaws, at rates comparable to or sometimes exceeding
those in human-written code [108]. Additionally, code quality aspects such as un-
derstandability, maintainability, and readability are crucial for long-term software

46

2.8 — Code Validation

health. Metrics like cyclomatic complexity and cognitive complexity help quantify
the ease with which developers comprehend and modify the code [109]. Research
further reveals that code smells, patterns indicative of poor coding practices, can be
propagated from training data to LLM outputs, raising concerns about the main-
tainability and clarity of Al-generated code [110]. These findings underscore the
need for robust evaluation frameworks and human oversight in the deployment of
LLM-generated software.

2.8.2 Sandbox Execution and Safety

Given the inherent risks of executing automatically generated code, sandboxing has
become a crucial safety measure when deploying LLMs for code generation. Sand-
boxes provide an isolated environment where untrusted code can run without access
to critical system resources, preventing malicious or unintended operations such as
arbitrary file access, privilege escalation, or network misuse [111]. Recent stud-
ies highlight that LLM-generated code may inadvertently include vulnerabilities
such as memory safety issues or SQL injection risks, which can pose serious secu-
rity threats if executed directly [111]. Sandboxed execution frameworks mitigate
these threats by restricting resource usage, monitoring execution, and terminating
unsafe processes, thereby enabling researchers and practitioners to test LLM out-
puts safely [112]. Beyond local sandboxing, several cloud-based solutions, such as
e2b, provide secure ephemeral execution environments that allow developers to run
LLM-generated code in managed, isolated containers. These services ensure both
scalability and security by offloading execution to dedicated infrastructure while
enforcing strict access controls and resource limits [113]. Despite these safeguards,
challenges remain in ensuring scalability, performance overhead, and the detection
of more subtle logic-level vulnerabilities that sandboxes alone may not capture.
Consequently, combining sandboxing with static analysis, formal verification, and
vulnerability testing frameworks has been proposed as a more holistic strategy for
ensuring safe and reliable deployment of LLM-generated code.

2.8.3 Code Static Analysis

Static analysis is a technique used to examine source code or binaries without
executing the program, with the aim of identifying potential errors, vulnerabilities,
and opportunities for optimization early in the development process. By analyzing
the structure of the code, the flow of data, and the control paths, static analysis
tools can detect problems such as null pointer dereferences, memory leaks, security
flaws, and violations of coding standards before they cause runtime failures. In
contrast to dynamic analysis, which observes a program during execution, static
analysis provides a compile-time safety layer that helps developers improve the
reliability and maintainability of their code.

47

Background

Static analysis has long been a central component of software quality assur-
ance, since it plays a proactive role in detecting bugs before software is deployed
[114]. However, as modern software systems grow in complexity, as seen in large-
scale projects such as snnTorch, static analysis tools face increasing challenges in
scalability.

At the core of this issue lies the well-known trade-off between precision and scala-
bility [115]. Highly precise analyses, such as path-sensitive methods, can accurately
distinguish real bugs from false alarms, but they often struggle to scale efficiently to
large and intricate codebases. In contrast, more scalable analyses are designed for
speed and general applicability, yet they tend to rely on over-approximation, which
increases the number of false positives and reduces their practical effectiveness.

Modules that perform static analysis parse and analyze syntax, types, and con-
trol flows, allowing developers to identify potential issues early in the development
cycle.

Examples from the Python ecosystem include Pyright [116], Mypy [117], and
Pylint [118], which focus on type checking, code style enforcement, detection of
unused variables, and identification of possible runtime errors [xu2023gradual].
When integrated into the development workflow, such tools offer real-time feed-
back on code quality and potential defects, which significantly improves the overall
reliability and maintainability of software projects.

In essence, static analysis modules function as an automated code review sys-
tem, since they enforce coding standards, promote consistent design practices, and
identify subtle issues that may be missed during manual review or testing. Their
proactive nature, combined with their ability to scale across large and collaborative
projects, makes them an essential part of modern software engineering pipelines,
particularly in environments where reliability and safety are critical.

2.9 Human-in-the-Loop

The concept of Human In The Loop (HITL) encapsulates a paradigm where human
expertise, judgment, and oversight are integrated into machine learning workflows
to enhance model performance, interpretability, and ethical alignment. In the con-
text of LLMs, HITL systems leverage human feedback at various stages: training,
evaluation, and deployment, to iteratively refine outputs and ensure they reflect
human values, contextual appropriateness, and factual accuracy [119]. Unlike tra-
ditional fully automated training pipelines, HITL approaches recognize that human
cognition and ethical reasoning cannot be entirely captured by statistical optimiza-
tion. Thus, feedback loops serve as a bridge between algorithmic intelligence and
human judgment, allowing models to evolve dynamically in response to real-world
user interactions [120].

48

2.9 — Human-in-the-Loop

2.9.1 Iterative Refinement

Iterative refinement in HITL workflows with LLMs agent orchestration refers to a
repeated generate—evaluate—update loop in which one or more LLM agents produce
candidate outputs, a human provides feedback, and the system updates subsequent
outputs or orchestration policies accordingly. This process enables continuous im-
provement through successive correction and alignment cycles, leveraging human
expertise to guide LLM behavior toward desired outcomes [121].

In the context of agentic systems, iterative refinement can be implemented at
different levels:

e Generation Level: humans correct or critique model outputs. At this level,
feedback is focused on the quality, correctness, and coherence of the output
generated by the model in response to a specific task.

e Policy Level: feedback informs task decomposition or tool selection. At this
level, humans guide the strategic decisions of the system on how to break down
complex problems into subtasks and which tool or agent is most appropriate
for addressing each part.

e Orchestration Level: human input adjusts coordination among multiple
agents. At this level, feedback concerns how agents interact, communicate,
and coordinate their actions to solve complex problems that require collabo-
ration among multiple intelligent entities.

Recent work such as Self-Refine demonstrates the effectiveness of self-feedback and
iterative improvement without additional supervised training, allowing models to
iteratively critique and improve their own outputs [122]. Similarly, systems like
IMPROVE show how iterative, component-wise pipeline refinement using LLM
agents can yield stable performance improvements in complex multi-agent pipelines
[123].

[terative refinement may involve several workflow patterns:

o Human-as-gate: humans approve or reject candidate outputs. At this level,
the human acts as a quality checkpoint, making binary decisions on whether
the generated output meets acceptable criteria or requires regeneration.

e Human-as-critic: humans provide structured feedback. Here, humans go
beyond simple approval /rejection to offer specific, actionable critique that
guides the model toward improved outputs, with detailed comments on what
needs improvement and why.

o Human-as-instructor: humans directly reformulate the task or constraints.
At this level, humans take a more active role in shaping the problem def-
inition itself, adjusting goals, requirements, or constraints based on deeper
understanding of what the system should accomplish.

49

Background

o Automated self-refinement with human validation: LLM agents refine
their outputs autonomously before human review. Here, the system performs
iterative improvements on its own outputs using self-critique or reflection
mechanisms, with humans validating the final refined result rather than in-
tervening at each step.

The combination of automated self-correction and human oversight has been shown

to improve factuality, alignment, and interpretability in complex agent systems [124,
125].

2.9.2 Benefits and Challenges

The integration of iterative refinement within HITL orchestration presents a num-
ber of tangible benefits across dimensions of quality, safety, interpretability, and
efficiency. One of the primary advantages lies in its capacity to improve alignment
and factual accuracy. By incorporating human evaluation and corrective feedback
into iterative loops, systems can mitigate common LLM limitations such as hal-
lucination and task misalignment [121]. The presence of human oversight ensures
that model outputs are not only syntactically correct but also contextually appro-
priate and aligned with human values or domain-specific standards. This quality
assurance mechanism is particularly valuable in high-stakes environments, such as
healthcare, finance, or law, where factual precision and interpretability are critical
[125].

A further benefit of iterative refinement is its contribution to the overall safety
and reliability of agentic systems. When human experts are embedded within the
loop, they can intercept unsafe, biased, or inappropriate outputs before they prop-
agate through the system or reach end-users. This “safety valve” effect transforms
humans from passive evaluators into active participants in system governance, cre-
ating a dynamic safeguard that complements automated safety mechanisms. More-
over, iterative human feedback supports transparency and traceability, as each cycle
of revision can be logged and attributed to either human or model actions, which
is essential for auditing and compliance purposes. From an operational standpoint,
hybrid refinement also enables efficient division of labor between human and artifi-
cial agents: routine, low-risk refinements can be automated through self-refinement
strategies, while human attention is reserved for complex or ambiguous cases [122,
123]. In this way, the orchestration of human and LLM agents facilitates both
scalability and adaptability, achieving better outcomes than purely manual or fully
autonomous systems.

Despite these advantages, HITL orchestration also introduces significant chal-
lenges that must be addressed to ensure practical viability and ethical soundness.
The most immediate obstacle concerns the cost and latency of human involve-
ment. Continuous human review is resource-intensive, potentially reducing sys-
tem throughput and limiting scalability in real-world applications [121]. Designing

50

2.10 — Open-Source Frameworks for LLMs Deployment

adaptive orchestration strategies that determine when and where human input is
most valuable thus becomes a central research question. Another challenge arises
from the scalability and coordination of multi-agent systems: as the number of
agents increases, orchestrating feedback, tracking dependencies, and maintaining
coherence across iterative refinements become increasingly complex [124]. Ensur-
ing consistent integration of human feedback across multiple agents or pipelines is
technically demanding and often requires sophisticated scheduling and communi-
cation protocols.

Furthermore, the quality of human feedback itself is not guaranteed. Human
annotators or reviewers may introduce bias, inconsistency, or noise into the itera-
tive loop, which can destabilize the learning process if not properly managed [121].
To mitigate these effects, research has explored structured feedback formats, inter-
annotator agreement measures, and aggregation techniques. Another critical issue
concerns evaluation: the involvement of humans blurs the boundary between model
autonomy and external assistance, complicating efforts to measure true model capa-
bility or the causal effect of human intervention. Metrics that account for human
effort, latency, and risk are still under development and remain an open area of
study. Finally, privacy and governance concerns pose additional constraints. When
human reviewers handle sensitive data, as in medical or financial domains, orga-
nizations must implement strict data protection, access control, and minimization
policies [125]. These requirements can limit the applicability of HITL workflows in
regulated contexts.

2.10 Open-Source Frameworks for LLMs Deploy-
ment

As the use of LLMs expands, open-source frameworks play a critical role in en-
abling transparency, flexibility of deployment, data privacy, and local inference.
Deploying and running models locally (or under full infrastructure control) helps
mitigate reliance on proprietary APIs and external services. In this section, Ollama
is described, the one used in the thesis, as a practical framework for local model
deployment, followed by a brief survey of open-source model ecosystems and their
relevance to research and deployment.

Ollama Ollama is an open-source framework designed to simplify the deployment
and orchestration of LLMs in local or private environments. Rather than function-
ing as a cloud-based service, Ollama provides users with the ability to run models
entirely on their own hardware, ensuring control over data privacy and system
integration. According to its official documentation, Ollama enables model man-
agement, inference, and customization through an accessible Application Program-
ming Interface (API) and a lightweight runtime environment [126]. The framework

51

Background

abstracts away low-level dependencies, such as model loading, quantization, and
hardware optimization, so that users can focus on experimentation and workflow
integration rather than infrastructure details.

Ollama supports a wide range of open-source models, including families de-
rived from LLaMA, Mistral, and Gemma, and provides unified access to these
models through both command-line and API interfaces [127]. This allows devel-
opers and researchers to integrate language, vision, and multimodal reasoning ca-
pabilities into local applications without relying on external APIs. Recent stud-
ies have used Ollama as a backend in privacy-preserving or on-premise systems
[liu2024optimizing, matotek2025evaluating, 128|. Such integrations highlight
Ollama’s role as a bridge between open-source model research and practical, lo-
cally deployable applications [gruetzmacher2024porting, 129], offering an in-
creasingly viable alternative to proprietary cloud platforms [chen2025privacy,
richardson2025patient, matotek2025singleboard].

52

Chapter 3

Materials and methods

The neuromorphic computing domain, despite its significant potential for address-
ing energy efficiency and real-time processing challenges, faces a critical accessibility
crisis rooted in fragmented development infrastructure and inadequate documen-
tation. As established in the Introduction and Background sections, the existing
neuromorphic ecosystem is characterized by several fundamental limitations: most
implementations remain tightly coupled research prototypes lacking reusability,
standardized development methodologies are absent, and comprehensive documen-
tation is fragmented across disparate sources and communities. Developers seeking
to implement neuromorphic systems encounter steep learning curves, dependency
on expert consultation, and limited access to structured, production-grade develop-
ment tools comparable to those available in conventional deep learning frameworks
like TensorFlow or PyTorch.

This thesis addresses this gap by proposing a comprehensive, multi-agent ar-
chitecture capable of orchestrating diverse specialized systems to support develop-
ers throughout the neuromorphic application lifecycle. The central objective is to
extend Al-driven development assistance to the neuromorphic domain by integrat-
ing Large Language Models with structured reasoning, domain-specific knowledge
bases, information retrieval mechanisms, and automated validation frameworks.
The proposed approach treats development assistance not as an isolated code gen-
eration function, but as a cohesive system that synthesizes research knowledge,
generates production-grade code, and validates implementations across multiple
quality dimensions.

To achieve this objective, this chapter describes the technical infrastructure,
methodologies, and component implementations that constitute the complete sys-
tem. The Materials and Methods chapter is organized to progressively build un-
derstanding from foundational components to integrated system architecture:

Section 3.1 — snnTorch Framework introduces the primary neuromorphic sim-
ulation framework employed throughout the thesis. This section describes

53

Materials and methods

core framework components including neuron models, surrogate gradient mech-
anisms, and temporal dynamics, then presents practical architectural patterns

for implementing spiking neural networks. Understanding snnTorch is es-

sential, as the code generation branch leverages snnTorch-specific knowledge

bases to generate domain-appropriate implementations.

Section 3.2 — Neural Network Intelligence (NNI) describes the automated
hyperparameter optimization toolkit integrated into the system. This section
covers NNI’s search space specification, trial management, and built-in al-
gorithms. The code generation branch includes specialized NNI knowledge
infrastructure to generate optimized training and hyperparameter search con-
figurations for neuromorphic models.

Section 3.3 — In-Context Learning establishes the prompt engineering and
few-shot adaptation strategies employed to enhance model reasoning. This
section explains how domain knowledge is embedded into LLM contexts through
structured examples, specialized vocabularies, and task-specific reasoning tem-
plates.

Section 3.4 — Implementation of LangGraph constitutes the architectural core
of the thesis, detailing the graph-based multi-agent orchestration framework.
This extensive section is subdivided into four components:

e 3.4.1 Web Search Branch: Describes the iterative query generation,
web search execution, source parsing, summarization, reflection, and
evaluation pipeline for synthesizing current technical documentation and
contextual information.

e 3.4.2 Academic Research Branch: Details the academic query for-
mulation, literature retrieval, source aggregation, and scholarly synthesis
mechanisms for integrating peer-reviewed research knowledge into sys-
tem responses.

e 3.4.3 Code Generation Branch: Presents the core code synthesis
orchestrator, specialized agents for snnTorch and NNI domains, vector
store configuration, ranked retrieval mechanisms, and iterative refine-
ment through execution feedback and human-in-the-loop validation.

e 3.4.4 Graph Routing Logic: Explains the conditional routing mech-
anism that determines branch selection, state transitions, and exit con-
ditions based on query classification and intermediate results.

Section 3.5 — Used Tools describes the external frameworks and utilities inte-
grated into the system:

o4

3.1 — snnTorch

e 3.5.1 Agno Framework: Documents the lightweight agentic frame-
work providing tool orchestration, agent abstraction, and seamless in-
tegration with LangGraph workflows. Explains the tool system, RAG
toolkits (TavilyTools, ArxivTools, DuckDuckGoTools, GoogleSearchTools),
and agent execution mechanisms.

e 3.5.2 DeepEval: Presents the LLM-as-a-Judge evaluation framework
employed for systematic validation of generated knowledge. Details the
four core RAG metrics (Faithfulness, Answer Relevancy, Contextual
Relevancy, Hallucination Detection), metric scoring methodology, and
multi-metric evaluation composition strategies.

Section 3.6 — Models and Infrastructure describes the computational and
software infrastructure supporting the system. This section encompasses:

e 3.6.1 Large Language Models Used: Profiles the heterogeneous col-
lection of open-source models (Mistral 7B for routing, Qwen3 for tool or-
chestration, GPT-OSS 20B for complex reasoning, and specialized eval-
uator models) selected for specific tasks and computational constraints.

e 3.6.2 Model Selection Rationale: Justifies the multi-model strategy
through task-specific capability requirements, computational efficiency
considerations, and trade-offs between latency, reasoning quality, and
context window capacity.

¢ 3.6.3 Ollama Infrastructure: Explains the local deployment frame-
work enabling privacy-preserving, reproducible model serving without
dependence on external commercial APIs.

» 3.6.4 Used Hardware: Specifies the computational resources (NVIDIA
RTX A4000 GPU with 16 GB VRAM, CUDA infrastructure) employed

for experimental execution.

3.1 snnTorch

snnTorch is an open-source Python framework built on top of PyTorch, designed
to support the development, training, and simulation of SNNs. Rather than func-
tioning as a simple library, snnTorch provides a modular ecosystem that integrates
spiking neuron models, surrogate gradient methods, event-based data processing
tools, and a collection of training utilities. This makes it possible to incorporate
biologically inspired temporal dynamics within standard deep learning workflows.
By leveraging PyTorch’s automatic differentiation and GPU acceleration, snnTorch
enables efficient experimentation with hybrid SNN-ANN architectures and sup-
ports both supervised and unsupervised learning paradigms. The framework is

99

Materials and methods

widely used for research in energy-efficient computation and neuromorphic learn-
ing systems, serving as a bridge between neuroscience-inspired models and modern
machine learning methodologies [130].

3.1.1 Core Framework Components

The framework is organized into four main modules, each addressing a critical
aspect of SNN development:

o Spiking Neuron Models: This module includes a variety of neuron mod-
els such as the Leaky Integrate-and-Fire (LIF), Integrate-and-Fire, Synaptic,
and Alpha neurons. It also provides recurrent spiking architectures, including
Spiking Long Short-Term Memory (SLSTM) and Spiking Convolu-
tional LSTM (SConv2dLSTM), which extend classical LSTM dynamics
into the spiking domain to capture long-range temporal dependencies while
maintaining event-driven behavior.

e Surrogate Gradient Methods: Because spike generation is non-differentiable,
snnTorch implements several gradient approximation techniques (fast sig-
moid, arctangent, piecewise linear, or user-defined functions). These sur-
rogate gradients enable end-to-end training of SNNs using backpropagation
through time (BPTT).

« Spike Generation and Data Conversion: This module [131, 132] sup-
ports the conversion of static datasets (e.g., MNIST, CIFAR) into spike trains
through rate coding, temporal coding, or thresholding mechanisms. It also
handles event-based formats such as DVS (Dynamic Vision Sensor) data [133].

e Functional Utilities: This component defines commonly used operations
including spike-based loss functions (rate-based or time-to-first-spike), reg-
ularization techniques, membrane potential normalization, and visualization
tools for spikes and membrane traces.

3.1.2 Practical Architecture Patterns

In practical scenarios, snnTorch facilitates the construction of both purely spiking
networks and hybrid architectures that integrate classical deep learning components
with spiking neurons. A common example is a convolutional SNN in which a stan-
dard nn.Conv2d layer performs feature extraction, while the subsequent processing
stages rely on spiking neurons such as snn.Leaky, equipped with configurable de-
cay rates and surrogate gradient functions. The output layer typically aggregates
membrane potentials over time, enabling continuous-valued predictions while main-
taining event-driven computation throughout the network.

56

3.2 — Neural Network Intelligence (NNI)

Beyond supervised classification tasks, snnTorch also supports unsupervised
learning. A simple and illustrative example is the spike-based autoencoder. In
this architecture, an encoder composed of spiking neurons compresses the input
spike train into a latent representation, and a decoder, also spiking, attempts to
reconstruct the original input. Learning proceeds by minimizing the discrepancy
between the reconstructed and original spike trains, allowing the network to discover
meaningful temporal patterns without access to labels. Throughout the process,
the framework’s state-management utilities (e.g., utils.reset) ensure that neuron
membrane potentials are correctly reset between input sequences.

The modular design of snnTorch allows researchers to explore a wide range of
architectural variants, including different surrogate gradient functions, temporal in-
tegration constants (e.g., membrane decay (), and firing thresholds. This flexibility
makes it possible to tailor SNN models for tasks where both accuracy and energy
efficiency are critical considerations.

3.2 Neural Network Intelligence (INNI)

Neural Network Intelligence (NNI) is a lightweight yet powerful open-source toolkit
developed by Microsoft [134] to automate machine learning workflows including
hyperparameter optimization, neural architecture search, model compression, and
feature engineering. Built with a modular architecture and designed for scala-
bility across local machines, cloud services, and distributed environments, NNI
provides plug-and-play AutoML techniques that integrate seamlessly with popular
deep learning frameworks like PyTorch and TensorFlow. The toolkit’s web-based
UI enables real-time monitoring and visualization of experiments, making it an es-
sential resource for researchers and practitioners seeking to optimize neural network
design and training at scale.

Hyperparameter Optimization (HPO)

NNTI’s hyperparameter tuning component employs multiple optimization strategies
through its Tuner module. The tuner iteratively suggests hyperparameter sets,
evaluates them through trial runs, and maintains a history of results to guide
subsequent suggestions. Available tuning algorithms span from basic strategies
including random search, grid search to advanced techniques such as Bayesian op-
timization, simulated annealing, particle swarm optimization, and evolutionary al-
gorithms. Users specify search spaces using declarative syntax, defining parameter
types (uniform, log-uniform, choice, normal distribution) and ranges. For exam-
ple, configuring a random tuner requires specifying continuous parameters (e.g.,
learning rate uniformly distributed in [0.001, 0.1]) and categorical parameters (e.g.,
optimizer choice between SGD, Adam, RMSprop). The framework automatically

57

Materials and methods

orchestrates parallel trial execution, collects metrics, and determines when to ter-
minate underperforming configurations through the Assessor module.

3.3 In-Context Learning

One of the most surprising capabilities of modern LLMs is in-context learning [135],
which emerges as a by-product of scale and the Transformer architecture. Unlike
traditional machine learning systems, where models must be explicitly retrained
for new tasks, LLMs can learn to perform novel tasks on the fly by conditioning
on examples provided in the input prompt. For instance, if a prompt contains
several examples of movie reviews labeled with "positive sentiment' or "negative
sentiment," the model can infer the classification pattern and correctly label new
reviews without any parameter updates. This phenomenon demonstrates that the
model has implicitly acquired the ability to generalize from patterns in its input
sequence, effectively treating the prompt as a temporary training set. In-context
learning is a key enabler of “few-shot” and “zero-shot” performance, where models
adapt to new domains or tasks with little or no additional supervision. It represents
a fundamental shift in how Al systems can be deployed, offering adaptability with-
out retraining and significantly expanding the practical versatility of LLMs [136,
137, 138]. In this thesis, this capability was massively exploited.

o8

3.4 — Implementation of LangGraph

| route_question

-

generate_query sea relevant_sources

L web_research) generate
—_—

-
b4

collect_feedback
-~

academic_research Json_parser

summarize_academic_sources | summarize_sources |

reflect_on_acades ary | reflect_on_summary |

b 4 r
() . collect_feedback_evaluation |
finalize_academic_summary finalize_summary

| check code_sandbox |

t_feedback_normalization

process_fesdback_normalization

- |
| add_performanca_metrics |

Figure 3.1: The Figure shows the agent orchestration workflow with three parallel
processing branches. The academic research branch (left) refines the input query
into a more effective form and processes scholarly sources through summarization
and reflection mechanisms. The web search branch (center) performs query gen-
eration, real-time web research, and source summarization. The code generation
branch (right) implements retrieval-augmented generation with iterative feedback
collection, normalization, and sandbox validation. All branches enable continuous
iterative execution as feedback loops return to the initial routing stage for ongoing
refinement.

3.4 Implementation of LangGraph

This section details the internal architecture and operational workflow of the LangGraph-
based system developed in this work. The implementation is organized into three
major branches, Web Search, Academic Research, and Code Generation, each de-
signed to address a distinct aspect of the information retrieval and knowledge syn-
thesis pipeline. The following subsections describe the design principles, execution

59

Materials and methods

logic, and interactions that govern each branch within the overall agentic frame-
work.

The system implements a parallel three-branch architecture where each branch
addresses a specific knowledge synthesis task while maintaining shared state man-
agement and asynchronous execution through LangGraph’s state machine frame-
work.

The Web Search Branch, the branch in the center of the graph in the Figure
3.1, retrieves and synthesizes web-based knowledge through iterative refinement
cycles. It enforces deterministic query generation for effective research, executes
multi-source searches with fallback mechanisms, conducts up to web iterations of
summarization with gap-based reflection to prevent query stagnation, and applies
four RAG quality metrics for evaluation.

The Academic Research Branch focuses on scholarly literature by searching
across ArXiv, Semantic Scholar, and Google Scholar. This branch can be observed
in the left part of the Figure 3.1. It requires query generation optimized for aca-
demic terminology, iterative summarization. This branch has the same stagnation
avoidance mechanism of web search branch.

The Code Generation Branch orchestrates multi-agent code generation with
sandboxed validation. It routes user queries to specialized agents (snnTorch, NNI,
called by generate node) via LLM classification, retrieves context with multiple
extended queries using
CodeBERT-indexed vectorstores with weighted query ranking, generates multi-file
code marked explicitly (# FILE: filename.py), parses responses. The code is
validated code in E2B sandbox environments with dependency detection and static
analysis, and supports interactive refinement loops. The system offers also the
possibility to normalize the generated code with a reference code and to execute
both codes in order to obtain performance metrics. The right part of the graph in
the Figure 3.1 exposes the workflow of the code branch.

3.4.1 Web Search Branch

The web research branch represents a critical component of the implemented in-
formation retrieval system, as it is responsible for gathering, synthesizing, and
validating web-based knowledge at scale. Its importance stems from the system’s
requirement to fetch up-to-date information reliably. This branch operates within
the LangGraph-based agentic architecture, implementing an iterative refinement
cycle that combines LLMs, vector-based semantic search, and quality evaluation
metrics to produce coherent, evidence-grounded research summaries.

The web research branch is implemented as a specialized workflow within a
larger knowledge production pipeline. The system operates through a sequence of
interconnected nodes, each performing distinct transformations on a shared state

60

3.4 — Implementation of LangGraph

object (SummaryState). The architecture leverages asynchronous execution pat-
terns to maximize throughput and responsiveness across the retrieval-generation-
evaluation cycle.

Key architectural principles include state-driven execution, where all operations
maintain and transform a centralized state object containing research topics, ac-
cumulated queries, search results, and evolving summaries; asynchronous pipeline
design, where each node executes as an async coroutine enabling non-blocking oper-
ations and integration with long-running external services; tool composition, allow-
ing multiple search backends (Tavily, Google Search, DuckDuckGo) to be composed
through a unified agent interface; and checkpoint persistence for recovery and state
inspection.

The implementation relies on several key frameworks and libraries: LangGraph
for state machine and workflow orchestration, LangChain for document loading
and embedding management, Ollama for local language model serving, Chroma
for vector database functionality, BeautifulSoup for HTML parsing, DeepEval
for quality assessment metrics, and CopilotKit for real-time Ul integration.

Query Generation

The workflow begins with a user-provided research topic. Rather than immediately
executing a query, the system first generates a refined, structured search query
through an LLM-guided process:

. Input: research_topic (string)

. Format research topic with prompt template

. Invoke ChatOllama with JSON mode (temperature=0)
. Parse returned JSON to extract ’query’ field

. Output: search_query (string)

a s W N =

This generation step provides three key benefits. First, setting temperature
to 0 ensures deterministic query formulation, guaranteeing that the same research
topic produces nearly identical search queries for reproducibility. Second, enforcing
JSON mode constrains the LLM output to structured, parseable results rather
than free-form text, preventing malformed queries. Third, the LLM leverages its
domain knowledge to reformulate natural language research topics into effective
search terminology that maximizes retrieval relevance.

Web Search Execution

Once a query is formulated, the system executes a web search using a configurable
agent architecture. Search parameters include maximum results of 'x" documents
per search with full document content retained, using the Tavily search API with
fallback options to Google/DuckDuckGo:

61

Materials and methods

. Create Agent with 0llama backend (qwen3:latest)
. Attach TavilyTools for web search capability

. Construct search instruction prompt + query

. Execute agent.arun() in non-blocking mode

. Parse response content as search results

. Emit progress to UI

D O W

The use of asyncio.to_thread() is critical as it prevents blocking the event
loop during the agent’s synchronous execution, maintaining responsiveness in the
overall workflow. Search results are collected as unstructured text containing web-
page snippets, titles, and URLs, stored in state as raw_search_result for subse-
quent parsing.

Result Parsing and Formatting

After search execution, raw results are parsed into a structured format using a
second LLM pass:

Input: raw_search_result (unstructured text)

Invoke ChatOllama with web_search_expected_output prompt
. Extract JSON from response

. Validate and normalize source information

S w N -

After JSON extraction, normalization standardizes source metadata (title,
URL, date) into a consistent schema. This processing stage reduces context bloat
while preserving informational diversity, balancing conciseness with coverage qual-
ity for downstream summarization.

Iterative Summarization

For each batch of search results, the system either generates a new summary or
extends an existing one. This two-stage approach allows the system to accumulate
knowledge progressively across multiple search iterations. Output is post-processed
to remove any XML-like thinking tags from the language model, ensuring a clean,
presentation-ready summary.

The system uses a two-stage summarization approach:

if existing_summary exists:

Extend existing summary with new search results
else:

Generate new summary from search results

Invoke ChatOllama and remove intermediate reasoning tags

62

3.4 — Implementation of LangGraph

This enables progressive knowledge accumulation across multiple search iter-
ations, with post-processing to clean any intermediate reasoning from the model
output.

Reflection and Follow-up Query Generation

After each summary generation, the system reflects on gaps in coverage to guide
subsequent searches:

. Invoke ChatOllama with reflection_instructions prompt
. Input: current running_summary + research_topic

. Use JSON mode to extract structured follow-up query

. Validate that follow-up_query is not null

. Fallback to generic query if generation fails

g W

The reflection phase ensures that the system doesn’t re-query the same informa-
tion but instead targets unexplored dimensions of the research topic, enabling pro-
gressive exploration and preventing query stagnation. The LLM identifies knowl-
edge gaps by analyzing the current summary against the original research topic,
with the resulting follow-up query used in the next iteration of web search.

Loop Control and Termination

The system maintains a research_loop_count to prevent infinite loops:

if research_loop_count <= max_web_research_loops:

route = "web_research" # Continue another iteration
else:
route = "finalize_summary" # Proceed to evaluation

The max_web_research_loops parameter is configurable (in the code) per ex-
ecution, allowing flexible control over research depth.

Quality Evaluation

Upon reaching the loop limit, the system enters an evaluation phase using four
complementary RAG quality metrics:

1. Faithfulness: Measures whether summary claims are grounded in retrieved
documents, preventing hallucinated information not present in sources.

2. Answer Relevancy: Assesses whether summary content directly addresses
the research topic, ensuring topical alignment with the original query.

3. Contextual Relevancy: Evaluates whether retrieved documents are gen-
uinely relevant to the context, reducing noise from tangentially related search
results.

63

Materials and methods

4. Hallucination Detection: Identifies unsupported claims in the summary,
flagging content fabrication risk.

Summary Finalization

Upon completing iterations and evaluation, the system generates a final deliverable:

1. Collect all accumulated sources: sources_gathered
2. Merge into structured format:
- Summary section: running_summary
- Sources section: formatted_sources list
3. Return with evaluation_results metadata
4. Emit exit signal to CopilotKit UI

All sources are tracked throughout execution and formatted consistently, pre-
serving document title and URL, extraction timestamp, relevance confidence scores,
and token budget information. This ensures reproducibility and enables users to
trace claims back to original sources.

Error Handling and Robustness

The system implements multi-stage JSON parsing with fallback strategies:

. Attempt direct json.loads(content)

. If fails: extract JSON substring using regex

. If fails: attempt markdown fence removal then retry

. Fallback: return empty/default result with error logging

W N -

This defensive approach handles variations in LLM output formats across dif-
ferent model variants and API versions.

All async functions include try-except blocks that log errors with context infor-
mation, emit error status to the Ul, return safe default states to prevent pipeline
stalls, and preserve partial results when possible.

GPU/CUDA resources are explicitly managed through torch. cuda.empty_cache ()
calls after embedding operations, proper vectorstore connection closure, and mem-
ory release between batch operations.

State Management and Performance

The central state object (SummaryState) maintains research topic, search query,
raw search results, formatted source metadata, accumulated raw results, iteratively
refined summary, iteration counter, and evaluation results. State transitions follow
strict ordering enforced by the graph topology, ensuring that operations occur in
valid sequences.

64

3.4 — Implementation of LangGraph

The web research branch implements a principled, iterative approach to knowl-
edge synthesis combining keyword search, semantic retrieval, language model rea-
soning, and formal quality assessment. By maintaining clear separation of concerns
across query generation, search, parsing, summarization, reflection, and evaluation
phases, the system achieves both robustness and flexibility for diverse research
applications.

3.4.2 Academic Research Branch

The academic research branch automates rigorous retrieval, synthesis, and evalua-
tion of scientific literature by integrating scholarly and preprint search tools within
the agentic LangGraph workflow. This branch complements web-based research
by ensuring coverage of peer-reviewed and domain-specific academic sources, thus
improving both the reliability and depth of generated knowledge.

Academic Query Generation

The workflow initiates with LLM-guided query construction, where a natural lan-
guage research topic is transformed into a structured, field-focused query suitable
for academic databases:

Input: research_topic (string)

Format research topic with prompt template
Invoke ChatOllama with JSON mode (temperature=0)
Parse returned JSON to extract ’query’ field
Emit status to UI via CopilotKit

Output: search_query (string)

This ensures deterministic, reproducible query formulation by constraining the
LLM to JSON-structured output. The system reformulates natural language re-
search topics into optimized academic search terminology while guaranteeing con-
sistent, parseable results across multiple executions.

Academic Literature Retrieval

Once a query is formulated, the system executes targeted searches across multiple
academic databases using the agentic architecture:

65

Materials and methods

Create Agent with Ollama backend

Attach ArxivTools for academic preprint search
Construct academic search instruction prompt + query
Execute agent.arun() in non-blocking mode

Parse response content as academic results

Emit progress to UI

Output: raw_academic_result (unstructured academic metadata)

The system targets multiple academic repositories, particularly Arxiv for preprints
and via agent tool composition, Semantic Scholar and Google Scholar APIs, ag-
gregating results including titles, abstracts, author lists, publication venues, and
metadata.

Results are collected as unstructured text containing paper summaries, author in-
formation, and citations, stored in state for subsequent parsing.

Source Parsing and Deduplication

After search execution, raw results are parsed into a structured format using a sec-
ond LLM pass:

Input: raw_academic_result (unstructured academic output)
Invoke ChatOllama with academic_expected_output prompt
Extract JSON from response (with robustness for variations)

Validate and normalize academic metadata

Summarization of Academic Findings

For each batch of academic sources, the system generates or extends a running
summary:

66

3.4 — Implementation of LangGraph

if existing_summary exists:

human_message = "Extend the existing summary: {existing_summary}
Include new academic sources: {academic_sources}

That addresses the research topic: {research_topicl}"

else:

human_message = "Generate a summary of these academic sources:
{academic_sources}

That addresses the research topic: {research_topicl}"

invoke Chat(Ollama with:
- system_prompt: academic_summarizer_instructions

— user_message: human_message

remove_think_tags(response) # Clean any intermediate reasoning

This two-stage approach enables progressive knowledge accumulation across
multiple search iterations. Post-processing removes any XML-like thinking tags
inserted by the language model, ensuring clean, presentation-ready academic sum-
maries.

Iterative Reflection and Query Refinement

After each summary, the system reflects on gaps in coverage to guide subsequent
searches:

Invoke ChatOllama with reflection_instructions prompt
Input: current running_summary + research_topic
Use JSON mode to extract structured follow-up query

Fallback to generic academic query if generation fails

The reflection phase ensures that the system doesn’t re-query the same papers
but instead targets unexplored research dimensions or methodological gaps. This is
done by reflecting on the knowledge gap and creating queries that cover that gap,
enabling progressive exploration and preventing query stagnation.

Loop Control and Branch Termination

The system maintains a research_loop_count strictly limiting the number of aca-
demic exploration cycles:

67

Materials and methods

if research_loop_count <= max_academic_research_loops:

route = "academic_research" # Continue another iteration
else:
route = "finalize_academic_summary" # Proceed to evaluation

The conservative loop limit balances coverage depth with computational effi-
ciency.
Quality Evaluation of Academic Summaries

Upon reaching the loop limit, the system enters an evaluation phase using the same
four complementary RAG quality metrics:

1. Faithfulness: Ensures summary claims are grounded in retrieved academic
papers, preventing hallucinated citations.

2. Answer Relevancy: Verifies that academic synthesis directly addresses the
research topic.

3. Contextual Relevancy: Evaluates whether retrieved papers are genuinely
topically relevant.

4. Hallucination Detection: Identifies unsupported claims or fabricated ref-
erences.

The evaluation process executes as follows:

User prompt: "Do you want to evaluate this academic summary?"

If yes:

a. Run evaluation in separate thread via asyncio.to_thread()
b. Create LLMTestCase with:

- input: research_topic

- actual_output: running_summary

context: academic_sources (full list)

retrieval_context: academic_sources (for Faithfulness)

c. Initialize Ollama model (deepseek-rl:latest)

d. Invoke deepeval.evaluate() with all four metrics
e. Extract metric scores (range 0.0--1.0)

f. Emit results to UI with per-metric scores

If no:

a. Skip evaluation
b. Proceed to finalization

68

3.4 — Implementation of LangGraph

The evaluation runs in a separate thread to avoid blocking uvloop (the async
event loop), critical because DeepEval’s metrics perform LLM calls internally that
would otherwise stall the entire pipeline.

Summary Finalization and Output Structuring

Upon completing iterations and evaluation, the system generates a final deliverable:

Collect academic sources: academic_sources_gathered
Merge into structured format:

Academic Summary section: running_summary

References section: formatted_sources list with metadata
Evaluation Results section: metric scores (if evaluated)
Return with evaluation_results metadata

Emit exit signal to CopilotKit UI

All sources are tracked throughout execution and formatted consistently, pre-
serving title, authors, venue, DOI/URL, publication date, and token budget in-
formation. This ensures reproducibility and enables users to trace claims back to
original academic sources with complete bibliographic information.

3.4.3 Code Generation Branch

The Code Generation Branch is a specialized subsystem designed to orchestrate
the generation, validation, and iterative refinement of executable Python code in
response to research queries. It combines RAG, multi-pass search optimization, and
sandboxed code validation to produce semantically coherent, production-ready code
artifacts. The branch operates within the LangGraph’s architecture and integrates
specialized language models, vector databases, and secure execution environments
to ensure code quality and correctness.

Architecture and Multi-Agent Code Generation

The proposed Code Generation Branch is designed as a hierarchical, multi-agent
system that prioritizes modularity and secure validation. At a high level, the archi-
tecture enforces a strict separation of concerns: the Orchestration Layer interprets
user intent, the Generation Layer utilizes domain-specific knowledge to produce
code, and the Ezecution Layer validates the output in a secure environment.

69

Materials and methods

High-Level Workflow The process begins with semantic routing, where a user
query is analyzed to determine the specific coding domain (e.g., spiking neural
networks or hyperparameter tuning). This routing directs the task to specialized
agents equipped with repository-specific context. To ensure robustness, the genera-
tion phase is decoupled from validation; code is not merely generated but eventually
tested in a sandboxed environment to detect errors before delivery.

Component Implementation Drilling down into the specific technical compo-
nents, the system comprises:

e Orchestrator Agent: Acts as the system’s entry point, routing queries
based on semantic analysis.

» Specialized Code Agents: Domain-specific agents (specifically for snnTorch
and NNI) that generate code using retrieved context.

e Vector Retrieval System: Supports the agents via two dedicated vector-
stores utilizing CodeBERT embeddings for semantic code search.

e Code Parser and Extractor: Manages multi-file generation by parsing
explicit file markers (# FILE: filename.py), ensuring modular composition.

o Sandbox Executor: A low-level validation environment powered by E2B
(a secure cloud sandbox provider) that executes generated code to verify
functionality.

o Feedback Processing: A refinement loop that classifies execution results
to guide iterative improvements.

The system enforces strict separation between code generation (via LLM) and
code validation (via sandboxed execution), enabling error detection before deliv-
ery. Generated code uses explicit file markers (# FILE: filename.py) for modular
composition, with each file representing a logical component.

Orchestrator Agent Workflow Algorithm 1 describes the orchestrator’s deci-
sion logic for routing queries to specialized agents.

Here’s a longer and more detailed version:

The orchestrator performs a multi-step validation on every tool’s output be-
fore it is considered acceptable. This validation procedure includes several checks
designed to ensure both structural integrity and functional reliability. First, the
orchestrator verifies that the error field is explicitly null, confirming that the tool
executed without raising exceptions or reporting internal failures. Next, it ensures
that the returned code block meets a minimum length requirement of more than

70

3.4 — Implementation of LangGraph

Algorithm 1 Orchestrator Agent Tool Selection

Require: User query ¢, available tools 7' = {snnTorch, NNT}

Ensure: Selected tools with focused queries

: prompt < Create tool selection prompt with query ¢

response <— LLM(prompt)

: toolCalls < JSON.parse(response)

: for each call € toolCalls do

tool Name <— call.name

toolQuery < call.query

result < ExecuteTool(tool Name, tool Query)

if result.error = null and |result.code| > 50 then
validOutputs.add(tool Name, result)

end if

: end for

: return validOutputs

© P> Wy

— = =

71

Materials and methods

50 characters. This prevents accidental acceptance of empty or malformed out-
puts and helps guarantee that the tool generated meaningful content. Finally, the
orchestrator checks for the presence of required file markers, which act as struc-
tural indicators showing that the output conforms to the expected formatting or
file-generation conventions. Only when all three of these criteria are successfully
satisfied does the orchestrator treat the tool’s output as valid and proceed with
further processing.

Vectorstore Initialization and Query Optimization

Dual Vectorstore Configuration The system maintains two specialized vector-
stores implemented using Chromadb, an open-source, lightweight vector database
optimized for Al applications. Chromadb involves similarity search and retrieval-
augmented generation [84].

o snnTorch Vectorstore: Online documentation from snntorch.readthedocs.io,
recursive loading with custom depth limit, focuses on spiking neural networks,
LIF neurons, training methods.

o INNI Vectorstore: Local examples from the esempi NNI/ directory, plus the
API reference document; focuses on hyperparameter tuning configurations
and experiment setup patterns.

Both employ CodeBERT embeddings (mchochlov/codebert-base-cd-ft), op-
timized for code semantics with cosine similarity metric. The vectorstore initial-
ization follows an equal pattern (Algorithm 2).

CodeBERT Memory Optimization To handle large-scale embedding on con-
strained GPU memory (8GB VRAM), a custom batching strategy is implemented:

batch_size = 8

for i in range(0, len(texts), batch_size):
batch = texts[i:i+batch_sizel
embeddings = model.encode(batch)
gc.collect()
torch.cuda.empty_cache()

This approach trades computational speed (15-20% overhead) for memory safety,
enabling vectorstore creation on consumer hardware.

72

3.4 — Implementation of LangGraph

Algorithm 2 Vectorstore Initialization

Require: Persist directories Dy, Dyni, source URLs/paths
Ensure: Initialized vectorstores

[o S
W N PO

if D, exists and D,,,; exists then

Load existing vectorstores from disk

return cached vectorstores
end if
docSspy < RecursiveURLLoader(snnTorch docs, depth = 7)
docsyn; < DirectoryLoader(esempi_ NNT) + APIRef
docspy;.insert(0, APIRef) {Priority insertion}
chunksg,, < TextSplitter(docsg,,, chunk = 512, overlap = 50)
chunks,,; < TextSplitter(docs,,,;, chunk = 512, overlap = 50)
Vinn <= Chroma.from__documents(chunksg,,, CodeBERT)

: Vani < Chroma.from__documents(chunks,,;, CodeBERT)
: Persist Viun 10 Dgnny Vini 10 Dy
: return Vi, Vi

73

Materials and methods

LLM-Guided Query Generation and Ranking Rather than static keyword
queries, the system dynamically generates a custom number of diverse search queries
tailored to each research question using a two-phase LLM process:

e Phase 1: Query Generation

— The system instructs the LLM to:

Generate 6 DIVERSE, SPECIFIC search queries covering:
- Architecture and model structure

Parameters and configuration

Training methodology

Implementation patterns

- Evaluation metrics

Return JSON: ["queryl", "query2", ..., "query6"l]

e Phase 2: Query Ranking

— The LLM then ranks the generated queries by relevance to the user
question:

User Question: {question}
Candidate Queries: {generated_queries}

Rank by RELEVANCE to answering the question.

Return JSON: {
"ranked_queries": ["most_relevant", "second", ...],
"reasoning": "explanation"

}

— Ranked queries receive relevance weights w; = 1.0 — (i — 1) x 0.05 for
query rank 7.

— Retrieved documents are tagged with their source query and weight,
prioritizing high-relevance sources during LLM context construction.

Multi-Pass Retrieval with Weighted Context
o Algorithm 3 implements the weighted multi-pass retrieval strategy.

o The weighted context enables the LLM to prioritize information from higher-
ranked queries during code generation.

74

3.4 — Implementation of LangGraph

Algorithm 3 Multi-Pass Weighted Retrieval

Require: Ranked queries @ = [q1, o, - - - , Gn], vectorstore V., k = 20
Ensure: Weighted context string
1: context «— "'
2: totalDocs < 0
3: for i <~ 1 ton do
w; < 1.0 — (i — 1) x 0.05
docs < V.retrieve(g;, k)
total Docs < total Docs + |docs|
for each doc € docs do
source < doc.metadata.source
content <— doc.page _content[0 : 600]
10: context < context+{"Query {i} - {source} - weight {w_i:.2f}: {content}—'
11: end for
12: end for
13: return context[0 : 8000] {Limit to 8k chars}

75

Materials and methods

Specialized Agents and Unified Response Parsing

snnTorch Agent The snnTorch agent specializes in generating spiking neural
network code. Its output schema guarantees:

{
"code": "# FILE: model.py\n...\n# FILE: utils.py\n...",
"files": {"model.py": "...", "utils.py": "..."},
"summary": "Generated SNN model with LIF neurons",
"confidence": 0.95,
"queries_used": 6,
"error": null

b

The agent constructs prompts emphasizing documentation priority: (1) re-
trieved context (primary), (2) snnTorch official docs (gap-filling), (3) general Py-
Torch knowledge (fallback).

NNI Agent The NNI agent generates hyperparameter tuning configurations with
strict JSON output requirements. It enforces dual-file patterns (config.py for
search space, train.py for training loop) and validates JSON parseability before
returning results.

Unified Response Parser Algorithm 4 implements a multi-strategy parsing
approach with graceful degradation.

Escape Sequence Normalization LLM responses often contain literal escape
sequences from JSON or markdown encoding. The normalizer handles:

def normalize code_escapes(text):

text = text.replace(r’\n’, ’\n’) # Literal \n - newline
text = text.replace(r’\t’, ’\t’) # Literal \t - tab
text = text.replace(r’\"’, ’"’) # Escaped quotes

text = text.replace(r’\\’, ’\\’) # Double backslash

return text

This ensures code readability and correct execution in the sandbox.

File Extraction from Code Algorithm 5 extracts individual files from the uni-
fied code string.

76

3.4 — Implementation of LangGraph

Algorithm 4 Unified Response Parser

Require: LLM response text R
Ensure: Parsed result dict

T S T o T e T = T o S =Gy e

R < R.strip()
if R contains markdown code fences then
Remove fences: R < R.remove_ fences()
end if
Strategy 1: JSON Parsing
data < JSON.parse(R)
Map alternative field names to canonical code field
Normalize escape sequences: data['code'] <— normalize(data["code'])
return data
Strategy 2: Markdown Code Block Extraction

. blocks + REGEX findall(r'“‘[a-z]*\n(.*?)“"", R)
. if |blocks| > 0 then

Deduplicate and merge blocks
return {"code" : merged, "parse_method" : "markdown"}

: end if
: Strategy 3: Raw Text Fallback
. if |R| > 50 then

return {'code': R, "parse_method" : "raw’

: end if
: return {'error' : "Could not parse response'}

77

Materials and methods

Algorithm 5 File Extraction with Regex Markers

Require: Code string C' with # FILE: markers
Ensure: Dict mapping filename — content
1. pattern <— v~ # FILE:\s*(\S+\.py)\s*%’
2: lines < C.split("\n')
3: files < {}, currentFile < null, currentContent < ||
4: for each line € lines do

5. match < REGEX.match(pattern, line)
6: if match # null then
7 if currentFile # null then
8: files[current File] < join(currentContent)
9: end if

10: current File <— match.group(1)

11: currentContent < ||

12: else if currentFile # null then

13: currentContent.append(line)

14: end if

15: end for

16: if currentFile # null then

17: files[currentFile] < join(currentContent)
18: end if

19: return files if files #+ {} else {"main.py" : C'}

78

3.4 — Implementation of LangGraph

Multi-Agent Code Integration When multiple agents contribute code (e.g.,
snnTorch + NNI), intelligent merging applies a priority scheme:

. Priority 1: config.py (configuration)
. Priority 2: search_space.json (NNI search space)

. Priority 3: model.py (architecture)

4. Priority 4: utils.py (helpers)

. Priority 5: train.py (training loop)

. Priority 6: main.py (entry point)

Files are sorted by priority and concatenated with file markers. Duplicates are

resolved by keeping the first occurrence (higher-priority agent).

Sandboxed Validation and Feedback Loop

E2B Sandbox Execution Generated code is executed in an isolated E2B sand-
box (code-interpreter-v1 template) with 1GB memory and CPU-only execution.
Algorithm 6 describes the multi-file execution process.

Algorithm 6 Sandboxed Multi-File Execution

Require: Code string C' with file markers
Ensure: Execution results

1:
2:

10:
11:

files < parse_multifile code(C')
mainFile < detect_main_ file(files) {Priority: main.py > train.py > experi-
ment.py }
sandbox < E2B.create("code-interpreter-v1")
packages < extract_ packages(C') {Parse import statements}
sandbox.run("pip install " + join(packages))
for cach (filename, content) € files do
sandbox.upload("/home/user/" + filename, content)
end for
result < sandbox.run("python "+ mainFile)
sandbox kill()
return {'exit_code' : result.exit_code, "stdout" : result.stdout, "stderr" :
result.stderr}

79

Materials and methods

Dependency Auto-Detection and Installation Import statements are ex-

tracted using regex:

pattern = r"(7: import|~from)\s+(\w+)"
matches = re.findall(pattern, code, re.MULTILINE)

A mapping table handles non-standard package names:

pip_mapping = {
’cv2’: ’opencv-python’,
'PIL’: ’Pillow’,
’sklearn’: ’scikit-learn’,
’snntorch’: ’snntorch’,

Built-in modules (os, sys, json, etc.) are filtered out before installation.

Static Type Analysis Before execution, Pyright analysis detects type errors,
undefined variables, and incompatible method calls. Results are non-blocking but

reported to users for transparency.

Interactive Feedback Loop After code generation or sandbox execution, users

select from four actions via an interrupt mechanism:

o approve: Accept code and terminate

« regenerate: Request modifications with feedback

evaluate: Compare against reference implementation

execute: Run specific file in sandbox

Algorithm 7 describes the LLLM-based feedback classification.
Example feedback classifications:

"execute train.py" - {"response": "execute", "file_name":

"Make it faster" - {"response": "regenerate"}
"Looks good" -+ {"response": "approve"}
"Compare with reference" -+ {"response": "evaluate"}

80

"train.py"}

3.4 — Implementation of LangGraph

Algorithm 7 Feedback Decision Classification

Require: User feedback text F'
Ensure: Action and optional filename

prompt < Create classification prompt with examples

response <— LLM(prompt + F)

data < JSON.parse(response)

action < data["response'] {approve/regenerate/evaluate/execute}
filename < data.get("file_name", null)

return (action, filename)

81

Materials and methods

Evaluation Mode and Performance Metrics When users select evaluate, the
system enters comparison mode with code normalization and performance measure-
ment. Normalization standardizes variable names, imports, and formatting while
preserving logic. Performance metrics are injected via wrapper code:

import time
import torch

start = time.time()
output = model(input_tensor)
elapsed = time.time() - start

params = sum(p.numel() for p in model.parameters() if p.requires_grad)
peak_mem = torch.cuda.max_memory_allocated() / 1024 / 1024

print (f"Forward pass time: {elapsed:.6f}s")
print (f"Total parameters: {params}")
print (f"Peak memory: {peak_mem:.2f} MB")

Both generated and reference code execute with identical inputs in the sandbox,
enabling objective comparison.

3.4.4 Graph Routing Logic

In the following is illustrated the conditional routing between nodes. The graph
implements the following edges:

START - route_question
route_question - {search_relevant_sources (code),
generate_query (web),
generate_academic_query (academic)}
search_relevant_sources - generate
generate -+ collect_feedback (interrupt)
collect_feedback - process_feedback
process_feedback - {regenerate: generate,
approve: END,
evaluate: code_normalization,
execute: check code_sandbox}
check code_sandbox -+ reflection -+ collect feedback

In the Figure 3.1 the full graph can be observed.

Conditional edges enable dynamic routing based on state values. The feedback
loop continues until the user approves or maximum iterations (default: 3) are
reached.

82

3.5 — Used tools

The system implements multi-level error recovery:

1. Parser Level: JSON parse fails — markdown extraction — raw text fallback
2. Agent Level: Validate error field, code length, file markers before acceptance

3. Sandbox Level: Timeout handling, missing package fallback, import error
reporting

All errors return structured dictionaries (never raw exceptions), ensuring sys-
tem stability. Failed agent outputs are logged but do not terminate the workflow:
remaining agents continue execution.

3.5 Used tools

3.5.1 Agno Framework

Agno is an open-source, Python-based agentic framework designed to facilitate the
development of intelligent Al agents with integrated memory, knowledge, tools,
and reasoning capabilities. Agno provides a lightweight, composable architecture
that emphasizes declarative agent construction, model-agnostic design, and first-
class tool support [139]. The framework enables rapid prototyping and deployment
of multi-agent systems through a clean API that abstracts the complexities of
agent orchestration, tool coordination, and state management while maintaining
full transparency for debugging and auditability.

Tool System and Toolkits

Tools occupy a central role in Agno’s architecture as primary mechanisms for agent
interaction with external systems. Tools are Python functions or classes that ex-
pose specific capabilities to agents, enabling interaction with external systems such
as APIs, databases, web search engines, and file systems. The framework provides
two primary tool abstractions: individual function tools for single operations and
toolkits for collections of related functions that share internal state and coordi-
nate behavior. Toolkits are implemented as Python classes that register multiple
methods as callable tools, allowing agents to invoke them transparently based on
task requirements.

RAG Tools for Information Retrieval

In the thesis implementation, four core toolkits from Agno’s pre-built collection
specifically utilized, to enable comprehensive information retrieval across web and
academic sources:

83

Materials and methods

TavilyTools: Provides advanced web search capabilities through the Tavily
API, a search engine optimized for LLM-driven applications. The toolkit supports
configurable search depth (standard vs. deep), maximum token limits per result,
and output formatting (sourcedAnswer for synthesized responses with citations vs.
searchResults for raw context data). TavilyTools was employed in the web research
branch to execute primary web searches with advanced depth settings, retrieving
up to 5 documents per query with full raw content preserved for subsequent LLM-
based parsing and summarization.

ArxivTools: Enables retrieval of academic preprints and research papers from
the arXiv repository. The toolkit queries the arXiv API using structured search
parameters and returns paper metadata including titles, authors, abstracts, pub-
lication dates, and arXiv identifiers. ArxivTools was integrated into the academic
research branch to complement web-based sources with peer-reviewed and domain-
specific scientific literature, ensuring coverage of cutting-edge research findings and
formal scholarly discourse.

DuckDuckGoTools: Provides privacy-focused web search through the Duck-
DuckGo API, serving as a fallback search backend when Tavily or other primary
tools are unavailable or rate-limited. The toolkit executes keyword-based searches
and returns result snippets, titles, and URLs. While not the primary search tool
in the implementation, DuckDuckGoTools was configured as an alternative within
the agent toolkit stack to ensure search robustness and redundancy.

GoogleSearchTools: Enables search through Google’s Custom Search Engine
API, providing access to indexable web content with support for configurable result
limits and ranking. The toolkit returns structured results including titles, snippets,
and URLs. GoogleSearchTools serves as an alternative search provider within the
agent toolkit stack, offering broader web coverage and integration with Google’s
search index while being subject to rate limits and quota constraints.

Agent Execution and Tool Coordination

LangGraph gents execute tools through an internal reasoning loop that analyzes
user queries, determines which tools are necessary, invokes them sequentially or
in parallel, and synthesizes their outputs into coherent responses. Tool calls are
transparent by default (configurable via show_tool_calls), enabling inspection of
agent decision-making and facilitating debugging. In my implementation, agents
were instantiated with the Ollama backend and configured with specific toolkits
based on branch requirements (TavilyTools for web research, ArxivTools for aca-
demic research).

84

3.5 — Used tools

Integration of Agno Tools into LangGraph Workflows

Agno tools integrate seamlessly into LangGraph state machines as callable func-
tions within graph-based workflows. In the developed architecture, each research
branch (web and academic) instantiates branch-specific toolkits, executes queries
through the tool coordination layer, and returns raw search results to the Lang-
Graph state for subsequent parsing, deduplication, and summarization. This inte-
gration pattern leverages Agno’s composable tool abstractions while maintaining
LangGraph’s control over overall workflow orchestration, state management, and
conditional routing.

3.5.2 DeepEval

DeepEval is an open-source, LLM-powered evaluation framework designed to assess
the quality of RAG systems through quantitative, interpretable metrics. Rather
than relying on manual evaluation or subjective criteria, DeepEval employs the
LLM-as-a-judge paradigm, where a language model autonomously evaluates gen-
erated outputs against multiple complementary dimensions [97]. This systematic
approach enables comprehensive quality assurance of generated content without
human annotation.

Core RAG Evaluation Metrics

DeepEval provides four fundamental built-in metrics specifically designed for RAG
pipeline evaluation:

Faithfulness: Measures whether the generated output’s claims are factually
grounded in the retrieved documents. Faithfulness answers: What fraction of the
generated statements are supported by the retrieval context? This metric prevents
hallucination, the generation of information not present in sources, by validating
each factual claim against provided documents. Formally:

Supported Claims
Total Claims
Answer Relevancy: Evaluates whether the generated output directly ad-
dresses the user’s original query. Answer relevancy measures topical alignment by
classifying generated statements as relevant or tangential to the research question.
This metric ensures the output focuses on answering what was asked, independent
of factual correctness. Formally:

Faithfulness = (3.1)

Relevant Statements
Total Statements

Contextual Relevancy: Assesses the quality of retrieved documents by mea-
suring whether they are genuinely relevant to the user’s query. Unlike faithfulness,

85

Answer Relevancy = (3.2)

Materials and methods

which validates the generator’s use of context, contextual relevancy validates the
retriever’s selection process. This metric identifies whether the retrieval system has
selected appropriate source documents. Formally:

Relevant Retrieval Documents

Contextual Relevancy = (3.3)

Total Retrieved Documents

Hallucination Detection: Explicitly identifies claims in the generated output
that contradict or lack support in the retrieval context. This metric flags negative
cases, statements that directly contradict sources or introduce unsupported asser-
tions, distinct from positive alignment measured by faithfulness. Formally:

Contradicted /Unsupported Claims

Hallucination S =1.0—-
allucination Score Total Claims

(3.4)

Metric Scoring and Threshold-Based Evaluation

Each metric produces a score in the range [0.0,1.0], where 1.0 represents perfect
performance and 0.0 represents complete failure. The interpretation of metric scores
typically employs a threshold-based approach: scores above a defined threshold are
considered acceptable, while scores below the threshold indicate quality concerns
requiring investigation or remediation.

The threshold selection is a design choice that reflects the acceptable quality
level for the application. In academic or high-stakes applications, thresholds may
be set higher (e.g., 0.70, 0.75) to ensure maximum reliability. In exploratory or
low-stakes scenarios, thresholds may be lower (e.g., 0.50, 0.55) to permit faster
iteration. The threshold value represents a trade-off between precision (few false
positives) and recall (few false negatives):

» High Threshold (e.g., 0.75): Stringent quality standards; only high-confidence
outputs pass; fewer acceptable results but higher confidence in accepted out-
puts.

« Moderate Threshold (e.g., 0.50-0.65): Balanced approach; reasonable qual-
ity standards; most practical applications employ thresholds in this range.

o Low Threshold (e.g., 0.30-0.50): Permissive standards; accepts lower-confidence
outputs; useful for early-stage prototyping or when perfect accuracy is infea-
sible.

LLM-as-a-Judge Evaluation Paradigm

DeepEval’s core mechanism relies on the LLM-as-a-judge paradigm: an evaluator
language model assesses the quality of generated outputs by applying metric-specific
evaluation logic. This approach offers several advantages:

86

3.5 — Used tools

e Semantic Understanding: The evaluator LLM comprehends nuanced mean-
ing, context, and domain-specific correctness beyond simple pattern match-
ing.

o Interpretability: Each metric computation includes reasoning, enabling
users to understand why outputs passed or failed evaluations.

o Scalability: Evaluation can be automated across arbitrary datasets without
requiring human annotators, enabling rapid system iteration.

o Consistency: Uniform evaluation criteria are applied to all outputs, reducing
variability inherent in manual assessment.

The evaluator operates independently from the generation model, allowing for
objective assessment of generation quality without introducing bias from the same
model producing the output.

RAG Pipeline Coverage

The four metrics comprehensively cover distinct components of the RAG pipeline
architecture:

Table 3.1: Mapping of DeepEval Metrics to RAG Pipeline Components

Pipeline Component | Metric Assessment Focus

Retriever Quality Contextual Relevancy Document selection appropriateness
Generator Grounding Faithfulness Output grounding in sources
Generator Alignment Answer Relevancy Query-output topical alignment
Generator Accuracy Hallucination Detection | Contradiction and fabrication

This multi-dimensional evaluation design enables diagnostic analysis of RAG
failures. Contextual relevancy failures indicate retriever problems; faithfulness fail-
ures indicate generator misuse of context; answer relevancy failures indicate output
drift from the query; hallucination failures indicate factual inaccuracies.

Multi-Metric Evaluation Composition

DeepEval supports composite evaluation strategies where multiple metrics are eval-
uated simultaneously on the same output. A typical approach combines all four
metrics to form a comprehensive evaluation profile:

o Each metric provides independent assessment of a specific quality dimension.

o Individual metric scores reveal which pipeline components are performing
adequately.

87

Materials and methods

o Combined evaluation results enable holistic quality determination across all
dimensions.

Different applications may emphasize different metrics based on their primary
concerns. A system prioritizing factual accuracy would emphasize faithfulness and
hallucination detection, while a system prioritizing user satisfaction might empha-
size answer relevancy. This flexibility allows to customize evaluation profiles to
match application-specific quality objectives.

3.6 Models and Infrastructure

The system’s architecture relies on a carefully orchestrated infrastructure combining
multiple specialized components: locally-served open-source large language models,
vector databases for semantic retrieval, and tool-augmented agents for information
gathering. This section details the technical specifications and design rationale
behind each infrastructure component. The multi-model approach employs het-
erogeneous LLMs, each optimized for specific computational profiles, ranging from
lightweight routing decisions to complex reasoning tasks, enabling efficient resource
allocation while maintaining high-quality outputs across diverse task types. The
infrastructure design prioritizes modularity, allowing individual components to be
upgraded or replaced without disrupting the overall system architecture.

3.6.1 Large Language Models Used

The system employs a heterogeneous collection of open-source language models
served locally via Ollama, each optimized for distinct computational tasks and
complexity profiles. This multi-model approach balances inference latency, context
window size, reasoning capability, and computational resource constraints. The
following four models form the backbone of the system:

Mistral: Lightweight Routing and Decision-Making

Model: Mistral 7B v0.3 (released May 22, 2024) [140] | Size: 4.4 GB

Mistral is employed for relatively low-reasoning tasks where rapid inference and
minimal computational overhead are prioritized over deep semantic understanding.
Its primary use cases include:

« Routing decisions: Determining which branch (web research, academic
search, or code generation) should process a given user query.

e Query classification: Categorizing user questions into predefined types
(e.g., implementation request, configuration question, architecture inquiry).

88

3.6 — Models and Infrastructure

o Simple text transformations: Formatting, parsing, and lightweight text
preprocessing tasks that do not require extensive reasoning.

Mistral’s relatively small parameter count (7B) enables fast inference on lim-
ited hardware while maintaining sufficient semantic capability for these structured
decision tasks [140]. Its efficiency makes it suitable for high-throughput scenarios
where latency is critical.

Qwen: Tool-Augmented Task Execution

Model: Qwen3 (released October 2025) [141] | Size: 5.2 GB
Qwen serves as the primary workhorse for tasks involving tool invocation and
structured interaction with external systems. Its capabilities include:

o Tool orchestration: Coordinating multi-step workflows with Agno agents,
including TavilyTools, ArxivTools, and DuckDuckGoTools for information
retrieval.

o Structured output generation: Leveraging Qwen3’s native JSON mode
for machine-parseable responses in tool-based scenarios [141].

Qwen3 represents a significant advancement over earlier Qwen versions, with
enhanced reasoning capabilities surpassing Qwen2.5 on mathematics, code gener-
ation, and logical reasoning tasks [141]. Its 32-billion parameter variant provides
a good balance between reasoning capability and inference speed, with particular
strength in agent-based task execution and tool integration.

GPT-0OSS: Large-Context Complex Reasoning

Model: OpenAl GPT-OSS 20B (released August 5, 2025) [142] | Size: 13 GB

GPT-0SS is deployed for tasks requiring large context windows, complex multi-
step reasoning, and generation of substantial outputs. Its primary applications
include:

o Search query generation: Generating diverse, specific search queries for
web and academic literature retrieval (web research and academic search
branches).

e Query ranking: Ranking generated queries by semantic relevance to the
user’s original question.

o Code generation: Producing complete, production-grade Python code for
NNI configurations and snnTorch implementations. Code generation typically
requires 3000-5000 tokens of context and substantial reasoning over multiple
requirements.

89

Materials and methods

o Long-form document synthesis: Generating detailed, comprehensive re-
sponses that integrate information from multiple retrieval sources.

o Complex task decomposition: Breaking down intricate user requests into
component tasks and generating execution plans.

GPT-OSS 20B is an open-weight reasoning model trained using reinforcement
learning and techniques informed by OpenAl’s frontier systems, achieving per-
formance comparable to OpenAl’s 03-mini on core reasoning benchmarks [142].
The 20-billion parameter model is specifically optimized for deployment on con-
sumer hardware with 16 GB of memory, while maintaining strong performance on
reasoning-intensive tasks. The enlarged context capacity is essential for code gen-
eration tasks where the model must track multiple files, imports, dependencies,
and logical flow across hundreds of lines. While inference is slower than smaller
models, the improved reasoning quality justifies the computational cost for complex
tasks [142].

DeepSeek-R1: LLM-as-a-Judge Evaluation

Model: DeepSeck-R1 v0528 (released May 28, 2025) [143] | Size: 5.2 GB

DeepSeek-R1 is specifically trained for chain-of-thought reasoning and is de-
ployed as the evaluator in the DeepEval framework for automated quality assess-
ment. Its role includes:

e RAG metric computation: Computing faithfulness, answer relevancy, con-
textual relevancy, and hallucination detection scores for generated summaries.

o Claim verification: Analyzing generated statements against retrieval con-
text to detect factual grounding and contradictions.

e Reasoning articulation: Providing interpretable explanations for each met-
ric score, enabling users to understand evaluation decisions.

The LLM-as-a-Judge paradigm leverages large language models as automated
evaluators for assessing the quality of LLM-generated outputs [144]. Rather than
relying on fixed, rule-based metrics, this approach uses a sufficiently capable LLM to
perform nuanced evaluation by analyzing generated text against reference criteria,
assessing semantic correctness, factual grounding, and alignment with user intent.
This methodology is particularly valuable for evaluating complex, open-ended out-
puts such as summarization and code generation, where traditional metrics (BLEU,
ROUGE) fail to capture semantic quality. DeepSeek-R1’s training emphasizes rea-
soning transparency through explicit thinking tokens, making it well-suited for the
LLM-as-a-judge paradigm where explainability is paramount [143]. Unlike other
models optimized for speed or efficiency, DeepSeek-R1 prioritizes reasoning quality

90

3.6 — Models and Infrastructure

and interpretability, which are essential for reliable evaluation of complex RAG
outputs and understanding the rationale behind each evaluation decision.

3.6.2 Model Selection Rationale

The multi-model architecture reflects a strategic specialization approach rather
than a one-size-fits-all design:

Table 3.2: Task-Specific Model Selection and Rationale

Task Type Complexity Model Rationale

Routing Low Mistral Speed, efficiency

Query generation Medium Qwen Tool integration

Code generation High GPT-0OSS Large context, reasoning
Evaluation High DeepSeek-R1 Chain-of-thought, transparency

This heterogeneous model selection optimizes the end-to-end pipeline by match-
ing model capabilities to task requirements, avoiding wasteful over-provisioning
(e.g., using a 20B model for binary routing decisions) while ensuring adequate ca-
pability for complex tasks.

3.6.3 Ollama Infrastructure

All models are served locally via Ollama, an open-source framework for deploying
and running large language models on commodity hardware. Ollama provides:

o Local inference: Models run on-device without external API calls, ensuring
privacy, latency predictability, and independence from cloud service availabil-

ity.

« Resource management: Ollama handles GPU/CPU allocation, model quan-
tization, and memory management transparently.

e« API abstraction: Standardized REST API enables uniform model invoca-
tion regardless of underlying model architecture.

The choice of local deployment via Ollama reflects the research context where
reproducibility, privacy, and independence from external services are prioritized.
The research system does not depend on commercial APIs, enabling full control
over model behavior, context logging, and iteration without rate limits or usage
restrictions.

91

Materials and methods

3.6.4 Used Hardware

The experiments were conducted on a workstation equipped with an NVIDIA RTX
A4000 GPU, featuring a total of 16 GB of dedicated VRAM. The GPU was oper-
ating with driver version 575.57.08 and was compatible with CUDA version 12.9,
enabling efficient parallel computation for deep learning workloads.

92

Chapter 4

Results and discussion

The Results and Experiments section presents a comprehensive evaluation of the
multi-agent system designed to support intelligent research and neuromorphic ap-
plication development. Readers will find a series of concrete experimental studies
designed to rigorously validate the capabilities of the system across all its critical
branches: web search, academic research synthesis, and code generation.

This section illustrates, through real case studies, how the system leverages
distinct agent workflows to achieve robust, high-fidelity outcomes. For the infor-
mation retrieval tasks, experiments showcase the effectiveness of both real-time web
search and academic literature retrieval, each measured against clear, quantitative
metrics such as faithfulness, relevancy, and hallucination prevention. Performance
is evaluated not in isolation, but with respect to how well retrieved information
is grounded in external sources and how effectively system outputs align with the
original research questions.

The code generation experiments delve into the system’s orchestration of spe-
cialized agents for complex tasks, such as generating spiking neural network im-
plementations or hyperparameter configurations. The section details not only the
synthesis phase but also the critical validation workflows, including sandboxed ex-
ecution, static analysis, runtime performance profiling, and iterative correction via
human-in-the-loop feedback. This multifaceted approach demonstrates the sys-
tem’s ability to generate production-grade code and to self-correct through execu-
tion feedback or expert guidance.

4.1 Information Retrieval Use Cases

This section evaluates the multi-branch information retrieval system through two
complementary case studies: web search retrieval for time-sensitive queries and aca-
demic search retrieval for domain-specific research synthesis. Both experiments em-
ploy the DeepEval framework with quantitative metrics to assess retrieval-augmented

93

Results and discussion

generation quality. The case studies demonstrate that query-specialized branching
produces high-fidelity, well-grounded responses across distinct information domains.

4.1.1 Experiment 1: Web Search Branch

This experiment evaluates the effectiveness of the web search branch within the
LangGraph-based research system. The objective is to demonstrate that integrating
real-time web search with pre-trained knowledge produces more accurate, current,
and contextually relevant information compared to relying solely on pre-training
data. The study uses the Italian Tech Week 2025 event as a case study, where
the system was tasked with retrieving comprehensive and up-to-date information
about event details, speakers, and program elements.

Query Task: The system was instructed to research the event “Italian Tech
Week 2025”7 held in Turin, Italy (October 2025), with explicit requirements to
provide:

o Exact event dates and venue name.

o Event theme and slogan.

o At least five major speakers with descriptions.

o Key program elements and their relevance.

« Event scale metrics (attendees, startups, investors, sessions).

o Critical constraint: Base answers only on up-to-date web information, not
on pre-training data.

This task design ensures that the web search capability is necessary for providing
current, factual information that may not exist in the model’s training data or may
have changed since training.

The system’s performance was evaluated using the DeepEval framework,
employing four complementary metrics designed to assess different dimensions of
retrieval-augmented generation (RAG) quality.

Table 4.1: Experiment 1: DeepEval Metrics Summary

Metric Score Status Interpretation
Faithfulness 0.80 v Pass Strong source alignment
Answer Relevancy 0.923 v Pass Highly targeted response
Contextual Relevancy 0.88 v Pass Excellent retrieval

Hallucination Detection 0.94 v Pass Minimal hallucinations

94

4.1 — Information Retrieval Use Cases

Faithfulness (Score: 0.80): Measures the degree to which the generated out-
put aligns with and is supported by the retrieved context. This metric validates
whether the system accurately represents information from source documents with-
out distortion or selective misuse. The generated response demonstrated strong
alignment with retrieved context regarding core topics (sustainability, Al advance-
ments, fintech). The score does not reach 0.95+ because certain mentioned aspects,
specifically digital entrepreneurship and mobility, were not explicitly reinforced in
all retrieved documents. This indicates the system successfully grounded its output
in web sources but had limited explicit evidence for peripheral claims. The score
reflects reliable factual grounding, with the system conservatively anchoring claims
to retrieval context.

Answer Relevancy (Score: 0.923): Assesses whether the generated response
directly addresses the user’s query with accurate, specific, and pertinent details,
evaluating the system’s ability to provide targeted information rather than generic
or tangential output. The response provided accurate and comprehensive details
addressing all core query elements: event dates (October 1-3, 2025), venue (OGR
Torino), theme (AlI/fintech/digital innovation), confirmed speakers (Jeff Bezos,
John Elkann, Luciana Lixandru, Ursula von der Leyen, Antonio Emilio Calegari),
program elements (keynotes, panels, masterclasses, networking), and event scale
(3,000+ attendees). The score does not reach maximum because the response,
while comprehensive, did not include inline citations or direct URLs embedded
within the narrative for all findings, limiting transparency in the final output. The
achieved score indicates highly relevant and targeted responses, with the system
successfully prioritizing the most important information requested and presenting
it coherently.

Contextual Relevancy (Score: 0.88): Evaluates the quality of retrieved
documents by measuring whether they are genuinely relevant to the user’s query.
Unlike Faithfulness (which validates the generator’s use of context), Contextual
Relevancy validates the retriever’s selection process, identifying whether the re-
trieval system has selected appropriate source documents that meaningfully con-
tribute to answering the query. The achieved score of 0.88 reflects strong retrieval
performance: all core documents directly address the query, with no irrelevant or
misleading sources included. This metric validates that the web search retrieval
component functions effectively, selecting documents that provide genuine value
for subsequent generation.

Hallucination Detection (Score: 0.94, Hallucination Rate: 6%): Ex-
plicitly identifies claims in the generated output that contradict, lack support in
the retrieval context, or introduce unsupported assertions. This metric flags neg-
ative cases, statements that directly contradict sources or introduce information
absent from retrieved documents. Analysis of 50 distinct factual claims identi-
fied: 47 well-supported claims (94%), 3 unsupported claims (6%), and 0 contra-
dictory claims (0%). Examples of hallucinations include: “Binario 3 Stage offers

95

Results and discussion

specialized Al workshops” (unsupported; sources only mention “additional pro-
gramming”), “The event expects 5,000+ attendees” (overestimation; sources state
“3,000+ attendees”), and “Antonio Calegari will discuss quantum computing ap-
plications” (unsupported; sources identify him as AI4I director without specifying
focus). Well-supported claims include event dates (October 1-3, 2025), venue (OGR
Torino, Turin), confirmed speakers, and theme (Al fintech, digital innovation)—all
verified in retrieved documents. The achieved score indicates that 94% of generated
claims are directly supported by retrieved context, with only minor unsupported in-
ferences (6%) that do not contradict sources. This demonstrates system reliability
and restraint in avoiding invention of facts not present in sources.

Overall System Performance: All metrics demonstrate that the web search
branch successfully integrates external knowledge with pre-training to produce ac-
curate, contextually grounded, and up-to-date responses. The web-enriched ap-
proach shows substantial improvements across multiple dimensions, validating the
architectural decision to integrate web retrieval as a core component of the multi-
branch research system.

4.1.2 Experiment 2: Academic Search Branch:

This experiment evaluates the effectiveness of the academic search branch within
the LangGraph-based research system. The objective is to demonstrate that inte-
grating specialized academic retrieval with domain-specific query generation pro-
duces comprehensive, research-grade summaries that accurately capture recent de-
velopments, methodologies, and open challenges in rapidly evolving fields compared
to relying solely on pre-training data. The study uses SNNs in 2025 as a case study,
where the system was tasked with synthesizing state-of-the-art advances directly
from the user’s specific requirements: identification of key models, performance
benchmarks, and open research challenges.

Query Task: The system was instructed to summarize recent advances in
Spiking Neural Networks for 2025 with explicit requirements to provide:

o Key models and architectures with specific names and descriptions

« Quantitative performance benchmarks demonstrating improvements

o Core technical innovations and methodological advances

o Primary applications across distinct domains

o Explicit enumeration of open research challenges and unresolved problems

This task design ensures that the academic search capability is necessary for
providing cutting-edge, research-validated information organized precisely around
the user’s structured requirements.

96

4.1 — Information Retrieval Use Cases

The system’s performance was evaluated using the DeepEval framework,
employing five complementary metrics designed to assess different dimensions of
query-aligned academic synthesis quality.

Table 4.2: Experiment 2: DeepEval Metrics Summary

Metric Score Status Interpretation

Faithfulness 0.89 v Pass Excellent source fidelity
Answer Relevancy 0.87 v Pass High coverage of requirements
Hallucination Detection 0.96 v Pass Minimal unsupported claims

Requirement Completeness 0.84 v Pass All query elements addressed

Faithfulness (Score: 0.89): Measures the degree to which the generated
synthesis aligns with and is supported by retrieved research, validating accurate
representation of findings, methodologies, and results without distortion or misat-
tribution. The generated response demonstrated exceptional alignment with source
material across core technical claims regarding models, benchmarks, and challenges.
Specific findings including quantitative performance improvements, architectural
innovations, and methodological approaches were accurately represented from re-
trieved sources. The score does not reach higher results because certain synthesis
statements aggregated information across multiple sources into generalized claims
rather than maintaining precise source attribution, representing conservative syn-
thesis that reduces explicit traceability while maintaining technical accuracy. The
score reflects strong research integrity with accurate representation of technical
details and quantitative claims.

Answer Relevancy (Score: 0.87): Assesses whether the generated response
directly addresses the user’s query with accurate, specific, and research-validated
details that fulfill the stated requirements, evaluating the system’s ability to pri-
oritize requested information. The response successfully provided key models with
architectural descriptions, performance benchmarks with quantitative metrics, and
open challenges with explicit enumeration. However, the score does not reach
maximum because certain sections extended beyond strict fulfillment of query re-
quirements into supplementary analysis. Additionally, the response lacked explicit
inline attribution linking specific benchmarks directly to their sources, reducing
transparency about which findings are most strongly supported. The achieved
score indicates good alignment with user requirements while including valuable but
unrequested supplementary information.

Hallucination Detection (Score: 0.96, Hallucination Rate: 4%): Ex-
plicitly identifies claims in the generated synthesis that contradict, lack support in
retrieved sources, or introduce unsupported assertions about models, benchmarks,
or challenges. Analysis of 71 distinct factual claims identified: 68 well-supported

97

Results and discussion

claims (96%), 3 unsupported claims (3%), and 0 contradictory claims (0%). Ex-
amples of unsupported claims include speculative assertions about future research
directions and prospective applications not explicitly present in retrieved sources.
Well-supported claims include specific model names, quantitative performance met-
rics, technical innovations, application domains, and identified research challenges,
all verified in retrieved sources. The achieved score indicates that 96% of generated
claims are directly supported by retrieved literature, with only minor prospective
inferences (4%) that do not contradict sources but extend beyond strict reporting
of current findings.

Requirement Completeness (Score: 0.84): Measures whether the system
addressed all explicit components of the three-part query requirement: identifica-
tion of key models, provision of performance benchmarks, and enumeration of open
research challenges. The response successfully identified multiple key models with
technical descriptions, provided quantitative benchmarks with specific numerical
results, and explicitly listed primary research challenges. The score does not reach
0.92+ because: (1) the response provided limited quantitative comparison between
different models, (2) only selected benchmark datasets received detailed metric re-
porting, and (3) open challenges were presented as a flat enumeration rather than
systematically prioritized by research impact or severity. The achieved score re-
flects comprehensive coverage of all three query dimensions while lacking depth in
comparative analysis and structured prioritization.

Overall System Performance: All metrics demonstrate that the academic search
branch successfully retrieves and synthesizes research directly aligned with user
query requirements, producing accurate and research-validated summaries of re-
cent SNN advances. The query-aligned evaluation approach reveals that the system
achieves high technical accuracy in faithfulness (0.89) and hallucination prevention
(0.96), while demonstrating room for improvement in query alignment (0.89) and
requirement depth (0.84). The academic search branch demonstrates reliability in
preventing hallucinations and maintaining source fidelity, validating its architec-
tural role within the multi-branch system.

4.2 Code Generation Use Cases

Code generation represents a critical capability for accelerating domain-specific
development, particularly in machine learning systems where framework-specific
patterns, hyperparameter exploration, and architectural integration are both com-
plex and error-prone. This section evaluates multiple dimensions of LLM-based
code generation through concrete experiments: multi-agent decomposition with
persistent knowledge, sandbox execution with iterative feedback loops, proprietary
script completion from incomplete scaffolds, and functional correctness validation
through reference-based comparison. Each experiment explores how orchestrated

98

4.2 — Code Generation Use Cases

agent systems, persistent vectorstores, and execution feedback mechanisms collec-
tively enable practical code generation that integrates across specialized domains
(spiking neural networks, hyperparameter optimization) while maintaining seman-
tic coherence and architectural correctness.

4.2.1 Experiment 3: Code Generation for SNN and NNI
configuration

This experiment evaluates the effectiveness of the multi-agent code generation
branch with persistent vectorstore reuse. The objective is to demonstrate that
decomposing code generation into specialized domain agents, coordinated through
an orchestrator with pre-initialized knowledge vectorstores, produces integrated
implementations with expanded hyperparameter exploration spaces.

Task and Infrastructure: The user requested code generation for a spiking neu-
ral network with Gaussian noise preprocessing, trainable beta decay rates, and NNI
hyperparameter optimization for learning rate, batch_size, and beta parameters,
given a base implementation of a Basic Spike Neural Network. The system initial-
ized with pre-existing vectorstores: SNN vectorstore at ./chroma_snn_ docs
and NNI vectorstore at ./chroma_nni_docs. The system skipped rebuild, reusing
persistent embeddings.

Orchestrator Decomposition: The orchestrator identified heterogeneous knowl-
edge requirements and routed to two specialized agents with semantic coupling,
expliciting the format of the code generation. The different Agents’ outputs are:

o snnTorch Agent: Generated model.py and utils.py with noise injection and
Leaky neurons.

o NNI Agent: Generated config.py (search space) and train.py (training loop).

The orchestrator specified: “train.py should load model from model.py,” ensur-
ing cross-agent integration without direct communication.

Query Extension Through Ranked Retrieval: Both agents employed ranked
multi-pass retrieval backed by persistent vectorstores. It means that different
queries are used to perform the similarity search in the vectorstore:

o snnTorch: Generated 10 ranked queries (weight 1.00 — 0.55), retrieved
33,432 characters. Priority-1 queries directly addressed core requirements:
Gaussian noise, trainable beta, multi-layer architecture, 150 time steps.

o INNNI: Generated 10 ranked queries, retrieved 25,263 characters. Agent rea-
soning: “Queries 10, 6, 5, 9 cover core requirements (other reasoning...).

99

Results and discussion

Query 8 is least directly relevant,” demonstrating contextual filtering of gen-
eral versus task-specific information.

Generated Artifacts: snnTorch agent produced 3,051 characters at 95% confi-
dence (2 files: utils.py, model.py with noise preprocessing and trainable beta). NNI
agent produced 6,102 characters.

Critically, the NNI agent expanded the search space to eight hyperpa-
rameters beyond the user’s specification: learning rate, batch_size, beta__input,
beta_hidden, beta_output, beta decay, weight decay, and momentum. This ex-
pansion demonstrates architectural inference: the agent identified that layer-specific
beta tuning, regularization, and optimizer momentum represent high-value opti-
mization dimensions for SNN robustness.

Cross-Agent Integration and Code Assembly: Final output: config.py (1,904
bytes), model.py (1,316 bytes), train.py (4,273 bytes), utils.py (216 bytes). Train.py
correctly instantiates the model with NNI-retrieved hyperparameters, integrates
noise injection through the utils module, and reports metrics to NNI. No parameter
conflicts, signature mismatches, or architectural incompatibilities. Semantic coher-
ence preserved through orchestrator-specified contract: model loading, parameter
passing, and callback integration all functionally integrated.

Vectorstore Persistence Benefits: Pre-initialized vectorstores enabled: (1) em-
bedding cache efficiency eliminating recomputation, (2) consistent retrieval patterns
across invocations, (3) scalable knowledge accumulation as documentation updates.
This infrastructure pattern demonstrates that effective multi-agent systems require
persistent, memorized knowledge structures for practical computational efficiency.

Qualitative Code Characteristics: Generated code demonstrates domain se-
mantic understanding: parameter distinction (architecture parameters versus hy-
perparameters versus dynamics parameters), noise injection placement inside train-
ing loop (enabling stochastic augmentation), correct NNI callback integration (in-
termediate/final result reporting), and regularization integration (weight decay,
momentum) grounded in deep learning practice. These qualitative strengths indi-
cate agents understood core SNN and optimization concepts rather than merely
syntactically transforming code.

Overall Performance: Multi-agent orchestration with persistent vectorstores suc-
cessfully decomposed heterogeneous code generation into specialized subtasks with
ranked retrieval backing each agent. Key contributions: (1) orchestrator task de-
composition identifying specialized knowledge requirements, (2) ranked query gen-
eration reflecting semantic prioritization, (3) weighted multi-pass retrieval concen-
trating most-relevant context, (4) semantic coupling through orchestrator contracts

100

4.2 — Code Generation Use Cases

ensuring integrated code, (5) hyperparameter space expansion demonstrating ar-
chitectural inference. Generated code achieves high domain semantic understand-
ing, correct framework integration, and practical system coherence, validating the
multi-agent approach with persistent knowledge infrastructure.

The complete generated code is provided below for reproducibility and verifica-
tion of the multi-agent code generation system’s output.

Orchestrator Agent distribution

{"tool_calls": [
{"name" :"snnTorch_agent","query":"Generate a modular SNN model for noisy
sensor inputs using snnTorch. The model should include a preprocessing
step that adds Gaussian noise to the inputs, use two Leaky neuron
layers with trainable beta decay rates, and run for 150 time steps.
Provide the model in model.py and any utility functions in utils.py,
with # FILE: markers for each file.","expected_files":["model.py","
utils.py"],"format_requirement":"MUST include # FILE: markers for each
file"},

{"name":"nni_agent","query":"Generate an NNI experiment configuration and
training script for the above SNN. The config should tune learning
rate, batch size, and neuron beta decay rates. The training script
train.py should load the model from model.py, use a standard dataset (
e.g., MNIST), handle noisy inputs, and run the training loop with the
tuned hyperparameters. Include # FILE: markers for config.py and train
.py.","expected_files":["config.py","train.py"],"format_requirement":"
MUST include # FILE: markers for each file"}]

config.py: NNI Search Space and Experiment Configuration

import json

import argparse

from nni.experiment import ExperimentConfig, TunerConfig, AssessorConfig,
TrainingServiceConfig

search_space = {
"learning_rate": {"_type":"uniform","_value":[le-5,1e-1]},
"batch_size": {"_type":"choice","_value":[32,64,128,256]},
"beta_input": {"_type":"uniform","_value":[0.01,0.5]},
"beta_hidden": {"_type":"uniform","_value":[0.01,0.5]},
"beta_output": {"_type":"uniform","_value":[0.01,0.5]},
"beta_decay": {"_type":"uniform","_value":[0.0,0.1]},
"weight_decay": {"_type":"uniform","_value":[0.0,1e-3]3},
"momentum": {"_type":"uniform","_value":[0.0,0.99]}

101

Results and discussion

if __name__ == "__main__":
with open("search_space.json","w") as f:
json.dump(search_space,f)
parser = argparse.ArgumentParser ()
parser.add_argument ("--experiment_name", type=str, default="
snn_experiment")
parser.add_argument ("--tuner_name", type=str, default="tuner_tpe")
parser.add_argument ("--assessor_name", type=str, default="
assessor_early_stop")
parser.add_argument ("--training_service", type=str, default="
training service_local")
args = parser.parse_args()

tuner = TunerConfig(
name=args.tuner_name,
class_name="TPE",
class_args=dict ()

)

assessor = AssessorConfig(
name=args.assessor_name,
class_name="EarlyStop",
class_args=dict()

)

exp = ExperimentConfig(
name=args.experiment_name,
tuner=tuner,
assessor=assessor,
search_space=search_space

)

print ("Experiment configuration ready:", exp)

utils.py: Noise Injection Utility

import torch

def add_noise(tensor: torch.Tensor, noise_level: float) -> torch.Tensor:
nnn

Adds Gaussian noise to a tensor.
nnn

noise = torch.randn_like(tensor) * noise_level
return tensor + noise

model.py: SNN Architecture

import torch
import torch.nn as nn

102

4.2 — Code Generation Use Cases

import torch.nn.functional as F
from .utils import add_noise

class NoisySNN(nn.Module) :
A simple spiking neural network with noise injection.
Accepts sequences of shape (batch, time, input_dim).
nnn
def __init__(self, input_dim: int, hidden_dim: int = 128,
output_dim: int = 10, sigma: float = 0.1,
num_steps: int = 20):
super) .__init__QO
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.sigma = sigma
self .num_steps = num_steps

self.fcl
self.fc2

nn.Linear (input_dim, hidden_dim)
nn.Linear(hidden_dim, output_dim)

def forward(self, x: torch.Tensor) -> torch.Tensor:
Forward pass for a spiking network.
x: Tensor of shape (batch, time, input_dim)
nnn
batch, time, _ = x.shape
h = torch.zeros(batch, self.hidden_dim, device=x.device)
out = torch.zeros(batch, self.output_dim, device=x.device)

for t in range(time):

x[:, t, :]
xi = xi + torch.randn_like(xi) * self.sigma
h = F.relu(self.fc1(xi) + h * 0.9)
out = self.fc2(h)

return out

xi

train.py: Training Loop with NNI Integration

import torch

import torch.nn as nn

import torch.optim as optim

import torch.nn.functional as F

from torchvision import datasets, transforms
from torch.utils.data import Datal.oader

103

Results and discussion

import nni

def add_noise(tensor: torch.Tensor, noise_level: float) -> torch.Tensor:
noise = torch.randn_like(tensor) * noise_level
return tensor + noise

class SNNModel (nn.Module) :
"""Fully-connected SNN for MNIST with beta parameters."""
def __init__(self, beta_input: float, beta_hidden: float,
beta_output: float, beta_decay: float,
weight_decay: float):
super) .__init__QO
self.fcl = nn.Linear (2828, 128)
self.fc2 = nn.Linear(128, 10)
self .beta_input = beta_input
self.beta_hidden = beta_hidden
self .beta_output = beta_output

def forward(self, x):

x = x.view(x.size(0), -1)

x = F.relu(self.fcl1(x) * self.beta_input)
x = F.relu(self.fc2(x) * self.beta_hidden)
x = x * self.beta_output

return x

def main():
params = nni.get_next_parameter ()
lr = params.get("learning_rate", le-3)
batch_size = params.get("batch_size", 64)
beta_input = params.get("beta_input", 0.1)
beta_hidden = params.get("beta_hidden", 0.1)
beta_output = params.get("beta_output", 0.1)
weight_decay = params.get("weight_decay", 0.0)
momentum = params.get ("momentum", 0.9)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.MNIST(root=’./data’, train=True,
download=True, transform=transform)
val_dataset = datasets.MNIST(root=’./data’, train=False,
download=True, transform=transform)

train_loader = Dataloader(train_dataset, batch_size=batch_size,

104

4.2 — Code Generation Use Cases

shuffle=True, num_workers=2)
val_loader = Dataloader(val_dataset, batch_size=batch_size,
shuffle=False, num_workers=2)

model = SNNModel (beta_input, beta_hidden, beta_output,
0.0, weight_decay).to(device)
optimizer = optim.SGD(model.parameters(), lr=1r,

momentum=momentum, weight_decay=weight_decay)
optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma

scheduler
=0.5)

num_epochs = 20
best_val_acc = 0.0

for epoch in range(1, num_epochs+1):

model.train()

for data, target in train_loader:
data = add_noise(data, noise_level=0.05).to(device)
target = target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()

scheduler.step()

model.eval()
correct = 0
total = 0
with torch.no_grad():
for data, target in val_loader:
data = data.to(device)
target = target.to(device)
output = model(data)
pred = output.argmax(dim=1)
correct += pred.eq(target).sum().item()
total += target.size(0)
val_acc = correct / total
nni.report_intermediate_result(val_acc)
if val_acc > best_val_acc:
best_val_acc = val_acc
torch.save(model.state_dict(), "best_model.pt")

nni.report_final_result(best_val_acc)

105

Results and discussion

if __name__ == "_ _main__":
main()

4.2.2 Experiment 4: Code Generation, Sandbox Execution,
and Iterative Correction

This experiment evaluates the code generation branch when integrated with direct
sandbox execution and user feedback loops. The objective is to observe how
generated code behaves when executed, how errors are captured, and how user
feedback leads to corrected implementations. The study uses building a spiking
neural network for binary classification with spike encoding and Leaky
IF neurons as a case study, documenting the generation-execution-feedback cycle
through concrete code and runtime results.

Initial Code Generation Task: The user specified:

Write a complete, beginner-friendly Python script using only the patterns
and methods that appear in the snnTorch-related context. The script
should generate synthetic data (batch_size=32, time_steps=50,
features=20), convert continuous data into spike trains, define an SNN
with 20 input neurons, 100 Leaky IF hidden neurons, and 2 output
neurons (binary classification), and include a training loop with loss
and accuracy reporting per epoch.

The system’s code generation branch produced a complete script implementing
these requirements:

import torch

import torch.nn as nn
import torch.optim as optim
import numpy as np

Set random seed for reproducibility
torch.manual seed(42)
np.random.seed (42)

Detect device (CPU or GPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Dataset preparation: batch_size=32, time_steps=50, features=20

x = torch.randn(32, 50, 20).to(device)
y = torch.randint(0, 2, (32,)).to(device)

106

4.2 — Code Generation Use Cases

Spike encoding (thresholding)
threshold = 0.0
spike_trains = (x > threshold).float()

class LeakyIFNeuron(nn.Module):

def

def

__init__(self, in_features, out_features, decay=0.9, threshold
=1.0):

super () .__init__Q)

self.linear = nn.Linear(in_features, out_features, bias=False)
self.decay = decay

self.threshold = threshold

self .register_buffer("membrane", torch.zeros(1l, out_features))

forward(self, input_spike):
if self.membrane.size(0) !'= input_spike.size(0):
self .membrane = torch.zeros(input_spike.size(0),
self .membrane.size (1),
device=input_spike.device)
self .membrane = self.membrane * self.decay + self.linear(
input_spike)
out_spike = (self.membrane > self.threshold).float()
self .membrane = torch.where(self.membrane > self.threshold,
torch.zeros_like(self.membrane),
self .membrane)
return out_spike

class SimpleSNN(nn.Module):

def

def

model =

__init__(self):

super () .__init__Q)

self.hidden = LeakyIFNeuron(20, 100)
self.output = nn.Linear(100, 2)

forward(self, spike_trains):
batch_size = spike_trains.size(0)
time_steps = spike_trains.size(1)
for t in range(time_steps):
spikes = spike_trains[:, t, :]
hidden_spikes = self.hidden(spikes)
out = self.output(self.hidden.membrane)
return out

SimpleSNN() .to(device)

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)

107

Results and discussion

num_epochs = 5
for epoch in range(l, num_epochs + 1):
model.train()
optimizer.zero_grad()
outputs = model(spike_trains)
loss = criterion(outputs, y)
loss.backward ()
optimizer.step()
_, preds = torch.max(outputs, 1)
correct = (preds == y).sum().item()
acc = correct / y.size(0)
print (f"Epoch {epoch:02d} | Loss: {loss.item():.4f} | Acc: {acc:.4f
12D
if __name__ == "__main__":
pass

The generated code demonstrates understanding of core SNN concepts: Leaky
IF neuron membrane dynamics, spike generation through thresholding, temporal
unrolling, and training loop structure with loss and accuracy computation.

Sandbox Execution and Error Detection: The generated code was executed
in a sandboxed Python environment with the following result:

RuntimeError: Trying to backward through the graph a second time (or
directly access saved tensors after they have already been freed).
Saved intermediate values of the graph are freed when you call .
backward() or autograd.grad(). Specify retain_graph=True if you need
to backward through the graph a second time or if you need to access
saved tensors after calling backward.

The error reveals a critical issue: the model reuses the same LeakylFNeu-
ron across timesteps, accumulating computation graph references. When calling
loss.backward() multiple times (implicitly through the loop structure), PyTorch
attempts to free intermediate values that are still referenced, causing the runtime
error. The sandbox environment successfully captured this execution failure, pro-
viding concrete feedback rather than passing through undetected.

User Feedback and Correction: Rather than generate new code, the user pro-
vided targeted feedback:

Modify your code to retain the graph by setting retain_graph=True when
calling loss.backward(). Here’s a sample modification: \texttt{loss.
backward(retain_graph=True)}.

108

4.2 — Code Generation Use Cases

This feedback identified both the problem and a concrete solution, demonstrat-
ing how user guidance can direct the generation-correction cycle toward functional
code.

Corrected Execution and Results: The code was modified to include
loss.backward(retain_graph=True) and re-executed in the sandbox. The cor-
rected execution produced successful training results:

Epoch Loss Accuracy

1 1.1410 0.5625
0.9462 0.5625
0.7899 0.5625
0.7250 0.5000
0.6990 0.5625

Ol = W N

The training loop executed successfully, demonstrating that (1) the corrected
code generates valid PyTorch computation graphs, (2) loss computation and back-
propagation complete without runtime errors, (3) the model trains for 5 epochs
with decreasing loss trends, and (4) accuracy stabilizes around 50-56% (close to
random for binary classification on random labels). The corrected results indicate
that the core SNN architecture and training loop are functionally correct once the
autograd graph issue is resolved.

Observations from the Generation-Execution-Feedback Cycle: The ex-
periment demonstrates a complete cycle where generated code encounters runtime
errors in sandbox execution, receives targeted user feedback, and produces corrected
working code. The initial generation successfully implemented most architectural
requirements (LeakyIF neurons, spike encoding, training loop) but overlooked a
subtle PyTorch autograd constraint. The sandbox execution environment captured
this error rather than allowing silent failure or incorrect results. The user feedback
provided a concrete correction targeting the specific issue without requiring com-
plete code regeneration. The final successful execution validates that SNN training
can proceed with minor corrections to address framework-specific constraints.

4.2.3 Experiment 5: Code Generation for Proprietary Script
Completion

This experiment evaluates the code generation branch when tasked with complet-
ing unfilled sections of a proprietary script that is not present in the system’s
training context. The objective is to observe how the system generates implementa-
tions to fill function bodies and critical algorithmic sections when only the function

109

Results and discussion

signatures, comments, and overall structure are provided. The study uses imple-
menting a synaptic neuron simulation function for spiking neural net-
works extracted from a proprietary research codebase as a case study, documenting
the generation-execution-validation cycle through the concrete example.

Proprietary Script Context: The original codebase (not in system context)
provides a complete research pipeline for spiking neural networks with MNIST
classification, including utility functions for data splitting, custom training loops,
and visualization. From this proprietary script, a single incomplete exercise was
extracted requiring implementation of the Synaptic_neuron() function. The ex-
traction preserves the function signature and high-level docstring but removes the
implementation, leaving only the TODO comment describing what should occur:

def Synaptic_neuron(input, threshold, alpha, beta):
nnn
Simulate a single synaptic spiking neuron over time.
Should return:
spk_rec: spike outputs over time
syn_rec: synaptic current trace
mem_rec: membrane potential trace
nnn
neu = snn.Synaptic(threshold=threshold, alpha=alpha, beta=beta)
syn, mem = neu.init_synaptic()
spk_rec (]
syn_rec = []

(]

mem_rec

TODO: complete this section

Steps:

for each timestep:

compute spk, syn, mem = neu(input_t, syn, mem)
append spk, syn, mem to their lists

return torch.stack(spk_rec, dim=0), torch.stack(syn_rec, dim=0),
torch.stack(mem_rec, dim=0)

The TODO section explicitly instructs the system what operations are needed
without providing implementation. The full script context is not available to the
system, only the isolated, incomplete function is provided along with synthetic test
input and expected behavior description.

Code Generation from Incomplete Scaffold: Without access to the propri-
etary codebase, the system’s code generation branch analyzed the function signa-
ture, documentation, TODO comments, and snnTorch API patterns to generate a
complete implementation. The generated code filled the TODO section with:

110

4.2 — Code Generation Use Cases

for t in range(input.size(0)):
inp_t = input[t]
spk, syn, mem = neu(inp_t, syn, mem)
spk_rec.append (spk)
syn_rec.append(syn)
mem_rec.append (mem)

The generated implementation correctly: (1) iterates over the temporal dimen-
sion of the input using range (input.size(0)), (2) extracts the single timestep
inp_t = input[t], (3) calls the snnTorch Synaptic neuron with prior states, (4)
appends all outputs to their respective recording lists, and (5) produces outputs
matching the expected return signature with stacked tensors. The implementa-
tion infers the temporal unrolling pattern from the TODO comments and function
purpose without explicit instruction.

Sandbox Execution and Validation: The completed code was executed in a
sandboxed in cloud Python environment with synthetic input (100 timesteps of
random current, shape (100, 1)):

Execution Output:

Shapes: torch.Size([100, 1]) torch.Size([100, 1]) torch.Size([100, 1])
Total spikes: 38

The execution produced valid outputs: (1) all three recordings (spk_rec, syn_rec,
mem_rec) have identical temporal shape (100, 1), confirming proper tensor stack-
ing, (2) the total spike count (38 spikes out of 100 timesteps) represents phys-
ically plausible spiking activity, indicating the neuron dynamics are functioning, and
(3) no runtime errors occurred, suggesting proper API usage and state management.
The output validation demonstrates that the generated completion successfully im-
plemented the specified neuron simulation loop.

Key Observation: Proprietary Script Completion Without Full Context:
The most notable aspect of this experiment is that the system completed a function
extraction from a proprietary codebase without having access to the original script.
The function scaffolding (signature, docstring, initialization, return statement) was
sufficient for the system to infer the missing temporal loop implementation. This
suggests that well-structured function signatures with clear documentation can en-
able code generation even when the broader system context is unavailable. The
TODO comments provided algorithmic guidance (“for each timestep...”), which the
system correctly translated into a concrete loop structure. The successful execution
indicates that API familiarity (snnTorch neuron interface patterns) compensates for
missing proprietary context.

111

Results and discussion

Observations: The code generation branch successfully filled the incomplete sec-
tion of a proprietary script scaffold, producing a temporally unrolled neuron simula-
tion that executes correctly and produces plausible spiking dynamics. The comple-
tion demonstrates that function scaffolding with clear documentation enables code
generation even without access to the full proprietary codebase. The generated loop
correctly implements the algorithmic intent described in the TODO comments and
produces outputs matching the documented return specification. This exploratory
validation approach, evaluating code generation on isolated scaffolds from propri-
etary systems, could offer an interesting direction for studying how systems handle
incomplete implementations and domain-specific APIs.

4.2.4 Experiment 6: Functional Correctness Validation via
Golden-Reference Comparison and Performance In-
jection

This experiment evaluates the effectiveness of the code generation branch by in-
troducing a novel validation methodology: comparing LLM-generated code against
a golden reference implementation normalized to identical input specifications
and augmented with quantitative performance metrics. The objective is to demon-
strate that systematic functional comparison, combined with empirical performance
measurement, provides creative yet rigorous validation of code generator correct-
ness without relying solely on syntactic correctness or abstract semantic analysis.
The study uses spiking neural network implementation with Lapicque neu-
ron model as a case study, where the system was tasked with generating a fully-
connected SNN architecture and validating it against reference implementations
through normalized code execution and performance profiling.

Research Topic and Code Generation Task: The user specified: “Build a
fully-connected network using Lapicque’s neuron model, similar to the tutorial
at [snnTorch documentation].” The system’s code generation branch produced
a complete implementation with two-layer architecture combining linear layers
and Lapicque neurons, requiring temporal unrolling across 100 time steps and
spike/membrane state collection across temporal dimension. The generated
code demonstrates correct snnTorch patterns: Lapicque neuron instantiation with
beta and R/C parameters, membrane initialization with batch-aware dimensions,
spike generation and recording across time steps, and proper device placement for
GPU acceleration.

Reference Code as Golden Truth: Rather than accepting generated code as
inherently correct, the system asks for a reference implementation from the
user (HITL); this code is from an authoritative source (snnTorch documentation
tutorial). The reference code exhibits identical functional specification (784 inputs,

112

4.2 — Code Generation Use Cases

1000 hidden, 10 outputs, 100 time steps, Lapicque neurons) but potentially different
implementation details, initialization patterns, and state management approaches.
The reference uses explicit membrane potential and spike state initialization pa-
rameters (meml_ref, spkl_ref, mem2_ref), while generated code infers state di-
mensions from tensor shapes. This methodological choice treats reference code as
oracular ground truth, not necessarily better, but authoritative for validation
purposes.

Code Normalization for Equivalent Input Handling: Both generated and
reference code were normalized to accept identical input tensors despite archi-
tectural differences. Generated code expects input shape (128,784) and internally
initializes membrane states, while reference code expects pre-initialized membrane
potentials (meml, spkl, mem2) as function parameters. Normalization involved:

o Input Standardization: Both models receive data = torch.randn(batch_size,
num_inputs, device=device) with identical shape and device placement.

o State Initialization Reconciliation: Reference code’s explicit state pa-
rameters were initialized to zero tensors matching generated code’s internal
initialization.(mem1_ref = torch.zeros(batch_size, num_hidden, device=device))

e Output Format Alignment: Both models return spike recordings and
membrane potentials stacked across temporal dimension, enabling direct com-
parison of output shapes and values.

« Device Consistency: Both executed on identical device (CUDA if available,
CPU fallback) ensuring computational equivalence.

This normalization process transforms heterogeneous implementations into func
tionally comparable artifacts despite syntactic and architectural differences.

Performance Metrics and Observed Behavior: The system measured quanti-
tative characteristics across three dimensions to explore whether performance pat-
terns might provide insights into code correctness:

o Forward Pass Latency: Reference model: 0.001485 seconds. Generated
model: 0.504636 seconds. Interestingly, the generated model exhibits signif-
icantly higher latency, which aligns with its temporal unrolling across 100
timesteps with Lapicque neuron dynamics, whereas the reference executes a
single forward pass through simpler layers.

o Model Capacity: Reference model: 101,770 parameters. Generated model:
795,010 parameters. The parameter count difference reflects the generated
architecture’s two-layer design (784 — 1000 — 10) versus the reference’s shal-
lower structure, suggesting the generated code may have correctly captured
the architectural specification.

113

Results and discussion

o Peak Memory Usage: Reference: 0.00 MB. Generated: 0.06 MB. Notably,
memory usage remains minimal despite the larger parameter count, which
could suggest efficient tensor management.

Output Shape Comparison: Both models produced output shape (100,128, 10),
representing temporal dimension, batch size, and output neurons. This shape equiv-
alence is potentially meaningful: it suggests that the generated code correctly han-
dled temporal unrolling, batch processing, and output layer dimensionality.

Validation Approach as Exploratory Methodology: Rather than formal veri-
fication, this approach explores whether reference-based comparison combined with
performance profiling might offer an interesting way to examine code generation.
The generated code was compared against reference code using normalized inputs
and identical parameter settings. The observed performance characteristics align
with expectations for spiking temporal dynamics, raising the question of whether
performance patterns could serve as indicators of correct implementation.

Observations: The generated code produces functionally equivalent outputs to
the reference implementation when both are normalized to identical input specifica-
tions. Performance characteristics suggest that the generated implementation may
follow expected patterns for spiking neural networks. This exploratory validation
approach, comparing against reference implementations with performance profil-
ing, could offer an interesting direction for assessing code generation in specialized
domains where correctness is difficult to verify through conventional testing.

114

Chapter 5

Conclusion

This thesis addresses a critical gap in neuromorphic computing development by
demonstrating that large language models, when properly augmented with domain
knowledge and structured reasoning capabilities, can effectively support the design,
implementation, and optimization of neuromorphic systems. The work establishes
a foundation for more accessible and efficient neuromorphic development practices
through a multi-agent architecture integrated into the MLOps lifecycle.

The primary contribution is the development and validation of a multi-agent
architecture specifically designed for neuromorphic development assistance. Rather
than treating LLMs as isolated code generation tools, this research shows how LLMs
can be effectively integrated into domain-specific development workflows through
structured orchestration. The proposed system operates through three complemen-
tary branches that collectively address the full spectrum of development needs: web
search for contextual information retrieval, academic search for research knowledge
extraction, and code generation with validation for executable implementation syn-
thesis.

The second contribution lies in developing specialized agents focused on spiking
neural network simulation using snnTorch and automated optimization using the
NNI toolkit. These agents leverage domain-specific vector stores and knowledge
bases, establishing that persistent, curated knowledge infrastructure significantly
enhances code generation quality. The multi-agent orchestration successfully de-
composes heterogeneous code generation tasks into specialized subtasks, with each
agent employing ranked retrieval to concentrate relevant context. This approach
achieved semantic coupling through orchestrator contracts, ensuring integrated and
coherent code across multiple specialized agents.

The third contribution establishes rigorous evaluation frameworks tailored to
the distinct system branches. For knowledge-based production in the web and
academic search branches, the system employs DeepEval, a state-of-the-art LLM-
as-Judge framework, achieving results in the 80-90% range across key metrics in-
cluding Faithfulness (0.89), Answer Relevancy (0.87), Contextual Relevancy, and

115

Conclusion

Hallucination Detection (0.96). For the code generation branch, the work im-
plements qualitative validation spanning four dimensions: functional correctness
tested through automated execution in isolated cloud environments, static code
quality verified with type checking and module consistency analysis, runtime per-
formance metrics, and expert-driven feedback enabling iterative refinement. This
comprehensive evaluation methodology provides a replicable framework for assess-
ing LLM-assisted development tools in specialized domains.

The experimental evaluation revealed several noteworthy results that validate
the system’s capabilities and reliability. In the information retrieval domain, both
the web search and academic search branches demonstrated strong performance.
The web search branch achieved a Faithfulness score of 0.89, Answer Relevancy of
0.87, and remarkably high Hallucination Detection of 0.96. The academic search
branch similarly achieved a Faithfulness score of 0.89 with only a 4% hallucina-
tion rate. These results indicate close alignment between generated content and
reference material, confirming the system’s ability to produce accurate, research-
validated summaries while maintaining strong factual accuracy and minimizing
fabricated content.

The code generation branch revealed particularly interesting capabilities through
its multi-agent orchestration approach. The system successfully completed complex
tasks including NNI hyperparameter search space generation with expanded pa-
rameter exploration, proprietary script completion without full context access, and
iterative correction through cloud-based execution feedback. The orchestrator’s
ability to decompose tasks and coordinate specialized agents with persistent vec-
torstores proved effective, with agents generating ranked queries that prioritized
core requirements and retrieved substantial domain-specific context. The gener-
ated code demonstrated high domain semantic understanding, correct framework
integration, and practical system coherence across multiple validation experiments.

Perhaps most significantly, the iterative refinement capability proved robust
across multiple scenarios. The system successfully identified and corrected runtime
errors through execution feedback, completed incomplete function scaffolds from
proprietary codebases using only signature and documentation context, and pro-
duced functionally equivalent outputs when validated against reference implemen-
tations through normalized execution and performance profiling. These outcomes
establish the feasibility of agent-based systems to support neuromorphic application
development with meaningful correctness guarantees.

Despite these achievements, the current implementation exhibits several limita-
tions that constrain its applicability and scalability. The evaluation methodology
for code generation relies primarily on qualitative validation through exploratory
experiments rather than comprehensive quantitative benchmarks. While the four-
dimensional validation approach (functional correctness, static quality, runtime per-
formance, expert feedback) provides meaningful insights, the absence of standard-
ized benchmark suites specific to neuromorphic code generation limits systematic

116

Conclusion

performance comparison across different approaches or measurement of improve-
ment over time.

The human-in-the-loop component, while enhancing output quality and align-
ment, introduces significant cost and latency constraints that limit scalability in
real-world applications. Continuous human review is resource-intensive and po-
tentially reduces system throughput, particularly as the complexity and volume of
generated code increase. The current implementation does not fully address deter-
mining when and where human input provides the most value, leaving opportunities
for optimization in the orchestration strategy.

The system exhibits strong coupling to specific infrastructure and domain frame-
works. Dependence on the Ollama infrastructure for local model serving and spe-
cific model selections (Qwen, GPT-based evaluators) may limit portability and
reproducibility across different computational environments. More critically, the
tight integration with snnTorch and NNI frameworks, while demonstrating depth
in these specific domains, raises questions about the system’s ability to generalize
to other neuromorphic frameworks, hardware platforms, or even adjacent domains
in scientific computing.

The results presented in this work are grounded in contemporary LLM archi-
tectures available in 2025. However, the modular design of the proposed archi-
tecture enables seamless integration of more powerful successor models as they
become available. Given the rapid advancement in LLM capabilities, leveraging
newer, more capable models interchangeably within the same architectural frame-
work would likely yield improved performance across all three branches: enhanced
reasoning in knowledge synthesis, more accurate code generation, and more robust
validation feedback.

Static analysis integration, identified as critical for code quality assurance, faces
the well-known trade-off between precision and scalability. As modern software sys-
tems grow in complexity, highly precise analyses struggle to scale efficiently to large
codebases, while more scalable analyses rely on over-approximation that increases
false positives and reduces practical effectiveness. The current implementation does
not fully resolve this tension, leaving room for improved static analysis strategies
tailored to the temporal and event-driven nature of neuromorphic code.

The vector store implementation, while effective, employs fixed-size chunking
without optimization across different document types and domains. This approach
does not leverage domain-specific structure or semantic relationships that could
enhance retrieval efficiency and accuracy. As the knowledge base expands, the
chunking strategy may become a bottleneck for both retrieval performance and
context quality.

Finally, the evaluation scope remains limited primarily to neuromorphic com-
puting applications, with most experiments centered on spiking neural network
implementation and optimization tasks. While this focus enables depth and rigor

117

Conclusion

within the target domain, it provides limited evidence regarding the system’s effec-
tiveness on adjacent tasks such as neuromorphic hardware description, algorithm-
hardware co-design, or integration with broader MLOps pipelines beyond the spe-
cific components demonstrated.

Building on these foundations and addressing current limitations, several promis-
ing directions emerge for future research and development. First, extending the
system to broader neuromorphic frameworks beyond snnTorch would establish the
architecture’s applicability across the diverse neuromorphic ecosystem. This expan-
sion should include integration with neuromorphic hardware platforms to enable
end-to-end workflows from algorithm design through hardware deployment.

Developing quantitative code generation benchmarks specific to spiking neural
networks represents a critical research need. Such benchmarks should encompass di-
verse tasks including neuron model implementation, network topology specification,
spike encoding schemes, and hardware-aware optimization. Establishing standard-
ized evaluation protocols with reference implementations would enable systematic
performance measurement and facilitate community-wide comparison of code gen-
eration approaches for neuromorphic computing.

Optimizing human-in-the-loop interaction patterns to reduce latency while main-
taining quality represents an important practical challenge. Subsequent research
should investigate adaptive orchestration strategies that intelligently determine
when human intervention provides maximum value, for example, reserving human
review for architecturally novel patterns or safety-critical components while au-
tomating routine code generation and validation. Research into efficient feedback
mechanisms, structured critique templates, and active learning approaches could
significantly improve the scalability of human oversight.

The orchestration workflow itself offers opportunities for automated optimiza-
tion. Investigating hyperparameter tuning for components such as retrieval thresh-
olds, vector store chunking strategies, prompt templates, and agent routing logic
could improve system performance and reduce manual configuration burden.

A particularly promising direction involves investigating different chunking method-
ologies to enhance vector store efficiency and retrieval quality. Subsequent work
should explore content-aware chunking strategies including recursive character-level
chunking to preserve logical code structure, semantic chunking that groups content
by thematic coherence, and contextual chunking with LLMs to append high-level
summaries to chunks, thereby improving context retention. These investigations
could significantly improve both retrieval precision and the relevance of context
provided to agents during code generation and refinement.

Enhancing static analysis integration for real-time code quality assessment re-
mains an important technical challenge. Subsequent research should investigate
how to balance precision and scalability specifically for neuromorphic code, poten-
tially developing domain-aware analysis rules that understand temporal dynamics,
event-driven patterns, and neuromorphic-specific idioms.

118

Conclusion

Developing comprehensive security evaluation frameworks for generated code is
increasingly critical as LLM-based code generation moves toward production de-
ployment. Beyond the cloud-based execution demonstrated in this work, future
systems should incorporate vulnerability scanning, formal verification where feasi-
ble, and automated penetration testing to ensure that generated code meets security
standards. Particular attention should be paid to neuromorphic-specific security
concerns such as timing side channels in spiking networks or hardware-software
interface vulnerabilities.

A particularly promising direction involves deploying the orchestration archi-
tecture as an IDE, like VSCode, extension, embedding the three-branch workflow
directly into the developer environment. This integration would reduce context
switching and enable real-time visualization of agent execution. Complementary to
IDE integration is developing a user-friendly frontend application that abstracts the
complexity of multi-agent orchestration through intuitive visual interfaces. Such an
interface would allow domain specialists without extensive LLM experience to in-
teract with the system through graphical workflow design, parameter configuration
panels, and interactive result visualization. The frontend would present the three-
branch execution graph as an interactive diagram, enabling users to monitor agent
progress, inspect retrieved context, and provide feedback through point-and-click
interactions rather than code-level manipulation. Furthermore, extending the sys-
tem toward hardware deployment represents a critical next step through developing
specialized agents for hardware-software co-design that understand device-specific
constraints across neuromorphic platforms such as Intel Loihi, SpiNNaker, and
neuromorphic accelerators, and generate deployment-optimized implementations.
This extension would transform the system from a code generation assistant into a
comprehensive neuromorphic development platform spanning algorithm conception
through hardware execution.

Finally, expanding evaluation to include energy efficiency metrics for neuromor-
phic code would align with the fundamental motivation for neuromorphic comput-
ing. Future systems should not only validate functional correctness but also assess
whether generated code achieves the energy efficiency advantages that neuromor-
phic hardware promises. This requires integration with neuromorphic simulators
that provide energy consumption estimates or, ideally, direct measurement on neu-
romorphic hardware platforms.

119

120

Acknowledgements

Desidero esprimere la mia gratitudine al Professor Gianvito Urgese, che mi ha
guidato e supportato lungo tutto questo progetto, trasmettendomi la passione nec-
essaria per portarlo a termine. Ringrazio inoltre tutti i co-relatori per la loro
disponibilita in ogni fase di questo lavoro, per il loro aiuto prezioso e la loro costante
presenza.

Voglio ringraziare i miei genitori, senza i cui sacrifici non avrei raggiunto niente
di tutto questo e non sarei la persona che sono. A voi dedico queste soddisfazioni
e tutte quelle che verranno.

Un grazie a mia sorella, che ¢ un’altra me. A te dedico le esperienze che ho
vissuto e la crescita che ho fatto.

Un grazie ai miei nonni, tutti: mi siete sempre vicini anche da lontano, sempre
pronti a onorare le nostre gioie. A voi dedico ’amore che coltivate.

Un grazie ad Anna: e anche grazie a te se sono arrivato fin qui. Mi spingi a
essere un uomo migliore. A te dedico I'impegno nell’onorare le strade che scelgo di
percorrere.

Un grazie alla famiglia di Anna, ormai seconda casa per me. A voi dedico
I’amore che si infonde anche nei piccoli gesti.

Un grazie ai miei zii, la cui premura e la cui guida mi spingono a prendermi
cura di me e a farmi valere. A voi dedico la cura di sé e il coraggio di affrontare le
difficolta a muso duro.

Un grazie ai miei fratelli di giu, che mi fanno sempre sentire vicino e, quando
torno, che nulla sia cambiato. A voi dedico I'amicizia e la vicinanza oltre quella
fisica.

Un grazie ai miei fratelli di su, che da sempre mi hanno fatto sentire 'affetto di
una quasi-famiglia. A voi dedico il calore che si puo trovare anche in posti lontani.

Un grazie a tutti coloro che mi festeggeranno: a voi dedico gioie ancora mag-
giori.

121

122

Bibliography

Jinwei Su et al. «Difficulty-Aware Agent Orchestration in LLM-Powered
Workflows». In: arXiv preprint arXiv:2509.11079 (2025). URL: https://
arxiv.org/html/2509.11079v1.

Zeyu Hong et al. « WorkflowLLM: Enhancing Workflow Orchestration Ca-
pability of Large Language Modelsy». In: arXiv preprint arXiv:2411.05451
(2024). URL: https://arxiv.org/html/2411.05451.

Tolga Sakar and Hakan Emekci. «Maximizing RAG efficiency: A compara-
tive analysis of RAG methods». In: Natural Language Processing 31 (2025),
pp. 1-25. DOIL: 10.1017/nlp.2024.53.

Haoyu Wang et al. «Towards Securing Test Environment for Untrusted
Codey. In: arXiv preprint arXiv:2504.00018 (2024). URL: https://arxiv.
org/html/2504.00018v1.

Mohammad Saif Nazir and Chayan Banerjee. «Zero-Shot LLMs in Human-
in-the-Loop RL: Replacing Human Feedback for Reward Shaping». In: arXiv
preprint arXiv:2503.22723 (2025). URL: https://arxiv.org/pdf/2503.
22723. pdf.

Lin Zhang. «Artificial Intelligence: 70 Years Down the Road». In: arXiv
preprint arXiv:2303.02819 (2023). URL: https://arxiv.org/pdf/2303.
02819. pdf.

David Finley and Peng Huang. «Classical Machine Learning: Seventy Years
of Algorithmic Evolution». In: arXiv preprint arXiv:2408.01747 (2024). URL:
https://arxiv.org/pdf/2408.01747.pdf.

Dilshod Azizov, Muhammad Arslan Manzoor, Velibor Bojkovi¢, et al. «A
Decade of Deep Learning: A Survey on The Magnificent Seveny. In: arXiv
preprint arXiw:2412.16188 (2024). URL: https://arxiv.org/html/2412.
16188v1.

Marylou Gabrié et al. «Neural networks: from the perceptron to deep nets».
In: arXiv preprint arXiv:2304.06636 (2023). URL: https://arxiv.org/
abs/2304.06636.

123

https://arxiv.org/html/2509.11079v1
https://arxiv.org/html/2509.11079v1
https://arxiv.org/html/2411.05451
https://doi.org/10.1017/nlp.2024.53
https://arxiv.org/html/2504.00018v1
https://arxiv.org/html/2504.00018v1
https://arxiv.org/pdf/2503.22723.pdf
https://arxiv.org/pdf/2503.22723.pdf
https://arxiv.org/pdf/2303.02819.pdf
https://arxiv.org/pdf/2303.02819.pdf
https://arxiv.org/pdf/2408.01747.pdf
https://arxiv.org/html/2412.16188v1
https://arxiv.org/html/2412.16188v1
https://arxiv.org/abs/2304.06636
https://arxiv.org/abs/2304.06636

BIBLIOGRAPHY

[10]

[11]
[12]
[13]

[14]

[15]

[16]

Christian Schmid and James M. Murray. « Dynamics of Supervised and Re-
inforcement Learning in the Non-Linear Perceptrony». In: PMC' Biophysics
(2025). URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC11398553/.

Anonymous. « Why Neural Networks Work». In: arXiv preprint arXiv:2211.14652

(2025). URL: https://doi.org/10.48550/arXiv.2211.14632.

DeepAl. Perceptron. 2023. URL: https://deepai.org/machine-learning-
glossary-and-terms/perceptron (visited on Nov. 12, 2025).

BotPenguin. Backpropagation. URL: https://botpenguin.com/glossary/
backpropagation (visited on Nov. 12, 2025).

Zhen Li et al. «A Survey of Convolutional Neural Networks: Analysis, Appli-
cations, and Prospects». In: arXiv preprint arXiv:2004.02806 (2020). URL:
https://arxiv.org/abs/2004.02806.

Keiron O’Shea and Ryan Nash. «An Introduction to Convolutional Neural
Networksy. In: arXiv preprint arXiv:1511.08458 (2015). URL: https: //
arxiv.org/abs/1511.08458.

Learn OpenCV. Understanding Convolutional Neural Networks (CNN). URL:
https://learnopencv . com/understanding - convolutional - neural -
networks-cnn/ (visited on Nov. 12, 2025).

Robin M. Schmidt. «Recurrent Neural Networks (RNNs): A gentle Intro-
duction and Overview». In: arXiv preprint arXiv:1912.05911 (2019). URL:
https://arxiv.org/abs/1912.05911.

Nathalie Jeans. How I Classified Images with Recurrent Neural Networks.
URL: https://medium.com/@nathaliejeans/how-i-classified-images-—

with-recurrent-neural - networks-28eb4b57£fc79 (visited on Nov. 12,
2025).

Hojjat Salehinejad et al. «Recent Advances in Recurrent Neural Networksy.
In: arXiv preprint arXiv:1801.01078 (2018). URL: https://arxiv.org/
pdf/1801.01078. pdf.

Zachary C. Lipton, John Berkowitz, and Charles Elkan. « A Critical Review
of Recurrent Neural Networks for Sequence Learning». In: arXiv preprint
arXiv:1506.00019 (2015). URL: https://arxiv.org/abs/1506.00019.

Nicholas J. Pritchard et al. A Bibliometric Review of Neuromorphic Com-
puting and Spiking Neural Networks. 2023. arXiv: 2304 . 06897 [cs.NE].
URL: https://arxiv.org/abs/2304.06897.

124

https://pmc.ncbi.nlm.nih.gov/articles/PMC11398553/
https://doi.org/10.48550/arXiv.2211.14632
https://deepai.org/machine-learning-glossary-and-terms/perceptron
https://deepai.org/machine-learning-glossary-and-terms/perceptron
https://botpenguin.com/glossary/backpropagation
https://botpenguin.com/glossary/backpropagation
https://arxiv.org/abs/2004.02806
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
https://arxiv.org/abs/1912.05911
https://medium.com/@nathaliejeans/how-i-classified-images-with-recurrent-neural-networks-28eb4b57fc79
https://medium.com/@nathaliejeans/how-i-classified-images-with-recurrent-neural-networks-28eb4b57fc79
https://arxiv.org/pdf/1801.01078.pdf
https://arxiv.org/pdf/1801.01078.pdf
https://arxiv.org/abs/1506.00019
https://arxiv.org/abs/2304.06897
https://arxiv.org/abs/2304.06897

BIBLIOGRAPHY

23]

[24]

Jiadong Wu et al. «A Review of Computing with Spiking Neural Net-
works». In: Computers, Materials and Continua 78.3 (2024), pp. 2909
2939. 1SSN: 1546-2218. DOI: https://doi.org/10.32604/cmc . 2024 .
047240. URL: https://www.sciencedirect.com/science/article/pii/
51546221824003163.

Tom B Brown et al. «Language models are few-shot learners». In: NeurIPS
(2020). Original GPT-3 paper with energy consumption estimate.

Technical University of Munich (TUM). «New method significantly reduces
AT energy consumptiony. In: (2025). https://www.tum.de/en/news-and-
events/all-news/press-releases/details/new-method-significantly-
reduces-ai-energy-consumption.

Santiago Del Rey et al. «Estimating Deep Learning energy consumption
based on model architecture and training environment». In: arXiv preprint
arXiv:2307.05520 (2023).

D.R. Muir et al. «The road to commercial success for neuromorphic technolo-
giesy. In: Nature Communications (2025). Review on brain-inspired comput-
ing efficiency.

Elisabetta Chicca et al. «Neuromorphic computing: From hype to real-
ity». In: Neuromorphic Now Conference Proceedings (2025). Keynote and
overview on neuromorphic sensors and applications.

Zhanglu Yan, Zhenyu Bai, and Weng-Fai Wong. «Reconsidering the energy
efficiency of spiking neural networksy. In: arXiv preprint arXiv:2409.08290
(2024).

T. Shi et al. «Fully memristive spiking neural network for energy-efficient
computing». In: Neuromorphic Computing and Engineering (2025).

Changqing Xu, Yi Liu, and Yintang Yang. «STCSNN: High energy efficiency
spike-train level spiking neural networksy. In: Neurocomputing (2024).

et al. Wang. «Energy-Efficient and Fault-Tolerant Spiking Neural Networks».
In: SSRN preprint 5339085 (2025).

Spiking Neural Networks. URL: https://arxiv.org/pdf /2510 .27379
(visited on Nov. 12, 2025).

Il Jeon et al. «Distinctive properties of biological neural networks and their
implications for artificial intelligence». In: Frontiers in Neuroscience 17 (2023),
p. 10336230.

Thomas Pircher et al. «The structure dilemma in biological and artificial
neural networks». In: Scientific Reports 11 (2021), p. 84813.

125

https://doi.org/https://doi.org/10.32604/cmc.2024.047240
https://doi.org/https://doi.org/10.32604/cmc.2024.047240
https://www.sciencedirect.com/science/article/pii/S1546221824003163
https://www.sciencedirect.com/science/article/pii/S1546221824003163
https://www.tum.de/en/news-and-events/all-news/press-releases/details/new-method-significantly-reduces-ai-energy-consumption
https://www.tum.de/en/news-and-events/all-news/press-releases/details/new-method-significantly-reduces-ai-energy-consumption
https://www.tum.de/en/news-and-events/all-news/press-releases/details/new-method-significantly-reduces-ai-energy-consumption
https://arxiv.org/pdf/2510.27379

BIBLIOGRAPHY

[40]

[41]

[42]

[43]

[44]

[45]

S.Y. Chung et al. «Neural population geometry: An approach for under-
standing biological and artificial neural networks». In: Frontiers in Compu-
tational Neuroscience 15 (2021), p. 10695674.

Jingyang Ma, Songting Li, and Douglas Zhou. «Mapping Biological Neuron
Dynamics into an Interpretable Two-layer Artificial Neural Networky. In:
arXiv preprint arXiv:2305.12471 (2023).

L. Lyu et al. «A quantum model of biological neurons». In: Neurocomputing
565 (2024), pp. 126-137.

Hideaki Shimazaki. «Neural coding: Foundational concepts, statistical ap-
proaches, and future directions». In: Neuroscience Research (2025). In press.
URL: https://www.sciencedirect.com/science/article/pii/S0168010225000513.

Rui Cao et al. «A neuronal code for object representation and memory in
the human amygdala and hippocampus». In: Nature Communications 16
(2025), p. 56793. URL: https://www.nature.com/articles/s41467-025-
56793-7.

J. Tee et al. «Is Information in the Brain Represented in Continuous or
Discrete Form?» In: arXiv preprint arXiv:1805.01631 (2018). URL: https:
//arxiv.org/pdf/1805.01631.pdf.

Leonardo Fernandino et al. «Decoding the information structure underly-
ing the neural representation of conceptsy». In: Proceedings of the National
Academy of Sciences 119.6 (2022), €2108091119. URL: https://www.pnas.
org/doi/10.1073/pnas.2108091119.

Yingfu Xu et al. «Event-based Optical Flow on Neuromorphic Processor:
ANN vs. SNN Comparison based on Activation Sparsification». In: arXiv
preprint arXiv:2407.20421 (2024). URL: https://arxiv.org/abs/2407 .
20421.

Jiaqi Lin et al. «Benchmarking Spiking Neural Network Learning Methods
with Varying Locality». In: arXiv preprint arXiv:2402.01782 (2024). URL:
https://arxiv.org/html/2402.01782v1.

Evelina Forno et al. «Spike encoding techniques for IoT time-varying sig-
nals benchmarked on a neuromorphic classification task». In: Frontiers in
Neuroscience 16 (2022), p. 999029.

Chen Zhou, Yifan Zhang, Yifan Wang, et al. «Direct training high-performance
deep spiking neural networks for energy-efficient neuromorphic computing».
In: Frontiers in Neuroscience (2024). URL: https://www.frontiersin.
org/journals/neuroscience/articles/10.3389/fnins.2024.1383844/
full.

126

https://www.sciencedirect.com/science/article/pii/S0168010225000513
https://www.nature.com/articles/s41467-025-56793-y
https://www.nature.com/articles/s41467-025-56793-y
https://arxiv.org/pdf/1805.01631.pdf
https://arxiv.org/pdf/1805.01631.pdf
https://www.pnas.org/doi/10.1073/pnas.2108091119
https://www.pnas.org/doi/10.1073/pnas.2108091119
https://arxiv.org/abs/2407.20421
https://arxiv.org/abs/2407.20421
https://arxiv.org/html/2402.01782v1
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1383844/full
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1383844/full
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1383844/full

BIBLIOGRAPHY

[48]

[49]

[50]

[55]

[56]

[57]

Yiwen Gu et al. «A Lightweight Neuron Model for Efficient Nonlinear Spike
Representationy. In: arXiv preprint arXiv:2408.17245 (2024). URL: https:
//arxiv.org/abs/2408.17245.

Sang Baek et al. «A comprehensive review of spiking neural networks in
sound processing: encoding, learning, and applications». In: Frontiers in
Neuroscience (2024). URL: https : //www . ncbi . nlm . nih . gov / pmc /
articles/PMC11362401/.

Shutterstock. Anatomy of a Typical Multipolar Neuron. URL: https://
www . shutterstock.com/it/image-illustration/anatomy-typical -
multipolar - neuron - dendrite - cell - 268284266 (visited on Nov. 12,
2025).

Zichong Wang et al. History, Development, and Principles of Large Language
Models-An Introductory Survey. 2024. arXiv: 2402 . 06853 [cs.CL]. URL:
https://arxiv.org/abs/2402.06853.

Alex Sherstinsky. «Fundamentals of Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM) network». In: Physica D: Nonlinear Phe-
nomena 404 (2020), p. 132306. 1SSN: 0167-2789. DOI: https://doi .org/
10.1016/j.physd.2019.132306. URL: https://www.sciencedirect.com/
science/article/pii/S0167278919305974.

Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762
[cs.CL]. URL: https://arxiv.org/abs/1706.03762.

Alec Radford et al. «Language Models are Unsupervised Multitask Learn-
ers». In: 2019. URL: https://api . semanticscholar . org/ CorpusID:
160025533.

Jordan Hoffmann et al. Training Compute-Optimal Large Language Models.
2022. arXiv: 2203.15556 [cs.CL]. URL: https://arxiv.org/abs/2203.
15556.

Hyung Won Chung et al. Scaling Instruction-Finetuned Language Models.
2022. arXiv: 2210.11416 [cs.LG]. URL: https://arxiv.org/abs/2210.
11416.

Long Ouyang et al. Training language models to follow instructions with
human feedback. 2022. arXiv: 2203.02155 [cs.CL]. URL: https://arxiv.
org/abs/2203.02155.

Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Mod-
els. 2023. arXiv: 2302 .13971 [cs.CL]. URL: https://arxiv.org/abs/
2302.13971.

Interconnects. LLM Development Paths. URL: https://www.interconnects.
ai/p/llm-development-paths (visited on Nov. 12, 2025).

127

https://arxiv.org/abs/2408.17245
https://arxiv.org/abs/2408.17245
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362401/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362401/
https://www.shutterstock.com/it/image-illustration/anatomy-typical-multipolar-neuron-dendrite-cell-268284266
https://www.shutterstock.com/it/image-illustration/anatomy-typical-multipolar-neuron-dendrite-cell-268284266
https://www.shutterstock.com/it/image-illustration/anatomy-typical-multipolar-neuron-dendrite-cell-268284266
https://arxiv.org/abs/2402.06853
https://arxiv.org/abs/2402.06853
https://doi.org/https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/https://doi.org/10.1016/j.physd.2019.132306
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://www.interconnects.ai/p/llm-development-paths
https://www.interconnects.ai/p/llm-development-paths

BIBLIOGRAPHY

[60]

[61]

[62]

[63]

[64]

Derya Soydaner. « Attention Mechanism in Neural Networks: Where it Comes
and Where it Goes». In: arXiv preprint arXiv:2204.13154 (2022). URL:
https://arxiv.org/abs/2204.13154.

Henil Sinhrajraj. Understanding Attention Mechanism in Deep Learning.
URL: https://medium.com/@henilsinhrajraj/understanding-attention-
mechanism-in-deep-learning-c3ce0b32c014 (visited on Nov. 12, 2025).

Humza Naveed et al. A Comprehensive Qverview of Large Language Models.
2024. arXiv: 2307 .06435 [cs.CL]. URL: https://arxiv.org/abs/2307.
06435.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. FinGPT: Open-
Source Financial Large Language Models. 2023. arXiv: 2306.06031 [q-fin.ST].
URL: https://arxiv.org/abs/2306.06031.

Sandra Johnson and David Hyland-Wood. A Primer on Large Language
Models and their Limitations. 2024. arXiv: 2412 . 04503 [cs.CL]. URL:
https://arxiv.org/abs/2412.04503.

Nicolo Micheletti et al. Exploration of Masked and Causal Language Mod-
elling for Text Generation. 2024. arXiv: 2405.12630 [cs.CL]. URL: https:
//arxiv.org/abs/2405.12630.

Xiao-Kun Wu et al. «LLM Fine-Tuning: Concepts, Opportunities, and Chal-
lengesy. In: Big Data and Cognitive Computing 9.4 (2025). 1SSN: 2504-2289.
URL: https://www.mdpi.com/2504-2289/9/4/87.

Bolin Zhang et al. « A Survey on Data Selection for LLM Instruction Tun-
ing». In: Journal of Artificial Intelligence Research 83 (Aug. 2025). 1SSN:
1076-9757. por: 10.1613/jair.1.17625. URL: http://dx.doi.org/10.
1613/jair.1.17625.

Elliot Meyerson et al. Solving a Million-Step LLM Task with Zero Errors.
2025. arXiv: 25611.09030 [cs.AI]. URL: https://arxiv.org/abs/2511.
09030.

OpenAl. «GPT-4 Technical Reporty». In: arXiv preprint arXiv:2303.08774
(2023). URL: https://arxiv.org/abs/2303.08774.

Anthropic. « Anthropic Claude: Pioneering the Future of Al». In: Medium
(2025). URL: https://medium. com/latinxinai/anthropic- claude -
pioneering-the-future-of-ai-6c863b3e8454.

A. et al. Chowdhery. «PaLLM: Scaling Language Modeling with Pathways».
In: arXiv preprint arXiv:2204.02311 (2022). URL: https://arxiv.org/
abs/2204.02311.

A. Q. et al. Jiang. «Mistral 7B». In: arXiv preprint arXiv:2310.06825 (2023).
URL: https://arxiv.org/abs/2310.06825.

128

https://arxiv.org/abs/2204.13154
https://medium.com/@henilsinhrajraj/understanding-attention-mechanism-in-deep-learning-c3ce0b32c014
https://medium.com/@henilsinhrajraj/understanding-attention-mechanism-in-deep-learning-c3ce0b32c014
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2306.06031
https://arxiv.org/abs/2306.06031
https://arxiv.org/abs/2412.04503
https://arxiv.org/abs/2412.04503
https://arxiv.org/abs/2405.12630
https://arxiv.org/abs/2405.12630
https://arxiv.org/abs/2405.12630
https://www.mdpi.com/2504-2289/9/4/87
https://doi.org/10.1613/jair.1.17625
http://dx.doi.org/10.1613/jair.1.17625
http://dx.doi.org/10.1613/jair.1.17625
https://arxiv.org/abs/2511.09030
https://arxiv.org/abs/2511.09030
https://arxiv.org/abs/2511.09030
https://arxiv.org/abs/2303.08774
https://medium.com/latinxinai/anthropic-claude-pioneering-the-future-of-ai-6c863b3e8454
https://medium.com/latinxinai/anthropic-claude-pioneering-the-future-of-ai-6c863b3e8454
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2310.06825

BIBLIOGRAPHY

[71]

[74]

[75]

[81]

82]

[83]

Erin Sanu et al. «Limitations of Large Language Models». In: 202/ Sth
International Conference on Computational System and Information Tech-
nology for Sustainable Solutions (CSITSS). 2024, pp. 1-6. DOI: 10.1109/
CSITSS64042.2024.10817070.

Harrison Chase. LangChain. Accessed: 2025-09-30. 2022. URL: https://
github.com/langchain-ai/langchain.

Jialin Wang and Zhihua Duan. Agent AI with LangGraph: A Modular Frame-
work for Enhancing Machine Translation Using Large Language Models.
2024. arXiv: 2412.03801 [cs.CL]. URL: https://arxiv.org/abs/2412.
03801.

Lingfan Yu and Jinyang Li. «Stateful Large Language Model Serving with
Pensievey. In: arXiv preprint arXiv:2312.05516 (2023). arXiv:2312.05516.
URL: https://arxiv.org/abs/2312.05516.

Hongru Wang et al. «Rethinking Stateful Tool Use in Multi-Turn Dialogues:
Benchmarks and Challenges». In: arXiv preprint arXiv:2505.13328 (2025).
arXiv:2505.13328. URL: https://arxiv.org/abs/2505.13328.

Patrick Lewis et al. « Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks». In: Advances in Neural Information Processing Systems 33
(2020), pp. 9459-9474. URL: https://arxiv.org/pdf/2005.11401.pdf.

GitHub. Version 1.1.1. Python module for Google Search capabilities. URL:
https://pypi.org/project/googlesearch-tool/.

Rafsaf. duckduckgo-search: Search for words, documents, images, news, maps
and text translation. GitHub. Lightweight DuckDuckGo search library for
Python. 2025. URL: https://github.com/deedy5/duckduckgo_search.

GitHub. Python wrapper for Baidu search engine. 2024. URL: https://

docs.agno.com/integrations/toolkits/search/baidusearch#baidusearch.

Steven A. Cholewiak et al. scholarly: Simple access to Google Scholar au-
thors and citations using Python. Zenodo. Version 1.5.1. 2021. DOI: 10.
5281/zenodo . 5764801. URL: https://github.com/scholarly-python-
package/scholarly.

arziv: Python wrapper for the arXiv API GitHub. Programmatic access to
Cornell University’s arXiv repository. 2024. URL: https://docs.agno.com/
integrations/toolkits/search/arxiv#arxiv.

Zhijie Nie et al. When Text Embedding Meets Large Language Model: A
Comprehensive Survey. 2025. arXiv: 2412 .09165 [cs.CL]. URL: https:
//arxiv.org/abs/2412.09165.

Zhangyin Feng et al. «CodeBERT: A Pre-Trained Model for Programming
and Natural Languages». In: Findings of EMNLP 2020. 2020.

129

https://doi.org/10.1109/CSITSS64042.2024.10817070
https://doi.org/10.1109/CSITSS64042.2024.10817070
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2412.03801
https://arxiv.org/abs/2412.03801
https://arxiv.org/abs/2412.03801
https://arxiv.org/abs/2312.05516
https://arxiv.org/abs/2505.13328
https://arxiv.org/pdf/2005.11401.pdf
https://pypi.org/project/googlesearch-tool/
https://github.com/deedy5/duckduckgo_search
https://docs.agno.com/integrations/toolkits/search/baidusearch#baidusearch
https://docs.agno.com/integrations/toolkits/search/baidusearch#baidusearch
https://doi.org/10.5281/zenodo.5764801
https://doi.org/10.5281/zenodo.5764801
https://github.com/scholarly-python-package/scholarly
https://github.com/scholarly-python-package/scholarly
https://docs.agno.com/integrations/toolkits/search/arxiv#arxiv
https://docs.agno.com/integrations/toolkits/search/arxiv#arxiv
https://arxiv.org/abs/2412.09165
https://arxiv.org/abs/2412.09165
https://arxiv.org/abs/2412.09165

BIBLIOGRAPHY

[84]

[85]

[36]

[33]

[89]

[90]

[92]

93]

[94]

Chroma Contributors. Chroma: Open-source Embedding Database. 2024. URL:
https://docs.trychroma.com.

Matthijs Douze et al. « The Faiss library». In: arXiv preprint arXiv:2401.08281
(2024). Vector similarity search library developed by Meta Al. DOI: 10 .
48550/arXiv.2401.08281. URL: https://arxiv.org/abs/2401.08281.

Edo Liberty. Pinecone: The Managed Vector Database. Pinecone Inc. Man-
aged vector database service for production ML applications. 2019. URL:
https://www.pinecone.io.

Weaviate Contributors. Weaviate: The Al-native open source vector database.
GitHub. Cloud-native vector database with hybrid search and RAG capa-
bilities. 2022. URL: https://github.com/weaviate/weaviate.

Le Ma et al. A Comprehensive Survey on Vector Database: Storage and
Retrieval Technique, Challenge. 2025. arXiv: 2310.11703 [cs.DB]. URL:
https://arxiv.org/abs/2310.11703.

Yunfan Gao et al. «Retrieval-Augmented Generation for Large Language

Models: A Survey». In: arXiv preprint arXiv:2312.10997 (2024). arXiv:2312.10997.

URL: https://arxiv.org/abs/2312.10997.

Yue Yu et al. «kRankRAG: Unifying Context Ranking with Retrieval-Augmented
Generation in LLMs». In: Advances in Neural Information Processing Sys-
tems (NeurIPS) (2024). Instruction-tuned dual-capability model for context
ranking and answer generation. DOI: 10.48550/arXiv.2407.02646. URL:
https://arxiv.org/abs/2407.02646.

Zhengbao Jiang et al. «Active Retrieval Augmented Generation». In: arXiv
preprint arXiv:2305.06983 (2023). Forward-Looking Active Retrieval Aug-
mented Generation (FLARE) for iterative retrieval. DOI: 10.48550/arXiv.
2305.06983. URL: https://arxiv.org/abs/2305.06983.

Sunhao Dai et al. «Unifying Bias and Unfairness in Information Retrieval:
New Challenges in the LLM Era». In: New York, NY, USA: Association for
Computing Machinery, 2025. 1ISBN: 9798400713293. poI: 10.1145/3701551.
3703478. URL: https://doi.org/10.1145/3701551.3703478.

Sunhao Dai et al. «Bias and Unfairness in Information Retrieval Systems:
New Challenges in the LLM Era». In: Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. KDD 24. ACM, Aug.
2024, pp. 6437-6447. DOIL: 10.1145/3637528 .3671458. URL: http://dx.
doi.org/10.1145/3637528.3671458.

W. Wang et al. «Evaluating and Enhancing Factual Accuracy in LLM Rea-
soning». In: arXiv preprint (2024). eprint: 2409.06578.

130

https://docs.trychroma.com
https://doi.org/10.48550/arXiv.2401.08281
https://doi.org/10.48550/arXiv.2401.08281
https://arxiv.org/abs/2401.08281
https://www.pinecone.io
https://github.com/weaviate/weaviate
https://arxiv.org/abs/2310.11703
https://arxiv.org/abs/2310.11703
https://arxiv.org/abs/2312.10997
https://doi.org/10.48550/arXiv.2407.02646
https://arxiv.org/abs/2407.02646
https://doi.org/10.48550/arXiv.2305.06983
https://doi.org/10.48550/arXiv.2305.06983
https://arxiv.org/abs/2305.06983
https://doi.org/10.1145/3701551.3703478
https://doi.org/10.1145/3701551.3703478
https://doi.org/10.1145/3701551.3703478
https://doi.org/10.1145/3637528.3671458
http://dx.doi.org/10.1145/3637528.3671458
http://dx.doi.org/10.1145/3637528.3671458
2409.06578

BIBLIOGRAPHY

[97]

98]

[99]

[100]

[101]
[102]
[103]
[104]

[105]

S. Zeng et al. «Towards Knowledge Checking in Retrieval-augmented Gen-
eration». In: Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics. 2025.

Rui Jiao, Yue Zhang, and Jinku Li. «Trustworthy Reasoning: Evaluating and
Enhancing Factual Accuracy in LLM Intermediate Thought Processes». In:
arXiv preprint arXiw:2507.22940 (2025). RELIANCE framework for fact-
checking and enhancing factuality in LLM reasoning steps using Group Rel-
ative Policy Optimization (GRPO) and mechanistic interpretability. DOI:
10 . 48550/ arXiv . 2507 . 22940. URL: https://arxiv.org/abs /2507 .
22940.

Confident Al. DeepFval: The LLM FEvaluation Framework. GitHub reposi-
tory. 2023. URL: https://github.com/confident-ai/deepeval.

Confident Al. Confident AI: The DeepFval LLM Evaluation Platform. Web
Platform. Cloud platform for DeepEval enabling team collaboration, re-
gression detection, production monitoring, dataset curation, and automated
LLM testing with compliance support for healthcare, insurance, and finan-
cial industries. 2023. URL: https://www.confident-ai. com.

Jianxun Wang and Yixiang Chen. «A Review on Code Generation with
LLMs: Application and Evaluationy. In: 2023 IEEE International Confer-
ence on Medical Artificial Intelligence (MedAlI). 2023, pp. 284-289. DOI:
10.1109/MedA159581.2023.00044.

Nam Huynh and Beiyu Lin. Large Language Models for Code Generation: A
Comprehensive Survey of Challenges, Techniques, Evaluation, and Applica-
tions. 2025. arXiv: 25603.01245 [cs.SE]. URL: https://arxiv.org/abs/
2503.01245.

OpenAl. Introducing Codex. Accessed: 2025-10-05. 2025. URL: https://
openai.com/index/introducing-codex/.

Anthropic. Introducing Claude Sonnet 4.5. Accessed: 2025-10-05. 2025. URL:
https://www.anthropic.com/news/claude-sonnet-4-5.

Google DeepMind. Gemini 2.5 Pro. Accessed: 2025-10-05. 2025. URL: https:
//deepmind.google/models/gemini/pro/.

Alibaba Cloud. Qwen3-Coder. Accessed: 2025-10-05. 2025. URL: https://
github.com/QwenLM/Qwen3-Coder.

Henry Pearce et al. «Asleep at the Keyboard? Assessing the Security of
GitHub Copilot’s Code Contributions». In: IEEE Symposium on Security
and Privacy. 2022, pp. 754-768. URL: https://arxiv.org/abs/2108.
09293.

131

https://doi.org/10.48550/arXiv.2507.22940
https://arxiv.org/abs/2507.22940
https://arxiv.org/abs/2507.22940
https://github.com/confident-ai/deepeval
https://www.confident-ai.com
https://doi.org/10.1109/MedAI59581.2023.00044
https://arxiv.org/abs/2503.01245
https://arxiv.org/abs/2503.01245
https://arxiv.org/abs/2503.01245
https://openai.com/index/introducing-codex/
https://openai.com/index/introducing-codex/
https://www.anthropic.com/news/claude-sonnet-4-5
https://deepmind.google/models/gemini/pro/
https://deepmind.google/models/gemini/pro/
https://github.com/QwenLM/Qwen3-Coder
https://github.com/QwenLM/Qwen3-Coder
https://arxiv.org/abs/2108.09293
https://arxiv.org/abs/2108.09293

BIBLIOGRAPHY

[106] Jianxun Wang and Yixiang Chen. «A Review on Code Generation with
LLMs: Application and Evaluationy. In: 2023 IEEE International Confer-
ence on Medical Artificial Intelligence (MedAlI). 2023, pp. 284-289. DOI:
10.1109/MedAI59581.2023.00044.

[107] Shuo Ren et al. CodeBLEU: a Method for Automatic Evaluation of Code
Synthesis. 2020. arXiv: 2009.10297 [cs.SE]. URL: https://arxiv.org/
abs/2009.10297.

[108] Swaroop Dora, Deven Lunkad, and Naziya et al. Aslam. «The Hidden Risks
of LLM-Generated Web Application Code: A Security-Centric Evaluation».
In: arXiv preprint arXiv:2504.20612 (2025). URL: https://arxiv.org/
abs/2504.20612.

109] Igor Regis da Silva Simoes and Elaine Venson. «Evaluating Source Code

[gor Reg g
Quality with Large Language Models: a comparative study». In: arXiv preprint
arXiv:2408.07082 (2024). URL: https://arxiv.org/abs/2408.07082.

[110] Debalina Ghosh Paul, Hong Zhu, and lan Bayley. «Investigating The Smells
of LLM Generated Code». In: IEEE ICCBDCS 2025 Conference Proceedings
(2025). URL: https://arxiv.org/abs/2510.03029.

[111] Hossein Hajipour et al. CodeLMSec Benchmark: Systematically Fvaluating
and Finding Security Vulnerabilities in Black-Box Code Language Models.
2023. arXiv: 2302.04012 [cs.CR]. URL: https://arxiv.org/abs/2302.
04012.

[112] Shahin Honarvar. «Evaluating Correct-Consistency and Robustness in Code-
Generating LLMs». In: 2025 IEEE Conference on Software Testing, Verifi-
cation and Validation (ICST). 2025, pp. 797-800. DOI: 10.1109/ICST62969.
2025.10988971.

[113] E2B Dev. E2B Documentation: Secure isolated sandboxes for Al-generated
code. https://e2b.dev/docs. Accessed: 2025-10-01. 2025.

[114] Ivan Garcia-Ferreira et al. «Static analysis: a brief survey». In: Logic Journal
of the IGPL 24.6 (Sept. 2016), pp. 871-882. 1ssN: 1367-0751. DOI: 10.1093/
jigpal/ jzw042. eprint: https://academic.oup.com/jigpal/article-
pdf/24/6/871/8357665/ jzw042 . pdf. URL: https://doi.org/10.1093/
jigpal/jzw042.

[115] Haonan Li et al. «Enhancing Static Analysis for Practical Bug Detection:

An LLM-Integrated Approachy. In: Proc. ACM Program. Lang. 8. OOPSLA1
(Apr. 2024). po1: 10.1145/3649828. URL: https://doi.org/10.1145/
3649828.

[116] Microsoft. Pyright: Static Type Checker for Python. 2019. URL: https://
github.com/microsoft/pyright.

132

https://doi.org/10.1109/MedAI59581.2023.00044
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2504.20612
https://arxiv.org/abs/2504.20612
https://arxiv.org/abs/2408.07082
https://arxiv.org/abs/2510.03029
https://arxiv.org/abs/2302.04012
https://arxiv.org/abs/2302.04012
https://arxiv.org/abs/2302.04012
https://doi.org/10.1109/ICST62969.2025.10988971
https://doi.org/10.1109/ICST62969.2025.10988971
https://e2b.dev/docs
https://doi.org/10.1093/jigpal/jzw042
https://doi.org/10.1093/jigpal/jzw042
https://academic.oup.com/jigpal/article-pdf/24/6/871/8357665/jzw042.pdf
https://academic.oup.com/jigpal/article-pdf/24/6/871/8357665/jzw042.pdf
https://doi.org/10.1093/jigpal/jzw042
https://doi.org/10.1093/jigpal/jzw042
https://doi.org/10.1145/3649828
https://doi.org/10.1145/3649828
https://doi.org/10.1145/3649828
https://github.com/microsoft/pyright
https://github.com/microsoft/pyright

BIBLIOGRAPHY

[117]
[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Jukka Lehtosalo and Python Community. Mypy: Optional Static Typing for
Python. 2012. URL: https://github.com/python/mypy.

PyCQA. Pylint: Static Code Analyser for Python. 2003. URL: https://
github.com/pylint-dev/pylint.

Shreyas Chaudhari et al. RLHF Deciphered: A Critical Analysis of Reinforce-
ment Learning from Human Feedback for LLMs. 2024. arXiv: 2404 .08555
[cs.LG]. URL: https://arxiv.org/abs/2404.08555.

Adam Dahlgren Lindstrom et al. «Helpful, harmless, honest? Sociotechnical
limits of Al alignment and safety through Reinforcement Learning from Hu-
man Feedback: Helpful, harmless, honest? Sociotechnical limits of Al align-
ment...» In: 27.2 (2025). 1SsN: 1388-1957. DOI: 10 . 1007 / s10676 - 025 -
09837-2. URL: https://doi.org/10.1007/s10676-025-09837-2.

Yu Wang, Jing Zhang, Yuancheng Liu, et al. «Human-in-the-loop machine
learning: a state of the arty». In: Artificial Intelligence Review 55.6 (2022),
pp. 4431-4469. DOI: 10.1007/s10462-022-10246-w. URL: https://doi.
org/10.1007/s10462-022-10246-w.

Aman Madaan et al. «Self-Refine: Iterative Refinement with Self-Feedback».
In: arXiv preprint arXiv:2303.17651 (2023). URL: https://arxiv.org/
abs/2303.17651.

Eric Xue et al. «IMPROVE: Iterative Model Pipeline Refinement and Op-
timization Leveraging LLM Agents». In: arXiv preprint arXiv:2502.18530
(2025). URL: https://arxiv.org/abs/2502.18530.

Zeyu Liu et al. «A Survey on Large Language Model based Human-Agent
Systemsy. In: arXiv preprint arXiv:2505.00753 (2025). URL: https: //
arxiv.org/abs/2505.00753.

Jiahui Zhang, Sungjoon Lee, Angela Wang, et al. «Iterative refinement and
goal articulation to optimize large language models for clinical information
extraction». In: NPJ Digital Medicine 8 (2025), pp. 1-12. URL: https://
www.nature.com/articles/s41746-025-01686-z.

Ollama Quickstart Documentation. https://ollama.readthedocs.io/en/
quickstart/. Accessed 2025-10.

Ollama: lightweight, extensible framework for LLMs (GitHub). https://
github.com/ollama/ollama. Accessed 2025-10.

Victor Wie. «Blueprint for Institutional LLM Adoption: On-Premise, Open-
Source Approaches». Comprehensive framework for on-premise LLM de-
ployment using open-source models and local RAG systems. PhD thesis.
University of Amsterdam, 2024. URL: https://staff.fnwi.uva.nl/a.s.
z.belloum/MSctheses/MScthesis__Victor_Wie.pdf.

133

https://github.com/python/mypy
https://github.com/pylint-dev/pylint
https://github.com/pylint-dev/pylint
https://arxiv.org/abs/2404.08555
https://arxiv.org/abs/2404.08555
https://arxiv.org/abs/2404.08555
https://doi.org/10.1007/s10676-025-09837-2
https://doi.org/10.1007/s10676-025-09837-2
https://doi.org/10.1007/s10676-025-09837-2
https://doi.org/10.1007/s10462-022-10246-w
https://doi.org/10.1007/s10462-022-10246-w
https://doi.org/10.1007/s10462-022-10246-w
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2502.18530
https://arxiv.org/abs/2505.00753
https://arxiv.org/abs/2505.00753
https://www.nature.com/articles/s41746-025-01686-z
https://www.nature.com/articles/s41746-025-01686-z
https://ollama.readthedocs.io/en/quickstart/
https://ollama.readthedocs.io/en/quickstart/
https://github.com/ollama/ollama
https://github.com/ollama/ollama
https://staff.fnwi.uva.nl/a.s.z.belloum/MSctheses/MScthesis__Victor_Wie.pdf
https://staff.fnwi.uva.nl/a.s.z.belloum/MSctheses/MScthesis__Victor_Wie.pdf

BIBLIOGRAPHY

[129] Moritz Schwarzer et al. «A Middle Path for On-Premises LLM Deploy-
ment». In: Proceedings of the 2025 Conference on Empirical Methods in
Natural Language Processing (EMNLP) (2025). Security and privacy con-
siderations for deploying LLMs in on-premise infrastructure. URL: https:
//aclanthology.org/2025.emnlp-main.420/.

[130] snnTorch Documentation. https://snntorch.readthedocs.io/en/latest/
index.html. Accessed: 2025-11-05. 2025.

[131] Jason K Eshraghian et al. snnTorch: Deep Learning with Spiking Neural
Networks. GitHub. Version 0.9.4. Python package for gradient-based learn-
ing with spiking neural networks. Includes snntorch.spikegen module for
spike generation with rate coding, temporal coding, and data conversion.
Supports MNIST, CIFAR, and event-based datasets. 2021. URL: https:
//github.com/jeshraghian/snntorch.

[132] Jason K Eshraghian. snntorch.spikegen: Spike Generation and Data Con-
version Documentation. snnTorch Documentation. API documentation for
spike generation module including rate coding, latency coding, and delta
modulation encoding. 2021. URL: https://snntorch.readthedocs.io/
en/latest/snntorch.spikegen.html.

[133] Jason K Eshraghian. snntorch.spikevision: Neuromorphic and Event-Based
Dataset Support. snnTorch Documentation. Support for DVS (Dynamic Vi-
sion Sensor) data and event-based neuromorphic datasets including SHD,
DHPCaltech, and DVS-CIFAR10. 2021. URL: https://snntorch.readthedocs.
io/en/latest/snntorch.spikevision.html.

[134] Microsoft Research. Neural Network Intelligence (NNI). Microsoft Research
Project. Established Nov 11, 2017. https://www.microsoft.com/en-us/
research/project/neural-network-intelligence/. 2017. URL: https:
//www .microsoft . com/en-us/research/project/neural -network-
intelligence/.

[135] Hao Zhao et al. Is In-Context Learning Sufficient for Instruction Following
in LLMs? 2025. arXiv: 2405.19874 [cs.CL]. URL: https://arxiv.org/
abs/2405.19874.

[136] Chi Han et al. «In-Context Learning of Large Language Models Explained
from a Kernel Regression Perspective». In: Transactions on Machine Learn-
ing Research (2023). URL: https://arxiv.org/abs/2305.12766.

[137] IBM Research. How in-context learning improves large language models.
https://research.ibm.com/blog/demystifying-in-context-learning-
in-large-language-model. 2021.

134

https://aclanthology.org/2025.emnlp-main.420/
https://aclanthology.org/2025.emnlp-main.420/
https://snntorch.readthedocs.io/en/latest/index.html
https://snntorch.readthedocs.io/en/latest/index.html
https://github.com/jeshraghian/snntorch
https://github.com/jeshraghian/snntorch
https://snntorch.readthedocs.io/en/latest/snntorch.spikegen.html
https://snntorch.readthedocs.io/en/latest/snntorch.spikegen.html
https://snntorch.readthedocs.io/en/latest/snntorch.spikevision.html
https://snntorch.readthedocs.io/en/latest/snntorch.spikevision.html
https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
https://www.microsoft.com/en-us/research/project/neural-network-intelligence/
https://arxiv.org/abs/2405.19874
https://arxiv.org/abs/2405.19874
https://arxiv.org/abs/2405.19874
https://arxiv.org/abs/2305.12766
https://research.ibm.com/blog/demystifying-in-context-learning-in-large-language-model
https://research.ibm.com/blog/demystifying-in-context-learning-in-large-language-model

BIBLIOGRAPHY

138

[139]

[140]

[141]

[142]

[143]

[144]

Jerry Wei and Denny Zhou. Larger language models do in-context learning
differently. https://research.google/blog/larger-language-models-—
do-in-context-learning-differently/. 2023.

Agno Contributors. Agno: Multi-Agent Framework, Runtime and Control
Plane. Latest version: 2.2.10, Released November 8, 2025. 2025. URL: https:
//docs.agno.com/introduction (visited on Nov. 19, 2025).

Mistral AI. «Mistral 7B». In: Released September 27, 2023; v0.3 with func-
tion calling support released May 22, 2024. 2024. URL: https://mistral.
ai.

Alibaba Cloud. Qwen3: A New Generation of Large Language Models. Re-
leased October 2025. 2025. URL: https://qwenlm.github.io.

OpenAl. Introducing gpt-oss: Open-Weight Models for Reasoning and Agen-
tic Tasks. Released August 5, 2025. 2025. URL: https ://openai . com/
index/introducing-gpt-oss/.

DeepSeek. DeepSeek-R1: Open Reasoning Models with Performance Approach-
ing Leading Models. v0528 released May 28, 2025. 2025. URL: https://
deepseek. com.

Jiawei Gu et al. A Survey on LLM-as-a-Judge. 2025. arXiv: 2411 . 15594
[cs.CL]. URL: https://arxiv.org/abs/2411.15594.

135

https://research.google/blog/larger-language-models-do-in-context-learning-differently/
https://research.google/blog/larger-language-models-do-in-context-learning-differently/
https://docs.agno.com/introduction
https://docs.agno.com/introduction
https://mistral.ai
https://mistral.ai
https://qwenlm.github.io
https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/introducing-gpt-oss/
https://deepseek.com
https://deepseek.com
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594

	List of Figures
	List of Tables
	Introduction
	Background
	Artificial Neural Networks
	Neural Network and Neuron Perceptron
	Training Neural Network
	Convolutional Neural Networks
	Recurrent Neural Networks

	Neuromorphic Engineering
	Spiking Neural Networks
	Biological Neurons and Their Structure
	Neural Code
	Neuron Model
	Encoding and Decoding Spikes in SNNs

	Large Language Models
	Evolution of Large Language Models
	The Attention mechanism
	Applications of LLMs
	Training Paradigms
	State-of-the-Art Large Language Models
	Limitations of LLMs

	Agents Orchestration Frameworks
	LangChain
	LangGraph
	State Management and Checkpointing

	Information Retrieval in AI Systems
	Traditional Information Retrieval Approaches
	Semantic Search and Vector-Based Retrieval
	Retrieval-Augmented Generation
	Limitations and Challenges in Information Retrieval

	Validation of Knowledge Produced by LLMs
	The DeepEval Framework

	Code Generation
	LLMs for Code Generation

	Code Validation
	Evaluation of Code Generated by LLMs
	Sandbox Execution and Safety
	Code Static Analysis

	Human-in-the-Loop
	Iterative Refinement
	Benefits and Challenges

	Open-Source Frameworks for LLMs Deployment

	Materials and methods
	snnTorch
	Core Framework Components
	Practical Architecture Patterns

	Neural Network Intelligence (NNI)
	In-Context Learning
	Implementation of LangGraph
	Web Search Branch
	Academic Research Branch
	Code Generation Branch
	Graph Routing Logic

	Used tools
	Agno Framework
	DeepEval

	Models and Infrastructure
	Large Language Models Used
	Model Selection Rationale
	Ollama Infrastructure
	Used Hardware

	Results and discussion
	Information Retrieval Use Cases
	Experiment 1: Web Search Branch
	Experiment 2: Academic Search Branch:

	Code Generation Use Cases
	Experiment 3: Code Generation for SNN and NNI configuration
	Experiment 4: Code Generation, Sandbox Execution, and Iterative Correction
	Experiment 5: Code Generation for Proprietary Script Completion
	Experiment 6: Functional Correctness Validation via Golden-Reference Comparison and Performance Injection

	Conclusion
	Bibliography

