
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Application of Approximate Computing
Techniques in Large Language Models

Supervisors

Prof. Alessandro SAVINO

Prof. Stefano DI CARLO

Candidate

Utku KEPIR

December 2025

Summary

Large Language Models (LLMs) have recently achieved state-of-the-art performance
in a wide range of natural language processing tasks, but their rapid growth in
size has introduced severe challenges in terms of computational cost, memory
consumption, and energy efficiency. This makes their deployment on resource-
constrained environments increasingly difficult, and has motivated research into
approximation strategies that trade exactness for efficiency.

The first half of this thesis presents an extensive survey of approximate comput-
ing methods for transformer-based architectures, focusing on techniques such as
quantization, pruning, low-rank approximation (LoRA), stochastic perturbations,
and stochastic memory masking. Alongside the survey, a benchmarking framework
was developed to evaluate these approaches in a consistent and comparable man-
ner. The framework integrates support for multiple datasets, including Alpaca,
Databricks-Dolly-15k, and AgentInstruct, and provides metrics such as BLEU
score, ROUGE-L score, F1 score, SBERT similarity, inference time, output size,
model size and perplexity. Experiments were conducted on two representative
models, LLaMA-3.2-1B-Instruct and Gemma-3-1B-Instruct, to investigate the
efficiency–accuracy trade-offs of different approximation methods.

The second half of this thesis focuses on combining multiple approximation meth-
ods to further reduce computational overhead while preserving task performance.
In particular, the work investigates the integration of LoRA with other methods
to minimize the number of trainable parameters and improve training efficiency.
This stage of the work emphasizes the importance of evaluating approximation
techniques not only in isolation but also in combination, highlighting scenarios in
which hybrid approaches achieve better efficiency–accuracy trade-offs than single
methods.

Overall, this thesis provides a systematic exploration of approximation strategies
for LLMs and their impact on both training and inference. The results demonstrate
that lightweight approaches such as LoRA and quantization achieve substantial
reductions in memory usage and computational load with minimal performance
degradation, while more aggressive approximations require careful tuning to main-
tain robustness.

ii

iii

Acknowledgements

In this section, I want to thank all the people who have supported me during these
years of study and throughout the preparation of this thesis. Without their help,
encouragement, and presence, this work would not have been possible.

I would like to express my deepest gratitude to my supervisor, Prof. Alessandro
SAVINO, for his guidance, support, and encouragement throughout the development
of this work. His insights and advice have been invaluable in shaping this thesis.

I am sincerely thankful to my family for their unconditional love, patience, and
support during these years. Their encouragement has given me the strength to face
challenges and pursue my goals.

Finally, I would like to thank all the people who have been close to me during
this journey, whose presence and kindness have made this period of my life truly
meaningful.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 3

2 Related Works 5
2.1 Quantization . 5

2.1.1 Affine Quantization . 5
2.1.2 Integer-Only Inference . 6
2.1.3 Post-Training Quantization, Quantization-Aware Training,

and Zero-Shot Quantization 8
2.1.4 Simulated Quantization (Fake Quantization) 10
2.1.5 Advanced Quantization Formats for LLMs 13

2.2 Pruning . 16
2.2.1 Unstructured Pruning . 16
2.2.2 Structured Pruning . 16
2.2.3 Pruning and the Lottery Ticket Hypothesis 17

2.3 Low-Rank Adaptation (LoRA) . 18
2.4 Stochastic Perturbations . 20

2.4.1 Perturbation-Driven Variance 20
2.4.2 Uncertainty Aggregation . 21
2.4.3 Stochastic Regularization Methods 21
2.4.4 Implementation in This Thesis 22

2.5 Stochastic Memory Masking . 23
2.5.1 Checkpointing and Sparsification 23
2.5.2 Stochastic Memory Masking for Attention 24

vi

2.5.3 Implementation in This Thesis 24
2.6 Evaluation Metrics and Efficiency Measures 24

2.6.1 Quality Metrics . 25
2.6.2 Efficiency Measures . 26

3 Methodology 29
3.1 Datasets . 31

3.1.1 Alpaca . 31
3.1.2 Databricks-Dolly-15k . 32
3.1.3 AgentInstruct . 33

3.2 Models . 34
3.2.1 LLaMA-3.2-1B-Instruct . 34
3.2.2 Gemma-3-1B-Instruct . 35

3.3 Approximation Techniques . 37
3.3.1 Quantization . 37
3.3.2 Pruning . 39
3.3.3 LoRA . 40
3.3.4 Stochastic Perturbations . 41
3.3.5 Stochastic Memory Masking 41
3.3.6 Combinations of Approximations 42

4 Experiments and Results 45
4.1 Experimental Setup . 45
4.2 Evaluation Results . 47

4.2.1 Inference Results for the Dolly-15k Dataset(Fine-tuned with
Alpaca Dataset) . 47

4.2.2 Inference Results for the Dolly-15k Dataset(Fine-tuned with
Agent Dataset) . 50

4.2.3 Inference Results for the AgentInstruct Dataset(Fine-tuned
with Alpaca Dataset) . 52

5 Conclusion 57

Bibliography 60

vii

List of Tables

4.1 Inference results for LLaMA-3.2-1B-Instruct and Gemma-3-1B-Instruct
on the Dolly-15k dataset (Fine-tuned with Alpaca dataset). 48

4.2 Top-performing approximation techniques for LLaMA-3.2-1B and
Gemma-3-1B on the Dolly-15k dataset (Fine-tuned with Alpaca
dataset). 49

4.3 Inference results for LLaMA-3.2-1B-Instruct and Gemma-3-1B-Instruct
on the Dolly-15k dataset (Fine-tuned with Agent dataset). 51

4.4 Top-performing approximation techniques for LLaMA-3.2-1B and
Gemma-3-1B on the Dolly-15k dataset (Fine-tuned with Agent
dataset). 52

4.5 Inference results for LLaMA-3.2-1B-Instruct and Gemma-3-1B-Instruct
on the AgentInstruct dataset (Fine-tuned with Alpaca dataset). . . 53

4.6 Top-performing approximation techniques for LLaMA-3.2-1B and
Gemma-3-1B on the AgentInstruct dataset (Fine-tuned with Alpaca
dataset). 54

viii

List of Figures

2.1 Illustration of Quantization-Aware Training procedure [4]. 8
2.2 Comparison between QAT (left, requires retraining) and PTQ (right,

data-free) [4]. 10
2.3 Comparison between full-precision inference (Left), simulated quanti-

zation with float operations (Middle), and integer-only quantization
with fixed-point arithmetic (Right) [4]. 12

2.4 Synapses and neurons before and after pruning [34]. 17

ix

Acronyms

AI
artificial intelligence

BLEU
bilingual evaluation understudy

CRFM
center for research on foundation models

DPO
direct preference optimization

FFN
feed-forward network

GQA
grouped-query attention

LLM
large language model

LoRA
low-rank adaptation

NLP
natural language processing

PEFT
parameter-efficient fine-tuning

xi

PTQ
post-training quantization

QAT
quantization-aware training

RLHF
reinforcement learning from human feedback

ROUGE-L
recall-oriented understudy for gisting evaluation

RoPE
rotary positional embeddings

RevNets
reversible residual networks

ZSQ
zero-shot quantization

xii

Chapter 1

Introduction

Artificial Intelligence (AI) has recently achieved remarkable progress, largely enabled
by the Transformer architecture [1], which replaced recurrence and convolutions
with self-attention, resulting in both faster training and state-of-the-art performance
across language tasks. Building upon this foundation, LLMs such as GPT-3 [2]
have demonstrated unprecedented few-shot and zero-shot capabilities, highlighting
the power of scale in model training. Scaling laws further reveal that performance
in language modeling follows smooth power-law trends with respect to model
size, dataset size, and compute [3]. While these trends suggest that ever larger
models can achieve better generalization, they also imply unsustainable growth
in computational cost, energy usage, and memory demand. The resulting tension
between performance and efficiency forms a central challenge in the continued
development and deployment of LLMs.

Approximate computing has emerged as a promising paradigm to address this
challenge by deliberately introducing controlled imprecision into computation.
Instead of performing all operations with exact, high-precision arithmetic, approxi-
mate methods aim to reduce the redundancy inherent in over-parameterized models
and exploit the tolerance of neural networks to small perturbations. Techniques
such as quantization [4], pruning [5], LoRA [6], stochastic perturbation (noise
injection)[7], and stochastic memory masking [8] each target different aspects of
efficiency. Quantization reduces bit-width, trading a small drop in accuracy for
dramatic improvements in latency and memory footprint. Pruning eliminates
redundant parameters, reducing model size and energy consumption [5]. LoRA
introduces low-rank reparameterizations into pre-trained transformers, achieving
task adaptation with only a fraction of trainable parameters and negligible infer-
ence overhead [6]. Stochastic perturbation and memory masking further explore
non-traditional representations and reduced memory precision to unlock additional
gains in efficiency [8].

1

Introduction

The motivation of this thesis lies in bridging the gap between theoretical ad-
vances in approximation methods and their systematic application to modern large
language models. Rather than retraining models from scratch, which is computa-
tionally prohibitive, this work adopts a training-time approximation framework.
In this setup, techniques such as quantization (implemented through a hybrid
approach where weights are quantized once during initialization and activations are
quantized dynamically during inference), LoRA, pruning, stochastic perturbations,
and stochastic memory masking are integrated directly into the fine-tuning pro-
cess. The quantization strategy follows a BF16 computation pipeline: quantized
weights and activations are dequantized before matrix multiplication, computed
in BF16 precision, and then requantized so that the next layer receives quantized
activations. This unified approach extends beyond classical post-training quan-
tization PTQ or QAT, enabling a systematic study of how these approximation
strategies individually and in combination affect training dynamics, generalization,
and deployment-time efficiency. By leveraging prior insights on model scaling, com-
pression, and efficient adaptation, the thesis establishes a benchmark framework
for approximated LLMs, providing a clear view of the trade-offs between accuracy,
energy consumption, and computational cost.

To ensure a fair comparison, the evaluation methodology distinguishes between
training and inference efficiency. While training cost is influenced by optimizer
states, gradient accumulation, and checkpointing strategies, inference time and
generated output size directly reflect real-world deployment scenarios. Besides,
this thesis emphasizes inference metrics such as BLEU, ROUGE-L, SBERT and F1
score [9, 10, 11]. This balance between efficiency and quality provides a reliable
basis for assessing approximation techniques in practice.

1.1 Objectives
The remarkable progress of large LLMs has been accompanied by a rapid growth
in model size, dataset requirements, and computational cost [2, 3]. While scaling
laws provide strong evidence that larger models yield improved performance, they
also reveal a widening gap between model capabilities and the resources required
to train and deploy them. This gap makes it increasingly difficult to reproduce
state-of-the-art results outside of large industrial labs, raising concerns about
accessibility, fairness, and sustainability in the development of AI.

In this context, approximate computing has emerged as a promising research
direction. The central objective of this thesis is to investigate how approximation
techniques including quantization [4, 12], pruning [5, 13], low-rank adaptation
through LoRA [6, 14, 15], stochastic perturbation[16, 17, 18], and memory-efficient
mechanisms [8] affect the training dynamics and deployment efficiency of modern

2

Introduction

large language models. These methods target different aspects of efficiency, respec-
tively reducing arithmetic precision, eliminating redundant connections, introducing
low-rank reparameterizations, or exploiting alternative noise and memory-optimized
representations.

Another key objective is to design and implement a unified benchmarking
framework that allows these approximation methods to be consistently applied
across different transformer-based models. Current literature often evaluates
approximations in isolation, using distinct datasets, baselines, and metrics, which
makes comparisons difficult and conclusions fragmented. By contrast, this work
provides a standardized platform where approximations can be directly compared,
facilitating a clearer understanding of their strengths, weaknesses, and synergies.

Finally, the thesis aims to go beyond isolated analysis by exploring combinatorial
approximation strategies. While most prior studies focus on one technique at a time,
real-world deployment often benefits from layered approaches such as combining
quantization with pruning, or integrating LoRA with stochastic memory masking.
An important research question addressed here is whether such combinations
unlock efficiency gains without excessively degrading model quality. The evaluation
balances performance metrics such as perplexity, BLEU, ROUGE-L, F1, SBERT
scores with efficiency measures like inference time and generated text output size,
providing a holistic view of the trade-offs involved.

1.2 Contributions
Following these objectives, the contributions of this thesis advance both the method-
ological and empirical understanding of approximation for LLMs. The first contri-
bution is the development of a unified and extensible benchmarking framework that
integrates multiple approximation methods into a single experimental environment.
The framework supports quantization, pruning, LoRA, stochastic perturbation,
and stochastic memory masking. Its modular design enables fair, side-by-side
comparisons of diverse techniques and allows straightforward extension to new
approximation methods, architectures, and datasets. By consolidating previously
fragmented practices in the literature, this framework lays the foundation for
standardized evaluation of efficiency-oriented methods in large language models.

The second contribution lies in applying the framework to modern instruction-
tuned transformer models, specifically LLaMA-3.2-1B-Instruct and Gemma-3-1B-
Instruct. This demonstrates portability across architectures and highlights model-
specific sensitivities to approximation techniques. While this work focuses on
decoder-only architectures, it also acknowledges that encoder–decoder models such
as T5 and BART may interact differently with approximation methods like LoRA
and quantization due to their two-stage structure. Concentrating on decoder-only

3

Introduction

models ensures that the findings are directly applicable to the current generation
of widely deployed LLMs.

The third contribution is a systematic analysis of inference-time efficiency versus
accuracy trade-offs. By evaluating not only task performance (perplexity, BLEU,
ROUGE-L, F1 , SBERT) but also inference time and generated output size, the
study explicitly acknowledges efficiency as a first-class evaluation dimension. This
approach aligns with the growing demand for sustainable and resource-efficient AI.

The fourth contribution is an exploration of combined approximation strategies.
By investigating whether layering techniques such as quantization with pruning
or LoRA with stochastic memory masking can achieve superior efficiency without
unacceptable accuracy loss, the thesis contributes practical insights into whether
approximations interact additively, synergistically, or adversarially in real-world
deployments.

Finally, the contributions are validated across multiple instruction-tuned datasets,
including Alpaca, Databricks-Dolly-15k, and AgentInstruct. This cross-dataset
evaluation ensures that the conclusions are not tied to a single benchmark but
instead generalize across different training regimes. Taken together, these contribu-
tions represent both a methodological advance through the creation of a unified
approximation benchmark and a substantive empirical contribution through the
systematic study of approximation trade-offs in modern LLMs.

4

Chapter 2

Related Works

The rapid expansion of LLMs has sparked diverse efforts to improve efficiency
in both training and inference. Approximate computing strategies play a central
role, deliberately trading small amounts of accuracy for substantial reductions in
computation, memory, and energy. This chapter surveys the theoretical founda-
tions and recent advances of the techniques explored in this thesis: quantization,
pruning, low-rank adaptation, stochastic perturbations, and stochastic memory
masking. Each section reviews classical approaches, extensions to transformers,
and connections to our own framework.

2.1 Quantization
Quantization is one of the most effective approximation techniques for reducing the
computational and memory footprint of neural networks. Instead of storing weights
and activations in BF16 or FP32, quantization maps them to low-bit representations
such as INT8 or INT4, which are directly supported on modern accelerators. This
section reviews the theoretical foundation of quantization, following the integer-
arithmetic formulation introduced by Jacob et al. [12], and describes recent advances
tailored for LLMs.

2.1.1 Affine Quantization
The central idea is to approximate a real value r ∈ R by an integer q within a fixed
range [qmin, qmax] through an affine mapping:

r ≈ S(q − Z), (2.1)
where S ∈ R+ is the scale factor and Z ∈ Z is the zero-point. The zero-point
ensures that zero in real space can be exactly represented in quantized space, which
is important for avoiding bias shifts.

5

Related Works

Given a real value r, its quantized integer representation is obtained as:

q = clip
3

round
3

r

S
+ Z

4
, qmin, qmax

4
, (2.2)

where round(·) is nearest integer rounding and clip(·) ensures that q remains within
the target bit range.

The dequantization step maps q back into floating-point:

r̂ = S · (q − Z). (2.3)

This r̂ is the quantized approximation of r [12].

2.1.2 Integer-Only Inference
A basic requirement for efficient deployment of quantized neural networks is that
all arithmetic during inference can be implemented using integer only operations
on quantized values. For example, for the 8-bit quantization, q ∈ {0, . . . , 255}
(unsigned) or q ∈ {−128, . . . , 127} (signed). Biases are typically quantized to 32-bit
integers to avoid overflow. This mapping ensures that zero-padding operations
in convolution or matrix multiplication can be implemented exactly, since the
zero-point Z guarantees a quantized representation of r = 0.

Integer-Only Matrix Multiplication. Consider the multiplication of two square
matrices of size N ×N :

r3 = r1r2, (2.4)

where r1, r2, r3 ∈ RN×N .
Let (Sm, Zm) denote the quantization parameters for matrix rm, with quantized

entries q
(m)
ij . Applying Eq. (2.3):

r
(m)
ij = Sm

1
q

(m)
ij − Zm

2
, m ∈ {1,2,3}. (2.5)

By definition of matrix multiplication:

r
(3)
ik =

NØ
j=1

r
(1)
ij · r

(2)
jk . (2.6)

Substituting Eq. (2.5):

S3
1
q

(3)
ik − Z3

2
=

NØ
j=1

S1
1
q

(1)
ij − Z1

2
· S2

1
q

(2)
jk − Z2

2
. (2.7)

6

Related Works

Factoring out the scales:

S3
1
q

(3)
ik − Z3

2
= S1S2

NØ
j=1

1
q

(1)
ij − Z1

21
q

(2)
jk − Z2

2
. (2.8)

Rearranging, the integer-only update rule becomes:

q
(3)
ik = Z3 + M ·

NØ
j=1

1
q

(1)
ij − Z1

21
q

(2)
jk − Z2

2
, (2.9)

where the multiplier M is defined as:

M = S1S2

S3
. (2.10)

Fixed-Point Multiplier Representation. The only non-integer term in Eq. (2.9)
is the constant M . Jacob et al.[12] show that M ∈ (0,1) in practice, and it can be
expressed as:

M = 2−nM0, M0 ∈ [0.5, 1), n ∈ Z≥0. (2.11)
Here:

• M0 is stored as a fixed-point integer (e.g., 32-bit). Since M0 ≥ 0.5, it always
has at least 30 bits of relative accuracy when represented in 32-bit fixed point.

• 2−n is implemented as an efficient bit-shift, ensuring integer-only hardware
execution.

Thus, multiplication by M is implemented as:

int32_accum ·M ≈
3

int32_accum ·M (int)
0

4
≫ n, (2.12)

where ≫ n denotes bit-shift by n bits.

• The inner sum in Eq. (2.9) involves only integer additions and multiplications.

• The multiplier M is a single precomputed constant, applied with fixed-point
arithmetic and shifts.

• This makes inference fully integer-only, with scales and zero-points applied as
lightweight rescaling operations.

• Bias terms are usually quantized to INT32, ensuring no loss of accuracy in
accumulation.

This affine quantization scheme underpins integer-only inference in TensorFlow
Lite, ONNX Runtime, and PyTorch QNNPACK, and remains the basis for modern
PTQ and QAT pipelines [19].

7

Related Works

2.1.3 Post-Training Quantization, Quantization-Aware Train-
ing, and Zero-Shot Quantization

Quantization often requires model adaptation after weights are mapped to low-
precision. This can be achieved either by fine-tuning the model (QAT), or directly
quantizing a pretrained model without retraining (PTQ). A more recent category,
ZSQ, eliminates the need for training data altogether, using either analytical
approximations or synthetic data generation.

Quantization-Aware Training (QAT). Given a pretrained model, quantization
introduces perturbations to parameters, potentially shifting the model away from
the local optimum found during full-precision training. To address this, QAT
retrains the model with quantization simulated in both the forward and backward
passes. Specifically, weights are updated in floating point, but after each gradient
update they are projected back into the quantized space as in Figure 2.1.

W ← Quantize(W − η∇L), (2.13)

where η is the learning rate.

Figure 2.1: Illustration of Quantization-Aware Training procedure [4].

A central difficulty in QAT is that the quantization operator is non-differentiable.
For example, rounding is piecewise constant and its derivative is zero almost every-
where. To circumvent this, QAT uses the Straight-Through Estimator (STE) [16],
which approximates the gradient of quantization as the identity function:

∂ round(x)
∂x

≈ 1. (2.14)

This coarse approximation nonetheless works well in practice, as it correlates with
the true population gradient in expectation [4]. Figure 2.2 illustrates the difference
between PTQ and QAT.

Several refinements to QAT have been proposed. PACT [20] learns activation
clipping ranges as part of training, LSQ [21] learns scale factors through gradient

8

Related Works

descent, and AdaRound [22] adapts rounding boundaries instead of using naive
round-to-nearest. Despite these advances, QAT remains computationally expensive,
as it often requires retraining for hundreds of epochs to recover accuracy, particularly
at ultra-low precision (e.g., 2–4 bits).

Post-Training Quantization (PTQ). In PTQ, pretrained weights are quantized
directly without additional retraining:

Ŵ = clip
3

round
3

W

S

4
,−qmax, qmax

4
· S, (2.15)

where S is the scaling factor. PTQ is computationally efficient and requires no
labeled training data, making it attractive for deployment. However, it often suffers
from accuracy degradation at low bit-widths, especially below INT8.

To mitigate this, several improvements have been proposed:

• Bias correction: Adjusting mean and variance shifts induced by quantiza-
tion [23].

• Range equalization: Aligning weight ranges across layers to reduce scale
mismatch [22].

• Analytical Clipping (ACIQ): Computing optimal clipping thresholds using
an assumed Gaussian or Laplace distribution of activations [24].

• Outlier Channel Splitting (OCS): Duplicating channels with extreme
values to reduce quantization error [25].

• Adaptive rounding (AdaRound): Learning rounding decisions to minimize
quantization error [22].

These refinements enable PTQ to approach QAT-level accuracy in some cases,
particularly at 8-bit and 6-bit precision, but PTQ still struggles at ultra-low
bit-widths (e.g., INT4) without retraining [19].

Zero-Shot Quantization (ZSQ). In many practical scenarios, access to the
original training data is impossible due to privacy, proprietary constraints, or size
limitations (e.g., large web-scale datasets). ZSQ methods address this by quantizing
models without access to training data.

There are two main levels:

1. ZSQ+PTQ: No data, no fine-tuning. Quantization parameters are chosen
analytically or with heuristics (e.g., bias correction, equalization).

2. ZSQ+QAT: No real data, but fine-tuning is performed on synthetic data.

9

Related Works

A popular branch of research generates synthetic calibration data. Early work
used GANs to synthesize samples that approximate the model’s decision boundaries.
More advanced methods (e.g., ZeroQ, GDFQ) directly optimize synthetic inputs
such that the internal statistics (e.g., BatchNorm means and variances) match
those observed in the pretrained model:

min
x

DKL
1
µBN(x), µreal

2
+ DKL

1
σ2

BN(x), σ2
real

2
. (2.16)

These synthetic inputs are then used to calibrate quantization scales or even
fine-tune the quantized model via knowledge distillation from the full-precision
teacher. Recent work also integrates generative models to produce higher-fidelity
calibration data [4].

Summary.

• QAT achieves the best accuracy, especially at 4-bit or below, but requires
expensive retraining.

• PTQ is fast and data-free, suitable for deployment when INT8 suffices, but
often suffers at ultra-low precision.

• ZSQ extends PTQ/QAT to data-free scenarios, relying on synthetic data or
analytical approximations.

Figure 2.2: Comparison between QAT (left, requires retraining) and PTQ (right,
data-free) [4].

2.1.4 Simulated Quantization (Fake Quantization)
Simulated quantization, also known as fake quantization, is a technique for emu-
lating low-precision arithmetic within a floating-point computational framework.
Unlike integer-only quantization, which performs all multiplications and accumu-
lations using fixed-point arithmetic on quantized tensors, simulated quantization

10

Related Works

preserves floating-point computation but introduces quantization and dequantiza-
tion operations during the forward pass to replicate the precision loss of integer
quantization [4, 12]. This approach is widely used in quantization-aware training
(QAT) and mixed-precision fine-tuning to enable gradient-based optimization of
quantized models without requiring hardware support for low-bit arithmetic.

Mathematical Formulation. Given a real-valued tensor r ∈ Rn, quantiza-
tion is characterized by a scale factor S and discrete quantization levels Q =
{qmin, . . . , qmax}. In integer quantization, the quantized tensor q is represented and
stored in integer form. In contrast, simulated quantization applies both quantization
and dequantization within the floating-point domain:

r̂ = DeQuantize(Quantize(r)) = S · clip
3

round
3

r

S

4
, qmin, qmax

4
, (2.17)

where r̂ is the quantized approximation of r in floating-point format. This operation
simulates the effect of integer quantization by injecting discretization noise while
maintaining differentiability of the computational graph.

Forward and Backward Pass. During the forward pass, rounding introduces a
quantization error

εq = r̂ − r, (2.18)

which models the information loss due to finite precision. However, since the
quantization function is non-differentiable, simulated quantization relies on the
Straight-Through Estimator (STE) [16] to propagate gradients during backpropaga-
tion:

∂ r̂

∂r
≈ 1. (2.19)

This approximation treats the quantization function as an identity mapping in the
backward pass, allowing gradient flow to proceed as if the quantization step were
continuous. Although simplistic, the STE has been shown to effectively align the
training dynamics of quantized models with their full-precision counterparts [4].

Computation Model. The computational structure of simulated quantization,
depicted in Figure 2.3 (Middle), follows a hybrid FP32 workflow:

1. Weights W are quantized once to Wq and dequantized to FP32 (Wd) for
computation.

2. Activations x are quantized dynamically at runtime to xq and dequantized to
xd.

11

Related Works

Figure 2.3: Comparison between full-precision inference (Left), simulated quanti-
zation with float operations (Middle), and integer-only quantization with fixed-point
arithmetic (Right) [4].

3. Matrix multiplication and accumulation are performed in full precision:

y = Linear(xd, Wd) + b. (2.20)

4. The outputs are then re-quantized to produce low-precision activations for the
next layer.

This sequence ensures that each layer experiences quantization-induced noise
consistent with its low-bit equivalent, even though the arithmetic remains FP32.

Advantages and Limitations. Simulated quantization provides several theoret-
ical and practical benefits:

• Hardware independence: It can be performed on any floating-point hard-
ware, without integer matrix-multiplication units.

• Differentiability: Through STE, it enables gradient-based optimization of
quantized networks.

• Faithful quantization noise modeling: It accurately emulates rounding
and clipping errors seen in integer arithmetic.

• Layer-wise flexibility: It supports a mixture of static (for weights) and
dynamic (for activations) quantization strategies.

However, simulated quantization does not yield real latency or energy savings
during training or inference, since all computations still occur in floating-point. It
is primarily an analytical tool for approximating quantization behavior, useful for
model fine-tuning, mixed-precision training, and benchmarking [4, 19].

12

Related Works

Comparison with Integer-Only Inference. The difference between simulated
and integer-only quantization can be summarized as follows:

Integer-only: yq = ReQuantize
Ø

j

(xq − Zx)(wq − Zw)
 , (2.21)

Simulated: y = D(xq)⊤D(wq), (2.22)

where D(·) denotes dequantization to FP32. Thus, while integer-only inference
executes integer multiplications and accumulations on hardware accelerators, simu-
lated quantization performs identical arithmetic in expectation but remains entirely
in the FP32 domain.

Implementation in this Thesis. Simulated quantization provides a theoretically
grounded bridge between low-bit arithmetic and BF16 computation. It allows
analysis of quantization noise, gradient behavior, and numerical stability under
controlled conditions. For this reason, it is the standard paradigm in quantization-
aware training frameworks [4, 12], as well as the basis of the approximation strategy
employed in this thesis.

2.1.5 Advanced Quantization Formats for LLMs
Scaling large language models has motivated the development of advanced quanti-
zation schemes that go beyond standard INT8. These methods enable sub-8-bit
precision, improve hardware efficiency, and reduce the accuracy gap traditionally
observed at ultra-low precision.

Simulated vs. Integer-Only Quantization. There are two primary modes of
deploying quantized models. In simulated quantization (also called fake quantiza-
tion), weights and activations are stored in reduced precision, but computations
such as matrix multiplications are carried out in floating-point. This requires
dequantization before each operation and limits hardware efficiency. In contrast,
integer-only quantization (fixed-point quantization) performs all operations using
integer arithmetic, eliminating floating-point overheads and enabling direct use of
low-precision logic on accelerators [12]. Integer-only quantization can be further
enhanced with dyadic quantization, where all scaling factors are constrained to
dyadic numbers (i.e., rational values with powers of two in the denominator). This
makes scaling efficient via integer multiplications and bit-shifts.

Mixed-Precision Quantization. Uniformly quantizing an entire model to a
fixed bit-width (e.g., INT4) can cause severe accuracy degradation. Mixed-precision

13

Related Works

quantization alleviates this problem by assigning higher precision (e.g., INT8) to
sensitive layers and lower precision (e.g., INT4) to less sensitive ones. The sensitivity
of layers can be determined by second-order information such as the trace of the
Hessian, as in HAWQ [26], or by reinforcement learning and differentiable NAS
approaches. For LLMs, mixed-precision has been shown to deliver up to 50%
inference speedup on GPUs while minimizing accuracy loss.

Hardware-Aware Quantization. Not all quantization configurations map
equally well to hardware. For example, some accelerators support INT8 efficiently
but lack optimized kernels for INT6 or INT2. Hardware-aware quantization incor-
porates latency and energy models of the target device when selecting bitwidths,
ensuring that accuracy–efficiency trade-offs translate into real-world gains. This
approach is increasingly important for deploying LLMs in production environments,
where GPU memory bandwidth and cache hierarchies dominate performance [12].

Distillation-Assisted Quantization. Knowledge distillation can help quantized
models recover accuracy lost at low precision. A high-precision teacher supervises
the low-precision student by matching soft probability distributions or intermediate
features. The combined loss is:

L = α H(y, σ(zs)) + β H(σ(zt, T), σ(zs, T)), (2.23)

where zs and zt are logits of the student and teacher, T is the distillation temperature,
and H is cross-entropy [27]. Distillation has been shown to substantially improve
quantization accuracy in LLMs, particularly below 8 bits.

Extreme Quantization. Binarization (1-bit) and ternarization (2-bit) represent
the most aggressive forms of quantization, reducing model size by up to 32×
compared to FP32. While early methods such as BinaryConnect and XNOR-Net
demonstrated the feasibility of bit-wise operations, applying extreme quantization
to LLMs remains challenging due to severe accuracy loss. Recent advances mitigate
this degradation using scaling factors, wider architectures, and better gradient
approximations [28]. Despite the challenges, extreme quantization is an active
research direction for bringing transformer-based models to edge devices.

Vector Quantization. Inspired by classical signal processing, vector quantization
clusters groups of weights and replaces them with centroids from a learned codebook:

min
c1,...,ck

Ø
i

∥wi − cj∥2, wi ∈ cluster j. (2.24)

This approach achieves up to 8× compression with limited accuracy loss [5].
Extensions such as product quantization apply clustering to submatrices and

14

Related Works

recursively quantize residuals. For LLMs, vector quantization can be combined
with pruning and Huffman coding for further compression.

Implementation in this Thesis. In this work, all quantization schemes (INT8,
INT4, and NF4) are implemented as GPU-based simulated quantizers integrated
into the model’s fine-tuning pipeline. The implementation performs quantization
and dequantization directly on the GPU to avoid CPU bottlenecks and excessive
memory transfers. For uniform quantization (INT8/INT4), tensors are quantized
symmetrically per tensor using the function quantize_tensor_uniform(), which
computes the scale parameter s as:

s = max |W |
qmax

, (2.25)

where qmax is 127 for INT8 or 7 for INT4. Each tensor element is then mapped
to its nearest quantized level using rounding and clamping operations, followed
by dequantization via dequantize_tensor() to restore floating-point form for
computation. This procedure preserves the model’s numerical behavior while
emulating quantization effects during training and evaluation.

For NF4 quantization, the method follows the NormalFloat-4 specification
introduced by Dettmers et al. [29], but is reimplemented to operate in a fully GPU-
streamed manner, and because of our GPU memory limitations. The quantization
function quantize_tensor_nf4() divides each tensor into contiguous blocks of
64 elements, computes per-block scaling factors, and performs nearest-neighbor
assignment to the fixed 16-level NF4 codebook:

CNF4 = { − 1.0000,−0.6962,−0.5251,−0.3949,

− 0.2844,−0.1848,−0.0911, 0.0000,

0.0911, 0.1848, 0.2844, 0.3949,

0.5251, 0.6962, 0.8682, 1.0000}.

(2.26)

Quantization is computed per element by iterating over the 16 codebook entries,
which avoids forming large 4D broadcast tensors that could lead to GPU memory
exhaustion. The corresponding dequantize_tensor_nf4() function restores BF16
weights by mapping each quantized index back to its codebook value and rescaling
with the stored blockwise scale.

Unlike uniform quantization, which uses a linear mapping between real and
integer domains, NF4 performs nonuniform quantization with higher resolution near
zero, aligning with the Gaussian distribution of transformer weights. In all cases,
quantized weights are computed once (static quantization), while activations are
quantized dynamically during each forward pass, followed by BF16 computation and

15

Related Works

re-quantization of outputs. This ensures that each layer experiences quantization-
induced effects without compromising training stability.

Overall, these quantization operators provide an efficient, memory-safe, and
hardware-agnostic foundation for evaluating low-bit approximation in large language
models. They combine realistic quantization error modeling with the flexibility
of BF16 computation, enabling consistent benchmarking across INT8, INT4, and
NF4 configurations.

2.2 Pruning
Pruning is a classical model compression technique that reduces the number of pa-
rameters in a neural network by removing redundant or less important connections.
The motivation is rooted in the observation that overparameterized models contain
significant redundancy, and that a sparse subnetwork can often achieve comparable
accuracy to the dense model. Early work such as Optimal Brain Damage [30] intro-
duced second-order methods for pruning, while Deep Compression [5] popularized
magnitude-based pruning, showing that large neural networks can be reduced by
up to an order of magnitude in size without significant accuracy loss.

2.2.1 Unstructured Pruning
Unstructured pruning removes individual weights based on a saliency criterion,
most commonly weight magnitude. A typical rule is:

Ŵij =
Wij, |Wij| > τ,

0, otherwise,
(2.27)

where τ is a threshold chosen to achieve the desired sparsity level. This approach
is highly flexible and can achieve very high sparsity ratios [5]. However, because
the resulting sparsity pattern is irregular, specialized hardware kernels are often
required to realize actual inference-time speedups.

2.2.2 Structured Pruning
Structured pruning instead removes entire groups of weights, such as neurons,
channels, or attention heads. This preserves dense tensor structures and is therefore
more compatible with modern hardware accelerators. For transformers, structured
pruning has been applied in several forms:

• Attention head pruning selectively removes full heads, leveraging the
redundancy across multi-head attention [31].

16

Related Works

• Feedforward pruning eliminates full hidden neurons in the MLP layers [32].

Structured pruning is less flexible in terms of sparsity ratios compared to unstruc-
tured pruning, but has the advantage of translating directly into inference-time
efficiency gains without specialized kernels.

2.2.3 Pruning and the Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis [33] further strengthened the theoretical foundation
of pruning by showing that large networks contain “winning subnetworks” sparse
subnetworks that, when trained in isolation with the same initialization, can match
the performance of the full dense model. This observation connects pruning to
broader discussions on overparameterization and generalization in deep learning.

Implementation in this Thesis. In this thesis, L1-unstructured pruning
is implemented within the transformer feedforward layers. Specifically, pruning
is applied to the gate projection gate_proj inside each MLP block. Following
the torch.nn.utils.prune API, we prune 5% of the smallest-magnitude weights
using L1-norm saliency:

prune(W) = W ⊙M, Mij = 1(|Wij| > τ). (2.28)

This approach creates a binary pruning mask that zeroes out low-magnitude
weights while preserving higher-magnitude connections. The method corresponds
to magnitude-based unstructured pruning as in Deep Compression [5]. Although this
does not yield direct inference-time speedups on commodity hardware, it provides
a lightweight yet principled approximation method that integrates seamlessly into
the unified benchmarking framework developed in this thesis.

Figure 2.4: Synapses and neurons before and after pruning [34].

17

Related Works

2.3 Low-Rank Adaptation (LoRA)
LoRA is a parameter-efficient fine-tuning (PEFT) method that freezes the pretrained
weights and learns task-specific, low-rank updates alongside them. Consider a
pretrained weight W0 ∈ Rd×k. LoRA reparametrizes the adaptation as a rank-r
matrix product,

W = W0 + ∆W = W0 + α

r
BA, B ∈ Rd×r, A ∈ Rr×k, (2.29)

where only A, B are trainable, B is typically initialized to zero and A to a small
Gaussian so that ∆W starts at zero; α is a scaling hyperparameter that stabilizes
training across different r [6]. The forward pass is then

h = W0x + α

r
BAx, (2.30)

i.e., a residual low-rank correction on top of the frozen base. In transformers,
LoRA is commonly applied to the attention projections Wq, Wk, Wv, Wo, while
keeping MLP blocks frozen for maximal parameter efficiency [6]. Inference can be
latency-free: at serve time one may merge BA into W0 (W ← W0 + BA), so the
compute graph is identical to a dense model [6].

Recent theory analyzes when low-rank adapters suffice to match a target model
exactly and how approximation error scales with rank. For fully connected networks,
under mild non-singularity assumptions, a frozen model augmented with rank-R
adapters can exactly realize a smaller target model once R exceeds a layerwise
threshold; below threshold, the best-achievable error relates to the (RL+1)-st
singular value of a certain layerwise “gap” matrix (extending Eckart–Young–Mirsky
to products of low-rank-updated matrices) [14]. For transformers, the analysis
shows that, again under mild conditions, rank on the order of half the embedding
size is sufficient to exactly match a target transformer of the same size, giving
concrete guidance on adapter rank selection [14].

Practical efficiency. Relative to full fine-tuning, LoRA reduces optimizer state
and gradient traffic for frozen parameters, cutting training VRAM and storage
substantially. The original report shows up to ∼3× lower GPU memory during
training and ∼ 10,000× fewer trainable parameters at rank r=4 when adapting
only Wq/Wv (e.g., GPT-3 175B: 1.2 TB → 350 GB training memory; checkpoints
∼350 GB→ 35 MB for adapters) while introducing no extra inference latency when
merged [6].

Scalability. Because adapters are tiny and swappable, serving multiple fine-tuned
behaviors on a single shared base becomes practical. An open-source Multi-LoRA

18

Related Works

server (LoRAX) demonstrates dynamic adapter loading, multi-adapter batching,
and tiered caching to host many LoRA models concurrently on one GPU with robust
time-to-first-token and throughput under load. In the LoRA Land deployment, 25
LoRA-adapted Mistral-7B models were served to thousands of users on a single
80 GB A100, with detailed latency benchmarks reported [15].

Empirical effectiveness. A large-scale study across 10 base models and 31 tasks
(310 LoRA fine-tunes) reports that LoRA adapters trained on 4-bit-quantized bases
“QLoRA-style” consistently improve task performance; on average, 4-bit LoRA
models exceed their untuned bases and, on that task suite, even surpass GPT-4
under the study’s prompting and scoring setup, while enabling economical multi-
adapter serving [15]. On the other hand, the authors also note limitations in prompt
engineering, evaluation scope, and model variety, encouraging replication [15].

Connections to other PEFT variants. LoRA is compatible with other PEFT
ideas: SVD-pruned updates and decomposition variants (e.g., DoRA) target im-
proved conditioning; QLoRA combines LoRA with 4-bit NF4 and paged optimizers
to cut memory further; in practice, many works apply LoRA primarily to attention
projections for the best quality–efficiency trade-off [6, 14, 15].

Implementation in this Thesis. In this work, LoRA is applied to the self-
attention layers of the model following the configuration used in [6]. Specifically,
LoRA is integrated into the query and value projection matrices (q_proj and
v_proj) of the transformer attention mechanism, while all other parameters remain
frozen. Each modified projection layer is decomposed into a pair of trainable
low-rank matrices (A, B), where A ∈ Rr×d and B ∈ Rd×r, initialized such that
BA ≈ 0 at the start of fine-tuning:

W ′ = W + ∆W, ∆W = BA, (2.31)

where W denotes the frozen pretrained weight and ∆W the learned low-rank update.
In this implementation, the LoRA configuration is defined by the tuple (r, α, p),
corresponding respectively to the rank, scaling factor, and dropout probability.
The adopted parameters are r = 8, α = 16, and dropout p = 0.05, as shown in the
code excerpt below:

lora_cfg = LoraConfig(
r=8, lora_alpha=16, lora_dropout=0.05, bias="none",
target_modules=["q_proj", "v_proj"],
task_type=TaskType.CAUSAL_LM)

model = get_peft_model(model, lora_cfg)
model.print_trainable_parameters()

19

Related Works

The LoRA scaling factor α is set proportionally to the rank (α = 2r), which
stabilizes the magnitude of the low-rank updates during training. This design
ensures that only a small subset of parameters (the low-rank adapters) are trainable,
while the vast majority of the model remains frozen, leading to efficient fine-tuning
with minimal computational and memory overhead.

2.4 Stochastic Perturbations
LLMs often produce overconfident predictions, even when they are wrong, a
phenomenon commonly linked to hallucinations [35]. To address this, uncertainty
quantification techniques aim to measure the reliability of model outputs. While
traditional sampling methods target aleatoric uncertainty (inherent data variability),
they often fail to capture epistemic uncertainty, which stems from the model’s
limited knowledge or sensitivity to perturbations [36].

Stochastic perturbations provide a lightweight means to approximate epistemic
uncertainty by injecting controlled randomness into model inputs or computations.
The SPUQ framework [7] formalizes this by generating perturbed inputs (Ti, xi)
from an original input (T0, x0), where T denotes temperature and x the prompt:

{(Ti, xi)}k
i=1 = P(T0, x0), (2.32)

with P denoting the perturbation module (e.g., paraphrasing, dumour tokens,
system message variations). The perturbed inputs are fed into the LLMs to yield
predictions {yi}k

i=0, where i = 0 corresponds to the unperturbed input.

2.4.1 Perturbation-Driven Variance
For additive noise perturbations, as used in our implementation, inputs are modeled
as:

x̃ = x + ϵ, ϵ ∼ N (0, σ2I). (2.33)
The perturbed output of a linear layer becomes:

ỹ = x̃W ⊤ + b = (x + ϵ)W ⊤ + b. (2.34)

The expectation is unbiased:

E[ỹ] = xW ⊤ + b, (2.35)

but the variance encodes sensitivity to perturbations:

Var[ỹj] = σ2∥W:,j∥2
2. (2.36)

Hence, columns of W with larger norms amplify epistemic uncertainty.

20

Related Works

2.4.2 Uncertainty Aggregation
SPUQ generalizes stochastic perturbations by combining them with sampling-based
uncertainty. Confidence is derived by comparing outputs {yi} across perturbed
and unperturbed prompts. Two aggregation methods are proposed [7]:

Inter-sample aggregation. Confidence for output yj is computed via textual
similarity with other samples:

cinter(yj) =
qk

i=0,i /=j s(yj, yi) wiqk
i=0,i /=j wi

, (2.37)

where s(·, ·) is a similarity metric (e.g., RougeL, BERTScore), and wi weighs
perturbations based on their closeness to the original prompt.

Intra-sample aggregation. Confidence is averaged across sample-wise uncer-
tainty estimates:

cintra = 1
k + 1

kØ
i=0

c(xi, yi), (2.38)

where c(xi, yi) may be derived from likelihood, perplexity, or even self-verbalized
uncertainty.

Noise injection complements sampling (aleatoric) by revealing instability across
perturbed inputs (epistemic). SPUQ reduces Expected Calibration Error (ECE)
by up to 50% across LLMs. Repeated stochastic forward passes provide estimates
of mean and variance (Monte Carlo Estimation):

µ̂(x) = 1
M

MØ
m=1

ỹ(m), (2.39)

σ̂2(x) = 1
M

MØ
m=1

1
ỹ(m) − µ̂(x)

22
, (2.40)

enabling epistemic uncertainty quantification.

2.4.3 Stochastic Regularization Methods
The idea of injecting noise into neural networks has a long history as a form
of stochastic regularization. Rather than perturbing prompts as in SPUQ, our
approach is closer to activation-level noise injection, which has been widely explored
in deep learning for both efficiency and robustness.

21

Related Works

Connection to Dropout. Dropout [37] is perhaps the most well-known stochas-
tic regularization method, where a random binary mask m ∼ Bernoulli(p) is applied
to activations:

x̃ = m⊙ x, (2.41)
forcing the network to learn redundant representations. Our Gaussian perturbation
variant can be viewed as a smoother alternative, replacing discrete masking with
continuous noise:

x̃ = x + ϵ, ϵ ∼ N (0, σ2I). (2.42)
Both approaches trade deterministic activations for stochastic ones, encouraging
robustness to perturbations.

Bayesian Interpretation. Gal and Ghahramani [38] interpreted dropout as ap-
proximate Bayesian inference, where multiple stochastic forward passes correspond
to Monte Carlo sampling from a posterior distribution over models. Analogously,
Gaussian perturbations applied during inference provide a lightweight Monte Carlo
estimate of predictive uncertainty:

µ̂(x) = 1
M

MØ
m=1

f(x + ϵm), (2.43)

σ̂2(x) = 1
M

MØ
m=1

1
f(x + ϵm)− µ̂(x)

22
, (2.44)

where ϵm are independent Gaussian samples. Thus, our method extends stochastic
regularization into the transformer MLP blocks and enables uncertainty-aware
evaluation without modifying prompts.

Approximate Computing Perspective. From an efficiency viewpoint, stochas-
tic perturbations reduce the need for exact, high-precision computation by intro-
ducing noise-tolerant approximations [5]. Since the injected noise dominates small
floating-point errors, the model can tolerate lower-precision arithmetic in perturbed
layers. This aligns with the goals of approximate computing: trading precision for
efficiency while preserving accuracy in expectation.

2.4.4 Implementation in This Thesis
In this work, we adopt a simplified stochastic perturbation scheme by injecting
Gaussian noise into activations before linear projections:

def stochastic_linear(x, weight, bias=None, noise_std=0.01):
noise = torch.randn_like(x) * noise_std
return F.linear(x + noise, weight, bias)

22

Related Works

While SPUQ leverages input-level perturbations for epistemic uncertainty, our
activation-level Gaussian noise injection connects naturally to stochastic regulariza-
tion and Bayesian interpretations of deep networks. It offers a simple yet effective
approximation method that integrates seamlessly into the model architecture and
can be combined with quantization, pruning, or LoRA in our unified framework.

2.5 Stochastic Memory Masking
Scaling LLMs inevitably runs into memory bottlenecks. During both training and
inference, the dominant cost is not always arithmetic computation, but rather
storing and moving activations, parameters, and intermediate results across lim-
ited GPU memory and bandwidth. For example, the quadratic complexity of
self-attention means that even for moderate sequence lengths, memory usage grows
prohibitively large. This motivates research into memory approximation methods
that deliberately reduce the memory footprint of models at the expense of exact-
ness, thereby enabling deployment at larger scales or under resource-constrained
conditions.

While system-level techniques such as FlashAttention [39] address the problem by
optimizing tiling and IO patterns, in this thesis we focus on algorithmic approaches.
Among these, stochastic memory masking represents a lightweight yet effective
strategy to approximate storage by introducing controlled noise directly into
activations. Unlike checkpointing or reversible layers, which reduce memory through
recomputation, stochastic masking directly enforces sparsity in stored values.

2.5.1 Checkpointing and Sparsification
One classical strategy for memory reduction is activation checkpointing [40]. The
key idea is to avoid storing all intermediate activations during the forward pass.
Instead, only a small subset of “checkpoints” is retained, and missing activations
are recomputed during backpropagation. This reduces memory usage from O(L)
to O(

√
L) for L layers, at the cost of extra forward computations.

Reversible residual networks (RevNets) [41] take a different approach by design-
ing layers that are invertible. Here, activations can be reconstructed exactly from
later outputs, eliminating the need for explicit storage.

Stochastic methods, by contrast, sacrifice exactness. For example, QSGD [8]
quantizes each gradient coordinate to a low-bit stochastic representation while
preserving unbiasedness, and DropConnect [42] randomly masks weights during
training. These approaches highlight the broader principle: random masking or
quantization can approximate limited storage conditions while retaining useful
learning signals.

23

Related Works

2.5.2 Stochastic Memory Masking for Attention
Building on this line of work, we define stochastic memory masking as a simple but
powerful approximation technique applied to attention activations in transformer
models. Given an attention output vector y ∈ Rd, we apply an element-wise
Bernoulli mask:

ŷi =


yi

1− p
, with probability 1− p,

0, with probability p,
(2.45)

where p is the drop probability. The scaling factor ensures that the expectation is
unbiased:

E[ŷi] = yi, (2.46)

while the variance grows with p:

Var[ŷi] = p

1− p
y2

i . (2.47)

In practice, we often omit the rescaling, deliberately introducing a small bias
that simulates lossy compression. This makes the approximation closer to realistic
storage errors, where magnitudes are systematically underestimated.

2.5.3 Implementation in This Thesis
From an approximate computing perspective, stochastic memory masking trades
determinism for efficiency. It does not physically reduce GPU memory allocation,
but it conceptually simulates a reduced-memory regime by discarding activations
at random. This provides a tunable knob (p) that controls the fidelity–efficiency
trade-off.

Unlike structured methods, stochastic masking varies across forward passes,
probing the model’s robustness to dynamic activation loss. Thus, it offers insight
into how resilient large language models are to lossy memory approximations,
complementing system-level optimizations like FlashAttention with an algorithmic
robustness test.

2.6 Evaluation Metrics and Efficiency Measures
Evaluating approximation techniques for LLMs requires both quality-oriented
metrics, which capture linguistic fidelity, and efficiency-oriented measures, which
quantify computational resource demands. This dual perspective reflects the
standard in NLP evaluation and robustness analysis [9, 10, 11].

24

Related Works

2.6.1 Quality Metrics
BLEU. Bilingual Evaluation Understudy (BLEU) is an n-gram precision-based
metric with a brevity penalty to avoid favoring short hypotheses:

BLEU = BP · exp
A

1
N

NØ
n=1

log pn

B
, (2.48)

where pn denotes the modified n-gram precision and BP = min
1
1, e1−|R|/|C|

2
is

the brevity penalty for candidate length |C| against reference length |R|. BLEU
remains widely used in text generation benchmarks, although its sensitivity to
exact n-gram overlap has motivated several adaptations [9].

ROUGE-L. ROUGE-L evaluates recall-oriented overlap using the longest com-
mon subsequence (LCS):

ROUGE-L = (1 + γ2) · PLCS ·RLCS

RLCS + γ2PLCS
, (2.49)

where PLCS = LCS(C,R)
|C| and RLCS = LCS(C,R)

|R| . ROUGE-L has been shown effective
for summarization and generative evaluation where ordering matters[9].

F1 Score. Precision and recall can be applied at the token level to capture
overlap between candidate tokens C and reference tokens R:

F1 = 2 · Precision · Recall
Precision + Recall , (2.50)

with Precision = |C∩R|
|C| and Recall = |C∩R|

|R| . Probabilistic extensions generalize this
formulation by weighting overlaps with confidence values, making it suitable for
stochastic generation settings [11].

SBERT Similarity. Semantic textual similarity was evaluated using SBERT,
a transformer-based model that maps sentences into a shared embedding space
optimized through contrastive and siamese training objectives [43]. Unlike lexical
metrics such as BLEU or ROUGE that rely on n-gram overlap, SBERT computes
cosine similarity between dense vector representations:

SBERT(C, R) = ⟨eC , eR⟩
∥eC∥ · ∥eR∥

, (2.51)

where eC and eR denote the embeddings of candidate and reference sentences,
respectively. Values range from −1 to 1, but well-aligned natural language pairs typ-
ically fall in the interval [0,1], making the metric effective for capturing paraphrastic

25

Related Works

and semantic equivalence even in the presence of substantial lexical variation. This
makes SBERT particularly suitable for evaluating approximated models, whose
outputs may deviate at the token level while maintaining semantic fidelity.

Perplexity. Perplexity measures the cross-entropy between the model distribution
P and the empirical sequence xT

1 :

PPL = exp
A
− 1

T

TØ
t=1

log P (xt | x<t)
B

. (2.52)

Lower perplexity indicates better predictive power. It is also used for anomaly
detection and robustness assessment in LLMs [10].

2.6.2 Efficiency Measures
Evaluating approximation techniques requires not only accuracy-based metrics but
also measurements of computational and memory efficiency. In this work, efficiency
is analyzed in terms of inference latency and model size. These measures provide
complementary views of runtime cost and resource utilization.

Inference Latency. Latency represents the total time required for model infer-
ence and serves as a direct measure of computational efficiency. Inference time T is
defined as the wall-clock difference between the start and end of a single evaluation
loop:

T = tend − tstart, (2.53)

where tstart and tend correspond to timestamps collected immediately before and
after the forward pass of the inference, respectively. In practice, the evaluation loop
measures this duration using time.time() surrounding the model.generate() call.
The forward generation includes token sampling with top-p nucleus sampling and
temperature scaling. This timing reflects end-to-end inference, including decoding
and post-processing.

Output File Size. To assess the effect of approximation on textual generation
volume, all model predictions, references, and prompts were stored in serialized
JSONL format. The file size in kilobytes (KB) is computed as:

Sout = Bytes(file)
1024 . (2.54)

This measure indirectly reflects verbosity and compression effects induced by
quantization and stochastic methods.

26

Related Works

Model Size. To quantify memory efficiency, the effective model size is computed
as the sum of all parameter and buffer tensors, weighted by their numerical precision.
Let the model contain K tensors with element counts nk and bit-widths bk. The
total memory footprint is:

Smodel =
KØ

k=1

nk · bk

8 · 10242 (MB). (2.55)

Full-precision models (e.g., BF16 or FP16) use uniform bit-widths, while approxi-
mation techniques modify bk through quantization (INT8, INT4, NF4), low-rank
adaptation, or structural pruning. Quantization reduces bk, shrinking each tensor,
whereas pruning reduces nk by removing weights. LoRA introduces small rank-
decomposition matrices whose contribution is negligible compared to the full dense
layers. Thus, the final model size captures the cumulative effect of compression,
precision scaling, and structural sparsity, providing a hardware-agnostic indicator
of memory efficiency for deployment-oriented model design.

27

Chapter 3

Methodology

This chapter outlines the methodology adopted in this thesis. Building upon
the theoretical background presented in Chapter 2, it describes the datasets,
baseline models, implemented approximation techniques, evaluation metrics, and
experimental protocol. The goal is to establish a reproducible framework for
systematically studying efficiency–accuracy trade-offs in instruction-tuned LLMs.

A modular approximation pipeline was developed to integrate and evaluate
efficiency-oriented techniques in transformer architectures. The framework supports
five primary approximation methods, which are quantization, pruning, stochastic
perturbation, memory masking, and LoRA, each of which can be activated individ-
ually or in combination. This modular design enables controlled experimentation,
allowing direct comparison of approximation effects across datasets and models.
The workflow consists of four major stages which are model selection and initializa-
tion, approximation integration, fine-tuning and evaluation, and metric collection
and analysis.

Firsly, two compact instruction-tuned transformer models were selected which
are LLaMA-3.2-1B-Instruct and Gemma-3-1B-it. Both were chosen for their
open availability, manageable computational footprint, and compatibility with the
approximation methods. These architectures provide a representative testbed for
studying approximation in mid-scale LLMs. Secondly, the following approximate
computing methods were implemented.

• Quantization is implemented as a simulated low-precision scheme (INT8,
INT4, NF4) in which weights are quantized statically and activations dynami-
cally, while computations remain in BF16 to ensure numerical stability and
hardware independence. Weights are quantized once at model initialization or
via a dedicated quantize_model() pass, whereas activations are quantized
dynamically before each forward pass. Matrix multiplications are performed
in BF16, and outputs are subsequently requantized before propagation to the

29

Methodology

next layer.

• Pruning enforces structured sparsity by removing a fixed fraction of weights
with the lowest magnitudes according to an L1-norm criterion. This reduces
the parameter count and computational load while maintaining the overall
network topology and representational capacity.

• Stochastic perturbation injects Gaussian noise into activations before self-
attention projections(before query, key and value projections) within the MLP
gate layers, simulating arithmetic uncertainty and the behavior of stochastic
hardware accelerators. By targeting activation projections in the MLP rather
than self-attention layers, this approach enhances robustness to noise-induced
variability while maintaining training stability and controllable experimental
conditions.

• Memory masking randomly deactivates a small subset of tensor elements
within self-attention outputs, simulating approximate or lossy memory access.

• LoRA introduces efficient trainable subspaces for fine-tuning large models by
reparameterizing each pretrained weight matrix W0 as

W = W0 + α

r
BA,

where A ∈ Rr×d and B ∈ Rd×r are low-rank adapters with rank r ≪ d. LoRA
is applied to the query and value projection matrices (q_proj, v_proj) within
each attention block to enable efficient adaptation with minimal parameter
overhead. Only the LoRA parameters (A, B) are trainable, while all pretrained
weights remain frozen. The applied configuration uses r = 8, α = 16, and
dropout p = 0.05, corresponding to α = 2r.

All modules were parameterized through a unified configuration system, allowing
flexible combinations such as INT8 + LoRA, Pruned + LoRA, or INT8 + Pruned +
LoRA. This ensured reproducible comparisons under identical training conditions.

Thirdly, each approximated model underwent fine-tuning on three instruction-
following datasets which are Alpaca, Databricks-Dolly-15k, and AgentInstruct.
Due to GPU memory and runtime constraints, the Alpaca and Dolly datasets were
subsampled to 15,000 examples each while maintaining diversity across instruction
types. Fine-tuning was conducted using the AdamW optimizer with cosine learning
rate decay and linear warmup. Models were trained for 3–5 epochs, using mixed
batch sizes (2–16 samples) depending on memory availability. All experiments used
a sequence length of 128 tokens. Approximation parameters were fixed throughout
training to ensure stability and fair comparison.

30

Methodology

Finally, to assess the effectiveness of approximation, complementary quality and
efficiency metrics, which are BLEU score, ROUGE-L score, F1 score, SBERT score
inference time, output size and final model size, were collected. The evaluation
protocol was identical for all configurations, measuring both linguistic quality and
efficiency.

3.1 Datasets
To evaluate approximation techniques under diverse instruction-following conditions,
we employ three representative instruction-tuning datasets with complementary
properties: Alpaca, Databricks-Dolly-15k, and AgentInstruct. These datasets
differ in scale, construction methodology, and task coverage, which together enable
a systematic assessment of robustness and efficiency trade-offs.

3.1.1 Alpaca
The Alpaca dataset [44] was introduced by Stanford’s Center for Research on Foun-
dation Models (CRFM) as an accessible, low-cost resource for instruction tuning.
It contains approximately 52,000 instruction–response pairs generated synthetically
using OpenAI’s text-davinci-003 (GPT-3.5). The construction pipeline follows the
Self-Instruct paradigm [45], where a seed set of 175 manually written prompts was
used to bootstrap GPT-3.5 into producing thousands of novel instructions and
corresponding demonstrations.

To reduce cost and maximize diversity, several modifications were made compared
to the original Self-Instruct pipeline: (i) using the more powerful text-davinci-003
engine, (ii) employing aggressive batch decoding (20 generations per batch), (iii)
discarding the distinction between classification and non-classification instructions,
and (iv) generating a single demonstration per instruction rather than multiple.
This yielded a large corpus for under $500, making Alpaca one of the most cost-
effective open instruction datasets.

Data Fields. Each Alpaca entry has:

• instruction: natural-language description of the task.

• input: optional context (present in ∼40% of examples).

• output: the response generated by GPT-3.5.

• text: concatenation of instruction, input, and output using a standardized
prompt template.

31

Methodology

From a theoretical standpoint, Alpaca exemplifies the synthetic data distillation
paradigm, where a strong proprietary teacher model transfers its knowledge into
an open student model. While synthetic generation ensures fluency and uniformity,
it also propagates biases and factual errors from the teacher model. Furthermore,
Alpaca’s license restricts it to non-commercial use. Despite these caveats, Alpaca
is widely adopted for controlled studies of approximation, since its scale and
relative cleanliness allow systematic exploration of pruning stability, quantization
degradation, and LoRA.

3.1.2 Databricks-Dolly-15k
The Databricks-Dolly-15k dataset [46] represents a contrasting design philosophy.
Instead of synthetic generations, it consists of approximately 15,000 human-authored
instruction–response pairs contributed by thousands of Databricks employees.
Prompts were crafted across eight categories, closely following the taxonomy
outlined in the InstructGPT paper [47]: brainstorming, classification, closed QA,
open QA, summarization, information extraction, creative writing, and free-form
instructions. Annotators were instructed not to use generative AI systems when
writing responses, and to ground factual categories (e.g., QA, summarization) in
Wikipedia.

The annotation process was deliberately lightweight: employees were given short
descriptions and examples but little formal rubric, leading to linguistic richness
and pragmatic variety. Midway through collection, contributors could also answer
prompts written by colleagues, further increasing lexical diversity and paraphrasing
variety. As a result, Dolly-15k reflects human creativity, ambiguity, and stylistic
idiosyncrasies often missing in synthetic corpora.

Data Fields. Each Dolly entry has:

• instruction: the human-authored prompt.

• context: optional supporting text (e.g., a Wikipedia passage).

• response: the human-written answer.

Dolly is notable for three reasons. First, it is the first large-scale, open-source,
human-generated instruction dataset released under a permissive CC-BY-SA 3.0
license, enabling both academic and commercial use. Second, its linguistic diversity
makes it a stronger testbed for approximation robustness: stochastic masking,
pruning, and quantization must handle real-world variation. This positions Dolly-
15k as a benchmark for generalization under authentic, human-like conditions.

32

Methodology

3.1.3 AgentInstruct
AgentInstruct [48] originates from the AgentTuning project, designed to equip
LLMs with agentic capabilities. Unlike Alpaca and Dolly, which are primarily
single-turn, AgentInstruct emphasizes multi-step interaction trajectories involving
planning, reasoning, and tool use. A typical entry may require decomposing a high-
level instruction into sub-tasks, invoking external tools (e.g., search or calculator),
and integrating intermediate results into a coherent final answer.

The dataset was constructed by generating candidate agentic trajectories (partly
via GPT-4), filtering them through execution success and alignment criteria, and
mixing them with general-purpose sources such as ShareGPT. The final release in-
cludes ∼1,800 high-quality trajectories. Although smaller in scale, each trajectory is
semantically dense, capturing structured reasoning and long-context dependencies.

Data Fields. Each entry in the AgentInstruct dataset is structured as a multi-
turn conversation between a human (or user) and an AI assistant. The data is
represented as a sequence of messages, each of which contains three core attributes:

• from: the speaker role, which is either the human/user (corresponding to the
instruction) or the assistant/gpt (corresponding to the model’s response).

• value: the textual content of the message. For user turns, this contains the
natural language instruction or follow-up question. For assistant turns, it
contains the model’s intermediate reasoning, tool invocation, or final answer.

• loss: a supervision flag (Boolean or null), which specifies whether a given
assistant step is included as part of the supervised training signal.

For downstream formatting, the dataset can be distilled into instruction–response
pairs by selecting the latest message authored by the human/user as the instruction,
and the subsequent assistant/gpt message as the response. This ensures a stan-
dardized alignment of prompts with their corresponding model-generated answers
while preserving the conversational and multi-step reasoning nature of the dataset.

From an approximation perspective, AgentInstruct is a natural stress test for
memory-saving techniques such as stochastic masking or low-rank compression.
Multi-step reasoning requires retaining intermediate states over long contexts, and
lossy approximations may compromise logical consistency and planning depth.

Summary. Together, these datasets span complementary aspects of instruction-
following:

• Alpaca: Large-scale, synthetic, and clean. Facilitates controlled experiments
on approximation sensitivity.

33

Methodology

• Dolly-15k: Medium-scale, human-authored, and diverse. Tests robustness
against natural human variation.

• AgentInstruct: Small-scale, multi-step, agentic reasoning. Evaluates approx-
imation impact on reasoning depth and memory.

By combining synthetic uniformity (Alpaca), authentic human diversity (Dolly),
and structured agentic complexity (AgentInstruct), this suite provides a balanced
foundation for analyzing approximation methods’ training in LLMs.

3.2 Models
This work employs two compact instruction-tuned LLMs as baselines: LLaMA-3.2-
1B-Instruct, released by Meta, and Gemma-3-1B-Instruct, released by Google
DeepMind. Both models are representative of modern transformer-based LLMs,
while being sufficiently lightweight to enable experimentation with approximate
training techniques under constrained resources. Despite their relatively small size
compared to frontier-scale LLMs (tens or hundreds of billions of parameters), they
preserve the architectural sophistication of current-generation autoregressive trans-
formers, making them highly suitable for controlled benchmarking of approximation
methods such as pruning, quantization, and stochastic memory masking.

3.2.1 LLaMA-3.2-1B-Instruct
The LLaMA (Large Language Model Meta AI) family has become a cornerstone of
open research in generative AI, providing a transparent and accessible alternative
to proprietary models [49]. LLaMA-3.2-1B-Instruct is a compact, instruction-tuned
variant of the LLaMA 3.2 family, with approximately 1 billion parameters. Although
far smaller than the largest models in the LLaMA-3.2 series (e.g., 70B), the 1B
variant incorporates the same core architectural innovations, ensuring structural
comparability across scales.

Architecture. LLaMA-3.2 models adopt a decoder-only transformer architecture,
optimized for autoregressive next-token prediction. Key architectural components
include:

• Grouped-Query Attention (GQA): Instead of allocating a unique set of
key-value projections per attention head, GQA shares key-value projections
across groups of heads [50]. This reduces memory footprint and improves
inference efficiency while maintaining competitive quality.

34

Methodology

• Rotary Positional Embeddings (RoPE): Positional encodings are in-
corporated directly into the attention mechanism via rotation in complex
space, enabling extrapolation to longer context windows compared to absolute
embeddings [51].

• SwiGLU Activation Functions: The feed-forward networks (FFNs) employ
a SwiGLU nonlinearity [52], which has been shown to improve training stability
and generalization compared to ReLU or GELU.

• Long-Context Extensions: LLaMA-3.2 incorporates efficient scaling of
context length, enabling windows of up to 128k tokens in larger variants, with
proportionally scaled-down limits for smaller models.

Instruction Tuning. The Instruct variant is obtained by supervised fine-tuning
of the pretrained model on prompt–response pairs derived from instruction datasets
(e.g., Alpaca, Dolly-15k). Further refinements may include reinforcement learning
from human feedback (RLHF) or Direct Preference Optimization (DPO), which
align model behavior with human-preferred responses [47]. Instruction tuning
improves zero-shot usability, ensuring that the model interprets prompts as natural
instructions rather than arbitrary text completion tasks.

Role in Benchmark. LLaMA-3.2-1B-Instruct serves as a canonical open-weight,
instruction-tuned baseline. Its compact size allows us to fine-tune with multiple
approximation strategies under realistic hardware constraints. Furthermore, its
widespread use in open-source research ensures that approximation results are
broadly comparable to the literature.

3.2.2 Gemma-3-1B-Instruct
Gemma is Google DeepMind’s family of lightweight, open-source language models
introduced in 2025 [53]. The Gemma-3-1B-Instruct model is the 1B-parameter
instruction-tuned variant of Gemma 3, explicitly designed for efficiency, multilin-
guality, and modularity. It is positioned as a counterpart to LLaMA , offering an
alternative open foundation with strong performance in constrained environments.

Architecture. Like LLaMA, Gemma models are decoder-only transformers.
However, Gemma introduces a number of design choices that emphasize deployment
efficiency and adaptability:

• Grouped-Query Attention (GQA) and multi-query variants are em-
ployed to further reduce memory usage during inference.

35

Methodology

• Extended Context Windows: The 1B-it variant supports sequences of up
to 32k tokens, which is unusually long for such a compact model, enabling
experiments on long-context approximation trade-offs.

• Optimized Embedding Layers: Gemma models apply more parameter-
efficient embedding layers, reducing memory bottlenecks for multilingual
vocabularies.

• Parameter-Efficient Scaling: Architectural choices are explicitly tuned
to maximize FLOPs utilization at small parameter scales, providing a more
competitive baseline compared to other lightweight open models.

Instruction Tuning. The Gemma-3-1B-Instruct model undergoes structured in-
struction tuning using both supervised datasets (e.g., human-authored instructions,
synthetic prompt–response pairs) and reinforcement signals. The instruction format
is standardized around explicit role tokens (<start_of_turn>, <end_of_turn>),
ensuring consistency across tasks and improving robustness to conversational multi-
turn alignment [53]. This contrasts with LLaMA’s simpler Alpaca-style instruction-
response formatting, highlighting methodological diversity in instruction-tuning
pipelines.

Role in Benchmark. Gemma-3-1B-Instruct provides an architectural and
methodological contrast to LLaMA-3.2-1B-Instruct. While both models are decoder-
only transformers, differences in training data, tokenization, and instruction for-
matting allow us to probe the portability of approximation methods. For instance,
quantization strategies may interact differently with Gemma’s embedding layers
compared to LLaMA.

Comparative Analysis. The two models complement each other along several
dimensions:

• Scale: Both are ∼1B parameter models, light enough for systematic bench-
marking, yet architecturally representative of frontier-scale LLMs.

• Instruction-Tuning Paradigm: LLaMA emphasizes Alpaca-style distil-
lation and DPO alignment, whereas Gemma uses structured conversation
templates and RLHF pipelines. This diversity ensures our approximations are
tested across multiple alignment strategies.

• Architectural Efficiency: LLaMA prioritizes efficient scaling via GQA
and RoPE, while Gemma emphasizes parameter-efficient embeddings and
long-context extensions.

36

Methodology

• Research Relevance: LLaMA serves as a widely-used, standard benchmark
model, while Gemma represents a newer generation of compact, multilingual,
and efficiency-oriented open models.

Together, these models establish a balanced evaluation environment: LLaMA-3.2-
1B-Instruct as a stable, widely-adopted open benchmark, and Gemma-3-1B-Instruct
as a forward-looking, efficiency-driven alternative. Their shared compactness
makes them well suited for the experimental focus of this thesis, benchmarking
approximation-aware training, while their architectural and methodological con-
trasts provide insight into the generalizability of approximation techniques across
model families.

3.3 Approximation Techniques
The approximation techniques applied in this thesis directly follow the theoretical
foundations outlined in Chapter 2. Each method is adapted into a practical
implementation pipeline.

3.3.1 Quantization
Quantization in this thesis is implemented using a simulated quantization. Pre-
trained transformer models such as LLaMA-3.2-1B-Instruct and Gemma-3-1B-
Instruct are quantized into low-precision representations (NF4, INT4, or INT8)
while maintaining floating-point computations for numerical stability.

Quantization pipeline. Weights are quantized once either at model initializa-
tion or via a dedicated quantize_model() pass while activations are quantized
dynamically before each forward pass. Computations, including matrix multiplica-
tions, are performed in BF16, and outputs are requantized before being propagated
to subsequent layers. This scheme strikes a balance between numerical efficiency
and hardware independence, preserving the accuracy advantages of simulated
quantization while avoiding integer-only computation constraints [4, 12].

Quantization operator. Let W ∈ Rm×n denote a weight matrix. Quantization
maps W to a discrete set of representable values Ŵ using a scale factor s and
zero-point Z:

Ŵ = Quantize(W ; s, Z) = clip
37

W

s

:
+ Z, qmin, qmax

4
, (3.1)

where qmin and qmax define the integer range (e.g., [−127,127] for INT8), and ⌊·⌉
denotes rounding to the nearest integer. The corresponding dequantization step is

37

Methodology

given by:
W̃ = s · (Ŵ − Z), (3.2)

yielding an approximation error ε = W − W̃ . In this work, such quantization is
performed for all linear weights, while dynamic quantization is applied to activations
during inference.

Comparison with PTQ and QAT. The proposed method differs from classical
approaches:

• PTQ: Post-training quantization applies Quantize(·) directly to pretrained
weights without retraining. While computationally efficient, it often degrades
accuracy below 8-bit precision [19].

• QAT: Quantization-aware training retrains all model parameters under simu-
lated quantization in both forward and backward passes [4]. It achieves high
fidelity but is computationally prohibitive for billion-scale LLMs.

Uniform quantization. Uniform symmetric quantization maps each real-valued
weight wi into an integer ŵi according to:

ŵi = round
3

wi

s

4
, s = max(|W |)

2b−1 − 1 , (3.3)

where b denotes the bit width. For 8-bit and 4-bit quantization, the representable
ranges are [−127,127] and [−7,7], respectively. Although INT8 provides stable
approximations with minimal degradation, INT4 may introduce higher quantiza-
tion error, particularly in attention and feed-forward layers with skewed weight
distributions. Implementation follows:

def quantize_tensor_uniform(tensor, bits=8):
qmax = 2 ** (bits - 1) - 1
max_val = tensor.abs().max(dim=-1, keepdim=True).values
scale = torch.clamp(max_val / qmax, min=1e-8)
q = torch.clamp((tensor / scale).round(), -qmax, qmax)
return q, scale

NF4 quantization. While the original NF4 (NormalFloat-4) scheme [29] de-
fines a statistically optimal 4-bit codebook derived from a Gaussian prior, our
implementation adopts an NF4-inspired design that follows similar principles but
employs a distinct computational structure for practical GPU execution. Specifi-
cally, the quantizer still relies on a fixed 16-value codebook which approximates

38

Methodology

equal-probability bins of a standard normal distribution, providing higher resolution
around zero where most weights concentrate.

CNF4 = { − 1.0000,−0.6962,−0.5251,−0.3949,

− 0.2844,−0.1848,−0.0911, 0.0000,

0.0911, 0.1848, 0.2844, 0.3949,

0.5251, 0.6962, 0.8682, 1.0000}.

(3.4)

αb = max
i,j
|Wb,ij|, (3.5)

W̃b = Wb

αb

, (3.6)

Ŵb = QNF4(W̃b), (3.7)
W q

b = αb · Ŵb. (3.8)

Unlike the original QLoRA formulation, which performs blockwise quantization
with precomputed codebook mappings, our NF4 variant implements element-wise
nearest-neighbor assignment directly on GPU. Each tensor is divided into blocks of
64 elements for scaling, followed by a streaming search over the 16 codebook entries
per block. This eliminates large intermediate tensors and avoids out-of-memory
(OOM) errors common in naive 4D broadcasting approaches. The quantized
indices and per-block scales are stored compactly and later dequantized via direct
codebook lookup. This approach preserves the statistical intuition of NF4 while
offering a GPU-efficient, memory-safe quantization routine that can be applied
dynamically during training or inference. In contrast to Dettmers et al. [29], our
variant prioritizes runtime efficiency over exact Gaussian optimality, making it
well-suited for large-scale experimentation under resource constraints.

3.3.2 Pruning
Pruning reduces model complexity by eliminating redundant parameters. In this
benchmark, we implement unstructured magnitude pruning, where individual
weights are removed based on their absolute magnitude.

Unstructured magnitude pruning. Weights are pruned under an L1 threshold:

Ŵij =
Wij, |Wij| ≥ τ,

0, |Wij| < τ,
(3.9)

where τ is dynamically chosen to achieve a target sparsity level. This fine-grained
approach maximizes parameter removal but leads to irregular sparsity patterns
that are difficult to exploit on standard hardware.

39

Methodology

The following Python snippet shows our implementation of unstructured pruning
integrated into the training pipeline.

if config.get("prune"):
prune.l1_unstructured(gate, name="weight", amount=0.05)

In our implementation, pruning is applied exclusively to the MLP components
of transformer blocks, specifically the gate projection. This choice is motivated by
three factors: (i) the MLP layers constitute the majority of parameters in LLaMA
and Gemma models, so sparsification here yields the largest reduction in size; (ii)
attention projections are highly sensitive to pruning and even small perturbations
can destabilize the softmax distributions, whereas MLP transformations exhibit
higher redundancy and pruning tolerance; and (iii) PyTorch’s pruning utilities
integrate seamlessly with linear MLP layers, making them a natural starting
point. Concentrating pruning in MLPs thus balances efficiency gains with model
robustness, consistent with observations in prior pruning studies [19].

Note on structured pruning. Structured pruning (removing entire neurons,
channels, or projections) is not implemented in the current benchmark but remains
an important future extension, as it produces hardware-friendly sparsity.

3.3.3 LoRA
LoRA introduces efficient trainable subspaces to fine-tune large models [6]. Given
a pretrained weight matrix W0, LoRA reparameterizes:

W = W0 + α

r
BA, (3.10)

where A ∈ Rr×d and B ∈ Rd×r are low-rank adapters with rank r ≪ d. During
fine-tuning, only A and B are updated, while W0 remains frozen.

Application to Transformers. In this thesis, LoRA is applied to the query and
value projection matrices (q_proj, v_proj) within each attention block, following
empirical best practices for instruction-tuned models. This ensures efficient adap-
tation with minimal parameter overhead. The applied configuration uses r = 8,
α = 16, and dropout p = 0.05, corresponding to α = 2r. The implementation via
the Hugging Face’s PEFT library is as follows:

lora_cfg = LoraConfig(
r=8, lora_alpha=16, lora_dropout=0.05, bias="none",
target_modules=["q_proj", "v_proj"],
task_type=TaskType.CAUSAL_LM)

40

Methodology

model = get_peft_model(model, lora_cfg)
model.print_trainable_parameters()

Only LoRA adapters (A, B) are trainable, while all pretrained parameters are
frozen.

3.3.4 Stochastic Perturbations
To probe robustness against arithmetic noise, we inject Gaussian perturbations
into activations before self-attention projections (the q_proj, k_proj, and v_proj
matrices) within the MLP gate layers.

ŷ = (x + ϵ)W ⊤ + b, ϵ ∼ N (0, σ2I). (3.11)

This simulates the uncertainty of stochastic computing and approximate arithmetic
units, which may arise in low-power hardware accelerators. The following Python
snippet shows our implementation of stochastic perturbations injected into MLP
gate projections using a custom stochastic linear operator.

def stochastic_linear(x, weight, bias=None, noise_std=0.01):
noise = torch.randn_like(x) * noise_std
return F.linear(x + noise, weight, bias)

In our benchmark, Gaussian noise was injected only into the MLP gate projec-
tions. This design reflects three considerations: (i) the MLP layers account for
the majority of model parameters and provide redundancy that makes them more
tolerant to stochastic perturbations; (ii) attention projections are highly sensitive to
noise, where even small perturbations can destabilize token alignment and degrade
coherence; and (iii) implementation is straightforward in MLP gate projections,
which are single linear transformations, while attention layers involve multiple
interdependent projections. Thus, targeting MLP layers ensures both robustness
and experimental controllability when evaluating stochastic approximation.

3.3.5 Stochastic Memory Masking
While true memory approximation typically involves lossy compression of activations
or quantization of key-value (KV) caches, we adopt a simplified proxy approach to
study robustness. Specifically, we introduce stochastic masking in the outputs of
attention layers, mimicking the effect of unreliable or lossy memory propagation.

Formally, given attention activations y, a Bernoulli mask M is sampled element-
wise:

ŷ = y ⊙M, M ∼ Bernoulli(1− p), (3.12)

41

Methodology

where p is the masking probability. This resembles dropout applied during inference,
but is interpreted as random activation loss rather than a training regularizer.
Unlike pruning, which permanently removes weights, stochastic masking introduces
random erasures at each forward pass. To integrate this into the benchmark, we
wrap the forward pass of self-attention modules such that a fraction p = 0.05 of
the activations are masked:
if config.get("memory_approx") and hasattr(layer, "self_attn"):

drop_p = 0.05
def wrapped_forward(*args, orig=orig, drop_p=drop_p, **kw):

out = orig(*args, **kw)
mask = (torch.rand_like(out[0]) > drop_p)
return (out[0] * mask,) + out[1:]

layer.self_attn.forward = wrapped_forward

This stochastic memory masking does not perform actual compression, but
it provides a controlled way to approximate the behavior of lossy memory. By
introducing transient activation loss, it allows us to probe the resilience of LLMs
under degraded memory fidelity.

3.3.6 Combinations of Approximations
A major contribution of this work lies in enabling composable approximation
strategies. Rather than evaluating each method in isolation, the benchmark
systematically explores combinations of techniques, mirroring real-world scenarios
where efficiency, compression, and adaptability must be jointly optimized. By
composing quantization, pruning, stochastic perturbations, memory masking, and
LoRA, we study both pairwise and higher-order interactions between methods.

Double Combinations. Pairwise combinations are used to test complementary
effects between structural, arithmetic, and representational approximations:

• Quantization + LoRA: The base model is quantized (INT8, INT4, or NF4)
while the LoRA adapters are applied. This hybrid configuration maintains
the adaptability of LoRA while substantially reducing memory and storage
requirements.

• Pruning + LoRA: Sparse pruned backbones are augmented with trainable
LoRA adapters, allowing the model to recover expressivity lost through weight
removal.

• Stochastic Perturbations + LoRA: Perturbations are applied to the linear
layers while LoRA adapts to the induced stochasticity during training, testing
robustness under noisy computation.

42

Methodology

• Memory Masking + LoRA: Stochastic masking is applied to attention
activations while LoRA adapters fine-tune the frozen backbone, capturing
adaptation under partial information degradation.

Triple Combinations. To investigate cumulative interactions, aggressive three-
way configurations are explored:

• INT8 + Pruned + LoRA: A jointly compressed setup where pruning
enforces sparsity, INT8 quantization reduces memory bandwidth, and LoRA
fine-tunes the model for recovery.

• INT4 + Pruned + LoRA: Represents the most extreme configuration,
combining aggressive quantization and structural sparsity with minimal fine-
tuning overhead.

This compositional evaluation demonstrates how hybrid approximations can
jointly optimize memory, latency, and performance, providing a unified framework
for controlled degradation and recovery in LLMs.

43

Chapter 4

Experiments and Results

4.1 Experimental Setup
We evaluate the approximation techniques introduced in Chapter 3.3 on two
instruction-tuned transformer models that are LLaMA-3.2-1B-Instruct and Gemma-
3-1B-Instruct. Both models were chosen for their compact size, open availability,
and compatibility with approximate computing methods.

Datasets. Three instruction-following datasets were used in our experiments:
Alpaca, Databricks-Dolly-15k, and AgentInstruct. To reduce overfitting and better
evaluate the model’s ability to generalize across different instruction styles, we
adopted a cross-dataset evaluation strategy. In this setting, the model is fine-
tuned on one dataset and evaluated on a different one. For example, in the
Alpaca→Agent configuration, the model is trained on a 5,000-sample subset of
Alpaca and validated on the AgentInstruct dataset. Similarly, Alpaca→Dolly and
Agent→Dolly configurations were used to introduce domain shift between training
and evaluation. These cross-dataset evaluations allow us to assess whether the
model learns transferable instruction-following behavior rather than memorizing
dataset-specific patterns.

Baselines. Baseline inference results were taken using the pretrained checkpoints
of both models. This serves as reference points for comparing relative improvements
achieved through the application of approximate computing techniques.

Training Configuration. Fine-tuning was carried out using the AdamW opti-
mizer, applied only to parameters marked as trainable (for example, LoRA update
matrices when LoRA was enabled). A cosine learning rate schedule with a warmup
ratio of 20% of the total training steps was used. Training was performed for

45

Experiments and Results

3-5 epochs depending on the experiment, with gradient accumulation (typically 2
steps) employed to accommodate GPU memory limitations. The loss function was
the standard cross-entropy loss with masking applied to padding or ignored labels.
Perplexity was computed at the end of each epoch to monitor the progression of
training.

Evaluation Protocol. The effectiveness of each approximation method was
evaluated using metrics that quantify both linguistic accuracy and model efficiency.
Linguistic performance was measured using BLEU, ROUGE-L, F1, and SBERT
scores. BLEU captures n-gram precision between generated responses and reference
outputs. ROUGE-L measures the longest common subsequence, reflecting semantic
coverage and structural coherence. The F1 score balances precision and recall at
the token level,

F1 = 2 · Precision · Recall
Precision + Recall , (4.1)

ensuring robustness to differences in response length. In addition to these token-
overlap metrics, we report a SBERT-based similarity score, obtained by computing
the cosine similarity between sentence embeddings of the generated output and
the reference response. SBERT values lie in [0,1] and provide a semantic measure
of alignment that is more tolerant to paraphrasing and variation in surface form,
complementing BLEU and ROUGE-L.

To characterize model efficiency, we tracked three complementary indicators.
Firstly, model size was estimated by accounting for parameter and buffer represen-
tations, including reduced-precision formats introduced by quantization. Secondly,
the size of the generated outputs was recorded as an indicator of response verbosity
and determinism. Thirdly, the average inference time was measured to capture the
latency impact of each approximation technique and quantify the trade-off between
computational efficiency and linguistic performance.

46

Experiments and Results

4.2 Evaluation Results

4.2.1 Inference Results for the Dolly-15k Dataset(Fine-
tuned with Alpaca Dataset)

Model Approximation
Technique BLEU ROUGE-L SBERT

Inf.
Time

(s)

Out.
Size

(KB)

Model
Size

(MB)
Baseline
LLaMA-3.2-1B —– 0.58 0.67 0.88 2.2 163.8 2,858
Gemma-3-1B —– 0.25 0.46 0.68 7.9 121.3 2,483
Fine-tuned
LLaMA-3.2-1B Pruned 0.62 0.69 0.90 2.0 164.9 3,370
Gemma-3-1B Pruned 0.26 0.46 0.69 8.0 122.4 2,878
LLaMA-3.2-1B INT8 0.86 0.90 0.94 1.3 154.3 1,681
Gemma-3-1B INT8 0.25 0.46 0.68 15.3 125.5 1,532
LLaMA-3.2-1B INT4 0.36 0.48 0.81 7.6 184.9 1,092
Gemma-3-1B INT4 0.24 0.42 0.77 15.0 199.4 1,055
LLaMA-3.2-1B NF4 0.47 0.56 0.83 8.1 187.7 1,164
Gemma-3-1B NF4 0.23 0.46 0.73 19.5 163.5 1,112
LLaMA-3.2-1B LoRA 0.55 0.65 0.89 2.7 162.8 2,859
Gemma-3-1B LoRA 0.25 0.45 0.66 8.9 116.2 2,484
LLaMA-3.2-1B Perturbed 0.60 0.70 0.89 1.9 159.8 2,858
Gemma-3-1B Perturbed 0.21 0.40 0.65 8.1 119.4 2,483
LLaMA-3.2-1B Mem-masked 0.58 0.66 0.87 2.2 158.0 2,858
Gemma-3-1B Mem-masked 0.22 0.43 0.67 8.1 129.8 2,483
Fine-tuned
LLaMA-3.2-1B Pruned + LoRA 0.57 0.66 0.87 2.7 165.2 3,371
Gemma-3-1B Pruned + LoRA 0.23 0.41 0.63 9.2 163.7 2,879
LLaMA-3.2-1B INT8 + LoRA 0.75 0.80 0.91 4.1 141.5 1,682
Gemma-3-1B INT8 + LoRA 0.21 0.37 0.73 20.2 187.9 1,533
LLaMA-3.2-1B INT4 + LoRA 0.32 0.44 0.83 10.5 169.6 1,092
Gemma-3-1B INT4 + LoRA 0.32 0.53 0.84 20.1 222.8 1,056
LLaMA-3.2-1B NF4 + LoRA 0.46 0.56 0.83 12.1 173.4 1,164
Gemma-3-1B NF4 + LoRA 0.23 0.42 0.75 20.6 172.5 1,113
LLaMA-3.2-1B Perturbed + LoRA 0.55 0.65 0.87 2.7 165.9 2,859
Gemma-3-1B Perturbed + LoRA 0.23 0.40 0.61 9.3 164.9 2,484
LLaMA-3.2-1B Masked + LoRA 0.49 0.61 0.85 3.1 171.7 2,859
Gemma-3-1B Masked + LoRA 0.21 0.39 0.61 9.4 173.9 2,484

Continued on next page

47

Experiments and Results

Model Approximation
Technique BLEU ROUGE-L SBERT

Inf.
Time

(s)

Out.
Size

(KB)

Model
Size

(MB)
Fine-tuned
LLaMA-3.2-1B INT8+Pruned+LoRA 0.71 0.77 0.88 4.1 169.9 1,682
Gemma-3-1B INT8+Pruned+LoRA 0.31 0.53 0.72 20.3 151.9 1,533
LLaMA-3.2-1B INT4+Pruned+LoRA 0.35 0.46 0.82 10.4 183.6 1,092
Gemma-3-1B INT4+Pruned+LoRA 0.26 0.45 0.82 20.2 193.3 1,056

Table 4.1: Inference results for LLaMA-3.2-1B-Instruct and Gemma-3-1B-Instruct
on the Dolly-15k dataset (Fine-tuned with Alpaca dataset).

Accuracy. The accuracy characteristics of LLaMA-3.2-1B and Gemma-3-1B
differ substantially across approximation methods. LLaMA-3.2-1B exhibits strong
improvements from quantization, with INT8 achieving the highest scores (BLEU
= 0.86, ROUGE-L = 0.90, SBERT = 0.94). These results confirm LLaMA’s
robustness to 8-bit quantization, where weights are stored in INT8 but dequantized
back to FP16 before matrix multiplications, resulting in minimal loss of numerical
fidelity. Other approximation methods such as pruning, memory masking, and
perturbation remain close to the baseline, while more aggressive quantization (INT4,
NF4) leads to visible degradation.

Gemma-3-1B shows a markedly different behavior. Neither INT8 nor INT8+LoRA
yields improvements over the baseline, and in several cases performance degrades sig-
nificantly. Surprisingly, Gemma’s best-performing configurations are 4-bit variants
(INT4 and INT4+LoRA), which reach SBERT similarities of 0.84–0.85, outperform-
ing all INT8 results. This effect is consistent with prior observations that small
transformer models with sharp activation distributions may be more sensitive
to uniform INT8 quantization, while structured 4-bit formats (e.g., INT4, NF4)
preserve semantic similarity more effectively.

Overall, LLaMA-3.2-1B consistently benefits from INT8 quantization, whereas
Gemma-3-1B achieves its strongest semantic fidelity under 4-bit approximations.

Efficiency. LLaMA-3.2-1B also demonstrates favorable efficiency properties under
INT8 quantization. The INT8 model reduces the model size from 2,858 MB to
1,681 MB and achieves the lowest inference latency (1.3 s), confirming the presence of
efficient 8-bit kernel support. Although INT4 and NF4 provide higher compression
ratios, they introduce substantial latency increases (7.6–12.1 s), largely due to the
lack of optimized low-bit kernels for these formats.

Gemma-3-1B displays the opposite latency trend. While INT8 reduces the
model size to 1,532 MB, the inference latency increases sharply (15–20 s), and NF4
results in even slower execution (up to 20.6 s). These results indicate that Gemma’s

48

Experiments and Results

Model Approximation
Technique ROUGE-L SBERT Inference

Time(s)
Model

Size(MB)
LLaMA-3.2-1B INT8 0.90 0.94 1.3 1,681
LLaMA-3.2-1B INT8 + LoRA 0.80 0.91 4.1 1,682
LLaMA-3.2-1B Pruned 0.69 0.90 2.0 3,370
Gemma-3-1B INT4 + LoRA 0.53 0.84 20.1 1,056
Gemma-3-1B INT4+Pruned+LoRA 0.45 0.82 20.2 1,056
Gemma-3-1B INT4 0.42 0.77 15.0 1,055

Table 4.2: Top-performing approximation techniques for LLaMA-3.2-1B and
Gemma-3-1B on the Dolly-15k dataset (Fine-tuned with Alpaca dataset).

architecture interacts less favorably with available INT8/INT4 kernels, leading to
severely degraded speed despite reduced model size. Thus, approximation efficiency
in Gemma is constrained more by kernel availability and activation-range sensitivity
than by parameter precision.

Summary. Across the evaluated approximation techniques, INT8 quantization
provides the most favorable accuracy–efficiency trade-off for LLaMA-3.2-1B. It
achieves the highest semantic fidelity (SBERT = 0.94), strong n-gram overlap
(BLEU = 0.86; ROUGE-L = 0.90), and the lowest inference latency, while also
reducing the memory footprint. More aggressive 4-bit formats further compress
the model but yield slower inference and reduced accuracy.

Gemma-3-1B exhibits a qualitatively different profile: INT8 offers no measurable
accuracy improvement and significantly increases latency. Instead, INT4-based
methods, in particular INT4+LoRA achievse the strongest semantic alignment and
outperform all INT8 variants in terms of accuracy. These findings align with prior
reports that small Gemma models are more sensitive to INT8 quantization, while
4-bit structured quantization preserves relative performance more effectively.

The results collectively show that approximation effectiveness is architecture-
dependent. LLaMA-3.2-1B is best approximated through INT8 quantization,
whereas Gemma-3-1B achieves its best balance of accuracy under INT4+LoRA,
albeit with a significant inference-time penalty.

49

Experiments and Results

4.2.2 Inference Results for the Dolly-15k Dataset(Fine-
tuned with Agent Dataset)

Model Approximation
Technique BLEU ROUGE-L SBERT

Inf.
Time

(s)

Out.
Size

(KB)

Model
Size

(MB)
Baseline
LLaMA-3.2-1B —– 0.54 0.64 0.86 2.2 152.4 2,858
Gemma-3-1B —– 0.29 0.49 0.75 7.7 133.6 2,483
Fine-tuned
LLaMA-3.2-1B Pruned 0.59 0.68 0.88 2.5 157.4 3,370
Gemma-3-1B Pruned 0.27 0.48 0.73 7.7 131.3 2,878
LLaMA-3.2-1B INT8 0.53 0.62 0.83 5.5 174.5 1,681
Gemma-3-1B INT8 0.27 0.47 0.74 14.7 129.7 1,532
LLaMA-3.2-1B INT4 0.34 0.44 0.77 7.7 190.9 1,092
Gemma-3-1B INT4 0.28 0.47 0.85 14.8 187.9 1,055
LLaMA-3.2-1B NF4 0.42 0.53 0.83 9.4 170.4 1,164
Gemma-3-1B NF4 0.22 0.44 0.69 18.6 176.9 1,112
LLaMA-3.2-1B LoRA 0.56 0.66 0.86 2.7 160.5 2,859
Gemma-3-1B LoRA 0.26 0.45 0.68 8.5 129.0 2,484
LLaMA-3.2-1B Perturbed 0.56 0.66 0.89 2.5 158.3 2,858
Gemma-3-1B Perturbed 0.26 0.46 0.73 7.7 130.5 2,483
LLaMA-3.2-1B Mem-masked 0.54 0.63 0.87 2.8 161.2 2,858
Gemma-3-1B Mem-masked 0.26 0.45 0.74 8.3 139.5 2,483
Fine-tuned
LLaMA-3.2-1B Pruned + LoRA 0.54 0.63 0.83 2.8 175.6 3,371
Gemma-3-1B Pruned + LoRA 0.29 0.46 0.68 8.8 154.0 2,879
LLaMA-3.2-1B INT8 + LoRA 0.55 0.63 0.85 8.0 175.9 1,682
Gemma-3-1B INT8 + LoRA 0.30 0.47 0.72 19.6 146.1 1,533
LLaMA-3.2-1B INT4 + LoRA 0.30 0.42 0.77 10.8 193.3 1,092
Gemma-3-1B INT4 + LoRA 0.26 0.45 0.83 19.7 176.6 1,056
LLaMA-3.2-1B NF4 + LoRA 0.43 0.54 0.85 12.0 153.9 1,164
Gemma-3-1B NF4 + LoRA 0.25 0.43 0.73 26.4 161.5 1,113
LLaMA-3.2-1B Perturbed + LoRA 0.50 0.58 0.82 3.4 182.3 2,859
Gemma-3-1B Perturbed + LoRA 0.32 0.52 0.74 8.8 157.8 2,484
LLaMA-3.2-1B Masked + LoRA 0.49 0.58 0.82 3.3 178.8 2,859
Gemma-3-1B Masked + LoRA 0.24 0.47 0.73 8.9 163.2 2,484
Fine-tuned
LLaMA-3.2-1B INT8+Pruned+LoRA 0.59 0.67 0.86 7.5 159.5 1,682

Continued on next page

50

Experiments and Results

Model Approximation
Technique BLEU ROUGE-L SBERT

Inf.
Time

(s)

Out.
Size

(KB)

Model
Size

(MB)
Gemma-3-1B INT8+Pruned+LoRA 0.25 0.43 0.69 19.3 164.4 1,533
LLaMA-3.2-1B INT4+Pruned+LoRA 0.31 0.42 0.84 10.6 165.8 1,092
Gemma-3-1B INT4+Pruned+LoRA 0.31 0.48 0.85 19.6 220.4 1,056

Table 4.3: Inference results for LLaMA-3.2-1B-Instruct and Gemma-3-1B-Instruct
on the Dolly-15k dataset (Fine-tuned with Agent dataset).

Accuracy. The accuracy trends for the Agent-fine-tuned Dolly-15k dataset differ
markedly from those obtained using the Alpaca dataset. LLaMA-3.2-1B shows only
modest accuracy gains across most approximation methods. Perturbed remains the
strongest performer among the simple approximations (BLEU = 0.56, ROUGE-L
= 0.66, SBERT = 0.89), while the Pruning method preserves semantic similarity
close to the baseline (SBERT = 0.88). However, in contrast to the Alpaca-trained
setting, the INT8 configuration does not improve accuracy on LLaMA. Its scores
(BLEU = 0.53, SBERT = 0.83) fall below the baseline, indicating that quantization
interacts less favorably fine-tuning with the Agent dataset.

Gemma-3-1B displays a completely different behavior. As in the Alpaca case,
8-bit quantization is ineffective. However, 4-bit variants significantly outperform all
other approximations. INT4 and INT4+Pruned+LoRA achieve the highest semantic
similarity (SBERT = 0.85), and INT4+LoRA also performs strongly (SBERT =
0.83). Thus, Gemma again shows a preference for structured 4-bit quantization,
maintaining or improving semantic quality while 8-bit methods remain suboptimal.

Efficiency. From an efficiency perspective, LLaMA and Gemma behave very
differently. LLaMA’s INT8 and INT8+LoRA methods produce substantial increases
in inference latency (5.5–8.0 s), reflecting the absence of kernel-level optimizations
for 8-bit execution in the Agent-trained setting. Meanwhile, pruning and mem-
ory masking produce latencies similar to the baseline (2.5–3.0 s) while providing
moderate accuracy benefits.

Gemma-3-1B experiences severe latency slowdowns across nearly all approxi-
mation methods. All INT8 and INT4 variants exceed 14–20 s per inference, and
NF4-based methods are even slower (up to 26.4 s). Only pruning and memory
masking maintain baseline-level speed (7–9 s), but these provide only mild accu-
racy gains. Thus, Gemma lacks an approximation technique that simultaneously
improves accuracy and reduces latency.

Summary. The Agent-fine-tuned results reveal two distinct approximation pro-
files. For LLaMA-3.2-1B, pruning and hybrid variants such as INT8+Pruned+LoRA

51

Experiments and Results

Model Approximation
Technique ROUGE-L SBERT Inference

Time(s)
Model

Size(MB)
LLaMA-3.2-1B Perturbed 0.66 0.89 2.5 2,858
LLaMA-3.2-1B Pruned 0.68 0.88 2.5 3,370
LLaMA-3.2-1B INT8 + Pruned + LoRA 0.67 0.86 7.5 1,682
Gemma-3-1B INT4 0.47 0.85 14.8 1,055
Gemma-3-1B INT4 + Pruned + LoRA 0.48 0.85 19.6 1,056
Gemma-3-1B INT4 + LoRA 0.45 0.83 19.7 1,056

Table 4.4: Top-performing approximation techniques for LLaMA-3.2-1B and
Gemma-3-1B on the Dolly-15k dataset (Fine-tuned with Agent dataset).

provide the best accuracy while maintaining reasonable inference times. Unlike
the Alpaca dataset, INT8 quantization does not enhance accuracy and frequently
increases latency. In contrast, Gemma-3-1B achieves its strongest accuracy under
4-bit approximations, despite their substantial computational overhead. INT4-
and INT4+LoRA-based methods consistently reach the highest SBERT similarity
(0.85) among all Gemma variants, confirming that Gemma’s architecture is more
compatible with structured 4-bit quantization than with 8-bit precision.

4.2.3 Inference Results for the AgentInstruct Dataset(Fine-
tuned with Alpaca Dataset)

Model Approximation
Technique BLEU ROUGE-L SBERT

Inf.
Time

(s)

Out.
Size

(KB)

Model
Size

(MB)
Baseline
LLaMA-3.2-1B —– 0.59 0.68 0.85 2.7 34.3 2,858
Gemma-3-1B —– 0.26 0.63 0.75 8.1 36.7 2,483
Fine-tuned
LLaMA-3.2-1B Pruned 0.59 0.67 0.86 2.4 34.6 3,370
Gemma-3-1B Pruned 0.22 0.54 0.71 8.3 35.4 2,878
LLaMA-3.2-1B INT8 0.93 0.95 0.98 0.57 29.8 1,681
Gemma-3-1B INT8 0.30 0.58 0.82 15.4 41.9 1,532
LLaMA-3.2-1B INT4 0.23 0.37 0.71 7.5 39.8 1,092
Gemma-3-1B INT4 0.19 0.46 0.87 15.3 41.5 1,055
LLaMA-3.2-1B NF4 0.49 0.61 0.75 8.2 37.3 1,164
Gemma-3-1B NF4 0.17 0.39 0.71 19.2 37.9 1,112

Continued on next page

52

Experiments and Results

Model Approximation
Technique BLEU ROUGE-L SBERT

Inf.
Time

(s)

Out.
Size

(KB)

Model
Size

(MB)
LLaMA-3.2-1B LoRA 0.57 0.68 0.82 3.5 33.2 2,859
Gemma-3-1B LoRA 0.25 0.56 0.70 9.2 35.3 2,484
LLaMA-3.2-1B Perturbed 0.48 0.58 0.75 2.8 34.8 2,858
Gemma-3-1B Perturbed 0.22 0.53 0.73 8.4 36.6 2,483
LLaMA-3.2-1B Mem-masked 0.48 0.60 0.75 3.3 33.4 2,858
Gemma-3-1B Mem-masked 0.22 0.48 0.72 8.3 38.8 2,483
Fine-tuned
LLaMA-3.2-1B Pruned + LoRA 0.44 0.57 0.75 3.8 34.9 3,371
Gemma-3-1B Pruned + LoRA 0.25 0.58 0.73 9.3 35.2 2,879
LLaMA-3.2-1B INT8 + LoRA 0.86 0.88 0.95 1.8 31.6 1,682
Gemma-3-1B INT8 + LoRA 0.26 0.55 0.82 20.3 38.5 1,533
LLaMA-3.2-1B INT4 + LoRA 0.33 0.47 0.83 10.0 42.3 1,092
Gemma-3-1B INT4 + LoRA 0.19 0.41 0.84 20.3 40.2 1,056
LLaMA-3.2-1B NF4 + LoRA 0.51 0.59 0.83 11.5 39.3 1,164
Gemma-3-1B NF4 + LoRA 0.20 0.57 0.80 26.2 41.4 1,113
LLaMA-3.2-1B Perturbed + LoRA 0.44 0.57 0.82 3.5 33.8 2,859
Gemma-3-1B Perturbed + LoRA 0.31 0.64 0.73 9.3 34.9 2,484
LLaMA-3.2-1B Masked + LoRA 0.47 0.61 0.81 3.5 32.8 2,859
Gemma-3-1B Masked + LoRA 0.23 0.53 0.75 9.3 39.5 2,484
Fine-tuned
LLaMA-3.2-1B INT8+Pruned+LoRA 0.72 0.77 0.88 4.9 35.3 1,682
Gemma-3-1B INT8+Pruned+LoRA 0.21 0.54 0.73 20.0 37.4 1,533
LLaMA-3.2-1B INT4+Pruned+LoRA 0.37 0.48 0.80 9.8 44.0 1,092
Gemma-3-1B INT4+Pruned+LoRA 0.22 0.40 0.87 20.0 44.4 1,056

Table 4.5: Inference results for LLaMA-3.2-1B-Instruct and Gemma-3-1B-Instruct
on the AgentInstruct dataset (Fine-tuned with Alpaca dataset).

Accuracy. For the AgentInstruct dataset, the strongest pattern across all eval-
uations is the dominant performance of INT8-based methods for LLaMA-3.2-1B.
The plain INT8 configuration achieves exceptionally high accuracy (BLEU = 0.93,
ROUGE-L = 0.95, SBERT = 0.98), representing the best scores among all tested
techniques and datasets. This behavior mirrors the Alpaca-trained results and
confirms that LLaMA’s architecture benefits substantially from 8-bit quantiza-
tion, preserving semantic similarity while reducing numerical noise through FP16
dequantized computation.

LLaMA’s INT8+LoRA variant also performs well (BLEU = 0.86, SBERT = 0.95),
although it remains slightly below the pure INT8 model. Other approximation

53

Experiments and Results

Model Approximation
Technique ROUGE-L SBERT Inference

Time(s)
Model

Size(MB)
LLaMA-3.2-1B INT8 0.95 0.98 0.57 1,681
LLaMA-3.2-1B INT8 + LoRA 0.88 0.95 1.8 1,682
LLaMA-3.2-1B INT8 + Pruned + LoRA 0.77 0.88 4.9 1,682
Gemma-3-1B INT4 0.46 0.87 15.3 1,055
Gemma-3-1B INT4 + Pruned + LoRA 0.40 0.87 20.0 1,056
Gemma-3-1B INT4 + LoRA 0.41 0.84 20.3 1,056

Table 4.6: Top-performing approximation techniques for LLaMA-3.2-1B and
Gemma-3-1B on the AgentInstruct dataset (Fine-tuned with Alpaca dataset).

techniques including pruning, perturbation, memory masking, and all 4-bit or
NF4 methods provide only limited accuracy improvements and often degrade
performance. The weakest methods for LLaMA are the INT4-based variants, which
fall significantly in both token-level and semantic metrics (BLEU = 0.23–0.37).

Gemma-3-1B again shows a contrasting behavior. As in previous datasets,
INT8 remains ineffective, providing only moderate improvements (SBERT =
0.82) and substantially lower BLEU/ROUGE-L than LLaMA. Both INT4 and
INT4+Pruned+LoRA achieve SBERT values of 0.86 and 0.87, respectively the highest
semantic similarity across all Gemma configurations. This reinforces the observation
that Gemma’s small-parameter architecture responds better to 4-bit structured
quantization than to 8-bit uniform quantization.

Efficiency. The efficiency profile sharply distinguishes the two architectures.
For LLaMA-3.2-1B, INT8 delivers substantial latency reductions; the INT8 model
achieves the lowest inference time in all experiments (0.57 s), representing more
than a 4× improvement over the baseline. Even with LoRA applied, INT8 remains
efficient (1.8 s), significantly outperforming heavier methods such as INT4 (7–10 s)
or NF4 (8–12 s). Pruning and perturbation remain lightweight, maintaining near-
baseline runtimes (2.4–3.5 s).

Gemma-3-1B again lacks an efficient approximation method. All quantized
variants (INT8, INT4, NF4) suffer from severe latency penalties (15–26 s), consistent
with the lack of optimized kernels. Only pruning and memory masking preserve
baseline-level latency, but they do not offer meaningful accuracy gains in this
dataset. Thus, no approximation technique simultaneously improves Gemma’s
accuracy and efficiency.

Summary. The AgentInstruct evaluations confirm a strong dataset- and model-
dependent divide between approximation behaviors. For LLaMA-3.2-1B, INT8

54

Experiments and Results

is clearly the optimal choice. It simultaneously achieves the highest accuracy
(SBERT = 0.98) and lowest inference latency (0.57 s), providing the best per-
formance–efficiency trade-off among all tested methods. Combining INT8 with
LoRA produces slightly lower accuracy but remains highly competitive. Other
approximations provide only modest improvements or degrade performance.

Gemma-3-1B, in contrast, achieves its best semantic similarity under 4-bit
structured quantization (INT4 and INT4+Pruned+LoRA, SBERT = 0.86–0.87), con-
firming the model’s preference for lower-precision quantization over 8-bit methods.
However, these accuracy gains come with significant inference slowdowns, making
them impractical for efficiency-oriented scenarios. Overall, the results highlight the
importance of architectural compatibility: INT8 is ideal for LLaMA, while Gemma
benefits more from 4-bit quantization, albeit at high computational cost.

55

Chapter 5

Conclusion

The research investigated the integration of approximate computing techniques
into instruction-tuned LLMs, focusing on two architectures of comparable scale:
LLaMA-3.2-1B-Instruct and Gemma-3-1B-Instruct. The objective was to determine
how quantization, stochastic perturbation, pruning, memory masking, and LoRA
influence model accuracy, semantic similarity, and computational efficiency across
multiple instruction-following datasets. As modern transformer models continue to
grow, such approximation strategies offer a viable path toward efficient deployment
on constrained hardware.

A modular approximation framework was developed to allow techniques to be
applied individually and in combination during fine-tuning. The experimental
pipeline incorporated simulated low-precision arithmetic, controlled stochasticity,
and structured sparsity, enabling a unified analysis of their effects on numerical
stability, representational robustness, and decoding behaviour. Evaluation metrics
included token-overlap scores, which are BLEU, ROUGE-L and F1, semantic
similarity measured via SBERT cosine similarity, and efficiency metrics such as
inference latency, output size, and model footprint.

Experiments were carried out using cross-dataset evaluation schemes rather than
training and testing on the same corpus. In the primary configuration, the models
were fine-tuned on the Alpaca dataset and evaluated on Dolly-15k, a setting denoted
as Alpaca–Dolly. This setup intentionally exposes the models to a distribution
shift: Alpaca provides highly structured, template-like instruction–response pairs,
while Dolly-15k contains more diverse, conversational, and open-ended instructions.
As a result, approximation errors that remain hidden under Alpaca-style prompts
become more pronounced during evaluation on Dolly, revealing how robust each
technique is to linguistic variability.

The alternative configurations Alpaca–AgentInstruct and AgentInstruct–Dolly
follow the same cross-dataset principle. AgentInstruct introduces shorter, more

57

Conclusion

procedural prompts, which amplify the effect of even small approximation distor-
tions. These cross-dataset setups consistently showed that the impact of reduced
precision and stochastic computation is tightly coupled to the mismatch between
training and evaluation distributions. Thus, approximation performance cannot
be interpreted independently of the dataset pair, as different forms of linguistic
structure expose different failure modes of each technique.

Across all experiments, LLaMA-3.2-1B-Instruct demonstrated substantially
higher tolerance to quantization, pruning, and stochastic perturbation than Gemma-
3-1B-Instruct. LLaMA repeatedly achieved strong improvements under INT8
quantization, often reducing latency and model size while simultaneously increasing
both token-overlap and SBERT scores. In contrast, Gemma exhibited pronounced
degradation under INT8, inference became an order of magnitude slower, and
accuracy stagnated or decreased relative to baseline. These findings align with
external observations that Gemma’s activation distribution and normalization
design make it more sensitive to mid-precision quantizers.

More aggressive low-bit quantizers produced divergent outcomes between the
two models. For LLaMA, INT4 and NF4 caused substantial losses in BLEU,
ROUGE-L, and SBERT similarity, accompanied by large increases in latency due
to simulated dequantization. Gemma, however, improved under INT4 and NF4
relative to its INT8 variant, a behaviour consistent with prior reports that small
Gemma models sometimes favour lower-bit quantizers due to reduced systematic
quantization bias. Although these improvements did not surpass LLaMA’s INT8
performance, they reveal architecture-dependent interactions between quantization
level and representational robustness.

Pruning and stochastic perturbation produced interpretable patterns across
datasets. On LLaMA, pruning preserved accuracy while reducing latency, and
stochastic perturbation provided mild regularization benefits, yielding balanced
improvements in both overlap-based and semantic metrics. These techniques,
however, had limited or inconsistent benefits for Gemma, which frequently exhibited
performance drops under structural modification or noise injection. Memory
masking produced minimal changes in either model, suggesting that more adaptive
masking strategies may be necessary for meaningful impact.

Hybrid techniques produced the most compelling trade-offs. For LLaMA, com-
binations such as Pruned + INT8 or INT8 + LoRA consistently provided strong
accuracy with moderate latency and compact outputs. On Gemma, hybrid tech-
niques did not fully compensate for INT8 sensitivity, even with LoRA or pruning,
accuracy remained lower than baseline LLaMA performance, and inference remained
significantly slower. These findings indicate that approximation gains depend on
architectural resilience, and that techniques effective for one model family do not
generalize universally.

Efficiency patterns further highlighted fundamental differences between the

58

Conclusion

models. LLaMA’s INT8 variants achieved the lowest latencies among all tested con-
figurations, sometimes approaching 0.6 s per inference. In stark contrast, Gemma’s
INT8 variants displayed the highest latencies of any model–often exceeding 15–20 s
per inference, suggesting limited compatibility with simulated 8-bit quantization
workflows.

Overall, the results demonstrate that approximate computing techniques can
be applied effectively to transformer-based LLMs, but their success is heavily
architecture-dependent. LLaMA-3.2-1B-Instruct consistently benefited from INT8
quantization, pruning, and stochastic perturbation, achieving strong accuracy and
substantial latency reductions. Gemma-3-1B-Instruct, despite its similar parameter
count, showed markedly lower robustness and significantly poorer performance
under most approximation strategies. These differences highlight the importance
of model–technique compatibility and emphasize that approximation cannot be
assumed to generalize across architectures.

Several limitations remain. Experiments were conducted under simulated low-
precision arithmetic, without hardware-optimized INT8 or INT4 kernels. Real
quantization-aware backends may yield different latency and accuracy behaviours.
The analysis was constrained to ≈ 1B-parameter models; larger LLaMA variants
may exhibit increased redundancy and therefore greater tolerance to approximation.
Finally, although SBERT provided an improved measure of semantic fidelity, future
work should incorporate additional embedding-based metrics, human evaluation,
and energy/throughput profiling to fully characterize approximation effects.

In conclusion, the study provides a systematic analysis of how quantization,
pruning, stochasticity, and low-rank adaptation interact with model architecture
and task structure in small instruction-tuned LLMs. The findings highlight INT8
and stochastic methods as the most effective techniques for LLaMA-3.2-1B-Instruct,
while demonstrating that Gemma-3-1B-Instruct is significantly more fragile under
approximation. These insights contribute to a deeper understanding of the trade-
offs involved in deploying efficient LLMs and reinforce the potential of approximate
computing as a cornerstone of sustainable and scalable AI development.

59

Bibliography

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention is All you
Need». In: Advances in Neural Information Processing Systems. Ed. by I.
Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Vol. 30. Curran Associates, Inc., 2017. url: https://
proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547d
ee91fbd053c1c4a845aa-Paper.pdf (cit. on p. 1).

[2] Tom Brown et al. «Language Models are Few-Shot Learners». In: Advances
in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020,
pp. 1877–1901. url: https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf (cit.
on pp. 1, 2).

[3] Jared Kaplan et al. Scaling Laws for Neural Language Models. 2020. arXiv:
2001.08361 [cs.LG]. url: https://arxiv.org/abs/2001.08361 (cit. on
pp. 1, 2).

[4] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney,
and Kurt Keutzer. A Survey of Quantization Methods for Efficient Neural
Network Inference. 2021. arXiv: 2103.13630 [cs.CV]. url: https://arxiv.
org/abs/2103.13630 (cit. on pp. 1, 2, 8, 10–13, 37, 38).

[5] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. 2016. arXiv: 1510.00149 [cs.CV]. url: https://arxiv.org/abs/
1510.00149 (cit. on pp. 1, 2, 14, 16, 17, 22).

[6] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-Rank Adaptation
of Large Language Models. 2021. arXiv: 2106.09685 [cs.CL]. url: https:
//arxiv.org/abs/2106.09685 (cit. on pp. 1, 2, 18, 19, 40).

60

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

BIBLIOGRAPHY

[7] Xiang Gao, Jiaxin Zhang, Lalla Mouatadid, and Kamalika Das. SPUQ:
Perturbation-Based Uncertainty Quantification for Large Language Models.
2024. arXiv: 2403.02509 [cs.CL]. url: https://arxiv.org/abs/2403.
02509 (cit. on pp. 1, 20, 21).

[8] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic.
QSGD: Communication-Efficient SGD via Gradient Quantization and En-
coding. 2017. arXiv: 1610.02132 [cs.LG]. url: https://arxiv.org/abs/
1610.02132 (cit. on pp. 1, 2, 23).

[9] An Yang, Kai Liu, Jing Liu, Yajuan Lyu, and Sujian Li. Adaptations of
ROUGE and BLEU to Better Evaluate Machine Reading Comprehension
Task. 2018. arXiv: 1806.03578 [cs.CL]. url: https://arxiv.org/abs/
1806.03578 (cit. on pp. 2, 24, 25).

[10] Gabriel Alon and Michael Kamfonas. Detecting Language Model Attacks with
Perplexity. 2023. arXiv: 2308.14132 [cs.CL]. url: https://arxiv.org/
abs/2308.14132 (cit. on pp. 2, 24, 26).

[11] Reda Yacouby and Dustin Axman. «Probabilistic Extension of Precision,
Recall, and F1 Score for More Thorough Evaluation of Classification Models».
In: Proceedings of the First Workshop on Evaluation and Comparison of
NLP Systems. Ed. by Steffen Eger, Yang Gao, Maxime Peyrard, Wei Zhao,
and Eduard Hovy. Online: Association for Computational Linguistics, Nov.
2020, pp. 79–91. doi: 10.18653/v1/2020.eval4nlp- 1.9. url: https:
//aclanthology.org/2020.eval4nlp-1.9/ (cit. on pp. 2, 24, 25).

[12] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and
Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference.
2017. arXiv: 1712.05877 [cs.LG]. url: https://arxiv.org/abs/1712.
05877 (cit. on pp. 2, 5–7, 11, 13, 14, 37).

[13] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both Weights
and Connections for Efficient Neural Networks. 2015. arXiv: 1506.02626
[cs.NE]. url: https://arxiv.org/abs/1506.02626 (cit. on p. 2).

[14] Yuchen Zeng and Kangwook Lee. The Expressive Power of Low-Rank Adap-
tation. 2024. arXiv: 2310.17513 [cs.LG]. url: https://arxiv.org/abs/
2310.17513 (cit. on pp. 2, 18, 19).

[15] Justin Zhao et al. LoRA Land: 310 Fine-tuned LLMs that Rival GPT-4, A
Technical Report. 2024. arXiv: 2405.00732 [cs.CL]. url: https://arxiv.
org/abs/2405.00732 (cit. on pp. 2, 19).

[16] Yoshua Bengio. Estimating or Propagating Gradients Through Stochastic
Neurons. 2013. arXiv: 1305.2982 [cs.LG]. url: https://arxiv.org/abs/
1305.2982 (cit. on pp. 2, 8, 11).

61

https://arxiv.org/abs/2403.02509
https://arxiv.org/abs/2403.02509
https://arxiv.org/abs/2403.02509
https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/1806.03578
https://arxiv.org/abs/1806.03578
https://arxiv.org/abs/1806.03578
https://arxiv.org/abs/2308.14132
https://arxiv.org/abs/2308.14132
https://arxiv.org/abs/2308.14132
https://doi.org/10.18653/v1/2020.eval4nlp-1.9
https://aclanthology.org/2020.eval4nlp-1.9/
https://aclanthology.org/2020.eval4nlp-1.9/
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/2310.17513
https://arxiv.org/abs/2310.17513
https://arxiv.org/abs/2310.17513
https://arxiv.org/abs/2405.00732
https://arxiv.org/abs/2405.00732
https://arxiv.org/abs/2405.00732
https://arxiv.org/abs/1305.2982
https://arxiv.org/abs/1305.2982
https://arxiv.org/abs/1305.2982

BIBLIOGRAPHY

[17] Junkai Chen, Zhenhao Li, Xing Hu, and Xin Xia. NLPerturbator: Studying
the Robustness of Code LLMs to Natural Language Variations. 2024. arXiv:
2406.19783 [cs.SE]. url: https://arxiv.org/abs/2406.19783 (cit. on
p. 2).

[18] Onem Chinova, Victor Stratton, Dominic Kingswell, Evelyn Whitmore, and
Zephyr Coleridge. Stochastic Token Permutation in Large Language Models
for Controlled Contextual Perturbation. OSF Preprints. 2025. url: https:
//osf.io/ (cit. on p. 2).

[19] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ:
Accurate Post-Training Quantization for Generative Pre-trained Transformers.
2023. arXiv: 2210.17323 [cs.LG]. url: https://arxiv.org/abs/2210.
17323 (cit. on pp. 7, 9, 12, 38, 40).

[20] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang,
Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. PACT: Parameterized
Clipping Activation for Quantized Neural Networks. 2018. arXiv: 1805.06085
[cs.CV]. url: https://arxiv.org/abs/1805.06085 (cit. on p. 8).

[21] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar
Appuswamy, and Dharmendra S. Modha. Learned Step Size Quantization.
2020. arXiv: 1902.08153 [cs.LG]. url: https://arxiv.org/abs/1902.
08153 (cit. on p. 8).

[22] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko,
Mart van Baalen, and Tijmen Blankevoort. A White Paper on Neural Network
Quantization. 2021. arXiv: 2106.08295 [cs.LG]. url: https://arxiv.org/
abs/2106.08295 (cit. on p. 9).

[23] Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Post-training
4-bit quantization of convolution networks for rapid-deployment. 2019. arXiv:
1810.05723 [cs.CV]. url: https://arxiv.org/abs/1810.05723 (cit. on
p. 9).

[24] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit Quanti-
zation of Neural Networks for Efficient Inference. 2019. arXiv: 1902.06822
[cs.LG]. url: https://arxiv.org/abs/1902.06822 (cit. on p. 9).

[25] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang.
Improving Neural Network Quantization without Retraining using Outlier
Channel Splitting. 2019. arXiv: 1901.09504 [cs.LG]. url: https://arxiv.
org/abs/1901.09504 (cit. on p. 9).

[26] Zhen Dong, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir Gholami, Michael
W. Mahoney, and Kurt Keutzer. HAWQ-V2: Hessian Aware trace-Weighted
Quantization of Neural Networks. 2019. arXiv: 1911.03852 [cs.CV]. url:
https://arxiv.org/abs/1911.03852 (cit. on p. 14).

62

https://arxiv.org/abs/2406.19783
https://arxiv.org/abs/2406.19783
https://osf.io/
https://osf.io/
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1902.08153
https://arxiv.org/abs/1902.08153
https://arxiv.org/abs/1902.08153
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/1810.05723
https://arxiv.org/abs/1810.05723
https://arxiv.org/abs/1902.06822
https://arxiv.org/abs/1902.06822
https://arxiv.org/abs/1902.06822
https://arxiv.org/abs/1901.09504
https://arxiv.org/abs/1901.09504
https://arxiv.org/abs/1901.09504
https://arxiv.org/abs/1911.03852
https://arxiv.org/abs/1911.03852

BIBLIOGRAPHY

[27] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge
in a Neural Network. 2015. arXiv: 1503.02531 [stat.ML]. url: https:
//arxiv.org/abs/1503.02531 (cit. on p. 14).

[28] Can Chen, Xi Chen, Chen Ma, Zixuan Liu, and Xue Liu. Gradient-based
Bi-level Optimization for Deep Learning: A Survey. 2023. arXiv: 2207.11719
[cs.LG]. url: https://arxiv.org/abs/2207.11719 (cit. on p. 14).

[29] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer.
QLoRA: Efficient Finetuning of Quantized LLMs. 2023. arXiv: 2305.14314
[cs.LG]. url: https://arxiv.org/abs/2305.14314 (cit. on pp. 15, 38,
39).

[30] Yann LeCun, John Denker, and Sara Solla. «Optimal Brain Damage». In:
Advances in Neural Information Processing Systems. Ed. by D. Touretzky.
Vol. 2. Morgan-Kaufmann, 1989. url: https://proceedings.neurips.cc/
paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-
Paper.pdf (cit. on p. 16).

[31] Paul Michel, Omer Levy, and Graham Neubig. Are Sixteen Heads Really
Better than One? 2019. arXiv: 1905.10650 [cs.CL]. url: https://arxiv.
org/abs/1905.10650 (cit. on p. 16).

[32] Kyuhong Shim, Iksoo Choi, Wonyong Sung, and Jungwook Choi. Layer-wise
Pruning of Transformer Attention Heads for Efficient Language Modeling.
2021. arXiv: 2110.03252 [cs.CL]. url: https://arxiv.org/abs/2110.
03252 (cit. on p. 17).

[33] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks. 2019. arXiv: 1803.03635 [cs.LG]. url:
https://arxiv.org/abs/1803.03635 (cit. on p. 17).

[34] Jiajun Wang. «Research on pruning optimization techniques for neural net-
works». In: Applied and Computational Engineering 19 (Oct. 2023), pp. 152–
158. doi: 10.54254/2755-2721/19/20231025 (cit. on p. 17).

[35] Yue Zhang, Leyang Cui, Wei Bi, and Shuming Shi. Alleviating Hallucinations
of Large Language Models through Induced Hallucinations. 2024. arXiv: 2312.
15710 [cs.CL]. url: https://arxiv.org/abs/2312.15710 (cit. on p. 20).

[36] Eyke Hüllermeier and Willem Waegeman. «Aleatoric and epistemic uncer-
tainty in machine learning: an introduction to concepts and methods». In:
Machine Learning 110.3 (Mar. 2021), pp. 457–506. issn: 1573-0565. doi:
10.1007/s10994- 021- 05946- 3. url: http://dx.doi.org/10.1007/
s10994-021-05946-3 (cit. on p. 20).

63

https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2207.11719
https://arxiv.org/abs/2207.11719
https://arxiv.org/abs/2207.11719
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://arxiv.org/abs/1905.10650
https://arxiv.org/abs/1905.10650
https://arxiv.org/abs/1905.10650
https://arxiv.org/abs/2110.03252
https://arxiv.org/abs/2110.03252
https://arxiv.org/abs/2110.03252
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://doi.org/10.54254/2755-2721/19/20231025
https://arxiv.org/abs/2312.15710
https://arxiv.org/abs/2312.15710
https://arxiv.org/abs/2312.15710
https://doi.org/10.1007/s10994-021-05946-3
http://dx.doi.org/10.1007/s10994-021-05946-3
http://dx.doi.org/10.1007/s10994-021-05946-3

BIBLIOGRAPHY

[37] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. «Dropout: A Simple Way to Prevent Neural Networks
from Overfitting». In: Journal of Machine Learning Research 15.56 (2014),
pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html
(cit. on p. 22).

[38] Yarin Gal and Zoubin Ghahramani. «Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning». In: Proceedings of The
33rd International Conference on Machine Learning. Ed. by Maria Florina
Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning
Research. New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1050–1059.
url: https://proceedings.mlr.press/v48/gal16.html (cit. on p. 22).

[39] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Min-
sik Cho, Carlo C Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar.
LLM in a flash: Efficient Large Language Model Inference with Limited Mem-
ory. 2024. arXiv: 2312.11514 [cs.CL]. url: https://arxiv.org/abs/2312.
11514 (cit. on p. 23).

[40] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training Deep
Nets with Sublinear Memory Cost. 2016. arXiv: 1604.06174 [cs.LG]. url:
https://arxiv.org/abs/1604.06174 (cit. on p. 23).

[41] Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. The
Reversible Residual Network: Backpropagation Without Storing Activations.
2017. arXiv: 1707.04585 [cs.CV]. url: https://arxiv.org/abs/1707.
04585 (cit. on p. 23).

[42] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. «Reg-
ularization of Neural Networks using DropConnect». In: Proceedings of the
30th International Conference on Machine Learning. Ed. by Sanjoy Dasgupta
and David McAllester. Vol. 28. Proceedings of Machine Learning Research
3. Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 1058–1066. url:
https://proceedings.mlr.press/v28/wan13.html (cit. on p. 23).

[43] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. 2019. arXiv: 1908.10084 [cs.CL]. url:
https://arxiv.org/abs/1908.10084 (cit. on p. 25).

[44] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li,
Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford Alpaca:
An Instruction-following LLaMA model. https : / / github . com / tatsu -
lab/stanford_alpaca. 2023 (cit. on p. 31).

64

http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.mlr.press/v48/gal16.html
https://arxiv.org/abs/2312.11514
https://arxiv.org/abs/2312.11514
https://arxiv.org/abs/2312.11514
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1707.04585
https://arxiv.org/abs/1707.04585
https://arxiv.org/abs/1707.04585
https://proceedings.mlr.press/v28/wan13.html
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

BIBLIOGRAPHY

[45] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith,
Daniel Khashabi, and Hannaneh Hajishirzi. Self-Instruct: Aligning Language
Models with Self-Generated Instructions. 2023. arXiv: 2212.10560 [cs.CL].
url: https://arxiv.org/abs/2212.10560 (cit. on p. 31).

[46] Mike Conover et al. Free Dolly: Introducing the World’s First Truly Open
Instruction-Tuned LLM. 2023. url: https://www.databricks.com/blog/
2023/04/12/dolly-first-open-commercially-viable-instruction-
tuned-llm (visited on 06/30/2023) (cit. on p. 32).

[47] Long Ouyang et al. Training language models to follow instructions with
human feedback. 2022. arXiv: 2203.02155 [cs.CL]. url: https://arxiv.
org/abs/2203.02155 (cit. on pp. 32, 35).

[48] Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong,
and Jie Tang. AgentTuning: Enabling Generalized Agent Abilities for LLMs.
2023. arXiv: 2310.12823 [cs.CL] (cit. on p. 33).

[49] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models.
2023. arXiv: 2302.13971 [cs.CL]. url: https://arxiv.org/abs/2302.
13971 (cit. on p. 34).

[50] Noam Shazeer. Fast Transformer Decoding: One Write-Head is All You Need.
2019. arXiv: 1911.02150 [cs.NE]. url: https://arxiv.org/abs/1911.
02150 (cit. on p. 34).

[51] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng
Liu. RoFormer: Enhanced Transformer with Rotary Position Embedding. 2023.
arXiv: 2104.09864 [cs.CL]. url: https://arxiv.org/abs/2104.09864
(cit. on p. 35).

[52] Noam Shazeer. GLU Variants Improve Transformer. 2020. arXiv: 2002.05202
[cs.LG]. url: https://arxiv.org/abs/2002.05202 (cit. on p. 35).

[53] Gemma Team et al. Gemma 3 Technical Report. 2025. arXiv: 2503.19786
[cs.CL]. url: https://arxiv.org/abs/2503.19786 (cit. on pp. 35, 36).

65

https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Objectives
	Contributions

	Related Works
	Quantization
	Affine Quantization
	Integer-Only Inference
	Post-Training Quantization, Quantization-Aware Training, and Zero-Shot Quantization
	Simulated Quantization (Fake Quantization)
	Advanced Quantization Formats for LLMs

	Pruning
	Unstructured Pruning
	Structured Pruning
	Pruning and the Lottery Ticket Hypothesis

	Low-Rank Adaptation (LoRA)
	Stochastic Perturbations
	Perturbation-Driven Variance
	Uncertainty Aggregation
	Stochastic Regularization Methods
	Implementation in This Thesis

	Stochastic Memory Masking
	Checkpointing and Sparsification
	Stochastic Memory Masking for Attention
	Implementation in This Thesis

	Evaluation Metrics and Efficiency Measures
	Quality Metrics
	Efficiency Measures

	Methodology
	Datasets
	Alpaca
	Databricks-Dolly-15k
	AgentInstruct

	Models
	LLaMA-3.2-1B-Instruct
	Gemma-3-1B-Instruct

	Approximation Techniques
	Quantization
	Pruning
	LoRA
	Stochastic Perturbations
	Stochastic Memory Masking
	Combinations of Approximations

	Experiments and Results
	Experimental Setup
	Evaluation Results
	Inference Results for the Dolly-15k Dataset(Fine-tuned with Alpaca Dataset)
	Inference Results for the Dolly-15k Dataset(Fine-tuned with Agent Dataset)
	Inference Results for the AgentInstruct Dataset(Fine-tuned with Alpaca Dataset)

	Conclusion
	Bibliography

