
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Spiking LSTM on Loihi 2: A
Neuromorphic Reinterpretation of

Recurrent Networks

Supervisors

Prof. Yulia SANDAMIRSKAYA

Prof. Gianvito URGESE

Dr. Vittorio FRA

Dr. Walter GALLEGO GOMEZ

Candidate

Aurora GRUBER

December 2025

Abstract

In recent years, the presence of artificial intelligence (AI) has become increasingly
pervasive, with artificial neural networks (ANNs) being applied across a growing
number of domains. These models, while powerful, are also becoming larger
and more computationally demanding. In addition, an interest has emerged in
understanding and emulating the remarkable efficiency and compactness of the
human brain. This has led to the rise of neuromorphic computing, which aims
to design lightweight and energy-efficient systems inspired by biological neurons,
through spiking neural networks (SNNs). By combining ideas from neuroscience and
machine learning, neuromorphic computing offers a way to reinterpret traditional
AI models in a more biologically grounded way. Among the various approaches
to bridging the gap between classical and brain-inspired computation, revisiting
well-established ANN architectures within a neuromorphic framework is a viable
direction.

This work focuses on translating the Long Short-Term Memory (LSTM) network,
a widely used recurrent architecture known for its ability to capture long-term
dependencies and handle sequential data, into a spiking form, where operations
are rephrased in terms of neuron populations and synapses. The goal of this rein-
terpretation is to make the architecture compatible with neuromorphic hardware,
enabling efficient execution on brain-inspired systems.
Several spiking LSTM (sLSTM) variants were explored, and the final design replaces
conventional activation functions with the spiking dynamic of Leaky Integrate-and-
Fire (LIF) neurons, leveraging membrane potential values for the computation
of the internal states. The architecture was implemented on two frameworks:
snnTorch, used for training and hyperparameter optimization via the Neural Net-
work Intelligence (NNI) framework and NxKernel, Intel’s proprietary framework
for deployment on the Loihi 2 neuromorphic board.
The transition between the two frameworks required the implementation of custom
neurons in microcode to reproduce the behavior observed in snnTorch. Additional
challenges arose from the fixed-point arithmetic used in Loihi 2’s synapses and neu-
ron models, which demanded careful quantization and scaling strategies. Moreover,

ii

Loihi 2’s pipelined execution introduced differences in layer synchronization com-
pared to the software-based simulation, requiring further adaptations to preserve
consistent network dynamics across frameworks. Using the profiling tools available
in the NxKernel framework, the model performance on the Loihi 2 hardware was
evaluated, taking into account the effects of network sparsity and also multiple
partitioning and mapping configurations obtained through a heuristic optimization
algorithm.
For initial experiments, a Human Activity Recognition (HAR) task was used,
employing a spike-encoded dataset with six input channels and seven output classes.
Once a robust pipeline for training, weight transfer and hardware deployment was
established, the architecture was further tested on the Spiking Heidelberg Digits
(SHD) dataset, which involves classifying spoken digits. Without any preprocessing,
the model was trained on snnTorch, achieving competitive test accuracies up to 90%.
When deployed on Loihi 2, it exhibited a slight accuracy drop, yet the overall results
highlight the potential of this neuromorphic reinterpretation of LSTM networks.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1

2 Background 3
2.1 Neuromorphic Computing . 3

2.1.1 Benefits and Challenges of Neuromorphic Computing 6
2.1.2 Neuromorphic Hardware . 8
2.1.3 Neuromorphic Software Ecosystems 13

2.2 Recurrent neural networks (RNNs) 15
2.2.1 Long Short-Term Memory 15

2.3 Neural Network Intelligence (NNI) 16
2.4 Datasets Overview . 17

2.4.1 Human Activity Recognition (HAR) 17
2.4.2 Spiking Heidelberg Digits (SHD) 19

3 From ANN to SNN 22
3.1 Reinterpretation of the LSTM . 22

3.1.1 Basic Implementation . 23
3.1.2 Fully Spiking implementation 24
3.1.3 Membrane-Based Implementation 26
3.1.4 Spiking membrane . 28
3.1.5 Final Implementation of the Spiking LSTM 29

3.2 Familiarization with NxKernel and Loihi 2 Neuron Mechanics . . . 30
3.3 snnTorch Implementation . 31
3.4 Translation from snnTorch to NxKernel 32
3.5 Hardware-aware software simulation 33

v

3.5.1 Quantization . 35
3.6 Hardware Deployment . 37
3.7 Testing on the Final Dataset . 38
3.8 Training and Test . 40

4 Results 42
4.1 Accuracy . 42
4.2 Sensitivity Analysis . 43
4.3 Quantization Impact . 45
4.4 Hardware Execution Analysis . 45

4.4.1 Impact of partitioning . 46
4.4.2 Dendrite Updates and Synaptic Reads 47
4.4.3 Accuracy and Architectural Characteristics 49

4.5 SHD leaderboard . 52

5 Conclusion 54

Bibliography 56

vi

List of Tables

2.1 Highlights of the Loihi 2 Instruction Set from [5] 10
2.2 Summary information of the WISDM dataset. [54] 19
2.3 Comparison of published results on the SHD dataset. 21

3.1 Search space for hyperparameter optimization. 40

4.1 Comparison of accuracies across snnTorch, quantized snnTorch and
Loihi 2 (NxKernel) executions. 44

4.2 Best partitioning found by the heuristic approach 47
4.3 Hyperparameters and performance of selected spiking LSTM models. 50
4.4 Latency and accuracy of both RSNN and sLSTM for comparison. . 53

vii

List of Figures

2.1 Comparison between a biological neuron and its neuromorphic coun-
terpart. 4

2.2 Comparison of ANN and SNN, highlighting differences in input
representation and architecture. (Images from [18] and[19]) 5

2.3 Schematic representation of the Leaky Integrate-and-Fire (LIF) neu-
ron and its firing behavior. (Image from [21]) 6

2.4 Loihi 2 architecture overview. (Image from [5]) 9
2.5 Two of the available Loihi 2 hardware: Oheo Gulch on the left and

Kapoho Point on the left. 12
2.6 Architecture of an LSTM unit illustrating its internal structure:

input, forget and output gates and the transformations that update
the cell state and the hidden state. 16

2.7 Overview of the WISDM dataset. The table lists all recorded ac-
tivities, while the plot shows an example of the time-series data
collected from one subject. 18

3.1 SLSTM basic implementation architecture. Each gate is converted
into a population of LIF neurons with its own population size and
specific values for beta and threshold 24

3.2 SLSTM Fully Spiking implementation architecture. The activation
functions are replaced by neuron populations. 25

3.3 SLSTM Membrane-Based Implementation architecture. The activa-
tion exploits the membrane potential of the gates neuron populations. 26

3.4 SLSTM Spiking implementation architecture. The activation func-
tions are replaced by neuron populations. 28

3.5 SLSTM Final implementation architecture. This architecture is the
one deployed on hardware and used for all the experiments. 29

3.6 Diagram of the Spiking LSTM architecture implemented in NxKernel,
showing the organization of the neuronal populations. 33

viii

3.7 Schematic representation of the alternated execution strategy. Even-
and odd-indexed layers are highlighted with distinct colors to indicate
their staggered update schedule. 35

3.8 Validation of the custom NxKernel neuron model against its snnTorch
reference. (a) Comparison of the output spike trains produced by
the two implementations. (b) Comparison of the internal membrane
potential and input current, confirming the numerical alignment of
the two models. 36

3.9 Overview of the pipeline used to transition from a snnTorch-trained
SNN model to its implementation on Loihi 2 hardware. 37

3.10 The physical Loihi 2 system used in the neuromorphic laboratory at
ZHAW Wädenswil. 38

3.11 Accuracy curves for all NNI-generated configurations. Each line
represents a different hyperparameter trial evaluated during the
optimization process. 39

4.1 Visualization of NNI-explored hyperparameter configurations. Darker
red indicates higher accuracy, showing which combinations of pa-
rameters led to better model performance. The last column refers
to the final accuracy of the trial. 43

4.2 Effect of core partitioning on total runtime. 46
4.3 For each layer size, the maximum synaptic reads and dendritic

updates are plotted. 48
4.4 For each model accuracy, the maximum synaptic reads and dendritic

updates are plotted. 48
4.5 Accuracy versus runtime for all models, highlighting differences in

performance across various network sizes. 49
4.6 Accuracy versus average dendritic updates per timestep for all models,

showing that models with the same size share identical dendritic
activity. 51

4.7 Accuracy versus average synaptic reads per timestep for all models. 51

ix

Acronyms

AI
Artificial Intelligence

LSTM
Long Short Term Memory

GRU
Gated Recurrent Unit

sLSTM
spiking Long Short Term Memory

LIF
Leaky Integrate and Fire

ANN
Artificial Neural Network

RNN
Recurrennt Neuronal Network

CNN
Convolutional Neuronal Network

SNN
Spiking Neuronal Network

HAR
Human Activity Recognition

xi

WISDM
Wireless Sensor Data Minin

SHD
Spiking Heidelberg Digits

NNI
Neural Network Intelligence

BPTT
Backpropagation Through Time

LR
Learning Rate

xii

Chapter 1

Introduction

Throughout history, the idea of creating technology with brain-like abilities has been
both fascinating and a source of innovation. The human brain performs remarkable
feats thanks to its fundamental units, the neurons, which exchange information
through discrete action potentials, or “spikes”. Neurons are interconnected through
synapses, which enable the transfer of these signals [1].

Neuromorphic computing is a brain-inspired field driven by the goal of mimicking
the nervous system by emulating the structures, processes and computational
capabilities of biological neurons and synapses. In this context, neuromorphic
hardware has been developed, along with the corresponding software frameworks
needed to support it. Neuromorphic hardware operates under a spiking paradigm [2]:
each computational unit, analogous to a biological neuron, becomes active only
when it receives or emits information in the form of electrical impulses. As a
result, these systems process information through sparse, event-driven signals,
leveraging the brain’s inherently massively parallel, event-driven, and analog-
inspired computation principles [3]. Spiking neural networks (SNNs) have emerged
as a biologically inspired alternative to conventional artificial neural networks
(ANNs) [4]. SNNs use discrete spikes as their basic units of computation, capturing
key temporal and event-driven aspects of neural processing, making them well
suited for deployment on neuromorphic hardware.

A growing number of neuromorphic platforms has been developed to support
this computational paradigm, including Intel’s Loihi family of processors, which
provides a flexible environment for SNN research. Loihi 2 [5], in particular, is
optimized for SNN workloads, combining programmable neuron models, on-chip
learning mechanisms and fully asynchronous spike-based communication.
Software frameworks such as snnTorch provide flexible simulation environments
that allow researchers to design, train and evaluate spiking neural networks before
deploying them to hardware. While frameworks like NxKernel are more hardware
oriented, exposing Loihi 2 primitives and neuron-level. Bridging the gap between

1

Introduction

these software tools and the constraints of neuromorphic processors remains a key
challenge in the field.

Due to the capabilities and flexibility of SNNs, numerous attempts have been
made to reinterpret conventional neural architectures within a spiking framework,
demonstrating that replacing continuous activations with event-based computa-
tions is feasible and can reduce the computational cost while preserving the core
functionality of the original models.
The core contribution of this Thesis lies in this context: the proposal of a spiking
version of the LSTM, one of the most successful recurrent neural network archi-
tectures, which keeps information about the input data in both a short-term and
a long-term memory units. In the proposed version the network retains the func-
tional principles of the original LSTM, including short-term and long-term memory
mechanisms, while fully embracing event-driven spiking computation. Each gate
is realized with dedicated neuron populations, enabling the network to process
temporal information efficiently on neuromorphic hardware.

During the initial phase of this work, the sLSTM architecture was implemented
and evaluated in the snnTorch framework. Subsequently, it was porting to NxKernel,
after a careful restructuring of its operations, as all computations on Loihi 2
must be expressed as neuron-level state updates and event-driven transitions, a
constraint absent in snnTorch. This process also involved designing custom neuron
models, made possible by Loihi 2’s microcoded neurons. A key contribution of
this work is the development of a robust pipeline that allows the trained sLSTM
models in snnTorch to be accurately translated into NxKernel, ensuring that
weights, thresholds and neuron dynamics can be deployed on Loihi 2 with minimal
performance loss, aligning the behavior between the software simulation and
hardware execution.

The Spiking Heidelberg Digits (SHD) dataset was selected as the final benchmark
to evaluate the proposed architecture.
Experimental results demonstrate that the spiking LSTM achieves high performance,
with a test accuracy of 91.92% on snnTorch and 85.34% on NxKernel. While these
results place the model comparably on the current leaderboard, it is the only top-
performing architecture that has been successfully deployed on any neuromorphic
hardware, thus holding the leading position in terms of actual on-chip accuracy.
Beyond raw accuracy, a detailed analysis of the model was conducted, including
hardware profiling and studies on network partitioning. These investigations reveal
how neuron distribution and network partitioning impact runtime, synaptic reads,
and overall efficiency.

2

Chapter 2

Background

2.1 Neuromorphic Computing

Neuromorphic computing represents a revolutionary paradigm in computer science
that fundamentally emulates the operational principles of the human brain [6, 7,
8, 9]. This approach involves the design of both hardware and software systems
structured to mimic the neural and synaptic functions (Figure 2.1b) essential for
information processing in biological brains. A central goal in neuromorphic research
is to achieve the human brain’s remarkable combination of adaptability, learning
capability from unstructured data, and exceptional energy efficiency [10, 11, 12].

At its core, the brain’s functionality relies on neurons (Figure 2.1a), its funda-
mental units. These nerve cells act as vital messengers, transmitting information
across various brain regions and throughout the body. When a neuron fires i.e. it
emits a spike and becomes active, it releases a cascade of chemical and electrical
signals. These signals traverse intricate networks of connection points known as
synapses, enabling communication between neurons [15]. Given this direct inspira-
tion, neuromorphic computing draws extensively from principles in biology and
neuroscience.
The replication of these intricate neurological and biological mechanisms in neuro-
morphic systems is primarily achieved through spiking neural networks (SNNs).
Unlike traditional artificial neural networks (ANNs), SNNs are specifically designed
to emulate the discrete, event-driven communication of biological neurons (Fig-
ure 2.2).
In an SNN, artificial neurons accumulate data through time, via their membrane
potential and process them. Each neuron possesses an internal charge, representing
the membrane potential, as well as delay and threshold values, much like their
biological counterparts. Synapses establish connections between these artificial
neurons, each with its own delay and weight parameters. These diverse values –

3

Background

(a) Structure, chemical processes
and electrical activity of the neu-
ron. (Image from [13])

(b) Mapping the principles of neuronal functioning into a
neuromorphic system. (Image from [14])

Figure 2.1: Comparison between a biological neuron and its neuromorphic
counterpart.

including neuron charges, delays for both neurons and synapses, neuron thresholds
and synaptic weights – are all programmable within neuromorphic computing
architectures [16, 17].

Beyond this general structure, the specific mathematical model employed for
artificial neurons significantly influences an SNN’s behavior and computational
capabilities. Various neuron models exist, each offering different levels of biological
realism and computational complexity. Common examples include the Hodgkin-
Huxley model, Izhikevich model and the Leaky Integrate-and-Fire (LIF) model.

The LIF model [20] is particularly prevalent in neuromorphic hardware and
simulations due to its balance of computational efficiency and biological plausibility.
In the LIF model (Figure 2.3), a neuron accumulates input currents from its
connected synapses over time. This accumulation causes its membrane potential
Vm(t) to rise. The "leaky" aspect signifies that if the neuron does not receive
sufficient input, the membrane potential gradually decays (represented by the decay
term dVm) back towards a toward a zero state, mimicking the passive ion channels in
biological neurons [20]. Once the membrane potential reaches a predefined threshold,
Vth, the neuron "fires", generating an output pulse that is then transmitted to
downstream neurons. After spiking, the neuron’s potential is typically returned to
a predefined reset level, Vreset. The dynamics of the membrane potential Vm(t) for
a LIF neuron are typically described by the following differential equation:

4

Background

Figure 2.2: Comparison of ANN and SNN, highlighting differences in input
representation and architecture. (Images from [18] and[19])

τm
dVm(t)

dt
= −

1
Vm(t)− Vrest

2
+ RmI(t)

where:

• Vm(t) is the membrane potential at time t.

• Vrest is the resting potential of the neuron.

• τm = RmCm is the membrane time constant, representing how quickly the
potential changes.

• Rm is the membrane resistance.

• Cm is the membrane capacitance.

• I(t) is the total input current flowing into the neuron at time t.

5

Background

Figure 2.3: Schematic representation of the Leaky Integrate-and-Fire (LIF)
neuron and its firing behavior. (Image from [21])

When Vm(t) reaches the threshold potential Vth, the neuron fires a spike, and
its membrane potential is then reset:

Vm(t)→ Vreset if Vm(t) ≥ Vth

These mathematical formulations capture the integrate-and-fire behavior, pro-
viding a practical foundation for scalable neuromorphic implementations.

2.1.1 Benefits and Challenges of Neuromorphic Computing

Neuromorphic systems present an attractive vision for future computation, offering
several significant advantages [22]:

Adaptability and Dynamic Learning Drawing inspiration from biological
brains, neuromorphic computing systems are highly flexible and adaptive in solving
diverse and complex problems. To do so, neuromorphic systems depend on contin-
uous, real-time learning, allowing them to adapt fluidly to new inputs, stimuli, or
environmental shifts. Such inherent flexibility allows them to identify challenges
and address them in the most human-like way.

Energy Efficiency Neuromorphic systems are event-based: neurons and synapses
are processed only in response to spikes from other neurons. Unlike traditional
architectures that are continuously computed, in neuromophic networks power is
consumed only by its active parts, while the rest remains idle, leading to substantial
energy savings. These characteristics make neuromorphic systems particularly well
suited for edge computing and low-power, real-time applications.

6

Background

High Performance and Parallel Processing Conventional von Neumann
computers suffer from a "bottleneck" caused by separate processing (CPU) and
memory units and the constant transfer of data between them. In stark contrast,
neuromorphic computing systems integrate both data storage and processing
directly within individual "neurons". By tightly coupling memory and compute,
they greatly reduce latency and achieve faster computation through minimized
data transfers. Moreover, the asynchronous operation of Spiking Neural Networks
(SNNs) allows individual neurons to perform distinct operations simultaneously.
Theoretically, a neuromorphic device can execute as many tasks concurrently as
it has neurons, showcasing immense parallel processing capabilities and enabling
rapid function completion.

Efficient Information Encoding and Real-time Dynamics Neuromorphic
architectures excel in sparse, distributed information encoding through spikes or
events that inherently carry temporal information. This contrasts with dense,
continuous data representation in traditional systems. Coupled with their ability to
utilize dynamics across several timescales, neuromorphic systems are particularly
well-suited for real-time learning and processing of complex, time-dependent data
streams.

However, it is crucial to understand that these features do not offer a "magical"
universal solution, neuromorphic computing remains an emerging field and like any
nascent technology, it faces several significant challenges:

Decreased Accuracy The process of converting trained deep neural networks
into spiking neural networks can sometimes lead to a reduction in accuracy. Fur-
thermore, memory resistors, often used in neuromorphic hardware, can exhibit
variations in their cycle-to-cycle and device characteristics, which may impact
overall accuracy. In addition, hardware limitations such as restricted synaptic
weight precision can further contribute to performance degradation.

Lack of Benchmarks and Standards As a relatively new technology, neuro-
morphic computing still lacks of standardized architectures, hardware and soft-
ware frameworks. Although recent progress has introduced several benchmark
datasets [23, 24, 25, 26, 27] and evaluation protocols[28] for spiking and neuro-
morphic systems, the field still lacks unified standards. Variations in architectures,
coding schemes and learning paradigms make it challenging to establish consistent
performance metrics or compare results across different hardware platforms and
implementations.

7

Background

Limited Accessibility and Software Ecosystem The software and hardware
ecosystem for neuromorphic computing is still in development phase. While progress
in recent years has improved accessibility, many frameworks, development tools and
hardwares remain in active research or early-access stages. This limited availability
can hinder experimentation, portability and reproducibility.

2.1.2 Neuromorphic Hardware
Neuromorphic hardware refers to physical computing systems that emulate the
structure and dynamics of biological neural networks. These architectures are
typically event-driven and operate using spiking communication, offering high
energy efficiency and parallelism. Notable large-scale neuromorphic hardwares
include the SpiNNaker [29, 30] and BrainScaleS [31, 32] projects. Other emerging
platforms, including Xylo [33], SIMON and Speck [34], NeuroGrid [35] and the
DYNAP [36, 37] family of chips, offer analog or mixed-signal approaches for low-
power, real-time spiking neural computation. Among existing implementations,
Intel’s Loihi stands out as a digital neuromorphic chip designed for scalability and on-
chip learning. Its architecture supports networks of spiking neurons interconnected
through programmable synapses, enabling experiments in low-power and real-time
computation. While several other neuromorphic platforms exist (such as analog
and mixed-signal approaches), this Thesis focuses on the Loihi family of chips,
which provides a flexible environment for spiking neural network research.

Loihi 2: Intel’s Neuromorphic Research Chip

To provide functional systems for implementing SNNs, Intel Labs introduced
Loihi 2 [5], a neuromorphic research chip designed specifically for large-scale spik-
ing computation. This architecture is optimized for SNN workloads, combining
programmable neuron models, on-chip learning mechanisms and fully asynchronous
spike-based communication. The chip is engineered for high silicon density and
fast circuit execution, enabling the deployment of complex spiking networks with
unprecedented computational efficiency.
In addition to its architectural flexibility, Loihi 2 operates at extremely low power,
typically consuming well below one watt [5], in stark contrast to the tens or even
hundreds of watts required by conventional CPU- and GPU-based systems. Despite
this small power envelope, the chip achieves state-of-the-art response times to
incoming data streams and supports continuous on-chip learning and adaptation.
This combination of low latency, energy efficiency and online adaptability positions
Loihi 2 among the most versatile neuromorphic platforms available today.
Its rich feature set, including programmable neuron models, configurable plasticity
rules and high-resolution spike messaging, enables a broad range of use cases,

8

Background

Figure 2.4: Loihi 2 architecture overview. (Image from [5])

though pushing these capabilities often demands increasing computational scale.
As workloads grow, achieving larger network sizes and more demanding behav-
iors typically requires scaling across multiple Loihi 2 chips, leveraging the chip’s
multi-chip communication fabric to support distributed neuromorphic systems.
Another key aspect of the chip is its built-in profiling capability, i.e., the ability to
measure activity, runtime, energy consumption and other insightful characteristics
of the network deployed on the hardware, making it a strong target for research
projects. The Loihi 2 neuromorphic chip (Figure 2.4) integrates approximately
130,000 neurons, each capable of communicating with thousands of others through
programmable synapses. Its 128 neuron cores include embedded learning engines,
enabling programmatic control of on-chip resources and supporting complex spiking
computations.

Synapse and Neuron Model Loihi 2 supports generalized event-based mes-
saging in which spikes can optionally carry integer-valued payloads, allowing each
spike to encode additional information while preserving the sparse and time-coded
communication typical of spiking neural networks. These payloads, programmable
up to 32 bits, are specified directly through the neuron’s microcode and are used to
modulate downstream synaptic weights with minimal energy or performance over-
head. Neuron dynamics are defined by a programmable microcode pipeline within
each core, where each neuron executes a compact sequence of instructions that
implement its update rules. Because this microcode is fully configurable, neurons

9

Background

Table 2.1: Highlights of the Loihi 2 Instruction Set from [5]

OP CODES DESCRIPTION
RMW, RDC Access neural state variables in the

neuron’s local memory space.read-modify-write, read-and-clear

MOV, SEL Copy neuron variables and
parameters between registers and
the neuron’s local memory space.

move, move if ‘c’ flag

AND, OR, SHL Bitwise operations.
and, or, shift left

ADD, NEG, MIN Basic arithmetic operations.
add, negate, minimum

MUL_SHR Fixed precision multiplication.
multiply shift right

LT, GE, EQ Compare and write result to ‘c’
flag.less than, greater or equal, equals

SKP_C, JMP_C Branching to navigate program.
skip ops, jump to program address based on ‘c’ flag

SPIKE, PROBE Generate spike or send probe data
to processor.spike, send probe data

can be customized to support a wide range of behaviors, models and computation
patterns. The instruction set, summarized in table 2.1, includes arithmetic and bit-
wise operations, comparisons, conditional branching, memory access and dedicated
instructions for generating and probing spikes. Synaptic connections themselves
also support programmable delays, enabling fine-grained temporal control over spike
propagation and network dynamics. This flexible programming model enables the
implementation of a wide range of neuron behaviors and interaction patterns, from
simple integrate-and-fire mechanisms to more elaborate, algorithmically defined
update rules, without compromising computational efficiency.

Learning Capabilities The on-chip learning framework accommodates a wide
range of synaptic update rules. Localized modulatory signals can be applied directly
at the level of individual synapses, enabling the implementation of many neuro-
inspired learning algorithms, including approximations of the error backpropagation
algorithm. This design supports continuous adaptation to incoming data streams
and allows networks to adjust to changing conditions in real time.

Resource and Memory Optimization Each neuromorphic core provides its
own memory slot, which can be flexibly partitioned, adapting its storage resources

10

Background

to the requirements of a given network, balancing neuron state, synaptic data
and internal buffers. Synaptic connectivity can be encoded in multiple formats,
enabling efficient representation of both sparse and dense connectivity patterns.
A local spike-broadcast mechanism reduces bandwidth usage across inter-core
and inter-chip communication pathways, supporting large-scale networks while
maintaining low memory overhead.

Speed and Interface Capabilities The chip executes neuron updates, synap-
tic operations and spike-processing logic through an asynchronous event-driven
architecture designed for low latency and high throughput. Standardized in-
terfaces—including Ethernet, GPIO, SPI and asynchronous event-based proto-
cols—facilitate integration with digital systems, neuromorphic sensors and multi-
chip configurations. This versatility enables the construction of scalable neuromor-
phic applications spanning embedded, edge and cloud-connected environments.

Processing modes Loihi 2 supports balancing throughput and latency depending
on application requirements, enabling a range of processing modes spanning from
pipelined to fall-through operation [38]. In the pipelined mode, a new input is
injected at every time step. This enables all neuronal layers to operate concurrently
in a pipeline fashion, resulting in maximal throughput. However, enforcing a fixed
progression of time steps increases the latency experienced by individual inputs.
Conversely, the fall-through mode introduces new inputs only after the previous
one has propagated through the entire network. At any given time step, only a
single neuronal layer is active, reducing internal traffic and allowing the network
to advance as quickly as possible. This minimizes per-sample latency, although
overall throughput is limited by the time required for each input to traverse the
architecture.
The effective operating point can be tuned by adjusting the rate at which new
inputs are provided, enabling a continuum between strictly pipelined and strictly
fall-through operation. This flexibility allows Loihi 2 to accommodate workloads
ranging from high-throughput streaming applications to latency-critical real-time
processing.

Loihi 2 performance bottlenecks As shown in [39], Loihi 2 like systems are
characterized by three main execution bottlenecks, in order of relevance:

1. Synaptic memory reads in each neuron core, to fetch the synpatic weights

2. Dendrite updates in each neuron core, to execute each neuron’s dynamics and
update its state

11

Background

3. Traffic congestion in the Network on Chip, to route spikes from source to
destination neuron core

Given that in Loihi 2, at each timestep there is a barrier synchronization between
all neuron cores, the memory and dendrite bottlenecks become effectively those
of the slowest neuron core. For this reason, correct network partitioning, that
attempts to balance the memory and execution load across all neuron cores, is
essential in this type of parallel and pipelined architectures.

Traffic congestion on the other hand is reduced by an appropriate mapping
strategy, that attempts to balance the traffic load across the routers in the network
on chip, and to reduce the distance between pair of neuron cores that need to
communicate the most.

(a) (b)

Figure 2.5: Two of the available Loihi 2 hardware: Oheo Gulch on the left and
Kapoho Point on the left.

Loihi 2 Hardware Availability Intel provides Loihi 2–based neuromorphic
systems to the research community primarily through the Neuromorphic Research
Cloud, which enables remote access to shared computational resources. Among
the available platforms is Oheo Gulch (Figure 2.5a), a single-chip board designed
for laboratory evaluation and detailed characterization. The chip is mounted on a
socket and instrumented for low-level debugging, while exposing Loihi 2 through a
standard Ethernet interface, allowing researchers to run experiments and collect
detailed measurements on the chip’s behavior. A second platform, Kapoho Point
(Figure 2.5b), is a compact and stackable system that integrates eight Loihi 2 chips
within an approximately 4×4-inch form factor. It offers Ethernet connectivity and
is designed to support dense, scalable multi-chip configurations for more demanding
neuromorphic workloads.

12

Background

2.1.3 Neuromorphic Software Ecosystems
In the software domain, the development of training and learning algorithms
for neuromorphic computing involves a blend of both machine learning and non-
machine learning methodologies. Different categories of software frameworks have
emerged to support these efforts. Some, such as snnTorch, SpikingJelly and GeNN,
are primarily designed to emulate the behavior of SNNs on conventional hardware
like GPUs. These tools enable rapid prototyping, experimentation and validation
of spiking architectures in a familiar deep learning environment before hardware
deployment. Other frameworks, such as Lava, NxKernel and PyNN, focus on
bridging the gap between software and neuromorphic hardware. They provide
an interface layer that allows SNN models to be mapped and deployed directly
onto neuromorphic chips, supporting hardware-specific execution and optimization.
Together, these software ecosystems play a crucial role in accelerating research
and facilitating the transition from conceptual models to functional neuromorphic
systems. For this thesis, three of the cited frameworks were used: snnTorch for
training, Lava to better understand hardware functionality and NxKernel for
hardware deployment.

snnTorch

snnTorch is an open-source Python library designed to extend PyTorch for the
simulation and training of spiking neural networks (SNNs) [40, 41]. It integrates
with PyTorch’s computational graph, allowing spiking neurons to be treated as
recurrent units and enabling gradient-based optimization through surrogate gradient
methods. snnTorch supports several options for the surrogate function, such as
sigmoid or arctangent, allowing flexible approximation of the non-differentiable
spike function during training. This design allows users already familiar with
deep learning frameworks to experiment with biologically inspired spiking models
without changing their development workflow.

The framework introduces differentiable spiking neurons that can be trained
through backpropagation despite the non-differentiable nature of spike events.
Common neuron models include the first-order LIF (snn.Leaky) and the second-
order LIF (snn.Synaptic), which accounts for synaptic conductance. Each model
exposes a set of configurable parameters, such as membrane potential, threshold
voltage, time constants, reset mechanism and optional reset delay. Many of these
parameters can be made learnable, allowing fine-grained control over neuron dy-
namics, including firing rate, leakiness and refractory behavior. This flexibility
enables the customization of network responses to suit different tasks or temporal
patterns. In snnTorch, synaptic connections are implemented as nn.Linear layers
in PyTorch, allowing efficient computation and seamless integration into the frame-
work.

13

Background

snnTorch also offers a set of loss functions and monitoring tools tailored for SNNs,
enabling optimization based on membrane potentials, spike counts or spike timing.
It is particularly suited for rapid prototyping, providing a bridge between conven-
tional deep learning methods and spiking computation. As a simulation-based
framework, it focuses on software implementations and does not directly map to
neuromorphic hardware, though it serves as an effective tool for developing and
testing models before hardware deployment, since it runs on GPU, making these
steps faster.

Lava

Lava [42, 5] is Intel’s open-source software framework for neuromorphic computing,
developed to facilitate the design, simulation and deployment of neuro-inspired
applications on both conventional and neuromorphic hardware, specifically on
Loihi 2. Its architecture is platform-agnostic, modular and composable, allowing
developers to integrate algorithmic contributions from multiple groups and build
hierarchical abstractions to make neuromorphic programming accessible. Lava
promotes progress in the field by providing a, professionally developed software
foundation.
At its core, Lava introduces the concept of processes, which are stateful components
that communicate asynchronously via event-based message passing. Processes
encapsulate internal state, input/output ports and behavioral models and are
organized hierarchically to enable scalable, parallel execution. Messages can carry
payloads ranging from single-bit spikes to buffered packets of arbitrary size.
The low-level Magma interface maps high-level process abstractions to hardware-
specific primitives, handling compilation, execution and profiling of neural networks.
Magma supports cross-platform simulation, allowing models to be prototyped on
conventional processors before deployment on neuromorphic hardware. It also
provides profiling tools to estimate performance and energy consumption across
targeted platforms.
Lava supports offline training through tools such as SLAYER, enabling event-
driven neural networks to be trained via backpropagation and integrated with
other processes. Furthermore, it is fully extensible, offering potential interfaces to
third-party frameworks including ROS, YARP, TensorFlow, PyTorch and Nengo,
allowing applications to span heterogeneous systems. In addition to the open-source
components of the Lava framework, Intel has made the proprietary part, which
provides support for Loihi 2, available to members of the INRC.

NxKernel

NxKernel is Intel’s proprietary software stack, serving as an intermediate-level
neuromorphic programming interface within the Lava ecosystem, available to

14

Background

members of the Intel Neuromorphic Research Community. It is specifically designed
for Loihi 2 neuromorphic hardware and allows for more fined control of specific
features of the hardware.

2.2 Recurrent neural networks (RNNs)
RNNs [43, 44] have been widely used for pattern recognition tasks involving
temporal data. Unlike feedforward networks, which propagate information in a
single direction, RNNs maintain a hidden state that is updated at each time step,
allowing the network to retain information about previous inputs. This feedback
mechanism enables RNNs to capture dependencies across time and effectively model
sequential data.
However, classical RNNs suffer from difficulties in learning long-term dependencies
due to vanishing and exploding gradients, which limits their ability to capture
complex patterns in long sequences [45]. To address these issues, gated variants
such as Long Short-Term Memory (LSTM) [46] networks and Gated Recurrent
Units (GRUs) [47, 48] been introduced, incorporating mechanisms to control the
flow of information across time steps. RNNs and their variants have found broad
applications in natural language processing [49, 50], speech recognition [51] and
time-series prediction [52]. Their structure and memory capabilities have also
inspired the development of spiking recurrent networks, which aim to combine
the benefits of RNNs with the efficiency and event-driven nature of neuromorphic
systems.

2.2.1 Long Short-Term Memory
One of the most successful recurrent architecture is the LSTM [46] which, as
the name suggests, keeps information about the input data in both a short-term
memory unit, the hidden state, as well as a long-term memory unit, the cell state, to
keep relevant information about past iterations. This allows the network to retain
relevant information across long sequences, effectively addressing the vanishing and
exploding gradient problems that typically hinder standard RNNs. It does so by
making use of three different gates (Figure 2.6): the forget gate ft which controls
the longevity of information inside the cell state ct−1 by determining what to keep
and what to discard from the previous timestep in varying proportions, the input
gate it that, along with an assisting layer gt, regulates the information entering
the unit and, finally, the output gate that makes use of the previous hidden state
ht−1 and the newly calculated cell state ct to produce a new hidden state ht. At
each iteration, both memory units are updated to produce, in the end, a final
output which is subsequently utilized to classify the input received. The process of

15

Background

Figure 2.6: Architecture of an LSTM unit illustrating its internal structure: input,
forget and output gates and the transformations that update the cell state and the
hidden state.

a standard LSTM can be represented by the following equation:

Ft = σ(Whf ·Ht−1 + Wif ·Xt), (2.1)
It = σ(Whi ·Ht−1 + Wii ·Xt), (2.2)

C̃t = tanh(Whc̃ ·Ht−1 + Wic̃ ·Xt), (2.3)
Ot = σ(Who ·Ht−1 + Wio · t), (2.4)
Ct = Ft ·Ct−1 + It · C̃t, (2.5)
Ht = Ot · tanh(Ct). (2.6)

Overall, the versatility of LSTMs in modeling complex temporal dependencies
makes them suitable for a wide range of sequential data tasks. This strong capability
to capture both short- and long-term patterns motivates their reinterpretation in
spiking neural networks, where similar temporal dynamics can be exploited in a
more energy-efficient, event-driven framework.

2.3 Neural Network Intelligence (NNI)
Neural Network Intelligence (NNI) [53] is an open–source toolkit developed by
Microsoft to support automated hyperparameter optimisation and neural archi-
tecture search. Its design enables the definition of complex search spaces and the
evaluation of candidate configurations through an external training script.

16

Background

NNI operates by orchestrating a sequence of experiments in which different
combinations of hyperparameters are selected according to a chosen optimisation
strategy. Once a configuration is proposed, NNI launches the user–defined training
procedure, collects the performance metric produced by the model and updates its
internal tuner to refine the search. This process allows an efficient exploration of
both continuous and categorical parameters, and supports a wide range of optimi-
sation methods, including random sampling, Tree–structured Parzen Estimators
(TPE), Bayesian optimisation, evolutionary algorithms, simulated annealing and
more advanced multi–fidelity approaches.

A practical strength of NNI is the level of control it offers on the evaluation
objective. The user can specify which metric the optimiser should target — such
as validation accuracy, validation loss, test accuracy or any custom score — and
NNI will guide the search accordingly. Once the search space and the reporting
instructions are defined, the platform automatically manages the entire optimisation
loop: proposing new hyperparameter combinations, executing the corresponding
training runs and updating the tuner based on the obtained results. This makes
NNI particularly suitable for analysing spiking architectures, where the behaviour of
the model can be highly sensitive to parameters such as decay constants, thresholds
or learning rates. In this work, NNI with the simulated annealing optimisation
method was employed to explore the sensitivity of the proposed Spiking LSTM
models and to identify stable and well-performing hyperparameter configurations.

2.4 Datasets Overview

2.4.1 Human Activity Recognition (HAR)
A widely known classification problem is Human Activity Recognition (HAR) [23],
which consists of a series of time-dependent signals, typically collected by smart
devices containing sensors that perform body monitoring. In recent years, such
personal and non-invasive devices have become more and more common in our
everyday life, increasing the availability of data, spanning a variety of human
life aspects such as healthcare, sports and surveillance. As a result, this task’s
popularity has increased in the research field, inspiring many works revolving
around Convolutional Neural Networks (CNN) and RNN.

In 2019, the Wireless Sensor Data Mining (WISDM) Lab at Fordham University
released the WISDM Smartphone and Smartwatch Activity and Biometrics Dataset
[24], designed to capture human motion through the accelerometer and gyroscope
of both devices. The dataset contains data collected from 51 subjects performing
18 different activities (Figure 2.7a), ranging from ambulatory movements such as
walking, jogging and climbing stairs, to hand-centric tasks like brushing teeth,
writing or eating.

17

Background

(a) Complete list of activities in
the WISDM dataset

(b) Random sample from WISDM dataset: six sensor
channels (accelerometer x, y, z; gyroscope x, y, z)

Figure 2.7: Overview of the WISDM dataset. The table lists all recorded activities,
while the plot shows an example of the time-series data collected from one subject.

Each activity was recorded for three minutes with a sampling frequency of 20 Hz,
yielding over 15 million samples. Data were gathered simultaneously from the
smartphone placed in the participant’s pocket and the smartwatch worn on the
dominant hand, ensuring synchronized multimodal acquisition. Every record
includes six sensor readings (Figure 2.7b) — three accelerations (x, y, z axes) and
three angular velocities — tagged with both the activity label and the subject
identifier, allowing the dataset to be used not only for activity classification but
also for biometric identification.

It offers a wide range of activities, with balanced distribution of the 15,630,26
total samples between classes, ranging from a contribution of 5.3% to 5.8% each.
The dataset is often processed using a sliding window approach to segment the
continuous time series into shorter fixed-length sequences suitable for machine
learning models. A typical configuration employs 2-second windows (40 timesteps),
each containing the six sensor channels as input features. This representation
facilitates the training of temporal models such as recurrent and/or spiking neural

18

Background

Number of subjects 51
Number of activities 18
Minutes collected per activity 3
Sensor polling rate 20Hz
Smartphone used Google Nexus 5/5x or Samsung Galaxy S5
Smartwatch used LG G Watch
Number raw measurements 15,630,426

Table 2.2: Summary information of the WISDM dataset. [54]

networks, which are capable of capturing temporal dependencies and dynamic state
evolution across timesteps.
Thanks to its time-dependent nature, the WISDM dataset represents a suitable
benchmark for evaluating models capable of learning temporal patterns, where
temporal coding and dynamic state representation play a crucial role. A summary
of the dataset key features can be find in Table 2.2.

2.4.2 Spiking Heidelberg Digits (SHD)
The Spiking Heidelberg Digits (SHD) [55] dataset is an audio-based classification
benchmark specifically designed for event-driven neural computation. It consists of
10,420 recordings of spoken digits from 0 to 9, pronounced in both English and
German by twelve different speakers, two of whom appear exclusively in the test
set. The dataset is split into 8,332 training samples and 2,088 test samples, with
no dedicated validation subset.

Each audio recording is converted into a spiking representation through Lauscher,
a biologically inspired artificial cochlea model. This transformation produces 700
input channels, each representing a distinct frequency band and associated auditory
neuron population. The resulting spike trains capture fine-grained temporal and
spectral dynamics, closely mimicking the early auditory processing observed in the
biological cochlea.
Unlike conventional frame-based audio datasets, SHD provides asynchronous spike
events rather than continuous-valued spectrograms, making it particularly suitable
for testing models that process temporally precise information, as spiking neurons
naturally respond to discrete events. Each spike is typically binned with a temporal
resolution of 1 ms, allowing networks to capture rapid temporal dependencies. This
property allows evaluating a network’s ability to extract and encode temporal
dependencies from sparse, event-based data, an ability that is especially relevant
for spiking recurrent architectures.
The duration of individual audio snippets varies, generally ranging from 1 to
2 seconds, reflecting natural speaker variability. Furthermore, the inclusion of

19

Background

recordings in both English and German introduces phonetic variability, providing
an additional challenge for models to generalize across speakers and languages.

The current state-of-the-art on the SHD dataset is summarized in Table 2.3.
The upper section reports results from SNNs, while the lower section includes
the non-spiking LSTMs for comparison with conventional ANNs. The dataset is
commonly used as a benchmark for evaluating event-driven architectures and for
comparing spiking networks to traditional ANN solutions in audio classification
tasks [55].

20

Background

Table 2.3: Comparison of published results on the SHD dataset.

Publication Accuracy (%) Network
1 Sun et al. (2025) [56] 96.26±0.08 Parameter-free attention for

delay SNNs
2 Baronig et al. (2024) [57] 95.8±0.6 RSNN with adaptive LIF

neurons and symplectic-
Euler discretization

3 Hammouamri et al. (2023) [58] 95.1±0.3 Fully connected SNN with
learned delays

4 Bittar and Garner (2022) [59] 94.6 RSNN with adaptation
5 Nowotny et al. (2025) [60] 93.5±0.7 RSNN with delay line input

and augmentations
6 Mészáros et al. (2025) [61] 93.2 RSNN with delay learning
7 Sun et al. (2023) [62] 92.45 Feed-forward SNN with

adaptive axonal delays
8 Yu et al. (2022) [63] 92.4 Feed-forward SNN with

spatio-temporal filters and
attention

9 Yao et al. (2021) [64] 91.1 RSNN with temporal atten-
tion

10 D’Agostino et al. (2023) [65] 90.1 / 87.6 Feed-forward SNN with
random dendritic delays
(sim/hardware)

11 Yin et al. (2020) [66] 84.4 RSNN with adaptation
12 Rossbroich et al. (2022) [67] 83.5±1.5 Recurrent convolutional

SNN with fluctuation-driven
init

13 Cramer et al. (2020) [68] 83.2±1.3 RSNN with data augmenta-
tion and noise injection

14 Perez-Nieves et al. (2021) [69] 82.7±0.8 RSNN with heterogeneous
time constants

15 Cramer et al. (2020) [70] 71.4±1.9 RSNN
16 Cramer et al. (2020) [71] 48.1±1.6 Feed-forward SNN (single

hidden layer)
17 Schöne et al. (2024) [72] 95.9±0.9 Event-based linear state

space model
18 Cramer et al. (2020) [73] 85.7±1.3 LSTM

21

Chapter 3

From ANN to SNN

3.1 Reinterpretation of the LSTM

Numerous attempts have been made to reinterpret conventional neural architectures
within a spiking framework [74, 75, 76, 77]. These works show that replacing
continuous activations with event-based computations can substantially reduce the
computational cost while preserving the core functionality of the original models.
Several studies, such as [78] and [79], demonstrate that spiking implementations
can achieve comparable performance to their non-spiking counterparts, often with
considerably lower energy consumption.

The transformation of LSTM networks into spiking counterparts has been
explored through a variety of approaches in recent years. Early work, such as [80],
focused on training recurrent spiking networks by leveraging firing-rate dynamics to
reproduce complex temporal patterns. Although not directly aimed at converting
LSTMs, this line of research demonstrated that recurrent SNNs can implement
structured temporal computations, offering a foundation for more specialized
architectures. A more direct neuromorphic reinterpretation was proposed in [81],
which introduced a framework for converting the LSTM cell into a fully spiking
unit. In their design, spikes are used as inputs and the classical activation functions
in the gates are replaced by spiking nonlinearities, while preserving the functional
roles of input, forget and output gates. The authors also developed a dedicated
backpropagation method that enables the network to reach performance levels
comparable to conventional LSTMs, while ensuring that the internal cell state
remains bounded within the spiking regime.

Progressing from these prior contributions, the core idea of this Thesis is a
neuromorphic reinterpretation of the LSTM is to express its computational structure
in terms of neuron populations and synaptic interactions, while preserving the
original model’s functional principles. In the proposed spiking LSTM (sLSTM),

22

From ANN to SNN

each gate is maintained conceptually, but reimplemented using spiking neuron
populations that replicate their roles within the network. Depending on the specific
approach, traditional activation functions may either be retained or replaced by
spiking dynamics, leading to models that vary in their level of biological plausibility
and hardware compatibility.

3.1.1 Basic Implementation
The first architecture presented in this section is the result of converting the
fundamental units of Long Short-Term Memory into populations of neurons, the
architecture is displayed in Figure 3.1. Similar to traditional LSTMs, the central
idea stands in the cell state, denoted as Ct (where t stands for time), which serves
as a channel and manager of information flow between units (long-term memory),
while the hidden state ht captures the output and feeds it back into the network
at the next timestep. This is achieved through the collaboration of the various
gates and layers typical of this kind of model: the forget gate Ft, the input gate
It, the candidate gate C̃t and, ultimately, the output gate Ot. Since both the
hidden state and the input are represented as spikes entering the gate, a neuron
population was introduced before the output stage. This population, Ht, takes
as input the state calculated by the cell and passed through the tanh function
(Hint), which represents the combined information from previous time steps. The
neuron population then processes this input and generates spikes corresponding to
the hidden state, denoted as Ht,spk, thus ensuring that the dynamics of the LSTM
are preserved in a spiking neural network framework. More specifically, given a
set of spiking inputs at {x1,spk, x2,spk, ..., xT,spk}, where T is the total number of
timesteps, the gates and states, at time t, are characterized as follows:

ft = σ(f((Whf · ht−1,spk + Wif · x1,t,spk)spk)), (3.1)
it = σ(f((Whi · ht−1,spk + Wii · x2,t,spk)spk)), (3.2)
c̃t = tanh(f((Whc̃ · ht−1,spk + Wic̃ · x3,t,spk)spk)), (3.3)
ot = σ(f((Who · ht−1,spk + Wio · x4,t,spk)spk)), (3.4)
Ct = It ·Ct−1 + It · C̃t, (3.5)

Hint = Ot · tanh(Ct). (3.6)

where the notation spk is used to indicate the spiking value and the f(·) corresponds
to a mean function calculated as nspikes

npop
(the pop represents the number of neuron

of the population, as explained later, and depends on the gate).
In the above equations, all the activation functions from the original definitions
of LSTM are retained. These functions receive the average of the spikes on their
respective populations as input. This design choice ensures that the input of the
activation functions varies in a range between 0 and 1, in order to allow the function

23

From ANN to SNN

Figure 3.1: SLSTM basic implementation architecture. Each gate is converted into a
population of LIF neurons with its own population size and specific values for beta and
threshold

to produce a more varying output, rather than sticking to the same two values that
it would have otherwise produced by receiving only spikes and non-spikes.
The last key aspect is the use of population coding (pop) within each cell gate. In
a standard LSTM, the output dimension of each gate corresponds to the hidden
size. To replicate this behavior in a spiking context, each single hidden dimension
is represented by a number of neurons equal to the specific population size of the
gate (i.e. population size = gate population * hidden size). The mean is then
computed over the population size. Without this technique, averaging the outputs
would result in a single value for the entire vector, thereby losing the granularity of
information.

3.1.2 Fully Spiking implementation
The basic structure of this implementation resembles the previous one. However, the
primary objective here is to design a fully spiking LSTM cell architecture. Unlike
the previous approach, which still relied on some traditional activation functions,
this version aims to leverage the inherent capabilities of spiking neural networks.
This was achieved by replacing all activation functions through populations of
neurons and their interaction.
A first attempt consisted in replacing all activation functions with simple LIF
neuron populations. While this approach aligned with the goal of leveraging the
intrinsic dynamics of spiking neurons, it showed limited potential: in particular,

24

From ANN to SNN

Figure 3.2: SLSTM Fully Spiking implementation architecture. The activation functions
are replaced by neuron populations.

it failed to reproduce the expressive range of the tanh function, as the resulting
activations could not take on negative values. These limitations motivated the
development of an additional, more refined version described in the following.
The sigmoid function, typically used in forget and input gates, is approximated by
the average firing rate (number of spikes divided by the population size) within
a population of neurons. This substitution worked in practice because both the
sigmoid function and the average firing rate produce output values between 0 and 1,
representing a "percentage" of activation. The tanh function plays a crucial role in
the LSTM architecture, allowing selective addition or removal of information from
the hidden state due to its output range from -1 to 1. To mimic this behaviour
with only spikes the solution draws inspiration from the nature of the human brain
and nervous system. Two distinct populations of neurons were implemented, one
excitatory and the other inhibitory. By calculating the difference between the
outputs and averaging by the population size, it was possible to generate a range
of output values equivalent to the tanh, ensuring the network’s proper functioning.

25

From ANN to SNN

Figure 3.3: SLSTM Membrane-Based Implementation architecture. The activation
exploits the membrane potential of the gates neuron populations.

The conversion of the equation is straightforward:

ft = f((Whf · ht−1,spk + Wif · x1,t,spk)spk), (3.7)
it = f((Whi · ht−1,spk + Wii · x2,t,spk)spk), (3.8)
c̃t = f

1
(W+

hc̃ · ht−1,spk + W+
ic̃ · x3,t,spk)spk (3.9)

− (W−
hc̃ · ht−1,spk + W−

ic̃ · x3,t,spk)spk

2
, (3.10)

ot = f((Who · ht−1,spk + Wio · x4,t,spk)spk), (3.11)
Ct = ft ·Ct−1 + it · c̃t, (3.12)

Hint = ot · f((W+
C ·Ct −W−

C ·Ct)spk). (3.13)

where f(·) is again nspikes

npop
, as in the basic implementation. The substitute of the

tanh function can be seen as a small architecture composed by two distinct linear
layers with two different populations of Leaky neurons and a final operation in
which the average is computed on the subtraction between the spikes, as displayed
in the general architecture Figure 3.2.

3.1.3 Membrane-Based Implementation
The fundamental distinction between RNN and SNN lies in the notion of time. In
LSTMs, time is encoded within the memory cell state, which retains information

26

From ANN to SNN

about the cell’s history. In contrast, in SNNs both the input and output of spiking
neurons are temporally encoded using sparse spiking events occurring over a specific
timeframe. These events are captured and stored through the membrane potential.

For this membrane-based implementation, the architecture was changed by
leveraging the similarity between the LSTM memory cell state and the membrane
potential in spiking neurons. The whole LSTM cell was conceptualized as a single
neuron, where the memory state represents its membrane potential (as shown in
Figure 3.5)). This membrane potential is internally updated following the classical
operations of the gates in an LSTM architecture. It is then used as the membrane
potential for the hidden gate, which is responsible for outputting the spikes used
for the classification task. To align with this reasoning, the encoding block was
replaced with a single fully connected layer followed by a single population layer,
ensuring that the same input is fed to all gates.

The logic behind the implementation is similar to the LSTM, where the mem-
brane potential is modified through gates:

• Forget gate: Determines the percentage of the current membrane potential
to retain. Given the input and the hidden state, it processes them through a
population and returns the sigmoid value of its membrane potential.

• Input gate: Determines the percentage of the candidate membrane potential
to retain. Same operations of the forget gate.

• Candidate gate: Proposes an amount of potential to add to the actual
value of the membrane. Given the input and the hidden state, it processes
them through a population and returns the hyperbolic tangent value of its
membrane potential.

• Output gate: It is responsible of the computation of the current output
that goes into the hidden gate. Therefore, it does not involve a population of
neurons.

The formulas regulating this process are as follows:
ft = σ((Whf · ht−1,spk + Wif · xt,spk)mem), (3.14)
it = σ((Whi · ht−1,spk + Wii · xt,spk)mem), (3.15)
c̃t = tanh((Whc̃ · ht−1,spk + Wic̃ · xt,spk)mem), (3.16)
ot = Who · ht−1,spk + Wio · xt,spk, (3.17)

memt = ft ·memt−1 + it · c̃t, (3.18)
ht = spk(ot, memt). (3.19)

Here, the notation mem is used to indicate the membrane value, and the spiking
function spk(ot, memt) indicates whether an output spike occurs based on the
membrane potential, memt, and the output gate’s weighted sum.

27

From ANN to SNN

Figure 3.4: SLSTM Spiking implementation architecture. The activation functions are
replaced by neuron populations.

In contrast to traditional LSTM implementations, the output gate in this
approach skips activation functions and directly passes the weighted input and
hidden state to an output neuron. This neuron receives the membrane potential
value calculated by the rest of the architecture, maintaining the model’s dynamic
behavior and complexity.

In summary, the neuron receives the input xt and the previous hidden state
spk(ht−1), encoded as spikes, as parameters and outputs both the updated hidden
state spk(ht) and the neuron’s internal state memt. This neuron can be seen as a
population itself as it emulates the behavior of multiple neurons.

3.1.4 Spiking membrane
An additional variant of the Membrane-Based Implementation was explored to
leverage the advantages of membrane dynamics while preserving a more neuro-
morphic structure. This architecture draws inspiration from the Fully Spiking
Implementation, aiming to combine the strengths of both approaches.

In this modified architecture (Figure 3.4), the transformation of the sigmoid and
tanh activation functions is retained, similar to the fully spiking version. Specifically,
the sigmoid function is approximated by the mean of the output spikes, while the
tanh function is replaced by the difference in the means of two populations of
output spikes.

In this version, the cell state (Ct) is interpreted as the membrane potential (memt)

28

From ANN to SNN

Figure 3.5: SLSTM Final implementation architecture. This architecture is the one
deployed on hardware and used for all the experiments.

of the hidden neuron, following the same concept as in the original membrane-
based implementation. This membrane potential is then assigned to the hidden
population, which uses it as its internal state. The output gate provides the input
current to this population and, based on the interaction between this input and
the membrane potential, the hidden population generates its spiking output. The
underlying logic of the model can be described with the following formulas:

ft = f((Whf · ht−1,spk + Wif · xt,spk)spk) (3.20)
it = f((Whi · ht−1,spk + Wii · xt,spk)spk) (3.21)
c̃t = f

1
(W+

hc̃ · ht−1,spk + W+
ic̃ · xt,spk)spk (3.22)

− (W−
hg · ht−1,spk + W−

ig · xt,spk)spk

2
(3.23)

ot = Who · ht−1,spk + Wio · xt,spk (3.24)
memt = ft ·memt−1 + it · c̃t (3.25)

ht = spk((Wsyn · ot), memt) (3.26)

3.1.5 Final Implementation of the Spiking LSTM
This final architecture brings the spiking membrane approach one step closer to
the Membrane-Based Implementation, while addressing the practical limitations
observed in the previous variants. Two aspects of the previous models were

29

From ANN to SNN

reconsidered: the use of population averages, which is not a natural or efficient
operation in a spiking context, and the large number of neuron populations required
to approximate each activation function. Both elements made the architecture
heavy, difficult to scale and far from the constraints of neuromorphic hardware.

For this reason, the design integrates ideas from both previous attempts. As
in the second version, the membrane potential of the gates is used directly as
the signal driving the computation. At the same time, the activation functions
are replaced following the strategy introduced in the spiking-membrane variant,
without relying on population-level approximations. The dynamics are described
as following:

ft = (Whf · ht−1,spk + Wif · xt,spk)mem, (3.27)
it = (Whi · ht−1,spk + Wii · xt,spk)mem, (3.28)
c̃t = (W+

hc̃ · ht−1,spk + W+
ic̃ · x3,t,spk)mem (3.29)

− (W−
hc̃ · ht−1,spk + W−

ic̃ · x3,t,spk)mem, (3.30)
ot = Who · ht−1,spk + Wio · xt,spk, (3.31)

memt = ft ·memt−1 + it ·memt, (3.32)
ht = spk(ot, memt). (3.33)

The result is a more compact and hardware-oriented architecture in which
each gate contributes through its membrane dynamics, preserving the functional
flow of a classical LSTM while avoiding operations that are unnatural for spiking
systems. This design retains the core computational principles of the original model
and, at the same time, produces a structure that can be efficiently deployed on
neuromorphic hardware.

3.2 Familiarization with NxKernel and Loihi 2
Neuron Mechanics

During the initial phase of this Thesis, substantial effort was devoted to developing
a practical understanding of NxKernel and of the computational primitives exposed
by the Loihi 2 architecture. The official tutorials and the example code provided by
Intel played a crucial role in clarifying how the platform models neuronal dynamics
and low-level neural computation.
Through progressive experimentation, it became possible to identify how Loihi 2
structures a neuron into its fundamental components such as constant registers,
dendritic accumulator units and the memory elements responsible for storing
intermediate states. This exploration also shed light on the micro-operations

30

From ANN to SNN

executed at each simulation tick, including how inputs are integrated, how thresholds
and resets are applied and how spike events are generated or suppressed depending
on the chosen neuron configuration.
A deeper understanding was also gained regarding the connectivity model. In Loihi 2,
synaptic communication is tightly coupled with the hardware’s routing constraints
and the process of defining weight matrices, fan-in conditions and addressable
synaptic channels revealed both the flexibility and the boundaries imposed by the
architecture. Working with various connectivity and weight configurations clarified
the practical boundaries of Loihi 2’s synaptic memory model, in particular, how
the available bit-depth for weights, the supported data formats and the memory
allocated per core determine both the number of incoming synapses that can be
instantiated and the level of numerical precision they can carry.
These explorations collectively helped outline the expressive power of Loihi 2
as a neuromorphic substrate: while the hardware imposes structural constraints
on neuron models and connectivity, it also allows precise low-level control over
computation, enabling the construction of custom dynamical systems that go
beyond standard LIF behavior. This familiarity with NxKernel ultimately provided
the foundation necessary to implement the Spiking LSTM architecture, as designed
for the purposes of this thesis.

3.3 snnTorch Implementation
The architecture described in Section 3.1.5 was initially implemented and tested
in the snnTorch environment. Each gate of the LSTM (input, forget, output,
candidate and the hidden gate) was built using snn.Leaky neurons connected
through standard nn.Linear layers.

The Leaky neuron provides several configurable parameters. In this Thesis, all
gates were created with the following neuronal settings:

• beta: the membrane decay factor, controlling how much of the previous
membrane potential is retained at each timestep;

• threshold: the firing threshold;

• learn_beta=True and learn_threshold=True: enabling gradient-based adap-
tation of both decay and threshold;

• reset_delay=False: ensuring that the reset is applied immediately after a
spike.

These settings offer a flexible spiking substrate where both the temporal dynamics
(beta) and the excitability of the neuron (threshold) can adapt during training.

31

From ANN to SNN

While these properties were common across all gates, the reset mechanism differed
depending on the computational role of each gate. The default reset, zero, was used
for the standard LIF neurons, for the hidden-state neuron and also for the forget
and input gates. These gates must represent a fraction of information to retain or
discard, the standard zero-reset is appropriate: it ensures that each spike reflects
an instantaneous contribution, the more excited the neuron is the more it needs to
discard, culminating in a spike whose zero-reset clears the membrane completely,
ensuring that no residual current persists across timesteps. The subtract reset,
that enables a progressive accumulation of current as it does not fully clear the
membrane value when spiking, allowing the membrane potential to approximate a
continuous-valued signal. This property makes it suitable for the candidate gate,
whose role is to emulate the continuous tanh activation.

The model was trained on the HAR dataset, using a subset of seven classes, as
in [82]. Training was performed with Backpropagation Through Time (BPTT),
using SF.ce_count_loss() as the loss function and the Adam optimizer. The
count-based cross-entropy loss provided by snnTorch was chosen, since it is partic-
ularly well suited for spiking architectures, as it aligns the training objective with
the discrete nature of spike outputs: instead of relying on instantaneous membrane
values, it evaluates class evidence through spike counts accumulated over the full
sequence, making the gradient signal more stable and better matched to the model’s
computation.

3.4 Translation from snnTorch to NxKernel
Compared to the snnTorch implementation, the translation to NxKernel required
a conceptual restructuring of the LSTM operations. In snnTorch, gate interactions
and nonlinearities are computed across multiple layers and modules, whereas
on Loihi 2 these operations must be reformulated in terms of neuron-level state
transitions and event-driven updates. This mismatch required reorganizing the
computation flow of the LSTM cell so that each operation could be executed as
part of a neuron’s internal update cycle. The final final result is illustrated in
Figure 3.6.

In this process, two types of neurons were adapted in NxKernel. First, the
Leaky neuron model was extended: mem_lif is a Leaky capable of outputting its
membrane potential directly. Instead of producing only a binary spike, the neuron
attaches its membrane value as a payload, making it available to downstream
populations. Of this neuron two variants were made implementing both the zero
and the subtractive-reset behavior compatible with the candidate gate. Second,
a fully custom neuron type was defined to implement the LSTM cell itself, the
lstm_neuron. This neuron integrates the core operations of the LSTM—gate

32

From ANN to SNN

Figure 3.6: Diagram of the Spiking LSTM architecture implemented in NxKernel,
showing the organization of the neuronal populations.

computation (see Algorithm 1), cell update and hidden-state emission. It receives
as input the three gate signals, together with both the recurrent and external
inputs. Because of this high degree of specialization, its behavior was implemented
explicitly rather than derived from existing neuron models.

Algorithm 1 High-level description of the neuron update implemented in microcode
1: ▷ Gate-based memory update
2: Read the forget gate value f and compute its contribution to the previous

memory state: mf = f ·m.
3: Read the input gate value i.
4: Read the candidate input g and compute its contribution: mi = i · g.
5: Update the internal memory: m← mf + mi.
6: ▷ Leaky integration and spike generation
7: Read the incoming input current and apply the required scaling.
8: Integrate the current into the membrane potential using standard LIF dynamics

(leak + input + bias).
9: if membrane potential exceeds threshold then

10: Emit spike and reset membrane potential.
11: end if

3.5 Hardware-aware software simulation
To verify the correctness of the custom architecture and the dedicated neuron
models, the first natural step was to perform a strict one-to-one comparison with
snnTorch, both at the level of individual gates and for the entire LSTM module. This

33

From ANN to SNN

process required identifying the appropriate scaling factors for weights, thresholds
and the leakage parameter β, so that the behavior of each component would remain
consistent across the two frameworks. Once each gate was validated in isolation,
attention shifted to the full architecture and its dynamics over time.
During this phase, a fundamental discrepancy emerged between the execution
model of Loihi 2 and the synchronous processing assumed in snnTorch: by default,
Loihi 2 processes data in a pipelined fashion. At every timestep, the input is
immediately forwarded to the next layer, allowing the hardware to process multiple
timesteps in parallel. While this parallelism increases throughput, it introduces
a latency between the computation of the future hidden state and its availability
as input for the next timestep. Concretely, the hidden state produced at time t
does not return to the gate populations within the same timestep, but only after
the LSTM layer has completed its internal processing pipeline. This produces a
misalignment between the input and hidden trajectories that cannot simply be
corrected by inserting fixed delays. Two conceptual solutions were possible:

• Redefining the LSTM dynamics and consequently modifying its implementa-
tion in snnTorch to embrace Loihi’s pipelined timing model; or

• Adapting the execution schedule on Loihi 2 to preserve the standard LSTM
logic and match the synchronous behavior assumed during training.

To maintain architectural fidelity and avoid redefining the recurrent dynamics,
the second strategy was chosen. The solution consisted in an alternated execution
scheme, where even and odd layers, grouped as shown in Figure 3.7, are executed
on alternating timesteps. This gives the hidden state sufficient time to be processed
by the LSTM neuron population and ensures that its updated value is available as
input exactly when needed. With this mechanism in place, the temporal alignment
between Loihi 2 and snnTorch became consistent, enabling meaningful comparison
between the two. Another source of discrepancy originated from a specific behavior
in snnTorch related to reset_delay. Even when reset_delay is not enabled,
if the membrane potential exceeds the threshold before the neuron update step,
snnTorch resets the membrane immediately. In our LSTM implementation, however,
the membrane potential fed to the recurrent neuron is the pre-computed input
from the gates. This value can easily exceed the threshold depending on the
gating operations, unintentionally triggering an early reset. Since this behavior is
not present in the Loihi 2 implementation and is not desirable for the recurrent
dynamics, the neuron’s microcode was edited accordingly to ensure the correct
functional correspondence. After resolving these two sources of mismatch (the
pipeline-induced timing shift and the unintended membrane reset) the outputs of
Loihi 2 and snnTorch aligned closely across all tested sequences, as depicted in
Figure 3.8.

34

From ANN to SNN

Figure 3.7: Schematic representation of the alternated execution strategy. Even-
and odd-indexed layers are highlighted with distinct colors to indicate their stag-
gered update schedule.

Because NxKernel does not provide training capabilities, training was carried out
entirely in snnTorch, which provided a flexible and faithful software environment.
The learned weights, β values and thresholds were then transferred to NxKernel
for hardware execution.

3.5.1 Quantization

Since snnTorch was selected as the training framework, it was necessary to design
a robust conversion pipeline to transfer trained parameters to NxKernel and obtain
comparable performance on Loihi 2 hardware. Quantization plays a crucial role in
this transition, since the two frameworks use different numerical representations —
snnTorch relies on floating-point arithmetic, whereas NxKernel operates entirely
with integers. Weights, thresholds and decay factors must be represented with
limited precision while avoiding overflow on hardware.
For the leakage parameter β, the conversion is straightforward: in the microcode,
β is encoded using 12 bits. Since decay values lie between 0 and 1, the βs produced
by snnTorch are multiplied by 212 and rounded to the nearest integer.
The quantization of weights and thresholds is less immediate. The threshold
depends heavily on the quantization applied to the weights, as well as on an
additional scaling factor introduced by an internal input shift performed by the
neuron model. Thus, identifying an appropriate representation for the synaptic
weights becomes the central step. The goal was to strike a balance between
minimizing information loss from quantization, limiting the risk of overflow during

35

From ANN to SNN

(a)

(b)

Figure 3.8: Validation of the custom NxKernel neuron model against its snnTorch
reference. (a) Comparison of the output spike trains produced by the two imple-
mentations. (b) Comparison of the internal membrane potential and input current,
confirming the numerical alignment of the two models.

computation and respecting the bit-width constraints of Loihi’s synaptic memory.
After several iterations, the following approach was adopted. The weights trained
in snnTorch were scaled using the largest power of two (strictly less than 28) that
allowed the weight with maximum absolute value in each matrix to be represented
within the integer range from −127 to 127. After understanding how to handle
parameter shifting between the two frameworks, a full pipeline for training and

36

From ANN to SNN

Figure 3.9: Overview of the pipeline used to transition from a snnTorch-trained
SNN model to its implementation on Loihi 2 hardware.

testing was implemented (Figure 3.9). To anticipate hardware constraints, a semi-
quantized training strategy was adopted: during training, only the membrane
potentials were quantized at each timestep, allowing the model to adapt to the
reduced numerical resolution typical of Loihi 2 while keeping the weights in floating
point. After training, the final model was fully quantized by discretizing all
parameters—weights, betas and thresholds—according to the bit-widths required
by NxKernel.
This fully quantized version was then reloaded and evaluated directly in snnTorch
to estimate how much performance degradation could be attributed purely to
discretization.

3.6 Hardware Deployment
The board used in this thesis is an Oheo Gulch single-chip Loihi 2 (Figure 3.10)
To deploy the Spiking LSTM directly on physical Loihi 2 hardware, setup process
was carried out to enable communication between the local development machine
and the Loihi 2 DevKit. The board was connected via Ethernet and assigned a
static IP address, allowing direct access without routing through external network
infrastructure. By configuring the host machine’s network interface to operate on
the same subnet, the device became reachable through SSH, enabling interaction
with its runtime environment.

On the Loihi 2 side, the appropriate version of nxCore, the low-level runtime
layer of Intel’s Loihi neuromorphic platform, was verified or transferred when
necessary, ensuring compatibility with the NxKernel installation used on the local
system. The development environment was then prepared by installing NxKernel

37

From ANN to SNN

Figure 3.10: The physical Loihi 2 system used in the neuromorphic laboratory at
ZHAW Wädenswil.

together with all required system dependencies, compilers and libraries. Proper
environment variables were configured so that NxKernel could locate the Loihi 2
driver and communicate with the hardware over the network.

Once both environments were aligned, a set of minimal diagnostic tests confirmed
that the board could be initialized, run a simple program and shut down correctly.
Successful execution of these tests validated the connection and ensured that the
DevKit and local environment were fully synchronized.

This setup provided the operational foundation needed to execute the Spiking
LSTM experiments directly on physical neuromorphic hardware, rather than relying
on remote servers or simulation-based environments.

3.7 Testing on the Final Dataset
The Spiking Heidelberg Digits (SHD) dataset was selected as the final benchmark to
evaluate the proposed architecture. As already discussed in the Background section,
SHD is a neuromorphic dataset composed of spike trains derived from spoken digits,
characterised by a strong temporal structure and long-range dependencies across

38

From ANN to SNN

Figure 3.11: Accuracy curves for all NNI-generated configurations. Each line
represents a different hyperparameter trial evaluated during the optimization
process.

timesteps. These properties make it particularly well suited for assessing the ability
of the Spiking LSTM to retain and process information over time, offering a more
meaningful test than static or weakly temporal datasets.

To better understand the typical preprocessing strategies applied to SHD, the
published work reported in the official leaderboard 2.3 were examined. Several
approaches were identified: reducing the number of input channels, compressing
temporal resolution by binning spikes into larger time windows, or trimming
sequences to shorten the effective duration of each sample. These transformations
generally aim to reduce sequence length and computational load, particularly for
architectures that do not need fine-grained temporal information.

Among the available options, the preprocessing strategy adopted in this Thesis
preserves the complete structure of the dataset. All input channels and all original
timesteps were retained, avoiding any form of temporal compression. Samples
were clipped to a maximum duration and shorter sequences were padded so that
all inputs shared the same sequence length. This choice ensures that the model
receives the full temporal dynamics of the dataset while still allowing batch-wise
processing. The same preprocessing strategy is used in [83], and it was intentionally
adopted here as well so that the resulting performance can be fairly compared to
prior work that evaluates recurrent spiking architectures under equivalent input
conditions.

This setup provides a reliable and temporally rich benchmark to assess the
model’s capacity for sequence processing, memory retention and temporal discrimi-
nation.

39

From ANN to SNN

Table 3.1: Search space for hyperparameter optimization.

Hyperparameter Type Values / Range
hidden_size choice 32, 64, 128, 256
enc_pop choice 64, 128, 256, 512
beta_enc quniform 0.05 – 1 (step 0.05)
beta_forget quniform 0.05 – 1 (step 0.05)
beta_input quniform 0.05 – 1 (step 0.05)
beta_gate_p quniform 0.05 – 1 (step 0.05)
beta_gate_n quniform 0.05 – 1 (step 0.05)
beta_hidden quniform 0.05 – 1 (step 0.05)
beta_out quniform 0.05 – 1 (step 0.05)
thr_enc quniform 0.05 – 1 (step 0.05)
thr_forget quniform 0.05 – 1 (step 0.05)
thr_input quniform 0.05 – 1 (step 0.05)
thr_gate_p quniform 0.05 – 1 (step 0.05)
thr_gate_n quniform 0.05 – 1 (step 0.05)
thr_hidden quniform 0.05 – 1 (step 0.05)
thr_out quniform 0.05 – 1 (step 0.05)

learning_rate choice 0.0001, 0.0002, 0.0005,
0.001, 0.002, 0.005, 0.01

batch_size choice 64, 128, 256

3.8 Training and Test

The training of the spiking LSTM models was conducted entirely within the
snnTorch framework, leveraging its ability to efficiently handle event-based data
and simulate spiking dynamics. Hyperparameter optimization was performed
using NNI to identify configurations that maximize performance while maintaining
stability across runs. Since the SHD dataset does not include a dedicated validation
set, a portion of the training data was reserved for the validation subset, which has
the same size as the test set (around 30% of the training set). To further reduce the
risk of overfitting during hyperparameter optimization, the training data was split
into 10 different train/validation folds, allowing NNI to evaluate each configuration
on a different data partitions.

The hyperparameters explored, including learning rate, membrane time constants
and weight initialization scales, are summarized in Table 3.1. All the decay
parameters are, as expected, between 0 and 1, since these are their nominal values.
Thresholds were also constrained between 0 and 1, given that the input consists of
sparse spikes. Common values were chosen for the batch size and learning rate. The

40

From ANN to SNN

hidden size affects the entire architecture, as it determines the dimensionality of all
populations within the sLSTM cell, i.e., the gates and LSTM neurons, while the
encoding population is responsible for extracting features from the input. Models
were trained for up to 300 epochs, with early stopping enabled to terminate runs
that showed minimal improvement in loss or accuracy. This setup ensured that
the selected hyperparameters generalized well across different folds and prevented
overfitting to specific subsets of the data. The resulting configurations were then
used to train the final spiking LSTM models before deployment on NxKernel for
hardware validation.

Following training and hyperparameter optimization in snnTorch, the learned
weights, thresholds and neuron parameters were transferred to the Loihi 2 hardware
for evaluation. The network was executed using the alternated mode previously
described, which balances throughput and latency by sequentially updating even
and odd layers at different timesteps.

41

Chapter 4

Results

This section presents the results obtained by evaluating the spiking LSTM on the
SHD dataset. Models were first trained in snnTorch and subsequently deployed
on the Loihi 2 hardware, leveraging the alternated execution mode and carefully
quantized parameters to ensure consistency between software simulations and
neuromorphic implementation.

The results are presented to provide a comprehensive evaluation of the proposed
spiking LSTM. It begins by assessing the overall classification accuracy on the
SHD test set, offering a first indication of the model’s ability to capture temporal
dependencies. Building on this, a sensitivity analysis examines how variations
in key hyperparameters affect performance and stability, highlighting the most
influential factors. Given the importance of transferring models from snnTorch to
Loihi 2, then the impact of parameter quantization on accuracy and reliability is
investigated. This is followed by an analysis of partitioning and profiling, which
sheds light on computational efficiency and hardware resource utilization on Loihi 2.
Finally, the proposed model is compared both to state-of-the-art spiking networks
and to a reference recurrent architecture implemented on Loihi 2 [83], providing
a nuanced view of its generalization capabilities across temporal sequences and
neuromorphic platforms.

4.1 Accuracy
The proposed spiking LSTM achieves a maximum test accuracy of 91.917% on the
SHD dataset. This result is obtained by the configuration whose training trajectory
reaches 99.88% training accuracy and 97.57% validation accuracy at epoch 124 (out
of a maximum of 300). Although this run represents the best-performing model,
the overall distribution of results across the hyperparameter search is considerably
broad (Figure 4.1): while some configurations fall near 40%, a large portion

42

Results

Figure 4.1: Visualization of NNI-explored hyperparameter configurations. Darker
red indicates higher accuracy, showing which combinations of parameters led to
better model performance. The last column refers to the final accuracy of the trial.

of the search space yields accuracies between 70% and 90%, indicating that the
architecture is capable of learning the task under a wide range of parameter settings,
but remains sensitive to specific choices that shape its temporal dynamics.

A noticeable discrepancy emerges between validation and test accuracy. This
gap is expected, as the SHD test set includes recordings from two speakers who
do not appear in either the training or validation sets. Consequently, the test
evaluation measures not only temporal classification performance but also the
model’s ability to generalize to previously unseen speaker characteristics. The best
model preserves high performance despite this distribution shift, suggesting that
the spiking LSTM effectively captures structure in the temporal patterns rather
than overfitting to speaker-specific characteristics.

These results provide a baseline for interpreting the following analyses. The
sensitivity study investigates which hyperparameters most strongly influence this
variability, the quantization section examines how performance translates to Loihi-
compatible weight formats and the final comparisons contextualize the achieved
accuracy relative to both spiking and recurrent implementations in the literature
and on neuromorphic hardware.

4.2 Sensitivity Analysis
The explored hyperparameter values are reported in Figure 4.1 and were previously
summarized in Table 3.1. The plotted lines are color-coded from green to dark red,
with darker red indicating higher accuracy. Several patterns can be observed from
this analysis. The decay factors (betas) of the encoder, input and positive gate show
optimal performance when set to medium-high values, roughly between 0.5 and
0.8, suggesting that moderate retention of past information is beneficial in these
components. In contrast, the forget and decoder betas achieve better results at

43

Results

Table 4.1: Comparison of accuracies across snnTorch, quantized snnTorch and
Loihi 2 (NxKernel) executions.

snnTorch snnTorch (quantized) Loihi (NxKernel)

91.917% 90.7686% 85.3357%
88.9134% 88.1184% 86.2191%
87.3233% 87.0583% 85.9982%

medium-low values (around 0.2–0.5), promoting a controlled forgetting mechanism.
The hidden beta is consistently low (0.1–0.3), indicating a tendency to attenuate the
contribution of the gates to the neuron’s membrane potential, effectively mitigating
potential over-accumulation of signal. Conversely, the negative gate beta is high
(0.5–0.9), favoring stronger retention of inhibitory or negative contributions.

In general, higher beta values allow neurons to retain information from previous
timesteps for longer, whereas lower beta values accelerate forgetting, highlighting the
importance of temporal tuning for network stability. Since thresholds show relatively
little variation and occupy a narrow range around 0.5–1, the differences in network
dynamics across configurations are primarily driven by the beta parameters, which
determine how information propagates and decays through the layers. Particularly
interesting is the divergence between the positive and negative gates. Although
they were initially designed to complement each other and approximate a tanh-like
operation — where one might expect their ranges to mirror each other —analysis
reveals a dominance of the negative gate, resulting in outputs that are skewed
toward negative values after the subtraction of the two gates. This emergent
asymmetry suggests that the network leverages the negative gate more strongly for
fine-tuning the sign and amplitude of the hidden state.

Regarding other hyperparameters, the encoder population size shows little ef-
fect on final performance, implying that even smaller populations can adequately
represent input features. On the other hand, larger hidden sizes, particularly 256,
consistently lead to better accuracy, with 128 and 64 still performing acceptably but
less robustly. Among batch sizes, 64 provides the most stable performance, with
128 occasionally yielding comparable results. The learning rate of 0.0002 emerges
as the preferred choice, balancing convergence speed and stability. Lower accuracies
are instead strongly associated with suboptimal learning rate choices, particularly
when the learning rate is too high, which often leads to unstable training dynamics
or insufficient convergence.
Overall, these observations highlight the network’s sensitivity to certain hyper-
parameters, while also indicating a relatively broad region of configurations that
achieve high accuracy.

44

Results

4.3 Quantization Impact
Quantization plays a crucial role in the transition from snnTorch to Loihi 2, as
weights, thresholds and decay factors must be represented with limited precision
while avoiding overflow on hardware. Across all experiments, accuracy between
the two frameworks remained remarkably stable: deviations from the original
floating-point model were minimal, and in some cases the quantized model even
performed slightly better. This suggests that the learned representations are robust
to moderate quantization noise.
When the same quantized parameters were transferred to NxKernel and executed
on Loihi 2, accuracy decreased more noticeably, although still within a modest 2–5%
range depending on the model (Table 4.1). Despite using the same quantization
rules, small discrepancies arise from hardware-level effects not captured during
snnTorch-side evaluation. For instance, snnTorch does not simulate potential
integer overflows or saturation in fixed-point arithmetic and interactions involving
bit-shifts, spike payloads and accumulation dynamics may behave subtly differently
on hardware. These effects likely explain the slight performance drop observed on
Loihi 2.
An additional observation is that the models showing the smallest accuracy drop
on Loihi 2 are also those whose learned parameters naturally fit the exponent used
during hardware quantization. In contrast, the model with the larger gap required
a higher exponent during training, but was quantized with a smaller one due to
hardware constraints. This effectively reduced the magnitude of its weights, which
may help explain why it was more sensitive to the transition to hardware. The
results of these three steps for three representative, well-performing models are
reported in Table 4.1.
Overall, these findings indicate that semi-quantization-aware training and post-
training quantization are generally sufficient to preserve performance in software,
while hardware execution introduces additional, but limited, constraints. Making
these hardware-specific effects explicit in the training or simulation pipeline may
further reduce the remaining 2–5% gap.

4.4 Hardware Execution Analysis
In this section, an analysis of the execution and computational behavior of the
proposed spiking LSTM on Loihi 2 is presented. The study begins with an
investigation of how to partition the network across hardware cores, selecting an
intermediate-sized model that balances computational load and runtime. Following
this, the focus is on models with test accuracy above 85%, ensuring that only
well-performing configurations are considered. For each of the 20 classes in the SHD

45

Results

Figure 4.2: Effect of core partitioning on total runtime.

dataset, 10 representative samples were selected and the resulting metrics were
averaged per class to provide a robust, dataset-level characterization of runtime
performance, synaptic and dendritic activity, and hardware utilization. To obtain
an accurate measurement of network execution time that excludes input-transfer
delays, the selected samples were preloaded into a set of neuron cores on the Loihi 2
chip.

4.4.1 Impact of partitioning
A key aspect of deploying neuromorphic architectures on hardware is how the
network is organized and partitioned across physical cores and chips. Partitioning
and mapping directly impact total runtime and inter-core communication overhead.
In [39], besides identifying the three main performance bottlenecks of Loihi 2 like
systems (synaptic reads, dendrite updates, traffic congestion), the authors proposed
a heuristic method to find an appropriate partitioning and mapping configuration
for the target network, which we apply to our network. The method consists
of iteratively adding more neuron cores, trying to identify the layer that needs
it the most, by considering the performance bottlenecks. In short, the minimal
partitioning configuration is found (i.e., the minimum number of neuron cores
required to fit the network). The network is executed with a sample input, and the
neuron core with maximum number of synaptic memory reads is identified, as it
is a probable candidate to be the bottlenecking neuron core. A new neuron core
is added to the layer that contains the bottlenecking core, as this will reduce the
number of neurons in each of the cores of this layer, leading to a reduction in the
synaptic memory reads, and possibly an improvement in runtime. This process

46

Results

is repeated iteratively until no improvement in runtime is detected. Then the
same approach is applied using the dendrite updates metric. To tackle the traffic
congestion bottleneck, the authors found that ordered mapping configurations are
slower than random or strided approaches, so we use a random mapping for our
network.

As shown in Figure 4.2, increasing the number of cores following the heuristic
method from [39] reduces runtime, decreasing from over 52 ms to approximately
27 ms. Beyond a certain point, however, adding more cores no longer provides
substantial gains, resulting in a plateau where runtime stabilizes due to communi-
cation overhead and hardware constraints. As additional cores are employed for
the core that has the most connections and weights, the maximum number of reads
per core decreases, eventually reaching a plateau. Once the plateau is reached,
adding more cores translates in little to no further improvement. At this point
targeting the cores with the most dendrite updates allows to further decrease the
runtime. Since both the number of synaptic reads and the dendrite updates are
directly correlated with runtime: higher values generally result in longer processing
times. This explains why runtime initially decreases as cores are added. This
behavior highlights the importance of identifying an optimal partitioning scheme
that balances core utilization and inter-core communication to minimize total
execution time. The best partitioning found is reported in table 4.2. As expected,
the layer requiring more cores is the LSTM, as the neuron models in it are relatively
complex, requiring around 4 times more instructions than neurons in the other
layers.

Table 4.2: Best partitioning found by the heuristic approach

Layer Encoder f gate i gate cp gate cn gate LSTM Decoder
Cores 4 4 4 4 4 8 1

4.4.2 Dendrite Updates and Synaptic Reads
The analysis of dendritic and synaptic activity provides insight into how active
each neuron group is during execution. These metrics reflect the number of updates
occurring in each dendritic and synaptic compartment, which can be interpreted
as a proxy for the computational load or engagement of each group. In Figure 4.3,
it is evident that these values are closely tied to the layer dimensions rather than
on other parameters.
Regarding dendrite updates (Figure 4.3a), the values strictly depend on the model
dimension. This behavior occurs because, on Loihi, each neuron is always executed
regardless of the input, allowing the membrane potential to decay even when the
input is zero. For example, in the encoder layer, four distinct points correspond

47

Results

to the four possible sizes assigned to this layer, while for the other gates only
two points appear, corresponding to hidden sizes of 256 and 64. As expected,
smaller layers exhibit lower dendritic activity due to fewer neurons being updated.
On the other hand, synaptic reads (Figure 4.3b) are also largely influenced by
model dimension, but their exact values additionally depend on factors such as the
synaptic weights, which explains why the plots do not perfectly overlap.
Figure 4.4 highlights the relationship between dendritic updates, synaptic reads,

(a) Maximum dendritic updates per layer as
a function of layer size.

(b) Maximum synaptic reads per layer as a
function of layer size.

Figure 4.3: For each layer size, the maximum synaptic reads and dendritic updates
are plotted.

(a) Maximum dendritic updates per layer plot-
ted highlighting model accuracy.

(b) Maximum synaptic reads per layer plotted,
highlighting model accuracy.

Figure 4.4: For each model accuracy, the maximum synaptic reads and dendritic
updates are plotted.

and model accuracy. Here, it becomes clear that there is little correlation: models
with higher or lower accuracy do not systematically produce more or fewer den-
dritic updates or synaptic reads. This suggests that while dendritic activity and
synaptic reads scale with network size, it is not directly predictive of performance,

48

Results

emphasizing that other factors, such as parameter tuning and network dynamics,
play a more critical role in determining accuracy.

4.4.3 Accuracy and Architectural Characteristics
In the following plots, the models are analyzed in terms of their accuracy to
investigate possible correlations with various architectural characteristics, such
as runtime, dendritic accumulation and synaptic reads. Each model is further
distinguished according to the total number of neurons in the network, allowing us
to evaluate how network size influences overall performance.

Figure 4.5: Accuracy versus runtime for all models, highlighting differences in
performance across various network sizes.

The first analysis focuses on the relationship between accuracy and runtime,
which is plotted in Figure 4.5. As expected, model size influences runtime: larger
models generally appear in the upper part of the plot, corresponding to longer
execution times, while the smallest model is located in the lower part, with faster
runtime. This trend is not absolute: some smaller models are slightly slower and
some larger models are faster than expected, indicating that runtime depends on
multiple factors beyond network size alone.
Models achieving the highest accuracy typically have larger architectures and
higher runtime, suggesting that increased model capacity can enhance performance.
The inverse relationship does not hold: not all large models reach high accuracy,
highlighting the role of other parameters in determining model performance. Inter-
estingly, the smallest and fastest model still reaches high accuracy, demonstrating

49

Results

Table 4.3: Hyperparameters and performance of selected spiking LSTM models.

Parameter Model Name
model 1 model 2 model 3 model 4

test_accuracy 91.9170 88.9134 88.0300 87.3233
hidden_size 256 256 256 64
enc_pop 512 64 64 256
beta_enc 0.698153 0.900548 0.755746 0.733532
beta_forget 0.393573 0.296765 0.231026 0.548271
beta_input 0.590215 0.794695 0.807695 0.955342
beta_gate_p 0.639633 0.535150 0.712546 0.759258
beta_gate_n 0.982469 0.968170 0.986815 0.702799
beta_hidden 0.208221 0.343436 0.276347 0.082683
beta_out 0.460626 0.718267 0.409980 0.574586
thr_enc 0.279894 0.263220 0.241975 0.396425
thr_forget 0.759035 0.668511 0.603405 0.939939
thr_input 0.591368 0.541040 0.564978 0.987820
thr_gate_p 0.886300 0.590016 0.825161 0.599854
thr_gate_n 0.743576 0.612336 0.509402 1.005941
thr_hidden 0.833048 0.908163 1.028403 0.517627
thr_out 0.727680 0.711243 0.496498 0.436543

that compact architectures can achieve competitive results despite lower computa-
tional cost. In this plot some Pareto point con be identified, points that represent
optimal trade-off between accuracy and runtime. Importantly, no point is strictly
better than another; the choice depends on the specific application requirements.
Details about these points are reported in Table 4.3.

In the next plot (Figure 4.6), the accuracy was analyzed as a function of average
dendritic updates per timestep, computed across all classes. Models with the
same total number of neurons exhibit identical average dendritic updates, which,
as previously noted, depends solely on model size rather than the dataset. This
plot further confirms that accuracy is not strictly determined by model size and,
consequently, by the number of dendritic updates. The final plot examines the
relationship between model accuracy and the average number of synaptic memory
reads, computed over all 20 classes for each model. As previously observed, synaptic
memory reads correlate strongly with runtime and, consequently, with model size.
This explains why the trend in Figure 4.7 closely mirrors the one discussed earlier
for time-per-timestep (Figure 4.5). Similar to the previous analyses, accuracy does
not show a definitive relationship with synaptic activity or model size. Instead,
it becomes evident that model dimensions primarily drive the hardware metrics

50

Results

Figure 4.6: Accuracy versus average dendritic updates per timestep for all models,
showing that models with the same size share identical dendritic activity.

Figure 4.7: Accuracy versus average synaptic reads per timestep for all models.

examined so far.
These observations emphasize that accuracy alone is only one of several factors
to consider when evaluating neuromorphic models. In some scenarios, accepting
a slight reduction in accuracy may be advantageous if it leads to substantial
improvements in efficiency, runtime or hardware resource usage.

51

Results

4.5 SHD leaderboard
As discussed in Section 4.4.3, four Pareto-optimal models were identified, each
representing a different trade-off between accuracy and runtime. For the comparison
with existing works, however, the focus is on the model achieving the highest
accuracy, as this choice enables a more direct evaluation of the architecture’s
performances.

As reported in Table 2.3, the proposed architecture achieves competitive accuracy
on snnTorch simulations, ranking immediately after the work of Yu et al. (2022)
[63] in 9th position. Importantly, among the models achieving similar or higher
accuracy, this is the only one that has been successfully deployed on Loihi 2 or on
any other neuromorphic hardware, demonstrating real on-chip performance. In this
sense, the proposed model occupies the first position in terms of actual, on-chip
accuracy, confirming its practical effectiveness while remaining fully compatible
with neuromorphic hardware constraints.

As previously discussed, accuracy is not the only metric to consider when
evaluating neuromorphic models. To provide a more complete comparison, also
other factors are evaluated, comparing the architecture against another network
deployed on Loihi 2: the RSNN proposed by Shoesmith et al. [83]. A summary of
this comparison is reported in Table 4.4.

From the table, it is evident that the RSNN achieves a significantly lower latency
(between 2.3 and 2.5 ms), whereas the LSTM-based model reaches latencies on
the order of 28 ms. This difference is naturally attributable to the structural
characteristics of the networks: the RSNN consists of only two layers, while the
LSTM includes eight layers with dense interconnections. Moreover, the RSNN is
composed solely of LIF neurons, whereas the LSTM incorporates several custom
and more complex neuron models.

Regarding accuracy, even though the RSNN values are estimated, the two
architectures remain broadly comparable with the spiking LSTM of this Thesis
slightly outperforming, highlighting the trade-offs between structural complexity,
computational cost and performance.

52

Results

Model Hidden size Latency [ms] Accuracy

RSNN
256 2.33 ≈ 82%∗
512 2.37 ≈ 85%∗
1024 2.56 ≈ 90%∗

LSTM

256 28.16 91.92%
256 28.14 88.91%
256 27.44 88.03%
64 26.84 87.32%

Accuracies marked with * are estimated from Figure 4
in the paper, as the authors did not explicitly report them.

Table 4.4: Latency and accuracy of both RSNN and sLSTM for comparison.

53

Chapter 5

Conclusion

This Thesis aimed to explore a spiking variant of the widely used LSTM architecture.
In doing so, it investigated various design choices for a spiking LSTM, trying to
preserve the fundamental properties of the original model while adapting it to the
neuromorphic domain. The final architecture was successfully deployed on Loihi 2,
demonstrating the feasibility of translating complex recurrent spiking networks to
physical neuromorphic hardware.

To achieve this goal, the model was first implemented in snnTorch, where it was
trained using hyperparameter optimization through NNI. A custom pipeline was
then developed to translate the model into NxKernel, ensuring that all network
parameters, including weights, decay factors, and thresholds, could be loaded
onto Loihi 2 with minimal performance loss. This pipeline was essential to bridge
the differences between a flexible software environment and the constraints of
neuromorphic hardware.

A comprehensive analysis of the model showed that it is highly sensitive to hy-
perparameters: decay factors, thresholds, and neuron populations directly influence
accuracy, stability and the network’s ability to retain information over time. Hard-
ware profiling and partitioning studies confirmed that how neurons and synapses
are distributed across cores strongly affects runtime, inter-core communication,
synaptic reads, and dendritic updates. These results provide practical guidance for
designing spiking networks on neuromorphic hardware, highlighting how layer sizes
and partitioning can be chosen to balance performance, efficiency, and temporal
processing capabilities.

Importantly, the final spiking LSTM architecture achieved an accuracy of
91.917% on snnTorch and 85.336% on NxKernel on the SHD benchmark. While
placing comparably on the current leaderboard, it is the only model among top-
performing approaches to be successfully deployed on Loihi 2, thereby occupying the
first position in terms of actual on-chip accuracy. Its performance is comparable to
other approaches, such as RSNNs, demonstrating that the model effectively balances

54

Conclusion

high accuracy with full compatibility with neuromorphic hardware constraints.
Overall, this work demonstrates that a careful co-design of network architecture,

training strategies, and hardware deployment can significantly reduce the gap
between software simulation and neuromorphic execution.

Future research could focus on refining the translation pipeline between snnTorch
and NxKernel, enabling even closer alignment between software and hardware per-
formance. Additionally, a deeper exploration of neuron design, reset mechanisms,
and gate dynamics of the LSTM may improve both the efficiency and effectiveness
of the architecture. Finally, optimizing the balance between dendritic updates
and synaptic reads, in particular regarding the gates, could yield faster and more
resource-efficient networks, paving the way for more scalable and real-time neuro-
morphic applications.

55

Bibliography

[1] Kaushik Roy, Angshuman Jaiswal, and Amogh Agrawal. «Towards spike-based
machine intelligence with neuromorphic computing». In: Nature 575.7784
(2019), pp. 607–617. doi: 10.1038/s41586-019-1677-2 (cit. on p. 1).

[2] Benedikt Jung, Maximilian Kalcher, Merlin Marinova, Piper Powell, and
Esma Sakallı. «Neuromorphic Computing – An Overview». In: arXiv preprint
(2025). eprint: arXiv:2510.06721v1 (cit. on p. 1).

[3] Kwabena Boahen. «A Neuromorph’s Prospectus». In: Computing in Science
& Engineering 19.2 (2017), pp. 14–28. doi: 10.1109/MCSE.2017.33 (cit. on
p. 1).

[4] Wolfgang Maass. «Networks of spiking neurons: the third generation of neural
network models». In: Neural Networks 10.9 (1997), pp. 1659–1671. doi:
10.1016/S0893-6080(97)00011-7 (cit. on p. 1).

[5] Intel Labs. Taking Neuromorphic Computing to the Next Level with Loihi 2:
Technology Brief. Tech. rep. Technology Brief. Accessed: 2025-11-24. Intel
Labs, 2021. url: https://download.intel.com/newsroom/2021/new-
technologies/neuromorphic- computing- loihi- 2- brief.pdf (cit. on
pp. 1, 8–10, 14).

[6] Seung Ju Kim, Sang Bum Kim, and Ho Won Jang. «Competing memristors
for brain-inspired computing». In: iScience 24.1 (2021). Accessed: 2025-11-
25, p. 101889. doi: 10.1016/j.isci.2020.101889. url: https://www.
sciencedirect.com/science/article/pii/S2589004220310865 (cit. on
p. 3).

[7] Mohamadreza Zolfagharinejad, Unai Alegre-Ibarra, Tao Chen, Sachin Kinge,
and Wilfred G. van der Wiel. «Brain-inspired computing systems: a systematic
literature review». In: The European Physical Journal B 97 (2024). Accessed:
2025-11-25, p. 70. doi: 10.1140/epjb/s10051-024-00703-6. url: https:
//link.springer.com/article/10.1140/epjb/s10051-024-00703-6
(cit. on p. 3).

56

https://doi.org/10.1038/s41586-019-1677-2
arXiv:2510.06721v1
https://doi.org/10.1109/MCSE.2017.33
https://doi.org/10.1016/S0893-6080(97)00011-7
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://doi.org/10.1016/j.isci.2020.101889
https://www.sciencedirect.com/science/article/pii/S2589004220310865
https://www.sciencedirect.com/science/article/pii/S2589004220310865
https://doi.org/10.1140/epjb/s10051-024-00703-6
https://link.springer.com/article/10.1140/epjb/s10051-024-00703-6
https://link.springer.com/article/10.1140/epjb/s10051-024-00703-6

BIBLIOGRAPHY

[8] Charlotte Frenkel, David Bol, and Giacomo Indiveri. «Bottom-up and top-
down approaches for the design of neuromorphic processing systems: Tradeoffs
and synergies between natural and artificial intelligence». In: arXiv preprint
arXiv:2106.01288 (2021). Accessed: 2025-11-25. doi: 10.48550/arXiv.2106.
01288. url: https://arxiv.org/abs/2106.01288 (cit. on p. 3).

[9] Wiktoria Agata Pawlak and Newton Howard. «Neuromorphic algorithms for
brain implants: a review». In: Frontiers in Neuroscience 19 (2025). PMCID:
PMC12021827, Accessed: 2025-11-25. doi: 10.3389/fnins.2025.1570104.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021827/ (cit.
on p. 3).

[10] Shuming Liu. «Energy-Efficient Neuromorphic Chips for Real-Time Robotic
Control: A Review». In: Theoretical and Natural Science 134 (2025). Accessed:
2025-11-25, pp. 73–78. url: https://direct.ewa.pub/proceedings/tns/
article/view/26488 (cit. on p. 3).

[11] Lyes Khacef, Philipp Klein, Matteo Cartiglia, Arianna Rubino, Giacomo
Indiveri, and Elisabetta Chicca. «Spike-based local synaptic plasticity: A
survey of computational models and neuromorphic circuits». In: arXiv preprint
arXiv:2209.15536 (2022). Accessed: 2025-11-25. doi: 10.48550/arXiv.2209.
15536. url: https://arxiv.org/abs/2209.15536 (cit. on p. 3).

[12] Xiangjing Wang, Yixin Zhu, Zili Zhou, Xin Chen, and Xiaojun Jia. «Memristor-
Based Spiking Neuromorphic Systems Toward Brain-Inspired Perception
and Computing». In: Nanomaterials 15.14 (2025). Accessed: 2025-11-25,
p. 1130. doi: 10.3390/nano15141130. url: https://www.mdpi.com/2079-
4991/15/14/1130 (cit. on p. 3).

[13] Neuronal Activation. https://www.ch.ic.ac.uk/local/projects/quek/
chnact.htm. Image accessed: 2025-11-26 (cit. on p. 4).

[14] Qilin Hua, Huaqiang Wu, Bin Gao, Qingtian Zhang, Wei Wu, Yujia Li,
Xiaohu Wang, Weiguo Hu, and He Qian. «Low-Voltage Oscillatory Neurons
for Memristor-Based Neuromorphic Systems». In: Global Challenges 3.11
(2019). PMC free article, accessed via PubMed Central, p. 1900015. doi: 10.
1002/gch2.201900015. url: https://doi.org/10.1002/gch2.201900015
(cit. on p. 4).

[15] The University of Queensland Queensland Brain Institute. Action potentials
and synapses. https://qbi.uq.edu.au/brain- basics/brain/brain-
physiology/action-potentials-and-synapses. Accessed: 2025-11-25 (cit.
on p. 3).

[16] Intel Labs. Neuromorphic Computing – Next Generation of AI. https://
www.intel.la/content/www/xl/es/research/neuromorphic-computing.
html. Accessed: 2025-11-24 (cit. on p. 4).

57

https://doi.org/10.48550/arXiv.2106.01288
https://doi.org/10.48550/arXiv.2106.01288
https://arxiv.org/abs/2106.01288
https://doi.org/10.3389/fnins.2025.1570104
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021827/
https://direct.ewa.pub/proceedings/tns/article/view/26488
https://direct.ewa.pub/proceedings/tns/article/view/26488
https://doi.org/10.48550/arXiv.2209.15536
https://doi.org/10.48550/arXiv.2209.15536
https://arxiv.org/abs/2209.15536
https://doi.org/10.3390/nano15141130
https://www.mdpi.com/2079-4991/15/14/1130
https://www.mdpi.com/2079-4991/15/14/1130
https://www.ch.ic.ac.uk/local/projects/quek/chnact.htm
https://www.ch.ic.ac.uk/local/projects/quek/chnact.htm
https://doi.org/10.1002/gch2.201900015
https://doi.org/10.1002/gch2.201900015
https://doi.org/10.1002/gch2.201900015
https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses
https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses
https://www.intel.la/content/www/xl/es/research/neuromorphic-computing.html
https://www.intel.la/content/www/xl/es/research/neuromorphic-computing.html
https://www.intel.la/content/www/xl/es/research/neuromorphic-computing.html

BIBLIOGRAPHY

[17] Human Brain Project. Neuromorphic Computing. https://www.humanbr
ainproject.eu/en/science-development/focus-areas/neuromorphic-
computing/. Accessed: 2025-11-24 (cit. on p. 4).

[18] Eldar Sido. Developing Neuromorphic Devices for TinyML. Electronic Design,
“Engineering Essentials” section, Nov. 30 2022. Accessed: 2025-11-24. url:
https://digital.electronicdesign.com/electronicdesign/spring_
2023/MobilePagedArticle.action?articleId=1940453 (cit. on p. 5).

[19] Douglas Z. Plummer, Emily D’Alessandro, Aidan Burrowes, Joshua Fleischer,
Alexander M. Heard, and Yingying Wu. «2D Spintronics for Neuromorphic
Computing with Scalability and Energy Efficiency». In: Journal of Low Power
Electronics and Applications 15.2 (2025). Accessed: 2025-11-24, p. 16. doi:
10.3390/jlpea15020016. url: https://www.mdpi.com/2079-9268/15/2/
16 (cit. on p. 5).

[20] A. N. Burkitt. «A Review of the Integrate-and-Fire Neuron Model: I. Homo-
geneous Synaptic Input». In: Biological Cybernetics 95.1 (2006), pp. 1–19.
doi: 10.1007/s00422-006-0068-6 (cit. on p. 4).

[21] Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan
Srinivasan, and Kaushik Roy. «Enabling Spike-Based Backpropagation for
Training Deep Neural Network Architectures». In: Frontiers in Neuroscience
14 (2020). Accessed: 2025-11-24, p. 119. doi: 10.3389/fnins.2020.00119.
url: https://www.frontiersin.org/articles/10.3389/fnins.2020.
00119/full (cit. on p. 6).

[22] Rina Diane Caballar and Cole Stryker. What Is Neuromorphic Computing?
https://www.ibm.com/think/topics/neuromorphic-computing. IBM
Think, accessed: 2025-11-24. 2025 (cit. on p. 6).

[23] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis
Reyes-Ortiz. «A Public Domain Dataset for Human Activity Recognition using
Smartphones». In: 21st European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (ESANN 2013), Bruges,
Belgium, 24–26 April 2013. Accessed: 2025-11-25. 2013, pp. 437–442. url:
https://www.esann.org/sites/default/files/proceedings/legacy/
es2013-84.pdf (cit. on pp. 7, 17).

[24] Gary Weiss. WISDM Smartphone and Smartwatch Activity and Biometrics
Dataset. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5HK59.
2019 (cit. on pp. 7, 17).

[25] G. Orchard, G. Cohen, A. Jayawant, and N. Thakor. «Converting Static Image
Datasets to Spiking Neuromorphic Datasets Using Saccades». In: Frontiers
in Neuroscience 9 (2015), p. 437. doi: 10.3389/fnins.2015.00437 (cit. on
p. 7).

58

https://www.humanbrainproject.eu/en/science-development/focus-areas/neuromorphic-computing/
https://www.humanbrainproject.eu/en/science-development/focus-areas/neuromorphic-computing/
https://www.humanbrainproject.eu/en/science-development/focus-areas/neuromorphic-computing/
https://digital.electronicdesign.com/electronicdesign/spring_2023/MobilePagedArticle.action?articleId=1940453
https://digital.electronicdesign.com/electronicdesign/spring_2023/MobilePagedArticle.action?articleId=1940453
https://doi.org/10.3390/jlpea15020016
https://www.mdpi.com/2079-9268/15/2/16
https://www.mdpi.com/2079-9268/15/2/16
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.3389/fnins.2020.00119
https://www.frontiersin.org/articles/10.3389/fnins.2020.00119/full
https://www.frontiersin.org/articles/10.3389/fnins.2020.00119/full
https://www.ibm.com/think/topics/neuromorphic-computing
https://www.esann.org/sites/default/files/proceedings/legacy/es2013-84.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2013-84.pdf
https://doi.org/10.3389/fnins.2015.00437

BIBLIOGRAPHY

[26] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. «CIFAR10-DVS:
An Event-Stream Dataset for Object Classification». In: Frontiers in Neuro-
science 11 (2017), p. 309. doi: 10.3389/fnins.2017.00309 (cit. on p. 7).

[27] A. Amir, B. Taba, D. Berg, T. Melano, D. McKinstry, A. Di Nolfo, R. D.
Boahen, C. A. Chou, and T. E. Carlson. «A Low Power, Fully Event-Based
Gesture Recognition System». In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 7388–7397. doi:
10.1109/CVPR.2017.780 (cit. on p. 7).

[28] Qian Liu, Garibaldi Pineda-García, Evangelos Stromatias, Teresa Serrano-Gotarredona,
and Steve B. Furber. «Benchmarking Spike-Based Visual Recognition: A
Dataset and Evaluation». In: Frontiers in Neuroscience 10 (2016), p. 496.
doi: 10.3389/fnins.2016.00496 (cit. on p. 7).

[29] Steve B. Furber, Francesco Galluppi, Steve Temple, and Luis A. Plana. «The
SpiNNaker Project». In: Proceedings of the IEEE 102.5 (2014), pp. 652–665.
doi: 10.1109/JPROC.2014.2304638 (cit. on p. 8).

[30] Christian Mayr, Sebastian Höppner, and Steve B. Furber. «SpiNNaker 2:
A 10 Million Core Processor System for Brain Simulation and Machine
Learning». In: arXiv preprint (2019). doi: 10.48550/arXiv.1911.02385.
eprint: arXiv:1911.02385 (cit. on p. 8).

[31] Eric Müller et al. «The Operating System of the Neuromorphic BrainScaleS-1
System». In: arXiv preprint (2020). doi: 10.48550/arXiv.2003.13749.
eprint: arXiv:2003.13749 (cit. on p. 8).

[32] Christian Pehle et al. «The BrainScaleS-2 accelerated neuromorphic system
with hybrid plasticity». In: arXiv preprint (2022). doi: 10.48550/arXiv.
2201.11063. eprint: arXiv:2201.11063 (cit. on p. 8).

[33] SynSense. Xylo: Overview of the Xylo™ Family Neuromorphic Devices. Rock-
pool documentation. Accessed: 2025-11-26. url: https://rockpool.ai/
devices/xylo-overview.html (cit. on p. 8).

[34] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. Cryptology ePrint Archive, Paper 2013/404. 2013. url: https:
//eprint.iacr.org/2013/404 (cit. on p. 8).

[35] Ben Varkey Benjamin et al. «Neurogrid: A Mixed-Analog-Digital Multichip
System for Large-Scale Neural Simulations». In: Proceedings of the IEEE
102.5 (2014), pp. 699–716. doi: 10.1109/JPROC.2014.2313565 (cit. on p. 8).

[36] D. Casanueva-Morato et al. «A bio-inspired hardware implementation of an
analog spike . . . » In: Neurocomputing (2025). doi: 10.1016/j.neucom.2025.
S0925231225025640 (cit. on p. 8).

59

https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.1109/CVPR.2017.780
https://doi.org/10.3389/fnins.2016.00496
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.48550/arXiv.1911.02385
arXiv:1911.02385
https://doi.org/10.48550/arXiv.2003.13749
arXiv:2003.13749
https://doi.org/10.48550/arXiv.2201.11063
https://doi.org/10.48550/arXiv.2201.11063
arXiv:2201.11063
https://rockpool.ai/devices/xylo-overview.html
https://rockpool.ai/devices/xylo-overview.html
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1016/j.neucom.2025.S0925231225025640
https://doi.org/10.1016/j.neucom.2025.S0925231225025640

BIBLIOGRAPHY

[37] Ole Richter, Chenxi Wu, Adrian M. Whatley, German Köstinger, Carsten
Nielsen, Ning Qiao, and Giacomo Indiveri. «DYNAP-SE2: a scalable multi-core
dynamic neuromorphic asynchronous spiking neural network processor». In:
arXiv preprint (2023). doi: 10.48550/arXiv.2310.00564. eprint: arXiv:
2310.00564 (cit. on p. 8).

[38] Alessandro Pierro, Steven Abreu, Jonathan Timcheck, Philipp Stratmann,
Andreas Wild, and Sumit Bam Shrestha. «Accelerating Linear Recurrent
Neural Networks for the Edge with Unstructured Sparsity». In: arXiv preprint
arXiv:2502.01330 (2025). Accessed: 2025-11-25. url: https://arxiv.org/
pdf/2502.01330v1 (cit. on p. 11).

[39] Jason Yik et al. Modeling and Optimizing Performance Bottlenecks for Neu-
romorphic Accelerators. 2025. arXiv: 2511 . 21549 [cs.AR]. url: https :
//arxiv.org/abs/2511.21549 (cit. on pp. 11, 46, 47).

[40] Jason K. Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz,
Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu.
«Training Spiking Neural Networks Using Lessons From Deep Learning».
In: Proceedings of the IEEE 111.9 (Sept. 2023). Accessed: 2025-11-24. doi:
10.1109/JPROC.2023.3309605. url: https://ieeexplore.ieee.org/
document/10183703 (cit. on p. 13).

[41] Open Neuromorphic. snnTorch. https://open-neuromorphic.org/neuromorphic-computing/software/snn-frameworks/snntorch/.
Accessed: 2025-11-24. 2025 (cit. on p. 13).

[42] Intel Labs. Lava Software Framework — An open-source framework for neu-
romorphic computing. https : / / lava - nc . org / index . html. Accessed:
2025-11-24. 2024 (cit. on p. 14).

[43] GeeksforGeeks. Introduction to Recurrent Neural Network. GeeksforGeeks
online tutorial. Last updated 07 Oct, 2025. 2025. url: https://www.geek
sforgeeks.org/introduction-to-recurrent-neural-network/ (cit. on
p. 15).

[44] Robin M. Schmidt. «Recurrent Neural Networks (RNNs): A gentle Introduc-
tion and Overview». In: arXiv preprint (2019). doi: 10.48550/arXiv.1912.
05911. eprint: arXiv:1912.05911 (cit. on p. 15).

[45] Sepp Hochreiter. «The Vanishing Gradient Problem During Learning Re-
current Neural Nets and Problem Solutions». In: International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 6.2 (1998), pp. 107–116.
doi: 10.1142/S0218488598000094 (cit. on p. 15).

[46] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-Term Memory». In:
Neural Computation 9.8 (1997), pp. 1735–1780. doi: 10.1162/neco.1997.9.
8.1735 (cit. on p. 15).

60

https://doi.org/10.48550/arXiv.2310.00564
arXiv:2310.00564
arXiv:2310.00564
https://arxiv.org/pdf/2502.01330v1
https://arxiv.org/pdf/2502.01330v1
https://arxiv.org/abs/2511.21549
https://arxiv.org/abs/2511.21549
https://arxiv.org/abs/2511.21549
https://doi.org/10.1109/JPROC.2023.3309605
https://ieeexplore.ieee.org/document/10183703
https://ieeexplore.ieee.org/document/10183703
https://lava-nc.org/index.html
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://doi.org/10.48550/arXiv.1912.05911
https://doi.org/10.48550/arXiv.1912.05911
arXiv:1912.05911
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

BIBLIOGRAPHY

[47] Kyunghyun et al. Cho. «Learning phrase representations using RNN encoder-
decoder for statistical machine translation». In: arXiv preprint arXiv:1406.1078
(2014) (cit. on p. 15).

[48] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua
Bengio. «On the Properties of Neural Machine Translation: Encoder–Decoder
Approaches». In: Proceedings of SSST-8, Eighth Workshop on Syntax, Seman-
tics and Structure in Statistical Translation (SSST 2014). 2014, pp. 103–111.
doi: 10.3115/v1/W14-4012. url: https://aclanthology.org/W14-4012/
(cit. on p. 15).

[49] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. «Neural machine
translation by jointly learning to align and translate». In: arXiv preprint
arXiv:1409.0473 (2014) (cit. on p. 15).

[50] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. «Sequence to sequence learning
with neural networks». In: arXiv preprint arXiv:1409.3215 (2014) (cit. on
p. 15).

[51] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. «Speech recog-
nition with deep recurrent neural networks». In: ICASSP 2013 - 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing. IEEE,
2013, pp. 6645–6649 (cit. on p. 15).

[52] John T. Connor, David Martin, and Les Atlas. «Recurrent neural networks
and robust time series prediction». In: IEEE Transactions on Neural Networks
5.2 (1994), pp. 240–254. doi: 10.1109/72.279181 (cit. on p. 15).

[53] Microsoft. Neural Network Intelligence (NNI). Version stable. 2023. url:
https://nni.readthedocs.io/en/stable/ (cit. on p. 16).

[54] Benedetto Leto. «LIF-based Legendre Memory Unit: neuromorphic redesign
of a recurrent architecture and its application to human activity recognition».
Tesi di laurea magistrale, Webthesis PoliTO, identificatore 32998. MA thesis.
Politecnico di Torino, 2024. url: https://webthesis.biblio.polito.it/
secure/32998/1/tesi.pdf (cit. on p. 19).

[55] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann
Zenke. «The Heidelberg spiking datasets for the systematic evaluation of spik-
ing neural networks». In: arXiv preprint arXiv:1910.07407 (2019). Accessed:
2025-11-25. doi: 10.48550/arXiv.1910.07407. url: https://arxiv.org/
pdf/1910.07407 (cit. on pp. 19, 20).

[56] Y. Sun, X. Li, Z. Ma, et al. «Parameter-free Attention for Delay Spiking
Neural Networks». In: Neural Networks 184 (2025), p. 107154. doi: 10.1016/
j.neunet.2025.107154 (cit. on p. 21).

61

https://doi.org/10.3115/v1/W14-4012
https://aclanthology.org/W14-4012/
https://doi.org/10.1109/72.279181
https://nni.readthedocs.io/en/stable/
https://webthesis.biblio.polito.it/secure/32998/1/tesi.pdf
https://webthesis.biblio.polito.it/secure/32998/1/tesi.pdf
https://doi.org/10.48550/arXiv.1910.07407
https://arxiv.org/pdf/1910.07407
https://arxiv.org/pdf/1910.07407
https://doi.org/10.1016/j.neunet.2025.107154
https://doi.org/10.1016/j.neunet.2025.107154

BIBLIOGRAPHY

[57] M. Baronig, A. Wendel, and K. Meier. Recurrent Spiking Neural Networks
with Adaptive LIF Neurons and Symplectic-Euler Discretization. 2024. arXiv:
2408.07517 (cit. on p. 21).

[58] A. Hammouamri, J. Wu, and F. Zenke. Fully Connected Spiking Neural
Networks with Learned Delays. 2023. arXiv: 2306.17670 (cit. on p. 21).

[59] A. Bittar and P. N. Garner. «Recurrent Spiking Neural Networks with Adap-
tation for Speech Recognition». In: Frontiers in Neuroscience 16 (2022),
p. 865897. doi: 10.3389/fnins.2022.865897 (cit. on p. 21).

[60] T. Nowotny et al. «Recurrent Spiking Neural Networks with Delay Line Input
and Data Augmentation». In: Neuromorphic Computing and Engineering
(2025). doi: 10.1088/2634-4386/ada852 (cit. on p. 21).

[61] T. Mészáros, T. Kiss, and G. Cserey. Recurrent Spiking Neural Networks with
Delay Learning. 2025. arXiv: 2501.07331 (cit. on p. 21).

[62] Y. Sun, Z. Ma, and X. Li. «Feed-forward Spiking Neural Networks with
Adaptive Axonal Delays». In: IEEE International Joint Conference on Neural
Networks (IJCNN). 2023. doi: 10.1109/IJCNN54540.2023.10094768 (cit. on
p. 21).

[63] Q. Yu, B. Yin, Y. Liu, et al. «Spatio-Temporal Attention for Spiking Neural
Networks». In: Frontiers in Neuroscience 16 (2022), p. 1079357. doi: 10.
3389/fnins.2022.1079357 (cit. on pp. 21, 52).

[64] Y. Yao, Y. Li, and J. Wu. Temporal Attention Mechanisms for Recurrent
Spiking Neural Networks. 2021. arXiv: 2107.11711 (cit. on p. 21).

[65] L. D’Agostino, F. Conti, et al. Feed-forward Spiking Neural Networks with
Random Dendritic Delays: Simulation and Hardware Implementation on
RRAM. 2023. arXiv: 2312.08960 (cit. on p. 21).

[66] B. Yin, F. Corradi, and S. M. Bohté. Effective and Efficient Recurrent Spiking
Neural Networks through Adaptation and Learning of Neuron Dynamics. 2020.
arXiv: 2005.11633 (cit. on p. 21).

[67] J. Rossbroich, A. Kugele, T. Pfeil, et al. «Recurrent Convolutional Spiking
Neural Networks with Fluctuation-driven Initialization». In: Neuromorphic
Computing and Engineering 2 (2022), p. 034016. doi: 10.1088/2634-4386/
ac97bb (cit. on p. 21).

[68] B. Cramer, Y. Stradmann, J. Schemmel, and F. Zenke. «The Heidelberg
Spiking Datasets and Their Applications: Data Augmentation and Noise
Injection in Spiking Neural Networks». In: IEEE Transactions on Neural
Networks and Learning Systems (2020). doi: 10.1109/TNNLS.2020.3044364
(cit. on p. 21).

62

https://arxiv.org/abs/2408.07517
https://arxiv.org/abs/2306.17670
https://doi.org/10.3389/fnins.2022.865897
https://doi.org/10.1088/2634-4386/ada852
https://arxiv.org/abs/2501.07331
https://doi.org/10.1109/IJCNN54540.2023.10094768
https://doi.org/10.3389/fnins.2022.1079357
https://doi.org/10.3389/fnins.2022.1079357
https://arxiv.org/abs/2107.11711
https://arxiv.org/abs/2312.08960
https://arxiv.org/abs/2005.11633
https://doi.org/10.1088/2634-4386/ac97bb
https://doi.org/10.1088/2634-4386/ac97bb
https://doi.org/10.1109/TNNLS.2020.3044364

BIBLIOGRAPHY

[69] N. Perez-Nieves and D. F. M. Goodman. Heterogeneous Time Constants in
Spiking Neural Networks. 2021. bioRxiv: 2020.12.18.423468 (cit. on p. 21).

[70] B. Cramer, Y. Stradmann, J. Schemmel, and F. Zenke. «Recurrent Spiking
Neural Networks for Audio Processing». In: IEEE Transactions on Neural
Networks and Learning Systems (2020). doi: 10.1109/TNNLS.2020.3044364
(cit. on p. 21).

[71] B. Cramer, Y. Stradmann, J. Schemmel, and F. Zenke. «Feed-forward Spiking
Neural Networks for Audio Processing». In: IEEE Transactions on Neural
Networks and Learning Systems (2020). doi: 10.1109/TNNLS.2020.3044364
(cit. on p. 21).

[72] M. Schöne, T. Zhang, and C. Posch. Event-based Linear State Space Model.
2024. arXiv: 2404.18508 (cit. on p. 21).

[73] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann
Zenke. «The Heidelberg spiking data sets for the systematic evaluation of
spiking neural networks». In: IEEE Transactions on Neural Networks and
Learning Systems 33.7 (2022), pp. 2744–2757. doi: 10.1109/TNNLS.2020.
3044364 (cit. on p. 21).

[74] Benjamin Rueckauer, Igor Lungu, Yulia Sandamirskaya, and Robert J. Vogels.
«Conversion of continuous-valued deep networks to efficient event-driven
networks for image classification». In: Frontiers in Neuroscience 11 (2017),
p. 682. doi: 10.3389/fnins.2017.00682 (cit. on p. 22).

[75] Abhronil Sengupta, Yansong Ye, Rui Wang, Chao Liu, and Kaushik Roy.
«Going deeper in spiking neural networks: VGG and residual architectures». In:
Frontiers in Neuroscience 13 (2019), p. 95. doi: 10.3389/fnins.2019.00095
(cit. on p. 22).

[76] Yujie Cao, Yu Chen, and Deepak Khosla. «Spiking deep convolutional neural
networks for energy-efficient object recognition». In: International Journal of
Computer Vision 113 (2015), pp. 54–66. doi: 10.1007/s11263-014-0772-3
(cit. on p. 22).

[77] Peter U. Diehl, Daniel Neil, Jakob Binas, Matthew Cook, Shih-Chii Liu,
and Michael Pfeiffer. «Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing». In: 2015 International Joint Con-
ference on Neural Networks (IJCNN). IEEE, 2015, pp. 1–8. doi: 10.1109/
IJCNN.2015.7280719 (cit. on p. 22).

[78] Peter Blouw and Chris Eliasmith. «Event-Driven Signal Processing with
Neuromorphic Computing Systems». In: ICASSP 2020 - 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, pp. 8534–8538. doi: 10.1109/ICASSP40776.2020.9053043 (cit. on
p. 22).

63

2020.12.18.423468
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.1109/TNNLS.2020.3044364
https://arxiv.org/abs/2404.18508
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1007/s11263-014-0772-3
https://doi.org/10.1109/IJCNN.2015.7280719
https://doi.org/10.1109/IJCNN.2015.7280719
https://doi.org/10.1109/ICASSP40776.2020.9053043

BIBLIOGRAPHY

[79] Vittorio Fra, Evelina Forno, Riccardo Pignari, Terrence C Stewart, Enrico
Macii, and Gianvito Urgese. «Human activity recognition: suitability of a
neuromorphic approach for on-edge AIoT applications». In: Neuromorphic
Computing and Engineering 2.1 (Feb. 2022), p. 014006. doi: 10.1088/2634-
4386/ac4c38. url: https://dx.doi.org/10.1088/2634-4386/ac4c38
(cit. on p. 22).

[80] Brian DePasquale, Mark M. Churchland, and L. F. Abbott. Using Firing-Rate
Dynamics to Train Recurrent Networks of Spiking Model Neurons. 2016. arXiv:
1601.07620 [q-bio.NC]. url: https://arxiv.org/abs/1601.07620 (cit.
on p. 22).

[81] Ali Lotfi-Rezaabad and Sriram Vishwanath. «Long Short-Term Memory
Spiking Networks and Their Applications». In: CoRR abs/2007.04779 (2020).
arXiv: 2007.04779. url: https://arxiv.org/abs/2007.04779 (cit. on
p. 22).

[82] Vittorio Fra, Evelina Forno, Riccardo Pignari, Terrence C. Stewart, Enrico
Macii, and Gianvito Urgese. «Human activity recognition: suitability of a
neuromorphic approach for on-edge AIoT applications». In: Neuromorphic
Computing and Engineering 2.1 (2022), p. 014006. doi: 10.1088/2634-
4386/ac4c38 (cit. on p. 32).

[83] Thomas Shoesmith, James C. Knight, Balázs Mészáros, Jonathan Timcheck,
and Thomas Nowotny. Eventprop training for efficient neuromorphic applica-
tions. 2025. arXiv: 2503.04341 (cit. on pp. 39, 42, 52).

64

https://doi.org/10.1088/2634-4386/ac4c38
https://doi.org/10.1088/2634-4386/ac4c38
https://dx.doi.org/10.1088/2634-4386/ac4c38
https://arxiv.org/abs/1601.07620
https://arxiv.org/abs/1601.07620
https://arxiv.org/abs/2007.04779
https://arxiv.org/abs/2007.04779
https://doi.org/10.1088/2634-4386/ac4c38
https://doi.org/10.1088/2634-4386/ac4c38
https://arxiv.org/abs/2503.04341

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Neuromorphic Computing
	Benefits and Challenges of Neuromorphic Computing
	Neuromorphic Hardware
	Neuromorphic Software Ecosystems

	Recurrent neural networks (RNNs)
	Long Short-Term Memory

	Neural Network Intelligence (NNI)
	Datasets Overview
	Human Activity Recognition (HAR)
	Spiking Heidelberg Digits (SHD)

	From ANN to SNN
	Reinterpretation of the LSTM
	Basic Implementation
	Fully Spiking implementation
	Membrane-Based Implementation
	Spiking membrane
	Final Implementation of the Spiking LSTM

	Familiarization with NxKernel and Loihi 2 Neuron Mechanics
	snnTorch Implementation
	Translation from snnTorch to NxKernel
	Hardware-aware software simulation
	Quantization

	Hardware Deployment
	Testing on the Final Dataset
	Training and Test

	Results
	Accuracy
	Sensitivity Analysis
	Quantization Impact
	Hardware Execution Analysis
	Impact of partitioning
	Dendrite Updates and Synaptic Reads
	Accuracy and Architectural Characteristics

	SHD leaderboard

	Conclusion
	Bibliography

