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Abstract

MicroRNAs (miRNAs) are a type of short non-coding RNA sequences involved in
crucial biological processes. In fact, multiple studies show that they can be used
as biomarkers for human diseases such as cancer and Parkinson’s as well as phylo-
genetic markers for species evolution. Thanks to the huge amount of high-quality
RNA reads that Next Generation Sequencing is able to produce, the analysis of
miRNA has improved over the years, with computer science playing an increas-
ingly important role in this bioinformatics field.

miRNAs are characterized by a mechanism that mostly relies on a specific nu-
cleotide region to bind to messenger RNA, so when performing miRNA alignment
it is crucial to prioritize the conservation of this so-called seed sequence. Among
a multitude of available software for this task, isomiR-SEA stands out as an opti-
mized tool that pays attention to the specific miRNA characteristics. It performs
a seed-based alignment, leading to higher accuracies than those of general purpose
aligners. Moreover, it accurately identifies the multiple isoforms that a miRNA
family can have (isomiRs). For greater efficiency, isomiR-SEA is often paired with
BioSeqZip, a collapsing tool to preprocess the input data.

The aim of this thesis is to build a modern toolbox for the analysis of miRNA
(iISEA-TB) around a new unpublished version of isomiR-SEA, to prove its computa-
tional capabilities and its flexibility, while offering the user a reproducible analysis
pipeline and an intuitive graphical user interface for results visualization and down-
stream analysis. The first component of iSEA-TB is a pipeline written in Nextflow,
an open-source workflow management tool largely adopted in bioinformatics. The
pipeline automatically runs all the steps required to perform a complete miRNA
analysis: data download, quality check, trimming, collapsing, alignment, expression
levels estimation, and results consolidation. To make the pipeline work, some mod-
ifications were coded into BioSeqZip and isomiR-SEA to allow them to correctly
interface with the processed data. The second component of the iISEA-TB is a
database-powered interactive analysis interface that allows users to interrogate the
results obtained from the pipeline in the form of SQL queries, and build visualiza-
tions useful for downstream analysis, such as miRs and isomiRs expression levels,
miR region conservation, and A2l substitutions. The interface was built using the
open source software Grafana, which allows seamless interfacing with databases
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and offers multiple data visualization and navigation modes.

The execution report by Nextflow was used to evaluate the pipeline performance.
It includes runtime and memory usage that were compared against those of state-
of-the-art tools. The pipeline is able to analyze considerable amounts of data in
reasonable times, thanks to the modern C++ implementation of isomiR-SEA and
BioSeqZip, proving that this combination of tools is ideal for large scale miRNA
analysis. To demonstrate the usability of the GUI, two meaningful datasets were
analyzed: raw RNA reads used by the MirGeneDB3.0 database, and a collection
of human primary cell reads from the human microRNAome. The GUI produces
interactive graphical representations that can dynamically show different sets of
the obtained results, which in turn will facilitate the comparison between miRNA
isoform expression levels of the requested selection. This flexible interface will
certainly prove helpful for future pathological and philological studies.
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Chapter 1

Introduction

In recent years, as newer technologies got developed, the amount of available biolog-
ical data increased significantly. The need to analyze this ever growing abundance
of information has lead researchers to rely on computer science to aid their studies.
Therefore, the development and refinement of software tools for this purpose has led
computer science to play an increasingly central role in this field. This combination
of disciplines is what today is known as bioinformatics.

Of this interdisciplinary field, one that has received a great deal of attention
revolves around the analysis of short RNA sequences and, more specifically, the
analysis of microRNA [1]. MicroRNAs (or miRNA) are short non-coding RNA
sequences of limited length mostly being around 21-23 nucleotides long, that assume
a critical role in the bioregulation of organisms. They bind to messenger RNA
(mRNA) in order to prevent the transcription of proteins, regulating the biological
functions of the cell. Recent studies have discovered how their expression levels can
be used as biomarkers for early identification of human diseases such as cancer and
autoimmune disorders. Moreover, they have been proven to be reliable phylogenetic
markers for studies about species evolution [2]. Thus, deepening our understanding
of miRNA is essential to support the medical field, as well as to gain a deeper
understanding of gene expression in different species.

MicroRNAs present further challenges when it comes to their isoforms, com-
monly known as isomiRs [3]. In fact, with a deeper focus towards their analysis,
researchers have found out that miRNAs do not always appear in their canonical
form: some are missing some nucleotides at their ends, while others have slightly
more (3 isomir and 5’ isomir), and others present one or more base changes (sin-
gle nucleotide polymorphism) [4]. Unfortunately, although a lot of information
has been found about canonical miRNAs and their functions, the amount of in-
formation revolving around isomiRs is more limited. Although it has been proven
that isomiRs perform biological regulatory functions as well by binding to different
target mRNA with respect to their canonical counterpart, information about the
subject remains sparse. Although many publicly available databases have published
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Introduction

information about annotated canonical miRNA | the vast majority provides little to
no information about miRNA isoforms.

The high amount of genomic data that Next Generation Sequencing (NGS)
is capable of producing from biological samples, as well as the biological impor-
tance of short non-coding RNA sequences have, therefore, led to the development
of many algorithms and tools throughout the last couple of decades, aiming to ease
the process of studying and understanding miRNA’s biological role. The process
of analyzing raw data obtained from NGS is not trivial. The obtained reads con-
tain errors, low quality sequences and short artificial sequences used during the
sequencing process known as adapters. Thus, before trying to identify microRNAs
and their isoforms in a sample, it is crucial to perform a precise preprocessing of
the raw data.

The final step of the analysis is what is referred to as alignment. During the last
few decades, a multitude of software has been developed to tackle this challenge.
However, much like before, this procedure presents its own challenges. Different
tools base their analysis on different libraries, some of which are too general purpose
to be considered accurate. Some tools have underwhelming performances in terms
of speed or require too much RAM for large inputs. Finally, the level of detail in
the reported output varies greatly depending on the chosen tool.

Among the multitude of published tools, one that stands out for its efficiency
and level of detail on output is isomiR-SEA [5, 6]. This highly competitive tool
bases its analysis around a specific region of the miRNA sequence called “seed”, and
exploits it to identify not only annotated microRNA, but also isomiR sequences, as
well as provide a variety of information about each aligned read like, among others,
the interaction site with mRNA.

As mentioned, the preprocessing step represents a solid challenge for users who
want to perform accurate miRNA and isomiR analysis, both in choice of the correct
tool for the task and the correct arguments to provide (ie. adapter sequences). This
task can be tackled in such a variety and the information provided with the raw
sequences is so limited that it is easy for a user to make mistakes.

This thesis proposes a comprehensive pipeline centered around the use of isomiR-
SEA, developed in Nextflow [7] for the analysis of miRNA and isomiR. This pipeline
was named isomiR-SEA-ToolBox, or iSEA-TB for short, and is meant to automate
the delicate process of analyzing raw reads obtained via NGS. Furthermore, this
work aims to prove the computational capability, accuracy, flexibility and general
usability of isomiR-SEA itself, as well as promote its use to fill the current gap in
knowledge around isomiRs which, as previously stated, is sparse even among the
most recognized public miRNA databases. For this last purpose, Grafana [8] has
been exploited in order to develop an interactive graphical representation of the
isomiR expression levels obtained via iSEA-TB, easing the analysis of the obtained
data for potential future studies.
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Chapter 2

Background

This chapter provides an overview of microRNAs, a type of short non-coding RNAs
involved in several biological processes, and their isoforms known as isomiRs, of the
public databases available for the studies of such micoRNAs and of the alignment
tools specifically designed for the task, with a particular focus on isomiR-SEA.

2.1 DNA and RNA sequencing

Deoxyribonucleic acid, more commonly known as DN A, is a molecule composed
of two polynucleotide chains that coil around each other to form a double helix. Said
chains, as the name suggests, are a combination of nucleotides which are composed
of one base of either cytosine, guanine, adenine or thymine. The two chains connect
with each other by pairing bases: cytosine with thymine and guanine with adenine.
The specific combination of those bases carries the genetic code of an individual
organism [9].

Its single stranded counterpart is ribonucleic acid, more commonly known as
RNA. Apart from usually being single stranded, there is also a difference in its
nucleotide composition, where the thymine is absent and replaced with uracil. Al-
though most commonly known for transcription of DNA sequences for the synthesis
of proteins, depending on the specific type of RNA it is actually responsible for more
biological functions that will be discussed more in depth later in this chapter.

The sequencing procedure is the process that allows the extraction of DNA and
RNA sequences by identifying the nitrogenous bases (adenine, cytosine, guanine and
thymine/uracil) that compose it. Over the years, different sequencing procedures
have been proposed and refined. For the purposes of this thesis we will focus on the
most commonly used in the current day: Next (Generation Sequencing, whose
advent represented a turning point with respect to the amount of data that can
be generated in relatively short amount of time. Moreover, we will explain some
concepts related to NGS required to understand this work.
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2.1.1 Next Generation Sequencing

DNA and RNA sequencing has historically been a long, expensive process: Sanger-
sequencing was the first widely accepted procedure for this task, to the point of
being known as "first generation sequencing" however, only one sequencing reaction
could be analyzed, resulting in a very limited throughput. Since then, a great deal
of technological advancements and refining have been made in the field, leading to
the introduction of Next Generation Sequencing (NGS) technologies. Due to
nanotechnology principles and innovations that allowed massive parallel sequencing
of single DNA molecules, NGS is nowdays capable of outputting massive amounts
of data on a daily basis. When talking about these kinds of processes, it is impor-
tant to note that DNA is way more adept to being treated than RNA therefore, to
sequence RNAs, it is common practice to first convert them into complementary
DNA (cDNA). Because of this property, when talking about sequencing, only the
DNA will be mentioned. NGS approaches, such as the one on the Illumina plat-
form, usually start from DNA fragmentation and DNA end-repair, then proceed
with adapter sequence ligation, surface attachment, and in-situ amplification [9)].
Of these steps, the adapter ligation part is of particular interest for the analysis
of miRNA since, as we will shortly see, its use influences the end result of the se-
quencing step. A visualization of the sequencing process that shows adapters can
is provided in Figure 2.1.

2.1.2 Adapters and trimming

Adapter sequences are short oligonucleotides of variable length that ligate to the
ends of DNA fragments of interest. This process allows for successive operations
that require the use of primer sequences during the amplification step. However, at
the end of the sequencing process, these adapters remain attached to the extracted
sequences, impeding alignment tools from recognizing potential miRNAs. This
means that these artificial sequences need to be identified and removed (trimmed)
from short-RNA sequences before being fed to alignment tools. Unfortunately, over
the years a multitude of NGS technologies have been developed: each one of them
uses a variety of their own preparation libraries and the adapters used kept changing
as newer versions came out. This means that a different adapter sequence can be
found within extracted reads, depending on the sequencing technology and version
used, making the identification and trimming procedure non-trivial [11, 12, 13].
The trimming process is a computational step which is carried out after the
whole sequencing procedure, during the preprocessing phase of miRNA alignment,
and involves the use of specialized algorithms. The presence of adapter sequences
ligated to raw reads hinders the ability of alignment tools to recognize miRNA
sequences, so their removal is a delicate and critical step to carry out. Although
there are some algorithms like fastp [14] that have some ability to automatically
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Figure 2.1: Sequencing process with adapter ligation and post-sequencing trimming.
Image from Majer et al. [10].

detect adapter sequences, their reliability varies depending on the provided input.
Other algorithms like cutadapt [15] need the user to explicitly state the adapter
sequence that needs to be searched and used, either via input arguments or via a
list inside an input file. On paper, this second approach would be more surefire
however, the publicly available sequenced reads datasets usually do not explicitly
state the adapter used by the preparation library, meaning that it’s difficult to know
which one has been used a priori. Another problem may arise from typical adapter
trimming applications because usually only a short prefix of the full sequence tends
to be scanned, which sometimes leads to the detection (and trimming) of false
positives. Furthermore, during sequencing some noise in the data tends to be
produced and the resulting sequences (both natural and artificial) can contain some
errors, meaning that some flexibility towards errors needs to be employed when
looking for adapters. However, depending on the amount of tolerance given, this
may result in the application detecting a sequence homology instead of an adapter.
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Because of all these reasons, there is no perfect way of executing this task over a
large quantity of data and, if a bioinformatician aims to automate it, this process
needs to be carefully tailored for it to be as accurate as possible.

2.2 MicroRNAs

Ribonucleic acid (RNA) is a polymeric molecule responsible for most of the bi-
ological functions of living organisms. RNA is very similar to DNA in terms of
composition, with the main difference being a base change from thymine to uracil.
Its structure also differs from DNA, because RNA tends to be single stranded. This
difference allows it to assume much more complex structures, allowing it to fold and
form short helices with itself. Depending on the biological function that the RNA
undertakes, it gets referred to as a specific class [16]. For example, the messenger
RNA (mRNA), whose job is to copy and carry information from the DNA, which
then gets used to synthesize proteins.

Non-coding RNAs are a different class of ribonucleic acid that are involved in
many cellular processes. Some partake in regulation of the information flow from
DNA to protein, others perform RNA splicing, DNA replication, gene regulation
and more. Different types of non-coding RNAs include: transfer RNAs (tRNAs)
and ribosomal RNAs (rRNAs), as well as small RNAs such as microRNAs, siRNAs
and piRNAs.

MicroRNAs (miRNA) are short, single-stranded non-coding RNA sequences
that make use of diverse mechanisms to regulate gene expressions. They are usually
between 21 and 23 nucleotides long sequences that are evolutionary conserved and
perform gene expression regulation. They perform their biological task by binding
to the target mRNA, in order to silence it and prevent it from synthesizing new
proteins.

2.2.1 Biogeneseis

miRNAs, as shown in Figure 2.2, are formed as a result of RNA polymerase II, where
a strand folds on itself generating a peculiar hairpin shape, commonly referred to as
pri-miRNA. Those hairpins then get cleaved into partially double-stranded RNAs
called pre-miRNA, before going through another cleaving process that separates
the strands generating the sequences that are commonly known as mature-miRNA
(18] .

2.2.2 Biological functions

miRNAs are known primarily for their regulation of gene expression. By binding
their seed region (sequence composed of bases 2-8) to the 3’ untranslated region of
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Figure 2.2: Biogenesis of microRNAs and its distinctive hairpin shape.
Image from Chandradoss et al. [17]

complementary messenger-RNA (mRNA), they suppress mRNA'’s transcription via
post-translation repression or by initiating their degradation process. This process
can be visualized in Figure 2.3 They are involved in most physiological processes,
like cell survival, apoptosis, proliferation and metastasis, and even cellular activ-
ities like immune response, insulin secretion and neurotransmitter synthesis [19].
Medical studies have thus proven that, by detecting their deregulation, they can
be used as biomarkers for pathologies such as cancer [20], autoimmune disorders
[21], and cardiovascular diseases [22]. Furthermore, in recent years, a great amount
of effort has been put into researching their use as medical treatment for the men-
tioned diseases [23]. In fact, in July of this year, an article about Novartis [24], a
Swiss pharmaceutical company, has been published, informing of their $800 million
cost acquisition of Regulus Therapeutics, whose research into the microRNA field
is developing a miRNA-17 inhibiting drug against heart kidney failure. They thus
seem to have huge, but yet undiscovered potential in the medical field for both
disease recognition and treatment.

2.2.3 Philological functions

MicroRNAs have also been proven to be evolutionary conserved in both animals and
plants. MirGeneDB [26] has put a great amount of effort on the manual curation
and annotation of high-confidence miRNA across the metazoa. They developed
a phylogenetic tree, comprehensive of 114 species, that has been carefully devel-
oped over multiple versions of the database [27]. All the provided data can be
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Figure 2.3: Representation of bioregulation executed by miRNA via mRNA binding
Image from Yavropoulou et al. [25]

freely browsed, searched, compared and downloaded from the MirGeneDB website,
allowing further studies in the philological field. Further studies of gene expres-
sions over different species could provide new insights on miRNAs leading to new
advancements in the field.

2.2.4 MicroRNA isomorfs

Some initial studies hypothesized that only 2 kinds of mature microRNA could
generate from a single hairpin, specifically, one from the 3’ arm (3p strand) and
one from the 5 arm (5p strand). However, more recent studies that exploited
the amount of data coming from NGS, have discovered that multiple variations
of a canonical form can be generated, either by insertion, deletion or nucleotide
polymorphism. Those miRNA isoforms are commonly referred to as isomiRs [28].
isomiRs originate from miRNAs loci as consequence of specific processes as ex-
oribonucleases or nucleotidyl transferase activity, RNA editing, SNPs or imprecise
cleavage by the ribonucleases Drosha and Dicer [4]. They differ from miRNA in
terms of either composition or length (number of nucleotides) or both. In fact,
the miRNA sequence can be segmented in different nucleotide (nt) regions based
on interaction sites [19, 29]: the seed region from nt-2 to nt-7, the offset at nt-8,
the supplementary region from nt-13 to nt-16 and the overall central site from nt-3
to nt-16 . The leftmost nucleotede of the sequence is called the 5’ end, while the
rightmost nucleotide is referred to as the 3’end. Depending on the affected region
or end, isomiRs can thus be distinguished into three main classes: 3’ isomiRs, 5’
isomiRs and polymorphic (SNP) isomiRs, which can be seen in Figure 2.4.
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Figure 2.4: Different classes of isomiRs.
Image from Urgese et al. [5]

The knowledge around isomiRs is instead less refined and their functionality
is, to this day, subject of study. The primary challenge for researchers seems to
derive from their variability, which often leads to misclassifications of other small
RNA classes as miRNA isoforms. However, established knowledge on the field is
not completely absent. Much like their canonical counterparts, they act at the
post transcriptional level via base-pairing. Of the previously mentioned classes, 3’
isomiRs are by far the most represented, therefore most research has found success
in their analysis in particular [30, 31]. Although they share the same seed region
with annotated miRNAs, their ability to differ at the 3’ end allows them to bind
to different mRNA sequences with respect to their canonical counterpart. Their
presence in different organisms and different stages has also been studied, suggesting
variations in their biological functions [32]. However, knowledge on the subject is
still far from comprehensive and further studies need to be aided in order to increase
our understanding on the subject.

2.3 Public miRNA databases

An important step in the miRNA alignment procedure, that can have a significant
impact in the overall quality of the results, is the selection of the reference genome(s)
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that will be used to compare and align the samples obtained from the NGS process.
These reference genomes are usually obtained from bona-fide public databases such
as miRBase [33] and MirGeneDB [26].

2.3.1 miRBase v22

Since its release in 2002, miRBase has become the most recognized public mi-
croRNA repository. It is responsible for establishing a gene naming scheme for novel
miRNA discoveries, which has been employed to steadily increase its database size
across numerous updates. Having reached the 22nd version release, it has collected
38 589 precursor entries, spanning across a total of 271 organisms. Its objective is
to not only publish the canonical sequences of high confidence miRNAs, but to also
provide a wide range of information regarding them, such as precursors, genomic co-
ordinates, literature reference and more. Reportedly, distinguishing between bona
fide miRNAs and mis-annotated RNA sequences has not been an easy task, since
miRBase’s primary source of novel sequences comes from author submissions and,
as has been previously said, the amount of available data and research grows by
the day. To address this issue, the sequences reported on the website have been
assigned with a confidence value, depending on the amount of data addressing the
sequence. To this day, only about 26% of the reported data has been classified as
high confidence.

Despite its public recognition, miRBase does not provide a comprehensive list
of isomiRs, as its main focus is the annotation of canonical miRNA, leaving a
significant knowledge gap in this field. Other public databases like isomiRdb [34]
have put some efforts in filling this gap based on miRBase’s human data, but none
seem to be comprehensive enough in both annotation and species abundance.

2.3.2 MirGeneDB 3.0

Previous studies have reported that the main issue with public databases is their
lack of curation, which lead to an over-abundance of false positives in reported
miRNA sequences (over two thirds) [35, 36, 37, 38]. Another problem that has
arisen is the inconsistency or incompleteness of the nomenclature employed to clas-
sify the different miRNA families, which often hinders comparative studies. To
tackle these problems, MirGeneDB has put great effort into manually curating
data revolving around miRNAs, instead of simply accepting sequences from public
literature [39]. Released in 2015, MirGeneDB has thus been the first manually
curated, publicly available miRNA database. Spanning over 3 released versions, it
has grown from just 4, to a total of 114 metazoan species, consistently employing
a rigorous method for naming and classifying only high-confidence reads. One of
its major objectives was to not only eliminate most, if not all, false positives from
its repertoire, but to also aid comparative phylogenetic works. To this end, it has
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constructed and developed a comprehensive metazoan tree that graphically reports
evolutionary closeness between species, and allows browsing for all the annotated
miRNAs related to them. This feature emphasizes on the premise that multiple
studies have reported that miRNAs are great phylogenetic markers, encouraging
further research on the topic. Their efforts have been amply recognized during
the years, leading to a multitude of studies and publications [40, 41, 42] relying to
MirGeneDB for metazoan miRNA annotation.

In terms of isomiR, MirGeneDB has introduced a field expressing their existence
in relation to each miRNA, but the amount of information regarding it is sparse
and not nearly enough to fuel significant future studies in the field.

2.4 Alignment algorithms and isomiR-SEA

With the advent of Next Generation Sequencing, arose the opportunity to charac-
terize miRNAs on a significantly larger scale, thanks to their ability to generate
large amounts of sequence data in a short amount of time. However, to fully ex-
ploit the possibilities offered by this technology, it quickly became apparent that
appropriate tools specialized for the job needed to be developed. Thus, over the
years, an increasing amount of bioinformatic tools for the analysis of miRNAs have
been published [43, 44]. Although the analysis of the sequence data obtained via
NGS needs to undergo a multitude of steps, what this section will focus on is the
alignment procedure.

Alignment algorithms typically make use of reference miRNAs to recognize the
sequences that they receive as input, compering each one of them with the reference
mature sequences. This process allows for the identification of canonical miRNAs
and therefore their expression levels in a tissue or species. Some algorithms limit
their capabilities to this job, others instead aim to identify novel unannotated
miRNAs, while others expand their research scope to the recognition of isoforms.
However, the different alignment logic, different analytical approaches, varied sen-
sitivity and specificity that the various programs are characterized by, lead to a
noticeable discrepancy in the obtained results. Moreover, there is a great variety
in computational capabilities, both in terms of speed and memory, meaning that
hardware capabilities need to be taken into consideration. Finally, there is the
problem of the scope of analysis and quantity of information extrapolated from the
alignment procedure, which varies greatly depending on the algorithm.

A key aspect that differentiates the various miRNA aligners is how the treat
the miRNA sequence. Some tools use general purpose aligners. Others implement
alignment algorithms specifically tailored to miRNA. Among this ever growing va-
riety, a tool that stands out in terms of performance, accuracy and completeness
in provided information is isomiR Seed Extension Aligner, more commonly
referred to as isomiR-SEA [5]. isomiR-SEA, written in C++ using the SeqAn
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library [45], focuses its analysis on the "seed" region of the potential miRNA se-
quence, which is of outmost importance for a stable bind to thee target mRNA,
and expands its matching algorithm around it. This approach, specific for miRNA,
provides greater accuracy and allows isomiR-SEA to identify both miRNA and
isomiR sequences. Moreover it allows the algorithm to provide a variety of infor-
mation about the aligned sequences, which are extremely useful for downstream
analysis.
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Chapter 3
Methods

The following is a comprehensive description of which tools have been used, their
general functionality and their use in this work, their interactions with each other
and the adaptations that they received in order to perform the full analysis over
the selected datasets.

3.1 isomiR-SEA

isomiR-SEA [5] is a miRNA alignment tool that can accurately identify canonical
microRNA sequences and respective isoforms, called isomiRs. It’s computational
efficiency and alignment logic are what set it apart from other alignment algo-
rithms. In fact, isomiR-SEA performs alignment based on the seed region of the
full sequence and can also accurately identify miRNA-mRNA interaction site clas-
sification, giving it the edge in overall accuracy.

3.1.1 A new and improved version

In its first release state, the tool was not fully tested and, therefore, presented some
bugs and some computational issues regarding both speed and RAM. However, five
years prior to this thesis, a new and improved version was developed, which tackled
the aforementioned issues [6].

For this new and unpublished version, the language was updated to a more
recent C+-+17 programming standard. The core library used for the alignment
procedure, SeqAn [46], was also manually ported (since no automation is available
for the process) from SeqAn2 [45] to the more recent and optimized SeqAn3 [47]. It
also implemented the ability to make use of multiple threads, exploiting concurrency
and allowing for parallel alignment operations which significantly sped up execution
time, as can be seen from Figure 3.1. Lastly, it implemented an on-the-fly output
mechanism that significantly decreased the amount of RAM that the tool makes
use of, shown in Figure 3.2.
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Figure 3.1: Comparison of isomiR-SEA execution time across versions. In blue v1.6,
the published version, in orange v1.7 a first unpublished attempt at concurrency
implementation, and in green v2.0 [6]. Here can be seen how the implementation
of concurrency manages to halve execution time with the single-thread version.
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Figure 3.2: Comparison of isomiR-SEA execution time across versions. In blue v1.6,
the published version, in orange v1.7 a first unpublished attempt at concurrency
implementation, and in green v2.0 [6]. Here is evident how much v1.7 struggled with
RAM usage without proper optimization, to the point of being forcefully stopped
(KILLED) by the sistem for saturating it.

3.1.2 isomir-SEA’s workflow

isomiR-SEA’s main workflow can be divided into 3 main steps:

o Preprocessing: where, after the input parameters are set to produce the
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desired configuration, the input files are loaded in an appropriate data struc-
ture. There is a variety of arguments that can be explicitly changed when
given as input parameters, that allow for different behaviors of the execution
logic, like number of allowed mismatches in the sequence or specifically in the
seed.

o Alignment: here the seed region of the miRNA gets compared to the input
reads. When a match is found the rest of the read gets compared via both
3" end and 5 end extension. During this process, an arbitrary number of
mismatches can be allowed via input argument. Since the seed region is the
core part that defines the stability of the interaction between the miRNA
sequence and the target mRNA, its exploitation allows for a more accurate
miRNA identification and allows for the recognition of target mRNA. The
read then receives an alignment score, gets its interaction site evaluated and
gets paired with its precursor.

e Output: finally, all the recorded information get outputted in both .tab
format and .gff format. A third .log file also gets produced with summarized
information about the execution.

3.1.3 Input files

The alignment happens on .fasta input files, which contain textual representations
of potential miRNA sequences, defined by the letters ’A’, "T7, ’C” and 'G’, each rep-
resenting a different nucleotide. Those reads need to be preprocessed by trimming
and quality control tools. Other than the potential sequences, isomiR-SEA needs
to receive one or more input files representing the canonical forms of miRNAs, so
that the alignment can be matched against them. There are a variety of options
to choose from, all of which are available in public miRNA database websites like
MirGeneDB:

e It can be provided with both a genomic coordinates file and a precursors file.

« It can alternatively receive a file of mature miRNA sequences and/or a star
file.

» Lastly, it can process a combination of both of the previous options.

Furthermore, if paired with BioSeqZip [48] (a collapsing tool from the same
authors), it can receive as input multiple potential read files collapsed into a single
one, paired with a .tab file that explicitly states how many reads belong to which
original file. With just those 2 files, isomiR-SEA is capable of outputting multiple
aligned-reads files, one for each original input. This new feature is extremely useful
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when the input files come from sequencing of the same species, perhaps from differ-
ent tissues or different stages, or from evolutionary close ones. In those cases, since
multiple reads can be repeated across a variety of input files, a normal serialized
execution with single input files would need to re-align the same sequence multiple
times, resulting in a waste of time and resources. By making use of the tab-file to
trace back each count to the original input file, this multi-sample analysis allows
the tool to perform alignment on those sequences only once, significantly speeding
up computation time.

3.1.4 Output Files

As previously mentioned, the output files come in two different formats: .gff and
tab. The .gff (General Feature Format) is a widely accepted standard output for-
mat for aligned miRNA reads. It allows for a decent amount of information to be
compressed into a single line for the different reads, such as genomic coordinates,
score, and an arbitrary list of attributes. isomir-SEA provides more detailed in-
formation in a custom format file of extension .tab, where the header describes
the different fields represented by each column and the subsequent rows carry all
the information that the tool was able to extract from the input sequence, such
as count, genomic coordinates, isoform specific information, precursor information,
reference miRNA sequence and much more. This more complete file is what allows
for a more comprehensive downstream analysis of the obtained results. Finally the
last output file is a simple .log of condensed information about the tool’s execution,
such as parameters set, features detected and execution time.

3.2 Chosen datasets

When presenting bioinformatics tools, it is important to chose appropriate datasets
on which to test either their performance or their utility. In fact, one of the main
concerns when analyzing large amounts of data, is how fast and efficiently said data
can be elaborated, so when choosing a dataset to test a tool’s performance, it is
crucial to choose one of great size, in order to push its computational limits. This
work needed to show the computational capabilities of both the single tool and the
pipeline, as well as the applicability of isomiR-SEA, therefore, two meaningful yet
sizable datasets were chosen: the raw reads used for the development of 7 species
of MirGeneDB [26] and the astonishing 2398 raw reads files used for the creation
of of the Human miROme from Patil et al. [49]. The table 3.1 compresses some
information about the chosen datasts.
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Species (code)  Dataset origin # Samples Compressed Size

Worm (cel) MirGeneDB 8 6.2 GiB
Dog (cfa) MirGeneDB 20 12 GiB
Fruit fly (dme) MirGeneDB 25 17 GiB
Horse (eca) MirGeneDB 33 9.3 GiB
Human (hsa)  MirGeneDB 81 20 GiB
Mouse (mmu)  MirGeneDB 42 8,6 GiB
Rat (rno) MirGeneDB 18 1,6 GiB
Human (hsa)  miROme 2398 757 GiB

Table 3.1: General information about the analyzed datasets. It is important to
note that the file size has been reported in its compressed format (.fastq.gz), so
the actual size of the data is substantially bigger. It is easily noticeable how much
bigger the miROme dataset (last row) is in comparison with the rest

3.2.1 MirGeneDB 3.0

Since miRNA and isomiR’s role as phylogenetic markes is an important field that
has a lot of potential for future insights and discoveries, choosing a variety of some of
the most represented species was a natural choice for showcasing the applicability of
isomiR-SEA. In its most recent publication [26], MirGeneDB has greatly amplified
its metazoan repository, reaching a total of 114 species, and expanding upon the
already present one.

From the paper, they provided a list of the NCBI Sequence Read Archive acces-
sions in the form of supplementary table. These raw, unprocessed accession were
thus used as input for the developed pipeline (which will be described shortly) to
perform our analysis over a selection of 7 different species: Homo Sapiens (human),
Mus Musculus (mouse), Rattus Norvegicus (rat), Equus Caballus (Horse), Canis
Familiaris (dog), Drosophila Melanogaster (fruit fly) and Caenorhabditis Elegans
(roundworm). This wide variety is meant to showcase the flexibility of isomiR-SEA
and encourage its use for comparative isomiR expression studies of different species
and tissues.

3.2.2 Human miROme

In 2022 Patil et al. [49] published as study revolving around the analysis of over 6000
human primary cell datasets downloaded from the NCBI Sequence Read Archive.
The goal of this project was to provide the most complete reference of miRNA
expression patterns by primary cell type, which was referred to as a human mi-
croRNAome (miROme). After an attentive selection, the total curated reads were
restricted to 2077 samples, defining a total of 196 unique cell types. Given the
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importance, comprehensiveness and sheer size of this project, the human miROme
was an outstanding candidate to test the performance of isomiR-SEA. By using it
for this type of analysis, this work aims to showcase how, despite their size, mean-
ingful datasets can be processed in acceptable amounts of time with reasonable
resource usage.

3.3 Workflow management: Nextflow and nf-core

Nextflow [7] is a renowned open-source workflow management system for bioinfor-
matics. It offers a multitude of automations to allow the user to run specialized
tools for the analysis of biological data. In fact, it can automatically download work
environments like conda and docker, with the required open-source tools, without
explicitly needing to locally download them.

A standard Nextflow pipeline, at the highest level, is made of a main workflow
that is tasked with calling the different components. Those can be either single
modules or (optionally) a collection of them, elaborated by a subworkflow. Its
main objective is therefore to ensure that the different parts communicate seam-
lessly with each other, making use of a data stream mechanism called channel that
handles the input and output data of the different processes. Modules are the low-
est level component of a Nextflow process chain. Those are the main work-force
of the system, with each one defining a single process that executes a specialized
task, built around either the selected tool or a custom script. Since many well
known algorithms are usually executed together, it is common practice to group
the modules that handle them into a unique subworkflow.

In terms of computational resources, Nextflow allows for a great control over
both RAM and CPU utilization. A developer can specify the amount of memory or
threads that a specific module can make use of, so that the developed pipeline does
not over-allocate said resources. Moreover, Nextflow allows for implicit operation
parallelism. In fact, when there are enough resources available and processes can be
executed independently, Nextflow will try to run multiple tasks at the same time,
resulting in greater computational efficiency and time save.

nf-core [50] is a community driven project aimed at providing it users with
reliable open-source Nextflow pipelines, subworkflows and modules, in order to
allow its users to either make use of a full pipeline, or to provide some already built
components that can ease the process of creating a new pipeline. When building
this pipeline, I adhered to the standard nf-core regulations in order to eventually
be able to publish this work as an official nf-core pipeline.
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3.4 The iSEA-TB pipeline

iSEA-TB has been developed with the purpose of seamlessly preprocess and align
miRNA and isomiR starting from just a list of NCBI Sequence Read Archive acces-
sions in .csv format. From that starting point, the workflow will generate the rele-
vant metadata and download the raw compressed files. At this point, the pipeline
will use a variety of tools to infer the relevant information about each individual
file, in order to perform accurate adapter trimming and quality control. Finally the
curated reads will be collapsed and sent to the alignment tool to produce the desired
data. As an added feature, the pipeline workflow can be divided into three main
sections and the user can decide to skip the undesired ones: download, preprocess
and alignment, as shown in Figure 3.3.

PHRED PHRED
D load and identification inferance
(::vc\)’:v:?'si;‘: FastQC Infer-PHRED QC Al 1
. ignment m—
: mirTRace
SRA toolkit O O isomir-sea | WY

tab |
1
Metada.ta [ Adapter Collapsing -
extraction trimmin . .
: Adapter ) BioSeqZip
<LLAlE recognition Cutadapt
fastp
Download Preprocessing Alignment

Figure 3.3: The iSEA-TB pipeline. Each step is part of a subsection of the entire
workflow: Download, Preprocess and Alignment. The different operations in the
Preprocess region are executed in parallel in order to provide both Cutadapt and
miRTrace with the relevant details. The specifics of each tool is reported in Table
3.2

Name Version Task Source

SRA info 1.0 Metadata extraction standalone script
SRA toolkit 3.1.0 Download and .fastq.gz conversion nf-core subworkflow
FastQC 0.12.1 PHRED identification nf-core module
Infer PHRED 1.0 PHRED inference standalone script
fastp 1.0.1 Adapter recognition nf-core module
Cutadapt 5.0 Adapter Trimming nf-core module
miRTrace 1.0.1  Quality Control nf-core module
BioSeqZip 1.1 Collapsing local nf-core module
isomiR-SEA 2.1 Alignment local nf-core module

Table 3.2: General information on the modules used in the pipeline
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3.4.1 SRA info

The first process that takes action is a self developed module that extracts the
metadata required to perform the subsequent steps from the European Nucleotide
Archive (ENA) website. By receiving as input a .csv file containing the desired
NCBI SRA accessions (one per line), it calls a custom Phython script that fetches
metadata by generating the appropriate web URL. Of the obtainable information,
only the few needed by future operations are requested and saved. The script
also generates a unique ID for the to-be-downloaded file combining both the run
accession and the experiment accession. Finally, all the information regarding a
single run are saved inside a .tsv file.

Those information will then be retrieved via the path provided as the module
output, and processed inside the main workflow to generate the initial metadata
channel. This step is important not only for the flawless execution of the successive
modules, but also because a given accession can refer to more than a single file. For
example, usually an accession that starts with "PRJ" refers to a project containing
multiple experiments and runs.

3.4.2 SRA Toolkit

The publicly available nf-core subworkflow SRA Toolkit [51, 52] was used to down-
load the requested accession from the NCBI database. By feeding it the appropriate
information via the metadata channel, this subworkflow is capable of outputting
all the related fastq files in a compressed format. This section is divided into two
different sub-steps. The first one performs the prefetch command, which down-
loads the requested files into .sra format. The second part makes use of both the
fasterq-dump command, which converts the obtained data into .fastq format, and
the pigz command that compresses it into a .fastq.gz file

3.4.3 FastQC

The next process makes use of the nf-core module FastQC [53, 54]. The real purpose
of this tool in my workflow is to utilize the provided output to automatically detect
the Phred offset used to express the quality of the reads. This step was necessary
since the tool tasked to perform quality control later in the pipeline can sometimes
fail to automatically detect the PHRED offset, leading the pipeline to abruptly
stop. However, the mentioned tool can accept this parameter as an argument, but
since older reads can make use of a different format than the more recent ones,
automatically identifying them with FastQC is a crucial step to ensure reliability.
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3.4.4 Infer PHRED

The output from FastQC then gets sent to a small self developed module built
around another python script. This process takes the textual output files provided
as input and searches for the line that mentions which format has been detected
for the PHRED offset. Depending on the detected name, a new file containing the
sample ID of the accession and the offset in numerical format (either 33 or 64).

3.4.5 fastp

fastp [14, 55] is a commonly used tool for automatic adapter detection, conse-
quential trimming and quality check. Although that’s its primary use, much like
FastQC, its role in the pipeline is slightly different: the workflow makes use of this
tool’s ability to detect an adapter and, if found, adds it at the top of an already
provided file containing a multitude of well known adapters. This pre-existing .fasta
list of adapters is a manually curated default list that covers a variety of adapter
sequences, ensuring a reliable trimming procedure. However, since it is difficult to
provide a list that covers every possible adapter, this specific step was added to
cover the possibility of the adapter missing from the provided list.

The potential adapter is extracted by the workflow from the fastp report file and
compared against the existing list to check if it is already present. If it is revealed
to be missing, the newly found sequence is added to the top of the list.

3.4.6 Cutadapt

The actual tool used for adapter trimming is Cutadapt [15, 56], another popular
tool specialized for the task. One of its main selling points for this project is its
ability to check for the presence of a multitude of adapters and perform trimming
via best match. This ability allows us to give its module the previously mentioned
list in order for it to properly process the provided reads file. This step allows us to
obtain the most reliable set of curated reads that can be processed by the alignment
tool at the end of the workflow.

At this point, the workflow extracts the PHRED offset from the output files
generated by the Infer PHRED module, and joins them with the Cutadapt output
files via sample ID. Lastly, a new channel of temporary .tsv files gets generated, one
for each sample, that are used as the input for the next module. Each file contains:
the name of the input file, the sample ID, an empty string representing the adapter
sequence (since we don’t want to perform trimming again) and the PHRED offset.

3.4.7 miRTrace

During the research phase of this thesis, a tool that stood out was miRTrace [57, 58],
a tool that specializes in quality control and taxonomic origin inference. Being an
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algorithm specific to sSRNA, its performance tends to be more accurate for quality
control than general-purpose tools, making it an especially compatible tool for the
pipeline. The original algorithm can be executed in two different modes: quality
control and taxonomic origin tracing. However, only the former was needed for
this pipeline’s workflow and, luckily, was already a public nf-core module. Its QC
process starts by removing low-quality reads, checking their Phred score. After
that, it can perform 3’ adapter trimming via matching to a provided sequence.
Then it checks for the presence of low complexity reads that either have highly
repeating nucleotides or contain ambiguous ones like 'N’. Finally, by checking the
remaining reads’ length, short ones (with length lower than 18) are removed [59].
An optional step allows it to collapse the obtained reads when writing the output
file, making it more space efficient. However, the header format used is unique to
the tool, making it difficult for downstream tools to process. The input arguments
allow for either single specifics regarding adapter and PHRED offset, or to provide
an input .tsv file with the relevant information. This is where the files created at
the end of the previous step get used. Since the pipeline parallelizes execution,
each .tsv file containes information about a single input file, although the tool itself
allows for the presence of one line per input file.

3.4.8 BioSeqZip

The next process that takes action revolves around a self-built BioSeqZip module,
an optimized C++ tool for read collapsing. The employed version of this tool has
been updated during this work to be able to correctly process the output files from
miRTrace. Specifics about the changes will be discussed in Section 3.6. Since this is
an algorithm especially compatible with our alignment tool of choice, to the point
of being recommended for it, its integration in the pipeline was a natural choice.
This algorithm can perform collapsing over a single file or a multitude of those,
and it is optimized for minimum RAM usage. The collapsing happens after the
input reads get sorted in alphabetical order, significantly speeding up research for
identical reads. In case of exceptionally large files or a large number of files, it
generates temporary output files in order to occupy the least possible amount of
RAM. In case of multi-file input, an extra output .tab file gets generated in order to
keep track of how many reads come from a specific input file. This kind of behavior
allows for the alignment to correctly assign each potential output read to a different
original file.

3.4.9 isomiR-SEA

Lastly, the developed isomiR-SEA module comes into play. By taking in input the
processed and collapsed reads, it can efficiently and accurately align every read. To
perform an accurate alignment procedure, it needs to also receive an appropriate
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set of input reference files. Although the tool can work with just a subset of input
files, for a more comprehensive analysis, the pipeline exposes the full set of inputs:
precursors, genomic coordinates, mature sequences and star sequences. Thanks to
the most recent version of the tool, the pipeline is capable of efficiently analyzing
the reads that reach this final step, allowing the user to generate a fully analyzable
output. In fact, isomiR-SEA generates 2 different kinds of output: a simpler .gff file
and a much more detailed .tab file that allows for a more comprehensive downstream
analysis.
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3.5 Pipeline manual

The pipeline is fairly easy to use, needing only a few input arguments and files,
depending on the analysis that a user wishes to perform. As previously stated, its
workflow can be divided into three main sections: download, preprocess and align-
ment. Although the pipeline can seamlessly perform every step from the beginning
to the end, some users may want to perform only a subset of operations that suit
their needs. The full analysis launch command looks something like this:

nextflow run path/to/pipeline/main -profile profile_1,profile_2
--input path/to/input.csv --outdir path/to/output_directory
--species hsa

The -profile <profile_list> argument is a standard argument for Nextflow
pipelines. In this case it is advised to at least declare either conda or docker as a
profile option for the pipeline to be able to automatically setup an environment /-
container which will automatically retrieve the required tools without forcing the
user to explicitly download each one of them. By official Nextflow design, more
than one profile can be declared via comma separation.

The --input <path/to/csv> argument expects a .csv file containing NCBI Se-
quence Read Archive accessions, with one accession per line. Those are not re-
stricted to runs, they can also be experiments or projects. The pipeline will take
care of correctly retrieving the single runs related to provided input. The argument
is used by the SRA info module to retrieve the relevant metadata for each sample
file. There is a use case where this parameter becomes optional, which will be
discussed below.

The --outidr <path/to/out_dir> argument is another standard Nextflow argu-
ment. As the name suggests, it requires the user to specify the directory in which
they wish to save the outputs from the individual modules, including the final result
of the workflow and the Nextflow execution report.

The --species <ID> argument is required for both miRTrace and isomiR-SEA.
Those tools need to know the species they are dealing with for them to correctly
execute their respective tasks. For this reason, the pipeline requires the input ac-
cessions to be related to a single species. The parameter should be provided in its
canonical short form, like hsa for Homo Sapiens or mmu for Mus Musculus. There
is a use case where this parameter becomes optional, which will be discussed below.
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3.5.1 Alternative workflows

Depending on the user’s needs, some more arguments become available and are
used to specify to the pipeline which subsection of the workflow to perform. Some
are flag arguments, meaning they will automatically be set to true when declared.
Other arguments become mandatory depending on the provided flag.

The --skip_download flag allows the user to skip the SRA Tools related modules
and allows the pipeline to begin its workflow at the preprocessing step, starting from
the SRA info module and immediately jumping to the FastQ)C' module execution.
This parameter is very convenient for those users who are already in possession of
the raw reads files from the NCBI Sequence Read Archive, since it allows them to
skip a potentially time and space consuming section of the process.

The --skip_preprocess flag allows the user to skip the subsection of the workflow
that starts from FastQC and ends with miRTrace (included). It is recommended to
pair this flag argument with —-skip_download as, in most cases, the download step
will not be required either. This kind of behavior is convenient for users that only
want to perform the alignment procedure on multiple already (perhaps manually)
curated files.

The --skip_alignment flag allows the user to stop the workflow right before the
execution of the BioSeqZip module, allowing users to obtain the fully curated un-
aligned reads, so that they can eventually be analyzed independently. This behavior
is useful for users who want to manually check the curated reads before perform-
ing the alignment procedure, perhaps to check the correctness of the operations
or to perform alignment against different databases. It can be paired with the
--skip_preprocess flag to force the pipeline to only perform the download and
conversion in .fastq.gz format of the raw reads. This behavior helps with storage
management and allows users that are already in possession of a portion of the
reads that will be processed.

The --input_files <path/to/dir> argument becomes mandatory when either
(or both) --skip_download and --skip_preprocess are provided as input. It
tells the pipeline where to find the initial files that will be used for the analysis.
Depending on the starting point of the pipeline, this argument is used in case the
user is already in possession of raw read files downloaded from the NCBI Sequence
Read Archive in fastq.gz format (--skip_download), or is in possession of already
curated reads (--skip_preprocess).

35



Methods

3.6 BioSeqZip and isomiR-SEA adaptation

Besides the development of custom Nextflow modules for BioSeqZip and isomiR-
SEA, a few adaptations to their source code was required, as in their initial state
neither of them was capable of interfacing with the peculiar output header format
of the collapsed fastq files provided by miRTrace.

Usually, the .fasta or .fastq files that get used as input for those tools, simply
contain a header and sequence pair for each read. This means that the number of
input reads can be inferred by simply counting the number of times that the same
sequence appears, so whatever info is usually saved in the header can be ignored.
Although isomiR-SEA is able to read the output header format of BioSeqZip in or-
der to extract the number of collapsed reads, since there is no standard convention,
said format is different for all collapsing tools, meaning that this feature is only
specific to this pair.

In fact, the BioSeqZip header looks like this:

' >BIOSEQZIP|ID:0|CN:123456 |
where each field is separated by a | and the count of reads is CN:123456.

Instead, the miRTrace header has the following format:

‘ >seq_1_x123456 rnatype:mirna
where the read counter x123456 is embedded inside the first field, with a prepended
X.

To tackle this challenge, the source code of both tools had to be adapted, so
that either of them could individually interface with the mentioned data. By far,
the hardest algorithm to adapt was BioSeqZip’s. Its structure is very convoluted,
many different part of the code communicate with each other in a very strict way,
so both the extraction of header information and the optimal behavior to employ
were challenging tasks. In terms of optimization, since the tool executes a sorting
operation before collapsing for efficiency reasons, if left untouched, a lot of compu-
tational time would have been wasted in case the input was a single collapsed file
from miRTrace. In fact, in this case, the tool only needed to convert the header
format so that any downstream alignment tool that already uses BioSeqZip can
extract the reads count. The use case of multiple input files needed to instead
perform the operations regardless. In any case, an input flag was also added, since
it is recommended that a user knows what type of input is being fed, however,
BioSeqZip can automatically detect the miRTrace .fasta header format, in which
case it will simply output a warning to inform the user, before proceeding with the
correct operation regardless.

Since, as previously stated, isomiR-SEA already had a mechanism to extract
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information from the header, its implementation was a bit more straightforward,
although it presented a couple of challenges of its own. The modifications of BioSe-
qZip allowed it to either reformat the individual input files, or collapse them into
a single one that can then be fed directly to isomiR-SEA. By allowing such be-
havior, any workflow that either already makes use of BioSeqZip, or wants to do
so in the future, can seamlessly interface with the data processed by miRTrace. If
instead a user wants to directly feed miRTrace’s output to isomiR-SEA, this recent
adaptation of the program allows them to do so.

3.7 GUI and database analysis

The aligned data acquired at the end of the entire pipelined process can be difficult
to analyzed if left in the simple textual format of the .tab , in Figure 3.4, or .gff
file, in Figure 3.5. To make it human-readable and, therefore, usable for any sort of
biological analysis, it was essential to convert it into a more user-friendly format.

TI TS TQ TC TSG TEG ORG MI MS AM IT IM CI AL SD IEX ISP IMS ISN I3P INS IOS ISS IPS ICS AIS AIO
1158265 AACUGAAGACAUUCUUGGCAAAUGCC ? 5440695 5448721 cel 2890 AAACUGAAGAGAUUUUUUACAG 7  AACUGAAG,
1167739 AACUGAUUUUUUAAUACUUUUAAACC ? 8393571 8393597 cel 3314 CCGAUUUUUCAAUAGUUUGAAAC 10 aaCYGAUU
2998225 ACCAAUUGGUGACCCAGGCAGGGAC ? 17369319 173689344 cel 3300 AAUUGAUGACUCAGGCAGGGACU 11
2998225 ACCAAUUGGUGACCCAGGCAGGGAC ? 16748705 16748730 cel 3298 AAUUGAUGACCCAGACAAGGACU 10
3024289 ACCAGGAAAUUAGAAGUCACGACCAC ? 4371881 4371907 cel 3150 CCUAGGAAAUGAGAAAACUCGGC 7  MCYAGGAA.

1

»

?

[ = NI

3866452 ACCCACUGCCUGUUGAUCACGAG ? 11446917 11446940 cel 3202 ACCUACUGCCUUCUGCUUAAAA 7  ACCY.
3872862 ACCCAUUGGUGACCCAGGCAGGGAC 1 17309319 17309344 cel 3300 AAUUGAUGACUCAGGCAGGGACU 18
3872862 ACCCAUUGGUGACCCAGGCAGGGAC 1 16740705 16740730 cel 3298 AAUUGAUGACCCAGACAAGGACU 9

Figure 3.4: Example of the .tab output format, seen via a VSCode extension that
colors each column. Only a small portion of the total columns can fit in a single
image.

chrv . isomiR 5448696 5448721 7 + . TI=1158265; TS=AACUGAAGACAUUCUUGGCAAAUGCC;TC=1;PIN=Cel-Mir-25
chrII . isomiR 8393572 8393597 10 + . TI=1167739; TS=AACUGAUUUUUUAAUACUUUUAAACC; TC=2;PIN=Cel-Mir-85
chrIV . isomiR 17389320 17309344 11 - . TI=2998225; TS=ACCAAUUGGUGACCCAGGCAGGGAC; TC=1;PIN=Cel
chrIV . isomiR 167408706 16740730 1e - . TI=2998225; TS=ACCAAUUGGUGACCCAGGCAGGGAC; TC=1;PIN=Cel
chrlI . isomiR 4371882 4371907 7 - . TI=3024289;TS=ACCAGGAAAUUAGAAGUCACGACCAC;TC=1;PIN=Cel-Mir-18
chrII . isomiR 11446918 11446948 7 - . TI=3066452; TS=ACCCACUGCCUGUUGAUCACGAG; TC=1;PIN=Cel-M
chrIv . isomiR 17389320 17309344 le - . TI=3072862; TS=ACCCAUUGGUGACCCAGGCAGGGAC; TC=1;PIN=Cel
chrlv . isomiR 167408706 16740730 9 - . TI=3872862; TS=ACCCAUUGGUGACCCAGGCAGGGAC; TC=1;PIN=Cel
chrl . isomiR 1738687 1738713 8 + . TI=3089127;TS=ACCCGCAAAUUAGAAGUCACGACCACC; TC=13;PIN=Cel-Mir-1

Figure 3.5: Example of the .gff output format, seen via a VSCode extension that
colors each column. A majority of information is compressed in the last column

3.7.1 Database construction

The first operation to perform was the creation of a comprehensive database that
envelops all the information needed for downstream analysis. This was achieved
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with the use of two python scripts (in the form of Jupyter notebooks) that make use
of the pandas dataframe library to extract each field from the .tab files generated as
output by isomiR-SEA. Those scripts were previously developed when isomiR-SEA
was updated to its newer version [6]. The first script is used to divide the reference
miRNAs into three categories: unique mapped, multiple mapped and discarded,
depending on the alignment score obtained by a read. The second one computes,
for the non-discarded miRNAs, several statistics useful for the isomiR expression.
A snippet of one of the resulting tables is shown in Figure 3.6. In its different tables,
the dataset contains a variety of information about both the original samples and
the analyzed sequences. Information about the miRs include, but are not limited
to: the species, the miR name, the chromosome of origin and relative genomic
coordinates, the precursor’s name and sequence and the mir family. The specifics
about the isomiRs contain fields relevant for the identification of the isoform, such as
the number of added or removed nucleotides at each end, the number of mismatches,
the number of mismatches in the seed specifically and more.

ORG TEXT MI INTEGER MII INTEGER PII INTEGER MS TEXT MIN TEXT MRF TEXT
hsa 71 8886 10029 UGAUUGUCCAAACGCAA..  Hsa-Mir-219-P2_5p chra
hsa 130 6718 9847 GUGCAUUGUAGUUGCAU..  Hsa-Mir-33-P3_5p chr22
hsa 138 5773 9780 UGGAAGACUAGUGAUUU..  Hsa-Mir-7-P1_5p chris
hsa 138 6118 9782 UGGAAGACUAGUGAUUU..  Hsa-Mir-7-P4_5p chri9
hsa 138 8842 9781 UGGAAGACUAGUGAUUU..  Hsa-Mir-7-P2_5p chra
hsa 150 4671 9790 UCUUUGGUUAUCUAGCY..  Hsa-Mir-9-P3_5p chrl
hsa 150 5775 9788 UCUUUGGUUAUCUAGCY..  Hsa-Mir-9-P1_5p chris
hsa 150 7829 9789 UCUUUGGUUAUCUAGCY..  Hsa-Mir-9-P2_5p chr5
hsa 189 5122 9765 CUGUACAGCCUCCUAGC..  Hsa-Let-7-Pld_3p* chril
hsa 190 6655 9767 CUGUACAACCUUCUAGC..  Hsa-Let-7-Plc_3p* chr21
hsa 193 9557 9770 CUAUACAGUCUACUGUC..  Hsa-Let-7-P2a3_3p* chrX
hsa 194 6737 9769 CUAUACAAUCUACUGUC..  Hsa-Let-7-P2a2_3p* chr22
hsa 194 8847 9768 CUAUACAAUCUACUGUC..  Hsa-Let-7-P2al_3p* chra

Figure 3.6: Example of the structure of one of the database’s tables. Only a portion
of the many available fields (columns) is visible

3.7.2 Interactive GUI in Grafana

The database was only the first step of the process. Although well re-organized, the
data could not yet be defined as easily readable: it needed some form of digestible
visualization for it to be able to provide some immediate information. Although
a simple static bar chart could have been the simplest and more straightforward
option, the actual use that could have come out of it would have been very limited,
therefore a tool that could interactively re-elaborate a graphical representation
of the data on-demand was needed. Thus, Grafana undoubtedly represented an
excellent yet simple enough choice as a tool for the downstream analysis of the
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data. Grafana [8] is an open source multi platform web application for analytics
and interactive visualization. Although often used for time series databases, it is a
general tool for the construction of flexible graphs and charts from data sources. It
has been used in combination with PostgreSQL [60] in order to generate the needed
graphs from the developed database.

It is common practice to run PostgreSQL and Grafana in a shared Docker net-
work. Although Docker isolates each service, they are both still able to communi-
cate through a virtual network. In this environment, Postgres acts as the database
management system, allowing Grafana to store both the database itself and the
dashboards obtained via SQL query.

By using a python script that extracts the tables from the database of choice,
saves them in a pandas dataframe, and uploads them to PostgreSQL via an estab-
lished connection, it was possible to make full use of the Grafana web interface to
analyze the provided data. The information could, at this point, be requested and
re-elaborated via SQL queries and applied to any of the available Grafana visual-
izations. To check the signature of isomiRs and their expression levels, the stacked
bar chart, seen in Figure 3.7, was the obvious choice. The read counts were first

isomiR signature

.
0 |‘|W‘“|| |N|||||N‘“|

o
w©

o
£}

1=}
~

o
EY

o
o

I
=

o
w

=3
[

=

6 4 4 4 04 '} 'ﬁ '} 4 4 ,’ 4\%4 6\% 4%4’4%4’4 4%\0 4\%4\0 '} 4 4 4‘ '}%‘F 4\.‘.@;6 6\%\, 4%‘? 4\%3\, “'s; 4%3 ')i.s{l 'ﬁ 2
(‘ 8 2, 2
‘+ d‘ d‘ 9o¢ o, o, ’?9/ 4)\ /,,) ss,), @7,1’ °"0+°o & e 6/;(,, %, (‘so % /% /% 'f'%% T2 0/ a/“so 9 Yy, J- % g,
o%%aoo 5, %, S e, % B Yoy P 5 T
T, Ty % q‘”f v e % 4 b, P Sy,
Y Cop o, Cop iy Y %% C % )
%, o, oy o,

== [so_exact == [s0_3p == iso_5p == is0_3p_5p == iso_snp
Vi

Figure 3.7: The expression level of human (hsa) isomiR for all available tissues.
The isoform count was normalized by Read Per Million. Hovering over a bar or
clicking it allows the user to see the exact RPM total for the selected isoform and
tissue.

39



Methods
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Figure 3.8: Expression level for Hsa-Let-7-P1b_3p* and Hsa-Mir-10-P2c¢_ 3p*
When multiple miRs are selected, Grafana allows a visual comparison between
the individual plots.

normalized as reads per million for each sample (SRA run), then divided between
isoforms and grouped by Tissue. This grouping was executed to mirror the covari-
ance models available on the MirGeneDB website. The Dashboard has been set up
to allow the user to select one or more species of their choice and do the same for
the available miRNAs. This allows for both inter-species isoform expression-level
comparison and intra-species, miRNA-specific, isoform expression-level comparison
as shown in Figure 3.8. In fact, when selecting different miRNAs, the first panel
shows the isomiR signatures for all the selected microRNAs in stacked bar chart
form, while successive rows show their expression levels for single miRNAs. Of
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course, this interface is flexible, and any user who wishes to analyze their own data
can do so by uploading their own database

3.7.3 Database access and plots generation

The following paragraphs give a brief description of the steps required to access the
database and build the table required for the bar chart visualizations presented in
section 3.7.2. These steps can be used as reference for users that whish to exploit
the flexibility offered by Grafana’s visualizations and powerful SQL access engine,
allowing the creation of customized queries and views, for specific data sources and
analysis goal.

Identification of all tissues

All tissues for the selected organism are recovered, and are used to generate bar
placeholders for the bar chart plot. This ensures the bar chart shows has all tissues
entries, even if no isomiR counts exist for a particular combination of tissue and
miR. The query is shown in code 3.1.

Listing 3.1: Collect all tissues for the selected Organisms

1 WITH all_tissues AS (

2 SELECT DISTINCT

3 mir."ORG" AS org,

4 sample."tissue"

> FROM "Sample" sample

6 JOIN "Sample_MII_iso_inter" isomir

7 ON sample.'"sample_isea_db_id" = isomir."sample_isea_db_id"
8 JOIN "Sample_MII" mir

9 ON isomir."MII" = mir."MII"

10 WHERE mir."ORG" = ANY(ARRAY [$org]::varchar([])

Total counts per sample

For each sample, the total count of isomiRs is computed. This value is used as
denominator when calculating the reads per million values. The query is shown in
code 3.2.

Listing 3.2: Calculate total counts per sample

per_sample AS (

SELECT
sample."tissue",

1
2
3 sample."sample_isea_db_id",
1
5

mir."ORG" AS org,
6
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7 SUM(isomir."TC (Sum)") AS sample_total

9 FROM "Sample_MII_iso_inter" AS isomir

10 JOIN "Sample" AS sample ON isomir."sample_isea_db_id" =
sample."sample_isea_db_id"

11 JOIN "Sample_ MII" AS mir ON isomir."MII" = mir."MII"

12 GROUP BY sample.'"sample_isea_db_id", sample."tissue", mir."ORG"

isomiR counts per sample

For each sample, the counts for each type of isomiR (exact, 3p, 5p, 3p-5p, snp) are
calculated. The query is shown in code 3.3

Listing 3.3: Counts for each isomiR type

per_sample_iso AS (

SELECT
sample."tissue",

1
2
3 sample."sample_isea_db_id",
4
5

mir."ORG" AS org,
6
7 SUM(CASE WHEN isomir."IEX" = ’T’ THEN isomir."TC (Sum)" ELSE O END) AS
iso_exact,

8 SUM(CASE WHEN isomir."I3P" != O AND isomir."I5P" = O THEN isomir."TC
(Sum)" ELSE O END) AS iso_3p,

9 SUM(CASE WHEN isomir."I3P" = O AND isomir."I5P" != O THEN isomir."TC
(Sum)" ELSE O END) AS iso_bp,

10 SUM(CASE WHEN isomir."I3P" != 0 AND isomir."I5P" != O THEN isomir."TC
(Sum)" ELSE 0 END) AS iso_3p_5p,

11 SUM(CASE WHEN isomir."IMS" = T’ OR isomir."ISN" = ’T’ THEN isomir."TC
(Sum)" ELSE O END) AS iso_snp

12

13 FROM "Sample_MII_iso_inter" AS isomir

14 JOIN "Sample" AS sample ON isomir.'"sample_isea_db_id" =

sample."sample_isea_db_id"

15 JOIN "Sample_MII" AS mir ON isomir."MII" = mir."MII"

16

17 WHERE mir."MIN" = ANY(ARRAY[$mir]::varchar[])

18 AND mir."ORG" = ANY(ARRAY [$org]::varchar[])

19

20 GROUP BY sample.'"sample_isea_db_id", sample."tissue", mir."ORG"

21 ),

Reads per million

The isomiR counts per sample are converted into reads per million, using the pre-
viously calculated values. The query is shown in code 3.4
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1
2
3
4
5

1
2

Listing 3.4: Calculate Reads per million
per_sample_rpm AS (
SELECT
i.org,
i.tissue,
i."sample_isea_db_id",

(i.iso_exact / NULLIF(t.sample_total,0)) * le6 AS iso_exact,
(i.iso_3p / NULLIF(t.sample_total,0)) * le6 AS iso_3p,
(i.iso_bp / NULLIF(t.sample_total,0)) * le6 AS iso_5p,
(i.iso_3p_bp / NULLIF(t.sample_total,0)) * 1le6 AS iso_3p_5p,
(i.iso_snp / NULLIF(t.sample_total,0)) * le6 AS iso_snp

FROM per_sample_iso i
JOIN per_sample t ON i."sample_isea_db_id" = t."sample_isea_db_id"
),

isomiR levels at each tissue

The reads per million values calculated for each sample belonging to the same tissue
are aggregated, to obtain the isomiR expression levels, divided by type, at tissue
level. The query is shown in code 3.5

Listing 3.5: Calculate isomiR levels at tissue level

tissue_rpm AS (

SELECT
org,
tissue,
SUM(iso_exact) AS iso_exact,
SUM(iso_3p) AS iso_3p,
SUM(iso_5p) AS iso_b5p,
SUM(iso_3p_5p) AS iso_3p_bp,
SUM(iso_snp) AS iso_snp

FROM per_sample_rpm

GROUP BY org, tissue

Data preparation for Grafana

Finally, all the identified tissues and the reads per million values calculated for
each isomiR type at tissue level are merged into a single table to be consumed by
Grafana and produce the bar chart plot.

Listing 3.6: Grafana data preparation
SELECT

at.org || ’_° || at.tissue AS tissue,
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COALESCE(tr

COALESCE (tr

.iso_exact, 0) AS iso_exact,
COALESCE (tr.
.iso_5p, 0) AS iso_5p,
COALESCE (tr.
COALESCE(tr.

iso_3p, 0) AS iso_3p,

iso_3p_5p, 0) AS iso_3p_b5p,
iso_snp, 0) AS iso_snp

FROM all_tissues at
LEFT JOIN tissue_rpm tr

ON tr.org = at.org

AND tr.tissue = at.tissue
ORDER BY at.org, at.tissue;
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Results

In this chapter, the results obtained during this analysis, as well as some obser-
vations, get shown. The first section compares the speed performance, RAM us-
age and other aspects of isomiR-SEA against that of some state-of-the-art tools,
miRGe3.0, isomiRMap, and sSRNABench from sRNAToolbox, showing that
isomiR-SEA is the preferred choice for overall computational efficiency.

The second section exploits the accuracy of iSEA-TB’s analysis to develop a
database of isomiR expression levels between seven different species, analyzing the
same accessions that MirGeneDB used for the development of their database. These
results are the ones used with Grafana to develop human-readable interactive bar
charts. They can be used for future comparative analysis between different species
and inter-specie tissues.

The last section tests the ability of the pipeline to process a large and mean-
ingful dataset of human reads. The main focus of this last analysis is the overall
performance of the iSEA-TB pipeline as a whole.

4.1 Tools comparison

The performance of isomiR-SEA was compared against state of the art tools such as
miRge3.0, isoMiRmap and SRNAtoolbox’s SRNAbench. Table 4.1 shows a compact
comparison between tools where the speed was calculated relatively to sSRNAbench.
The comparison was executed using one of MirGeneDB’s species reads, specifically
Human, since it was sizeable enough to make any difference between tools noticeable

enough. The analysis was performed on an 8-core virtual machine, provided with
16GB of RAM.

4.1.1 miRge3.0

miRge [61] is a python-based alignment tool was chosen because of its recency, with
its third version being published in 2021, and because of the emphasis put into its
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Name Execution time Relative speed Collapsing
iSEA 5m 53s 208% collapsed input
iSEA+BioSZ 9m 24s 130% executes collapsing
miRge3.0 11m 5s 111% executes collapsing
IsoMiRmap 11m 46s 104%  uncollapsed input
sRNAbench 12m 15s 100%  uncollapsed input

Table 4.1: Comparison of alignment tools. For each tool, it has been specified
wether their input was uncollapsed, collapsed or if the collapsing was performed
at execution time. All speed performance was evaluated using sRNAbench as the
base. iSEA was the best performer in all categories.

performance inside the paper that presented it. When upgraded to this version, the
tool got turned from a simple alignment algorithm, to a full pipeline, which made
it a closer competitor for iSEA-TB.

Caveats:

The first noticeable difference between the miRge3.0 pipeline and iSEA-TB resides
in its flexibility. For example, while the latter can run independent sections, the
former needs to run its own preprocessing step at least once. Although it can
later run the alignment step independently with different parameters, this can only
happen on data generated (and explicitly saved) by miRge itself in binary format,
meaning that any curated file separated from the pipeline cannot be aligned with
this tool. In fact, miRge does not allow any input to be in simple .fasta format.
For this comparative analysis, this caveat meant that the input data going into
the alignment part of the two competing pipelines was bound to be different, since
the quality control and trimming procedures were performed in a different manner.
Another flexibility issue comes from the necessity of explicitly providing an adapter
argument to the tool in order to perform trimming (ie. —a illumina). This means
that, although the execution of this step is faster in miRge, because only one kind
of adapter gets searched, the tool has no form automation for the detection of
different adapters in different samples, making its procedure more rigid.

Another problem that this pipeline seems to present comes from its use of RAM
when inputting multiple input files. Since it seems like any calculation performed
during the preprocess step is kept in memory, the more input data that the tool
receives, the more RAM will progressively be used. The memory usage peaks
during the collapsing procedure and, although it drops back to a more reasonable
amount at the end, in later stages when a good portion of it is already occupied
by the analysis of previous input files, the tool will saturate the RAM, leading to
the operating system to kill the running process. Because of this, the 81 input
files from the chosen database had to be separated into 4 different batches, which
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seemed to be the allowed minimum of data.

Speed:

Since this pipeline performs, among the other steps, its own collapsing, the execution-
time report is based on already collapsed data. Thus, to even out the ground, the
computational comparison against isomiR-SEA will be made against files already
collapsed by BioSeqZip. While miRge’s alignment step was resolved after a total
of 11 minutes and 5 seconds, isomiR-SEA managed to complete its full analysis in
just 5 minutes 53 seconds, resulting in about a 88% increase in performance from
isomiR-SEA for a 47% time-save.

4.1.2 IsoMiRmap

Published in 2021, IsoMiRmap [62] is another python-based alignment algorithm
that was presented as a fast, reliable tool for isomiR detection and characterization.
Its speed was reported to be of “10 million sequenced reads in under 55 seconds”,
with time scaling linearly with input size. Once again, both recency and statements
about the speed were a deciding factor for this competitor.

Caveats:

The first inconvenience to take note of is that there seems to be no way to provide
multiple input files for a single run. The program expects only a single input file,
meaning that when working with bigger datasets, composed of multiple samples,
the analysis can get tedious. During this study, this problem was solved via the use
of a script that launched the execution command multiple times, once for each input
file. However, this behavior means that the program has to re-read the reference
files to perform alignment each time the execution starts, adding static processing
time and hindering the execution performance for larger amounts of files.

Another problem comes from the need for the program to use a reference isomiR
file. This means that the tool can only report isoforms that are present in the
reference file. Furthermore, although the GitHub repository comes with a few pre-
computed mapping bundles containing reference data for the homo sapiens species,
the reference databases used only come from miRBase and miRCarta (another pub-
lic database), with the implications about potential unreliability of non-manually
curated databases that were discussed in previous sections.

Lastly, the naming scheme used for isomiRs is very simplistic. Although the
output reports some information about the analyzed sequence, the name itself does
not provide any info about the canonical counterpart, making it more difficult to
identify.

Speed:
At the end of the execution loop, the script reported the total execution time:
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11 min 46 seconds. This puts this tool at about the same level of performance
with miRge3.0, meaning that, in terms of alignment, the difference between it and
isomiR-SEA is about the same, with the latter, of course, being the top performer.
This, however, does not account for the fact that the input provided to IsoMiRmap
was not composed of collapsed reads. For the sake of fairness, the execution time
of 3 minutes 31 seconds of BioSeqZip will also be added to isomiR-SEA’s, reaching
a total of 9 minutes 24 seconds, making isomiR-SEA about 25% faster, with a
time save of around 20%. In this case, it is important to note that the execution
of BioSeqZip brings more noticeable benefits with respect to the size of the input
dataset, like in the case of the human miROme dataset.

4.1.3 sRNAbench

First Published in 2014, java developed sRNAbench is the longest living tool in
this list. Despite its age, it received multiple updates over the course of the year,
becoming the starting point for the development of the famous sRNAtoolbox in
2015 of which the latest update came in 2022 [63]. Over the course of the updates,
the tool has been improved and refined, and the entirety of the toolbox that was
built around it has become the go-to tool for miRNA analysis. Naturally, this
makes sRNAbench a prime candidate for the comparison with isomiR-SEA.

Caveats:

sRNAtoolbox and the tools provided within can be run either online, as a standalone
version, or inside a pre-built Docker container. For the sake of a fair comparison,
sRNAbench was run from inside this last option, in order to provide it with the
same hardware capabilities. Once again, the tool by itself does not allow multiple
input files, so it had to be run using a bash script that also calculated its execution
time, which seems to not be given by default.

Speed:

The reported execution time at the end of the bash script was of 12 minutes 15
seconds, which is the slowest in this list of competitors by just a few seconds. This is
to be expected, as over the years, sSRNAbench has expanded its functionality to also
perform trimming and quality control. Although no parameters have been provided,
this part of the workflow has probably made a small impact on its performance.
Once again, since uncollapsed files were given as input, its performance is evaluated
against that of both BioSeqZip and isomiR-SEA, which amounts to 9 minutes 24
seconds. This means that this couple is faster by about 30.3%, bringing a total
time save of 23.3%. The same observations about the dataset size in regards to the
use of BioSeqZip apply here.
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4.2 MirGeneDB dataset

The dataset of raw reads used for the development of MirGeneDB3.0 represented
a meaningful dataset to perform an isomiR analysis. In fact, the obtained data
can be used to deepen our knowledge regarding isomiRs, their expression levels in
different species and tissues, and potentially inspire future uses based on them.

Wherever a miRNA was absent for a tissue in MirGeneDB, it was also either
absent or solely represented as an isomiR in this analysis, meaning that the results
tend to be mostly free of false positives, as can be seen in Figure 4.1. However, com-
paring some of the obtained results against the reports found on the MirGeneDB
website, lowly expressed canonical miRNAs sometimes did not get detected by this
analysis. This result may depend on the quality control being too strict or perhaps
on the trimming performed with too much flexibility, both resulting in the deletion
of potential sequences.

Tissue expression - .
MirGeneDBID 4 MiRBaselD  Family Seed Dc Dc Dr Dr Xp Xp Bl Br Br Ce Ce Co Fo He Ki Le Li Li Lu Pa Pl PI Sk Sk Sk Sm Sp Sp St Te Th Ut
Hsa-Let-7-P1b hsa-let-7e LET-7 GAGGUAG
Hsa-Let-7-P1c hsa-let-7c LET-7 GAGGUAG

Hsa-Mir-1-P1 hsa-mir-1-2 MIR-1 GGAAUGU

(A) Compressed version of the MirGeneDB browsable table. The black squares represent
absence of mir in the tissue, as can be see in the last row with Hsa-mir-1-P1.
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(B) Visualization of the Hsa-mir-1-P1 3p in Grafana. Here the empty bars are on the
same tissues with respect to the MirGeneDB website.

Figure 4.1: Comparison between MirGeneDB and Grafana visualization for Hsa-
mir-1.
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The isomiR expression levels visualized via the Grafana stacked bar chart are
within expectations, with the majority of the reported forms either being the exact
canonical microRNA or the 3p isoform, as can be seen in Figure 4.2. In fact,
literature on the topic has always reported that the 3p isoform is the most common
among the possible isomiRs, sometimes overgrowing the canonical counterpart’s
expression level. It is important to note that, by nature, these isoforms are also the
most likely to be false positives and that a manual procedure must be performed
by an expert in the field in order to prove which ones can be considered bona-fide.
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Figure 4.2: Visualization of isomiR expression levels for mmu.

Lastly, the performance of the iSEA-TB pipeline was more than satisfactory.
The human dataset, being the bigger among the 7 species with 81 input files, took
1 hour 22 minutes 28 seconds for the entire preprocessing, while the collapsing
and alignment procedure took 10 minutes and 27 seconds, accounting also for the
pipeline initialization and conclusion steps, for a total of 1 hour 32 minutes and 49
seconds. We want to bring attention to the fact that the preprocessing procedure
takes longer than a user might expect, because of the extra steps performed by
different tools in order to ensure the correctness of this procedures. As explained in
previous sections, those tools do not uniquely perform the steps that they are used
for in iSEA-TB, but are accurate nonetheless, therefore their execution requires
some extra time in exchange for reliability.
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4.3 Human miROme dataset

The raw reads used to sequence the human miROme [49] are both abundant enough
to form a dataset of impressive size and are meaningful enough to be studied. Even
when compressed in .fastq.gz format, the raw reads occupy a massive amount of
storage space, reaching about 757 GB, more than some current-day laptops are
capable of storing.

The use of the obtained 2398 accessions allowed us to achieve an accurate analy-
sis of the performance of both the entire pipeline and of the BioSeqZip and isomiR-
SEA pair. For convenience reasons, the preprocessing step and the alignment step
were executed separately. The preprocessing step was the most time-consuming,
needing a total of 1 day 21 hours 57 minutes, and 7 seconds to be completed.

4.3.1 Preprocessing

The Nextflow execution reports helped with the analysis of the resources used, as
see in Figures 4.3, 4.4, 4.5, showing that the tool requiring the most CPU power
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Figure 4.3: Nextflow execution report’s CPU Resource graph. For each tool, the
filled-in box represents the average CPU consumption, while the top and bottom
lines represent the maximum and minimum CPU usage, which represent outliers
or extreme cases, depending on the distance from the box. On average, Cutadapt
requires the most amount of computational power among all the tools, with fastp
coming to a close second place for larger files.
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Physical Memory Usage
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Figure 4.4: Nextflow execution report’s RAM Resource graph. For each tool, the
filled-in box represents the average RAM consumption, while the top and bottom
lines represent the maximum and minimum RAM usage, which represent outliers
or extreme cases, depending on the distance from the box. The RAM requirements
tend to be very contained, where even bigger-sized outliers require less than 2 GB
of RAM. Here is noticeable how, although miRTrace tends to be very efficient with
average sized input, it can start requiring more RAM with larger input files (top
bar). However, the total memory usage remains contained under 4GB.

was Cutadapt by a large margin. This is to be expected because the file containing
the possible adapters provided to this module contains a multitude of sequences,
a challenge that Cutadapt tackles by exploiting multi-threading. For larger files,
Fastp can also require a greater amount of CPU to perform its analysis, while the
other tools remain within acceptable ranges.

In terms of RAM, none of the tools have particularly high needs, with all of
them requiring less than 2GB of memory. The only outlier is mirTRace that, when
dealing with particularly sizeable files, tends to require more physical memory.
However, even in those more extreme cases, the total need of RAM remains under
4GB, which means that, provided with enough storage space, even low-end devices
can comfortably perform this kind of analysis.

Regarding execution time, all tools are efficient enough to require, on average,
less than 2 minutes to analyze a single sample. Of course, as can be seen, when
input files are of greater size, the execution may require longer than 6 minutes, with
Cutadapt needing over 10 minutes for the largest file provided in this set. Since
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Task execution real-time
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Figure 4.5: Nextflow execution report’s Job Duration Resource graph. Although
the execution has a low average and an even lower median, larger files may require
a more noticeable amount of time to be analyzed.

both SRA-info and Infer-PHRED are, at their core, simple Python scripts that
perform a straight forward job, they are the ones that require the least amount of
time to be executed, independently of the input files.

4.3.2 Alignment

After the whole preprocessing was completed, we executed the alignment procedure.
Unfortunately, at test time, a bug within the current version of BioSeqZip was
discovered that made the program crash at the end of the collapsing procedure when
too many files were given, independently of RAM saturation. To work around this
current issue, the obtained curated reads were given to the program in batches of 49
files willingly unbalanced in size to retain variability. Once again, Nextflow provided
the graphical representations of the tool’s performances used for this analysis, as
can be seen in Figures 4.6, 4.7, 4.8. As for CPU usage, it is within expectation
that isomiR-SEA made use of a good portion of the available CPU, since it exploits
concurrent execution. In terms of RAM, both isomiR-SEA and BioSeZip remained
within low memory usage across the majority of the batches, with a few outliers
exceeding 10GB whilst still remaining well below the provided amount. Finally in
terms of time, only the biggest among batches took over 8 minutes for BioSeqZip
and over 10 minutes for isomiR-Sea. The majority stayed within ranges of 2 to 4

53



Results

minutes for BioSeqZip and 2 to 6 minutes for isomiR-SEA, which are incredibly
good times given the sizes of the batches. The total execution time, including
pipeline specific procedures, was of 5 hours 44 minutes 30 seconds. It is important
to note that if BioSeqZip were able to collapse the entirety of the dataset, the entire
process would have taken much less time as, with the used method, isomiR-SEA
was forced to elaborate redundant reads multiple times.
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Figure 4.6: Nextflow execution report’s CPU Resource graph. For each tool, the
filled-in box represents the average CPU consumption, while the top and bottom
lines represent the maximum and minimum CPU usage, which represent outliers
or extreme cases, depending on the distance from the box.
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Figure 4.7: Nextflow execution report’s RAM Resource graph. For each tool, the
filled-in box represents the average RAM consumption, while the top and bottom
lines represent the maximum and minimum RAM usage, which represent outliers
or extreme cases, depending on the distance from the box.
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Figure 4.8: Nextflow execution report’s Job Duration Resource graph.
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Chapter 5

Conclusion

Although over the last decades much progress has been made, microRNAs and
especially isomiRs still remain a complicated subject to study. There are many in-
tricacies to consider, especially when dealing with the preprocessing of raw miRNA
reads and adapter trimming, and different studies apply different methods to deal
with them. When trying to analyze this kind of data, pipelines represent a solid
solution in terms of consistency and reproducibility. With a properly refined work-
flow, a pipeline can precisely deal with a variety of data, ensuring consistency in
the obtained results. Another problem that this type of research faces comes from
computational resources. When faced with multiple large input files, some devices
either struggle to keep low RAM usage or simply do not give the option for multi-
ple inputs. Many tools also struggle with completing their entire execution within
acceptable times. Finally, another challenge comes from the readability of obtained
results. In fact, when analyzing large amounts of processed data, it is crucial to
ease the process of making it as human-readable as possible. Visualization thus
represents a crucial factor in downstream analysis, and when trying to promote
further studies.

This thesis presented a solution to overcome the aforementioned challenges by
implementing a Nextflow pipeline using isomiR-SEA for alignment, and by provid-
ing an user-friendly dashboard for downstream analysis. The work can be extended
in several directions: more data can be analyzed, particularly the full metazoan tree
from MirGeneDB; the obtained isomiR expression levels can be integrated directly
into the MirGeneDB website to aid the relevant studies, after checking all the dis-
crepancies between the obtained results and what is currently published; lastly the
process of elaborating the database and generating the Grafana bar charts can be
integrated within the developed pipeline.

In its current state, the iSEA-TB pipeline is a fast, accurate and reliable pipeline,
capable of both analyzing massive datasets and produce meaningful results. The
pipeline is centered around isomiR-SEA, which is a particularly fast tool for the
analysis of miRNA reads. isomiR-SEA relies on the identification and alignment
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of the seed region, which is especially important for the miRNA:mRNA interaction
sites. Great care was taken to ensure that the preprocessing was robust, to the
point of using complex tools to extract the relevant information for the downstream
tools. Of particular interest were the use of FastQC for correct PHRED offset
identification and fastp to ensure that the correct adapter was provided to Cutadapt
to perform 3’ adapter trimming. The database developed with the obtained results
allowed the generation of very intuitive and interactive Grafana bar charts that
are user-friendly and human-readable. The dashboard is flexible enough to allow
different configurations and can be provided with a user’s own database to perform
their own analysis.

This thesis’ work will help future research in microRNAs and isomiRs expression
levels, which has great potential for growth and discovery. Both medical studies
revolving around the use of microRNAs as biomarkers for medical purposes, as
well as phylogenetic studies are sure to benefit from this work by broadening their
research to include isomiRs expression levels.
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