

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Informatica

Sviluppo di un sistema NFT su Ethereum

Tesi di Laurea Magistrale

Relatori Candidato

Prof. Danilo Bazzanella Lorenzo Marzolla

Anno Accademico 2025-2026

3

Indice

Introduzione 5

1. Young Platform 6

2. Blockchain 8

2.1 Cos’è la Blockchain? ...8

2.2 Peer - to - Peer ...8

 2.3 Caratteristiche Fondamentali ..9

2.4 Tipologie di blockchain ..10

2.5 L’anello della blockchain ..10

2.6 Funzioni di hashing ...11

2.7 Merkle Root ..12

2.8 Meccanismo di consenso ..13

2.9 Applicazioni reali ..14

2.10 Vantaggi e limiti ...15

3. Bitcoin 16

3.1 Tappe fondamentali ..16

3.2 Funzionamento di bitcoin ...17

 3.3 La visione di “Internet del denaro” ...17

 4. Ethereum 18

 4.1 Funzionamento ..18

 4.2 Come avviene la validazione ...19

 4.3 Blocco di Ethereum ...20

 4.4 Storia di Ethereum ...22

 4.5 Web 3.0 ...23

 4.6 DAO ..25

 4.7 Attacco a “The DAO” ...25

 4.8 Smart Contract e DApp ...26

 4.9 Layer 2 ...27

 4.10 Protocollo ERC – 20 ..29

4

 5. Non Fungible Token 30

 5.1 Protocollo ERC – 721 ..30

 5.2 Differenza con ERC – 20 ..31

 5.3 Protocollo ERC – 1155 ..31

 5.4 Applicazioni pratiche degli NFT ...32

 5.5 Problematiche degli NFT ..33

 5.6 Risvolti legali NFT ..35

 5.7 Sviluppo del proof of concept ...35

 6. Firma Digitale 37

 6.1 Crittografia ..37

 6.2 Certificati digitali ..40

 6.3 Applicazioni della firma nel caso di NFT ...41

 6.4 Wallet ..41

 7. Persistenza degli NFT 43

 7.1 IPFS ...43

 7.1.1 Caratteristiche dell’ IPFS ..44

 7.1.2 Funzionamento ..44

 7.2 Filecoin ..46

 7.2.1 Funzionamento ...47

 8. Polkadot 51

 9. Sviluppo effettivo 52

 9.1 Informazioni per una corretta lettura del codice ..52

 9.2 Codice ..53

 9.3 Analisi codice ..57

 9.3.1 Creazione NFT e firma in caso di opera fisica ..60

 9.3.2 Possibilità di passaggio crosschain ..62

 9.4 Possibili problemi e modifiche ..63

 Conclusioni 65

 Bibliografia 67

5

Introduzione

La presente dissertazione analizza un caso di studio relativo alla creazione di un

marketplace di NFT sulla blockchain Ethereum. L’obiettivo di proporre una possibile

soluzione di implementazione di smart contract per la gestione di asset digitali unici,

superando alcune problematiche che presenta questo settore. Il progetto nasce anche da

una collaborazione con l’azienda Young Platform, una delle principali realtà italiane

operanti nel settore della compravendita di criptovalute.

Nella prima parte viene introdotto il concetto di blockchain, descrivendone l’evoluzione

storica, le principali caratteristiche e i meccanismi di consenso che garantiscono le

caratteristiche fondamentali di sicurezza e trasparenza. Successivamente, l’attenzione si

concentra su Ethereum, sulla sua filosofia di computer decentralizzato e sul suo

funzionamento tecnico. In particolare, vengono approfonditi i meccanismi di consenso

e i protocolli per la gestione dei token fungibili e non fungibili, evidenziandone le

differenze.

La trattazione prende anche in analisi la possibilità di rappresentare opere fisiche

attraverso NFT, integrando l’utilizzo di firme digitali qualificate off-chain per attribuire

valore legale e autenticità all’opera rappresentata. In questa sezione viene quindi

introdotto anche il concetto di Certification Authority e che ruolo ha nel fornire le chiavi

per la firma digitale.

Un ulteriore aspetto affrontato riguarda la conservazione dei dati associati agli NFT,

tema cruciale per la loro persistenza e verificabilità nel tempo. In questa prospettiva

vengono esaminate soluzioni basate su database distribuiti, come IPFS e Filecoin,

approfondendone il funzionamento tecnico e le modalità con cui possono garantire

un’archiviazione decentralizzata e resistente alla censura. Viene poi esplorata la

possibilità di trasferire NFT tra diverse blockchain, introducendo i concetti di

interoperabilità e cross-chain communication anche attraverso una breve analisi delle

architetture Polkadot e Moonbeam.

Infine si propone un esempio di smart-contract che implementi le funzionalità descritte

sopra, analizzando possibili criticità e relative soluzioni.

6

1. Young Platform

L’idea nasce nel 2017 da un gruppo di sei studenti di

informatica dell’Università di Torino (Andrea Ferrero,

Alexandru Stefan Gheban, Samuele Raimondo, Andrea

Carollo, Marco Ciarmoli e Daniele Rinaldi) con l’obbiettivo di

creare una piattaforma per vendere criptovalute in modo più

semplice e sicuro. La start-up vera e propria viene fondata nel

2018 e ha presto successo con i primi investitori: in breve tempo

riesce a raccogliere oltre €1M anche tramite campagne di crowdfunding e viene incubato

presso l’I3P del Politecnico di Torino. Nel 2019 avviene il lancio dell’app marketplace.

L’idea alla base del progetto non era soltanto quella di realizzare una piattaforma sicura

e facilmente fruibile per il commercio di criptovalute, ma anche di avvicinare gli utenti

alla tecnologia della blockchain e ai diversi componenti che da essa possono essere

sviluppati, nonché al tema degli investimenti.

In tal modo si è inteso rendere l’argomento accessibile anche ai meno esperti,

consentendo loro di effettuare scelte più consapevoli e ponderate.

Tale obiettivo si collega anche al contesto nazionale, caratterizzato in Italia da una

diffusa carenza di educazione finanziaria, che rende particolarmente importante

promuovere strumenti e iniziative in grado di colmare questo divario.

Stando a dati aggiornati, “l'Italia è in piena emergenza educazione finanziaria. Solo poco

più di 1 italiano su 10 (16,6%) ha competenze finanziarie minime accettabili,

posizionando l'Italia al 36° posto su 39 Paesi di tutto il mondo.” (Teleborsa, 2025)

Insieme alla piattaforma, quindi, viene lanciato il token Young, un utility token ERC-

20 basato su Ethereum. Il token viene utilizzato come meccanismo di ricompensa per

specifiche azioni compiute dagli utenti all’interno dell’applicazione.

In una prima fase, esso veniva assegnato come premio al raggiungimento di determinati

obiettivi legati al numero di “passi effettuati”. Successivamente, sono stati introdotti una

serie di quiz dedicati alla tematica della blockchain, con particolare attenzione alle sue

applicazioni in ambito finanziario, riprendendo così uno dei principi fondamentali della

filosofia di Young Platform, ossia la diffusione della conoscenza e della consapevolezza

in campo cripto-finanziario.

I token “Young” risultano inoltre spendibili all’interno dell’applicazione in diversi

modi, incentivando ulteriormente la partecipazione e l’interesse degli utenti.

Il token così assume una doppia valenza: aumenta la fidelizzazione degli utenti, che

possono spendere gli Young per ottenere vantaggi in app, ma continua a mantenere la

sua utilità originaria, ovvero di educazione finanziaria in generale e più nello specifico

alla tecnologia blockchain sempre in modo semplice e comprensibile.

L’applicazione ha subito numerosi aggiornamenti nel corso degli anni, che hanno

comportato l’introduzione di nuove funzionalità, tra cui un ranking di livelli disponibile

7

in fase di iscrizione, ciascuno dei quali associato a specifici vantaggi per l’utente.

Negli ultimi anni si è posizionata come uno dei principali exchange italiani.

Di seguito sono riportati alcuni punti di svolta della storia aziendale:

• 28 giugno 2021: Series A da €3.5M guidata da United Ventures

• Gennaio 2022: Acquisizione / acqui-hiring di Arithmos Trading Ltd

• 4 Gennaio 2023: ottiene la registrazione come PSAN/DASP presso l’Autorité

des Marchés Financiers. Questo ha permesso l’operatività regolamentata in

Francia

• 13 Giugno 2022: Round Azimut – importante crescita

• 4 Gennaio 2023: Espansione regolatoria: registrazione/licenza in Francia.

Young Platform ottiene la registrazione come PSAN/DASP presso l’AMF

(Autorité des Marchés Financiers). Questo ha permesso l’operatività

regolamentata in Francia.

8

2. Blockchain

2.1 Cos’è la Blockchain?

Negli anni ’90 iniziarono a emergere studi e progetti dedicati allo sviluppo di soluzioni

decentralizzate per la creazione di valute digitali concepite per operare senza

l’intervento di alcuna autorità di controllo o organismo di regolamentazione. Le prime

opere teoriche relative a un sistema basato su blockchain e sull’utilizzo della crittografia

risalgono al 1991 e si evolsero progressivamente fino al 1998, anno in cui Wei Dai

propose una soluzione decentralizzata per una valuta digitale interamente fondata sulla

crittografia a chiave pubblica.

Ma la sua prima applicazione pratica viene descritta nell’ Ottobre del 2008 con il paper

di Satoshi Nakamoto “Bitcoin: a peer-to-peer electronic cash system”, in cui viene

introdotta l’idea di Bitcoin. Nakamoto intendeva creare un sistema di pagamento peer-

to-peer slegato dal controllo di terze parti (banche o enti statali), eliminando la necessità

di intermediari, abbassando i costi di transazione e garantendo la privacy degli utenti.

Per fare questo è necessario un registro distribuito pubblico e immutabile che tenga

conto di tutte le transazioni effettuate nel sistema: la blockchain, appunto. Partendo da

questo concetto, la tecnologia blockchain è stata successivamente reinterpretata, adattata

a diversi contesti e applicata a una vasta gamma di settori.

In generale una blockchain può essere definita come un database distribuito su più nodi,

che memorizza le transazioni in blocchi concatenati tra loro in ordine cronologico,

formando una catena in cui ogni nuovo blocco è collegato al precedente, proprio come

gli anelli di una catena.

2.2 Peer-to-Peer

Per poter parlare del funzionamento della blockchain è fondamentale introdurre

l’architettura di rete su cui questa si basa: il peer to peer. Questo modello si contrappone

al modello di comunicazione Client-Server dove le informazioni sono centralizzate sui

nodi server e i client devono comunicare con questo per recuperarle.

Nel modello peer to peer invece, la rete di comunicazione è formata da diversi nodi (i

cosiddetti “peer”) che si comportano alternativamente da server e da client. Non si hanno

più comunicazioni dirette tra un server e tutti i client ma una rete di connessioni tra i

vari peer. Ogni nodo ha gli stessi permessi e lo stesso livello gerarchico rispetto agli altri

nodi della rete.

9

In assenza di server centralizzati, i nodi della rete devono coordinarsi tra loro per

identificare gli altri nodi e determinare la collocazione delle informazioni. A tal fine,

vengono impiegate due principali procedure:

• discovery: necessaria per conoscere gli altri nodi della rete

• lookup: usata per conoscere i contenuti dei nodi

Queste operazioni vengono gestite diversamente a seconda di come il sistema peer to

peer è organizzato:

• Peer-to-peer puro: ogni nodo si occupa singolarmente di scoprire i nodi della

rete, il loro contenuto e comunicare le proprie informazioni.

• P2P con Discovery server: è presente un server nella rete (o più, a seconda della

dimensione) che si occupa di far conoscere tutti i peer della rete. Rimane però

sempre a carico dei singoli peer la ricerca delle risorse nei vari nodi.

• P2P con Discovery e LookUp server: in questo caso il server, oltre a dare le

informazioni sui nodi, trasmette anche la lista dei loro contenuti.

2.3 Caratteristiche fondamentali

Esistono differenti tipologie di blockchain, ciascuna con utilizzi diversi;

tuttavia, è possibile individuare alcune caratteristiche comuni a tutti i sistemi.

a. Decentralizzazione: tutte le informazioni e i dati sono distribuiti su ogni nodo

della rete. In questo modo si evitano manipolazioni da un’organizzazione

centrale, i nodi hanno accesso a tutti i dati nella blockchain che vengono

trasmessi tramite peer to peer.

b. Trasparenza: essendo i dati distribuiti e tutte le transazioni registrate,

chiunque può vedere lo storico delle operazioni. A ciascun nodo viene inoltre

assegnato uno pseudonimo alfanumerico, di oltre trenta caratteri, che

consente l’autenticazione pur garantendo l’anonimato.

10

c. Immutabilità: una volta che un blocco viene inserito sulla catena non è più

possibile rimuoverlo o modificarlo.

d. Sicurezza: la sicurezza sulle blockchain è garantita da algoritmi di crittografia

e da meccanismi di validazione(algoritmi di consenso).

2.4 Tipologie di Blockchain

Esistono diverse tipologie di blockchain, distinte principalmente in base alle modalità

di accesso. Di seguito vengono presentati i tre principali tipi:

- Public Blockchain: sono blockchain alle quali tutti i nodi della rete possono

partecipare e validare le operazioni. Tra gli esempi più noti di questo tipo vi sono

“Ethereum” e “Bitcoin”. Non essendoci nessun genere di controllo su chi può

partecipare alla rete si devono trovare dei metodi alternativi per garantire la

sicurezza e impedire che un utente malevolo modifichi in modo incorretto la

catena.

- Fully Private Blockchain: si tratta di blockchain in cui, nonostante i dati siano

distribuiti e seguano la logica di accodamento nella chain, ogni modifica e

validazione viene gestita in modo centralizzato.

- Consortium Blockchain: è la via di mezzo/una soluzione intermedia tra la

blockchain pubblica (“opened”) e la quella completamente privata (“fully

private”). In questo tipo di rete c’è una parte di nodi preselezionati e garantiti che

si occupano delle operazioni di validazione dei nuovi blocchi mentre tutti gli altri

possono effettuare solamente la creazione. In tal modo la sicurezza è garantita

dai granted node, poiché senza il loro consenso un’operazione, eventualmente

fraudolenta, non viene accettata.

2.5 L’anello della blockchain: il blocco

Nella blockchain non è possibile eliminare o modificare un blocco già aggiunto,

poiché essa costituisce una struttura dati di tipo append-only, nella quale i nuovi

blocchi vengono esclusivamente aggiunti in coda alla catena. Tale caratteristica

garantisce l’immutabilità dei dati e la sicurezza dell’intero registro distribuito.

Una volta proposto, il blocco viene sottoposto al processo di validazione da parte

della rete (secondo il meccanismo di consenso adottato). Solo dopo l’approvazione

dei nodi partecipanti, il blocco viene effettivamente aggiunto alla blockchain,

diventando parte permanente e immutabile del registro distribuito.

Ogni blocco è diviso in due sezioni: header e body.

11

Nel body si trovano le transazioni che vengono aggiunte alla catena mentre, l’header

section contiene i metadati necessari per garantire l’integrità e la connessione del

blocco con i precedenti. Tali componenti possono variare in funzione delle

specifiche caratteristiche delle diverse implementazioni di blockchain (ad esempio,

in base al meccanismo di consenso adottato); tuttavia, è possibile individuare alcuni

elementi comuni presenti nella maggior parte delle architetture. In particolare,

l’header include:

• Timestamp : data e ora della creazione

del blocco.

• Hash del blocco precedente: garantisce

il collegamento tra i blocchi, assicurando

la continuità e l’immutabilità della catena.

Ogni blocco è collegato al precedente

attraverso un riferimento al suo hash,

formando così una catena

crittograficamente vincolata.

Quando si desidera aggiungere un nuovo

blocco, viene innanzitutto prelevato l’hash

dell’ultimo blocco presente nella catena,

che viene concatenato ai dati contenuti nel

nuovo blocco. Successivamente, viene

calcolato l’hash risultante, che rappresenta

l’identificatore univoco del nuovo blocco

e ne garantisce l’integrità.

• Merkle Root

2.6 Funzioni di Hashing

L’hashing è una tecnica di manipolazione delle stringhe che permette di ottenere da

stringhe generiche una stringa sempre della stessa lunghezza. Questa è una tecnica

fondamentale per il funzionamento delle blockchain.

Il risultato dell’hashing è chiamato “digest”.

Perché una funzione di hashing sia considerata tale il suo digest risultante deve

rispettare 5 regole:

a. Deterministica: per la stessa stringa in input si deve ottenere sempre lo

stesso digest.

12

b. Resistenza alla pre-immagine: dato uno specifico digest non deve essere

possibile recuperare la stringa di input che l’ha prodotto. La funzione di

hash deve essere quindi irreversibile.

c. Resistenza alla seconda pre-immagine: data una stringa e il suo digest non

deve essere possibile trovare un'altra stringa che genera lo stesso digest.

d. Resistenza alle collisioni: prese due stringhe casuali non deve essere

possibile che, dopo averle elaborate con la funzione di hashing queste

diano come risultato lo stesso digest.

e. Efficienza computazionale: generare l’hash non deve essere

eccessivamente time e resource consuming.

2.7 Merkle Root

Per spiegare cos’è il merkle root è necessario introdurre il concetto di merkle tree e

come questo si integra nelle blockchian.

Il merkle tree è una struttura dati ad albero in cui le foglie sono i digest di tutti i

blocchi di dati che voglio rappresentare. Successivamente, ogni coppia di hash foglie

viene concatenta e processata con funzione di hash, creando i nodi del layer

superiore. Procedendo in modo iterativo, si arriva al merkle root ovvero il nodo

radice dell’albero.

13

Nel blocco della blockchain ogni transazione viene sottoposta a funzione di hash

diventano così le foglie dell’albero di merkle. Il merkle root viene dunque salvato

negli header del blocco.

Questa struttura è fondamentale per verificare in modo rapido la validità delle

transazioni nella catena. La Merkle proof permette di verificare con una complessità

logaritmica tutti gli hash della tabella.

O(log₂ N) dove N sono il numero di transazioni.

Il Merkle root è fondamentale per la verifica dell’immutabilità del blocco. Se infatti

una qualsiasi transazione viene manomessa, il merkle root risultante sarà diverso e

quindi rifiutato dagli altri nodi della rete. Tramite il merkle tree è possibile anche

fare una verifica parziale dell’albero (Simplified Payment Verification) grazie alla

sua struttura bilanciata. Questo è molto utile in un’ottica di performance e

ottimizzazione della verifica.

2.8 Meccanismi di consenso

Essendo una rete distribuita, i vari nodi devono sincronizzarsi e concordare sulle

differenze in modo che, alla fine, tutti possiedano la stessa versione. Per questo vengono

utilizzati i consensus algorithm: questi permettono di validare un nuovo blocco in arrivo

sulla blockchain. Qui di seguito è riportato il funzionamento dei due più famosi e

utilizzati:

a) Proof of work

Questo algoritmo richiede che venga risolto un complesso problema di computazione.

Coloro che operano per risolvere il problema si chiamano miner. Il primo miner che

riesce a risolvere il problema lo comunica a tutti gli altri nodi che verificano la

correttezza della soluzione. Se lo è allora, il miner si aggiudica la creazione del

blocco,viene aggiunto alla catena e ottiene una ricompensa.

La risoluzione del problema comporta un gran lavoro computazionale (quindi consumo

di energia elettrica) e molto time-consuming; questa complessità costituisce un efficace

meccanismo di sicurezza. Un eventuale tentativo di inserire dati contraffatti all’interno

della catena comporterebbe un ingente spesa di denaro e verrebbe immediatamente

rifiutato. L’unico modo, infatti, per riuscire a far passare un blocco contraffatto è quello

di controllare il 51% dei miners. Questo può diventare un problema se la rete blockchain

non è sufficientemente ampia, poiché in tal caso ottenere il controllo del 51% delle

risorse di validazione potrebbe risultare più facile.

Nonostante questo sia uno degli algoritmi più usati, come già anticipato, ha un impatto

ambientale non indifferente per il grosso consumo di energia elettrica necessario. È poi

un algoritmo che richiede parecchio tempo per convalidare le transazioni: la blockchain

14

di bitcoin, ad esempio, è attualmente in grado di elaborare 7 tps. Questo si ripercuote

sulla scalabilità della catena (più cresce il numero di transazioni più queste vengono

convalidate in ritardo fino a far perdere la fiducia nel sistema).

b) Proof of stake:

Questo algoritmo si basa sulla presenza e dimensione degli stakes. In una blockchain

basata sul POS ogni utente che possiede dei token può decidere di metterli in stake,

ovvero di bloccarli e lasciarli a disposizione della rete. Più è grande lo stake più si ha

probabilità di aggiudicarsi la creazione o la validazione del blocco. In questo caso, se

qualcuno cerca di inserire dei blocchi errati, la posta in gioco è lo stake messo in palio:

viene decurtato se non tolto completamente e ridistribuito ai nodi che si sono accorti

dell’errore.

Non essendo più necessario risolvere un problema complesso il consumo di energia

elettrica è ridotto e anche il tempo di elaborazione è inferiore. Tuttavia, si può creare un

problema di centralizzazione della rete perché, chi possiede più token ha più probabilità

di essere selezionato e quindi di aumentare ancora di più il suo stake con le fee.

2.9 Applicazioni reali

La prima implementazione blockchain fu proposta da Satoshi Nakamoto nel 2009 con

la creazione di Bitcoin con l’obbiettivo di fungere da “libro mastro” della valuta. Dopo

questa prima applicazione si intuì la versatilità di questa tecnologia e di come poteva

essere utile in molti altri campi, ad esempio, nella tracciabilità di prodotti,

nell’identificazione digitale. Molti di questi ambiti sono in fase sperimentale ma i

risultati sono promettenti, e inducono a pensare che possano essere presto utilizzate in

maniera più strutturata.

Di seguito vengono riportati alcuni esempi concreti di applicazione diversa dalla finanza

decentralizzata.

- SITA: società di telecomunicazioni che ha portato avanti una sperimentazione

con la collaborazione della British Airways sulla sincronizzazione dei dati dei

passeggeri e delle manutenzioni aeree tramite blockchain.

- MedRec: è un progetto sviluppato dal MIT di Boston per gestire gli accessi dei

pazienti alle loro informazioni mediche. Vengono mantenute nella blockchain

solamente gli accessi dei pazienti garantendo così la privacy dei dati sensibili.

- Estonia: l’Estonia è un paese che ha puntato fortemente sulla tecnologia della

blockchain. Gran parte dei servizi dell’amministrazione pubblica sono gestiti

tramite questa.

15

2.10 Vantaggi e limiti

Come abbiamo visto quindi, questa tecnologia ha una serie di caratteristiche molto

utili tra cui l’immutabilità dei dati, la trasparenza e la tracciabilità.

Dall’altro canto però presenta alcune limitazione da tenere in considerazione:

• Scalabilità: dovendo gestire la sincronizzazione e la validazione dei dati tra tutti

i nodi decentralizzati, la capacità di transazioni al secondo è relativamente

bassa, molto più bassa di un sistema centralizzato.

• Irreversibilità: una volta che una transazione è salvata sulla blockchain questa

non può essere più modificata o revocata, nemmeno in caso di errore o di frode.

È quindi richiesta una particolare attenzione nell’inserimento delle transazioni

dunque è necessario adottare solidi sistemi di sicurezza per prevenirli prima

della registrazione.

• Privacy: poiché tutti i dati sulla blockchain sono trasparenti questo può essere

un problema nei casi in cui sono richieste particolari regole di privacy.

• Consumo energetico: specialmente nei sistemi che utilizzano blockchain con

validazione POW è richiesto un alto consumo energetico per il loro

funzionamento.

16

3. Bitcoin

Bitcoin è la prima blockchain mai creata e rappresenta il

fondamento del settore crypto. È una rete decentralizzata, open-

source e pubblica.

L’idea di Bitcoin nasce anche in relazione alla crisi finanziaria

del 2007 con uno scopo ben preciso: fornire un sistema

monetario alternativo, resistente alla censura e indipendente da governi e istituzioni.

Bitcoin non ha un fondatore “ufficiale”: l’identità di Satoshi Nakamoto è

sconosciuta. Dal 2010 non ha più fatto nessuna dichiarazione, lasciando la rete nelle

mani della comunità e dello sviluppo open-source.

3.1 Tappe fondamentali

• Nel 2008: Satoshi Nakamoto pubblica il celebre whitepaper “Bitcoin: A Peer-to-

Peer Electronic Cash System”.

• 3 gennaio 2009: viene minato il genesis block, il primo blocco della blockchain.

• 2010: Bitcoin Pizza Day. Avviene il primo pagamento in Bitcoin: due pizze

vengono acquistate per 10.000 BTC

• 2012: arriva il primo halving, un evento che dimezza la ricompensa per blocco

da 50 a 25 BTC.

• 2013–2017: Bitcoin esplode in popolarità e il mondo inizia a conoscerlo. Nel

2017, le discussioni sulla scalabilità portano a una divisione nella comunità, da

cui nascerà Bitcoin Cash (BCH).

• 2017: viene introdotto Segregated Witness (SegWit), un aggiornamento che

migliora l’efficienza delle transazioni e apre la strada a nuove soluzioni, come il

Lightning Network.

• 2021: El Salvador diventa il primo Paese al mondo ad adottarlo come moneta

legale.

• 2024: avviene il quarto halving, che riduce la ricompensa per blocco a 3,125

BTC.

• 6 Ottobre 2025: Bitcoin raggiunge un nuovo massimo storico di 126,080 dollari.

17

3.2 Funzionamento di Bitcoin

Bitcoin utilizza il meccanismo di consenso Proof of Work.

Quando le transazioni arrivano sulla blockchain vengono condivise a tutti i miner e

salvate nella mempool in attesa di essere inserite in un blocco. La mempool è la memoria

dove risiedono tutte le transazioni non ancora validate. Ad ogni transazione viene

associata una commissione che è decisa da chi la effettua. I miner tendono a dar

precedenza alle transazioni con le commissioni più alte.

I miners raccolgono le transazioni e le inseriscono in un blocco.

Per validarlo devono trovare il nonce corretto per ottenere un hash con una determinata

struttura (con un certo numeri di 0 all’inizio). Questo processo ha un alto costo

computazionale ed è chiamato “mining”. Gli altri nodi verificano la correttezza

dell’hash e se è corretto lo aggiungono alla blockchain. Una volta creato un blocco

valido il mier ottiene la ricompensa. Questa è data dalle commissioni delle transazioni

(decise dai committenti) e dal “block reward”, una piccola quantità di bitcoin minata

appositamente dal miner per se stesso e inclusa nel blocco creato.

Ogni blocco solitamente contiene più di una transazione (in media 1800 transazioni per

blocco). Ogni transazione contiene :

• l’indirizzo del mittente,

• l’indirizzo del destinatario,

• l’importo trasferito,

• la firma crittografica di chi la effettuata che ne attesta la validità.

Il processo di mining garantisce che i nodi siano incentivati a creare blocchi validi:

infatti, mentre la creazione è complicata e costosa, la verifica di validità è molto rapida.

In questo modo un blocco contraffatto viene riconosciuto subito e scartato.

3.3 La visione di “Internet del denaro”

Bitcoin nasce con l’obiettivo di rivoluzionare il concetto stesso di denaro. Il sistema

fissa un massimo di 21 milioni di BTC, introducendo la prima forma di bene digitale

scarso, simile all’oro. I principi fondamentali:

• Decentralizzazione: nessuna banca centrale può controllarne l’emissione.

• Resistenza alla censura: chiunque può inviare e ricevere valore.

• Trasparenza: tutte le transazioni sono pubbliche e verificabili.

• Sicurezza crittografica: basato su firme digitali e decentralizzato

18

4. Ethereum

Ethereum è una blockchain opensource che permette di creare

dei programmi, gli smart-contract, con i quali è possibile

interagire tramite transazioni. Nasce con l’idea di essere un

“World computer” ovvero un computer distribuito su nodi

sparsi in tutto il mondo dove chiunque possa sviluppare

programmi, applicazioni e vi possa interagire da qualsiasi parte

del mondo.

Nelle prime versioni era basata sull’algoritmo di POW; solo

nel settembre del 2022 con l’aggiornamento “Bellatrix” avviene il “The Merge”, ovvero

il passaggio a POS.

4.1 Funzionamento

Nella versione odierna Etrhereum utilizza l’algoritmo di consenso Proof-of-stake.

Quando un utente intende effettuare un’operazione sulla rete Ethereum (ad esempio il

trasferimento di token ad un altro utente) deve, oltre a definire le informazioni

fondamentali per l’operazione, definire anche un prezzo massimo che è disposto a

pagare per quella transazione: il cosiddetto gas.

Il gas lo si può definire come “il carburante” che fa andare avanti la rete Ethereum; serve

per preservare l’utilizzo eccessivo delle risorse e di conseguenza come sicurezza

aggiuntiva (evita attacchi spam o di consumo infinito di risorse). Ogni operazione ha

quindi un suo costo che è dato dalla formula

Gas used×Gas price = Costo in ETH

- Gas used: è il gas necessario per l’operazione che si vuole effettuare.

- Gas price: viene misurato in gwei (gigawei) con un rapporto in Ethereum di

 1 ETH = 10⁹ gwei .

Il gas è diviso in due parti e può essere deciso dall’utente (o suggerito per tipo di

operazione).

La prima parte è la fee della rete (Base fee) ovvero la quantità minima necessaria per

eseguire l’operazione. La base fee viene regolata in automatico dal protocollo EIP-1559

e varia a seconda della congestione della rete. Questa parte, alla fine della transazione,

viene bruciata.

La seconda parte invece, è la ricompensa per il validatore (Priority fee): questa può

essere variabile e decisa dall’utente. Più la Priority fee è alta più è probabile che un

validatore la validi per prima (logicamente i validatori sono interessati a validare le

transazioni con ricompense più elevate). Una volta che la transazione è registrata sulla

19

blockchain il rimanente dell’allocato viene restituito all’utente inziale.

Quindi, una volta definita la variabile, la transazione entra nel mempool dei vari nodi. Il

mempoll è lo stake dove le transazioni non ancora validate rimangono in attesa di essere

messe nella blochchain. Il validatore scorre poi le varie transazioni da inserire e decide

quali processare per prima (le più redditizie). Inizia così a preparare il nuovo blocco per

poi proporlo.

Gli altri nodi validano il nodo proposto.

Il prezzo del gas è quindi molto influenzato dalla congestione della rete: in parte per il

funzionamento del protocollo EIP-1559 ma anche perché se vengono validate prima le

transazioni con una ricompensa più alta gli utenti cercheranno sempre di alzare il prezzo

della ricompensa, in modo da avere subito le loro transazioni validate. Questo porta a

un’inflazione del costo delle operazioni e di conseguenza un problema di scalabilità.

4.2 Come avviene la validazione

Sulla catena Ethereum il tempo viene suddiviso in slot di 12 secondi e in epoch,

composte da 32 slot.

Un nodo validatore per essere tale deve eseguire 3 diverse client: un client di esecuzione,

uno di consenso e il client di validazione. Il sistema POS di Ethereum richiede che ogni

validatore metta “a rischio” una quantità di 32 ETH.

Il funzionamento è il seguente: l’obbiettivo è di proporre un blocco per ogni slot. Ad

ogni slot vengono selezionati un nodo proposer e una serie di committee (gruppo di nodi

che validano la creazione del blocco). Il numero di membri per ogni committee può

variare ma è generalmente basato su un numero target (128 validatori per committee).

Ogni validatore può partecipare ad un solo committee per slot.

La scelta dei blocchi validator e proposer viene effettuata tramite un seme casuale

RANDAO; questa elezione viene fornita con un lookahead, ovvero i nodi vengono eletti

in anticipo per gli epoch futuri.

Ogni nodo nel committee, oltre a validare il blocco proposto, ha il compito di produrre

attestazioni, ovvero votare:

• il blocco head della catena

• Il blocco source e il blocco target

Questo voto consente di identificare quale blocco rappresenta la testa della catena dal

quale partire per appendere i nuovi blocchi. Il protocollo che regola questo è LMD-

GHOST.

Ogni validatore produce quindi un’attestazione che propaga a tutti gli altri membri della

committee; a livello di committee vengono raccolti i voti e distribuiti al resto della rete.

Per limitare la congestione sulla rete, ogni validatore condivide le attestazioni prima con

la sua subnet di committee che successivamente vengono aggregate e diffuse a tutti i

nodi della rete. Ogni validatore mantiene localmente le ultime attestazioni ricevute per

20

i calcoli futuri.

Il nodo proposer utilizza le attestazioni salvate in locale e sempre tramite LMD-GHOST

calcola l’head corrispondente. Quest’ultimo viene poi utilizzato come padre del nuovo

blocco inserendolo nell’header.

Se la rete è particolarmente sotto stress possono verificarsi ritardi nell’arrivo delle

attestazioni. Può capitare quindi che i validatori calcolino nella stessa epoch head

diversi: in questo caso verranno create delle sotto catene temporanee discordanti tra loro

ma che vengono risolte con le successive iterazioni del LMD-GHOST.

Nelle attestazioni sono espressi anche i nodi source e target: questi servono per

determinare la struttura definitiva della catena e selezionare i nodi checkpoint che non

possono più essere cancellati o riorganizzati.

Infatti i nodi source e target si riferiscono rispettivamente all’ultimo blocco justified

(ultimo blocco votato come potenziale finalizzato) e al blocco proposto per diventare

justified. Questi blocchi sono scelti a livello di blocchi checkpoint, ovvero il primo nodo

di un’epoch.

Se almeno 2/3 dei nodi concorda su questi nodi per due epoch consecutivi diventano

rispettivamente finalized (immutabile) e justified.

Il protocollo che gestisce questo è il Casper-FFG.

4.3 Blocco di Ethereum

Un blocco di Ethereum è diviso in due parti: header e body.

Di seguito si riporta un estratto dalla documentazione ufficiale di Ehtereum.

Campo Descrizione

slot lo slot a cui appartiene il blocco

indice_proponente l'ID del validatore che propone il blocco

parent_root l'hash del blocco precedente

state_root l'hash radice dell'oggetto di stato

Body un oggetto contenente più campi, come definito di seguito

Body:

Campo Descrizione

randao_reveal un valore utilizzato per selezionare il prossimo proponente di

blocchi

21

Campo Descrizione

et1_data informazioni sul contratto di deposito

graffiti dati arbitrari utilizzati per contrassegnare blocchi

proposer_slashings elenco di validatori da tagliare

taglio_attestatori elenco di attestatori da tagliare

attestazioni elenco di attestazioni a favore del blocco corrente

depositi elenco dei nuovi depositi nel contratto di deposito

uscite_volontarie elenco di validatori che escono dalla rete

sync_aggregate sottoinsieme di validatori, utilizzato per servire i client leggeri

execution_payload transazioni passate dal client di esecuzione

Il campo attestations contiene un elenco di tutte le attestazioni nel blocco. Le

attestazioni hanno il proprio tipo di dati, contenente diversi pezzi di dati. Ogni

attestazione contiene:

Campo Descrizione

aggregation_bits un elenco dei validatori che hanno partecipato a questa

attestazione

dati un contenitore con diversi campi secondari

firma firma aggregata di tutti i validatori attestanti

22

Il campo data nell'attestation contiene quanto segue:

Campo Descrizione

slot lo slot cui si riferisce l'attestazione

indice indici per l'attestazione dei validatori

beacon_block_root l'hash radice del blocco Beacon contenente questo oggetto

fonte l'ultimo punto di controllo giustificato

obiettivo il blocco di confine dell'ultima epoca

Le transazioni in un blocco Ethereum possono dover contenere informazioni più

dettagliate rispetto a Bitcoin. Per questo il Merkle Tree utilizzato in Ethereum è il

“Merkle Patricia Tree”, che unisce le proprietà di un albero di prefissi (trie) con quelle

di un Merkle Tree classico.

4.4 Storia di Ethereum

• Nel 2014 viene presentato per la prima volta Ethereum nel WhitePaper

pubblicato da Vitalik Buterin all’età di 19 anni. Buterin è un programmatore

russo naturalizzato canadese fondatore anche del famoso periodico Bitcoin

Magazine. La sua idea era di espandere le funzionalità di Bitcoin, limitate al solo

scopo economico.

"So like, think of the difference between something like a plot key calculator and

a smartphone, where a plot key calculator does one thing and it does one thing

well, but really people want to do all these other things. And if you have a

smartphone then on the smartphone you have a plot key calculator as an app. You

have playing music as an app. […]So basically taking that same kind of idea of

23

increasing the power of the system by making it more general purpose and

applying it to blockchains.” [Vitalik Buterin, intervista a Business Insider, 13

Febbraio 2019]

A seguito della pubblicazione ricevette un primo investimento dalla Peter Thiel

Fellowship per inziare a lavorare sulla piattaforma.

• Tra luglio e settembre del 2014, per promuovere il progetto e recuperare

fondi,viene organizzata la prima ICO (Initial Coin Offering).

• Nel luglio del 2015, vengono lanciata la prima versione della blockchain e il suo

token nativo (Ether).

• Nel giugno del 2016, avviene un importante evento per la storia e lo sviluppo

della rete: l’hacking di TheDAO. A seguito di questo attacco fu effettuato un hard

fork della blockChain creandone così due diverse:

o Ethereum: è la rete Ehtereum conosciuta come tale dove sono state

rimosse tutte le transazioni fraudolente.

o Ethereum Classic: la rete Ethereum con all’interno anche le transazioni

dell’hacking.

• Nel 2020 Vitalik Buterin pubblica un cambio della road map di Ethereum e

introduce il Layer2.

• Il 15 Settembre del 2022 avviene il Merge. Questa è una data storica per

Ethereum perché avviene il passaggio da POW a POS, riducendo anche l’impatto

ambientale dell’inquinamento prodotto del 99%.

• Nel marzo 2024 riceve l’aggiornamento Dencum, che con l’aggiunta del’EIP-

4844 riduce di molto il costo del gas. Con questo aggiornamento vengono

introdotti dei blob che accorpano le transazioni perché ne vengano elaborate di

più insieme.

4.5 WEB 3.0

Il cofondatore di Ethereum, Gavin Wood, propose l’idea di web 3.0 alla quale Ethereum

dovrebbe contribuire a realizzare. Per spiegare cosa sia il web 3.0 bisogna introdurre 3

fasi del web: lettura, scrittura , possesso.

Web 1.0 – Lettura: questa fase si inserisce in un periodo che spazia dal 1990 al 2004 e

che coincide con la prima versione di internet pubblica. Le varie risorse venivano

caricate direttamente su computer collegati ai quali era possibile accedervi tramite

internet da ogni parte del mondo. Si poteva immaginare internet come una grande

biblioteca che ognuno poteva consultare. I contenuti erano però statici e prodotti

solitamente da enti (università, aziende) o appassionati, anche perché la loro creazione

non era così immediata.

24

Web 2.0 - Lettura e Scrittura: è il periodo che arriva dal 2004 fino ai nostri giorni. Da

questo momento gli utenti iniziano a interagire in modo attivo e non più come semplici

fruitori di contenuti. Con l’introduzione di nuovi strumenti come i social, si può creare,

condividere e caricare materiale online. Tuttavia, questo materiale e la gestione degli

strumenti che lo permettono è in mano a grandi colossi della tecnologia, che lo

possiedono e possono regolamentarlo con regole arbitrarie e scelte da loro.

Web3.0 - Lettura, Scrittura, Possesso: è un’idea di web dove si è indipendenti dalle

regole e dalle restrizioni di grosse terze parti. Ethereum si pone come fondamento per

la sua realizzazione.

Le idee fondamentali del web 3.0 sono:

• Decentralizzazione: internet deve essere distribuito e non riservato ad aree

gestite da grosse compagnie. Ad oggi, la maggior parte dei dati su internet è

centralizzata in grossi datacenter posseduti da colossi tecnologici (Google,

Amazon, Microsoft).

• Non basato sulla fiducia: non è necessario affidarsi a terze parti ma è possibile

effettuare ogni operazione su internet (e quindi sulla catena) senza intermediari.

Tramite gli smart contract è possibile automatizzare tutti i processi di gestione

delle operazioni sulla rete senza bisogno di un agente terzo che se ne occupi.

• Sovranità dei Dati: attualmente, come abbiamo già detto, per poter usufruire dei

servizi in internet bisogna appoggiarsi a grosse compagine IT che salvano e

custodiscono i dati degli utenti. Questi hanno la possibilità di rivenderli a terzi

senza un nostro controllo (la legislazione che limita queste operazioni è poco

regolamentata). Tramite il web 3.0 sono gli utenti ad avere direttamente il

possesso dei dati e decidere attivamente chi può accedervi e chi no.

• Accessibilità globale: per sua natura il web 3.0 è open source ed accessibile da

chiunque tramite connessione internet.

• Interoperabilità: le applicazioni sul web 3.0 sono interoperabili, perché non

sono gestite da organizzazioni separate ma dagli smart contract, molto più

semplice da fare interagire tra loro.

• Tokenizzazione: nel web 3.0 entra il concetto di tokenizzazione. Ogni utente può

possedere dei token della piattaforma internet che possono essere usati per

interagire con le app sul web ed eventualmente anche usati come ricompensa.

L’utilizzo di token quindi può incentivare l’utilizzo della tecnologia rendendola

facilmente adottabile.

25

4.6 DAO

Nel paragrafo “Storia di Ethereum” abbiamo già trovato un esempio di DAO.

L’acronimo DAO sta per “Decentralized Automated Organization” che indicano delle

organizzazioni distribuite.

Prendendo in esempio un’azienda tradizionale, questa ha dei finanziatori che investono

ma la struttura dell’organizzazione ha una gestione gerarchica differente. Ci sono quindi

un Ceo, un consiglio di amministrazione e più in generale una struttura amministrativa

che prende le decisioni. Tutti questi rispondono poi agli investitori ma in modo indiretto.

In una DAO invece, può non essere presente questa struttura amministrativa; le decisioni

sono prese direttamente dagli investitori che possono proporre delle azioni o delle idee

che vengono poi votate dal resto dei membri. Questo grazie all’acquisto dei suoi token.

I token della DAO rappresentano quindi un controllo diretto sull’organizzazione e più

si possiedono token più il proprio voto avrà un peso. Chi ha un gran numero di token

potrà influenzare maggiormente le votazioni.

Tutte le azioni approvate dalla votazione vengono poi automaticamente gestite tramite

gli smart contracts della DAO.

4.7 Attacco a “THE DAO”

“The Dao” fu una delle prime Decentralized automated organization che vennero create:

si trattava di un fondo di investimento che avrebbe dovuto finanziare futuri progetti

commerciali e no-profit.

Sfortunatamente erano ancora agli albori e gli smart contract non erano ancora stati

testati sufficientemente soprattutto nell’ambito della sicurezza. Nello smart contract in

questione, era infatti presente un bug nell’operazione di prelievo: quando l’operazione

di prelievo veniva invocata, prima veniva effettuato il passaggio di denaro e poi il saldo

veniva aggiornato.

L’attacco si verificò attraverso la seguente modalità. L’operazione prelievo veniva

richiamata ricorsivamente: la funzione whitrdawal() richiamava all’interno se stessa.

Poiché il saldo veniva aggiornato solo una volta che la chiamata a withdrawal() ritornava

correttamente, le continue chiamate permettevano di tenere bloccata l’applicazione al

livello di passaggio dei soldi e non dell’aggiornamento saldo. Quindi, le chiamate

ricorsive continuavano a prelevare soldi ma il saldo rimaneva sempre lo stesso. Il ciclo

continuava finché c’erano soldi sul fondo o finché non finiva il “gas” per fare effettuare

le transazioni.

Gli hackers riuscirono a rubare al fondo 3.6 milioni di ETH (60 milioni di dollari).

A seguito dell’attacco, la comunità Ethereum si spaccò in due: chi voleva riportare lo

stato della chain Ethereum prima del furto e chi invece sosteneva che dovesse rimanere

così. Alla fine, a seguito di una votazione, si decise per tornare indietro. Avvenne quindi

26

l’hard fork della catena creando così due diverse blockchain.

La prima, “Ethereum”, era quella senza le transazioni fraudolente ed è la più conosciuta.

“Ethereum Classic”, invece, è la blockchain originale senza il rollback.

A rimedio del bug, venne introdotto il pattern Checks-Effects-Interactions che segue 3

passaggi in questo ordine:

1° - Verifica le condizioni

2° - Aggiorna lo stato

3° - Interagisce con gli altri contratti

4.8 Smart Contract e DApp

Il concetto di smart contract venne teorizzato da Nick Szabo nel 1994, ancora prima

della creazione delle blockchain.

“A smart contract is a computerized transaction protocol that executes the terms of a

contract.” [Nick Szabo, 1997]

In un contesto dove l’utilizzo della tecnologia era in forte crescita in quasi tutti gli

ambiti, teorizzò l’idea di contratti che potessero essere automaticamente elaborati e

validati da una macchina senza la necessità di un ente esterno (ad esempio un notaio). Il

tutto si basava su contratti stipulati da due o più parti che avessero delle condizioni

chiare con delle conseguenze altrettanto chiare (meccanismo if than- else): se una delle

condizioni si verificava in automatico la macchina la riconosceva e applicava la

rispettiva clausola.

Nel concreto quindi, lo smart contract è codice che viene elaborato dal sistema Ethereum

con delle funzionalità e logiche definite che. può interagire con altri smart contract e su

cui si basano le DApp presenti su Ethereum (applicazione decentralizzate).

I primi smart contract erano relativamente semplici: vennero utilizzati per attività di ICO

(Initial coin offering) ovvero un crowfunding dove avveniva una vendita di token a

chiunque volesse finanziare il progetto. Sostanzialmente erano necessarie due azioni: la

creazione del token con tutte le sue informazioni e la gestione del crowfunding (quanti

token assegnare all’investitore, tasso di cambio, controlli di sicurezza per eventuali

vendite nulle).

Una volta capita la potenzialità degli smart contract si iniziò a sperimentare

un’interazione tra di loro: nascono così le prime Distributed App.

La prima tipologia di DApp sviluppate offrivano servizi finanziari decentralizzati.

Adesso invece si trovano DApp per ogni genere di utilizzo che trovano applicazione in

molti campi come social network, gaming, logistica ecc..

Poiché è possibile creare DApp per qualsiasi genere di operazione e qualunque

sviluppatore con le necessarie competenze può crearne una, è indispensabile che ci sia

27

un controllo sulla sicurezza al fine di garantire affidabilità all’ecosistema delle DApp.

Anche perché, una volta che lo smart contract o la Dapp viene caricata sulla chain non

può essere più modificata (deve esserne creata una nuova). Nascono così le figure degli

auditor: società riconosciute che si occupano di verificare che gli smart contract siano

sicuri e rispettino le norme di sicurezza per ogni settore a cui si applicano. Questo serve

non solo per evitare che vengano caricate DApp con delle vulnerabilità ma anche per

dare fiducia negli investitori.

Sostanzialmente il funzionamento di un Audit è il seguente: una volta che la DApp è

pronta, viene richiesto l’Audit da una delle compagnie che offrono il servizio.

Quest’ultima revisiona il codice (il tempo solitamente varia da qualche giorno a qualche

settimana a seconda della dimensione del progetto) e stila una lista di eventuali criticità

e azioni correttive. Solitamente, una volta attuate le operazioni consigliate si effettua

un’ulteriore verifica di follow-up per verificare che siano state applicate correttamente.

Una volta che la Dapp è completata e revisionata viene deployata sulla chain tramite

una transazione.

Solidity è il linguaggio di programmazione alla base degli smart contract su Ethereum

concettualizzato nel 2014 da Gawin Wood. È un linguaggio ad oggetti basato su C++,

Python e Javascript. Il suo scopo è quello di permettere la creazione di logiche

decentralizzate sulla Ethereum Virtual Machine. Il deploy del codice avviene tramite

una transazione sulla blockchain con il codice compilato.

Uno dei pilastri alla base di Ethereum è che sia open-source. Ci possono essere situazioni

in cui alcuni smart contract non vengano resi pubblici, ovvero non venga diffusa la

pubblicazione della documentazione o la condivisione del code repository. In ogni caso

però il bytecode rimane disponibile sulla blockchain.

4.9 Layer 2

Il grande successo di Ehtereum e la sua applicabilità in molti campi ha portato presto a

un problema di scalabilità: la quantità di transazioni che doveva essere gestita per tutte

le Dapp su Ethereum inziava a diventare insostenibile con grossi costi di gas.

È stato necessario quindi pensare a una soluzione che ovviasse al problema: creare dei

layer superiori alla blochChain Ethereum che si preoccupassero di assorbire delle

operazioni affidate altrimenti alla rete Ehtereum e di alleggerire quindi quest’ultima.

I layer 2 servono quindi per migliorare la scalabilità, i costi e la velocità delle operazioni

sulla blockchain Ethereum.

Esistono due principali categorie di Layer 2:

a. Roll up: questa tipologia è quella più usata come soluzione. Un scaling-

system di Roll up comporta un sistema a livello più alto che effettua un

gran numero di transazioni off-chain che poi vengono registrate in un

28

unico blocco sulla blockchain. Il problema di effettuare operazioni off-

chain può comportare problemi nella validità delle operazioni effettuate.

Questo viene gestito in due modi differenti.

o Optimistic Roll-up: questi layer operano considerando tutte le transazioni

come valide (ottimisticamente appunto) ma mettono a disposizione una

prova di frode. Prima quindi che vengano registrate le transazioni off-

chain il sistema attende un determinato tempo (solitamente qualche

giorno) in modo che qualsiasi validatore possa ricalcolare la prova di frode

e richiedere eventualmente l’invalidazione del blocco.

o ZK-Roll-up: questi funzionano nel modo opposto agli Optimistic.

Considerano infatti che tutte le operazioni siano false fino a che non viene

fornita una prova di zero conoscenza (Zero Knowledge). Quindi per ogni

blocco di transazione viene fornita anche la prova matematica della

validità del blocco. Questi, rispetto ai precedenti sono più sicuri e più

veloci ma anche molto più complessi da implementare.

b. Sidechain: si utilizzano delle blockchain separate collegate alla blockchain

Ethereum tramite brige. Quando un utente decide di spostarsi dalla Blockcahin

Ethereum alla sidechain contatta lo smart contract che si occupa di fare il bridge

tra le chain. Blocca quindi il quantitativo di asset che l’utente intende spostare

sulla second chain e successivamente si occupa di creare (mint) lo stesso valore

nell’asset corrispondente alla nuova chain. Si crea quindi una copia dei token

sulla second catena. Sulla nuova chain le operazioni avvengono in modo

completamente scollegato da Ethereum. Una volta che si intende ritornare sulla

chain Ethereum si ripasserà dal bridge per sbloccare l’asset e bruciare la copia

sulla side chain.

Qui, a differenza dei roll-up, dove le transazioni venivano salvate sulla

blockchain Ethereum, le due catene non sono sincronizzate. Ethereum non

conosce le attività della sidechain tranne per le operazioni sui bridge. Il vantaggio

è che sono molto flessibili ma perdono la sicurezza e la trasparenza di Ethereum,

essendo truth-less con la catena originale. Devono quindi creare loro un sistema

di validazione e di tracciabilità.

29

4.10 Protocollo ERC-20

ERC-20 è il protocollo per gli smart contract che devono gestire token fungibili.

I metodi necessari da implementare perché rispetti lo standard sono:

- totalSupply(): recupera il numero totale di token

- balanceOf (address _owner): ritorna il numero di token posseduti da adress

_owner

- transfer (address _to, uint256 _value. Se il chiamante non ha sufficienti token

ritorna un’eccezione

- transferFrom (address _from, address _to, uint256 _value): metodo che

trasferisce l’ammontare di token _value all’indirizzo _to da parte di un utente

terzo _from

- approve (address _spender, uint256 _value): metodo che autorizza a spendere

fino a _value token. É utilizzato come meccanismo di sicurezza della per la

transferFrom

- allowance (address _owner, address _spender): metodo utilizzato per verificare

lo stato delle approve() concesse

Gli eventi sono operazioni che vengono attivate in automatico (trigger) quando viene

invocato un metodo o a seguito di una particolare operazione:

- Transfer (address indexed _from, address indexed _to, uint256 _value)

- Approval (address indexed _owner, address indexed _spender, uint256 _value)

30

5. Non Fungible Token

I Non Fungible Token o NFT, si differenziano dai classici token per la loro unicità sulla

blockchain.

Normalmente, un fungible token non ha caratteristiche differenti rispetto agli altri e può

quindi essere considerato indistinguibile e interscambiale con gli altri token. Un tipico

esempio di fungible token sono le criptovalute.

Al contrario, gli NFT sono entità digitali univoche con delle caratteristiche uniche e un

valore proprio. Per questa loro natura possono, in linea teorica, rappresentare il prodotto

digitale degli oggetti fisici e trovano l’abbinamento perfetto con il mondo dell’arte. Gli

NFT infatti vengono utilizzati per rappresentare delle opere artistiche in formato

digitale. Questa cosa però non è esente da rischi e problemi che verranno affrontati in

seguito.

Da un punto di vista tecnico gli NFT hanno dei protocolli diversi dai fungible token con

metodi e funzionalità specifiche per gestire la loro univocità.

5.1 Protocollo ERC-721

Il protocollo ERC-721 viene proposto nel 2018 da William Entriken, Dieter Shirely,

Jacob Evans e Nastassia Sach ed è lo standard per gli NFT in Ethereum. Questo

protocollo definisce le regole per poter gestire l’univocità e le caratteristiche intrinseche

dell’NFT.

I metodi necessari da implementare perché possa essere rispettare lo standard sono:

- balanceOf (address _owner) ritorna il numero di token posseduti dall’indirizzo

passato

- ownerOf (uint256 _tokenId) ritorna l’indirizzo del proprietario per uno specifico

tokenId (address)

- safeTransferFrom (address _from, address _to, uint256 _tokenId, bytes data)

external payable: trasferisce in maniera “safe” (verifica in automatico se il

ricevente è in grado di ricevere l’nft) la proprietà di un NFT(tokenId) da un

proprietario(_from) a un altro(_to). Tramite il parametro aggiuntivo data è

possibile passare dati ulteriori che senza un formato specifico

- safeTransferFrom (address _from, address _to, uint256 _tokenId): trasferisce

in maniera “safe” la proprietà di un NFT(tokenId) da un proprietario(_from) a un

altro(_to).

- transferFrom (address _from, address _to, uint256 _tokenId): trasferisce la

proprietà di un NFT(tokenId) da un proprietario(_from) a un altro(_to). Non

essendo “safe” chi la utilizza è responsabile di confermare che il ricevente sia in

grado di ricevere l’nft altrimenti questo viene perso.

31

- approve (address _approved, uint256 _tokenId) permette di approvare un altor

indirizzo (_approved) a trasferire uno specifico token. Se il chiamante non è il

proprietario del token, deve restituire un eccezione;

- setApprovalForAll (address _operator, bool _approved) permette di approvare

un altro indirizzo (_approved) a trasferire i token. Se il chiamante non è il

proprietario del token, deve restituire un eccezione;

- getApproved (uint256 _tokenId): restituisce gli indirizzi approvati per uno

specifico token.

- isApprovedForAll (address _owner, address _operator)

Oltre a questi metodi deve poter memorizzare:

1. I tokenId degli NFT collegati allo smart-contract

2. Gli address proprietari dei singoli NFT

3. I metadati degli NFT

Per quanto riguarda i metadati degli NFT, ovvero le informazioni che caratterizzano i

singoli NFT, si evita di salvarle direttamente sullo smart contract. Questo perché

solitamente sono di grosse dimensioni e gestirle direttamente sulla blockchain può

richiedere grossi costi per le transazioni. Si preferisce quindi salvare i metadati off-chain

e salvare sulla blockchain solamente i lori riferimenti.

5.2 Differenza con ERC-20

La differenza tra ERC-20 ed ERC-721 è la rispettiva gestione di token fungibili e non

fungibili: per il primo l’importanza è sulla quantità di token assegnati a uno specifico

address mentre per l’altro è fondamentale il mapping tra singolo tokenId a specifico

address.

Un’ulteriore differenza è la possibilità di aggiungere nel protocollo ERC-721 delle

proprietà metadata che caratterizzano il token stesso, generalmente sottoforma di json

object.

5.3 Protocollo ERC-1155

ERC-1155 è un protocollo creato per poter gestire contemporaneamente sia i token

fungibili che quelli non fungibili. Questo è un protocollo multi-asset, cioè gestisce più

tipi di token in un singolo contratto. Tramite questo protocollo sia i token fungibili che

non fungibili sono definiti con un id: l’id dei token fungibili è unico per tutti. Con gli

smart contract che seguono questo protocollo è possibile trasferire più tipi di token in

una unica transazione (non possibile con i precedenti due che richiedono una transazione

per tipo) risultando molto più efficiente.

32

Una caratteristica particolare di questo protocollo è che introduce anche la possibilità di

creare Token semi-fungibili: quando questi token vengono creati si comportano come

token fungibili (indistinguibili tra loro) e quindi intercambiabili con altri token semi

fungibili. Può però essere trasformato in token NFT e diventare non fungibile. Una volta

che diventa non fungibile acquisisce delle caratteristiche uniche e non può più ritornare

ad essere fungibile.

5.4 Applicazioni pratiche degli NFT

La tecnologia NFT ha ricevuto, sin dalla sua creazione, un forte seguito dovuto in parte

dalla tendenza di mercato e in parte dall’interesse che questa nuova tecnologia ha

suscitato in molti. Ha trovato quindi utilizzo in molti campi.

Il primo e forse più famoso è quello dell’arte digitale. Un artista crea un’opera e ha la

possibilità di venderla in formato digitale tramite la creazione di uno o più NFT. In

questo modo può garantire l’unicità o la rarità della sua opera. Un fattore interessante di

questa applicazione è che l’autore può decidere di vendere l’NFT all’effettivo

proprietario dell’opera mentre l’opera reale può essere esposta in un museo ed essere

fruibile da tutti.

Gli NFT sono anche usati nel mondo del gaming, specialmente nel mondo del gaming

online per creare degli asset unici. Questo porta a meccanismi di compravendita tra i

giocatori direttamente nel gioco, offrendo così un’sperienza ancora più immersiva:

l’oggetto della transazione è effettivamente un oggetto reale, unico e tracciabile, non

duplicabile dagli sviluppatori o dall’azienda che lo gestisce.

Nel settore musicale, molti artisti hanno deciso di seguire la moda degli NFT e di

associare ai loro album o ad alcuni pezzi musicali un NFT. Anche il mondo della moda

utilizza questa tecnologia in abbinamento a nuove collezioni. Tra i tanti esempi troviamo

marce di moda importante come la “Nike” con le “Nike CryptoKicks” ovvero scarpe da

ginnastica completamente digitali personalizzabili; “Dolce & Gabbana” con la

collezione “Genesi”, una collezione di vestiti in parte fisici e in parte digitali collegati

tramite NFTs. Non da meno è il settore dell’automotive, in particolare in auto di lusso.

Nel 2022 fu venduto al prezzo di oltre 1,6 milioni di dollari, un modello di Lamborghini

Ventador insieme a un NFT creato dalla collaborazione tra Krista Kim, Steve Aoki e

INVNT GROUP.

33

5.5 Problematiche degli NFT

Nonostante il potenziale offerto dalle possibilità di creare degli oggetti unici e

distinguibili tra loro nel mondo digitale questo non è esente da rischi e problematiche.

In primo luogo, essendo un mercato recente, complesso dal punto di vista del

funzionamento e non molto conosciuto, ha attirato molti truffatori. Si possono quindi

trovare finti NFT spacciati come se fossero creati da artisti famosi oppure bolle

speculative che cercano di far salire il prezzo il più in fretta possibile senza che ci sia un

valore dietro l’opera (ad esempio NFT senza validi diritti d’autore). La maggior parte

dei siti che vende NFT non si preoccupa di verificare l’autenticità delle opere

principalmente a causa della sua complessità.

Di seguito sono elencate le principali problematiche che si possono individuare e i

relativi esempi pratici:

1. Mancanza di una verifica sull’autenticità

L’NFT è un oggetto unico e distinguibile ed è possibile identificarlo grazie alla

blockchain. Questa affermazione, tuttavia, non è applicabile al suo autore: chi genera

un NFT potrebbe spacciarsi per un artista o un cantante famoso, creando un falso. È

il caso di Bansky (street artist americano) nel 2021: un truffatore ha creato un NFT

spacciandolo per un’opera dell’artista che ha poi rivenduto per più di 300.00 dollari.

Anche senza spacciarsi per un artista è facile, tramite l’anonimato, escogitare molte

tipologie di truffe.

Nel 2022, per esempio, venne annunciata una collezione di NFT chiamati “Frosties”,

che garantiva delle grosse offerte e benefici ai loro possessori. Questo generò una

grossa aspettativa sul progetto e in molti iniziarono ad acquistare i suoi NFT. Una

volta raggiunta la cifra di oltre un milione, il progetto fu completamente

abbandonato, tutte le pagine web, i social media e ogni elemento che riguardasse il

progetto vennero chiusi e gli autori scomparirono con i soldi. La scarsa

regolamentazione e anche la molta inesperienza tecnica di chi compra e si interessa

negli NFT comporta una serie di ulteriori truffe come phishing, furto di NFT, ecc..

2. Valore degli NFT

Il reale valore dell’NFT è molto difficile da calcolare, perché si può paragonare ad

un’opera d’arte. Il suo valore equivale a quanto qualcuno è disposto a spendere,

raramente ha un corrispettivo reale. Questo può portare a delle grosse bolle

speculative o anche al fenomeno del “Wash Trading”: in questo caso compratori e

venditori continuano a rivendere e comprare lo stesso token aumentandone sempre

di più il prezzo così da poi rivenderlo a una parte terza ad un prezzo gonfiato.

34

3. Diritti di acquisto sull’opera

Con l’acquisto dell’NFT spesso si può creare confusione su che cosa effettivamente

si stia acquistando. Gli NFT possiedono standard tecnici che regolano le funzionalità

del token, ma non hanno uno standard definito di cosa debbano rappresentare. Se

non specificatamente concordato nel contratto d’acquisto, comprando un NFT legato

a un opera non si sta effettivamente comprando i diritti d’autore dell’opera ma

solamente un certificato digitale unico. Possedere un NFT non significa quindi

automaticamente possedere l’elemento a cui è legato. Questo può diventare un

problema se si vuole utilizzare l’opera dell’NFT per attività coperte da copyright.

4. Dipendenza da link esterni alla blockchain

Solitamente ad un NFT viene collegato un elemento, la maggior parte delle volte è

una risorsa (un’immagine o un documento) che viene storato su db non all’interno

del meccanismo di tracciabilità della blockchain. La risorsa sul DB con l’NFT

solitamente è collegata tramite un link URL, che porta alla risorsa sul DB. Si

consideri, a titolo esemplificativo, un NFT che sia collegato ad un’immagine storata

su un DB che si trova su un server privato e che quindi l’NFT abbia l’url

dell’immagine al suo interno. Qui, la blockchain dà la certezza che il link nell’NFT

non cambierà mai, ma non si può dire lo stesso su come il Db possa essere

modificato. Se l’immagine viene sostituita con un'altra o persino cancellata, il link

presente sull’NFT anche se non è stato modificato, punterà a qualcosa di diverso.

5. Vuoti normativi:

Gli NFT, così come in generale la tecnologia delle blockchain, sono relativamente

recenti. Di conseguenza, la loro creazione e la loro compravendita non è regolata

correttamente. Un’ulteriore problematica è che i diversi paesi nel mondo possono

avere regole eterogenee sulla loro identificazione e gestione, comportando difficoltà

e disuguaglianze soprattutto nella compravendita internazionale.

6. Obsolescenza della blockchain

Una volta acquistato un NFT, mantiene un valore finché c’è interesse nel determinato

NFT e contemporaneamente finché la blockchain su cui risiede ha una community

che la utilizza. Se questa blockchain inizia a diventare menoutilizzata per svariati

motivi come la nascita di nuove blockchain o semplicemente perché l’interesse in

quella determinata tecnologia va scomparendo, l’NFT rimarrà senza valore poiché

intrinsecamente legato all’interesse della blockchain. Quindi, il rischio è di pagare

molto per un elemento il cui valore può rapidamente decrescere.

35

5.6 Risvolti legali NFT

Associare un’opera ad un NFT prevede una serie di considerazioni a livello legale che

è importante quanto meno accennare senza entrare nei dettagli più tecnici. Associare

un’opera ad un NFT non garantisce automaticamente di avere tutti i diritti d’autore

sull’opera stessa.

Possiamo evidenziare 4 diritti riconosciuti dalla legge a livello europeo che possono

influenzare il valore dell’NFT stesso.

o Diritto di riproduzione: il diritto di copiare l’opera

o Diritto di elaborazione: il diritto di autorizzare modifiche, adattamenti o opere

derivate.

o Diritto di messa a disposizione del pubblico: diritto di rendere accessibile l’opera

al pubblico

o Diritto di distribuzione: diritto di mettere in commercio l’opera.

È importante quindi quando si acquista un NFT, comprendere bene cosa si sta

acquistando. Soprattutto se è legata ad un’opera fisica. Per il progetto in questione questi

risvolti sono toccati marginalmente, ma è comunque parte integrante dell’obbiettivo

finale. Come vedremo nella soluzione proposta è prevista la presenza di un’azienda terza

che opera anche da intermediario tra creatore ed acquirente. Il costituire un mercato di

NFT gestito da questa da un’azienda può rendere più facile il normare questo genere di

problemi. È possibile infatti specificare nel contratto di vendita dell’NFT quali diritti si

stanno acquistando e questo può dipendere da opera ad opera

5.7 Sviluppo del proof of concept

Lo scopo del progetto consiste quindi nel costituire una piattaforma di compravendita

di NFT affidabile che possa essere un punto di riferimento per artisti o esperti. Per fare

ciò s’intende costituire un ecosistema di tecnologie che permetta di superare alcune

criticità elencate nei capitoli precedenti.

Gli obbiettivi principali sono:

a) Gestione dell’autenticazione dell’opera da legare all’NFT esterno alla blockchain

b) L’implementazione di un meccanismo di autenticazione documentale per garantire

l’originalità dell’opera

c) Creazione dell’NFT tramite smartcontract.

d) Rendere persistenti le opere digitali esterne alla blockchain

e) Abilitazione alla multichain

Le opere da associare ad un NFT possono essere di due tipologie:

36

a) Completamente digitali: in questo caso un artista intende proporre un opera

completamente digitale (come un poster digitale).

b) Con un corrispettivo fisico: in alternativa c’era la possibilità di creare un NFT

con un corrispettivo fisico. Ad esempio un antiquario può voler riprodurre un

oggetto digitale che rappresenti un’oggetto (ad esempio una mappa antica) per

essere poi venduta insieme all’opera o separatamente.

Una volta individuata la categoria dell’NFT si procede in due maniere distinte.

Nel caso di un’opera digitale, questa viene caricata su un sistema di storage separato

dalla blockchain, con la possibilità di essere salvato in maniera distribuita o

centralizzata. I riferimenti a questo vengono inseriti all’interno dei metadati dell’ NFT

al momento del minting.

Nel caso di opere fisiche invece, è richiesto un passaggio in più. L’opera deve essere

autenticata da un ente qualificato, come una galleria d’arte o un antiquario: questo può

emettere le certificazioni di autenticità dell’opera, digitalizzarle e firmarle con una firma

digitale. A questo punto tutta la documentazione di veridicità dell’opera viene caricata

su uno storage, nelle stesse modalità scelte per l’opera digitale e mintato l’NFT. In

questo caso il passaggio in più richiede per l’ente qualificato di possedere una firma

digitale per poter firmare la documentazione che attesta la veridicità dell’opera.

Il sistema di storage potrebbe essere deciso all’utente al momento della creazione

dell’NFT, consentendo la scelta tra un sistema centralizzato o distribuito. In ogni caso

di storage decentralizzato, la permanenza dei dati esterni alla blockchain Ethereum

verrebbe garantita dall’utilizzo di un'altra tecnologia blockchain: Filecoin.

Si intendono anche proporre delle possibili soluzioni per la possibilità di implementare

il passaggio da una blockchain a un'altra con l’utilizzo della blockchain Polkadot.

Nei seguenti capitoli verrà per prima introdotta la firma digitale, necessaria per il

secondo caso in esame. Successivamente vengono trattate le tecnologie e i metodi per

poter garantire la persistenza dei dati e il passaggio cross-chain.

Infine viene proposto un esempio di smart-contract sviluppato in Solidity che integri le

funzionalità descritte.

37

6.0 Firma Digitale

La firma digitale è un’applicazione utilizzata per garantire l’autenticità della firma in

formato digitale. Il concetto è solitamente utilizzato per i documenti ma la tecnologia su

cui si basa e che verrà trattata in questo paragrafo, viene utilizzata in molti ambiti della

crittografia e si può applicare con efficacia anche in questo caso di studio.

6.1 Crittografia

Quando si parla di crittografia bisogna tenere a mente tre elementi:

4. Il “messaggio” che si vuole crittografare

5. La chiave segreta che viene utilizzata per codificare l’elemento

6. L’algoritmo che definisce il modo in cui la chiave segreta e il messaggio vengono

combinati ottenendo il risultato crittografato

Una volta che il messaggio è crittato tramite la chiave segreta e l’algoritmo, è possibile

decifrarlo, recuperando il messaggio originale. È quindi importante che la chiave segreta

rimanga tale perché la cifratura sia valida, infatti chiunque sia in possesso della chiave

segreta può decifrare il messaggio.

Esistono due categorie di crittografia: simmetrica e asimmetrica. La differenza tra le due

sta nell’utilizzo della chiave segreta.

Crittografia simmetrica: la crittografia simmetrica si basa sull’utilizzo di un’unica

chiave che chi codifica e decodifica devono condividere. È il metodo perfetto per

codifiche locali, come la cifratura di dischi rigidi, ma viene anche utilizzato per le

comunicazioni cifrate (spesso in combinazione con la crittografia asimmetrica).

L’algoritmo più utilizzato per questo tipo di codifica è l’AES.

L’utilizzo di una singola chiave lo rendono il metodo più semplice e veloce, tuttavia vi

è il problema di come condividere la chiave in modo sicuro. Per ovviare a questo

problema, si sono studiate delle soluzioni come il protocollo Diffie-Hellman che

consente la generazione di una chiave partendo da valori comuni pubblici. In questo

modo, due utenti possono concordare la chiave tramite canali non sicuri ma senza mai

condividere la chiave segreta.

La crittografia simmetrica presenta un ulteriore problema quando la comunicazione

deve avvenire tra più utenti. Infatti, se ci sono n utenti serviranno n(n-1)/2 chiavi per

poter garantire la comunicazione sicura tra tutti quanti (una chiave diversa per ogni

coppia).

Crittografia asimmetrica: la crittografia asimmetrica si basa invece su due chiavi

distinte, una privata e una pubblica. Queste due chiavi sono generate tramite metodi

matematici in modo tale che le due siano complementari e quindi ciò che viene

codificato con la chiave privata può essere decodificato solo dalla chiave pubblica, e

viceversa. In questo modo è necessario che solo la chiave privata rimanga segreta mentre

la chiave pubblica viene solitamente resa disponibile a tutti gli utenti. Non avviene

38

quindi mai il passaggio della chiave segreta rendendo il metodo molto più sicuro della

crittografia simmetrica. Di contro, la generazione delle chiavi e la codifica/decodifica

sono più lenti e complessi.

I due algoritmi più utilizzati per la crittografia sono i seguenti.

a) Rivest–Shamir–Adleman (RSA): alla base vi è l’utilizzo dei numeri primi e la

difficoltà nel fattorizzarli.

Esempio di meccnaismo di cifratura e decifratura RSA

1. Generazione delle chiavi

Presi due numeri primi:

p = 5

q = 11

Calcoli:

1. n = p * q = 5 * 11 = 55

2. φ(n) = (p-1)(q-1) = 4 * 10 = 40

3. Preso e = 3, che è coprimo con 40

4. Si trova d tale che 3 * d ≡ 1 (mod 40).

 → d = 27, perché 3 * 27 = 81 ≡ 1 (mod 40)

Chiavi finali:

 - Chiave pubblica: (n, e) = (55, 3)

 - Chiave privata: (n, d) = (55, 27)

2. Cifratura

Messaggio: m = 12 (con 0 ≤ m < n)

Calcoli: c = m^e mod n = 12^3 mod 55

 - 12^2 = 144 ≡ 34 (mod 55)

 - 12^3 = 34 * 12 = 408 ≡ 23 (mod 55)

Risultato: messaggio cifrato c = 23

3. Decifratura

m = c^d mod n = 23^27 mod 55

Si riducono i calcoli:

39

 - 23^2 = 529 ≡ 34 (mod 55)

 - 23^4 = 34^2 = 1156 ≡ 1 (mod 55)

 - 27 = 4 * 6 + 3 → 23^27 ≡ (23^4)^6 * 23^3 ≡ 1^6 * 23^3 (mod 55)

 - 23^3 = 782 ≡ 12 (mod 55)

Risultato: messaggio decifrato m = 12

4. Conclusione

 - Messaggio originale: m = 12

 - Cifrato: c = 23

 - Decifrato: m = 12 (coincide con l’originale)

Legenda:

φ(n) – funzione di Eulero

mod n – modulo di n

≡ – congruente

b) Elliptic Curve Cryptography (ECC): basato su operazioni sul campo ellittico.

Più efficiente del RSA.

Questo tipo di crittografia offre diverse applicazioni che variano in base alla

direzione in cui viene utilizzata la codifica, ovvero se si cifra con la chiave

pubblica o con la chiave privata.

Inoltre, l’utilizzo della crittografia asimmetrica consente di ottenere diverse proprietà

fondamentali per la sicurezza delle comunicazioni digitali.

Confidenzialità: serve per passare un’informazione segreta al possessore della chiave

privata. La codifica avviene con la chiave pubblica e la decodifica con la chiave privata,

così si ha la certezza che solo il destinatario la possa leggere. Nei casi di comunicazione

bidirezionale è necessario che mittente e destinatario possiedano due coppie di chiavi

pubbliche e private, così che rispettivamente possano codificare il messaggio con una

chiave pubblica ed essere sicuro che solo l’altro interlocutore la potrà leggere.

Autenticità: questa applicazione viene chiamata “firma digitale”. La crittografia avviene

con la chiave privata quindi, chiunque in possesso della chiave pubblica può

effettivamente essere sicuro che un certo messaggio sia stato cifrato proprio dal

possessore della chiave privata. Questo metodo, oltre a garantire che la provenienza sia

l’utente possessore della chiave privata (solo lui può averla codificata) può anche

garantire l’integrità del messaggio e il non ripudio.

Ovvero:

40

• Autenticità: solo il possessore della chiave privata può aver firmato il messaggio.

• Integrità: il destinatario non può modificare il messaggio firmato in nessun modo.

• Non ripudio: il mittente non può ripudiare un messaggio firmato perché lui è

l’unico possessore della chiave.

Quest’ultimo utilizzo della crittografia asimmetrica è un elemento importante che è

possibile applicare anche nel sistema di autenticità degli NFT.

6.2 Certificati Digitali

I certificati digitali sono dei documenti elettronici necessari per associare una chiave

pubblica a una certa entità reale. Questo è necessario perché la crittografia con chiave

pubblica e privata non è sufficiente per garantire l’identità del firmatario. Il meccanismo

di crittografia asimmetrica garantisce che solo il proprietario della chiave privata abbia

firmato il documento ma non ci dà informazioni sulla sua vera identità.

I certificati digitali fanno parte di un sistema più ampio chiamato PKI (Public Key

Infrastacture), ovvero l’infrastruttura che permette la gestione e l’utilizzo dei certificati

stessi e, più in generale, di comunicare tra utenti e macchine in modo sicuro su Internet,

verificandone l’identità.

Al centro della PKI ci sono le Certification Authority. Queste sono organizzazioni terze

e fidate che rilasciano i certificati digitali per le coppie di chiavi, garantendo così

l’identità del titolare e l’affidabilità del sistema. Inoltre, le CA sono responsabili di

validare l’autenticità di un certificato.

Il funzionamento è il seguente: la CA valida l’identità del richiedente. La validazione

dipende dal livello di sicurezza del certificato richiesto. Una volta verificata l’identità,

si procede con l’assegnazione della chiave pubblica e privata. Questo può avvenire in

due modalità: il richiedente fornisce la propria chiave pubblica dimostrando di possedere

la chiave privata; oppure è la CA stessa a generare chiave pubblica e chiave privata.

Completata questa parte, la CA emette effettivamente il certificato e lo firma

digitalmente con la sua chiave. Procede quindi con la pubblicazione del certificato nelle

repository pubbliche, rendendolo così accessibile a chi deve verificarne la validità. La

CA ha anche la possibilità di revocare dei certificati nel caso questi non siano più validi.

Esistono due tipi di CA:

a. Root CA: sono le CA di partenza per tutto il sistema PKI, il loro certificato è auto

firmato perché non esistono CA superiori. Sono il fulcro della fiducia di tutto il

sistema dei certificati. Per questo motivo, devono essere molto ben protette:

solitamente non vengono esposte online e sono custodite in ambienti protetti.

Non emettono i certificati direttamente agli utenti finali ma li emettono solamente

per altre CA così da creare un layer di mezzo e aumentare la sicurezza.

41

b. CA intermedie: sono le CA che fanno parte del layer intermedio. Il loro certificato

viene rilasciato dalle Root CA e si occupano di emettere i certificati per i soggetti

richiedenti. Queste, a loro volta, possono avere sotto di sé altre CA intermedie,

aumentando così i layer e incrementando i livelli di sicurezza del PKI. Se viene

compromessa una CA intermedia infatti è sufficiente revocare il suo certificato

(e di conseguenza tagliare via il ramo dei certificati generati da questa CA) senza

compromettere l’intera rete. Creare delle CA intermedie permette anche di

categorizzarle: spesso nella pratica si usano CA separate per scopi specifici, ad

esempio, CA dedicate ai certificati per la firma digitale e altre per i certificati

usati nel protocollo TLS.

6.3 Applicazione della firma nel caso di NFT

Applicare una firma digitale ad un NFT equivale alla sottoscrizione di un documento

conferendogli di conseguenza le caratteristiche di autenticità, non ripudio e integrità. Se

l’integrità era già fornita dal sistema delle blockchain, lo stesso non si può dire per le

prime due proprietà.

Di seguito vengono illustrati i metodi possibili per firma digitale su NFT.

a) Firma tramite metadati: il creatore può allegare una firma digitale nel campo

dei metadati dell'NFT, come una prova della creazione dell'opera. La firma può

essere una rappresentazione crittografica che dimostra che la chiave privata del

creatore è stata utilizzata per creare l'NFT.

b) Firma tramite smart contract: un altro approccio potrebbe essere l'uso di uno

smart contract personalizzato per "firmare" l'NFT. In questo caso, l'NFT potrebbe

includere una funzione che certifica che il creatore ha approvato la creazione e

l'emissione dell'NFT tramite una firma digitale legata al suo wallet.

c) Creazione di un hash dell'oggetto fisico: se un NFT è legato a un oggetto fisico,

come una scultura o un'opera d'arte, il creatore potrebbe creare un hash univoco

dell'oggetto (ad esempio, un'immagine dell'oggetto o una descrizione digitale) e

firmarlo digitalmente con la sua chiave privata. Questo hash verrebbe poi

utilizzato come riferimento nell'NFT.

6.4 Wallet

La crittografia asimmetrica è anche alla base della tecnologia blockchain. Infatti, tutte

le operazioni crittografiche (firma di un blocco, validazione dei blocchi presenti,

effettuare una transazione ecc…), vengono effettuate tramite l’utilizzo delle chiavi

private e delle chiavi pubbliche. Non solo i nodi validatori, ma qualsiasi utente della

blockchain ha necessità di avere un wallet. Questi contengono la chiave privata con cui

42

ci si autentica sulla blockchain e sono alla base di tutte le operazioni.

È importante quindi, specificare che i wallet contengono unicamente le chiavi per

autenticarsi e non la criptovaluta, i token o gli NFT che rimangono sempre e solamente

salvati sulla blockchain.

Esistono due categorie di wallet:

1. Wallet custoditi: sono wallet forniti da servizi terzi che conservano le credenziali

dell’utente, alle quali è possibile accedere tramite internet e utilizzarle come un

servizio web. Ci si collega quindi al sito del custodial provider tramite il quale si

può interagire con la blockchaine.

2. Non custodial wallet: questi invece, non sono custoditi da una terza parte e sono

totale responsabilità dell’utente. Possono essere di varie tipologie, come

applicazioni desktop o supporti fisici come chiavette USB. Questi permettono di

avere una maggiore privacy perché non vengono mai condivisi con nessuno ma

tutta la gestione della loro sicurezza e segretezza è demandata all’utente.

43

7. Persistenza degli NFT

Com’ è stato detto precedentemente, una volta che un NFT viene caricato sulla catena

questo rimane immutabile. Per efficienza della blockchain stessa, è sconsigliato caricare

l’opera digitale direttamente sulla blockchain ma le best practices prevedono di caricare

solamente i metadata riferiti all’opera e di mantenere fisicamente quest’ultima in uno

store separato, raggiungibile tramite un indirizzo sull’NFT. Questo mantenimento

esterno alla catena però non garantisce che lo store non venga modificato.

A titolo esemplificativo, si consideri un dipinto con la sua cornice. Nell’universo

blockchain, l’NFT rappresenta la cornice: le caratteristiche di immutabilità, tracciabilità,

e possesso rimangono sulla cornice e non vengono trasferite al dipinto stesso. Questo

significa che la tela potrebbe venire sostituita senza che le cronice venga modificata. Si

è reso necessario quindi pensare a una soluzione che garantisse la corretta associazione

e integrità dell’opera digitale rispetto al relativo NFT.

Da quanto detto, emergono quindi due distinti problemi: l’immutabilità dell’opera sullo

store esterno e la gestione dello store. Quest’ultima è un problema non indifferente

poiché il valore dell’NFT è legato indistricabilmente all’opera associata. La mancanza

di garanzie sullo store che lo mantiene può incidere sul valore e sulla fiducia dell’NFT

stesso. A fronte di questa problematica, può essere utilizzato come soluzione alternativa

un sistema di storage distribuito.

7.1 IPFS

InterPlanetary File System o IPFS, è un protocollo peer to peer strutturato per la gestione

e condivisione dei dati in modalità decentralizzata e sicura. Solitamente si accede alla

maggior parte delle risorse in internet tramite protocollo HTTP che è basato sulla

posizione delle risorse. In HTTP si arriva alla risorsa tramite un URL che rappresenta il

percorso gerarchico della struttura della rete.

Per esempio: http://host/dir1/dir2/resource

Qui, si può leggere dal path la posizione della resource all’interno di HOST (host

contiene dir1 che contiene a sua volta dir2 e resource si trova all’interno di questa). Il

path è unico perché con quell’indirizzo si potrà recuperare solamente quella risorsa.

Il protocollo http è quindi centralizzato perché ha necessità di avere una posizione

specifica nella rete (host) per poter sviluppare il path gerarchico. Se l’host non è

raggiungibile per dei malfunzionamenti della rete la risorsa diventa inaccessibile.

Con l’IPFS invece, si abbandona il concetto di posizione-centrico passando a un modello

http://host/dir1/dir2/resource

44

contenuto-centrico. Per recuperare una risorsa non è importante dove si trova ma cosa

si cerca.

7.1.1 Caratteristiche dell’IPFS

Tra le principali caratteristiche di IPFS vi sono:

a) Verificabilità: IPFS utilizza funzioni di hash per rappresentare i dati. In questo

modo è possibile verificare l’autenticità e l’integrità dei dati salvati,

proteggendoli da manipolazioni malevole.

b) Resilienza: come riportato nell’introduzione, in caso di malfunzionamento

della rete la risorsa può diventare inaccessibile. Se il nodo della rete che

possiede fisicamente la risorsa ha un disservizio non è più possibile

raggiungerla. Questo è il caso di un single point of failure: l’accessibilità alla

risorsa è completamente dipendente dalla salute dell’host che la possiede. In

IPFS si supera questo problema: il malfunzionamento di uno o più nodi della

rete non impatta sul funzionamento della rete intera. Se anche un singolo nodo

sull’intera rete possiede la risorsa è ancora possibile recuperarla.

c) Decentralizzazione: i dati sono distribuiti in maniera decentralizzata su tutti i

nodi della rete riducendo l’utilizzo dei server centralizzati (principale

problema dei single failure point).

7.1.2 Funzionamento

Quando i dati vengono caricati su IPFS, la risorsa viene suddivisa in blocchi, ogni blocco

viene “hashato” e gli viene assegnato un Content IDentifier (CID). Il CID è unico ed è

ricavato solitamente combinando l’hash del file e il suo codec, ovvero l’etichetta che ne

descrive la struttura dati.

Il protocollo IPFS si appoggia al modello IPLD (InterPlanetary Linked Data) ovvero un

ecosistema di specifiche e strutture dati che permettono la decentralizzazione delle

informazioni e la loro tracciabilità. Secondo questa struttura, i dati vengono separati in

blocchi organizzati in grafi aciclici e collegati tra di loro tramite i CID. I grafi prodotti

dal modello sono dei Merkle DAG con uno specifico CID root. Il CID root sostituisce

quindi il path dell’http e diventa l’identificativo univoco della risorsa nel sistema.

Il Merkle DAG possiede 3 caratteristiche:

a) È direzionato: i vari nodi del grafico sono collegati tra loro tramite archi orientati

che indicano una direzione nella dipendenza tra nodi. Nel caso d’uso IPFS vi è

45

una gerarchia tra i nodi ma in generale non è necessaria (esempio di due nodi con

lo stesso figlio).

b) È aciclico: non presenta cicli, ovvero un nodo non può mai direzionare a un suo

predecessore.

c) Utilizza funzioni Hash: ogni nodo è elaborato tramite a una funzione di hash,

ottenendo quindi per ciascuno un identificativo (CID). Tramite il CID ogni nodo

è riconoscibile in modo univoco ed immutabile.

È necessario fare distinzione tra il concetto di Merkle DAG e Merkle tree introdotto

precedentemente: entrambi condividono l’utilizzo delle funzioni di hash sui nodi ma

differiscono nella forma e negli usi pratici.

Il Merkle tree è una struttura ad albero binario in cui ogni nodo interno contiene l’hash

dei suoi figli e tutti i dati si trovano nei nodi foglia.

Il Merkle DAG, invece, è un grafo diretto aciclico dove i nodi possono avere più genitori

e le strutture non devono rispettare vincoli di bilanciamento o binarietà. Ogni nodo è

identificato da un hash del suo contenuto (inclusi i link ai figli) e può essere condiviso

da più percorsi nel grafo. Quindi, il Merkle tree è una sottocategoria del Merkle DAG

con vincoli strutturali più rigidi.

Il funzionamento vero e proprio del protocollo si divide in 3 fasi: content addressing,

providing e retriving.

Content Adressing: questa fase avviene a livello locale sul primo nodo che effettua il

caricamento. In questo step, il file viene diviso in più blocchi, ognuno dei quali viene

“hashato” ottenendo un CID che sarà univoco per ogni blocco. L’esatto procedimento

di separazione dipende dal formato del file caricato.

Providing: in questa operazione ogni nodo indica agli altri nodi della rete che possiede

un determinato CID (una determinata risorsa). Per fare questo, aggiorna la DHT

(Distributed Hash Table) in cui vengono salvate le informazioni che indicano per ogni

peer i CID che conserva. Questa operazione deve essere fatta periodicamente perché

ogni elemento nella DHT ha un “Time To Live” e dopo questo tempo viene scartato.

Ogni nodo ha una porzione della DHT.

Retrieving: questa è l’operazione che avviene quando un nodo vuole recuperare un file

dalla rete. Si appoggia alla DHT per trovare quale peer possiede i CID a cui è interessato.

La DHT nei nodi, non copre solitamente l’intera rete quindi, se i nodi contattati non

possiedono il CID richiesto inoltrano la richiesta ai nodi della propria DHT. A questo

punto, contatta tutti i peer recuperati chiedendo i CID corrispondenti in maniera iterativa

(protocollo BitSwap). Se li possiedono lo inviano, altrimenti rispondono in maniera

negativa. È possibile ricevere anche risposte negative perché le informazioni sulla DHT

possono essere vecchie (il peer non possiede più quel CID) o un peer che lo possiede

può essere offline. Il peer richiedente può così crearsi un mapping di quali nodi

46

invieranno precisi CID. Il nodo utilizza il Merkle DAG per sapere quali CID

compongono una risorsa e come mapparli.

Quando iniziano ad arrivare i vari blocchi, il peer li ricostruisce tramite il Merkle DAG.

I blocchi corretti vengono aggiunti correttamente, quelli che non rispettano il DAG

(modificati o corrotti) vengono scartati.

7.2 Filecoin

Com’è già stato anticipato, una risorsa rimane nella rete

finché almeno un nodo lo possiede localmente (“pinned”).

Se però tutti gli utenti la eliminano viene perso.

Riservare uno spazio locale per salvare i dati comporta dei

costi, inoltre non si ha la certezza che tutti gli utenti

intendano mantenere la risorsa salvata. Di conseguenza il

protocollo IPFS da solo non garantisce la persistenza dei

dati sulla rete ma si occupa solo della loro gestione e

distribuzione in modalità peer to peer.

Viene quindi introdotto Filecoin. Sviluppato anch’esso da Protocol Labs, è una

blockchain che utilizza le stesse tecnologie distribuite alla base di IPFS, come

l’indirizzamento tramite hash e la struttura dati IPLD, ma aggiunge un sistema di

ricompense per gli utenti che conservano i dati nel tempo.

Lo scopo di Filecoin è quindi ricompensare chi sta effettivamente conservando i file

caricati nel sistema. Deve ottenere la prova che il file sia effettivamente conservato da

un utente e che questo stia conservando esattamente il numero di copie che dichiara di

conservare (non quindi duplicare i dati localmente al momento della verifica).

Segue un esempio di processo con l’utilizzo di IPFS.

Quando un client desidera conservare una risorsa in maniera persistente all’interno

dell’ecosistema IPFS/Filecoin, il processo segue una serie di passaggi ben definiti.

In primo luogo, il file viene caricato su IPFS, generando così un CID che rappresenta in

modo univoco il contenuto digitale. Successivamente, il client stipula un accordo di

archiviazione (deal) con un miner, tramite il protocollo P2P di Filecoin. A questo punto,

il file viene trasmesso direttamente al miner attraverso diversi canali, come IPFS,

Bitswap o HTTP. Una volta ricevuto, il miner procede a replicare il file e a sigillarlo

mediante il protocollo di Proof-of-Replication (PoRep). Infine, il miner invia una prova

crittografica on - chain che dimostra di averlo replicato correttamente.

È importante notare che tutto il traffico dei dati di grandi dimensioni avviene off-chain,

direttamente tra i nodi della rete, mentre la blockchain memorizza esclusivamente le

prove crittografiche e i metadati, senza contenere i dati veri e propri. Questo approccio

consente di mantenere la sicurezza e l’integrità dei contenuti, ottimizzando l’efficienza

del sistema.

47

7.2.1 Funzionamento

I dati distribuiti sulla rete Filecoin vengono divisi in “sector” ovvero le unità base di

archiviazione su Filecoin.

Hanno una dimensione fissa di 32/64 GB e un tempo di vita limitato e prefissato. Il

tempo di vita equivale alla promessa degli storage minter di conservare il contenuto sul

proprio spazio di archiviazione per uno specifico periodo: inizialmente questo è di 18

mesi ma può essere rinnovato dal minter alla sua scadenza.

È quindi necessario una tipologia di validazione differente rispetto a quelle viste

precedentemente (Proof-of-work e proof of-stake).

Filecoin utilizza due diversi algoritmi per validare in modo efficace che gli utenti stiano

mantendo i dati sullo storage.

Il primo è Proof-of replication: si applica quando il miner riceve i dati da salvare sul

proprio storage. Quando riceve un sector lo sigilla tramite un algoritmo di PoRep (il

protocollo di Filecoin prevede lo Stacked DRG PoRep ma è previsto il passaggio al

Narrow Stacked Expander PoRep con miglioramenti delle prestazioni e una riduzione

dei costi). Un algoritmo di PoRep è un processo computazionale intensivo che permette

la creazione di un sector unico. I dati vengono cifrati e compressi più volte utilizzando

una “randomness”, creando una progressione di livelli di codifica dipendenti dalla

causalità stessa e dal contenuto codificato nei livelli precedenti. Durante questo

processo, chiamato sealing sector, vengono costruiti due Merkle tree: uno per i dati

originali e uno per i dati codificati.

La “randomness” è un elemento fondamentale per assicurare l’unicità del sector: questa

è imprevedibile, così che il minter non possa creare in anticipo la prova. In questo modo

rende il sector non manipolabile. È però necessario che sia anche verificabile. Filecoin

prevede due diverse sorgenti di randomness: DRAND e VRF.

Una volta completato il processo di sealing, il minter genera la PoRep proof, denominata

SNARK. Nello SNARK vengono passati:

1. SectorId: l’identificativo del sector sigillato

2. CommD: è il Merkle Root dei dati archiviati prima del processo di sigillatura

3. CommC: è il Merkle root costruito da ogni livello di codifica del processo

4. CommRLast: è il Merkle root dell’ultimo livello di codifica

5. CommR: è la concatenazione del commC e del CommR

Tramite lo SNARK la rete può validare rapidamente che il sector sia stato sigillato

correttamente e che quindi il minter stia effettivamente riservando dello spazio fisico

per quel sector.

Il secondo algoritmo è Proof-of-Spacetime. Come abbiamo detto Filecoin ricompensa

gli utenti che mantengono le risorse salvate nel tempo. Quindi oltre a provare che

48

effettivemante i minter abbiano riservato dello spazio univoco per le risorse, devono

dimostrare che lo continuano a mantenere anche nel futuro. Per dimostrarlo devono

superare due differenti prove:

1. WinningPoSt: ad ogni epoch l’algoritmo di validazione sceglie un numero

ristretto di candidati per la creazione dei nuovi blocchi. I minter scelti però, prima

di potersi aggiudicare la creazione, devono fornire una prova che stanno

effettivamente archiviando i sector che intendono proporre nel blocco. La finestra

temporale nella quale devono vincere la sdifa è molto ristretta così da non avere

il tempo di recuperare i dati da un altro nodo (data retrieval attack).

2. WindowPoSt: tutti i storage miners devono periodicamente presentare prove che

continuano a conservare tutti i settori promessi (ad esempio ogni 24 ore). Il

periodo è suddiviso in più “deadline” (es. ogni ~30 minuti) entro le quali occorre

rispondere. In caso di mancata prova si incorre in penalità.

Expected Consensus è l’algoritmo di validazione utilizzato da Filecoin. L’algoritmo

ogni 30 secondi (“epoch”), effettua un’elezione segreta di alcuni nodi partecipanti alla

creazione del nodo successivo (stabilito a 5). La lunghezza della epoch e il numero di

nodi eletti è una stima basata sulla probabilità che in quel lasso di tempo ci saranno un

certo numero di nodi che intendono proporre un blocco alla rete. L’elezione dei miner

avviene attraverso l’ElectionProof: i miner generano un ticket per provare che sono stati

eletti in quell’epoch. La generazione del ticket sfrutta le due sorgenti di “randomness”

di Filecoin: DRAND e VRF.

DRAND è un protocollo pubblico e distribuito per la generazione di valori casuali

verificabili e imprevedibili. I minter recuperano un random beacon generato dal

DRAND. Questo beacon sarà uguale per tutti per tutta l’epoch ed è necessario per la

verifica una volta eletti i nodi.

A questo punto passano il randomness, insieme alla loro chiave privata, come input della

sorgente di casualità VRF, eventualmente passando anche il ticket precedente così da

creare una correlazione tra i ticket.

Anche il VRF è una funzione verificabile di generazione di valori randomici basata sulla

dualità chiave pubblica e chiave privata. Viene utilizzato il VRF per generare un

ulteriore valore casuale passando come seed il randomness fornito dal DRAND. Tramite

la chiave pubblica tutti gli altri nodi possono verificare che non ci siano state

manipolazioni. Il valore estratto sarà un numero compreso tra 0 e 1 denominato “ticket”.

Più basso è il “ticket” e più probabilità si avrà di vincere. Il risultato del VRF infatti

viene messo a confronto con la probabilità di vincita del nodo. Quest’ultima è data dalla

formula 1-P[X=0] dove X è la distribuzione di Poisson con λ

λ = (potenza del nodo)/(potenza totale)*(numero di nodi estratti per epoch)

49

Come specificato sopra il numero di nodi estratti per “epoch” è di 5 per default. La

potenza del nodo invece è calcolata in percentuale in base a quanto spazio di

archiviazione ha messo a disposizione per la rete.

Se il numero estratto è più piccolo della probabilità di vincita allora si aggiudica la

creazione del blocco.

Poichè Filecoin si basa su un sistema probabilistico è soggetto ad attacco Sybil.

Un’attacco Sybil consiste nel dividere la propria potenza tra più sottoentità: distribuire

le risorse su più miner fittizi garantirebbe più probabilità di vittoria. La potenza sulla

rete è data dalla percentuale di spazio di archiviazione messo a disposizione.

Il WinCount, infatti, tiene conto di possibili vittorie multiple per un singolo nodo

rendendo inutile la divisione del peso su più entità. In questo modo il singolo nodo può

aggiudicarsi più vittorie per un singolo epoch. Infatti, se il numero estratto è molto basso

è possibile che sia inferiore a

 1-P[X=0]-P[X=1]

che equivale alla probabilità che 1 nodo vinca due estrazioni. La probabilità può andare

avanti con sempre un maggior numero di vittorie: in questo caso il Wincount sarà

sempre maggiore.

Una volta che il nodo ha vinto il round, gli altri nodi verificano con facilità che non

abbia barato: recuperano il random beacon specifico di quell’epoch, verificano che il

ticket generato da questo sia corretto tramite chiave pubblica e verificano anche il suo

WinCount.

A questo punto, tutti i nodi eletti, prima di proporre un blocco, devono vincere la sfida

WinningPost che è già stata specificata.

I blocchi proposti vengono raggruppati in “Tipset” e propagati nella rete. Poiché la

propagazione non è immediata, i nodi possono calcolare i blocchi successivi partendo

da tipset diversi. Il risultato è la creazione di catene divergenti. È necessario che ad un

certo punto i vari tipset vengano risolti in un'unica catena valida. I vari nodi quindi

quando ricevono un nuovo tipset lo confrontano con quello salvato in locale, scegliendo

quello più pesante. Il peso si calcola come:

Peso del tipset = ParentWeight + + (wPowerFactor[r+1] + wBlocksFactor[r+1]) * 2^8

dove:

• ParentWeight: è il peso cumulativo del tipset genitore.

• wPowerFactor[r+1]: basato sulla potenza di archiviazione. È una variabile che

cresce proporzionalmente in base logaritmica.

• wBlocksFactor[r+1]: basato sul numero di blocchi prodotti nel round corrente.

• 2^8: utilizzato per evitare perdita di numeri decimali nelle operazioni

50

Se ci sono due tipset con lo stesso peso allora vengono considerati i ticket dei blocchi

con punteggio più basso; se i primi due sono anch’essi uguali, si passa al secondo più

basso e così via.

In Filecoin esistono due tipologie di nodi che possono eventualmente sovrapporsi: i

miner, che sono coloro che propongono i blocchi della catena e che partecipano al

meccanismo di consenso, e i retrival node.

Questi sono necessari perché il sistema di Filecoin è pensato per premiare la

conservazione dei dati ma il recupero di questi può essere anche molto lento.

51

8. Polkadot

Polkadot è una blockchain che nasce con l’obbiettivo di

permettere l’interoperabilità tra diverse blockchain in

maniera semplice. Attraverso il suo network, infatti, è

possibile sviluppare blockchain che permettono

l’integrazione con quelle già esistenti.

Si basa su 3 elementi fondamentali:

1. La Relay Chain: è la rete blockchain strutturale di

Polkadot. Su questo layer vengono finalizzate le transazioni e avvengono tutte

le operazioni per garantire sicurezza e validità dei blocchi.

Poiché Polkadot ha, per sua struttura, necessità di essere molto veloce, la fase di

convalida delle transazioni aggiunte non avviene nel momento in cui il blocco

viene creato ma in un secondo momento. Questo permette di ridurre di molto il

tempo di creazione dei blocchi (a seguito dei risultati di alcuni test di

performance nel 2020 ha dimostrato di poter elaborare più di 1000 transazioni al

secondo).

2. Le para-chain: sono le blockchain che vengono sviluppate a partire dalla Relay-

Chain. Permettono di aggiungere funzionalità e soprattutto le compatibilità

necessarie per integrarsi con le altre blockchain esterne all’ecosistema Polkadot.

Mantengono però la sicurezza, garantita dalla Relay-Chain.

3. Bridge: questi sono gli elementi fondamentali per l’integrazione di diverse

blockchain. Permettono l’integrazione di transazioni tra le varie blockchain e il

passaggio di “valore” dall’una all’altra

Anche Polkadot utilizza il sistema di valiidazione POS. Inoltre, il fatto di possedere dei

DOT (token di Polkadot), permette di spenderli per poter prendere decisioni sulla rete.

Vi sono 3 tipologie di utenti.

I detentori di DOT: chiunque possieda dei DOT può spenderli per accettare o rifiutare

una modifica proposta sulla rete. Possono proporre loro stessi delle modifiche alla rete

(anche se il prezzo per farlo è elevato).

Il Consiglio: sono coloro che propongono le modifiche alla rete Polkadot. Vengono

votati dai detentori di DOT e una loro proposta di modifiche è meno costosa.

Il Comitato tecnico: sono i team che sviluppano attivamente codice su Polkadot.

Possono fare richieste speciali in caso di emergenza e sono nominati dal Consiglio.

Attraverso Polkadot è quindi possibile fare uscire un NFT dall’ecosistema Ethereum.

Per farlo si può utilizzare la parachain Moonbeam che è sviluppata appositamente per

essere compatibile con gli smartcontract di Ehtereum.

52

9. Sviluppo effettivo

Quello che il trattato vuole proporre è quindi un’ipotesi di sviluppo di un Marketplace

di NFT gestito da un’azienda che si fa da garante della gestione dei servizi e

dell’intermediazione tra i committenti degli NFT e i validatori delle opere. L’obiettivo

principale è creare un sistema sicuro, trasparente e verificabile dove la fiducia non è

legata all’azienda stessa ma è garantita dall’integrazione delle tecnologie sopra

descritte. L’azienda può eventualmente offrire servizi in supporto alle soluzioni

eccessivamente complicate che il creatore dell’NFT non intende adoperare (ad

esempio lo storage decentralizzato). In questo modo possono venire offerti servizi su

misura per le diverse richieste.

Di seguito viene riportato il codice dello smart-contract che implementa le funzionalità

necessarie e vengono analizzati i vari passaggi funzionali. Successivamente vengono

evidenziati alcuni punti aperti o criticità e proposte le opportune soluzioni tecniche.

9.1 Alcune informazioni per una corretta lettura del codice

Event e Function:

In Solidity ci sono due tipologie di metodi: Event e Functions. È importante distinguerle

per capire bene il loro utilizzo.

Le function servono per effettuare le logiche principali negli smart contract e sono le

uniche che possono apportare modifiche alla struttura della catena (aggiungere

transazioni, modificare variabili etc…)

Gli event invece, sono operazioni utilizzate principalmente per la comunicazione tra lo

smart contract e gli enti esterni alla catena e sono richiamabili solamente dallo smart

contract che le dichiara. Solitamente sono triggerate all’interno di una determinata

function. Un esempio pratico può essere la funzione “mint” dove viene creato un token

seguita dall’event notifyMint, che invia la comunicazione della creazione ad altri agenti.

Data Location:

Solidity permette 3 diversi livelli di data location per dare la possibilità allo sviluppatore

di gestire la memoria in maniera più efficace, anche perché l’utilizzo di memoria che

richiede transazioni sulla blockchain ha un costo.

• Storage: questa allocazione di memoria è un’allocazione permanente sulla

blockchain.

• Memory: questo tipo di allocazione è temporaneo a livello di funzione. Viene

allocato lo spazio solo per il periodo di elaborazione della funzione e poi viene

liberato.

53

• Calldata: ha la stessa funzione temporanea di “Memory” ma è uno spazio di sola

lettura. È utilizzato per allocare i parametri delle funzioni invocate.

9.2 Codice

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.17;

import "@openzeppelin/contracts/token/ERC721/ERC721.sol";

import "@openzeppelin/contracts/access/Ownable.sol";

import "@openzeppelin/contracts/utils/Counters.sol";

import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

contract ContrattoPoCNFT is ERC721, Ownable {

 using Counters for Counters.Counter;

 using ECDSA for bytes32;

 Counters.Counter private contatoreTokenId;

 struct InfoNFT {

 string riferimentoAsset;

 string riferimentoDoc;

 bool operaFisica;

 address certificatore;

 uint256 timestampCreazione;

 string tipoStorage;

 }

 mapping(uint256 => InfoNFT) public opereDigitali;

 mapping(address => bool) public isCertificatore;

 mapping(address => uint256) public nonceCert;

 constructor(string memory name_, string memory symbol_) ERC721(name_,

symbol_) { }

 function aggiungiCertificatore(address certificatore) external onlyOwner {

 require(certificatore!= address(0), "certificatore zero");

 isCertificatore[certificatore] = true;

 }

 function rimuoviCertificatore(address certificatore) external onlyOwner {

 isCertificatore[certificatore] = false;

 }

event NFTMintato(

 uint256 indexed tokenId,

54

 address indexed to,

 bool operaFisica,

 address indexed certificatore,

 string riferimentoAsset,

 string riferimentoDoc,

 string tipoStorage

);

function mintOperaDigitale(

 address to,

 string memory riferimentoAsset,

 string memory tipoStorage

) external returns (uint256) {

 require(bytes(riferimentoAsset).length > 0, "riferimentoAsset

richiesto");

 contatoreTokenId.increment();

 uint256 tid = contatoreTokenId.current();

 _safeMint(to, tid);

 opereDigitali[tid] = InfoNFT({

 riferimentoAsset: riferimentoAsset,

 riferimentoDoc: "",

 operaFisica: false,

 certificatore: address(0),

 timestampCreazione: block.timestamp,

 tipoStorage: tipoStorage

 });

 emit NFTMintato(tid, to, false, address(0), riferimentoAsset, "",

tipoStorage);

 return tid;

 }

function verificaCertificatore(

 address to,

 string memory riferimentoAsset,

 string memory riferimentoDoc,

 bool operaFisica,

 uint256 nonce

) internal view returns (bytes32) {

 return keccak256(

 abi.encodePacked(

 "\x19Ethereum Signed Message:\n32",

 keccak256(abi.encodePacked(to, riferimentoAsset,

riferimentoDoc, operaFisica, nonce))

)

);

 }

55

function mintOperaFisica(

 address to,

 string memory riferimentoAsset,

 string memory riferimentoDoc,

 string memory tipoStorage,

 address certificatore,

 bytes memory signature

) external returns (uint256) {

 // check dei requirement necessari

 require(bytes(riferimentoAsset).length > 0, "riferimentoAsset

richiesto");

 require(bytes(riferimentoDoc).length > 0, "riferimentoDoc richiesto

per opere fisiche");

 require(certificatore != address(0), "certificatore zero");

 require(isCertificatore[certificatore], "certificatore non

autorizzato");

 uint256 nonce = nonceCert[certificatore];

 bytes32 hash = verificaCertificatore(to, riferimentoAsset,

riferimentoDoc, true, nonce);

 address recovered = hash.recover(signature);

 require(recovered == certificatore, "firma non valida");

 // increment nonce per il certificatore che firma

 nonceCert[certificatore] = nonce + 1;

 contatoreTokenId.increment();

 uint256 tid = contatoreTokenId.current();

 _safeMint(to, tid);

 opereDigitali[tid] = InfoNFT({

 riferimentoAsset: riferimentoAsset,

 riferimentoDoc: riferimentoDoc,

 operaFisica: true,

 certificatore: certificatore,

 timestampCreazione: block.timestamp,

 tipoStorage: tipoStorage

 });

 emit NFTMintato(tid, to, true, certificatore, riferimentoAsset,

riferimentoDoc, tipoStorage);

 return tid;

 }

event RichiestoTrasferimentoBridge(

 uint256 indexed tokenId,

 address indexed owner,

 string blockchainTarget,

56

 string indirizzoTarget

);

 function burnForBridge(uint256 tokenId, string memory blockchainTarget,

string memory indirizzoTarget) external {

 require(_isApprovedOrOwner(msg.sender, tokenId), "non owner o

approved");

 address owner = ownerOf(tokenId);

 emit RichiestoTrasferimentoBridge (tokenId, owner, blockchainTarget,

indirizzoTarget);

 delete opereDigitali[tokenId];

 _burn(tokenId);

 }

 function mintFromBridge(

 address to,

 string memory riferimentoAsset,

 string memory riferimentoDoc,

 bool operaFisica,

 address certificatore,

 string memory tipoStorage

) external onlyOwner returns (uint256) {

 contatoreTokenId.increment();

 uint256 tid = contatoreTokenId.current();

 _safeMint(to, tid);

 opereDigitali[tid] = InfoNFT({

 riferimentoAsset: riferimentoAsset,

 riferimentoDoc: riferimentoDoc,

 operaFisica: operaFisica,

 certificatore: certificatore,

 timestampCreazione: block.timestamp,

 tipoStorage: tipoStorage

 });

 emit NFTMintato(tid, to, operaFisica, certificatore, riferimentoAsset,

riferimentoDoc, tipoStorage);

 return tid;

 }

function tokenArtwork(uint256 tokenId) external view returns (InfoNFT memory)

{

 require(_exists(tokenId), "token inesistente");

 return opereDigitali[tokenId];

 }

57

 function _baseURI() internal view virtual override returns (string memory)

{

 return "";

 }

 function tokenURI(uint256 tokenId) public view virtual override returns

(string memory) {

 require(_exists(tokenId), "token inesistente");

 return opereDigitali[tokenId].riferimentoAsset;

 }

}

9.3 Analisi Codice

pragma solidity ^0.8.17;

import "@openzeppelin/contracts/token/ERC721/ERC721.sol";

import "@openzeppelin/contracts/access/Ownable.sol";

import "@openzeppelin/contracts/utils/Counters.sol";

import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

L’utilizzo delle librerie OpenZeppelin permette di importare molte funzionalità utili,

sicure e già testate per la gestione dei token. Nel dettaglio le librerie indicate servono

per:

• ERC721.sol: contiene i metodi necessari ad implementare il protocollo ERC-721

• Ownable.sol: permette di limitare determinate funzionalità riservate solamente al

livello di autorizzazione all’owner

• Counters.sol: offre funzionalità utili per gestire contatori incrementali

• ECDSA.sol: utilizzato per la verifica delle signatures

contract ContrattoPoCNFT is ERC721, Ownable {

 using Counters for Counters.Counter;

 using ECDSA for bytes32;

 Counters.Counter private contatoreTokenId;

 struct InfoNFT {

 string riferimentoAsset;

 string riferimentoDoc;

 bool operaFisica;

 address certificatore;

 uint256 timestampCreazione;

 string tipoStorage;

 }

58

 mapping(uint256 => InfoNFT) public opereDigitali;

 mapping(address => bool) public isCertificatore;

 mapping(address => uint256) public nonceCert;

In questa sezione è definita la struttura dell’NFT con le informazioni utili per

gestire le logiche future.

• riferimentoAsset: indirizzo all’opera rappresentata. Come abbiamo detto l’idea è

di lasciare a chi compra la possibilità di decidere dove tenerlo ed eventualmente

se utilizzare una tipologia di storage centralizzato o distribuito. Potremmo quindi

avere un URL o anche un link IPFS.

• riferimentoDoc: questo elemento è facoltativo. In caso di opere d’arte fisiche

potrebbe essere necessario accompagnare un attestato di veridicità (ad esempio

un certificato). Questo contiene l’indirizzo alla documentazione specifica.

• operaFisica: booleano che indica se l’opera rappresentata è solamente digitale o

ha un corrispettivo fisico.

• certificatore: se è presente la documentazione che attesta la veridicità dell’opera

viene fornito l’indirizzo dell’ente certificatore di modo che si possa effettuare la

verifica on-chain della firma di quest’ultimo.

I due mapping invece sono la struttura dati dove vengono mappati rispettivamente:

• gli owner con l’NFT

• gli address degli autenticatori per l’opera rappresentata

 constructor(string memory name_, string memory symbol_) ERC721(name_,

symbol_) { }

Costruttore utilizzato al momento della creazione del contratto (deploy sulla

blockchain). Viene passato un nome e un simbolo per specificare il nome della

collection NFT. Richiama a sua volta il costruttore del contratto ERC721 per

implementare tutte le funzionalità del protocollo.

 function aggiungiCertificatore(address certificatore) external onlyOwner {

 require(certificatore!= address(0), "certificatore zero");

 isCertificatore[certificatore] = true;

 }

 function rimuoviCertificatore(address certificatore) external onlyOwner {

 isCertificatore[certificatore] = false;

59

 }

Sono le 2 funzioni per poter aggiungere o rimuovere i certificatori dalla lista di quelli

abilitati. Sono operazioni permesse solamente al proprietario dello smart contract

(onlyOwner). In questo modo solamente chi ha mintato lo smart contract può gestire i

certificatori. Può essere una logica utile da avere nel caso venga aggiunta una verifica

ulteriore di validità o eventualmente se qualche certificatore non sia più valido.

event NFTMintato(

 uint256 indexed tokenId,

 address indexed to,

 bool operaFisica,

 address indexed certificatore,

 string riferimentoAsset,

 string riferimentoDoc,

 string tipoStorage

);

function mintOperaDigitale(

 address to,

 string memory riferimentoAsset,

 string memory tipoStorage

) external returns (uint256) {

 require(bytes(riferimentoAsset).length > 0, "riferimentoAsset

richiesto");

 contatoreTokenId.increment();

 uint256 tid = contatoreTokenId.current();

 _safeMint(to, tid);

 opereDigitali[tid] = InfoNFT({

 riferimentoAsset: riferimentoAsset,

 riferimentoDoc: "",

 operaFisica: false,

 certificatore: address(0),

 timestampCreazione: block.timestamp,

 tipoStorage: tipoStorage

 });

 emit NFTMintato(tid, to, false, address(0), riferimentoAsset, "",

tipoStorage);

 return tid;

 }

Questa è la funzione per mintare un NFT senza corrispettivo fisico.

60

9.3.1 Creazione NFT e firma in caso di opera fisica:

function verificaCertificatore(

 address to,

 string memory riferimentoAsset,

 string memory riferimentoDoc,

 bool operaFisica,

 uint256 nonce

) internal view returns (bytes32) {

 return keccak256(

 abi.encodePacked(

 "\x19Ethereum Signed Message:\n32",

 keccak256(abi.encodePacked(to, riferimentoAsset,

riferimentoDoc, operaFisica, nonce))

)

);

 }

function mintOperaFisica(

 address to,

 string memory riferimentoAsset,

 string memory riferimentoDoc,

 string memory tipoStorage,

 address certificatore,

 bytes memory signature

) external returns (uint256) {

 // check dei requirement necessari

 require(bytes(riferimentoAsset).length > 0, "riferimentoAsset

richiesto");

 require(bytes(riferimentoDoc).length > 0, "riferimentoDoc richiesto

per opere fisiche");

 require(certificatore != address(0), "certificatore zero");

 require(isCertificatore[certificatore], "certificatore non

autorizzato");

 uint256 nonce = nonceCert[certificatore];

 bytes32 hash = verificaCertificatore(to, riferimentoAsset,

riferimentoDoc, true, nonce);

 address recovered = hash.recover(signature);

 require(recovered == certificatore, "firma non valida");

 // increment nonce per il certificatore che firma

 nonceCert[certificatore] = nonce + 1;

 contatoreTokenId.increment();

 uint256 tid = contatoreTokenId.current();

 _safeMint(to, tid);

61

 opereDigitali[tid] = InfoNFT({

 riferimentoAsset: riferimentoAsset,

 riferimentoDoc: riferimentoDoc,

 operaFisica: true,

 certificatore: certificatore,

 timestampCreazione: block.timestamp,

 tipoStorage: tipoStorage

 });

 emit NFTMintato(tid, to, true, certificatore, riferimentoAsset,

riferimentoDoc, tipoStorage);

 return tid;

 }

Questa funzione serve per mintare un NFT collegato a un’opera fisica e gestire la

firma da parte dell’ente certificatore.

La firma dell’opera avviene nei seguenti passaggi:

1. L’ente certificatore produce la documentazione ufficiale che ne attesta la

veridicità e la sottoscrive con una firma qualificata fornita da una CA

autorizzata. Questo passaggio avviene off-chain ed è necessario per dare una

valenza legale all’operazione.

2. La documentazione viene salvata su uno storage e si referenzia con l’indirizzo

nella riferimentoDoc dell’NFT.

3. Sempre l’ente certificatore a questo punto, genera un hash utilizzando il suo

indirizzo, l’indirizzo dell’asset, l’indirizzo della riferimentoDoc e un nonce; lo

firma con la chiave privata del suo wallet. Questo è necessario per validare

,anche sulla blockchain, che ciò che verrà salvato sull’NFT è quello che l’ente

certificatore ha firmato. Il nonce è un elemento importante per la sicurezza della

firma: il suo utilizzo permette di evitare l’attacco multi-sign aggiungendo un

elemento “casuale” ed unico così da non poter replicare la stessa firma

successivamente. Il nonce viene salvato nel mapping nonceCert.

4. L’NFT, a questo punto, può essere “mintato” tramite la function

mintOperaFisica. La funzione verificaCertificatore verifica al momento del

mint che i dati passati siano effettivamente ciò che l’ente validatore ha

certificato. Se dall’hash estrae la sua chiave pubblica allora è corretto e si può

procedere, altrimenti fallisce. Il doppio passaggio sotto la funzione keccak256

serve per preparare l’hash nel formato corretto per Ethereum. In alternativa, si

può usare la libreria ECDSA.sol sempre fornita da OpenZeppelin.

Naturalmente, le stesse operazioni per generare l’hash devono essere fatte

anche lato ente validatore.

62

9.3.2 Possibilità di passaggio crossChain

event RichiestoTrasferimentoBridge(

 uint256 indexed tokenId,

 address indexed owner,

 string blockchainTarget,

 string indirizzoTarget

);

 function burnForBridge(uint256 tokenId, string memory blockchainTarget,

string memory indirizzoTarget) external {

 require(_isApprovedOrOwner(msg.sender, tokenId), "non owner o

approved");

 address owner = ownerOf(tokenId);

 emit RichiestoTrasferimentoBridge (tokenId, owner, blockchainTarget,

indirizzoTarget);

 delete opereDigitali[tokenId];

 _burn(tokenId);

 }

 function mintFromBridge(

 address to,

 string memory riferimentoAsset,

 string memory riferimentoDoc,

 bool operaFisica,

 address certificatore,

 string memory tipoStorage

) external onlyOwner returns (uint256) {

 contatoreTokenId.increment();

 uint256 tid = contatoreTokenId.current();

 _safeMint(to, tid);

 opereDigitali[tid] = InfoNFT({

 riferimentoAsset: riferimentoAsset,

 riferimentoDoc: riferimentoDoc,

 operaFisica: operaFisica,

 certificatore: certificatore,

 timestampCreazione: block.timestamp,

 tipoStorage: tipoStorage

 })

 emit NFTMintato(tid, to, operaFisica, certificatore, riferimentoAsset,

riferimentoDoc, tipoStorage);

 return tid;

 }

63

In questa sezione è implementato il codice per gestire il passaggio su una catena

esterna e per immetterlo nuovamente su Ethereum.

burnForBridge deve essere richiamata dal possessore del token altrimenti fallisce.

Questa emette l’event verso il bridge e cancella le informazioni dell’NFT e il tokenId.

La mintFromBridge invece viene richiamata per ri-immettere nella chain il token dalla

blockchain esterna.

9.4 Possibili problemi e modifiche

Di seguito vengono riportati alcuni punti critici nel codice sopra mostrato ed eventuali

risoluzioni.

In primo luogo, periste il problema che la firma qualificata non è garantita on-chain.

Una possibile soluzione consisterebbe nel pubblicare il documento della firma

qualificata su un database e inserire l’indirizzo sull’NFT come campo aggiuntivo.

Un ulteriore aspetto da considerare riguarda la struttura dello smart contract utilizzato,

il quale al momento tratta unicamente la casistica di NFT single asset. È possibile

aggiungere la funzionalità di gestire NFT multiasset modificando riferimentoAsset in

un array. In caso di opere fisiche bisognerebbe anche gestire il mapping delle

riferimentoDoc con lo specifico riferimentoAsset. Per questa opzione però sarebbe

corretto passare al protocollo ERC-1155, già pensato per gestire gli NFT multiasset.

Un’altra problematica tecnica è la condivisione del “nonce” tra la catena e il

certificatore. Poiché è necessario che venga utilizzato lo stesso nonce per la verifica

della documentazione, si potrebbe ipotizzare un web service fornito dall’azienda.

Potrebbe condividere in modo sicuro al certificatore le informazioni usate dalla

funzione verificaCertificatore o direttamente l’hash da firmare. Il certificatore, quindi,

dovrebbe solamente accedere al sito, firmare l’hash in locale con la sua chiave e

rinviare il tutto all’applicazione che si occuperebbe di inserirlo nell’NFT.

Si evidenzia inoltre un’ulteriore criticità relativa al passaggio dell’NFT su una chain

esterna. Nel caso di trasferimento ad una blockchain diversa da Ethereum, lo smart

contract effettua uno burn del token una volta emesso l’evento verso il bridge di

destinazione. Questo passaggio però, è molto rischioso perché lo effettua senza che il

bridge abbia dato conferma dell’operazione. Può accadere che il token venga “bruciato”

ma che l’operazione di passaggio sulla seconda chain fallisca. In questo modo il token

sarebbe perso per sempre. Ci possono essere due soluzioni adottabili:

a. Two-Step-Commit: qui l’emissione dell’evento non è seguita automaticamente

dal burn del token bensì rimane in attesa della conferma del mint lato bridge

prima di effettuarla.

b. Lock and Mint: in questo caso invece, non avviene mai il burn del token. Quando

viene inviato l’event per il passaggio a una chain esterna, il token viene

“congelato” sulla catena sorgente (si può implementare la logica sullo smart

64

contract in modo da non rendere possibile nessuna operazione su quell’NFT

specifico). Se il passaggio sulla catena target fallisce, oppure se viene immesso

nuovamente nella catena sorgente, viene rilasciato.

Il primo metodo però comporta anche lui una criticità: nel periodo tra l’invio dell’evento

e la ricezione della risposta dal bridge, il token è ancora attivo sulla chain sorgente. Può

quindi esser trasferito e venduto senza limitazioni. Dunque, è consigliabile utilizzare il

secondo metodo dove non avviene mai il burn della risorsa. MoonBeam implementa il

Lock and Mint.

Per la funzione di immissione del token poi è specificata solamente come onlyOwner.

In questo caso potrebbe essere una buona idea introdurre un ruolo bridge e permettere

direttamente quest’ultimo di richiamare la funzione.

Infine la tipologia di storage è stata lasciata libera. Nella sezione è stata indicata

genericamente come indirizzo o riferimento. Si intende lasciare la decisione di utilizzare

uno storage centralizzata o decentralizzato al committente dell’NFT. In questo caso si

possono ipotizzare due possibili scenari. In caso di scelta centralizzata potrebbe venire

utilizzato un cloud datacenter, eventualmente gestito dall’azienda stessa. In questo caso

la fiducia riguardo la permanenza e l’immutabilità degli allegati viene affidata

completamente all’azienda gestrice dello storage.

65

Conclusioni

Nella seguente dissertazione sono state trattate le tecnologie alla base degli NFT, in

particolare su Ethereum. Si è analizzata la loro struttura, il funzionamento e in che modo

viene resa sicura e trasparente. È stato evidenziato anche come il sistema non manchi di

punti critici: l’architettura di un market di NFT gestito deve quindi integrare una serie

di soluzioni atte a risolverli. Nel corso dell’analisi, infatti, è emerso come il valore degli

NFT non risieda tanto nell’oggetto digitale rappresentato, quanto nel sistema di garanzie

e trasparenza che la blockchain conferisce. Questo vale specialmente per l’identità degli

autori e delle opere. Il fatto che un’azienda reale ben identificabile faccia da

intermediario tra creatori e acquirenti, è già di per sé una misura di sicurezza. Tuttavia,

per aderire alla filosofia di Ethereum, che mira a separare il più possibile le logiche di

processo dalla fiducia in un’entità centralizzata, si è ricercata una soluzione aggiuntiva.

La proposta di utilizzare una firma digitale riconosciuta a livello legale permette di

separare l’affidabilità dell’azienda da quella del certificatore. La soluzione proposta

consente inoltre che il validatore e il creatore dell’opera siano soggetti esterni

all’azienda, mantenendo così un sistema realmente decentralizzato. La loro interazione

con l’azienda avviene esclusivamente nella fase di creazione dell’NFT, quando i dati e

le certificazioni vengono integrati nella blockchain.

Allo stesso tempo, si è evidenziato che la permanenza e la sicurezza delle opere

dipendono fortemente dalle modalità di conservazione. L’utilizzo di un sistema

decentralizzato garantisce che l’NFT venga caricato in maniera immutabile sulla rete e

non lasciato quindi su store centralizzati, che potrebbero essere modificati dai proprietari

del datacenter stesso (anche se poco probabile). Il sistema Filecoin in più, permette che

i dati salvati siano garantiti e mantenuti nel tempo.

Non si è voluto tralasciare il punto di vista pratico. Infatti, implementare e integrare le

diverse soluzioni proposte ha necessariamente dei costi maggiori. Nello sviluppo di un

mercato di NFT di questo genere, si è voluto ragionare non solo come esercizio teorico

ma con l’ottica di un’azienda che intende creare un profitto da questa attività. Obbligare

l’utilizzo di tutto il sistema “di contorno” rischia di rendere il bacino di utenti che sono

disposti ad affrontare il costo elevato, relativamente basso. Per evitare quindi di creare

un mercato d’élite si è volutamente deciso di lasciare la possibilità di sfruttare anche

altre soluzioni che rendono di l’NFT meno costoso. Nello specifico, infatti, il codice

proposto dà la possibilità di utilizzare un sistema centralizzato, come ad esempio un

cloud, per “storare” il corrispettivo digitale dell’NFT. In questo modo si evitano i costi

di integrare il sistema Filecoin. L’altro elemento più evidente è la possibilità lasciata

agli utenti di “mintare” degli NFT senza un corrispettivo fisico. In questo modo anche

artisti minori o semplici utenti possono accedere al servizio con costi ridotti senza

l’operato di un ente validatore.

Tuttavia, l’utilizzo pratico di strumenti analizzati non sempre è alla portata di tutti gli

utenti e può risultare complesso per gli utenti meno esperti. Per questo motivo, l’azienda

66

può offrire servizi di supporto aggiuntivi, come piattaforme di firma digitale o interfacce

semplificate per la creazione e la gestione degli NFT, con l’obiettivo di rendere il

sistema accessibile senza compromettere i principi di trasparenza e decentralizzazione

che lo caratterizzano.

Nel complesso, il lavoro ha mostrato come sia possibile progettare un marketplace NFT

che coniughi trasparenza, verificabilità e sostenibilità operativa, integrando tecnologie

decentralizzate con soluzioni aziendali orientate all’usabilità e alla fiducia.

67

Bibliografia

[1] Roberto Garavaglia, TUTTO SUGLI NFT: Crypto art, token, blockchain e loro

applicazioni, Milano, Hoepli, 2022

[2] Boiardi Luca, INVESTIRE IN BITCOIN E CRIPTOVALUTE Lo studio dei

fondamentali, le strategie d'investimento e i segreti della finanza decentralizzata,

Milano, Hoepli, 2022

[3] Paolo Maria Gangi, DIRITTO DEI NON-FUNGIBLE-TOKEN: Disciplina

generale, proprietà intellettuale, aspetti regolamentari, Lavis, Giappichelli, 2024

[4] Satoshi Nakamoto, BITCOIN: A Peer-to-Peer Electronic Cash System, 2008 [p.

8,16]

[5] Vitalik Buterin, ETHEREUM: A Next-Generation Smart Contract and

Decentralized Application Platform, 2014 [p. 22]

[6] Nick Szabo, SMART CONTRACTS: Building Blocks for Digital Markets, 1997 [p.

26]

[7] Berti R., Spoto F., Zumerle F., “NFT: che cosa sono, come funzionano, come

investire sui non fungible token.”

URL www.agendadigitale.eu/documenti/nft-che-cosa-sono-come-funzionano-

come-investire-sui-non-fungible-token/ [p 32, 33]

[8] Borsa Italiana

URL https://www.borsaitaliana.it/notizie/sotto-la-lente/quali-sono-i-rischi-legati-

agli-nft.htm [p. 33, 34]

[9] Standard token non fungibile ERC-721

URL https://ethereum.org/it/developers/docs/standards/tokens/erc-721 [p. 30, 31]

[10] Standard token non fungibile ERC-20

URL https://ethereum.org/it/developers/docs/standards/tokens/erc-20 [p. 29]

[11] Standard Multi-Token ERC-1155

URL https://ethereum.org/it/developers/docs/standards/tokens/erc-1155 [p. 31]

https://www.borsaitaliana.it/notizie/sotto-la-lente/quali-sono-i-rischi-legati-agli-nft.htm
https://www.borsaitaliana.it/notizie/sotto-la-lente/quali-sono-i-rischi-legati-agli-nft.htm
https://ethereum.org/it/developers/docs/standards/tokens/erc-721
https://ethereum.org/it/developers/docs/standards/tokens/erc-20
https://ethereum.org/it/developers/docs/standards/tokens/erc-1155

68

[12] Bitpanda - Il problema della scalabilità nella rete Bitcoin

URL https://www.bitpanda.com/academy [p 13]

[13] Ethereum Improvement Proposals

URL https://eips.ethereum.org/EIPS/eip-721 [p. 30,31]

[14] Cointelegraph Italia

URL https://it.cointelegraph.com/

[15] Coinbase – “Qual è la differenza tra Optimistic Rollups e ZK-Rollups?”

URL https://www.coinbase.com/it/learn/tips-and-tutorials/what-is-the-difference-

between-optimistic-rollups-and-zk-rollups [p. 28]

[16] Bitcoin Developer

URL https://developer.bitcoin.org/ [p. 17]

[17] Blockchain

URL it.wikipedia.org/wiki/Blockchain [p. 10, 11, 12]

[18] Binance Academy

URL https://www.binance.com/en/academy

[19] Entrust - Securing a world in motion

URL https://www.entrust.com/resources/learn/ [p. 37,40]

[20] Filecoin Docs

URL https://docs.filecoin.io/ [p. 46,47,48,49]

[21] IPFS

URL https://docs.ipfs.tech/ [p. 44,45]

[22] Opensea Developers - Metadata Standard

How to add rich metadata to your ERC721 or ERC1155 NFTs

URL docs.opensea.io/docs/metadata-standards [p. 31, 32]

[23] IPLD – Documentation

URL https://ipld.io/docs/ [p. 44]

http://www.bitpanda.com/academy
https://eips.ethereum.org/EIPS/eip-721
https://it.cointelegraph.com/
https://developer.bitcoin.org/
https://www.binance.com/en/academy
https://www.entrust.com/resources/learn/
https://docs.filecoin.io/
https://docs.ipfs.tech/
https://ipld.io/docs/

69

[24] MIT Media Lab

URL https://www.media.mit.edu/ [p. 14]

[25] {Solidity} – Documentation

URL https://docs.soliditylang.org/en/v0.8.30/ [p.53]

[26] Teleborsa – “Allarme educazione finanziaria: poco più di 1 italiano su 10 ha

competenze finanziarie accettabili”

URL https://www.teleborsa.it/News/2025/09/02/allarme-educazione-finanziaria-

poco-piu-di-1-italiano-su-10-ha-competenze-finanziarie-accettabili-143.html [p. 6]

[27] Young Platform

URL https://youngplatform.com/ [p. 6,7]

[28] Polkadot

URL https://docs.polkadot.com/ [p. 51]

[29] ZeroUno - “Così la blockchain può essere applicata al comparto aereo”

URL https://www.zerounoweb.it/blockchain/cosi-la-blockchain-puo-essere-

applicata-al-comparto-aereo/ [p. 14]

[30] KBA - “Patricia trie: a predestined blockchain thing”

URL https://kba.ai/6771-2/ [p. 14]

https://www.media.mit.edu/
https://docs.soliditylang.org/en/v0.8.30/
https://www.teleborsa.it/News/2025/09/02/allarme-educazione-finanziaria-poco-piu-di-1-italiano-su-10-ha-competenze-finanziarie-accettabili-143.html
https://www.teleborsa.it/News/2025/09/02/allarme-educazione-finanziaria-poco-piu-di-1-italiano-su-10-ha-competenze-finanziarie-accettabili-143.html
https://youngplatform.com/

