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Abstract

Deep Learning models have recently established new benchmarks in electro-
cardiogram (ECG) denoising, yet their "black-box" nature and susceptibility to
generative hallucinations pose significant barriers to clinical adoption. This thesis
addresses the trade-off between performance and transparency by proposing a novel
"Safety-by-Design" framework based on the Regression Tsetlin Machine (RTM).

Unlike conventional end-to-end neural networks that reconstruct waveforms
directly, the proposed system decouples noise quantification from signal restoration.
A multi-head RTM architecture estimates the scalar intensity of Baseline Wander,
Muscle Artifacts, and Power Line Interference using transparent propositional logic.
These estimates subsequently drive a bank of adaptive digital filters through a non-
linear gating mechanism, ensuring that physiological signal morphology is preserved
when noise is absent.

A key contribution of this work is the utilization of intrinsic interpretability as an
engineering driver. By analyzing the global feature importance of the logic clauses,
we identified a dominance of spectral features over time-domain attributes, enabling
a 95% reduction in the feature space while improving predictive correlation by
4.2%. Experimental validation on the MIT-BIH Arrhythmia Database demonstrates
that the system achieves a Signal-to-Noise Ratio (SNR) improvement of +5.20 dB,
outperforming classical filters by 134% and reaching competitive performance relative
to state-of-the-art Convolutional Neural Networks. Rigorous statistical analysis
confirms cross-subject robustness (Coefficient of Variation < 6%) and negligible bias.
With an inference latency of just 0.070 ms on a standard CPU and a minimal
memory footprint, the proposed solution is uniquely suited for trusted, real-time
deployment on wearable medical devices.
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Chapter 1

Introduction

1.1 Clinical context and importance of the ECG

Cardiovascular diseases are among the leading causes of death worldwide, with
ischemic heart disease increasing substantially global mortality. In this context, the
electrocardiogram (ECG) is one of the most widely used diagnostic tools to check
the electrical activity of the heart in a non-invasive, low-cost, and repeatable way.

An ECG is obtained by placing electrodes on the skin and recording, over time,
the potential differences generated by the depolarization and repolarization of cardiac
tissue. The resulting waveform provides information on cardiac rhythm, conduction,
and morphology, and is essential for detecting arrhythmias, ischemic events, and other
pathological conditions. Thanks to portable and wearable devices, ECG monitoring
is no longer limited to hospital settings but is common in ambulatory and home
environments.

However, the clinical usefulness of the ECG strongly depends on the quality of
the signal. When the recorded ECG is corrupted by noise, interpretation becomes
harder and, in the worst case, can lead to delayed or incorrect diagnoses. Improving
ECG denoising is not only a technical challenge, but also has a direct impact on
patient care.

1.2 The problem of noise in ECG signals

In practice, an ECG rarely coincides with an ideal, noise-free trace. During acquisi-
tion, several factors introduce disturbances that alter the waveform and may hide
physiological components of interest. The most relevant sources of noise include:

• Baseline Wander (BW): a slow drift of the baseline, typically at very low
frequencies (around 0.05–0.5 Hz), caused by respiration, changes in electrode–
skin contact, and patient movement.

• Muscular artifacts (EMG): broadband noise generated by skeletal muscle
activity, particularly relevant in ambulatory monitoring, Holter recordings, and
wearable devices.
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• Power Line Interference (PLI): narrow-band sinusoidal interference at 50
or 60 Hz induced by the power grid and nearby electrical equipment.

These components degrade visual quality and can also distort quantitative pa-
rameters such as amplitudes, intervals, and slopes. In some cases, noise may emulate
pathological patterns (e.g., apparent ST-segment elevation due to baseline wander)
or mask anomalies that are actually present.

For these reasons, the signal processing and biomedical engineering communities
have committed considerable effort to ECG denoising algorithms that remove or
attenuate noise while preserving the morphology and diagnostic content of the original
signal.

1.3 Denoising approaches: classical filters, Deep Learn-
ing, and black-box models

Early ECG denoising was based on classical digital signal processing. High-pass filters
are commonly used to mitigate baseline wander; notch filters suppress power line
interference; and more advanced methods such as Independent Component Analysis
(ICA), Empirical Mode Decomposition (EMD), and wavelet denoising have been
proposed to deal with muscular artifacts.

Although effective in controlled scenarios, these methods show limitations. Per-
formance is sensitive to design choices (e.g. cutoff frequencies, wavelet type and
levels), they can struggle with non-stationary noise, and they may accidentally remove
relevant ECG components together with noise, degrading clinical information.

More recently, machine learning, and especially Deep Learning, has been explored
as a flexible alternative. Architectures such as denoising autoencoders, recurrent
neural networks (LSTM/GRU), and generative models (GAN/VAE) learn a mapping
from noisy to clean ECG directly from data and often outperform traditional filters
under complex noise conditions.

A particularly relevant line of work is noise estimation. Instead of reconstructing
the clean signal, the model estimates the noise component(s) and subtracts them from
the input. Prior work has shown that a fully convolutional multi-task autoencoder can
estimate the three main ECG noise sources (baseline wander, muscular artifacts, and
power line interference) and achieve better denoising than a conventional autoencoder
trained for direct reconstruction, when both share the same backbone.

Despite their strong results, most of these systems are black-box. They stand on
networks with hundreds of thousands of parameters, whose internal representations
are difficult to interpret. Moreover, analyzes have reported problematic behavior
such as the “hallucination” of noise components that are not present (e.g., predicting
BW/PLI on EMG-only signals), which can degrade the output in specific scenarios.

2
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1.4 Motivation for interpretable and white-box models

In medical applications, interpretability is increasingly regarded as a key requirement.
The main focus is not only on numerical performance, but also on understanding
why a system produces a certain output, which features it stands on, and how robust
its conclusions are to input variations.

Conventional Deep Learning models offer limited transparency, especially when
operating directly on raw waveforms. When a black-box network fails to denoise an
ECG correctly, it is difficult to identify the root cause and to control how the model
interacts with morphology. Removing parts of the QRS complex, P wave, or T wave
together with noise is a critical clinical risk.

White-box models such as Tsetlin Machines provide a viable alternative. They
operate on interpretable binary features and learn sets of propositional if–then
rules implemented by collections of Tsetlin automata. Decisions can be traced back
to human-readable clauses, offering much greater transparency than typical deep
architectures.

This thesis lies at the intersection of these directions. On one hand, it adopts the
noise estimation paradigm, where denoising is driven by explicit estimates of noise.
On the other hand, it replaces the convolutional network with a white-box framework
based on Tsetlin Machines, focusing not on reconstructing noise waveforms but on
predicting an interpretable intensity for each noise type.

1.5 Thesis objectives

The overall objective is to develop an interpretable ECG denoising system based
on Tsetlin Machines and the noise intensity estimation paradigm. The goal is to
combine:

• competitive quantitative performance on intensity estimation and denoising;

• reduced computational complexity;

• transparency of the decision process;

• the ability to drive an adaptive filtering pipeline.

The specific objectives are:

1. Define a framework for ECG noise intensity estimation.
Reformulate the task from predicting the noise waveform to estimating, for
each time window, a continuous intensity in [0, 1] for baseline wander, muscular
artifacts, and power line interference.

2. Design a Regression Tsetlin Machine (RTM) for intensity estimation.
Develop RTM models for each noise type, operating on feature sets derived from
the ECG (e.g. bitplane-based features and high-frequency spectral features),
and study their accuracy and interpretability.

3
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3. Integrate intensity estimation into an adaptive filtering pipeline.
Use the predicted intensities to control digital filters (notch, high-pass, wavelet-
based denoising), modulating their strength based on the estimated noise level
to improve SNR while avoiding over-filtering and hallucination.

4. Exploit interpretability to guide model optimization.
Utilizes intrinsic explainability (feature importance, clause inspection, sparsity)
to refine the feature set and hyperparameters, treating interpretability as a
driver for optimization rather than a post-hoc explanation.

5. Evaluate overall performance.
Assess the pipeline on intensity estimation (correlation, mean absolute error,
root mean squared error) and denoising (signal-to-noise ratio and its improve-
ment) and compare against neural-network-based approaches.

1.6 Main contributions

The main contributions of this thesis are:

• Tsetlin Machines for ECG noise intensity estimation.
This is one of the first applications of regression Tsetlin Machines to quantitative
noise intensity estimation on biomedical signals. The system employs three
independent RTM models for baseline wander, muscular artifacts, and power
line interference.

• Intensity-based noise estimation instead of waveform prediction.
The framework predicts normalized intensity values per window rather than
full noise waveforms. This simplifies the regression target, reduces sensitivity
to local waveform errors, and enables direct control of downstream filters.

• Compact, interpretable hybrid feature set.
Through an explainability-guided process, we derive a hybrid set combining
bitplane-based amplitude statistics and high-frequency spectral descriptors. It
outperforms the individual groups while reducing the number of features by
roughly an order of magnitude compared to the initial baseline.

• Interpretability as an optimization lever.
Feature-importance analysis reveals a highly sparse structure, where a small
subset of features accounts for most predictive power. We use this insight
to progressively simplify the model (from baseline to hybrid and optimized
variants), improving average correlation while reducing complexity.

• Adaptive filtering that avoids noise hallucination.
Intensity estimates drive a gating logic that activates each filter only when
the corresponding intensity is significantly above zero, mitigating the risk of
subtracting non-existent noise.
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• Rigorous statistical validation.
We validate the clinical reliability of the system through extensive per-subject
analysis, bootstrap confidence intervals, and Bland-Altman agreement analysis,
demonstrating consistent performance across a diverse patient population.

• Real-time feasibility.
The optimized configuration achieves millisecond-level inference on a standard
CPU with a small memory footprint, suggesting suitability for real-time or near
real-time ECG monitoring.

1.7 Thesis outline

The remainder of the document is organized as follows.

• Chapter 2 – Background.
Fundamental concepts: ECG morphology, noise sources, signal quality metrics,
and traditional denoising methods.

• Chapter 3 – Related Works.
Deep learning for ECG denoising, noise estimation vs. direct reconstruction,
and interpretable ML in biosignals.

• Chapter 4 – Methodology.
Problem formulation, feature engineering, RTM models, training and calibra-
tion, and the intensity-guided denoising pipeline.

• Chapter 5 – Experimental Results.
Results on intensity estimation, end-to-end denoising, explainability analyzes,
and error analysis.

• Chapter 6 – Discussion.
Comparison with CNN-based noise estimation, strengths and limitations, and
clinical implications.

• Chapter 7 – Conclusions and Future Work.
Summary of contributions and directions for future work.
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Chapter 2

Background

2.1 Signal Processing Foundations

The analysis of biomedical data relies fundamentally on the rigorous application of
Digital Signal Processing theory [1, 2]. A signal, in its most abstract definition, is a
physical quantity that varies as a function of one or more independent variables. It
conveys information about the behavior or attributes of a phenomenon. In the context
of cardiovascular monitoring, the primary signal of interest is the Electrocardiogram
[3]. This signal is a manifestation of the electrophysiological currents generated by
the heart muscle over time. While the underlying biological processes are continuous,
modern analysis pipelines operate exclusively within the digital domain. This
necessitates a robust understanding of the transformation from analog to digital
representations and the statistical characterization of stochastic processes.

2.1.1 Signal Classification and Properties

Signals can be categorized based on the predictability of their behavior and the
nature of their domain. This distinction is critical for selecting appropriate denoising
strategies and understanding the limitations of classical filtering approaches.

2.1.1.1 Deterministic versus Stochastic Signals

A deterministic signal is one whose future values can be precisely calculated from a
mathematical model or a known rule. For example, the 50 Hz or 60 Hz sinusoidal
hum generated by power lines is largely deterministic, as its frequency and waveform
are stable and predictable. In contrast, biomedical signals such as the ECG are
inherently stochastic [4]. They are realizations of random processes that cannot
be described by an explicit time function. Instead, they must be characterized by
statistical properties. These include their probability density function, mean (first
moment), and variance (second moment). This stochastic nature implies that an
ECG signal cannot be predicted with absolute certainty. However, its statistical
behavior often exhibits patterns that machine learning models can learn to recognize.
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2.1.1.2 The Concept of Stationarity

A stochastic process is defined as Strict-Sense Stationary if its statistical properties
are invariant to a shift in the time origin. In simpler terms, the fundamental nature
of the signal generator does not change over time. However, physiological signals are
rarely stationary [3]. Heart rate varies due to autonomic nervous system regulation,
known as Heart Rate Variability. The amplitude of the signal may fluctuate with
respiration, and the characteristics of noise artifacts change abruptly with patient
movement. This non-stationarity poses the primary challenge for classical linear
filtering techniques. These techniques often assume static noise profiles, such as a
fixed cutoff frequency. This limitation motivates the need for adaptive, data-driven
approaches that can dynamically adjust their parameters in response to changing
signal statistics.

2.1.2 Digital Representation: Sampling and Quantization

The transition from a continuous physical phenomenon to a digital sequence involves
two distinct discretization steps. These are sampling, which is the discretization of
time, and quantization, which is the discretization of amplitude [1].

2.1.2.1 The Sampling Theorem

Sampling is the process of converting a continuous-time signal into a discrete-time
sequence by measuring its instantaneous value at periodic intervals. The sampling
frequency is defined as the reciprocal of this interval. The relationship between the
continuous signal and its discrete counterpart is governed by the Nyquist-Shannon
Sampling Theorem [5, 6]. This fundamental theorem states that a band-limited con-
tinuous signal with a maximum frequency component can be perfectly reconstructed
from its samples if and only if the sampling frequency is at least twice the maximum
frequency. The threshold frequency is known as the Nyquist frequency. If the analog
signal contains energy at frequencies higher than this threshold, a phenomenon known
as aliasing occurs. During the sampling process, these high-frequency components
fold back into the lower frequency spectrum. They are indistinguishable from the
genuine low-frequency signal components.

In the context of ECG analysis, aliasing is catastrophic. High-frequency noise, such
as electromyographic artifacts, can alias into the frequency band of the QRS complex
or the P-wave if not properly filtered before sampling. This mimics pathological
markers or obscures diagnostic features. For diagnostic ECGs, standard guidelines
typically recommend sampling rates of 500 Hz or higher to accurately capture rapid
depolarization of the ventricles [4]. However, ambulatory Holter monitors often trade
temporal resolution for storage capacity, operating at lower rates.
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2.1.2.2 Quantization and Dynamic Range

While sampling discretizes the independent variable, quantization discretizes the
dependent variable. The continuous voltage range of the analog signal is mapped
onto a finite set of discrete levels. This is determined by the bit-depth of the
Analog-to-Digital Converter. An ADC with a specific bit resolution divides the input
voltage range into discrete levels. Unlike sampling, which can be theoretically lossless
given bandwidth constraints, quantization is an inherently lossy process [2]. The
difference between the actual analog value and the quantized digital value is known
as the quantization error. This is often modeled as additive white noise uniformly
distributed across the quantization step.

In ECG monitoring, sufficient bit-depth is crucial. The signal amplitude can
range from a few millivolts for the R-wave peak to mere microvolts for P-wave or late
potentials. A low-resolution quantization results in a staircase effect that destroys
subtle morphological details essential for diagnosis. Modern acquisition systems
typically use 12-bit or 16-bit converters to ensure that the quantization noise floor
remains well below the physiological noise floor.

2.1.3 Frequency and Spectral Analysis

Analyzing signals in the time domain, or observing the waveform shape, is intuitive
but often insufficient for separating signal from noise. This is especially true when
they overlap over time. The frequency domain offers a complementary perspective,
where signal components are distinguished by their oscillation rate.

2.1.3.1 The Fourier Transform

The mathematical tool used to decompose a signal into its constituent frequencies
is the Fourier Transform. For discrete signals of finite length, the Discrete Fourier
Transform (DFT) transforms the sequence into a sequence of complex numbers [7].
The magnitude spectrum reveals the energy distribution of the signal across different
frequency bins. This representation is critical for understanding the nature of noise.
For instance, Baseline Wander is concentrated at very low frequencies, while Power
Line Interference appears as a sharp peak at 50 Hz or 60 Hz.

2.1.3.2 Power Spectral Density and Welch’s Method

For stochastic signals like ECG mixed with random noise, a simple DFT of the entire
recording is often too noisy to be useful for robust feature extraction. The spectrum
of a random signal is itself a random variable with high variance. To obtain a stable
estimate of the frequency content, the Power Spectral Density (PSD) is utilized. This
describes how the power of the signal is distributed over frequency.

Specifically, Welch’s Method is preferred for PSD estimation in this context [8].
Welch’s method improves on the standard periodogram by dividing the signal into
overlapping segments. It applies a window function, such as the Hamming window

8



Background

[9], to each segment to reduce spectral leakage. It then computes the DFT for each
segment and averages the results. This averaging process significantly reduces the
variance of the spectral estimate, providing a smooth and reliable profile of the
noise characteristics. This spectral characterization forms the basis of the feature
engineering phase. Features derived from specific spectral bands are often the most
discriminative inputs for estimating the intensity of muscle artifacts.

2.1.4 Noise Theory and Metrics

In the signal processing domain, noise is formally defined as any unwanted disturbance
that obscures or interferes with the signal of interest [10]. While mathematically
noise is often modeled as an additive term, the physical reality involves complex
interactions between the signal source and the interference.

2.1.4.1 Spectral Characteristics of Noise

Noise is often characterized by its color, an analogy to optics referring to the shape of
its Power Spectral Density. White Noise has a constant power spectral density across
all frequencies. Its samples are uncorrelated over time. Thermal noise in electronic
circuits is classically modeled as White Gaussian Noise. Colored Noise has a non-flat
PSD. For example, Pink noise has a power density proportional to the inverse of the
frequency. Many biological systems and low-frequency electronic drifts exhibit these
characteristics. Narrowband Noise is concentrated at a specific frequency range. The
most common example is sinusoidal interference from power lines.

2.1.4.2 Quantitative and Qualitative Metrics

To quantify the severity of noise and the efficacy of removal techniques, specific
metrics are required. The Signal-to-Noise Ratio (SNR) is the standard measure. It
is defined as the ratio of signal power to noise power, typically expressed in decibels.
A higher SNR indicates a cleaner signal. For denoising tasks, the key performance
indicator is the SNR Improvement. This is defined as the difference between the
output SNR and the input SNR. Additionally, the Root Mean Square Error (RMSE)
provides a direct measure of the average deviation between the reconstructed signal
and the ground truth in the signal units.

However, in medical applications, mathematical closeness is not always equivalent
to diagnostic quality. A filtering algorithm might achieve a low RMSE by aggressively
smoothing the signal. If this smoothing obliterates the small Q-wave of a myocardial
infarction, the clinical utility is lost. Therefore, quantitative metrics must always be
interpreted alongside qualitative assessments of morphological preservation.

2.2 The Electrocardiogram (ECG)

The Electrocardiogram is the graphical representation of the electrical potential
generated by the heart as it propagates to the skin surface. Since its invention by
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Willem Einthoven in the early 20th century, the ECG has remained the cornerstone
of cardiovascular diagnosis. It provides a low-cost, not invasive, and immediate
window into the electromechanical function of the heart [4]. This section explores the
physiological genesis of the signal, its morphological characteristics, and the various
sources of interference that complicate its automated analysis in ambulatory settings.

2.2.1 Physiology and Morphology

To correct interpret the ECG signal, it is necessary to understand the underlying
physiology that generates it. The heart operates as an electromechanical pump
composed of four chambers. Its pumping action is coordinated by a specialized
electrical conduction system that ensures synchronized contraction.

2.2.1.1 The Cardiac Cycle and Electrical Conduction

The cardiac cycle initiates at the Sinoatrial Node, located in the right atrium. The
Sinoatrial node acts as the natural pacemaker of the heart. It spontaneously generates
an electrical impulse through the movement of ions across cell membranes [3]. This
wave of depolarization spreads through the atrial muscle fibers. It causes them to
contract and pump blood into the ventricles. The electrical signal then converges
at the Atrioventricular Node. This node acts as a critical gatekeeper. It delays
the signal to ensure that the atria have fully emptied before the ventricles contract.
From the Atrioventricular node, the impulse travels rapidly down the Bundle of His
and spreads through the Purkinje fibers. This causes a synchronized and massive
depolarization of the ventricular muscle mass.

2.2.1.2 Waveform Components

This sequence of electrical events projects onto the body surface as a character-
istic waveform comprising waves, segments, and intervals. The fidelity of these
morphological features is paramount for clinical diagnosis.

The P-wave is a small, rounded deflection representing atrial depolarization. Its
presence, shape, and timing relative to the QRS complex are vital for diagnosing
arrhythmias, such as atrial fibrillation or atrioventricular blocks.

The QRS Complex represents the rapid depolarization of the large ventricular
mass. It is the most prominent feature of the ECG and serves as the primary fiducial
point for heart rate calculation. It typically consists of the Q-wave, the R-wave, and
the S-wave. The width of the QRS complex indicates the speed of conduction. A
widened QRS suggests a bundle branch block or a ventricular origin of the beat. The
amplitude is also significant as high voltage can indicate hypertrophy of the heart
muscle.

The T-wave follows the QRS complex and represents ventricular repolarization.
This is the recovery phase of the heart muscle where the ions return to their resting
state.
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Figure 2.1: Typical ECG waveform of a normal heartbeat cycle. The annotations
highlight the P-wave (atrial depolarization), the QRS complex (ventricular depolar-
ization), and the T-wave (ventricular repolarization), which are critical morphological
features for diagnosis.

The ST-Segment is the isoelectric line between the end of the QRS complex
and the start of the T-wave. Elevation or depression of this segment relative to the
baseline is the hallmark sign of myocardial ischemia and acute myocardial infarction.

The diagnostic power of the ECG lies in the precise timing and shape of these
components. For instance, a shift in the ST-segment of just 0.1 mV is clinically
significant. This sensitivity highlights why noise removal is a delicate task. A
denoising algorithm that suppresses noise but also suppresses a pathological elevation
could lead to a missed diagnosis.

2.2.2 Artifacts and Noise Sources in Ambulatory ECG

In a controlled clinical setting, obtaining a clean ECG is relatively straightforward.
However, modern cardiology is moving towards ambulatory monitoring using Holter
monitors or wearable patches to detect intermittent arrhythmias [11]. In these
real-world scenarios, the ECG is susceptible to various noise sources. Three dominant
artifacts are particularly relevant to this research [10].

2.2.2.1 Baseline Wander

Baseline Wander is a low-frequency oscillation of the signal’s isoelectric line. It
typically operates in the frequency range of 0.05 Hz to 0.5 Hz. The primary cause is
respiration. As the patient breathes, the chest expands and contracts. This alters the
impedance between the electrodes and the heart and physically moves the electrodes
relative to the cardiac vector. Other causes include perspiration and slow body
movements. While Baseline Wander does not typically obscure the high-frequency
QRS complex, it poses a serious threat to the diagnosis of ischemia. Since ischemia
is detected by measuring the absolute amplitude of the ST-segment relative to the
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baseline, a wandering baseline can mimic or mask pathological elevation. Furthermore,
large amplitude drifts can saturate the dynamic range of the recording equipment,
leading to signal loss.

2.2.2.2 Electromyographic Interference

Electromyographic Interference, also known as muscle artifact, originates from the
electrical activity of skeletal muscles. Every time the patient moves, tenses, or
shivers, the muscles generate electrical potentials that are picked up by the surface
electrodes. This type of noise is arguably the most challenging to remove because of
its spectral characteristics. Unlike the rhythmic cardiac signal, Electromyographic
noise is stochastic and broad-band. Its energy is distributed from DC to several
hundred Hertz. Crucially, there is a significant spectral overlap between this noise and
the diagnostic bandwidth of the ECG, particularly the QRS complex. This means
that simple low-pass filtering often fails. Removing high-frequency muscle noise
inevitably blurs the sharp edges of the QRS complex. This reduces its amplitude
and extends its duration, potentially mimicking conduction abnormalities.

2.2.2.3 Power Line Interference

Power Line Interference is an environmental noise caused by capacitive coupling
with AC power lines and electrical equipment. It appears as a continuous sinusoidal
component at the main frequency. This frequency is 50 Hz in Europe and Asia,
and 60 Hz in the Americas. While visually disruptive, Power Line Interference is
stationary and narrow-band. However, its amplitude can be massive, completely
swamping the P and T waves. Furthermore, non-linearities in the acquisition chain
can generate harmonics at multiples of the fundamental frequency. These harmonics
can also be within the diagnostic ECG bandwidth.

2.2.3 Classical Denoising Techniques

Before the advent of machine learning, ECG denoising relied on deterministic algo-
rithms rooted in signal processing theory. These approaches remain the industry
standard for many embedded devices due to their low computational footprint.

2.2.3.1 Linear Digital Filtering

The most straightforward approach involves linear frequency-selective filters. High-
pass filters are used to remove Baseline Wander, typically with a cutoff frequency
around 0.5 Hz. Low-pass filters are used to attenuate high-frequency muscle noise.
Notch filters are specifically designed to surgically remove the 50 Hz or 60 Hz Power
Line Interference. While computationally efficient, fixed-coefficient filters lack in
adaptability. They cannot distinguish between noise and signal components that
overlap in frequency. A filter aggressive enough to clean muscle noise will often
degrade sharp physiological waveforms.
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2.2.3.2 Adaptive Filtering

To address non-stationarity, Adaptive Filtering techniques were introduced [12, 13].
Algorithms such as Least Mean Squares or Recursive Least Squares [14] can adjust
filter coefficients in real-time to track changing noise environments. However, adaptive
filters typically require a reference channel. This is a separate signal that correlates
with noise but not with the ECG. In standard single-lead wearable devices, such a
reference is rarely available, limiting the applicability of this method.

2.2.3.3 Transform Domain Decomposition

More sophisticated methods utilize transform domains. The Discrete Wavelet Trans-
form (DWT) decomposes the signal into different scales or frequency bands [15].
Denoising is performed by thresholding the wavelet coefficients, a technique pioneered
by Donoho [16]. This involves keeping the large coefficients, which are assumed to
vary with the QRS complex, and setting to zero the small ones, which are assumed to
correspond to noise. While being powerful, wavelet denoising requires expert selection
of the mother wavelet and complex thresholding rules. It can also introduce localized
artifacts near signal discontinuities. Similarly, Empirical Mode Decomposition (EMD)
adaptively breaks the signal into Intrinsic Mode Functions [17]. While this avoids
the selection of a fixed basis function, it is computationally expensive and prone to
mode-mixing artifacts.

2.3 Machine Learning in Signal Denoising

The limitations of classical filtering techniques, particularly their inability to adapt to
non-stationary noise environments without external reference channels, have driven
the exploration of data-driven approaches. Machine Learning represents a paradigm
shift from designing explicit rules for noise removal to learning these rules from data
[18]. This section provides a comprehensive overview of learning paradigms, details
the core mathematical operations utilized in modern signal processing models, and
critically analyzes the dominant deep learning architectures and their associated
interpretability challenges.

2.3.1 Machine Learning Paradigms

Machine Learning algorithms can be categorized based on the nature of the signal
available to the learning system and the type of feedback provided during the training
process.

2.3.1.1 Supervised Learning

Supervised learning is the most prevalent approach in signal processing tasks where
ground truth data is available. In this paradigm, the model is provided with a
dataset consisting of input-output pairs. The goal is to learn a mapping function
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that predicts the output of new unseen inputs. In the context of ECG denoising,
this typically involves training a model using pairs of noisy signals (input) and clean
signals (target). The algorithm iteratively adjusts its internal parameters to minimize
the discrepancy, or loss, between its predictions and the provided targets.

2.3.1.2 Unsupervised Learning

Unsupervised learning deals with unlabeled data. The system attempts to infer
the inherent structure or distribution of the input data without explicit guidance
on what the output should look like. Common applications include clustering and
dimensionality reduction. In biomedical signal processing, unsupervised techniques
like Principal Component Analysis (PCA) [19] or Independent Component Analysis
(ICA) [20] have historically been used to separate signal sources (e.g., separating fetal
ECG from maternal ECG) based on statistical independence rather than labeled
examples.

2.3.1.3 Reinforcement Learning

Reinforcement Learning (RL) differs fundamentally from the previous two categories.
Instead of being told what to predict, an agent interacts with an environment and
learns to make a sequence of decisions to maximize a cumulative reward signal. The
agent explores the environment, takes actions, and receives feedback in the form
of rewards or penalties. While less common for direct end-to-end signal filtering,
RL concepts are foundational to the operation of Tsetlin Machines [21]. As will be
discussed in the following section, the internal automata of a Tsetlin Machine operate
as independent reinforcement learning agents, adjusting their states based on rewards
and penalties derived from the prediction accuracy.

2.3.2 Core Computational Concepts: Regression and Convolution

Two mathematical concepts are central to understanding how modern machine learn-
ing models process physiological time-series: regression (the task) and convolution
(the operation).

2.3.2.1 Regression Analysis

Machine learning tasks are generally divided into classification and regression. While
classification assigns inputs to discrete categories (e.g., "Arrhythmia" vs. "Normal")
[22], regression involves predicting a continuous quantity. Formally, regression seeks
to estimate the relationship between a dependent variable (the target) and one
or more independent variables (the predictors). In signal denoising, the problem
is inherently a regression task. If the goal is to reconstruct the clean signal, the
model must predict the continuous voltage amplitude of the ECG at each time step.
Alternatively, in the noise estimation approach proposed in this work, the model
performs regression to predict the continuous intensity of the noise artifacts (a value
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ranging from 0 to 1). The performance of a regression model is typically evaluated
using metrics such as Mean Squared Error (MSE) or Mean Absolute Error (MAE),
which quantify the distance between the predicted continuous values and the actual
values.

2.3.2.2 The Convolution Operation

Convolution is the mathematical backbone of most modern deep learning architectures
for signal and image processing. In the context of 1-D signals like ECG, convolution
involves sliding a fixed size filter (or kernel) over the input sequence. At each step,
the dot product between the filter weights and the local segment of the input signal is
computed [18]. This operation possesses two properties that make it highly effective
for biomedical signals:

1. Local Connectivity: The network learns to analyze local patterns (such as
the sharp rise of an R-peak or the high-frequency oscillation of muscle noise)
rather than looking at the entire signal at once.

2. Parameter Sharing: The same filter is applied on the entire time series. This
creates translation invariance, meaning a specific feature (like a QRS complex)
can be recognized regardless of where it appears in the cardiac cycle.

However, convolution relies heavily on floating-point matrix multiplications, which
contributes to the high computational cost and energy consumption of Convolutional
Neural Networks (CNNs).

2.3.3 Deep Learning Architectures for ECG

Deep Learning models, which utilize neural networks with many layers to learn
hierarchical representations of data, have become the standard for high-performance
signal restoration [18].

2.3.3.1 Convolutional Neural Networks (CNNs)

While originally designed for computer vision, CNNs have been successfully adapted
for one-dimensional time series. In these architectures, multiple layers of convolutional
filters are stacked. Lower layers may learn to detect simple features like edges or
spikes, while deeper layers combine these features to recognize complex morphological
structures like the P-QRS-T complex. The translation-invariant nature of CNNs
makes them particularly robust for analyzing continuous monitoring data where
heartbeats occur at irregular intervals. Kiranyaz et al. demonstrated the efficacy of
1-D CNNs for patient-specific ECG classification [23], and Acharya et al. extended
this to deep CNNs for arrhythmia detection [24].

2.3.3.2 Recurrent Neural Networks (RNNs) and LSTMs

Recurrent Neural Networks are designed to process sequential data by maintaining
an internal memory state. Advanced variants, such as Long Short-Term Memory
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(LSTM) networks [25] or Gated Recurrent Units (GRU) [26], address the limitations of
standard RNNs in learning long-term dependencies. These architectures are capable
of exploiting the temporal context of the signal, using the history of previous cardiac
cycles to inform the reconstruction of the current segment. However, the sequential
nature of RNNs often results in slower training and inference times compared to
parallelizable convolutional models.

2.3.3.3 Denoising Autoencoders

The Denoising Autoencoder (DAE) is a specific architectural framework used for
signal restoration [27]. It consists of an encoder, which compresses the noisy input
into a lower-dimensional latent representation, and a decoder, which attempts to
reconstruct the clean signal from this latent code. The bottleneck forces the model to
learn robust features that capture the essential structure of the physiological signal
while discarding the stochastic noise, which is less compressible. Chiang et al. applied
Fully Convolutional Denoising Autoencoders to ECG signals, achieving significant
noise reduction [28].

2.3.4 Denoising Paradigms: Reconstruction versus Estimation

Within the Deep Learning landscape, two distinct strategies for signal restoration
have emerged based on the target of the regression.

2.3.4.1 Direct Denoising

The most intuitive approach is Direct Denoising, or End-to-End Reconstruction.
Here, the neural network is trained to map the noisy input signal directly to the clean
output signal [28]. The model is tasked with reconstructing the complex morphology
of the ECG. This approach is effective, but places a heavy burden on the model to
preserve minute diagnostic details. Errors in the model can lead to signal distortion,
such as smoothing of high-frequency pathological markers.

2.3.4.2 Noise Estimation

Recent advancements have shifted focus towards Noise Estimation, or Residual
Learning. Instead of predicting the clean signal, the model is trained to estimate
the additive noise component. The clean signal is then recovered by subtracting
the estimated noise from the noisy input. This approach relies on the observation
that noise artifacts, such as sinusoidal Power Line Interference or low-frequency
Baseline Wander, often possess a simpler or more distinct morphology than the ECG
signal itself. Empirical studies, such as the multitask noise estimation framework
proposed in [29], have suggested that this paradigm yields superior Signal-to-Noise
Ratio improvements.
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2.3.5 The Interpretability Challenge

Despite the impressive numerical performance of Deep Learning models, their adop-
tion in clinical practice faces a significant barrier known as the Black-Box Problem.

2.3.5.1 Opacity and Lack of Trust

Deep neural networks consist of millions of floating-point parameters and non-linear
activation functions. The decision-making process is distributed across this vast
web of connections, making it mathematically opaque. When a CNN filters an
ECG, it is virtually impossible for a clinician to trace the logic behind the specific
alteration of a waveform segment. There is no explicit rule stating why a particular
voltage deflection was suppressed. This lack of transparency erodes trust, as medical
professionals cannot verify whether the model’s actions are based on physiological
principles or spurious statistical correlations.

2.3.5.2 Hallucinations and Generative Artifacts

A critical risk associated with generative Deep Learning models is the phenomenon of
hallucination. Because these models learn the statistical distribution of the training
data, they may reconstruct plausible features that are not actually present in the input.
In high-noise scenarios, a model might "invent" a P-wave to conform to the learned
pattern of a normal heartbeat, potentially masking an arrhythmia. In contrast, it
might suppress a pathological Q-wave, interpreting it as noise. In healthcare, where
decisions can have life-altering consequences, the inability to distinguish between
a restored signal and a generated artifact is a profound liability. This necessitates
the exploration of alternative machine learning frameworks that offer both high
performance and intrinsic interpretability.

2.4 The Tsetlin Machine Framework

To address the dichotomy between the high accuracy of Deep Learning and the
critical need for transparency in medical applications, this thesis adopts the Tsetlin
Machine (TM). Introduced by Ole-Christoffer Granmo in 2018 [21], the TM represents
a fundamental departure from the arithmetic-based paradigm of neural networks.
Instead of relying on matrix multiplications, differentiation, and backpropagation,
the TM learns patterns using propositional logic and bitwise operations. This
unique architecture inherently produces human-readable rules, offering a “White-Box”
alternative that maintains competitive accuracy while addressing the opacity issues
intrinsic to connectionist models.

The following subsections provide a comprehensive analysis of the framework,
tracing its origins from cybernetic theory to the specific regression architecture used
for ECG noise estimation.
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2.4.1 Historical Origins: Cybernetics and Automata Theory

While the Tsetlin Machine is a contemporary invention, its intellectual lineage traces
back to the golden age of Soviet cybernetics in the 1960s. The central figure in
this domain was Michael Lvovitch Tsetlin, a physicist and mathematician who
investigated how simple biological organisms could adapt to complex environments
without having a prior model of the world [30].

Tsetlin formalized the concept of the Learning Automaton (LA), a decision-
making unit that interacts with a stochastic environment through a trial-and-error
process. He proposed the “Linear Tactic Automaton,” a finite state machine designed
to solve the multi-armed bandit problem. The objective of such an automaton is
to select the action that maximizes the probability of receiving a reward from an
environment whose statistical properties are unknown.

2.4.1.1 The Linear Tactic Automaton

The Linear Tactic Automaton is defined by a finite memory of 2N states. The states
are divided into two sets corresponding to two possible actions, typically Action 1
and Action 2.

• States 1 to N are associated with Action 1.

• States N + 1 to 2N are associated with Action 2.

The interaction follows a reinforcement learning loop. At any given time step, the
automaton selects an action based on its current state. The environment responds
with a feedback signal: either a Reward (success, penalty=0) or a Penalty (failure,
penalty=1). In Tsetlin’s design, a Reward reinforces the current action by moving
the state “deeper” into the memory (away from the center), representing increased
confidence. Conversely, a Penalty degrades confidence by moving the state towards
the central boundary (N or N + 1). If the automaton receives sufficient penalties
while in a boundary state, it transitions to the opposing set of states, effectively
switching its action.

Tsetlin proved mathematically that, despite its extreme simplicity—relying only
on integer states and simple increments/decrements—this automaton is ϵ-optimal.
This means that as the memory depth N approaches infinity, the probability of
the automaton choosing the optimal action approaches unity, even in stochastic
environments. This theoretical guaranty provides the robust foundation upon which
the modern Tsetlin Machine is built.

2.4.2 The Tsetlin Machine Architecture

Granmo’s breakthrough was to organize thousands of these simple automata into a
collective intelligence capable of learning complex logic patterns. The architecture of
a standard Tsetlin Machine is composed of three layers: the input layer (literals),
the pattern recognition layer (conjunctive clauses), and the summation layer (voting)
[21].
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Figure 2.2: Schematic representation of the standard Tsetlin Machine architecture.
Input features are converted into literals, which are processed by teams of Tsetlin
Automata to form conjunctive clauses. The final output is determined by aggregating
the votes from active clauses.

2.4.2.1 Propositional Input and Literals

The TM operates natively on Boolean inputs. To process continuous data, such as
ECG signal features, a binarization step is required (discussed in Chapter 4). Given
a binary feature vector X = [x1, . . . , xo] of size o, the TM generates a set of Literals
L. To maximize expressivity and allow the model to detect both the presence and
absence of features, the literal set includes both the original features and their logical
negations:

L = {x1, . . . , xo, ¬x1, . . . , ¬xo} (2.1)

Thus, for a feature vector of dimension o, the total number of literals available to
the system is 2o.

2.4.2.2 Conjunctive Clauses

The core learning unit of the TM is the Conjunctive Clause. A clause Cj is
a logical AND rule formed by selecting a specific subset of the available literals.
Formally, if Ij denotes the set of literals included in clause j, the clause output is:

Cj(X) =
Þ

lk∈Ij

lk (2.2)

where lk represents the k-th literal present in the subset Ij . A clause outputs 1 (True)
if and only if all its included literals evaluate to 1. If the set Ij is empty, the clause
outputs 1 by definition during learning, ensuring that all clauses participate in the
initial exploration of the solution space. The composition of the set Ij is dynamic
and is determined by the Tsetlin Automata.
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2.4.2.3 The Team of Automata

For every clause Cj and for every literal lk, there is a dedicated Tsetlin Automaton
TAj,k. This automaton decides whether to Include or Exclude the literal k from
clause j.

• Exclude: If the automaton state is between 1 and N .

• Include: If the automaton state is between N + 1 and 2N .

This structure means that a Tsetlin Machine with m clauses and o input features
utilizes m × 2o independent automata. These automata evolve independently based
on feedback, yet they self-organize to form coherent patterns.

2.4.3 Learning Dynamics: The Game of Feedback

The learning process in a Tsetlin Machine is not driven by gradient descent or
backpropagation. Instead, it is formulated as a game played by the automata against
the environment. The goal of the game is to maximize the number of correct
classifications. The mechanism relies on two distinct types of feedback signals, Type
I and Type II, which are dispensed probabilistically based on the state of the clause
and the correctness of the prediction [21].

2.4.3.1 Resource Allocation and Thresholding

To ensure that the clauses distribute themselves to cover different sub-patterns in the
data, the TM employs a resource allocation mechanism controlled by a summation
threshold T . The votes of the clauses are summed to form a total output score.
During training, the feedback probability is scaled based on how close this score is
to the threshold T . If the system is already confident in a prediction (the vote sum
exceeds T ), the probability of updating the automata drops to zero. This prevents
the "over-hiring" of clauses for easy patterns and forces idle clauses to learn rare or
difficult patterns, effectively regularizing the model.

2.4.3.2 Type I Feedback: Pattern Recognition and Refinement

Type I Feedback is triggered when a clause outputs 0 but should have outputted 1
(a False Negative scenario), or when it correctly outputs 1 but needs reinforcement.
This feedback has two effects:

1. Boost True Literals: For literals that are 1 in the input, the corresponding
automata receive a reward (Include). This reinforces the recognition of the
pattern present in the input.

2. Combat Overfitting: For literals that are 0 in the input, the automata
receive a penalty (Exclude). This removes literals that would contradict the
pattern. This action is stochastic and controlled by a user-defined parameter
s (specificity). A higher s makes the clauses more specific and less prone to
overfitting.
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2.4.3.3 Type II Feedback: Discrimination and Suppression

Type II Feedback is triggered when a clause outputs 1 but should have outputted 0
(a False Positive scenario). The goal is to silence the erroneous clause. The feedback
forces the automata to Include literals that are 0 in the current input. By including
a False literal in an AND-rule, the clause output is forced to 0, effectively suppressing
the false activation. This mechanism ensures that the clauses learn to discriminate
against patterns that belong to other classes.

2.4.4 State-of-the-Art in Biomedical Tsetlin Machines

Recent research has begun to explore the application of Tsetlin Machines to biomedical
signals, demonstrating their potential as a viable alternative to deep learning. A
pivotal study by Zhang et al. (2023) applied the Tsetlin Machine to the identification
of Premature Ventricular Contractions (PVC) in ECG signals [22].

Their work provided a direct comparison between a TM-based classifier and
state-of-the-art Convolutional Neural Networks (CNNs). The results showed that the
TM achieved a classification accuracy (98.6%) comparable to that of deep learning
models (98.9%). However, the crucial distinction lay in **interpretability**. Zhang et
al. highlighted a fundamental limitation of CNNs: techniques like "Attention Maps"
(e.g., Grad-CAM) can only indicate *where* the model is looking, but not *what*
specific pattern it has found. In contrast, the TM produced explicit logical clauses.
For instance, the model learned rules that directly correlated specific pixel patterns
in the 2D ECG representation to the presence of a PVC. This allowed cardiologists
to verify the diagnostic criteria used by the algorithm, confirming that the model was
focusing on the QRS width and morphology, consistent with medical knowledge. This
thesis builds upon this precedent, extending the application of Tsetlin Machines from
*classification* (detecting the presence of an arrhythmia) to *regression* (quantifying
the intensity of noise), leveraging the same benefits of transparency and trust.

2.4.5 The Regression Tsetlin Machine (RTM)

While the original TM was a classifier, the objective of estimating noise intensity
requires a continuous output. To address this, the Regression Tsetlin Machine
(RTM) is employed, as formalized by Abeyrathna et al. [31].

2.4.5.1 From Polarity to Magnitude

In the classification TM, clauses are assigned polarities to vote for different classes.
In the RTM, this concept is replaced by **magnitude accumulation**. The system
assumes a linear relationship between the number of active clauses and the target
value. The continuous output ŷ is computed as the normalized sum of all clause
outputs:

ŷ = 1
T

mØ
j=1

Cj(X) (2.3)
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Here, the threshold T acts as a scaling factor, defining the maximum resolution of
the regressor. An RTM can be viewed as a "digital" potentiometer: the more clauses
are active (matching the input pattern), the higher the output value.

2.4.5.2 Error-Driven Feedback

The learning dynamics in the RTM are driven by the magnitude of the error between
the predicted scalar ŷ and the ground truth y. Unlike the simple correct/incorrect
feedback of the classifier, the RTM modulates the probability of updating the
automata based on the error size [31].

• Underestimation (ŷ < y): The model needs more active clauses. Type I
Feedback is applied to inactive clauses to encourage them to recognize the
current input. The probability of update is proportional to the error magnitude
|y − ŷ|.

• Overestimation (ŷ > y): The model has too many active clauses. Type II
Feedback is applied to active clauses to suppress them. Again, the aggressiveness
of the update scales with the error.

This feedback loop creates a highly stable regression mechanism that gradually
converges to the target intensity distribution.

2.4.6 A Practical Example: Learning the XOR Function

To demystify the operation of the TM and illustrate its non-linear capabilities,
consider the classic “Noisy XOR” problem. This is a benchmark problem that simple
linear models (like Logistic Regression) cannot solve because the classes are not
linearly separable. Consider two binary inputs x1, x2 and a target output y such that
y = 1 if x1 ̸= x2 (Exclusive OR). The valid patterns for y = 1 are (1, 0) and (0, 1).

A Tsetlin Machine with just two clauses can solve this perfectly by discovering
the underlying logic:

• Clause 1 Formulation: Through Type I feedback on examples where the
input is (1, 0), the automata for literals x1 and ¬x2 receive rewards and move
to the "Include" state. The resulting rule converges to: C1 = x1 ∧ ¬x2.

• Clause 2 Formulation: Similarly, training on (0, 1) examples guides the
second team of automata to learn the complementary pattern. The resulting
rule converges to: C2 = ¬x1 ∧ x2.

The final output of the machine is the logical sum (OR) of these clauses:

y = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) (2.4)

Crucially, this logic is not "hidden" in a matrix of floating-point weights; it is explicit.
A human can read the clauses and verify that the machine has correctly understood
the logical definition of the XOR gate.
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2.4.7 Advantages for Biomedical Signal Processing

The selection of the Tsetlin Machine for this research is driven by the specific
convergence of three critical advantages that address the limitations of current Deep
Learning approaches in the medical domain:

2.4.7.0.1 Intrinsic Interpretability. As demonstrated by Zhang et al. [22], the
TM produces logic rules. In the context of ECG analysis, this means the model can
"explain" its decisions. For instance, it might learn a rule stating: "IF High Frequency
Power is High AND R-peak amplitude is Low THEN Muscle Noise is High". This
transparency allows clinicians to validate the model’s reasoning, building trust in the
automated system.

2.4.7.0.2 Computational Efficiency and Edge AI. The inference phase of
the TM relies solely on bitwise operations (AND, NOT, XOR, Population Count) and
integer addition. It requires no floating-point arithmetic or matrix multiplication [32].
This drastically reduces the computational complexity and energy consumption of the
model. Consequently, TMs are uniquely suited for deployment on battery-powered
medical wearables and low-cost microcontrollers, enabling advanced signal processing
at the edge without the need for heavy hardware accelerators.

2.4.7.0.3 Robustness to Noise and Overfitting. The discrete nature of the
automata states provides a buffer against overfitting. Unlike neural networks, which
can memorize noise in the infinite precision of their weights, the TM seeks robust
logic structures. This reduces the risk of "hallucinating" artifacts where none exist—a
critical safety feature for automated denoising systems, preventing the distortion of
physiological morphologies in clean signals.
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Related Works

This chapter situates the proposed research within the broader landscape of biomedical
signal processing and interpretable Machine Learning. The literature review is
organized into four main streams. Section 3.1 discusses traditional digital signal
processing techniques, establishing the baseline for performance and computational
efficiency. Section 3.2 explores the rise of Deep Learning (DL) for ECG restoration,
distinguishing between direct waveform reconstruction and the emerging paradigm of
noise estimation. Section 3.3 reviews the specific applications of the Tsetlin Machine
framework in the biomedical domain, highlighting its potential for transparent
classification and regression. Finally, Section 3.4 provides a critical gap analysis,
defining the specific research questions addressed by this thesis.

3.1 Classical Signal Processing for ECG Denoising

Before the advent of data-driven approaches, ECG denoising was primarily addressed
through deterministic algorithms rooted in signal theory. These approaches remain
the industry standard for many embedded medical devices due to their determinism
and low computational footprint.

3.1.1 Digital Filtering Techniques

The most straightforward approach involves linear frequency-selective filters, which
assume that the signal of interest and the noise occupy distinct frequency bands.

• Baseline Wander Removal: High-pass filters are commonly employed to
remove low-frequency drifts caused by respiration and patient movement. Finite
Impulse Response (FIR) filters are often preferred for their linear phase response,
which prevents phase distortion of the ECG waveform, although Infinite Impulse
Response (IIR) filters are used when computational efficiency is paramount.
The typical cut-off frequency is set between 0.5 Hz and 0.67 Hz to preserve the
ST-segment information [3].

• Power Line Interference Suppression: To eliminate the 50/60 Hz mains
hum, Notch filters are the standard solution. While effective for stationary

24



Related Works

interference, fixed notch filters can introduce "ringing" artifacts (Gibbs phe-
nomenon) around the sharp QRS complex if the bandwidth is too narrow, or
attenuate physiological information if it is too wide.

• Muscle Noise Reduction: Low-pass filters are used to attenuate high-
frequency Electromyographic (EMG) artifacts. However, this presents a signifi-
cant challenge: the spectral content of EMG noise significantly overlaps with
the high-frequency components of the QRS complex (typically up to 100-150
Hz). Consequently, aggressive low-pass filtering often results in the smoothing
of the R-peak amplitude and widening of the QRS duration, potentially leading
to diagnostic errors.

3.1.2 Adaptive Filtering

To address the non-stationarity of biomedical signals, Adaptive Filtering techniques
were introduced. Algorithms such as Least Mean Squares (LMS) and Recursive Least
Squares (RLS) iteratively adjust the filter coefficients to minimize the error between
the noisy signal and a reference. While adaptive filters offer superior performance in
dynamic environments compared to fixed filters, they suffer from a critical limitation:
the requirement for a reference channel. This is a secondary signal that correlates
with the noise but not with the ECG (e.g., a dedicated sensor for respiration or
mains voltage). In standard single-lead ambulatory monitoring (e.g., Holter monitors
or patches), such a pure noise reference is rarely available, limiting the practical
applicability of this method [12].

3.1.3 Transform Domain Decomposition

A significant leap in denoising performance was achieved with transform domain meth-
ods, most notably the Discrete Wavelet Transform (DWT). DWT decomposes
the signal into multiple resolution levels, allowing for the separation of signal and
noise based on their time-frequency characteristics. Denoising is typically performed
via Wavelet Shrinkage (thresholding), where coefficients below a certain value are set
to zero (Hard Thresholding) or attenuated (Soft Thresholding), under the assumption
that noise is represented by small, high-frequency coefficients. Similarly, Empirical
Mode Decomposition (EMD) adaptively decomposes the signal into Intrinsic
Mode Functions (IMFs) without a predefined basis. Despite their efficacy, these
methods introduce complexity in hyperparameter tuning. The choice of the "mother
wavelet" (e.g., Daubechies, Symlet), the decomposition level, and the thresholding
strategy requires expert domain knowledge and manual tuning, making them difficult
to generalize across diverse patient populations without introducing artifacts [16].

25



Related Works

3.2 Deep Learning Approaches: The Current State-of-
the-Art

The availability of large-scale biomedical datasets, such as the MIT-BIH Arrhythmia
Database [11], has fueled the widespread adoption of Deep Learning (DL) for ECG
denoising. Unlike classical methods, neural networks can learn complex, non-linear
mappings from noisy to clean signals directly from data, without relying on rigid
mathematical assumptions about the noise spectrum.

3.2.1 Direct Denoising: End-to-End Reconstruction

The dominant paradigm in early DL applications was “Direct Denoising” or End-
to-End Reconstruction. In this framework, a neural network (typically a Denoising
Autoencoder or a U-Net) receives the noisy signal x as input and is trained to output
the clean signal ŝ directly.

• Convolutional Autoencoders (CDAE): Chiang et al. demonstrated that
fully convolutional networks could effectively remove noise by learning a com-
pressed latent representation of the ECG morphology [28]. These models
leverage the translation invariance of convolutions to detect features like QRS
complexes regardless of their temporal position.

• Recurrent Neural Networks (RNNs): Architectures such as Long Short-
Term Memory (LSTM) networks and Gated Recurrent Units (GRU) have been
employed to capture long-term temporal dependencies in the cardiac cycle.

While these models often achieve high Signal-to-Noise Ratio (SNR) scores, they place
a heavy burden on the network: it must learn to reconstruct the precise morphology
of the P-QRS-T complex while simultaneously suppressing noise. This often leads to
signal distortion, such as the smoothing of high-frequency pathological markers
(e.g., the Q-wave notch) or the alteration of R-peak amplitudes.

3.2.2 The Shift to Noise Estimation

To mitigate the risk of signal distortion, recent research has shifted focus towards
the Noise Estimation paradigm (also known as Residual Learning). Instead of
predicting the clean signal, the model is trained to estimate the additive noise
component n̂. The clean signal is then recovered by subtraction:

ŝ = x − n̂ (3.1)

This approach relies on the observation that noise artifacts (such as sinusoidal PLI
or low-frequency Baseline Wander) often possess a morphologically simpler structure
than the ECG signal itself.

A significant contribution in this domain is the work by Gancitano (2024), who
proposed a Deep Multitask Noise Estimation framework [29]. By utilizing a
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multi-head Convolutional Neural Network (CNN), this approach estimates separate
waveforms for Baseline Wander, Muscle Artifacts, and Power Line Interference.
Gancitano demonstrated that separating the estimation into distinct auxiliary tasks
yields superior results compared to direct denoising (+6.26 dB vs +2.22 dB in SNR
improvement). The multitasking approach allows the encoder to learn shared features
while specific decoders specialize in the unique spectral characteristics of each noise
type.

3.2.3 Generative Models

Beyond deterministic regression, Generative Adversarial Networks (GANs) have been
applied to ECG denoising. In this setup, a generator creates clean signals while a
discriminator attempts to distinguish between real clean ECGs and denoised ones.
While GANs produce visually realistic waveforms with sharp details, they suffer from
a high risk of hallucination: the generator may invent plausible-looking features
(e.g., a normal P-wave) that conceal actual pathologies (e.g., Atrial Fibrillation),
rendering them dangerous for diagnostic automation.

3.2.4 The “Black-Box” Problem in Clinical AI

Despite the numerical superiority of DL models, their adoption in clinical practice
faces a critical barrier: Opacity. Deep neural networks operate as "Black Boxes."
A CNN with millions of floating-point parameters offers no insight into its decision-
making process. When the model filters a signal, the clinician cannot verify why a
specific segment was altered. Furthermore, noise estimation models based on CNNs
can suffer from a specific type of failure mode: predicting and subtracting noise
patterns even when the input signal is clean (ghosting). Without an interpretability
layer to audit the model’s internal state, it is impossible to distinguish between a
correct noise removal and an erroneous artifact introduction. This lack of transparency
necessitates the exploration of alternative frameworks that can offer comparable
performance while ensuring the trustworthiness and verifiability required by
medical regulations.

3.3 The Tsetlin Machine in Biomedical Applications

While DL currently dominates the landscape of biomedical signal processing, the
Tsetlin Machine (TM) has recently emerged as a compelling alternative, particularly
in high-stakes domains where transparency is mandatory. By replacing floating-point
arithmetic with propositional logic, Tsetlin Machines offer a unique combination of
high accuracy, low computational cost, and intrinsic interpretability. This section
reviews key contributions that validate the use of TMs for physiological signal
analysis.
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3.3.1 Interpretable Classification of Arrhythmias

The efficacy of Tsetlin Machines in ECG analysis was rigorously demonstrated by
Zhang et al. (2023) in their work on Premature Ventricular Contraction (PVC)
identification [22]. In a comparative study using the MIT-BIH Arrhythmia Database,
the authors trained a Convolutional Tsetlin Machine (CTM) to classify heartbeats.
The results indicated that the TM achieved a classification accuracy (98.6%) com-
parable to state-of-the-art Deep Neural Networks (98.9%). However, the critical
contribution of this work lay in the interpretability analysis. While CNNs relied
on Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize vague
"regions of interest," the TM provided explicit logic clauses. Specifically, the model
learned rules that directly correlated the spatial distribution of pixels in the binary
ECG image (e.g., width of the QRS complex) to the pathology. This allowed clinical
experts to verify that the algorithm was making decisions based on established
cardiological criteria, rather than spurious correlations.

3.3.2 Continuous Estimation via Regression Tsetlin Machines

While the standard TM is a classifier, signal denoising and quality assessment often
require continuous outputs. To address this, Abeyrathna et al. introduced the
Regression Tsetlin Machine (RTM) [31]. By mapping the summation of active
clauses to a continuous output space, the RTM enables the modeling of non-linear
functions using logic rules. This architecture has been successfully applied to various
time-series forecasting tasks and, notably, to predicting Dengue outbreaks based on
continuous environmental variables. In the context of 1-D signal processing, RTMs
have demonstrated the ability to learn complex temporal dynamics while maintaining
the "White-Box" property: the magnitude of the prediction can be decomposed into
the contributions of specific active rules, providing a granular explanation of the
output value [33].

3.3.3 Efficiency and Edge Computing Potential

Beyond accuracy and interpretability, Tsetlin Machines offer significant advantages
in computational efficiency, a critical factor for wearable medical devices (e.g., Holter
monitors). Research by Lei et al. on Audio Keyword Spotting demonstrated
that TMs can achieve inference speeds and energy efficiency orders of magnitude
superior to Neural Networks when deployed on low-power microcontrollers [32].
Since the inference phase relies exclusively on bitwise operations (AND, NOT, XOR,
Population Count), TMs avoid the heavy floating-point calculations required by
convolutions. This characteristic is particularly relevant for the development of "Edge
AI" denoising systems capable of running directly on battery-powered sensors without
cloud connectivity.

28



Related Works

3.3.4 Intrinsic vs. Post-Hoc Interpretability

A recurring theme in the literature comparing TMs and DNNs is the distinction
between intrinsic and post-hoc interpretability. As argued by Rudin [34], "Stop
explaining black boxes" is a necessary paradigm shift for high-stakes AI. Post-hoc
methods (like LIME or SHAP) approximate the decision boundary of a complex
model, often introducing new errors or oversimplifications. In contrast, Tsetlin
Machines are intrinsically interpretable: the learned clauses are the model. There is
no approximation layer between the decision logic and the human observer. This
property is essential for regulatory compliance in medical software (e.g., EU AI Act),
where the ability to audit the decision-making process is a legal requirement.

3.4 Gap Analysis and Thesis Positioning

The review of the state-of-the-art reveals a clear dichotomy in the field of ECG
denoising, characterized by a trade-off between performance and transparency. Table
3.1 summarizes the capabilities and limitations of the existing paradigms discussed
in this chapter.

3.4.1 Synthesis of Current Limitations

1. Classical Methods (Filters/Wavelets): While computationally efficient
and theoretically grounded, these methods lack the adaptability required to
handle non-stationary and spectral-overlapping noise sources (such as EMG)
without degrading the ECG morphology. They require manual tuning and
cannot "learn" from data.

2. Deep Learning (Direct & Noise Estimation): Neural networks, particu-
larly CNNs trained for noise estimation, have established new benchmarks for
signal restoration quality. However, they suffer from the "Black-Box" problem.
The lack of interpretability and the risk of generative hallucinations (inventing
or suppressing features) present significant regulatory and safety hurdles for
clinical deployment.

3. Tsetlin Machines (Current State): The TM framework has proven its
capability in biomedical classification tasks (e.g., arrhythmia detection) and
general regression problems. However, its application to signal enhancement and
continuous noise quantification remains largely unexplored. To date, there is
no established literature utilizing Regression Tsetlin Machines to drive adaptive
filtering pipelines for ECG.

3.4.2 Thesis Contribution

This thesis aims to bridge the identified gap by proposing a novel hybrid architecture.
We adopt the effective Noise Estimation paradigm (learning to identify noise rather
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Table 3.1: Comparison of ECG Denoising Paradigms vs. Proposed Method.

Paradigm Adaptability Interpretability Safety
(Hallucination

Risk)

Classical Filters Low High (Analytic) High
(Deterministic)

Deep Learning (CNNs) High Low (Black-Box) Low (Generative
Artifacts)

Proposed (TMU-RTM) High High (Logic
Rules)

High (Gated
Control)

than the clean signal) but replace the opaque CNN backbone with an interpretable
Regression Tsetlin Machine.

Unlike end-to-end Deep Learning approaches that blindly reconstruct the wave-
form, our proposed system estimates the intensity of specific noise components
(Baseline Wander, EMG, PLI) using transparent logical rules. These intensity esti-
mates are then used to modulate standard digital filters. This "Grey-Box" approach
combines the data-driven adaptability of Machine Learning with the safety and
determinism of classical signal processing. Specifically, this work contributes to the
field by:

• Demonstrating the first application of Regression Tsetlin Machines for ECG
noise intensity estimation.

• Developing an explainability-driven feature engineering pipeline that reduces
computational complexity by 95% compared to brute-force approaches.

• Validating a "Safety-by-Design" denoising controller that prevents signal distor-
tion in clean segments through logic-based gating.
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Methodology

This chapter presents the architectural and methodological framework developed in
this thesis for interpretable ECG denoising. The proposed system, named TMU-
Optimized, represents a paradigm shift from conventional black-box restoration to a
logic-based, white-box estimation of noise intensity.

Section 4.1 provides a high-level overview of the multi-stage pipeline. Section 4.2
details the construction of the dataset and the synthetic mixing protocol used to
simulate realistic clinical artifacts. Section 4.3 describes the novel feature engineering
process, mathematically defining the extraction of bitplane and spectral features
and detailing the explainability-driven optimization that led to the final feature set.
Section 4.4 formalizes the multi-head Regression Tsetlin Machine (RTM) architecture,
including hyperparameter tuning and the handling of specific noise distributions
like Power Line Interference. Section 4.5 introduces the crucial stages of isotonic
calibration and adaptive filtering control. Finally, Section 4.6 outlines the rigorous
statistical protocols adopted to validate the system’s robustness and clinical reliability.

4.1 System Architecture

The architecture proposed in this study, called TMU-Optimized, implements a modular
pipeline for ECG signal restoration. The fundamental design philosophy decouples
the problem of noise quantification from the problem of noise removal. Unlike
end-to-end deep learning architectures that perform a direct mapping from noisy
to clean waveforms using millions of parameters, the proposed system operates as
a transparent supervisory controller. It utilizes a logic-based regression model to
estimate the intensity of specific artifacts and subsequently modulates standard
digital filters based on these estimates.

4.1.1 Pipeline Overview

The processing flow is structured into five sequential stages, transforming raw physi-
ological signals into clean diagnostic data through a series of interpretable transfor-
mations. The pipeline operates on single-lead ECG signals sampled at 360 Hz.
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1. Signal Segmentation: The continuous ECG stream is divided into overlapping
windows. A window size of N = 1024 samples (approximately 2.84 seconds) is
used to ensure local stationarity while providing sufficient spectral resolution
for low-frequency analysis.

2. Feature Extraction and Encoding: Instead of feeding raw samples to the
model, a compact set of 57 hybrid features is extracted. These features combine
spectral power densities and morphological bitplane statistics. The continuous
feature values are then discretized into Boolean literals using thermometer
encoding, making them compatible with the propositional logic of the Tsetlin
Machine.

3. Intensity Regression (Multi-Head TMU): The core inference engine
consists of three independent Regression Tsetlin Machines (RTMs). Each
"head" is specialized to predict the intensity scalar ŷ ∈ [0, 1] for a specific
noise type: Baseline Wander (BW), Muscle Artifacts (EMG), and Power Line
Interference (PLI).

4. Isotonic Calibration: The raw outputs from the Tsetlin Machines are refined
using a non-parametric isotonic regression model. This stage corrects non-linear
biases and ensures that the predicted intensities map linearly to the probability
of noise presence.

5. Adaptive Filtering: The calibrated intensities act as control signals for a
bank of digital filters. A gating logic enables the filters only when the estimated
noise exceeds a safety threshold, modulating the filter strength (e.g. cut-off
frequency or attenuation level) proportionally to the detected intensity.

Figure 4.1 provides a schematic representation of this data flow, highlighting the
transition from the time domain to the logic domain and back to the signal domain.

4.1.2 The Noise Intensity Paradigm

The most significant architectural divergence from the state-of-the-art lies in the
definition of the learning target. Contemporary Deep Learning approaches, such
as the Multitask CNN proposed by Gancitano [29], typically frame the problem as
Waveform Estimation. In that paradigm, the model outputs a high-dimensional
vector (N samples) representing the noise signal itself, which is then subtracted from
the input.

In contrast, this work adopts a Noise Intensity Estimation paradigm. The
model predicts a single scalar value representing the global level of contamination
within the window. Table 4.1 contrasts these two approaches. The intensity-based
approach offers three critical advantages for clinical safety:

• Elimination of Hallucinations: Generative waveform estimators can intro-
duce artifacts (hallucinations) by predicting noise patterns where none exist,
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Figure 4.1: Block diagram of the proposed TMU-Optimized pipeline. The system
decouples the estimation path (Intelligence Unit, top) from the filtering path (Signal
Processing Unit, bottom). The Tsetlin Machine estimates noise intensities which
modulate the adaptive filters via the control signal α.

which are then subtracted from the signal, creating distortion. By predicting
a scalar intensity, the proposed system implements a "gate": if the predicted
intensity is near zero, the filter is bypassed entirely, preserving the original
signal bit-perfectly.

• Simplified Learning Task: Mapping a complex input to a single scalar
(Regression) is computationally less demanding than mapping it to a high-
dimensional vector (Generation). This allows for the use of lighter models like
the Tsetlin Machine.

• Deterministic Filtering: The actual removal of noise is performed by stan-
dard DSP filters (e.g., Butterworth, Wavelet Shrinkage) whose frequency re-
sponses and phase characteristics are mathematically deterministic and well-
understood by biomedical engineers, unlike the opaque non-linear transforma-
tions of a neural network.

Table 4.1: Comparison of Denoising Paradigms: Waveform Estimation vs. Intensity
Estimation.

Aspect Neural CNN
(State-of-the-Art)

TMU-Optimized
(Proposed)

Target Output Noise Waveform (R1024) Noise Intensity (R1 ∈ [0, 1])
Denoising Method Direct Subtraction Adaptive Filtering
Hallucination Risk High

(Generative artifacts)
None
(Gated logic)

Model Complexity ∼121,000 params (Float32) 9,000 Clauses (Binary)
Interpretability Black-Box White-Box (Logic Rules)
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4.2 Data Preparation and Noise Mixing

The development of a supervised regression model requires a dataset with precise
ground truth labels. In the context of clinical ECGs, obtaining a perfect separation
between the clean physiological signal and the noise artifacts is impossible. To
overcome this limitation, this study adopts a data synthesis approach based on the
additive mixing of clean signals and calibrated noise sources. This section details
the source databases, the mixing protocol, and the partitioning strategy employed to
ensure rigorous evaluation.

4.2.1 Source Databases

Two standard repositories from PhysioNet were utilized to construct the dataset:

• Clean ECG Source: The MIT-BIH Arrhythmia Database [35] serves
as the source of physiological signals. It contains 48 half-hour excerpts of
two-channel ambulatory ECG recordings, obtained from 47 subjects studied by
the BIH Arrhythmia Laboratory. The recordings were digitized at 360 samples
per second per channel with 11-bit resolution over a 10 mV range. This dataset
provides a wide variety of pathological morphologies (including ventricular
arrhythmias and conduction abnormalities), ensuring that the denoising model
learns to distinguish noise from genuine cardiac anomalies.

• Noise Source: The MIT-BIH Noise Stress Test Database (NSTDB)
[36] provides the artifact templates. It contains calibrated recordings of three
specific noise types: Baseline Wander (BW), caused by patient respiration;
Muscle Artifact (EMG), caused by muscle contraction; and Electrode Motion
artifacts. For Power Line Interference (PLI), synthetic sinusoidal noise at 50
Hz (with harmonics) was generated to simulate mains hum.

4.2.2 Synthetic Mixing Protocol

To simulate realistic ambulatory conditions, a dynamic mixing process was im-
plemented. For each window of clean ECG, noise is added according to a target
Signal-to-Noise Ratio (SNR). Let xclean[n] be a segment of the clean signal and ηk[n]
be a noise source of type k ∈ {BW, EMG, PLI}. The contaminated signal xnoisy[n]
is generated as:

xnoisy[n] = xclean[n] +
Ø

k

αk · ηk[n]
||ηk||2

· ||xclean||2 (4.1)

The scaling factor αk is determined stochastically to cover a wide range of signal
qualities, spanning from -6 dB (severe contamination, where noise power exceeds
signal power) to +24 dB (clean signal). The ground truth target yk for the
regression task is defined not as the SNR, which is unbound, but as the fractional
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noise power. This maps the noise intensity to a bounded interval [0, 1], which is
ideal for the Tsetlin Machine regression:

yk = Pηk

Ptotal
=

q(αkηk[n])2q(xnoisy[n])2 (4.2)

4.2.3 Segmentation and Data Partitioning

The continuous signals are segmented into overlapping windows. A window size of
N = 1024 samples was selected, corresponding to approximately 2.84 seconds at
360 Hz. This duration is sufficient to capture multiple QRS complexes (for spectral
resolution) while maintaining local stationarity. An overlap of 512 samples (50%) is
used to increase the volume of training data.

A crucial methodological choice in this work is the Subject-Wise Splitting.
Randomly shuffling segments from all patients into training and test sets would lead
to data leakage, as the model could memorize the specific ECG morphology of a
patient seen during training. To prevent this, the 48 records were partitioned at the
patient level:

• Training Set (70%): Segments from 34 patients (N = 258, 672 windows).

• Validation Set (15%): Segments from 7 patients (N = 53, 256 windows).
Used for hyperparameter tuning and calibration fitting.

• Test Set (15%): Segments from 7 patients (N = 53, 256 windows). Used
exclusively for the final performance reporting.

4.2.4 Noise Distribution Analysis

The resulting dataset exhibits a class imbalance that reflects real-world monitoring
conditions, where severe artifacts are intermittent. Table 4.2 summarizes the distri-
bution of noise intensities in the test set. Notably, the EMG noise is heavily skewed
towards high intensities (58.0% of samples have yEMG ≥ 0.5), while Power Line
Interference (PLI) exhibits a bimodal distribution: it is either negligible (< 0.001)
or significant, with very few samples in the intermediate range. This distribution
characteristic poses a specific challenge for regression models, particularly for the
PLI head, as discussed in the results chapter.

Table 4.2: Distribution of Noise Intensities in the Test Set (N = 53, 256).

Noise Type Zero
(< 0.001)

Low
(0.001 − 0.1)

Medium
(0.1 − 0.5)

High
(≥ 0.5)

EMG 1.6% 25.9% 14.4% 58.0%
BW 16.4% 35.5% 13.2% 34.9%
PLI 43.6% 27.3% 0.0% 29.1%
Note: The PLI distribution is notably bimodal, lacking intermediate values.
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4.3 Explainability-Driven Feature Engineering

A critical challenge in applying Tsetlin Machines to raw signal processing is the con-
version of continuous time-series data into a Boolean format suitable for propositional
logic. While the standard approach often involves generating massive amounts of
binary descriptors (e.g., raw bitplanes of every sample), this leads to computational
inefficiency and model bloating. In this work, feature engineering was not treated as
a static preprocessing step but as an iterative optimization process guided by the
model’s intrinsic interpretability.

4.3.1 Feature Domains

Two complementary domains were explored to capture the distinct characteristics
of ECG noise artifacts: the frequency domain for stochastic noise (EMG) and
interference (PLI), and the amplitude domain for morphological distortions.

4.3.1.1 Spectral Features (Frequency Domain)

Given the spectral separation between physiological ECG components (mostly <

40 Hz) and muscle noise (broadband high-frequency), spectral power is a highly
discriminative feature. The Power Spectral Density (PSD) is estimated using Welch’s
method with a Hamming window of 256 samples and 50% overlap. From the PSD,
12 spectral features are extracted, representing the normalized power in specific
bands:

• PLI Band (45 − 55 Hz): Targets the mains hum.

• Low EMG (20 − 40 Hz): Overlaps with QRS but captures lower-frequency
muscle artifacts.

• Mid EMG (40−80 Hz) & High EMG (80−150 Hz): Capture the dominant
energy of skeletal muscle contraction, largely devoid of cardiac signal.

For each band, three statistics are computed: Mean Power, Standard Deviation of
Power, and Maximum Power.

4.3.1.2 Bitplane Features (Amplitude Domain)

Bitplane slicing decomposes the integer representation of the signal amplitude into
binary levels. For an N -bit signal x, the k-th bitplane is the binary sequence formed
by the k-th bit of each sample. Rather than using the raw bit sequences (which
would result in thousands of inputs), we compute statistical summaries (Mean,
Variance, Skewness, Kurtosis, Signal Energy) for 9 selected bitplanes. These
features capture the "roughness" or texture of the signal, which correlates with the
presence of high-frequency noise superimposed on the smoother ECG waveform. This
yields 45 bitplane features.
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4.3.2 Optimization via Global Feature Importance

The final feature set consisting of 57 features (12 Spectral + 45 Bitplane) is the
result of a rigorous pruning process. An initial baseline model was trained using a
brute-force approach with over 1200 features. By leveraging the Tsetlin Machine’s
global feature importance analysis (based on literal usage frequency in active clauses),
a distinct hierarchy emerged:

• Dominance of Spectral Features: The high-frequency spectral bands were
found to be 15-21 times more important than bitplane features for EMG
estimation.

• Redundancy: The vast majority of raw amplitude features contributed negli-
gible information to the regression task.

This insight allowed for a 95% reduction in the feature space (from > 1200 to 57),
which paradoxically resulted in a +4.2% improvement in correlation performance.
This demonstrates that removing irrelevant literals simplifies the solution space,
allowing the automata to converge on more robust logic rules.

4.3.3 The "Zero-Variance" Phenomenon

A specific ablation study was conducted to test the removal of 6 features that exhibited
zero variance across the entire training set. Surprisingly, removing these ostensibly
useless features resulted in a performance degradation on the test set (−4% for EMG,
−19% for BW). This counter-intuitive finding suggests that "constant" features may
serve as necessary anchors for the logical clauses (e.g., serving as a default ‘TRUE‘
condition in an AND-chain). Consequently, the final model retains all 57 features,
prioritizing robustness over minimal theoretical compression.

4.3.4 Binarization Strategy: Thermometer Encoding

To translate these continuous features into Boolean literals, Thermometer Encod-
ing is employed. This technique preserves the ordinal relationship of magnitude. For
a normalized feature value x ∈ [0, 1] and a resolution B (number of bins), the feature
is converted into a bit vector b = [b1, . . . , bB] where:

bk =

1 if x ≥ k
B

0 otherwise
(4.3)

Through hyperparameter tuning, a resolution of B = 60 bins per feature (resolution
r = 0.6) was found to be optimal. This allows the model to learn fine-grained
threshold rules such as "IF Feature X > 0.75 THEN...". The total input size for the
Tsetlin Machine is thus:

Input Bits = 57 features × 60 bins = 3420 bits.
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4.4 Regression Tsetlin Machine Architecture

The core predictive engine of the proposed pipeline is the Regression Tsetlin Machine
(RTM). Unlike standard classification TMs which vote for a class label, the RTM
is designed to produce a continuous scalar output representing the intensity of the
noise. To handle the distinct characteristics of different artifact types, a decoupled
multi-head architecture was implemented.

4.4.1 Multi-Head Configuration

Rather than training a single monolithic model to predict all noise types simultane-
ously, the system utilizes three independent RTM estimators, referred to as "heads".
Each head shares the same input feature vector (the 3420 bits derived in Section 4.3)
but maintains its own independent set of clauses and internal automata states.

4.4.1.1 The EMG and BW Regressors

The first two heads are specialized for Muscle Artifacts (EMG) and Baseline Wander
(BW). These noise types exhibit continuous variations in intensity, making them
ideal candidates for the linear regression logic of the RTM. The EMG head learns
to associate high-frequency spectral power with high noise intensity, while the BW
head focuses on low-frequency bitplane variations.

4.4.1.2 The PLI Regressor and Bimodality

The third head targets Power Line Interference (PLI). Analysis of the dataset revealed
that PLI intensity follows a strongly bimodal distribution: the interference is either
negligible or present at a significant magnitude, with very few intermediate states.
Consequently, the PLI regression task functions effectively as a soft binary detector.
Although the RTM architecture remains identical to the other heads, the learning
dynamics adapt to this distribution, producing outputs that tend to cluster around 0
or 1.

4.4.2 Hyperparameter Specification

The configuration of the Tsetlin Machine involves three critical hyperparameters: the
number of clauses (C), the voting threshold (T ), and the specificity (s). To identify
the optimal configuration, a grid search was conducted on the validation set. The
search space explored clause counts ranging from 1,000 to 4,000, thresholds from 500
to 1,500, and specificity values from 2.0 to 10.0.

The final selected configuration, termed TMU-Optimized, utilizes 3,000 clauses
per head. This capacity was found sufficient to capture the diversity of noise patterns
without inducing overfitting. A Threshold T = 700 was selected. In the context of
regression, T acts as a scaling factor for the summation of votes; a higher T allows
for a finer resolution in the output range [0, 1]. Finally, a Specificity s = 7.0 was
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chosen. This relatively high value (compared to standard classification tasks where
s ≈ 3.9) imposes a strong penalty on false positive literal inclusions. This forces
the model to learn highly precise rules, ensuring that clauses only activate when
there is strong evidence of specific noise features, aligning with the "safety-by-design"
philosophy of the pipeline.

Table 4.3 summarizes the final architectural parameters.

Table 4.3: Hyperparameter configuration for the TMU-Optimized architecture.

Parameter Value Description

Number of Heads 3 Independent models for BW, EMG, PLI
Clauses per Head 3,000 Total system capacity: 9,000 clauses
Threshold (T ) 700 Voting margin and scaling factor
Specificity (s) 7.0 Pattern matching precision
Max Literals 114 Maximum literals per clause (2 × 57 features)

4.4.3 Training Dynamics

The models were trained using the coordinate descent-based learning scheme inherent
to Tsetlin Machines. The training process was governed by the Mean Absolute Error
(MAE) on the validation set. An Early Stopping mechanism was implemented with
a patience of 3 epochs. This proved essential for computational efficiency; the EMG
regressor typically converged within 4 epochs, while the BW regressor converged
within 3 epochs. The total training time for the complete system on a standard
CPU was approximately 5.5 minutes, highlighting the computational efficiency of
the approach compared to the hours typically required for DNNs. The underlying
implementation utilizes the PyTsetlin library, which optimizes bitwise operations
for parallel execution on multi-core CPUs.

4.5 Post-Processing and Adaptive Control

The raw output of the Regression Tsetlin Machine represents a normalized vote count.
While this correlates with noise intensity, strictly interpreting it as a probability or a
physical magnitude can be misleading due to potential non-linearities in the feature-
to-output mapping. To ensure reliable downstream control, the pipeline incorporates
a calibration stage followed by a deterministic control logic that modulates the digital
filters.

4.5.1 Isotonic Calibration

During the preliminary analysis of the validation set, a systematic bias was observed
in the raw predictions of the RTM. Specifically, the Baseline Wander regressor
exhibited a tendency to overestimate the noise intensity, characterized by a regression
slope significantly greater than unity (slope ≈ 2.06). This behavior implies that a
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moderate level of baseline drift could be misinterpreted as severe contamination,
potentially triggering aggressive filtering that could distort the ST-segment.

To rectify this miscalibration without making strong parametric assumptions
about the error distribution, Isotonic Regression was employed. This non-
parametric technique fits a free-form line to the sequence of observations under
the constraint that the fitted line must be non-decreasing. Let ŷraw be the raw
output from the Tsetlin Machine and y be the ground truth intensity. The isotonic
calibrator learns a mapping function f : [0, 1] → [0, 1] by solving the following
optimization problem on the validation set:

min
f

Ø
i

(yi − f(ŷraw,i))2 subject to ŷraw,i ≤ ŷraw,j =⇒ f(ŷraw,i) ≤ f(ŷraw,j)

(4.4)
The resulting calibrated output, ŷcal = f(ŷraw), retains the rank order of the

original predictions but adjusts their magnitude to match the empirical probability
of the target. As detailed in the experimental results, this step proved critical for
system performance, correcting the slope of the BW regressor to near-unity and
reducing the Expected Calibration Error (ECE) of the EMG regressor by over 88%.

4.5.2 The Gating Mechanism

A fundamental requirement for clinical acceptance is that the denoising system must
not alter clean signals. To enforce this "do no harm" principle, a non-linear gating
mechanism is placed between the estimator and the filters. The calibrated intensity
ŷcal acts as a control signal α for the filters. To prevent micro-adjustments due to
residual regressor noise when the signal is clean, a hard threshold (gate) is applied:

αk =

0 if ŷcal,k < τgate

ŷcal,k if ŷcal,k ≥ τgate

(4.5)

In this implementation, the gate threshold τgate is set to 0.05. This ensures that if
the estimated noise intensity is below 5%, the filter is strictly bypassed, preserving the
original bit-exact morphology of the physiological signal. This mechanism effectively
neutralizes the risk of "hallucinating" artifacts in clean segments, a common failure
mode in end-to-end neural networks.

4.5.3 Adaptive Filtering Modules

Once the control signal αk is determined for each noise type k ∈ {BW, EMG, PLI}, it
modulates the parameters of standard digital filters. This hybrid approach leverages
the transparency of classical Digital Signal Processing (DSP) while utilizing the
Tsetlin Machine to determine the optimal operating point dynamically.

40



Methodology

4.5.3.1 Baseline Wander Removal

Baseline wander is removed using a High-Pass Infinite Impulse Response (IIR)
Butterworth filter. The control signal αBW modulates the cut-off frequency fc.
When αBW = 0 (clean signal), the filter is bypassed. As the detected wander
intensity increases, the cut-off frequency is shifted upwards, up to a maximum of
0.67 Hz. This allows for aggressive removal of drift during periods of high activity
while preserving low-frequency components (such as the ST-segment) during stable
periods.

4.5.3.2 Muscle Artifact Denoising

Electromyographic noise is broadband and overlaps with the QRS complex. To
mitigate this without blurring the R-peaks, a Wavelet Denoising approach is adopted.
The signal is decomposed using the bior2.6 wavelet basis. The control signal αEMG

modulates the threshold λ used for wavelet shrinkage. The adaptive threshold is
defined as:

λ(αEMG) = σ
ð

2 log N · (0.5 + 1.5 · αEMG) (4.6)

where σ is the estimated noise variance and N is the window length. This formulation
scales the aggressiveness of the denoising linearly with the estimated EMG intensity.
When muscle noise is severe (αEMG → 1), the threshold increases, suppressing more
coefficients; when noise is mild, the threshold relaxes, preserving signal detail.

4.5.3.3 Power Line Interference Suppression

For Power Line Interference, an IIR Notch filter centered at the mains frequency (50
Hz or 60 Hz) is employed. Since the PLI regressor functions primarily as a detector
due to the bimodal distribution of the noise, the control logic here is binary. If
αP LI > τgate, the notch filter is engaged; otherwise, it is bypassed. This prevents the
"ringing" artifacts (Gibbs phenomenon) associated with notch filters from affecting
the signal when no mains hum is present.

4.6 Statistical Validation Framework

To ensure that the proposed method is robust enough for clinical application and does
not merely overfit the training distribution, a comprehensive statistical validation
framework was designed. This framework goes beyond standard aggregate metrics to
assess patient-specific consistency, estimator reliability, and clinical agreement.

4.6.1 Cross-Subject Robustness Analysis

Standard performance metrics (such as global Mean Absolute Error) can mask poor
performance on specific patient subgroups. To verify the generalization capability
of the model across diverse physiological morphologies, a Per-Subject Analysis
was implemented. The regression performance (Pearson correlation coefficient r
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and MAE) is computed individually for each of the 48 subjects in the test set.
The distribution of these metrics is then analyzed to calculate the Coefficient of
Variation (CV):

CV = σmetrics
µmetrics

× 100% (4.7)

A low CV indicates that the model performs consistently regardless of the specific
patient, a critical requirement for medical device certification.

4.6.2 Bootstrap Confidence Intervals

To quantify the uncertainty associated with the performance point estimates, non-
parametric Bootstrap Resampling was employed. The test set predictions are
resampled with replacement K = 1000 times. For each iteration, the performance
metrics are recalculated. This process yields an empirical distribution for each metric,
from which the 95% Confidence Intervals (CI) are derived using the percentile
method (2.5th and 97.5th percentiles). This rigorous approach confirms that reported
improvements over baselines are statistically significant and not artifacts of sample
selection.

4.6.3 Agreement Analysis: Bland-Altman Method

To assess the interchangeability between the Tsetlin Machine’s estimated noise
intensity (ŷ) and the synthetic ground truth (y), the Bland-Altman Analysis is
utilized. This method plots the difference between the two measurements (ŷ − y)
against their average ((ŷ + y)/2). Key statistics derived from this analysis include:

• Systematic Bias: The mean difference d̄, indicating if the model systematically
over- or under-estimates noise.

• Limits of Agreement (LoA): Defined as d̄ ± 1.96 · SDdiff , where SDdiff is
the standard deviation of the differences.

In the context of adaptive filtering, this analysis validates whether the estimation
error is within clinically acceptable tolerances to drive the filter control logic without
introducing artifacts.

4.6.4 Evaluation Metrics

The performance of the system is quantified using two sets of metrics.

4.6.4.0.1 Regression Metrics: To evaluate the noise intensity estimation:

• Pearson Correlation (r): Measures the linear relationship between predicted
and true intensity.

• Mean Absolute Error (MAE): Measures the average magnitude of errors.

• Expected Calibration Error (ECE): Quantifies how well the predicted
probabilities align with actual outcomes.
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4.6.4.0.2 Denoising Metrics: To evaluate the final signal quality:

• Signal-to-Noise Ratio Improvement (SNRimp): The difference between
the output SNR and the input SNR (in dB).

• Root Mean Square Error (RMSE): The Euclidean distance between the
denoised signal and the clean ground truth.
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Experimental Results

This chapter presents the empirical evaluation of the proposed interpretable denoising
system. The experimental campaign was conducted on the MIT-BIH Arrhythmia
Database to validate the methodology described in Chapter 4 across multiple di-
mensions: predictive accuracy, statistical robustness, signal restoration quality, and
computational efficiency.

The presentation of the results follows a logical progression from the internal
model performance to the final clinical application. Section 5.1 first assesses the
precision of the Regression Tsetlin Machine in estimating noise intensity, quantitatively
demonstrating the impact of isotonic calibration. Section 5.2 provides a rigorous
statistical validation, examining cross-subject consistency and agreement limits to
ensure the reliability of the method across a diverse patient population. Subsequently,
Section 5.3 evaluates the downstream impact on ECG signal quality, comparing the
proposed approach against classical filters and state-of-the-art neural networks in
terms of Signal-to-Noise Ratio improvement and morphological preservation.

To demonstrate the unique advantages of the Tsetlin Machine, Section 5.4 analyzes
the learned features and logic rules, providing a transparent view of the decision-
making process. Finally, Section 5.5 justifies the architectural choices through
ablation studies, and Section 5.6 reports the computational benchmarks, highlighting
the suitability of the system for edge deployment.

5.1 Noise Intensity Estimation Performance

The first stage of the experimental evaluation assesses the capability of the Regression
Tsetlin Machine (RTM) to correctly quantify the intensity of noise artifacts. This
intermediate step is critical: since the denoising pipeline relies on adaptive filtering,
the quality of the final signal depends linearly on the accuracy of these intensity
estimates (ŷ ∈ [0, 1]). The performance was evaluated on the held-out test set
(N = 53, 256 segments) using Pearson correlation coefficient (r), Mean Absolute
Error (MAE), and Mean Squared Error (MSE).
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Figure 5.1: Scatter plots of Predicted vs. Ground Truth noise intensity for EMG,
BW, and PLI. The red dashed line represents perfect prediction (y = ŷ), while the
blue line indicates the linear fit. Note the bimodal clustering in the PLI plot.

5.1.1 Regressor Accuracy on Test Set

Table 5.1 summarizes the performance metrics for the three independent estimators:
Muscle Artifacts (EMG), Baseline Wander (BW), and Power Line Interference (PLI).

Table 5.1: TMU Regressor Performance on Test Set (After Isotonic Calibration).

Regressor Pearson r MSE MAE ECE

EMG 0.7041 0.1450 0.2140 0.0368
BW 0.6529 0.1092 0.1905 -
PLI 0.3061 0.1700 0.3639 -
ECE = Expected Calibration Error (lower is better)

The EMG regressor achieved the highest correlation (r = 0.7041), demonstrating
the model’s ability to track the high-frequency stochastic nature of muscle noise using
spectral features. The Baseline Wander regressor also showed strong performance
(r = 0.6529), effectively utilizing bitplane statistics to detect low-frequency drifts.

The performance of the PLI regressor (r = 0.3061) requires a specific interpre-
tation. Unlike EMG and BW, which exhibit a continuous range of intensities, the
Power Line Interference in the dataset follows a strictly bimodal distribution: it
is either absent or present at significant levels. Consequently, the regression task
collapses into a quasi-binary detection problem. While the linear correlation metric
penalizes this behavior, the model effectively functions as a binary detector, which is
sufficient for triggering the notch filter in the downstream stage.

Figure 5.1 visualizes the relationship between the ground truth and the predicted
intensities. Ideally, points should align along the diagonal y = ŷ.

5.1.2 Impact of Isotonic Calibration

A central finding of this study is the necessity of post-processing calibration for
logic-based regression. The raw outputs from the Tsetlin Machine, being summations
of clause votes, exhibited non-linear biases before calibration. As detailed in Table 5.2,
the application of Isotonic Regression yielded significant improvements in linearity
and reliability.

For Baseline Wander, the raw predictions systematically overestimated the noise
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Table 5.2: Impact of Isotonic Calibration on Model Performance.

Regressor Metric Raw Calibrated ∆ ∆%

EMG

Pearson r 0.6716 0.7041 +0.0325 +4.8%
MAE 0.3512 0.2140 -0.1372 -39.1%
Slope 1.15 1.00 -0.15 -13.0%
ECE 0.317 0.037 -0.280 -88.4%

BW
Pearson r 0.5418 0.6529 +0.1111 +20.5%

MAE 0.2493 0.1905 -0.0588 -23.6%
Slope 2.06 1.00 -1.06 -51.5%

Figure 5.2: Reliability diagrams for EMG predictions before (left) and after (right)
isotonic calibration. The calibrated model aligns with the ideal diagonal, confirming
that the predicted intensities accurately reflect the observed noise levels.

intensity by a factor of two (Slope ≈ 2.06). Calibration corrected this slope to
unity (1.00), resulting in a 20.5% improvement in Pearson correlation. For EMG,
the most significant impact was on the Expected Calibration Error (ECE), which
decreased by 88.4% (from 0.317 to 0.037). This reduction implies that the calibrated
output can be interpreted as a reliable probability of noise presence, which is essential
for the threshold-based gating logic used in the denoising controller.

Figure 5.2 illustrates the reliability curves. The raw predictions (left panel) deviate
significantly from the diagonal, indicating miscalibration, whereas the calibrated
predictions (right panel) show excellent alignment.

5.2 Statistical Validation and Robustness

In biomedical applications, reporting average performance metrics is insufficient to
guarantee clinical utility. A robust model must demonstrate consistent behavior
across the diverse population of patient morphologies and exhibit statistical reliability.
To rigorously validate the proposed TMU-Optimized architecture, a three-tiered
statistical analysis was conducted: Per-Subject consistency analysis, Bootstrap
reliability estimation, and Bland-Altman agreement analysis.
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(a) EMG Subject Variability (b) BW Subject Variability

Figure 5.3: Boxplots of Pearson correlation coefficients calculated per subject. The
narrow spread indicates that the model generalizes well across different patients.

5.2.1 Cross-Subject Consistency

To assess the generalization capability of the model, performance metrics were
computed individually for each of the 48 subjects included in the test set. This
analysis aims to verify that the model relies on universal features of the noise artifacts
rather than overfitting to patient-specific ECG characteristics.

The results, summarized in Table 5.3, indicate a high degree of consistency. The
Pearson correlation coefficient for EMG estimation yielded a mean of 0.703 with a
standard deviation of just 0.032. Notably, the **Coefficient of Variation (CV)** is
below 6% for both EMG (4.6%) and Baseline Wander (5.5%). Figure 5.3 presents the
distribution of the correlation coefficients. The compact interquartile ranges (IQR)
and the absence of extreme outliers confirm that the regression performance is stable
across the entire patient cohort, regardless of anatomical or physiological variations.

Table 5.3: Per-Subject Performance Analysis (N=48 patients).

Target Mean r Std. Dev Range [Min, Max] CV (%)

EMG 0.703 0.032 [0.614, 0.766] 4.6%
BW 0.651 0.036 [0.560, 0.734] 5.5%

5.2.2 Reliability Analysis via Bootstrap

To provide a probabilistic bound on the performance estimates, non-parametric
bootstrap resampling was performed with K = 1000 iterations. This technique allows
for the estimation of the sampling distribution of the metrics and the calculation of
95% Confidence Intervals (CI).

As shown in Table 5.4, the confidence intervals are extremely narrow. For EMG
prediction, the 95% CI for the Pearson correlation is [0.698, 0.710], with a width of
only 0.011. This tight bound provides strong statistical evidence that the reported
performance is intrinsic to the model architecture and not an artifact of the specific
test set composition.
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Table 5.4: Bootstrap 95% Confidence Intervals (1000 resamples).

Metric Mean Lower CI Upper CI Width

EMG Regressor
Pearson r 0.7041 0.6984 0.7096 0.0112
MAE 0.2140 0.2121 0.2158 0.0037

BW Regressor
Pearson r 0.6529 0.6473 0.6586 0.0113
MAE 0.1905 0.1889 0.1921 0.0032

5.2.3 Agreement Analysis: Bland-Altman

To further validate the clinical applicability of the system, the agreement between
the predicted noise intensity and the synthetic ground truth was assessed using
Bland-Altman analysis. This method is the standard for comparing measurement
techniques in medical research.

Figure 5.4 displays the difference plots for EMG and BW. The analysis reveals:

• Low Systematic Bias: The mean biases are negligible (+0.032 for EMG,
−0.019 for BW), indicating that the calibrated model does not systematically
over- or under-estimate the noise levels.

• Limits of Agreement (LoA): The limits (calculated as 1.96 × SD) are
within ranges that allow for effective filter control. For EMG, the LoA are
[−0.56, +0.62]. While this spread might appear significant, it is important
to note that the adaptive filtering logic is continuous; small deviations in
intensity estimation translate to minor adjustments in filter strength, which
are imperceptible in the final signal.

• Outliers: The percentage of points lying outside the LoA is approximately
7.8% for EMG and 6.6% for BW. This is close to the theoretical expectation for
a normal distribution (5%). These outliers likely correspond to segments where
the "clean" ground truth contained intrinsic noise that the model correctly
detected but which was not labeled in the synthetic target.

Table 5.5: Bland-Altman Agreement Statistics.

Target Bias Std. Diff Lower LoA Upper LoA Outliers (%)

EMG +0.032 0.302 -0.561 +0.624 7.83%
BW -0.019 0.266 -0.541 +0.503 6.62%

5.3 Downstream Denoising Performance

The ultimate goal of the proposed system is to enhance the quality of ECG signals
to facilitate clinical diagnosis. The intensity estimates produced by the RTM are
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(a) EMG Agreement (b) BW Agreement

Figure 5.4: Bland-Altman plots showing the difference between predicted and
ground truth intensities against the mean. The solid line represents the mean bias,
while dashed lines indicate the 95% Limits of Agreement.

utilized to modulate a bank of adaptive digital filters (High-pass for BW, Notch for
PLI, Wavelet Shrinkage for EMG). This section evaluates the efficacy of this adaptive
filtering stage.

5.3.1 Quantitative SNR Improvement

The primary metric for signal restoration quality is the Signal-to-Noise Ratio Im-
provement (SNRimp). This metric quantifies the gain in signal quality relative to
the noisy input. Table 5.6 and Figure 5.5 present a comparative analysis against two
baselines:

1. Classical Filtering: A standard fixed chain of IIR High-pass and Notch
filters.

2. Neural CNN (SOTA): The Deep Learning noise estimation approach pro-
posed by Gancitano et al. [29].

Table 5.6: Comparison of Denoising Performance (SNR Improvement).

Method Avg. SNRimp (dB) vs. Classical Interpretability

Classical Filters +2.22 - High
TMU-Optimized +5.20 +134% High
Neural CNN [29] +6.26 +182% Low

The TMU-Optimized system achieves an average improvement of +5.20 dB.
This represents a substantial upgrade over classical fixed filters (+134%), proving that
the adaptive modulation driven by the Tsetlin Machine effectively tailors the filtering
strength to the instantaneous noise level. While the DL baseline achieves a slightly
higher score (+6.26 dB), the proposed system offers a competitive performance
(reaching 83% of the SOTA) while maintaining a completely transparent "White-Box"
architecture, a critical advantage for clinical safety that is discussed in Chapter 6.
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Figure 5.5: Signal-to-Noise Ratio (SNR) Improvement comparison. The proposed
TMU-based method significantly outperforms classical techniques and bridges the
gap towards Deep Learning performance.

5.3.2 Qualitative Waveform Analysis

In biomedical signal processing, quantitative metrics such as SNR must always
be validated by visual inspection, as aggressive filtering can improve SNR while
destroying diagnostic features (e.g., blunting the R-peak). Figure 5.6 illustrates the
denoising performance on a representative segment contaminated by mixed noise
(SNR = 7.92 dB).

The following observations can be made:

• Noise Suppression: The high-frequency fuzz caused by EMG noise is effec-
tively removed, restoring a clean isoelectric line.

• Morphology Preservation: Crucially, the sharp QRS complexes (indicated
in panel d) are preserved with high fidelity. The adaptive wavelet thresholding,
driven by the precise EMG intensity estimate (ŷEMG ≈ 0.9), suppresses noise
coefficients without attenuating the high-frequency components of the cardiac
depolarization.

• Absence of Artifacts: Unlike generative DL models which may hallucinate
waveforms, the subtractive nature of the digital filters ensures that no synthetic
structures are added to the signal.

In this specific high-noise example, the system achieved an SNR improvement of
+11.47 dB, transforming a non-diagnostic recording into a readable trace.

5.4 Interpretability and Knowledge Discovery

A defining characteristic of the Tsetlin Machine is its transparency. Unlike neural
networks, where knowledge is encoded in abstract weight matrices, the TM stores
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Figure 5.6: Qualitative assessment of denoising performance. (a) Clean Ground
Truth. (b) Noisy Input corrupted by EMG and BW. (c) Output of the TMU-
Guided Adaptive Filter. (d) Detailed zoom on the QRS complex, demonstrating the
preservation of peak amplitude and morphology.

knowledge in the form of explicit propositional logic. This section leverages this
property to audit the decision-making process of the trained models.

5.4.1 Global Feature Importance

By aggregating the weighted usage of literals across all active clauses, a global
importance score was derived for each input feature. Figure 5.7 presents the ranking
of the top-10 features for the EMG and BW regressors.

The analysis reveals a striking **dominance of spectral features** over mor-
phological bitplane features. For the EMG regressor, the single most important
feature is the High-Frequency Power Mean (80 − 150 Hz), which alone accounts
for a significant portion of the total voting weight. This aligns perfectly with the
physiological definition of electromyographic noise, which is broadband and high-
frequency. Conversely, for Baseline Wander, low-frequency spectral features and
bitplane statistics (capturing amplitude offsets) share the importance.

This analysis was not merely retrospective but drove the optimization of the
pipeline. The observation that the top-4 features account for approximately **80% of
the total importance** provided the empirical justification for the aggressive feature
pruning (from > 1200 to 57 features) described in the Methodology chapter.
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Figure 5.7: Global feature importance for EMG and BW estimation. Red bars
indicate Spectral features, while Green bars indicate Bitplane features. The model
autonomously identified that spectral energy is the primary discriminator for muscle
noise.

5.4.2 Clause Analysis and Logic Rules

The "White-Box" nature of the architecture allows individual clauses to be inspected
and translated into natural language rules. This capability enables clinical validation
of the learned logic. Below are examples of high-weight clauses extracted from the
trained models:

EMG Detection Rule (High Confidence):

"IF (High_Freq_Power > 0.6) AND (Bitplane_L3_Median > 0.4)
THEN Vote High Intensity"

Interpretation: The model combines a spectral condition (high energy in the
80-150 Hz band) with a morphological condition (instability in the 3rd bitplane,
corresponding to mid-level amplitude fluctuations). This multi-domain logic mimics
how a human expert recognizes the "fuzziness" of muscle noise superimposed on the
signal.

Baseline Wander Detection Rule:

"IF (Low_Freq_Power > 0.5) AND NOT (Zero_Crossing_Rate > 0.2)
THEN Vote High Intensity"

Interpretation: Here, the model correctly identifies that Baseline Wander is char-
acterized by high energy in low frequencies but, crucially, a low zero-crossing rate
(smooth oscillation), distinguishing it from high-frequency noise which would trigger
the NOT condition.

5.4.3 Feature Concentration and Sparsity

To understand how the "knowledge" is distributed among the clauses, the Gini
coefficient of the clause weights was analyzed. For the trained models, the Gini
coefficient is approximately **0.30 - 0.32**.
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• A Gini near 0 would indicate a fully distributed "holographic" memory (all
clauses contribute equally).

• A Gini near 1 would indicate a "grandmother cell" behavior (one single rule
decides everything).

The observed value of ≈ 0.3 indicates a **semi-localized representation**. The
decision is made by a committee of relevant clauses, not by a single fragile rule,
nor by a diffuse and uninterpretable cloud. This balance ensures robustness against
outliers while maintaining the distinctiveness of specific noise patterns.

5.5 Ablation Studies

To isolate the contribution of individual architectural choices and validate the feature
engineering strategy, a series of ablation studies were conducted. These experiments
measured the impact of removing or modifying specific components of the pipeline
while keeping other hyperparameters constant.

5.5.1 Feature Engineering Evolution

The transition from the initial high-dimensional feature set to the optimized hybrid
set was not arbitrary but driven by iterative performance assessment. Table 5.7
summarizes the performance gain at each stage of development for the EMG regressor.

Table 5.7: Ablation Study: Evolution of Feature Engineering (EMG Regressor).

Model Version Feature Set Description Count Pearson r

TMU-Baseline Raw Bitplane Statistics
(Time-domain)

> 1200 0.643

TMU-Spectral Welch PSD Bands
(Frequency-domain)

48 0.661

TMU-Optimized Hybrid
(Spectral + Sparse Bitplanes)

57 0.704

The baseline model, relying solely on time-domain bitplane statistics, achieved
a moderate correlation (r = 0.643) but suffered from high computational cost.
Switching to spectral features (TMU-Spectral) provided an immediate improvement,
confirming that muscle noise is best characterized in the frequency domain. The final
TMU-Optimized model, which combines spectral features with a sparse selection
of the most informative bitplanes, achieved the highest performance (r = 0.704).
This confirms that while spectral features are dominant, morphological information
from the bitplanes provides complementary cues that refine the estimation.

5.5.2 The "Zero-Variance" Feature Cleaning Paradox

An experiment was conducted to further reduce the feature space by removing 6
features that exhibited zero variance across the entire training dataset (i.e., features
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that were constantly 0 or 1). Standard Machine Learning practice suggests removing
such features as they theoretically carry no information.

However, as detailed in the methodology report, removing these features caused
a **degradation in test performance**:

• **EMG Regressor:** Performance dropped by −4% (r decreased from 0.67 to
0.64).

• **BW Regressor:** Performance dropped significantly by −19% (r decreased
from 0.54 to 0.52).

This counter-intuitive result highlights a specific property of logic-based learning.
In Tsetlin Machine clauses (which are AND-rules), a constant feature can serve as a
structural "anchor." For instance, a clause might rely on the condition "Feature A is
1" to be valid; if Feature A is removed, the clause structure might become unstable or
overly general during training. Consequently, the final system retains all 57 features,
prioritizing model stability over marginal memory savings.

5.5.3 Encoding Resolution Sensitivity

The resolution of the Thermometer Encoding plays a critical role in the Tsetlin
Machine’s ability to discriminate intensity levels. A sensitivity analysis was performed
by varying the resolution parameter r (bins per feature):

• Low Resolution (r = 0.3, 30 bins): Resulted in underfitting (r ≈ 0.58), as
the model could not distinguish subtle intensity gradations.

• High Resolution (r = 1.0, 100 bins): Resulted in overfitting (r ≈ 0.64), as
the literal space became too sparse for the available training data.

• Optimal Resolution (r = 0.6, 60 bins): Achieved the peak performance
(r = 0.67 prior to calibration).

This tuning ensures that the discrete boolean input captures the continuous variance
of the noise intensity with sufficient fidelity without exploding the search space for
the automata.

5.6 Computational Efficiency and Benchmarking

In the context of wearable health monitoring and edge computing, predictive accuracy
cannot be the sole performance metric. The feasibility of deployment depends critically
on computational latency, memory footprint, and training efficiency. This section
evaluates the proposed TMU-Optimized system against these operational constraints.

5.6.1 Runtime and Memory Footprint

Benchmarks were conducted on a standard consumer-grade CPU environment without
GPU acceleration. Table 5.8 summarizes the operational metrics.

54



Experimental Results

Table 5.8: Runtime and Memory Benchmarks for the TMU-Optimized System.

Metric Value

Inference Performance (CPU)
Single Prediction Latency 0.070 ms/window
Batch Processing Speed 0.027 ms/window
System Throughput ∼ 37, 447 samples/sec
Real-Time Factor >> 1

Resource Usage
Model RAM (per Head) 25.05 MB
Total Disk Footprint 50.02 MB

The inference latency of **0.070 ms** per window is negligible compared to the
window duration (approx. 2.84 seconds). This implies that the system can operate
comfortably in real-time, utilizing less than 1% of the available CPU cycles for
processing. The memory footprint (∼ 50 MB) fits within the constraints of modern
embedded processors (e.g., ARM Cortex-A series) and could be further compressed
for microcontrollers given the sparse nature of Tsetlin automata.

5.6.2 Comparison with Neural Architectures

To contextualize the performance of the Regression Tsetlin Machine, a comparative
analysis was performed against a standard DL baseline (1D-CNN for noise estimation)
representative of the current state-of-the-art. The comparison, detailed in Table 5.9,
highlights a distinct trade-off.

Table 5.9: Comparison: Proposed TMU Framework vs. Standard CNN Architec-
tures.

Metric Standard 1D-CNN
(Baseline)

TMU-Optimized
(Proposed)

Architecture Deep Neural Network Logic-Based Regression
Model Size ∼ 121, 000 float32

parameters
9, 000 binary clauses

Training Time ∼ 2 hours (requires GPU) ∼ 5.5 minutes (CPU only)
Inference Cost High (Matrix

Multiplications)
Low (Bitwise Operations)

SNR Improvement +6.26 dB +5.20 dB
Interpretability Black-Box (Opaque) White-Box (Transparent

Rules)

While the neural network approach retains a slight advantage in raw denoising
power (+1.06 dB SNR), the Tsetlin Machine offers dramatic gains in efficiency:

• Training Efficiency: The TMU model trains approximately **22 times
faster** than the CNN baseline and does not require specialized hardware
accelerators (GPUs).
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• Parameter Efficiency: The logic-based structure requires significantly fewer
parameters, reducing the risk of overfitting on small datasets.

• Transparency: As discussed in Section 5.4, the TMU provides inspectable
logic, whereas the CNN remains a black box.

In conclusion, the experimental results demonstrate that the proposed system
successfully occupies a strategic niche: it delivers performance comparable to DL
(reaching 83% of the neural baseline) but with the transparency, speed, and lightness
typical of classical algorithms.
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Chapter 6

Discussion

The empirical results presented in Chapter 5 provide a quantitative validation of the
Regression Tsetlin Machine (RTM) applied to ECG noise estimation. However, the
significance of this work extends beyond the raw performance metrics. This chapter
interprets the findings within the broader context of biomedical signal processing,
analyzing the architectural trade-offs, the methodological implications of white-box
learning, and the potential impact on clinical workflows.

6.1 The Accuracy-Transparency Trade-off

A central theme in the development of medical Artificial Intelligence is the tension
between model complexity and interpretability. This is often framed as a zero-sum
game: maximizing predictive accuracy typically requires high-dimensional, opaque
models (such as Deep Neural Networks), while interpretable models (such as Decision
Trees or Linear Regressors) are often perceived as having inferior learning capacity.
This thesis challenges that assumption by demonstrating that logic-based learning
can occupy a competitive middle ground.

6.1.1 Benchmarking against Deep Learning

The comparative analysis with the state-of-the-art CNN baseline highlights a dis-
tinct performance profile. The neural network approach, which employs end-to-end
waveform estimation, achieved a Signal-to-Noise Ratio (SNR) improvement of approx-
imately +6.26 dB. In comparison, the proposed TMU-Optimized system achieved an
average of +5.20 dB. While the DL model retains a marginal advantage in absolute
denoising power (∼ 1 dB), this difference must be contextualized against the architec-
tural costs. The CNN operates as a "Black-Box," relying on hundreds of thousands
of floating-point parameters to approximate the non-linear mapping between noisy
and clean signals. The internal decision boundary of such a model is mathematically
opaque, making it difficult to verify why a specific segment was filtered or preserved.
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6.1.2 The Value of Trust in Clinical Settings

In diagnostic cardiology, trust is a metric as critical as accuracy. A system that
achieves slightly higher SNR but operates opaquely introduces a hidden risk: the
clinician cannot distinguish between a physiological anomaly and a processing artifact.
The proposed Tsetlin Machine framework accepts a minor reduction in peak SNR in
exchange for complete architectural transparency. By basing the decision process
on human-readable propositional logic (e.g., specific spectral thresholds triggering
specific actions), the system provides an "audit trail" for every sample processed. This
aligns with the increasing regulatory demand for Explainable AI (XAI) in healthcare,
where the ability to validate the reasoning of an algorithm is often a prerequisite for
certification (e.g., under the EU AI Act). Consequently, the trade-off observed in
this study suggests that logic-based regression is a viable, and perhaps preferable,
alternative to DL for safety-critical monitoring applications.

6.2 Interpretability as an Engineering Driver

In the prevailing Machine Learning paradigm, interpretability is frequently relegated
to a post-hoc auditing role—a set of techniques (such as SHAP or Saliency Maps)
applied to a trained model to decipher its behavior. A fundamental contribution
of this research is the demonstration that interpretability can serve as an active,
primary driver for engineering optimization.

6.2.1 The Feedback Loop: From Insight to Optimization

The development trajectory of the TMU-Optimized model illustrates a cycle of Train
→ Interpret → Prune → Improve. The initial baseline model utilized a "brute-force"
feature set comprising over 1200 bitplane features per window. While computationally
expensive, this model provided the necessary transparency to inspect the global
feature importance. This inspection revealed a critical insight: the Tsetlin Automata
consistently assigned high inclusion probabilities to High-Frequency spectral features
while largely ignoring the fine-grained amplitude details provided by the bitplanes.
This was not merely a statistical observation but a semantic discovery: the model
"learned" that the discriminative characteristic of muscle noise is its frequency content,
not its amplitude distribution.

6.2.2 Overcoming the Curse of Dimensionality

Guided by this logic, the feature space was drastically pruned by 95%, retaining
only the 57 most semantically relevant features. Counter-intuitively, this massive
reduction did not degrade performance but rather improved the Pearson correlation
by 4.2% on the test set. This phenomenon highlights a significant advantage of
white-box models: they allow engineers to identify and remove noise variables that
confuse the learning algorithm. In a black-box scenario, such optimization would rely
on blind trial-and-error. Here, the logic structure itself pointed to the optimal feature
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set. This confirms that for physiological signals, a compact set of well-engineered,
domain-relevant features processed by a transparent model can outperform high-
dimensional raw data inputs, challenging the "Big Data" orthodoxy often applied in
DL.

6.3 Clinical Safety and the "Do No Harm" Principle

In the deployment of algorithmic tools for medical diagnosis, the guiding principle is
often summarized by the Hippocratic maxim primum non nocere (first, do no harm).
A denoising algorithm poses a specific safety risk: the distortion of physiological
morphology. State-of-the-art DL models, particularly those based on Autoencoders
or Generative Adversarial Networks (GANs), operate as reconstructive engines. They
project the noisy input onto a learned manifold of "clean" signals. When faced
with ambiguous inputs or out-of-distribution noise, these generative models are
prone to hallucinations—the synthesis of plausible-looking waveforms that lack a
physiological basis in the specific patient. For instance, a generative model might
smooth out a fragmented QRS complex (sign of scarring) into a normal shape, or
conversely, introduce a P-wave where atrial fibrillation is present.

The architecture proposed in this thesis mitigates this risk through a strict
separation of estimation and filtering. By estimating intensity rather than waveform,
the system implements a non-linear **Gating Mechanism**. As detailed in the
methodology, if the predicted noise intensity falls below the safety threshold (ŷ < 0.05),
the adaptive filters are disengaged. This ensures that clean signals pass through
the pipeline mathematically unaltered. Furthermore, the actual noise removal is
performed by standard Digital Signal Processing (DSP) filters (Butterworth, Wavelet
Shrinkage) whose phase and amplitude characteristics are deterministic and well-
understood. Unlike a black-box neural network that might unpredictably alter specific
signal segments, the behavior of an IIR high-pass filter is predictable across the
entire recording. This "Safety-by-Design" approach prioritizes the preservation of
diagnostic integrity over the maximization of SNR, aligning the algorithmic behavior
with clinical safety requirements.

6.4 Generalization and Patient Variability

A pervasive challenge in biomedical Machine Learning is the high inter-subject
variability of physiological signals. ECG morphology varies significantly based on
age, gender, body mass index, and specific cardiac pathologies (e.g., Bundle Branch
Blocks vs. Normal Sinus Rhythm). A common failure mode for data-driven models
is overfitting to the specific morphologies present in the training set, leading to poor
performance on unseen patients.

The statistical validation conducted in this study provides strong evidence of the
system’s robustness. The per-subject analysis revealed a **Coefficient of Variation
(CV)** of less than 6% for both EMG and Baseline Wander estimation across 48
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distinct patients. This low variability implies that the regression performance is
largely independent of the specific patient’s ECG morphology. This robustness can
be attributed to the spectral nature of the feature engineering strategy described in
Chapter 4. By shifting the feature space from the time domain (raw amplitudes) to
the frequency domain (spectral power densities), the model learns to identify noise
based on its physical characteristics (e.g., broadband energy for EMG, 50 Hz peak
for PLI) rather than its interaction with specific QRS shapes. Since the physics of
noise generation is universal, while ECG morphology is patient-specific, this spectral
focus allows the Tsetlin Machine to generalize effectively to new subjects without
requiring patient-specific calibration.

The limits of agreement established by the Bland-Altman analysis further confirm
this reliability. The minimal systematic bias observed indicates that the model
provides a consistent estimation of noise severity, which can be trusted to drive
adaptive filters across a wide range of clinical scenarios.

6.5 Operational Feasibility and Green AI

The computational trajectory of modern Artificial Intelligence is increasingly viewed as
unsustainable. Large Transformer models and Deep Convolutional Networks require
massive GPU clusters for training and energy-hungry accelerators for inference.
In the specific context of biomedical devices—such as implantable loop recorders,
battery-powered Holter monitors, and wearable smart patches—energy efficiency is
not merely a performance metric but the paramount design constraint.

6.5.1 The Bitwise Advantage

The Tsetlin Machine offers a radical alternative to the floating-point paradigm inherent
in DL. The benchmark results presented in Chapter 5 demonstrate an inference
time of just 0.070 ms per window on a standard CPU. This speed is derived
from the underlying architecture: the TM inference mechanism relies exclusively
on bitwise operations (AND, NOT, XOR, Population Count) and integer additions.
These operations are native to all digital processors, from high-end CPUs to the
simplest microcontrollers (MCUs) like the ARM Cortex-M0 or the ESP32. Unlike
CNNs, which require a Floating Point Unit (FPU) or a dedicated Neural Processing
Unit (NPU) to run efficiently, the TM logic can be compiled into a sequence of basic
assembly instructions.

6.5.2 Enabling Edge AI in Healthcare

The extremely low memory footprint (∼ 16 MB for the model logic, reducible via
compression) and the high throughput enable the paradigm of Edge AI. Instead of
transmitting raw, noisy data to the cloud for processing—a high-bandwidth operation
that drains battery life—the signal can be denoised directly on the sensor. This
capability reduces the data transmission requirements and enhances patient privacy,
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as raw physiological data does not need to leave the device. Furthermore, the training
efficiency (approximately 5.5 minutes on a CPU versus hours on a GPU for CNNs)
lowers the barrier to entry for personalized medicine, allowing models to be retrained
or fine-tuned rapidly without requiring expensive infrastructure. This alignment with
low-power, sustainable computing positions the Tsetlin Machine as a key enabler for
the next generation of "Green" medical devices.

6.6 Methodological Limitations

Scientific integrity requires a transparent discussion of the system’s limitations.
While the TMU-Optimized model performs robustly in typical clinical scenarios,
specific stress tests and analyses revealed failure modes and constraints that must be
acknowledged.

6.6.1 The Bimodality of Power Line Interference

The regression performance for the Power Line Interference (PLI) head yielded
a significantly lower correlation coefficient (r ≈ 0.30) compared to the EMG or
BW estimators. This is not necessarily a failure of the learning algorithm, but a
consequence of the data distribution. In the generated dataset, as in many real-world
scenarios, mains interference tends to be binary: it is either present due to poor
grounding or entirely absent. Consequently, the regression task collapses into a
quasi-binary detection problem. The RTM attempts to fit a linear regressor to a
bimodal distribution (clusters at 0 and 1), which penalizes linear correlation metrics.
While the practical outcome is acceptable—the system effectively acts as a detector
that triggers the notch filter when needed—a specialized binary classifier head might
be a more appropriate architectural choice than a regressor for this specific noise
source.

6.6.2 Saturation in High-Noise Regimes

The analysis of the Baseline Wander (BW) regressor revealed a saturation effect
at very high noise intensities (ŷ > 0.8). The model tends to under-predict extreme
baseline drifts. This limitation is likely attributable to the finite resolution of the
Thermometer Encoding. With a fixed number of bits covering the input range, the
dynamic range of the sensor saturates. However, from a clinical perspective, this
limitation is acceptable. If the noise intensity is 0.9 versus 0.95, the high-pass filter
will be fully active in both cases. The saturation of the estimator does not translate to
a failure in the denoising pipeline, as the control action (filtering strength) saturates
correctly at its maximum value.

6.6.3 Feature Dependency and the "Zero-Variance" Paradox

Finally, the ablation studies highlighted a complex dependency on feature engineering.
The attempt to remove features with zero global variance resulted in a degradation
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of performance. This counter-intuitive result suggests that logic-based models utilize
constant features as structural "anchors" or default conditions within their clauses
(e.g., "IF Feature A is True AND..." where A is always True). This implies that
feature selection in Tsetlin Machines cannot rely solely on statistical variance or
correlation metrics standard in Machine Learning. Pruning strategies must account
for the logical role of literals within the clause structure, adding a layer of complexity
to the optimization process compared to end-to-end DL where feature extraction is
implicit.
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Chapter 7

Conclusion and Future Work

7.1 Synthesis of Achievements

This thesis set out to address a fundamental challenge in biomedical signal processing:
the tension between the high performance of Deep Learning denoising models and
the strict safety and interpretability requirements of clinical practice. The research
hypothesized that a logic-based regression approach could bridge this gap, providing
accurate noise quantification without the opacity of neural networks.

The results validate this hypothesis. The developed TMU-Optimized system
demonstrated that a Regression Tsetlin Machine can estimate the intensity of diverse
ECG artifacts—Baseline Wander, Muscle Noise, and Power Line Interference—with
a Pearson correlation exceeding 0.70 and negligible bias. When integrated into an
adaptive filtering pipeline, this estimator yielded a Signal-to-Noise Ratio improvement
of +5.2 dB, outperforming classical digital filters by 134% and reaching competitive
levels relative to state-of-the-art convolutional networks.

Crucially, this performance was achieved through an explainability-driven
design process. The intrinsic transparency of the Tsetlin Machine allowed for the
identification of spectral power as the dominant discriminative feature, leading to
a 95% reduction in the input feature space. Furthermore, the rigorous statistical
validation confirmed that the model generalizes robustly across the patient population,
with inter-subject variability below 6%, satisfying a prerequisite for clinical reliability.

7.2 The Shift Towards Transparent Signal Processing

Beyond the numerical metrics, this work contributes to a paradigm shift in medical
AI: moving from black-box reconstruction to white-box control. The dominant trend
in recent years has been to delegate the entire denoising task to end-to-end neural
networks. While powerful, these generative models introduce the risk of hallucina-
tion—altering physiological morphology based on learned statistical distributions.

The framework proposed here demonstrates that Artificial Intelligence is most
effective in healthcare when it is used to augment, not replace, deterministic signal
processing. By using the Tsetlin Machine as a transparent controller for standard
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digital filters, the system ensures "Safety by Design." The logic rules governing the
filters are inspectable, the decision boundaries are explicit, and the architecture
inherently defaults to a pass-through state in the absence of noise. This approach
aligns with emerging regulatory standards, such as the EU AI Act, which mandate
traceability and explainability for high-risk medical devices.

7.3 Future Research Directions

While the proposed system establishes a solid baseline for interpretable denoising,
several avenues remain for extending its capabilities and facilitating real-world
deployment.

7.3.1 Algorithmic Extensions

Two specific limitations identified in the discussion warrant algorithmic refinements:

• Hybrid Classification-Regression for PLI: The bimodal nature of Power
Line Interference proved challenging for a pure regressor. Future iterations
could employ a hybrid Tsetlin Machine that uses a classification clause pool to
detect the presence of interference (ON/OFF) and a regression pool to fine-tune
the notch filter bandwidth, thereby decoupling detection from estimation.

• Recurrent Tsetlin Machines: The current system processes each window
independently, occasionally leading to temporal jitter in the intensity estimates.
Incorporating temporal memory through Recurrent Tsetlin Machines or simple
state-space smoothing would allow the model to leverage the time-persistence of
artifacts (e.g., a muscle contraction lasting several seconds), improving stability.

7.3.2 Hardware Deployment and TinyML

The computational efficiency of the Tsetlin Machine makes it an ideal candidate
for TinyML applications. Future engineering efforts should focus on porting the
inference engine to ultra-low-power microcontrollers. Since the learned clauses are
sparse, the model weights can be heavily quantized (e.g. from integers to 8-bit or
even binary weights) without significant loss of accuracy. This would potentially
reduce the memory footprint from the current ∼ 50 MB to under 100 KB, enabling
the entire denoising pipeline to run directly on the sensor of a smart patch or an
implantable loop recorder.

7.3.3 Clinical Validation and Multi-Lead Integration

Finally, the ultimate validation of any medical algorithm must occur in a clinical
setting. Future studies should move beyond synthetic noise mixing to utilize si-
multaneous recordings of noisy ambulatory ECGs and clean reference standards
(e.g., esophageal ECGs). Furthermore, the current single-lead approach could be
expanded to 12-lead ECGs. Noise artifacts are often spatially correlated (e.g.,
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muscle noise affects adjacent leads) or uncorrelated (e.g., electrode contact failure
affects only one lead). A multi-channel Tsetlin Machine could exploit these spatial
correlations to distinguish local artifacts from true cardiac pathologies with even
greater confidence.
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