
Politecnico di Torino

Corso di Laurea
A.a. 2024/2025

Sessione di laurea Dicembre 2025

FacultyApp: integrazione delle API
per l’app mobile dei docenti del

Politecnico di Torino

Relatore:

Luigi De Russis

Candidato:

Gerardo Maruotti

Ringraziamenti

Desidero innanzitutto esprimere la mia gratitudine al mio relatore Luigi De Russis,
ai collaboratori di ISIAD e a tutte le persone che mi hanno accompagnato e
supportato lungo l’intero percorso di realizzazione di questa tesi.

Un ringraziamento speciale va ai miei genitori, per il loro sostegno in ogni mo-
mento, specialmente nei periodi più difficili, e per avermi permesso di intraprendere
questa carriera. Non potrò mai ringraziarvi abbastanza per tutto ciò che avete
fatto per me. Ringrazio anche mio fratello per avermi aiutato a rimanere in forma;
spero che un giorno si ricordi di includermi nei ringraziamenti della sua tesi.

Ringrazio la mia ragazza per aver sempre creduto in me e per avermi dato la
forza di superare tutte le sfide che ho affrontato in questo percorso (e per regalarmi
sempre delle belle scarpe). Voglio anche ringraziarla per tutto ciò che ha fatto negli
ultimi mesi; non ce l’avrei mai fatta a fare tutto questo senza di lei.

Inoltre, ringrazio tutta la mia famiglia per il supporto ricevuto. In particolare,
vorrei ringraziare mia cugina Carmen per avermi fatto scrivere la mia prima riga
di codice.

Infine, ringrazio i miei amici e colleghi per avermi supportato (e sopportato)
durante tutto questo percorso.

ii

Indice

Elenco delle tabelle vi

Elenco delle figure vii

1 Introduzione 1
1.1 Contesto e motivazioni . 1
1.2 Obiettivi della tesi . 1
1.3 Struttura del lavoro . 2

2 Background 4
2.1 Ecosistema digitale del Politecnico di Torino 4
2.2 La nascita del progetto PoliTO Faculty 4
2.3 Tecnologie e concetti di riferimento 5

3 Analisi dei Bisogni e Definizione dei Requisiti 6
3.1 Metodologia di raccolta dati . 6

3.1.1 Partecipanti e profili . 6
3.2 Sintesi dei risultati e dei bisogni individuati 7

3.2.1 Struttura del questionario 7
3.2.2 Analisi dei dati . 8
3.2.3 Analisi qualitativa tramite LLM 8
3.2.4 Principali risultati emersi 9

3.3 Definizione dei requisiti . 10
3.3.1 Requisiti funzionali . 10
3.3.2 Requisiti non funzionali . 11
3.3.3 Dai risultati alla progettazione delle API 12

4 Architettura del Sistema e Progettazione delle API 14
4.1 Scelte tecnologiche e pattern architetturali 14

4.1.1 Aggiornamento dello standard OpenAPI 15
4.1.2 Passaggio da specifica monolitica a struttura modulare . . . 16

iii

4.2 Modellazione delle entità e flussi di comunicazione 17
4.2.1 Entità comuni . 17
4.2.2 Entità del dominio studenti 18
4.2.3 Entità del dominio docenti 18
4.2.4 Parametri, risposte e flussi di comunicazione 18

4.3 Progettazione delle API RESTful 19
4.3.1 Pattern REST adottati . 19

4.4 Sicurezza e autenticazione . 21
4.4.1 Schema di sicurezza centralizzato 21

4.5 Struttura del repository . 22
4.5.1 Struttura dei sorgenti . 22
4.5.2 Tag e organizzazione della documentazione 23
4.5.3 Tooling e generazione automatica 25
4.5.4 Pipeline di validazione e qualità del client OpenAPI 25

5 Implementazione e Integrazione 26
5.1 Ambiente di sviluppo . 26

5.1.1 Tooling per la generazione del client 26
5.1.2 Ambiente di sviluppo e testing locale 27
5.1.3 Scelte architetturali per l’integrazione delle API 27

5.2 Implementazione dei moduli principali 29
5.3 Gestione dei dati mock e validazione con il frontend 37
5.4 Controllo della qualità del codice 40

6 Verifica Tecnica dell’Integrazione 42
6.1 Obiettivi della verifica tecnica . 42
6.2 Metodologia di validazione . 43

6.2.1 Ambiente di test e strumenti 44
6.2.2 Verifica manuale dei flussi applicativi 44
6.2.3 Test automatici su hook e componenti di integrazione 45

6.3 Casi d’uso verificati . 45
6.3.1 Autenticazione e login . 46
6.3.2 Profilo docente . 46
6.3.3 Incarichi didattici, corsi ed esami 46
6.3.4 Flusso di firma digitale . 47
6.3.5 Prenotazioni di spazi . 48
6.3.6 News ed emergenze . 48
6.3.7 Ricerca persone . 48
6.3.8 Ambito coperto dai test automatici 49

6.4 Risultati e osservazioni . 49
6.4.1 Esito complessivo . 49

iv

6.4.2 Incongruenze tra API e UI emerse durante i test 50
6.4.3 Impatto sulla robustezza dell’integrazione 50

6.5 Limitazioni della validazione tecnica 50
6.5.1 Assenza di un backend reale 50
6.5.2 Performance e carichi reali 51
6.5.3 Sicurezza applicativa . 51
6.5.4 Copertura dei test automatici 52

7 Conclusioni e Sviluppi Futuri 53
7.1 Sintesi dei risultati ottenuti . 53
7.2 Impatto tecnico sul progetto PoliTO Faculty 54
7.3 Limiti e margini di miglioramento 55
7.4 Sviluppi futuri e possibili estensioni del sistema 55
7.5 Considerazioni finali . 56

Bibliografia 58

v

Elenco delle tabelle

3.1 Requisiti Funzionali PoliTO Faculty 12
3.2 Requisiti Non Funzionali PoliTO Faculty 13

vi

Elenco delle figure

3.1 Funzionalità esistenti e percentuali di utilizzo 8

4.1 Specifica monolitica . 23
4.2 Struttura modulare . 24

5.1 Schermata principale del profilo docente nell’applicazione PoliTO
Faculty. 31

5.2 Schermata Teaching con i corsi e gli appelli d’esame del docente. . . 32
5.3 Lista dei documenti da firmare e dei documenti già firmati nel

modulo di firma digitale. 34
5.4 Step di inserimento dell’OTP nel flusso di firma digitale. 35
5.5 Step di inserimento del PIN nel flusso di firma digitale. 36
5.6 Dettaglio di una prenotazione con l’azione di cancellazione integrata

via API. 38

vii

Capitolo 1

Introduzione

1.1 Contesto e motivazioni
La crescente digitalizzazione dei processi accademici ha reso le applicazioni mobile
strumenti essenziali per supportare le attività quotidiane di studenti e personale
docente. Al Politecnico di Torino tali esigenze sono soddisfatte attraverso due ap-
plicazioni distinte, progettate per rispondere a bisogni operativi tra loro eterogenei.
Se la soluzione rivolta agli studenti ha ormai raggiunto un elevato livello di matu-
rità, l’applicazione dedicata ai docenti presenta ancora margini di miglioramento
significativi, sia sul piano funzionale sia in termini di usabilità e coerenza con le
linee guida grafiche istituzionali.

PoliTO Faculty è il progetto che ha l’obiettivo di colmare questo divario, elevando
l’applicazione mobile per i docenti agli stessi standard qualitativi raggiunti da quella
per gli studenti. Il progetto è nato in collaborazione con ISIAD, che ha supportato
attivamente l’intero processo di raccolta dei requisiti, proposta di soluzioni e
sviluppo di nuove api per esporre funzionalità, che fino ad ora erano accessibili
esclusivamente tramite portali web.

Il punto di partenza di questo lavoro consiste nel comprendere le limitazioni
e i problemi dell’attuale applicazione. Nel corso di questa attività sono emerse
criticità tipiche dei sistemi mobile che crescono in modo stratificato: flussi non
sempre allineati ai reali bisogni del personale docente, integrazioni eterogenee con i
sistemi di Ateneo e mancanza di funzionalità ritenute essenziali dagli utenti.

1.2 Obiettivi della tesi
L’obiettivo generale di questa tesi è la progettazione e integrazione di un livello
API robusto, documentato e verificabile per PoliTO Faculty, partendo dall’analisi
dei bisogni degli utenti dell’app attuale.

1

Introduzione

Gli obiettivi specifici sono:

• Analisi dei bisogni: definire chiaramente quali sono i bisogni reali del
personale docente, tramite un’indagine strutturata.

• Definizione di requisiti: creazione di requisiti funzionali e non funzionali
che il nuovo sistema dovrà rispettare [1].

• Selezione delle funzionalità: tradurre i bisogni emersi in un insieme di
funzionalità, collegando ciascun requisito alle operazioni API corrispondenti
attraverso una mappatura requisito → endpoint.

• Progettazione contrattuale OpenAPI: definire schemi, parametri e ri-
sposte coerenti (formati data/ora, identificativi, nullabilità, codici d’errore),
organizzando le specifiche in una struttura che facilita la collaborazione e
risulta mantenibile a lungo termine [2].

• Integrazione delle API con il frontend: connettere l’interfaccia grafica
alle nuove API definite, rendendo l’applicazione pronta per gestire dati utente
reali.

Perimetro escluso. Non rientrano nel perimetro di questo lavoro: la riprogetta-
zione visuale delle interfacce e lo sviluppo dell’infrastruttura backend dei sistemi
d’Ateneo. Tali aspetti sono considerati vincoli o contesti di integrazione e vengono
trattati solo dove necessario a motivare scelte API.

1.3 Struttura del lavoro
La restante parte dell’elaborato è organizzato come segue:

• Capitolo 2 – Contesto e background: descrizione dell’ecosistema digi-
tale dell’Ateneo, panoramica dei servizi di riferimento e dei concetti tecnici
utilizzati.

• Capitolo 3 – Analisi dei bisogni e requisiti: sintesi delle esigenze funzionali
e non funzionali che guidano la progettazione delle API.

• Capitolo 4 – Architettura e progettazione delle API: struttura informa-
tiva, modellazione delle entità, criteri di versionamento, politiche di sicurezza
e organizzazione della repository OpenAPI.

• Capitolo 5 – Implementazione e integrazione: pipeline di validazione
e pubblicazione delle specifiche, generazione dei client e integrazione con il
frontend, migrazione da dati mock a chiamate reali attraverso adattatori e
hook.

2

Introduzione

• Capitolo 6 – Testing e validazione tecnica: metodologia di verifica, casi
d’uso coperti, metriche di qualità e risultati ottenuti.

• Capitolo 7 – Conclusioni e sviluppi futuri: risultati, limiti, opportunità
di estensione.

Questa struttura accompagna il lettore dal contesto motivazionale alla formaliz-
zazione dei contratti, fino all’integrazione operativa e alla validazione tecnica dei
flussi considerati prioritari per l’utenza docente del Politecnico di Torino.

3

Capitolo 2

Background

2.1 Ecosistema digitale del Politecnico di Torino
L’ecosistema digitale del Politecnico di Torino comprende un’infrastruttura gestita
internamente da ISIAD, il dipartimento IT dell’Ateneo, che si occupa dello sviluppo e
della manutenzione dei principali servizi digitali destinati alla comunità accademica.
Questa organizzazione rappresenta un punto di forza in termini di controllo e
personalizzazione delle tecnologie utilizzate, ma richiede al tempo stesso una
distribuzione attenta delle risorse e la definizione di priorità orientate ai progetti di
maggiore impatto.

Negli anni, la priorità attribuita allo sviluppo dei servizi rivolti agli studenti ha
finito per lasciare in secondo piano le esigenze del personale docente. Di conseguenza,
pur disponendo di un solido insieme di servizi accessibili via web, la corrispondente
versione mobile ha mostrato limiti evidenti sotto il profilo dell’interfaccia grafica e
dell’esperienza d’uso. È infatti emerso che la maggior parte dei docenti tende a
privilegiare l’interfaccia web, ritenuta più completa, anche a costo di rinunciare
alla semplicità e immediatezza di accesso offerte dalla soluzione mobile.

2.2 La nascita del progetto PoliTO Faculty
La crescente diffusione dei dispositivi mobili nell’ambito universitario ha evidenziato
che il personale docente e di ricerca presenta esigenze specifiche, differenti da quelle
della popolazione studentesca. Tra queste rientrano la gestione delle attività
didattiche (insegnamenti, esami), la pianificazione e prenotazione di spazi e risorse,
la consultazione di informazioni operative e la gestione dei flussi amministrativi,
che comprendono la firma digitale di documenti. In tale contesto nasce PoliTO
Faculty, un’applicazione progettata per offrire a docenti e ricercatori un accesso

4

Background

integrato, coerente e ottimizzato ai principali servizi d’Ateneo in mobilità, con
particolare attenzione a:

• Coinvolgimento continuo dei docenti, applicando la metodologia user-
centered design (UCD [3]), per progettare un’interfaccia grafica focalizzata
sull’utente finale e sulle sue esigenze e contesto di utilizzo.

• Approccio API-first, definendo specifiche OpenAPI a supporto della comu-
nicazione tra client e server, con l’obiettivo di garantire coerenza nell’interfaccia
esposta e di stabilire a priori le modalità di utilizzo delle API fornite dai servizi
backend esistenti e consentire lo sviluppo tramite mock affidabili [4];

• Architettura modulare e componibile, per garantire un’elevata manteni-
bilità nel tempo e coerenza con il design system istituzionale dell’Ateneo.

2.3 Tecnologie e concetti di riferimento
Il progetto adotta un approccio API-first in cui le interfacce HTTP sono descritte
con la OpenAPI Specification (OAS) 3.1.1, così da abilitare la validazione automatica
della specifica e la generazione di client tipizzati [2].

Sul lato applicativo, il frontend mobile è basato su React Native, un framework
che consente di sviluppare interfacce native multi-piattaforma con TypeScript [5,
6].

5

Capitolo 3

Analisi dei Bisogni e
Definizione dei Requisiti

Il seguente capitolo illustra il processo di raccolta e analisi dei dati necessari per la
definizione dei requisiti funzionali e non funzionali dell’applicazione PoliTO Faculty.
I risultati ottenuti hanno costituito la base per individuare le funzionalità previste
e l’attribuzione delle relative priorità, determinate in funzione dei riscontri e delle
esigenze emerse dal confronto con gli utenti.

3.1 Metodologia di raccolta dati
Per ottenere un riscontro oggettivo sulle modalità di utilizzo e sui limiti dell’ap-
plicazione utilizzata attualmente, è stato generato un questionario con l’obiettivo
di raccogliere il maggior numero possibile di riscontri e suggerimenti da parte del
personale docente e di ricerca. I dati ottenuti sono stati successivamente analizzati
per individuare dei requisiti che rispecchiassero i bisogni reali della maggioranza
degli utenti.

Il questionario è stato realizzato in collaborazione con il Dipartimento ISIAD,
che ha supportato sia la distribuzione attraverso canali ufficiali, sia la successiva
analisi dei risultati volta alla definizione dei requisiti.

3.1.1 Partecipanti e profili
L’obiettivo principale del questionario era quello di raccogliere quanti più dati
eterogenei possibili. Superata la fase di validazione, il questionario è stato inviato a
professori, ricercatori, assegnisti, docenti esterni e collaboratori didattici, in modo
da ottenere una solida base di riscontri per definire dei requisiti che prendessero in
considerazione le esigenze di tutti i futuri utenti.

6

Analisi dei Bisogni e Definizione dei Requisiti

Il campione di risposte è composto da 681 risposte, con distribuzione anagrafica
bilanciata: dal 1960 al 1999 risulta prevalente la fasce d’età compresa tra il 1970 e
il 1979, con un 25,5% di risposte sul totale. Il tasso di risposta per i dipartimenti è
eterogeneo, quindi garantisce sufficiente affidabilità nella definizione delle esigenze
comuni.

Per quanto riguarda il ruolo ricoperto dai partecipanti, la distribuzione delle
risposte è la seguente:

• Professori: 43%

• Ricercatori: 36%

• Assegnisti: 25%

• Docenti esterni e/o collaboratori didattici: 19%

3.2 Sintesi dei risultati e dei bisogni individuati

3.2.1 Struttura del questionario

Il questionario è stato strutturato in circa trenta domande, suddivise tra quesiti
a risposta chiusa e a risposta aperta, e organizzate in modo da coprire i seguenti
ambiti tematici:

• Informazioni anagrafiche dei partecipanti;

• Tipologia di dispositivi utilizzati e frequenza d’uso;

• Modalità e preferenze di accesso ai servizi offerti dall’Ateneo da dispositivi
mobile;

• Valutazioni sull’esperienza d’uso dell’applicazione attualmente disponibile;

• Proposte di miglioramento e suggerimenti relative a nuove funzionalità per la
nuova PoliTO Faculty;

Questa organizzazione ha consentito di raccogliere dati facilmente analizzabili e di
ottenere indicazioni di notevole valore per la definizione delle principali funzionalità
dell’applicazione, nonché per l’attribuzione delle relative priorità.

7

Analisi dei Bisogni e Definizione dei Requisiti

3.2.2 Analisi dei dati
Per eseguire un’analisi accurata dei dati raccolti, sono stati sviluppati appositi script
in Python dedicati all’elaborazione delle risposte a scelta chiusa, rappresentando i
risultati ottenuti mediante grafici a barre, con l’obiettivo visualizzare in modo chiaro
e dettagliato la distribuzione delle risposte. Come mostrato in Figura 3.1, questa
rappresentazione consente di individuare con chiarezza le funzionalità più utilizzate
dell’applicazione attuale. È quindi evidente che la funzionalità più utilizzata sia
quella connessa alla gestione degli appelli degli esami, seguita dalla visualizzazione
del calendario e dell’orario delle lezioni.

Figura 3.1: Funzionalità esistenti e percentuali di utilizzo

3.2.3 Analisi qualitativa tramite LLM
Per l’analisi delle risposte aperte è stato adottato un approccio supportato da
LLM (Large Language Models). Si tratta di sistemi statistici addestrati su grandi
quantità di testi, in grado di individuare pattern ricorrenti e generare sintesi coerenti
a partire da input eterogenei [7].

Le risposte sono state raggruppate per domanda ed elaborate in gruppi, chiedendo
al modello di individuare i temi ricorrenti, proporre una prima categorizzazione e
sintetizzare i principali bisogni espressi dai docenti.

I risultati prodotti automaticamente non sono stati accolti senza un’adeguata
verifica. Per ogni gruppo di risposte è stato selezionato un campione significativo che

8

Analisi dei Bisogni e Definizione dei Requisiti

è stato confrontato manualmente con le categorie proposte dal modello, correggendo
accorpamenti troppo generici, rinominando le etichette poco chiare ed eliminando
eventuali temi non supportati dai dati.

Questo processo ha permesso di ridurre i tempi di analisi senza rinunciare a un
controllo umano accurato. Rimangono tuttavia alcuni limiti intrinseci all’uso di
modelli di linguaggio, come la tendenza a semplificare eccessivamente formulazioni
ambigue o a sottorappresentare risposte isolate ma potenzialmente rilevanti, oltre
al rischio di introdurre bias nell’annotazione [8]. Per questo motivo, le conclusioni
tratte dalle domande aperte sono state considerate come un supporto alle evidenze
quantitative, e non come l’unica base per la definizione dei requisiti.

Oltre agli aspetti operativi, l’uso degli LLM per l’analisi delle risposte aperte
è stato motivato da considerazioni pratiche legate ai tempi e al volume dei dati
raccolti. In alternativa, sarebbe stato possibile procedere con una codifica manuale
completa, leggendo e classificando una per una le risposte dei docenti. Questa
soluzione avrebbe garantito un controllo molto fine sul processo di categorizzazione,
ma avrebbe richiesto uno sforzo significativo e poco sostenibile in questo contesto,
rallentando le fasi successive di progettazione.

Sono stati valutati anche strumenti dedicati di sentiment analysis o thematic
analysis, che però risultavano meno flessibili nel gestire contemporaneamente il
contenuto testuale e il contesto specifico dell’applicazione. Gli LLM sono stati quindi
utilizzati come supporto per ottenere in tempi brevi una prima organizzazione delle
risposte in temi ricorrenti, mantenendo comunque un ruolo attivo nella revisione
e nell’interpretazione dei risultati. In questo modo l’analisi qualitativa ha potuto
combinare la rapidità offerta dai modelli con una lettura critica orientata alla
definizione dei requisiti dell’applicazione.

3.2.4 Principali risultati emersi

Il processo di analisi dei dati ha consentito di ottenere una chiara visione sui temi
di maggior interesse per gli utenti. Con riferimenti all’attuale applicazione, il 66%
dichiara di utilizzarla, il 22% non l’ha mai installata, mentre il 12% riferisce di
averla in successivamente disinstallata. Le sezioni maggiormente utilizzate risultano
essere appelli, calendario/orario e incarichi, mentre tra e funzionalità richieste
risultano mappe e la disponibilità delle aule libere.

L’analisi approfondita dei risultati ha permesso di individuare le seguenti aree
tematiche:

• Miglioramento di funzionalità esistenti: gli appelli d’esame, il calendario
e l’orario delle lezioni sono spesso percepiti come poco intuitivi e complessi da
consultare.

9

Analisi dei Bisogni e Definizione dei Requisiti

• Introduzione di funzionalità amministrative: numerosi utenti hanno
richiesto di integrare nell’applicazione servizi attualmente disponibili solo
tramite portali web, come la prenotazione degli spazi, la firma digitale dei
documenti e la gestione delle segnalazioni di guasti o emergenze.

• Maggiore integrazione con i servizi didattici: è emersa la necessità
di migliorare il collegamento tra l’app e i servizi dedicati alla gestione della
didattica.

• Espandere le modalità di comunicazione e la gestione del materiale
didattico: diversi partecipanti hanno suggerito strumenti più efficaci per la
comunicazione con gli studenti e la condivisione del materiale didattico.

• Estensione delle informazioni del profilo docente: tra le proposte
aggiuntive figura la possibilità di includere, oltre ai dati relativi alla didattica,
anche informazioni contrattuali. È stata inoltre evidenziata l’importanza di
disporre di una funzione di ricerca sia del personale docente sia degli studenti.

Infine, tra le criticità evidenziate emergono la stabilità del sistema e i tempi di
caricamento, l’affidabilità delle notifiche, la scarsa uniformità dell’interfaccia grafica,
la mancanza di parità funzionale rispetto ai servizi web e la frammentazione delle
integrazioni esistenti.

3.3 Definizione dei requisiti
Una volta individuate le principali esigenze degli utenti tramite analisi quanti-
tative e qualitative, il passo successivo ha riguardato la definizione dei requisiti
dell’applicazione.

Sono stati identificati sia requisiti funzionali sia requisiti non funzionali: i primi
riguardano ciò che il sistema deve permettere di fare, mentre i secondi descrivono
come il sistema deve operare, indicando le proprietà qualitative e i vincoli tecnici
legati a prestazioni, sicurezza e usabilità [1].

La combinazione dei bisogni emersi, dei requisiti funzionali e dei requisiti non
funzionali costituisce la base per la progettazione delle API. In questo modo
l’applicazione può raggiungere, dove necessario, la parità funzionale con i servizi
web, migliorandone l’esperienza d’uso.

3.3.1 Requisiti funzionali
L’analisi dei dati ha permesso di definire con precisione le aree tematiche di
intervento prioritarie. Come evidenziato nella sintesi dei risultati, è emersa la
necessità non solo di migliorare le funzionalità esistenti, come la gestione degli

10

Analisi dei Bisogni e Definizione dei Requisiti

appelli e degli orari, ma anche di introdurre nuovi servizi amministrativi e di
espandere l’integrazione con i servizi didattici. Sono state inoltre considerate le
criticità generali relative alla stabilità, ai tempi di caricamento, all’uniformità
dell’interfaccia e all’affidabilità delle notifiche.

I requisiti funzionali (FR) sono stati definiti per rispondere in modo mirato a tali
esigenze, con l’obiettivo di colmare il divario rispetto ai servizi web e di migliorare
in modo significativo l’esperienza d’uso complessiva. La Tabella 3.1 schematizza
tali requisiti, evidenziandone la priorità.

3.3.2 Requisiti non funzionali

I requisiti funzionali spiegano cosa deve fare il sistema, mentre quelli non funzionali
(NFR) riguardano il modo in cui queste attività devono essere garantite. Si
tratta di caratteristiche qualitative e vincoli tecnici che contribuiscono a rendere
l’applicazione stabile, reattiva e allineata agli standard previsti.

Considerando questi aspetti, sono stati delineati otto requisiti non funzionali
(schematizzati nella Tabella 3.2), che, nel loro insieme, contribuiscono a garantire
degli standard di qualità elevati.

L’assegnazione della priorità a ciascun requisito non è stata effettuata in modo
arbitrario, ma a partire da una combinazione di informazioni quantitative e quali-
tative. In primo luogo, per ogni funzionalità è stata considerata la diffusione della
richiesta all’interno del questionario, analizzando quante persone avevano indicato
esplicitamente quel bisogno o una variante riconducibile allo stesso tema. I requisiti
associati a funzionalità fortemente richieste sono stati naturalmente candidati a
una priorità più alta.

Accanto a questo aspetto, è stato stimato in maniera qualitativa lo sforzo
necessario per l’implementazione, tenendo conto della possibilità di riutilizzare
funzionalità già presenti nella PoliTO Students app. I requisiti che potevano essere
coperti estendendo flussi esistenti o adattando logiche già implementate sono stati
considerati più convenienti da affrontare nelle prime fasi di evoluzione di PoliTO
Faculty. Infine, è stata posta particolare attenzione alle motivazioni espresse nelle
risposte aperte: alcune funzionalità, pur non essendo le più citate, sono emerse
come particolarmente utili per semplificare attività critiche per il personale docente
e sono state quindi promosse a priorità più elevata.

Nel complesso, la priorità assegnata riflette un compromesso tra impatto perce-
pito dai docenti, diffusione delle richieste e costo stimato di realizzazione. Questo
approccio ha permesso di individuare un nucleo di requisiti principali su cui con-
centrare il lavoro di progettazione, mantenendo comunque traccia delle funzionalità
meno urgenti ma potenzialmente rilevanti per evoluzioni successive dell’applicazione.

11

Analisi dei Bisogni e Definizione dei Requisiti

ID Titolo Descrizione Priorità

FR1 Gestione utenti Accesso sicuro all’applica-
zione e gestione delle infor-
mazioni personali.

Alta

FR2 Gestione esami Consultazione degli appelli,
dei relativi dettagli e comu-
nicazioni agli studenti.

Alta

FR3 Incarichi didattici Gestione dei corsi, collabo-
ratori, materiali e avvisi del
docente.

Alta

FR4 Gestione amministrativa Supporto ad attività ammi-
nistrative: prenotazioni, fir-
ma digitale dei documenti
e mappa di ateneo.

Media

FR6 Comunicazione e collaborazione Accesso ad avvisi, ricerca
persone e contenuti infor-
mativi dell’Ateneo.

Alta

FR7 Gestione emergenze Accesso a numeri utili, se-
gnalazioni e procedure di
emergenza.

Alta

FR8 Gestione missioni Inserimento e monitoraggio
di trasferte e rimborsi.

Bassa

FR9 Integrazione con servizi esterni Collegamento con Moodle
e altri sistemi esterni istitu-
zionali.

Bassa

Tabella 3.1: Requisiti Funzionali PoliTO Faculty

3.3.3 Dai requisiti alla progettazione delle API

In sintesi, l’analisi dei dati raccolti ha permesso di chiarire quali attività quotidiane
i docenti preferirebbero poter gestire da mobile e quali criticità dell’applicazione
esistente risultano più rilevanti. A partire da queste evidenze sono stati individuati

12

Analisi dei Bisogni e Definizione dei Requisiti

ID Tipo Descrizione Priorità

NFR1 Prestazioni Tempi di caricamento rapidi (inferiori a
3 secondi) e fluidità nella navigazione .

Alta

NFR2 Usabilità Interfaccia chiara e ottimizzata per dispo-
sitivi mobili, coerente con l’app studenti
PoliTO [3].

Alta

NFR3 Accessibilità Conformità alle linee guida WCAG e con
le tecnologie assistive [9].

Media

NFR4 Sicurezza Protezione dei dati personali, autentica-
zione con credenziali.

Alta

NFR5 Affidabilità Stabilità, risposta rapida e assenza di
crash.

Alta

NFR6 Scalabilità Supporto ad un elevato numero di utenti
simultanei.

Media

NFR7 Compatibilità Funzionamento stabile su dispositivi An-
droid e iOS.

Alta

NFR8 Coerenza grafica Uso dei componenti UI ufficiali dell’Ate-
neo.

Alta

Tabella 3.2: Requisiti Non Funzionali PoliTO Faculty

insiemi di requisiti funzionali e non funzionali che delineano, rispettivamente, i
principali ambiti di servizio e le proprietà qualitative che la nuova soluzione dovrà
rispettare.

Questi insiemi di requisiti rappresentano il punto di partenza per la fase di
progettazione tecnica. Nei capitoli successivi verranno presi come riferimento per
identificare i domini funzionali da coprire tramite servizi applicativi dedicati e
per definire i contratti delle API che metteranno a disposizione del client mobile
le informazioni e le operazioni necessarie. La progettazione delle API non nasce
quindi in astratto, ma è radicata nei bisogni emersi dal questionario e nella sintesi
strutturata riportata in questo capitolo.

13

Capitolo 4

Architettura del Sistema e
Progettazione delle API

Il presente capitolo illustra il processo di progettazione delle API messe a disposi-
zione di PoliTO Faculty. La definizione delle API si è basata sui requisiti funzionali
e non funzionali individuati nel capitolo precedente, consentendo di progettare API
specificamente calibrate sulle funzionalità previste dall’applicazione e di agevolarne
l’integrazione all’interno del codice.

Il lavoro è stato svolto all’interno del progetto api-spec, contenente la specifica
OpenAPI già utilizzata dall’applicazione PoliTO Students [10]. In questo contesto
sono stati affrontati tre aspetti principali:

• la riorganizzazione tecnologica e strutturale della specifica, passando da un
file monolitico a una struttura modulare;

• la modellazione delle entità e dei flussi di comunicazione comuni a studenti e
docenti;

• la progettazione dei nuovi endpoint REST, con particolare attenzione alla
sicurezza, alla coerenza semantica e alla manutenibilità del repository.

4.1 Scelte tecnologiche e pattern architetturali
Il lavoro è partito dall’analisi della specifica openapi.yaml esistente, avente stan-
dard OpenAPI 3.0.3. In questa versione la documentazione delle API era orga-
nizzata come un unico file monolitico, pensato principalmente per l’applicazione
PoliTO Students.

L’analisi ha messo in evidenza alcune criticità strutturali:

14

Architettura del Sistema e Progettazione delle API

• Struttura studenti-centrica: il catalogo delle operazioni copriva in modo
efficace le esigenze della popolazione studentesca (profilo, carriera, lezioni),
ma non includeva un dominio specificamente dedicato ai docenti. Qualsiasi
estensione in tal senso avrebbe rischiato di forzare il modello esistente.

• Limitato riuso dei componenti: schemi, parametri e risposte erano pre-
senti, ma non organizzati in modo centralizzato. Alcuni concetti ricorrenti
(paginazione, identificativi, errori comuni) venivano definiti più volte o con
leggere varianti, aumentando il rischio di incoerenze.

• Processo manuale: l’artefatto principale openapi.yaml veniva modificato
direttamente, senza un processo di generazione automatica. Ogni modifica
strutturale era potenzialmente rischiosa e difficile da verificare, perché non
esistevano pipeline dedicate al bundling e alla validazione.

Queste considerazioni hanno messo in luce la necessità di un intervento più struttu-
rale, volto non soltanto ad aggiungere nuove rotte, ma a ripensare l’organizzazione
complessiva della specifica per renderla estendibile verso il dominio docente.

4.1.1 Aggiornamento dello standard OpenAPI
Il primo intervento ha riguardato l’aggiornamento della specifica alla versione
OpenAPI 3.1.1, l’ultima versione stabile disponibile al momento [2].

L’adozione della versione 3.1.1 ha rappresentato un passaggio fondamentale per
progettare delle API in modo più moderno e robusto. Questa versione introduce
un allineamento completo agli standard più recenti di JSON Schema, consentendo
di descrivere i modelli dati in maniera più chiara, precisa e riusabile rispetto
alla precedente 3.0.3. L’eliminazione di diverse limitazioni, come parole chiave
proprietarie o workaround necessari per gestire casi particolari, ha reso possibile
definire strutture dati uniformi nell’intero progetto.

Il passaggio alla versione 3.1.1 ha inoltre incrementato la coerenza del contratto
API, grazie a una validazione più espressiva. Tra gli elementi che hanno contribuito
a semplificare la definizione delle nuove specifiche troviamo una gestione più ordinata
dei riferimenti e la possibilità di inserire esempi direttamente all’interno dei modelli.

Nel complesso, l’aggiornamento ha fornito un ambiente più solido per la pro-
gettazione e una maggiore compatibilità con gli strumenti moderni di validazione,
generazione del codice e produzione della documentazione.

Questo ha migliorato in modo significativo la qualità complessiva della specifica
e ha facilitato la definizione delle nuove API dedicate a PoliTO Faculty.

Dal punto di vista del processo, l’aggiornamento è frutto di una scelta progettuale
consapevole e non di un semplice adeguamento tecnologico. In fase iniziale è stata
infatti valutata anche l’ipotesi di mantenere la specifica esistente in versione 3.0.3,

15

Architettura del Sistema e Progettazione delle API

limitandosi ad aggiungere le nuove operazioni necessarie a PoliTO Faculty. Questa
opzione avrebbe semplificato la gestione della retrocompatibilità, riducendo il rischio
di introdurre problemi sulle API già utilizzate dall’applicazione PoliTO Students.

La discussione si è quindi concentrata sul bilanciamento tra la stabilità nel
breve periodo e la qualità complessiva del sistema nel medio termine. Mantenere
la specifica in versione 3.0.3 avrebbe garantito continuità con lo stato attuale,
ma avrebbe complicato l’introduzione di meccanismi di validazione automatica
e l’adozione degli strumenti più recenti per la generazione del codice e della
documentazione. L’aggiornamento alla versione 3.1.1 è stato pertanto preferito,
in quanto in grado di offrire un’esperienza di sviluppo più solida e un controllo
più rigoroso sulla coerenza della specifica, aspetti considerati fondamentali per
assicurare la manutenibilità della specifica nel tempo.

4.1.2 Passaggio da specifica monolitica a struttura modula-
re

In parallelo all’aggiornamento dello standard, è stata ripensata l’organizzazione
dell’artefatto principale, passando da una specifica monolitica a una struttura
modulare, pensata per rendere più semplice e sicuro il lavoro collaborativo sul
progetto.

Il file openapi.yaml non viene più modificato direttamente, ma è diventato un
artefatto generato a partire da una struttura modulare

A tal fine, il file openapi.yaml, che inizialmente definiva l’intera specifica, è
stato riorganizzato in tre sezioni principali, corrispondenti con i domini funzionali
delle API incluse in ciascuna area:

1. Students: raccoglie le API esistenti relative al dominio studenti, utilizzate
esclusivamente dall’applicazione PoliTO Students.

2. Faculty: comprende le nuove API sviluppate per supportare i servizi specifici
dell’applicazione PoliTO Faculty, utilizzate esclusivamente da quest’ultima..

3. Common: contiene tutte le API condivise dalle due applicazioni.

La suddivisione della specifica nei domini Common, Students e Faculty è stata
definita in accordo con il dipartimento ISIAD, con l’obiettivo di riflettere in modo
chiaro la distinzione tra funzionalità condivise e funzionalità specifiche delle due
applicazioni mobile. Durante la fase di progettazione è stata presa in considerazione
anche un’organizzazione alternativa, basata su una separazione preliminare per
funzionalità (ad esempio “esami”, “aule”, “notifiche”) e, solo in un secondo momento,
per tipologia di utenza (esami studenti, esami docenti, e così via).

16

Architettura del Sistema e Progettazione delle API

Questo approccio è stato però scartato per diverse ragioni. In primo luogo, non
tutti i casi d’uso presentano una separazione netta tra ambito studenti e ambito
docenti: alcune risorse, come emergenze, mappe o news, sono per loro natura
trasversali e, in un’organizzazione basata sulle funzionalità, sarebbero state esposte
al rischio di duplicazioni o di una frammentazione tra più file. In secondo luogo,
una struttura centrata sulle funzionalità avrebbe reso meno immediato individuare
il perimetro effettivo di ciascuna applicazione, complicando la collaborazione tra
i team che lavorano su Students e su Faculty. Infine, la presenza di un dominio
esplicito per i componenti comuni riduce il rischio di definire varianti leggermente
diverse della stessa entità in punti diversi della specifica, favorendo invece il riuso
controllato di schemi, parametri e risposte. La scelta di organizzare la specifica
per domini Common, Students e Faculty rappresenta quindi un compromesso tra
chiarezza architetturale, manutenibilità e possibilità di evoluzione nel lungo periodo.

4.2 Modellazione delle entità e flussi di comuni-
cazione

Il lavoro di riorganizzazione del progetto, ha permesso di modellare le entità esistenti
e renderle compatibili con le nuove. Questo ha portato alla definizione di tre insiemi
di schemi, organizzati per dominio (common, faculty, students).

4.2.1 Entità comuni

Nel gruppo di entità comuni sono stati definiti i modelli che rappresentano concetti
condivisi, tra cui:

• Booking e PlaceBooking, che descrivono le prenotazioni di aule e spazi,
con i relativi metadati (intervallo temporale, risorsa, stato);

• Course, CourseDirectoryContent, Exam, che rappresentano corsi, mate-
riali didattici e appelli d’esame;

• NewsItem e Person, utilizzati per la pubblicazione di comunicazioni e la
rappresentazione anagrafica degli utenti;

Gli schemi comuni sono stati modellati esplicitando i campi obbligatori (required)
e sfruttando costrutti come oneOf e nullable per gestire varianti e campi opzionali
all’interno delle stesse strutture dati.

17

Architettura del Sistema e Progettazione delle API

4.2.2 Entità del dominio studenti
I componenti relativi al dominio studenti sono stati oggetto di un intervento
limitato, finalizzato esclusivamente a garantirne la piena compatibilità con la nuova
versione dello standard OpenAPI. Le modifiche introdotte sono state minime e
hanno interessato quasi esclusivamente la gestione dei campi nullabili, senza incidere
sulla logica complessiva o sul comportamento funzionale dei componenti.

4.2.3 Entità del dominio docenti
L’ultimo gruppo introduce le entità necessarie a coprire le funzionalità destinate ai
docenti, assenti nella specifica originale. I modelli principali includono:

• FacultyProfile, che descrive il profilo docente (informazioni anagrafiche,
struttura di afferenza, canali di contatto);

• FacultyExam, che rappresenta gli appelli lato docente, con informazioni su
corso, data, iscritti e stato;

• FacultyCourseStudent e Collaborator, utilizzati per modellare la compo-
sizione di un incarico didattico (studenti e collaboratori associati);

• CourseLecture, che estende il concetto di lezione lato docente, collegandolo
al contesto del corso e alle responsabilità didattiche;

• SignableDocument e gli altri schemi che descrivono il flusso di firma digitale
(richiesta di firma, stato della sessione, esito dell’operazione).

Questi modelli sono stati progettati per supportare i flussi introdotti dal nuovo
dominio faculty: gestione degli incarichi, comunicazioni agli studenti dei corsi,
pianificazione delle attività in calendario e firma digitale dei documenti.

4.2.4 Parametri, risposte e flussi di comunicazione
Accanto agli schemi, la specifica definisce blocchi dedicati a parametri e risposte
riusabili:

• parameters.yaml centralizza gli identificativi (id di corsi, esami, documenti),
i parametri di paginazione (page, pageSize) e i filtri di ricerca (ad esempio
per sito, edificio, categoria di luogo);

• responses.yaml raccoglie le risposte standard per gli scenari di successo e di
errore, incluse quelle specializzate per flussi particolari (MFA e firma digitale).

18

Architettura del Sistema e Progettazione delle API

A partire da questo modello dati, sono stati tracciati i principali flussi di comunica-
zione tra backend e applicazione mobile, tra cui:

• la gestione della carriera e degli esami (consultazione della lista, prenotazione
e spostamento di un appello);

• la pianificazione e prenotazione di spazi (ricerca disponibilità, creazione e
cancellazione di una prenotazione);

• la gestione degli incarichi didattici lato docente (consultazione degli studenti
iscritti, gestione dei collaboratori, invio di comunicazioni);

• il ciclo completo di firma digitale (lista documenti, avvio della sessione, verifica
dell’OTP, firma con PIN);

• la gestione di emergenze e guasti (consultazione delle comunicazioni di emer-
genza, apertura e tracciamento di segnalazioni).

In questo modo la modellazione delle entità non rimane astratta, ma è direttamente
collegata ai casi d’uso che l’applicazione deve supportare.

4.3 Progettazione delle API RESTful
Una volta definito il modello dati, il passo successivo ha riguardato la progettazione
dei singoli endpoint, seguendo convenzioni REST e sfruttando la nuova struttura
modulare della specifica [11].

4.3.1 Pattern REST adottati
La progettazione delle interfacce segue alcune convenzioni REST condivise, finaliz-
zate a garantire predicibilità e facilità di consumo [12]:

• Risorse e sottorisorse: i path esprimono esplicitamente la relazione tra
risorse, ad esempio:

– /courses/{courseId}/lectures

– /faculty/courses/{courseId}/students

• Verbi HTTP con semantica chiara: GET è utilizzato per la lettura,
POST per la creazione o l’attivazione di azioni non idempotenti (ad esem-
pio /faculty/exams/{examId}/notify), PUT per operazioni idempotenti di
upsert, DELETE per la rimozione di risorse.

19

Architettura del Sistema e Progettazione delle API

• Filtri e paginazione: i parametri di query sono utilizzati per filtrare gli
elenchi e per gestire la paginazione.

Nel dominio Faculty sono state progettate le nuove API per:

• la gestione del profilo docente e delle pubblicazioni:

– /faculty/me

– /faculty/me/publications

• la gestione degli incarichi didattici:

– /faculty/courses/{courseId}/students

– /faculty/courses/{courseId}/collaborators

– /faculty/courses/{courseId}/message

• la gestione degli appelli:

– /faculty/exams

– /faculty/exams/{examId}

– /faculty/exams/{examId}/notify

• il ciclo di firma digitale:

– /faculty/signing/documents

– /faculty/signing/sessions/{sessionId}/verify-otp

– /faculty/signing/sessions/{sessionId}/sign

• i calendari e gli eventi:

– /faculty/calendars

– /faculty/calendars/{calendarId}/events

La progettazione di questi endpoint è stata guidata dai flussi individuati nella
fase di modellazione: a ogni caso d’uso è stato associato un insieme di operazioni,
mantenendo coerenza con gli endpoint già esistenti per gli studenti quando possibile.

L’introduzione delle nuove API per il dominio Faculty è stata l’occasione per
rendere più esplicite alcune linee guida di progettazione già presenti, in modo
talvolta implicito, nella specifica esistente. L’obiettivo principale non era introdurre
pattern radicalmente diversi, ma consolidare uno stile uniforme che rendesse la
lista di endpoint più prevedibile e semplice da utilizzare nel tempo.

In assenza di convenzioni condivise, la crescita progressiva di una specifica rischia
infatti di produrre interfacce eterogenee: path strutturati in modo diverso per

20

Architettura del Sistema e Progettazione delle API

rappresentare concetti simili, utilizzo non coerente dei verbi HTTP, duplicazioni di
logica tra risorse che appartengono a domini correlati. Per ridurre questo rischio,
la progettazione delle operazioni dedicate a PoliTO Faculty è stata guidata dal
principio di mantenere, quando possibile, lo stesso modello concettuale già adottato
per gli studenti, estendendolo solo nei casi in cui le esigenze del personale docente
richiedessero funzionalità aggiuntive.

In pratica, ciò si traduce in alcune scelte ricorrenti: modellare i principali
elementi del dominio come risorse accessibili tramite URL leggibili, utilizzare le
sottorisorse per rappresentare relazioni gerarchiche (ad esempio tra corsi, appelli ed
elenchi di studenti) e mantenere una semantica dei verbi HTTP coerente tra i diversi
domini applicativi. Questo approccio facilita il lavoro dei team che sviluppano
e mantengono le applicazioni mobili, perché riduce la necessità di “imparare”
convenzioni diverse per studenti e docenti e rende più agevole l’estensione futura
dell’API senza introdurre rotture di coerenza.

4.4 Sicurezza e autenticazione
La progettazione delle API ha dovuto rispettare i vincoli di sicurezza definiti a
livello di requisiti non funzionali, garantendo protezione dei dati, gestione corretta
delle sessioni e tracciabilità delle operazioni sensibili.

4.4.1 Schema di sicurezza centralizzato
Per quanto riguarda la sicurezza degli endpoint, è stato definito uno schema di
autenticazione bearerAuth, referenziato dalle singole operazioni che richiedono
accesso autenticato [13]. In questo modo:

• la modalità di autenticazione è descritta in un unico punto, riducendo il rischio
di incoerenze;

• eventuali variazioni future (ad esempio l’introduzione di nuovi schemi) potran-
no essere gestite senza modificare tutti i path.

La quasi totalità delle API dei domini Students e Faculty utilizza questo schema,
mentre alcune operazione di autenticazione (come il login) restano accessibili in
modalità anonima.

La scelta di adottare queste convenzioni non è stata scontata, ma nasce dal
confronto con alcuni pattern alternativi emersi durante la revisione della specifica
esistente. Una prima possibilità consisteva nel mantenere endpoint dal naming
più “procedurale”, in cui l’azione prevale sul concetto di risorsa (ad esempio
/getExamList, /doBooking, /sendMessageToStudents). Questo tipo di interfaccia

21

Architettura del Sistema e Progettazione delle API

risulta inizialmente intuitivo, ma tende a generare cataloghi di API poco omogenei,
difficili da estendere e meno comprensibili per chi non conosce la storia evolutiva
del sistema.

Un secondo rischio riguardava la coesistenza di stili diversi tra il dominio studenti
e il nuovo dominio docenti, con path simili modellati in modo non uniforme.
Per evitare questa situazione, la progettazione delle nuove rotte Faculty è stata
guidata dal principio di riutilizzare, quando possibile, gli stessi concetti e la stessa
struttura delle API già esistenti per gli studenti, estendendole solo dove strettamente
necessario. In questo modo si è ottenuto un catalogo di endpoint più prevedibile,
in cui la relazione tra risorse e sottorisorse è leggibile direttamente dall’URL e
la semantica dei verbi HTTP rimane coerente tra i diversi domini applicativi.
Questa coerenza semplifica il lavoro sia dei team che mantengono le API, sia degli
sviluppatori che devono integrarle all’interno delle applicazioni mobili.

4.5 Struttura del repository
L’ultimo passaggio del processo di progettazione riguarda la finalizzazione della
struttura del repository della specifica. L’obiettivo non era solo descrivere le API,
ma renderne sostenibile l’evoluzione nel tempo.

4.5.1 Struttura dei sorgenti
La cartella src/ contiene tutti i file sorgente della specifica:

• src/index.yaml come principale punto di accesso, con i metadati globali, la
lista dei path e dei componenti e la definizione dei gruppi di tag;

• i path organizzati per dominio funzionale:

– src/paths/common/

– src/paths/students/

– src/paths/faculty/

• i modelli di dominio:

– src/components/schemas/common.yaml

– src/components/schemas/students.yaml

– src/components/schemas/faculty.yaml

• gli elementi riusabili trasversali:

– src/components/parameters.yaml

22

Architettura del Sistema e Progettazione delle API

– src/components/responses.yaml
– src/components/security-schemes.yaml

All’interno di src/index.yaml è stata inoltre riorganizzata la struttura dei tag
utilizzati nella documentazione OpenAPI. I tag globali riprendono la stessa suddi-
visione in domini funzionali adottata per i sorgenti (Common, Students, Faculty) e
vengono assegnati alle operazioni in base al contesto applicativo.

L’adozione di questa organizzazione ha reso possibile l’aggiornamento della
specifica OpenAPI, migliorandone la manutenibilità e assicurando una maggiore
scalabilità nel lungo periodo.

Le Figure 4.1 e 4.2 mostrano in modo sintetico la struttura della repository
prima e dopo l’introduzione di tali modifiche.

Figura 4.1: Specifica monolitica

4.5.2 Tag e organizzazione della documentazione
Nel contesto di OpenAPI, i tag sono etichette assegnate alle operazioni con lo
scopo di raggrupparle in insiemi coerenti e rendere più semplice la consultazione
della documentazione. Una buona struttura di tag aiuta a orientarsi tra le API,
separando i diversi ambiti funzionali e riducendo la complessità percepita da chi
deve integrare il sistema.

23

Architettura del Sistema e Progettazione delle API

Figura 4.2: Struttura modulare

24

Architettura del Sistema e Progettazione delle API

Nel progetto api-spec i tag definiti in src/index.yaml riprendono la suddi-
visione in domini funzionali adottata per i sorgenti (Common, Students, Faculty)
e vengono assegnati alle operazioni in base al contesto applicativo. L’estensione
x-tagGroups permette inoltre di raggruppare i tag in sezioni logiche, così che gli
strumenti di visualizzazione della specifica presentino blocchi distinti per le API
comuni, per quelle rivolte agli studenti e per quelle dedicate ai docenti, ciascuno
con il proprio insieme coerente di path e modelli.

4.5.3 Tooling e generazione automatica
Nel file package.json sono stati definiti gli script necessari per:

• installare le dipendenze (npm ci);

• generare e validare il bundle (npm run bundle, npm run validate, npm run
bundle:verify).

4.5.4 Pipeline di validazione e qualità del client OpenAPI
La qualità della specifica è supportata da workflow GitHub dedicati. In particolare:

• un workflow di pubblicazione del client, che esegue il bundling e la validazione
della specifica prima di generare e pubblicare il client TypeScript;

• un workflow di validazione (validate-openapi) eseguito sulle pull reque-
st, che lancia il bundling tramite swagger-cli e la validazione tramite
openapi-generator-cli, bloccando eventuali regressioni strutturali [14].

In questo modo il processo di progettazione delle API è integrato con la pipeline
di integrazione continua: ogni modifica alla specifica deve superare la validazione
prima di essere aggiunta al branch principale.

25

Capitolo 5

Implementazione e
Integrazione

In questo capitolo viene descritto come la specifica OpenAPI, progettata nel capitolo
precedente, è stata portata all’interno dell’applicazione PoliTO Faculty. L’obiettivo
è illustrare il percorso che va dall’artefatto di specifica alla disponibilità di un client
TypeScript riutilizzabile, fino alla sua integrazione in un prototipo già esistente
basato su dati mock.

5.1 Ambiente di sviluppo
Le attività di implementazione si sono svolte in due repository separati:

• il repository della specifica (api-spec), in cui è mantenuta la definizione Ope-
nAPI modulare e in cui vengono eseguite le operazioni di bundling, validazione
e generazione del client;

• il repository dell’applicazione PoliTO Faculty (faculty-app), contenente il
prototipo mobile con le schermate e i flussi utente già modellati tramite dati
mock.

5.1.1 Tooling per la generazione del client
Nel progetto api-spec sono stati introdotti gli strumenti necessari per rendere
ripetibile il processo di generazione del client:

• utilizzo di Node 18 come versione di riferimento per gli script di progetto [15];

• definizione di un package.json con gli script necessari per eseguire il bundling,
la validazione della specifica e la generazione del client;

26

Implementazione e Integrazione

• dipendenze verso swagger-cli e openapi-generator-cli, necessarie per
eseguire gli script [14];

• configurazione di .gitignore per mantenere il repository pulito ed escludere
i file generati.

In questo modo, l’applicazione non accede direttamente ai file YAML della
specifica, ma lavora su un artefatto stabile: il client TypeScript generato a partire
dalla versione corrente della PoliTO API.

5.1.2 Ambiente di sviluppo e testing locale
Durante la fase di implementazione è stato utilizzato l’IDE Visual Studio Code,
affiancato da emulatori Android e iOS per la verifica funzionale dei flussi dopo ogni
modifica al codice [16].

Per il testing locale sono stati utilizzati dati di esempio forniti da un server avviato
tramite Prism CLI, che, a partire dalla specifica OpenAPI del progetto, genera un
server mock in grado di esporre gli endpoint presenti nella specifica e restituire
risposte con la struttura definita [17]. Questa configurazione ha reso possibile
verificare in modo incrementale i singoli flussi implementati, senza dipendere da
ambienti di test o da dati reali.

Per rendere più rapido il processo di validazione, l’applicazione è stata eseguita
in modalità dev, sfruttando la funzione di Fast Refresh di React Native [6]. Tale
funzionalità permette di visualizzare quasi in tempo reale le modifiche apportate
al codice TypeScript, senza la necessità di ricompilare o riavviare completamente
l’app. Il mantenimento dello stato corrente dell’interfaccia ha ulteriormente ridotto i
tempi di attesa dopo ogni modifica, contribuendo a velocizzare in modo significativo
l’intero ciclo di sviluppo.

5.1.3 Scelte architetturali per l’integrazione delle API
L’integrazione delle nuove API nel prototipo PoliTO Faculty non si è limitata
all’invocazione dei singoli endpoint, ma ha richiesto alcune scelte architetturali
per garantire coerenza con l’applicazione esistente e una buona manutenibilità
del codice nel medio periodo. In questa sezione vengono descritte le principali
decisioni progettuali adottate lato client e le motivazioni che ne hanno guidato
l’introduzione.

Utilizzo di React Query e hook

Per la gestione delle chiamate di rete è stato confermato l’utilizzo di React Query
in combinazione con hook dedicati, seguendo lo stesso approccio già consolidato

27

Implementazione e Integrazione

all’interno dell’applicazione PoliTO Students. Questa scelta è stata dettata da
ragioni principalmente pragmatiche.

Da un lato, React Query si era già dimostrato uno strumento stabile e privo
di criticità nel contesto dell’app esistente, fornendo astrazioni utili per gestire gli
stati di caricamento, errore e aggiornamento dei dati remoti. Dall’altro, mantenere
lo stesso stack tecnologico ha permesso di ridurre la curva di apprendimento
per gli sviluppatori che in futuro dovranno lavorare su entrambe le applicazioni,
evitando di introdurre pattern alternativi (come librerie di stato globale o soluzioni
personalizzate per il data fetching) che avrebbero reso il codice più eterogeneo.

Gli hook specifici per ciascun caso d’uso incapsulano la logica di chiamata
alle API e di gestione dello stato, esponendo ai componenti di interfaccia un
insieme limitato di proprietà già pronte all’uso (ad esempio dati normalizzati,
flag di caricamento e funzioni di aggiornamento). In questo modo i componenti
rimangono relativamente semplici e focalizzati sulla presentazione, mentre la logica
di integrazione è centralizzata e più facilmente testabile.

Client TypeScript generato dalla specifica

Un secondo elemento centrale dell’architettura lato client è l’utilizzo di un client
TypeScript generato automaticamente a partire dalla specifica OpenAPI. Invece di
definire manualmente le chiamate HTTP per ciascun endpoint, il progetto sfrutta
uno strumento di generazione in grado di produrre funzioni tipizzate e modelli di
dato coerenti con quanto definito nel file di specifica.

Questa scelta è in linea con l’approccio API-first adottato nel progetto: la
specifica costituisce la fonte di verità principale e sia il backend sia il frontend
derivano la propria struttura da essa. Dal punto di vista pratico, la generazione del
client riduce il rischio di divergenze tra contratto e implementazione (ad esempio
campi mancanti o rinominati) e permette di individuare più rapidamente eventuali
regressioni, grazie al supporto del type checker di TypeScript. Inoltre, l’evoluzione
futura delle API risulta semplificata: una modifica alla specifica si traduce in
una nuova generazione del client, limitando gli interventi manuali al codice di
integrazione e ai componenti che utilizzano i relativi modelli.

Layer di adattamento tra modelli API e modelli di interfaccia

Per evitare un accoppiamento eccessivo tra la struttura delle API e i componenti di
interfaccia, è stato introdotto un layer di adattamento dedicato alla trasformazione
dei dati ricevuti dal server in modelli più adatti alla logica di presentazione. In
pratica, le strutture generate a partire dalla specifica vengono convertite in oggetti
di dominio semplificati, utilizzati all’interno dell’applicazione mobile.

Questo approccio consente di isolare i componenti UI dai dettagli di rappre-
sentazione scelti a livello di API (ad esempio formati di date, codici enumerativi

28

Implementazione e Integrazione

o campi opzionali legati a esigenze backend), mantenendo nello stesso tempo un
punto unico in cui applicare eventuali regole di normalizzazione o arricchimento dei
dati. In prospettiva, la presenza di questo layer rende meno impattante l’evoluzione
della specifica: finché il contratto resta compatibile a livello concettuale, buona
parte delle modifiche può essere assorbita all’interno degli adapter, senza dover
propagare sistematicamente le differenze a tutti i componenti dell’interfaccia.

Utilizzo di un server mock basato su Prism

Infine, l’integrazione delle API è stata supportata dall’utilizzo di un server mock
generato a partire dalla specifica tramite Prism. In fase di tesi non era disponibile
il tempo necessario per implementare e pubblicare un backend reale che esponesse
gli endpoint definiti nello standard, ma era comunque fondamentale poter verificare
i flussi applicativi end-to-end dal punto di vista del client.

L’adozione di Prism ha permesso di simulare il comportamento delle API diret-
tamente sulla base della specifica OpenAPI, garantendo coerenza tra il contratto
documentato e le risposte restituite all’applicazione. In questo modo è stato possi-
bile iterare rapidamente sull’integrazione: una modifica alla specifica comportava
la rigenerazione del client e l’aggiornamento del mock, consentendo di testare im-
mediatamente l’effetto sui flussi dell’applicazione attraverso gli emulatori. Questa
modalità di lavoro è risultata particolarmente efficace per un prototipo, perché
ha permesso di concentrarsi sulla qualità del contratto e sull’esperienza d’uso lato
mobile, rimandando a una fase successiva l’implementazione definitiva del backend.

5.2 Implementazione dei moduli principali
Il punto di partenza lato frontend era un prototipo dell’applicazione PoliTO
Faculty in cui i dati relativi al profilo docente, agli incarichi didattici, alla firma
digitale e alle prenotazioni venivano forniti da un unico contesto globale. Questo
provider esponeva al resto dell’applicazione strutture dati mock, definite localmente
e scollegate da qualsiasi contratto API. Non erano presenti né servizi intermedi
né hook dedicati: i componenti di interfaccia leggevano direttamente dal contesto,
mescolando logica di presentazione e logica di accesso ai dati.

L’integrazione con il client TypeScript generato dalla specifica OpenAPI ha
richiesto un ripensamento dell’architettura di accesso ai dati. Si è adottato uno
schema a tre livelli:

Componenti UI → React Query Hooks → Client API generato

I componenti non interagiscono più con provider globali o chiamate HTTP dirette,
ma utilizzano hook sviluppati per gestire la comunicazione con il server. Questi hook

29

Implementazione e Integrazione

incapsulano la logica di interrogazione e aggiornamento dei dati, appoggiandosi al
client TypeScript fornito dalla libreria @polito/api-client [18]. In questo modo
è stato possibile:

• eliminare la dipendenza dal contesto globale contenente i dati mock;

• separare in modo netto la logica di presentazione dalla logica di integrazione
con le API;

• sfruttare la type safety ottenuta a partire dalla specifica OpenAPI.

La configurazione globale di React Query, definita in un QueryClient condiviso,
gestisce in modo uniforme caching, politiche di retry, invalidazione e gestione degli
errori [19]. Ogni hook definisce una queryKey costante, uno queryFn che invoca il
client generato e, dove necessario, una pipeline di trasformazioni.

Nei paragrafi seguenti vengono descritti i moduli principali coinvolti dall’inte-
grazione.

Profilo docente
Nel prototipo iniziale, le informazioni di profilo del docente (dati anagrafici, struttu-
ra di afferenza, contatti) venivano esposte al resto dell’applicazione tramite oggetti
mock costruiti ad hoc per le schermate.

Con l’introduzione del client generato, il modulo è stato ristrutturato come
segue:

• è stato introdotto un hook dedicato alla lettura del profilo che istanzia il
client FacultyProfileApi e incapsula la chiamata all’endpoint corrispondente,
restituendo al componente i soli dati necessari, insieme agli stati isLoading,
isError e refetch;

• la risposta del client viene elaborata in una pipeline che estrae il campo data,
esegue eventuali trasformazioni per la formattazione (es. normalizzazione di
stringhe, composizione di campi derivati) e infine mappa le informazioni in
modo da utilizzare lo stesso formato del modello già utilizzato dal componente
del profilo.

La schermata di profilo, mostrata in Figura 5.1, utilizza l’hook per popolare
i dati anagrafici e di contatto del docente. La vista rimane invariata rispetto al
prototipo iniziale, ma i valori visualizzati provengono ora dalle entità esposte dalle
API del dominio Faculty.

La schermata di profilo continua così ad avere la stessa logica, ma i valori
provengono ora dal contratto definito in OpenAPI e non più da oggetti mock
definiti manualmente.

30

Implementazione e Integrazione

Figura 5.1: Schermata principale del profilo docente nell’applicazione PoliTO
Faculty.

Incarichi didattici e gestione corsi
Anche gli incarichi didattici e, più in generale, il dominio corsi facevano affidamento
sul contesto, che esponeva liste di corsi, lezioni e studenti iscritti tramite oggetti
mock.

La nuova integrazione ha introdotto due livelli di accesso ai dati:

• un set di hook responsabili rispettivamente per le operazioni di lettura sui
corsi e sui relativi studenti;

• l’utilizzo combinato dei client generati CommonCoursesApi e di un wrapper
FacultyCoursesApi, che incapsula le operazioni specifiche del dominio docente

31

Implementazione e Integrazione

sugli stessi corsi (ad esempio azioni che riguardano solo i docenti, come la
gestione dei collaboratori).

La schermata Teaching, riportata in Figura 5.2, rappresenta uno degli esiti più
rilevanti dell’integrazione con la nuova specifica. Le liste degli insegnamenti e degli
appelli d’esame sono infatti alimentate dagli hook di React Query che interrogano i
client CommonCoursesApi e FacultyExamsApi, garantendo il rispetto del contratto
OpenAPI e mostrando lo stesso tipo di informazioni.

Figura 5.2: Schermata Teaching con i corsi e gli appelli d’esame del docente.

Gli hook adottano il seguente pattern: istanziano il client, eseguono la chiamata
API nel queryFn di React Query e applicano una serie di trasformazioni sui dati.
Queste trasformazioni sono state isolate in funzioni di conversione dedicate, che si
occupano di:

32

Implementazione e Integrazione

• mappare le enumerazioni e i codici restituiti dall’API in etichette testuali
comprensibili e adatte all’interfaccia utente;

• convertire le date ISO in oggetti Date e in stringhe formattate per la visualiz-
zazione;

• appiattire strutture annidate (ad esempio combinando informazioni su sede,
edificio e aula in un’unica stringa descrittiva);

• gestire null e campi opzionali assegnando valori di default adeguati.

Le schermate degli incarichi (lista degli insegnamenti, dettaglio del corso, elenco
degli studenti e dei collaboratori) sono state progressivamente migrate a questo
modello: al posto di leggere direttamente dai dati mock, consumano gli hook React
Query, beneficiando della cache, del recupero in caso di errore e del supporto alla
funzionalità di pull-to-refresh.

Firma digitale
La firma digitale rappresenta uno dei flussi più delicati per i docenti, perché coinvolge
documenti amministrativi e richiede un processo a più step (inizializzazione, verifica
tramite OTP, conferma tramite PIN). Nel prototipo iniziale, anche questo flusso
era simulato tramite dati mock e transizioni di stato gestite interamente lato client.

L’integrazione con le API del dominio Faculty ha portato alla definizione di
hook dedicati al ciclo di firma, che incapsulano le chiamate verso gli endpoint
/faculty/signing/*. A livello concettuale, ogni passaggio è modellato da un
hook che:

• Accesso al servizio: recupera il client per la firma digitale utilizzando una
factory function dedicata;

• Gestione operazioni: esegue le diverse fasi del processo (inizializzazione
sessione, verifica OTP, firma) tramite una mutation di React Query;

• Mapping degli errori: intercetta le eccezioni API (es. OTP non valido,
sessione scaduta) e le converte, tramite funzioni ausiliarie, in messaggi chiari
e stati gestibili dall’interfaccia utente.

La vista principale del modulo di firma digitale, riportata in Figura 5.3, distingue
i documenti ancora da firmare da quelli già firmati. Il recupero dei dati avviene
tramite una query all’endpoint del dominio Faculty, filtrando poi i risultati in base
al loro stato.

Una volta selezionato un documento, il flusso di firma, prevede: invio dell’OTP,
inserimento del codice ricevuto e conferma tramite PIN. La Figura 5.4 mostra la

33

Implementazione e Integrazione

Figura 5.3: Lista dei documenti da firmare e dei documenti già firmati nel modulo
di firma digitale.

34

Implementazione e Integrazione

schermata di inserimento dell’OTP, che riflette lo stato restituito dalla risposta
API (invio del codice al recapito impostato) e permette di gestire esplicitamente
errori e tentativi falliti.

La Figura 5.5 illustra l’ultimo passaggio del processo, ossia l’inserimento del
PIN, la cui validazione conclude il flusso previsto per la firma del documento.

Figura 5.4: Step di inserimento dell’OTP nel flusso di firma digitale.

La UI non interagisce direttamente con il client, ma si appoggia esclusivamente
agli hook, limitandosi a gestire i diversi stati dell’operazione (idle, caricamento,
successo ed errore). Questo consente di mantenere centralizzato il flusso di firma
definito nella specifica OpenAPI, evitando che venga inclusa della logica all’interno
dei componenti.

35

Implementazione e Integrazione

Figura 5.5: Step di inserimento del PIN nel flusso di firma digitale.

36

Implementazione e Integrazione

Prenotazioni di spazi e aule

Infine, il modulo delle prenotazioni di spazi è passato da una gestione completa-
mente mock ad un’integrazione con le API. In origine le richieste visualizzate nelle
schermate erano oggetti statici forniti dall’apposito contesto, utili per validare i
flussi di interazione ma privi di qualsiasi legame con i dati reali.

La nuova implementazione si basa su un insieme di hook che coprono i principali
casi d’uso (lista delle prenotazioni del docente, creazione, aggiornamento e cancel-
lazione di una prenotazione) e utilizzano il client generato per le prenotazioni. Le
mutation che eseguono operazioni di creazione o annullamento invalidano automa-
ticamente le query corrispondenti, così che la lista visualizzata rimanga aggiornata
rispetto allo stato restituito dal backend.

Il dettaglio di una singola prenotazione, riportato in Figura 5.6, mostra il
risultato di questa integrazione: tutti i campi visualizzati (intervallo temporale,
luogo, capacità, attrezzature e servizi) derivano dal modello restituito dal client
e trasformato dal placeBookingAdapter. L’azione di cancellazione è collegata a
un endpoint dedicato e gestita tramite una mutation React Query, che si occupa
anche di aggiornare la cache in seguito all’operazione.

Gli adapter svolgono una funzione di traduzione: si occupano della conversione
delle date e degli intervalli orari, del mapping dei tipi di prenotazione nei valori
interni utilizzati dall’applicazione, dell’arricchimento dei dati con flag calcolati (ad
esempio per indicare se una prenotazione può ancora essere modificata) e della
gestione delle eventuali discrepanze tra la rappresentazione prevista dall’API e
quella richiesta dalla UI.

Grazie a questo approccio, tutti i moduli dell’applicazione sono stati comple-
tamente integrati con il client TypeScript generato dalla specifica OpenAPI. Il
prototipo basato su dati mock è stato progressivamente sostituito da un’architet-
tura basata sulle chiamate API, in cui ogni flusso è gestito da hook tipizzati di
React Query e da funzioni di conversione dedicate. Questa metodologia consente di
mantenere un allineamento costante tra il modello definito nel capitolo precedente
e le esigenze operative dell’interfaccia utente.

5.3 Gestione dei dati mock e validazione con il
frontend

Durante questa fase, l’applicazione PoliTO Faculty ha continuato a basarsi su dati
mock, ma con una differenza sostanziale rispetto al prototipo iniziale: i mock sono
stati allineati in modo esplicito alla struttura definita nella specifica OpenAPI.

37

Implementazione e Integrazione

Figura 5.6: Dettaglio di una prenotazione con l’azione di cancellazione integrata
via API.

38

Implementazione e Integrazione

Nel repository api-spec è stato introdotto il file openapi-examples.yaml, che
raccoglie payload di esempio coerenti con gli schemi dei vari domini (Common,
Students, Faculty). Questo file svolge un duplice ruolo:

• fornire esempi da utilizzare come riferimento per i mock, così che i dati simulati
rispettino i vincoli di struttura, tipi e campi obbligatori definiti dalla specifica;

• costituire una base per la documentazione e per i test manuali, permettendo
di verificare rapidamente se le schermate dell’app riescono a visualizzare
correttamente tutte le informazioni utilizzando la struttura definita nella
specifica.

La validazione con il frontend avviene quindi su due livelli:

1. Validazione di compilazione, garantita dai tipi generati nel client Ty-
peScript: eventuali discrepanze tra modelli usati dall’applicazione e schemi
definiti in OpenAPI emergono come errori di tipo in fase di sviluppo.

2. Validazione visiva e di flusso, ottenuta caricando nelle schermate dati mock
costruiti a partire dagli esempi della specifica e verificando che le interazioni
(liste, dettagli, azioni di aggiornamento) risultino coerenti con le aspettative
dei docenti.

Esempi di adattamento dell’interfaccia
L’integrazione con le API reali ha evidenziato che alcuni flussi del prototipo non
erano perfettamente compatibili con quelli previsti dal contratto.

Un caso significativo è quello della firma digitale: nella prima versione del
frontend il flusso era modellato come un’unica azione di conferma, mentre le API
del dominio Faculty espongono un processo composto da due step distinti (verifica
dell’OTP e conferma tramite PIN). Per allineare l’interfaccia al comportamento
del backend è stato necessario introdurre due schermate dedicate, rispettivamente
per la richiesta dell’OTP e per l’inserimento del PIN, e aggiornare gli hook di
integrazione per gestire i diversi stati restituiti dalle chiamate (invio del codice,
errori di validazione, sessioni scadute). Le schermate mostrate nelle Figure 5.4 e 5.5
sono il risultato di questo adattamento.

Un intervento più contenuto ha riguardato l’introduzione di una sezione News per
i docenti, ottenuta portando nell’applicazione PoliTO Faculty una funzionalità già
presente nell’applicazione dedicata agli studenti. In questo caso è stato sufficiente
definire nuovi hook React Query che riutilizzano le API del dominio comune e
connetterli a componenti di lista esistenti, seguendo gli stessi pattern di conversione
adottati per gli altri moduli.

39

Implementazione e Integrazione

5.4 Controllo della qualità del codice
L’integrazione con il client TypeScript generato si appoggia su una serie di strumenti
pensati per mantenere omogeneo e manutenibile il codice dell’applicazione. A livello
di progetto vengono utilizzati ESLint e Prettier, affiancati dal type checking di
TypeScript in modalità strict [20, 21]. La configurazione di ESLint estende le regole
ufficiali per React Native e introduce controlli specifici sull’uso di TypeScript, sulla
gestione degli import e sull’utilizzo della console, mentre Prettier si occupa della
formattazione automatica e dell’ordinamento coerente degli import.

Gli script npm dedicati (lint, format, typecheck) consentono di eseguire in
modo ripetibile le verifiche di linting, formattazione e type checking, con una
politica di tolleranza zero rispetto ai warning di ESLint. Queste verifiche vengono
applicate in più punti: localmente tramite pre-commit hook (gestiti con Husky e
lint-staged, che eseguono auto-fix e formattazione sui file modificati), in fase
di pre-push attraverso lo script npm run check e infine in CI, dove un workflow
GitHub dedicato esegue in parallelo lint, format check e type checking su ogni pull
request [22, 23].

In parallelo ai controlli sintattici e di stile, il progetto adotta alcune convenzioni
architetturali legate all’uso del client API generato. Le chiamate verso le API sono
concentrate negli hook React Query definiti in src/core/queries/, che fungono
da unico punto di accesso ai client; i tipi esposti dal client non vengono propagati
direttamente ai componenti, ma attraversano funzioni di conversione dedicate che
mappano le entità delle API in modelli interni all’applicazione. Questa combinazione
di regole di stile, verifica statica e convenzioni di progetto contribuisce a mantenere
chiaro il confine tra integrazione con il backend e logica di presentazione, riducendo
la possibilità di introdurre code smell o dipendenze non desiderate.

Dal punto di vista dell’applicazione, questo approccio ha due effetti concreti:

1. ogni versione del client TypeScript è riconducibile a una versione specifica
della PoliTO API, semplificando il tracciamento delle dipendenze;

2. l’aggiornamento del client nel progetto PoliTO Faculty avviene partendo da
una specifica già validata, riducendo il rischio di dover gestire errori strutturali
direttamente nel codice dell’app.

Nel complesso, il lavoro descritto in questo capitolo ha permesso di passare da
un prototipo basato esclusivamente su dati mock a un’applicazione API-first, in
cui la specifica OpenAPI, il client TypeScript generato, gli hook React Query e la
pipeline di validazione costituiscono un’unica catena coerente.

Su queste basi è stata impostata la fase successiva di verifica tecnica: il capi-
tolo seguente descrive i test manuali e le prove automatizzate condotte sui casi

40

Implementazione e Integrazione

d’uso prioritari, con l’obiettivo di valutare in modo sistematico la correttezza del
comportamento osservato rispetto al contratto definito dalle API.

41

Capitolo 6

Verifica Tecnica
dell’Integrazione

Il lavoro descritto nei capitoli precedenti ha portato alla definizione di una specifica
OpenAPI aggiornata, alla generazione di un client TypeScript e alla loro integrazione
all’interno del prototipo mobile PoliTO Faculty. Questo capitolo descrive come
tale integrazione sia stata verificata dal punto di vista tecnico, combinando prove
manuali sull’applicazione con una serie di test automatici sui componenti chiave
del codice.

6.1 Obiettivi della verifica tecnica
La verifica è stata svolta sul prototipo PoliTO Faculty, collegato a un backend
mock basato su Prism [17]. Non è stato quindi utilizzato un ambiente di Ateneo
reale, ma un server che restituisce risposte coerenti con il bundle OpenAPI descritto
nel capitolo precedente.

L’obiettivo principale della verifica tecnica era:

• dimostrare che il client TypeScript generato dalla specifica OpenAPI fosse
effettivamente utilizzabile dall’applicazione, senza discrepanze strutturali tra i
tipi generati e i payload scambiati con il backend;

• verificare che l’applicazione fosse in grado di rappresentare correttamente, a
livello di interfaccia utente, le risposte delle API per i principali casi d’uso
lato docente, mantenendo coerenza con i modelli introdotti nella specifica.

L’attenzione è stata rivolta in particolare ai flussi che caratterizzano l’utilizzo
quotidiano dell’app da parte di un docente: autenticazione e login, consultazione
del profilo, gestione degli incarichi didattici e degli esami, modulo di firma digitale,

42

Verifica Tecnica dell’Integrazione

prenotazioni di spazi, consultazione di news ed emergenze, ricerca persone. Per
ciascuna di queste aree, l’obiettivo minimo era che almeno un percorso happy path
potesse essere completato senza errori, utilizzando esclusivamente le API definite
nella nuova specifica.

6.2 Metodologia di validazione
La verifica tecnica è stata condotta adottando una combinazione di prove manuali
sull’applicazione in esecuzione e test automatici sui componenti di integrazione con
le API. In questa sezione vengono descritti l’ambiente di test, il modo in cui sono
stati eseguiti i flussi manuali e il perimetro dei test automatici implementati.

Scelte di validazione e perimetro dei test
Le attività di verifica tecnica sono state impostate con l’obiettivo di dimostrare la
fattibilità dell’integrazione tra la specifica OpenAPI aggiornata, il client TypeScript
generato e il prototipo mobile PoliTO Faculty. In altre parole, la validazione è
stata svolta per verificare che i flussi principali potessero essere eseguiti end-to-end
dal punto di vista dell’applicazione, più che a certificare la prontezza del sistema
per un rilascio in produzione.

In questa prospettiva, sono stati privilegiati test funzionali condotti sugli emu-
latori, utilizzando come backend un server mock basato su Prism configurato
direttamente a partire dalla specifica. Questa scelta ha permesso di concentrare
l’attenzione sulla coerenza del contratto e sulla correttezza dell’integrazione lato
client, riducendo i tempi necessari per allestire e mantenere un ambiente backend
reale, che sarebbe stato fuori scala rispetto alle risorse disponibili per una tesi
magistrale.

Allo stesso tempo, sono state escluse dal perimetro della validazione alcune
tipologie di test che, pur rilevanti in un contesto di produzione, avrebbero richiesto
uno sforzo difficilmente compatibile con lo scopo di questo lavoro. In particolare,
non sono stati eseguiti test di carico o di performance sulle API, né sono state
condotte verifiche specifiche sugli aspetti di sicurezza applicativa. Anche l’auto-
mazione completa di scenari end-to-end su emulatori è stata considerata fuori dal
perimetro, privilegiando invece una combinazione di test manuali sui flussi critici e
test automatici mirati sui componenti di integrazione più sensibili (come hook e
converter).

Nel complesso, le scelte di validazione riflettono quindi un compromesso con-
sapevole: da un lato garantire un livello di confidenza adeguato sulla correttezza
dell’integrazione tra specifica, client e prototipo mobile; dall’altro mantenere il
focus sul contributo principale della tesi, evitando di disperdere le risorse su attività
che appartengono più propriamente a una fase di industrializzazione del sistema.

43

Verifica Tecnica dell’Integrazione

6.2.1 Ambiente di test e strumenti
Dal punto di vista infrastrutturale, l’ambiente di verifica era composto da:

• il repository api-spec, configurato per generare il bundle openapi.yaml a
partire da src/index.yaml e per avviare un server mock basato su Prism, in
grado di rispondere alle richieste secondo gli schemi e gli esempi definiti nella
specifica;

• il repository dell’applicazione PoliTO Faculty, in esecuzione in modalità di
sviluppo su emulatore, configurata per utilizzare il client TypeScript generato
come unico punto di accesso alle API;

• gli strumenti di supporto allo sviluppo già introdotti nel capitolo precedente
(script npm, React Native, React Query, TypeScript in modalità strict).

L’esecuzione sull’emulatore, in combinazione con il server mock, ha permesso
di iterare rapidamente sulle modifiche alla specifica e alla logica di integrazione,
sfruttando le funzionalità di Fast Refresh per osservare quasi in tempo reale gli
effetti dei cambiamenti [6].

6.2.2 Verifica manuale dei flussi applicativi
La parte principale della verifica è stata svolta in modo manuale, eseguendo
sull’emulatore flussi d’uso realistici per ciascuna sezione dell’applicazione. Non
sono state predisposte checklist formali o casi di test dettagliati, ma per ogni
area funzionale è stato seguito un percorso rappresentativo di come un utente
utilizzerebbe l’app:

• accesso all’applicazione tramite schermata di login, con verifica del corretto
instradamento verso le viste protette;

• consultazione del profilo docente e delle informazioni di contatto;

• navigazione nella sezione Teaching, con visualizzazione della lista corsi e degli
appelli d’esame, accesso alle liste di studenti e collaboratori;

• utilizzo del modulo di firma digitale, dalla lista dei documenti da firmare
all’inserimento di OTP e PIN;

• visualizzazione e gestione delle prenotazioni di spazi associati al docente;

• consultazione di news ed emergenze, incluse la lista e il dettaglio delle
segnalazioni;

44

Verifica Tecnica dell’Integrazione

• esecuzione di ricerche di persone, per verificare la corretta integrazione delle
nuove API di directory.

Per ciascuno di questi flussi è stato verificato che:

• i dati visualizzati fossero coerenti con la struttura delle risposte REST simulate
dal server mock;

• non emergessero errori applicativi o stati incoerenti nel passaggio tra le
schermate;

• l’interfaccia mantenesse lo stesso comportamento definito dal prototipo iniziale.

Questo tipo di verifica ha permesso di individuare rapidamente eventuali discre-
panze tra la specifica OpenAPI e le esigenze concrete della UI, oltre a fornire una
prima conferma della solidità del modello API-first adottato.

6.2.3 Test automatici su hook e componenti di integrazione
Oltre alla verifica manuale, il progetto prevede anche una serie di test automatici,
concentrati in particolare sugli hook di React Query e sulle funzioni di supporto
utilizzate per integrare il client TypeScript all’interno dell’applicazione.

I test unitari sono stati implementati con Jest e organizzati principalmente in
due categorie [24]:

• test sui converter e sulle utilità di trasformazione dei dati, ad esempio per
il dominio delle segnalazioni di guasto, dove si verifica che le funzioni di
conversione formattino correttamente le date e gestiscano in modo robusto
timestamp mancanti o non validi;

• test sugli hook React Query dedicati ai vari domini (autenticazione, profilo,
corsi, esami, calendario, emergenze, fault, prenotazioni di spazi, news, persone,
studenti), che controllano la creazione dei client specifici, la stabilità delle
chiavi di query e il corretto funzionamento degli helper di cache e di risoluzione
delle risposte.

Il criterio di successo per questa parte automatizzata era che tutti i test unitari
risultassero superati, integrandosi con i controlli di linting, formattazione e type
checking descritti nel capitolo precedente.

6.3 Casi d’uso verificati
In questa sezione vengono sintetizzati i principali casi d’uso verificati durante la
fase di test, sia dal punto di vista della navigazione manuale sull’applicazione, sia
in relazione ai test automatici sui componenti di integrazione.

45

Verifica Tecnica dell’Integrazione

6.3.1 Autenticazione e login
Il primo flusso verificato riguarda l’accesso all’applicazione. È stata introdotta una
schermata di login dedicata, assente nel prototipo iniziale, che permette al docente
di autenticarsi prima di accedere alle sezioni protette. La verifica ha riguardato:

• la corretta interazione con le API di autenticazione, tramite il client TypeScript
generato;

• la propagazione dello stato di autenticazione nel contesto dell’app;

• il passaggio dalla schermata di login alla pagina principale dell’applicazione
senza errori.

6.3.2 Profilo docente
Per il profilo, la verifica ha interessato la sezione che espone i dati anagrafici e
amministrativi del docente.

Il flusso testato prevede:

• l’accesso alla schermata di profilo;

• il caricamento dei dati dal backend mock tramite l’hook dedicato e il client
del dominio Faculty;

• la visualizzazione e, quando previsto, l’aggiornamento dei dati anagrafici e
amministrativi, delle pubblicazioni e dei di corsi in gestione;

L’obiettivo era verificare che lo schema del profilo definito nella specifica OpenAPI
fosse sufficiente a popolare la vista così come modellata nel prototipo.

6.3.3 Incarichi didattici, corsi ed esami
La sezione Teaching riunisce le funzionalità legate agli incarichi didattici e alla
gestione degli esami.

Per i corsi sono stati verificati:

• il caricamento della lista degli insegnamenti associati al docente;

• l’apertura del dettaglio di un singolo corso, con accesso alle liste di studenti e
collaboratori;

• la gestione degli avvisi del corso, del materiale didattico, del registro lezioni e
degli elaborati;

46

Verifica Tecnica dell’Integrazione

• la coerenza tra i dati restituiti dalle API e quelli visualizzati (titolo del corso,
anno accademico, numero di iscritti, ruoli dei collaboratori).

Per gli esami, la verifica ha riguardato:

• la lista degli appelli d’esame lato docente;

• il dettaglio di un appello, con elenco degli studenti iscritti e informazioni
principali (data, orario, aula);

• l’utilizzo delle API specifiche per la notifica agli iscritti.

In entrambi i casi, lo scopo era dimostrare che gli hook React Query e i client dei
domini Courses ed Exams fossero in grado di sostenere i flussi previsti, utilizzando
i modelli definiti nella specifica.

6.3.4 Flusso di firma digitale
Il modulo di firma digitale rappresenta uno dei casi d’uso più delicati. La verifica
ha riguardato due aspetti complementari:

• la lista dei documenti, suddivisi tra documenti ancora da firmare e documenti
già firmati;

• il flusso di firma vero e proprio, modellato come processo a due step (OTP e
PIN) in linea con le nuove API.

Partendo dalla schermata di visualizzazione della lista di documenti, è stato
verificato che:

• le chiamate agli endpoint /faculty/signing/documents restituissero un
insieme di documenti coerente con le aspettative della UI;

• la selezione di un documento conducesse correttamente alle schermate di
inserimento OTP e PIN, collegate alle rispettive mutazioni React Query;

• la sequenza OTP → PIN potesse essere completata senza errori, con aggiorna-
mento dello stato del documento nella lista.

Questo caso d’uso ha confermato la capacità del prototipo di riflettere in modo fedele
il flusso di firma digitale descritto nella specifica OpenAPI, dopo l’adattamento
dell’interfaccia rispetto al prototipo originale a singolo step.

47

Verifica Tecnica dell’Integrazione

6.3.5 Prenotazioni di spazi
Per le prenotazioni, la verifica si è concentrata sulla consultazione e gestione delle
richieste associate al docente. Il flusso testato comprende:

• la visualizzazione della lista delle prenotazioni, alimentata dagli hook che
interrogano le corrette API;

• l’apertura del dettaglio di una prenotazione, con controllo di tutti i campi
visualizzati (intervallo temporale, luogo, capacità, attrezzature, servizi);

• l’esecuzione di operazioni di aggiornamento o cancellazione, con verifica del
corretto aggiornamento della lista in seguito alle mutation.

La presenza di un adattatore dedicato per il dominio delle prenotazioni ha reso
possibile mantenere un modello interno coerente con la UI, pur in presenza di
schemi API relativamente articolati.

6.3.6 News ed emergenze
Sono stati testati anche i flussi di consultazione di news ed emergenze, che
riutilizzano in parte API già presenti per l’applicazione rivolta agli studenti.

Per quanto riguarda le news, il flusso di verifica ha considerato i seguenti aspetti:

• il caricamento della lista di news tramite le API;

• l’apertura del dettaglio di una singola notizia.

Per le emergenze, sono stati verificati:

• la lista delle emergenze istituzionali, basata sugli endpoint /emergencies;

• il dettaglio di una singola emergenza, con controllo dei campi principali (titolo,
descrizione, data, eventuali indicazioni operative).

Questi flussi hanno permesso di valutare la capacità della specifica estesa di coprire
casi d’uso trasversali, non legati esclusivamente ai servizi tipici della didattica.

6.3.7 Ricerca persone
Infine, è stato testato il flusso di ricerca persone, che consente al docente di
individuare membri della comunità accademica a partire da una stringa di ricerca.

La verifica ha riguardato:

• l’inserimento di una query nella schermata di ricerca;

48

Verifica Tecnica dell’Integrazione

• il caricamento dei risultati, con elenco di persone corrispondenti;

• la visualizzazione di informazioni sintetiche (nome, struttura, ruolo), utili per
contestualizzare i risultati.

Questo caso d’uso è stato uno dei punti in cui è stato necessario intervenire sugli
schemi delle API, come descritto nella sezione successiva.

6.3.8 Ambito coperto dai test automatici
I test automatici hanno affiancato la verifica manuale coprendo soprattutto:

• le funzioni di conversione dei dati, ad esempio per le segnalazioni di guasto,
dove è importante garantire una formattazione consistente delle date e una
gestione robusta dei valori mancanti;

• gli hook React Query dei principali domini applicativi (autenticazione, profi-
lo, corsi, esami, calendario, emergenze, guasti, prenotazioni, news, persone,
studenti), verificando la creazione dei client corretti, le chiavi di query e il
funzionamento degli helper di cache.

Questa copertura, pur non esaustiva, ha fornito un ulteriore livello di confidenza
sulla stabilità dell’integrazione, soprattutto in presenza di cambiamenti incrementali
della specifica.

6.4 Risultati e osservazioni
La combinazione di prove manuali e test automatici ha prodotto una serie di
risultati che possono essere sintetizzati su due livelli: esito complessivo dei flussi e
osservazioni su incongruenze emerse tra specifica e implementazione.

6.4.1 Esito complessivo
Dal punto di vista funzionale, tutti i flussi considerati prioritari per i docenti sono
stati portati a termine con successo sull’emulatore, utilizzando il server mock basato
sulla specifica OpenAPI estesa.

In particolare: la sequenza login → sezioni Teaching, Agenda, Mappe, Servizi, e
Profilo è risultata percorribile senza errori bloccanti.

Sul fronte dei test automatici, tutti i test unitari Jest implementati sui converter
e sugli hook risultano superati. Questo indica che le assunzioni fatte in fase di
integrazione (creazione dei client, chiavi di cache, mapping delle risposte) sono
compatibili con la specifica corrente.

49

Verifica Tecnica dell’Integrazione

6.4.2 Incongruenze tra API e UI emerse durante i test
La verifica ha portato alla luce alcune incongruenze tra quanto definito inizialmente
nella specifica OpenAPI e quanto richiesto, in pratica, dall’interfaccia utente.

Un primo caso ha riguardato gli eventi a calendario: durante la consultazione
dell’agenda docente si è evidenziato che alcuni campi necessari alla vista non erano
presenti nella risposta degli endpoint del dominio Faculty Calendars. Per risolvere la
discrepanza è stato necessario estendere gli schemi relativi agli eventi, aggiungendo
i campi mancanti direttamente nella specifica OpenAPI e rigenerando il client
TypeScript, in modo che i converter potessero lavorare su un modello completo.

Un secondo caso ha coinvolto il flusso di ricerca persone. La UI prevedeva la
visualizzazione del role name per ciascun risultato, ma la risposta delle API di
directory non includeva inizialmente questa informazione. Anche in questo scenario
la soluzione ha richiesto un aggiornamento della specifica: il campo relativo al
ruolo è stato aggiunto allo schema della persona, con conseguente rigenerazione del
client e aggiornamento del mapping lato frontend.

Questi episodi mostrano come la verifica tecnica, pur svolta su un prototipo
collegato a un backend mock, abbia avuto un impatto diretto sulla qualità della
specifica, colmando alcune lacune del contratto.

6.4.3 Impatto sulla robustezza dell’integrazione
Nel complesso, i risultati ottenuti suggeriscono che l’approccio adottato, basato
su una specifica OpenAPI evoluta, sulla generazione del client TypeScript e su
una serie di convenzioni per l’uso degli hook React Query, è adeguato a sostenere i
flussi principali della PoliTO Faculty app.

La presenza di test unitari su converter e hook ha contribuito a mantenere stabili
le interfacce interne quando gli schemi venivano aggiornati, riducendo il rischio di
regressioni nella gestione dei dati.

6.5 Limitazioni della validazione tecnica
La verifica descritta in questo capitolo presenta alcuni limiti intrinseci, legati sia alle
scelte metodologiche sia ai vincoli pratici del progetto. È importante esplicitarli per
delimitare il perimetro dei risultati ottenuti e chiarire quali aspetti richiederanno
ulteriori approfondimenti in fasi successive.

6.5.1 Assenza di un backend reale
Tutti i test sono stati condotti utilizzando un server mock basato su Prism, confi-
gurato a partire dal bundle OpenAPI. Questo ha permesso di concentrarsi sulla

50

Verifica Tecnica dell’Integrazione

coerenza tra specifica, client e applicazione, ma ha escluso dalla verifica:

• l’integrazione con sistemi esterni reali e con i dati effettivamente presenti nei
sistemi di Ateneo;

• la gestione di casi limite e dati anomali che emergono tipicamente solo in
ambienti di produzione o pre-produzione;

• eventuali vincoli infrastrutturali, come latenza, limiti di rate o altre restrizioni,
che potrebbero influire sul comportamento dell’applicazione.

L’assenza di un ambiente di staging reale è quindi un limite esplicito: l’obiettivo
della verifica non era certificare il comportamento dell’intero ecosistema, ma valutare
se la specifica OpenAPI fosse sufficiente a sostenere i flussi del prototipo [1].

6.5.2 Performance e carichi reali
Non sono stati eseguiti test di performance o di carico. In particolare:

• non sono state simulate richieste concorrenti da parte di più utenti;

• non sono stati misurati tempi di risposta in scenari di stress;

• non è stata analizzata in dettaglio l’efficienza delle strategie di caching lato
client in condizioni di uso intensivo.

Questi aspetti esulano dall’ambito del lavoro svolto, che si è concentrato sulla
correttezza funzionale dei flussi e sulla coerenza tra modelli di dominio, specifica e
interfaccia.

6.5.3 Sicurezza applicativa
La validazione tecnica non ha incluso test specifici di sicurezza, come analisi di
vulnerabilità, penetration test o simulazioni di attacchi mirati. Gli aspetti di
sicurezza sono stati considerati principalmente in fase di progettazione, ma non
hanno costituito una fase di verifica autonoma.

In una prospettiva futura, una valutazione di sicurezza completa richiederebbe
la disponibilità di un backend reale e il coinvolgimento dei team responsabili della
sicurezza applicativa e infrastrutturale.

51

Verifica Tecnica dell’Integrazione

6.5.4 Copertura dei test automatici
Infine, anche la copertura dei test automatici presenta dei limiti. I test unitari
implementati mirano a verificare il comportamento di singole funzioni (converter,
hook, helper di cache), senza coprire l’intero spettro dei flussi utente end-to-end.

Questa copertura è adeguata rispetto all’obiettivo di verificare la solidità del-
l’integrazione in un contesto di prototipo, ma non sostituisce una suite completa
di test di integrazione e di sistema, che sarà necessaria in vista di un eventuale
rilascio in ambienti più vicini alla produzione.

In sintesi, la validazione tecnica ha confermato che la specifica OpenAPI aggior-
nata e il client TypeScript generato sono adeguati a sostenere i principali flussi
previsti dal prototipo PoliTO Faculty, consentendo al tempo stesso di affinare il
contratto API e correggere alcune lacune emerse durante i test. L’attività svolta ha
inoltre messo in luce ambiti, come performance, sicurezza e verifiche su un backend
reale, che richiederanno interventi dedicati nelle fasi successive del progetto.

52

Capitolo 7

Conclusioni e Sviluppi
Futuri

L’obiettivo generale di questa tesi era la progettazione e integrazione di un livello
API robusto, documentato e verificabile per PoliTO Faculty, partendo dai bisogni
emersi rispetto all’applicazione esistente. Nei capitoli centrali il lavoro si è con-
centrato sugli aspetti tecnici: evoluzione della specifica PoliTO API, generazione
del client TypeScript e integrazione all’interno del prototipo mobile dedicato ai
docenti. In questo capitolo vengono riassunti i risultati ottenuti, l’impatto sul
progetto PoliTO Faculty, i principali limiti del lavoro svolto e le possibili direzioni
di sviluppo futuro.

7.1 Sintesi dei risultati ottenuti
Dal punto di vista tecnico, i risultati della tesi possono essere ricondotti a tre
punti principali: la ristrutturazione della specifica PoliTO API, l’introduzione del
dominio Faculty e l’integrazione del client generato nel prototipo mobile.

Per quanto riguarda la specifica è stata riorganizzata passando da un file
monolitico a una struttura OpenAPI modulare, suddivisa per domini (Common,
Students, Faculty) e composta da componenti riusabili. L’introduzione di schemi
condivisi, parametri e risposte centralizzate ha reso più semplice estendere le API
e mantenere coerenza tra i vari moduli. La configurazione degli script npm per il
bundling, la validazione e la generazione del client ha inoltre reso più agevole il
processo di aggiornamento della specifica.

Parallelamente, è stato definito e documentato un insieme di API dedicate ai
docenti. Il dominio Faculty copre i principali casi d’uso identificati per PoliTO
Faculty: consultazione e aggiornamento del profilo, gestione di corsi ed esami lato

53

Conclusioni e Sviluppi Futuri

docente, flusso di firma digitale, consultazione di calendari ed eventi, integrazione
con emergenze e prenotazioni già modellate nel dominio comune.

Infine, la specifica è stata collegata a un client TypeScript generato automa-
ticamente e integrata nel prototipo mobile. L’applicazione, inizialmente basata
su dati mock e priva di una logica di accesso alle API, è stata progressivamente
adattata ad utilizzare le API: le chiamate verso il backend passano attraverso hook
React Query tipizzati, funzioni di conversione tra tipi API e modelli interni, e un
insieme di pattern condivisi per la gestione di cache, errori e stati di caricamento.
Il risultato è un codice più pulito, leggibile e mantenibile, pronto a dialogare con
un backend reale non appena sarà disponibile.

Nel complesso, il lavoro svolto dimostra che è possibile progettare e integrare un
livello API consistente per PoliTO Faculty, mantenendo allineati specifica, client e
prototipo mobile e ponendo le basi per sviluppi successivi.

7.2 Impatto tecnico sul progetto PoliTO Faculty

L’impatto tecnico sul progetto PoliTO Faculty è significativo, sia lato API sia lato
applicazione mobile.

Per quanto riguarda il progetto api-spec, la nuova struttura modulare rende più
agevole intervenire sulla specifica senza dover manipolare un unico file di grandi
dimensioni. La suddivisione per domini e l’introduzione di componenti riusabili
riducono il rischio di incoerenze tra schemi simili. La presenza di script npm per il
bundling e la validazione, insieme ai workflow GitHub dedicati, consente di inserire
la specifica all’interno di un flusso di integrazione continua, in cui ogni modifica è
verificata prima di essere resa disponibile per la generazione del client.

Dal punto di vista dell’applicazione PoliTO Faculty, l’impatto principale ri-
guarda l’organizzazione del codice e la gestione dell’integrazione con il backend.
L’introduzione di un layer di hook React Query per dominio e l’uso di converter
per separare i tipi API dai modelli interni hanno reso il codice più uniforme e
strutturato. I diversi flussi (profilo, corsi, esami, firma digitale, prenotazioni, emer-
genze, news, ricerca persone) seguono la stessa impostazione: il componente UI si
appoggia a un hook, l’hook utilizza il client generato e i converter si occupano di
adattare le risposte alle esigenze dell’interfaccia.

Questa coerenza architetturale facilita il debugging, riduce la probabilità di
introdurre regressioni quando la specifica cambia e rende più semplice aggiungere
nuove funzionalità basate su API già esistenti. Pur rimanendo confinato a un
prototipo e a un backend mock, il lavoro ha quindi contribuito a chiarire come
dovrebbe essere strutturata l’integrazione tecnica di un’app faculty in un ecosistema
già popolato da altri client (come l’app studenti).

54

Conclusioni e Sviluppi Futuri

7.3 Limiti e margini di miglioramento
Il percorso seguito presenta alcuni limiti che è opportuno esplicitare, sia per
delimitare il perimetro dei risultati, sia per indicare dove il lavoro potrebbe essere
esteso o rafforzato.

Un primo limite riguarda la misurazione degli effetti delle modifiche introdotte.
Il lavoro si è concentrato su una ristrutturazione architetturale e su un’integrazione
tecnica, senza definire in modo sistematico indicatori quantitativi. Di conseguenza,
molti benefici sono stati valutati in termini qualitativi (maggiore leggibilità del
codice, riduzione dei conflitti, facilità di estensione), senza una metrica numerica
che ne quantifichi l’impatto.

Un secondo limite riguarda il processo di testing. I test descritti nel capitolo
precedente sono stati efficaci per individuare discrepanze tra specifica e implemen-
tazione e per verificare il corretto funzionamento degli hook e dei converter, ma
non sono stati guidati da un piano di test formalizzato.

Un terzo limite, già evidenziato nella verifica tecnica, riguarda l’uso di un
backend mock eseguito in locale. L’intero lavoro di integrazione è stato validato
contro un server basato sulla specifica OpenAPI, senza interazione con API reali e
senza accesso a dati di produzione o pre-produzione. Questo approccio ha permesso
di concentrarsi sulla coerenza tra contratto e codice, ma non consente di trarre
conclusioni su aspetti come latenza, prestazioni sotto carico o comportamento in
scenari di errore reali, né di valutare in modo approfondito i profili di sicurezza.

Dal punto di vista dei margini di miglioramento, l’area più evidente è proprio il
processo di testing. Una fase successiva potrebbe prevedere la definizione di casi di
test scritti, allineati ai requisiti applicativi, con indicazione esplicita dei passi da
eseguire, dei dati di partenza e dei risultati attesi. Su questa base sarebbe possibile
estendere la suite automatizzata, passando da test prevalentemente unitari a test
di integrazione e, dove possibile, a test end-to-end che attraversino l’intero stack
dall’API al componente UI. Una struttura di questo tipo renderebbe più robusta
l’evoluzione della specifica e del prototipo nel tempo.

7.4 Sviluppi futuri e possibili estensioni del siste-
ma

Gli sviluppi futuri si collocano idealmente lungo tre direttrici: l’attivazione di
un backend reale, il riuso dei componenti tra le app esistenti e l’estensione delle
integrazioni verso piattaforme esterne.

La prima direttrice riguarda il passaggio da un server mock a un ambiente reale
(o di staging) per la PoliTO API. Una volta che le API modellate nella specifica
saranno implementate, il client TypeScript e il prototipo PoliTO Faculty potranno

55

Conclusioni e Sviluppi Futuri

essere collegati a un backend effettivo, consentendo di verificare il comportamento
dell’applicazione con dati e vincoli infrastrutturali reali. Questo passaggio permet-
terebbe di valutare in modo più concreto le prestazioni, la gestione degli errori,
l’impatto della latenza di rete e, più in generale, la maturità della soluzione in vista
di un eventuale rilascio.

La seconda direttrice riguarda l’allineamento tra l’app studenti e l’app faculty.
Un’evoluzione naturale del lavoro svolto sarebbe la definizione di una libreria UI
condivisa tra i due progetti, costruita a partire dai pattern già consolidati nel
prototipo (liste, schermate di dettaglio, componenti per le card di corsi, esami,
eventi, news, emergenze). Una libreria di questo tipo contribuirebbe a mantenere
coerenza visiva e di comportamento tra le applicazioni, riducendo la duplicazione
di codice e semplificando l’introduzione di nuove funzionalità comuni.

La terza direttrice riguarda il completamento delle integrazioni previste con
piattaforme esterne. Nel lavoro attuale non sono state implementate, ad esempio,
le integrazioni con sistemi come Outlook, che sono però rilevanti per il modo in
cui i docenti organizzano la propria attività quotidiana. La specifica e il prototipo
potrebbero essere estesi per coprire meglio questi scenari, sfruttando i punti di
aggancio già presenti nell’ecosistema PoliTO API e mantenendo coerente il modello
dati tra applicazioni interne e servizi esterni.

Queste direzioni indicano alcune attività concrete che potrebbero proseguire il
lavoro svolto, contribuendo a trasformare il prototipo in un’applicazione matura e
idonea a un rilascio pubblico.

7.5 Considerazioni finali

Il percorso affrontato in questa tesi mostra come, in un contesto già articolato
come quello dei servizi digitali di Ateneo, l’introduzione di un nuovo dominio
applicativo richieda prima di tutto un lavoro di progettazione sul livello API. La
ristrutturazione della specifica PoliTO API, l’introduzione del dominio Faculty e
l’integrazione con il prototipo mobile hanno evidenziato che la qualità del contratto
tra backend e frontend incide direttamente sulla semplicità con cui è possibile
sviluppare, testare e mantenere le funzionalità lato app.

L’esperienza maturata conferma l’importanza di definire una specifica chiara
e coerente prima di investire in modo esteso sullo sviluppo di nuove interfacce.
Un modello API-first limita la duplicazione e rende più prevedibili gli effetti delle
modifiche. Allo stesso tempo, l’uso di pattern consistenti lato applicazione (hook
React Query, converter, gestione centralizzata delle chiavi di cache) contribuisce a
tenere separati i ruoli: le API espongono servizi e dati, l’applicazione si occupa di
presentarli in modo efficace.

56

Conclusioni e Sviluppi Futuri

Pur nei limiti dovuti all’uso di un backend mock e all’assenza di misure quantita-
tive, il lavoro svolto dimostra che PoliTO Faculty può appoggiarsi a un livello API
solido e che i principali casi d’uso dei docenti trovano una rappresentazione tecnica
plausibile all’interno dell’ecosistema esistente. I capitoli dedicati alla progettazione,
all’implementazione e alla verifica tecnica forniscono una base su cui costruire
ulteriori sviluppi, dalla messa in produzione di un backend reale all’estensione delle
funzionalità esposte.

57

Bibliografia

[1] Ian Sommerville. Software Engineering. 10a ed. London: Pearson, 2015 (cit.
alle pp. 2, 10, 51).

[2] OpenAPI Initiative. OpenAPI Specification 3.1.1. https://spec.openapis.
org/oas/v3.1.1.html. 2024. (Visitato il giorno 03/11/2025) (cit. alle pp. 2,
5, 15).

[3] ISO 9241-210:2019 – Ergonomics of human-system interaction – Part 210:
Human-centred design for interactive systems. Geneva, Switzerland: Interna-
tional Organization for Standardization, 2019. url: https://www.iso.org/
standard/77520.html (cit. alle pp. 5, 13).

[4] Mehdi Medjaoui, Erik Wilde, Ronnie Mitra e Mike Amundsen. Continuous
API Management: Making the Right Decisions in an Evolving Landscape.
Sebastopol, CA: O’Reilly Media, 2018 (cit. a p. 5).

[5] Meta Platforms. Setting up the development environment. React Native Do-
cumentation. Accessed: 2025-11-18. 2024. url: https://reactnative.dev/
docs/environment-setup (cit. a p. 5).

[6] Meta Platforms. React Native Documentation. Accessed: 2025-11-18. 2024.
url: https://reactnative.dev/docs/getting-started (cit. alle pp. 5,
27, 44).

[7] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang et al. «A
Survey of Large Language Models». In: arXiv preprint arXiv:2303.18223
(2023) (cit. a p. 8).

[8] Julian Ashwin, Aditya Chhabra e Vijayendra Rao. Using Large Language
Models for Qualitative Analysis can Introduce Serious Bias. Rapp. tecn. 10597.
World Bank Policy Research Working Paper, 2023 (cit. a p. 9).

[9] Andrew Kirkpatrick, Joshue O’Connor, Alastair Campbell e Michael Cooper.
Web Content Accessibility Guidelines (WCAG) 2.2. W3C Recommendation.
World Wide Web Consortium (W3C), 2023. url: https://www.w3.org/TR/
WCAG22/ (cit. a p. 13).

58

https://spec.openapis.org/oas/v3.1.1.html
https://spec.openapis.org/oas/v3.1.1.html
https://www.iso.org/standard/77520.html
https://www.iso.org/standard/77520.html
https://reactnative.dev/docs/environment-setup
https://reactnative.dev/docs/environment-setup
https://reactnative.dev/docs/getting-started
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/

BIBLIOGRAFIA

[10] Politecnico di Torino. PoliTO Students App. https://github.com/polito/
students-app. Repository GitHub open source. 2024 (cit. a p. 14).

[11] Roy Thomas Fielding. «Architectural styles and the design of network-based
software architectures». Tesi di dott. University of California, Irvine, 2000
(cit. a p. 19).

[12] Mark Massé. REST API Design Rulebook: Designing Consistent RESTful
Web Service Interfaces. "O’Reilly Media, Inc.", 2011 (cit. a p. 19).

[13] Michael Jones e Dick Hardt. The OAuth 2.0 Authorization Framework: Bearer
Token Usage. RFC 6750. Internet Engineering Task Force (IETF), 2012. url:
https://tools.ietf.org/html/rfc6750 (cit. a p. 21).

[14] OpenAPI Generator Contributors. OpenAPI Generator: One-stop solution
for modern API client generation. Accessed: 2025-11-03. 2024. url: https:
//openapi-generator.tech/ (cit. alle pp. 25, 27).

[15] OpenJS Foundation. Node.js 18 Documentation. Accessed: 2025-11-03. 2024.
url: https://nodejs.org/docs/latest-v18.x/api/index.html (cit. a
p. 26).

[16] Microsoft Corporation. Visual Studio Code Documentation. Accessed: 2025-
11-03. 2024. url: https://code.visualstudio.com/docs (cit. a p. 27).

[17] Stoplight. Prism: Open-Source API Mocking and Contract Testing. Accessed:
2025-11-03. 2024. url: https://docs.stoplight.io/docs/prism/ (cit. alle
pp. 27, 42).

[18] Microsoft Corporation. TypeScript Documentation. Accessed: 2025-11-03. 2024.
url: https://www.typescriptlang.org/docs/ (cit. a p. 30).

[19] TanStack. TanStack Query v5 Documentation. Accessed: 2025-11-18. 2024.
url: https://tanstack.com/query/latest/docs/framework/react/
overview (cit. a p. 30).

[20] OpenJS Foundation. ESLint: Pluggable JavaScript Linter. Accessed: 2025-11-
03. 2024. url: https://eslint.org/docs/latest/ (cit. a p. 40).

[21] James Chester et al. Prettier: Opinionated Code Formatter. Accessed: 2025-
11-03. 2024. url: https://prettier.io/docs/en/index.html (cit. a
p. 40).

[22] Typicode. Husky: Git hooks made easy. Accessed: 2025-11-03. 2024. url:
https://typicode.github.io/husky/ (cit. a p. 40).

[23] Andrey Okunet. lint-staged Documentation. Accessed: 2025-11-03. 2024. url:
https://github.com/lint-staged/lint-staged (cit. a p. 40).

[24] Meta Platforms. Jest: Delightful JavaScript Testing. Accessed: 2025-11-03.
2024. url: https://jestjs.io/docs/getting-started (cit. a p. 45).

59

https://github.com/polito/students-app
https://github.com/polito/students-app
https://tools.ietf.org/html/rfc6750
https://openapi-generator.tech/
https://openapi-generator.tech/
https://nodejs.org/docs/latest-v18.x/api/index.html
https://code.visualstudio.com/docs
https://docs.stoplight.io/docs/prism/
https://www.typescriptlang.org/docs/
https://tanstack.com/query/latest/docs/framework/react/overview
https://tanstack.com/query/latest/docs/framework/react/overview
https://eslint.org/docs/latest/
https://prettier.io/docs/en/index.html
https://typicode.github.io/husky/
https://github.com/lint-staged/lint-staged
https://jestjs.io/docs/getting-started

	Elenco delle tabelle
	Elenco delle figure
	Introduzione
	Contesto e motivazioni
	Obiettivi della tesi
	Struttura del lavoro

	Background
	Ecosistema digitale del Politecnico di Torino
	La nascita del progetto PoliTO Faculty
	Tecnologie e concetti di riferimento

	Analisi dei Bisogni e Definizione dei Requisiti
	Metodologia di raccolta dati
	Partecipanti e profili

	Sintesi dei risultati e dei bisogni individuati
	Struttura del questionario
	Analisi dei dati
	Analisi qualitativa tramite LLM
	Principali risultati emersi

	Definizione dei requisiti
	Requisiti funzionali
	Requisiti non funzionali
	Dai risultati alla progettazione delle API

	Architettura del Sistema e Progettazione delle API
	Scelte tecnologiche e pattern architetturali
	Aggiornamento dello standard OpenAPI
	Passaggio da specifica monolitica a struttura modulare

	Modellazione delle entità e flussi di comunicazione
	Entità comuni
	Entità del dominio studenti
	Entità del dominio docenti
	Parametri, risposte e flussi di comunicazione

	Progettazione delle API RESTful
	Pattern REST adottati

	Sicurezza e autenticazione
	Schema di sicurezza centralizzato

	Struttura del repository
	Struttura dei sorgenti
	Tag e organizzazione della documentazione
	Tooling e generazione automatica
	Pipeline di validazione e qualità del client OpenAPI

	Implementazione e Integrazione
	Ambiente di sviluppo
	Tooling per la generazione del client
	Ambiente di sviluppo e testing locale
	Scelte architetturali per l'integrazione delle API

	Implementazione dei moduli principali
	Gestione dei dati mock e validazione con il frontend
	Controllo della qualità del codice

	Verifica Tecnica dell'Integrazione
	Obiettivi della verifica tecnica
	Metodologia di validazione
	Ambiente di test e strumenti
	Verifica manuale dei flussi applicativi
	Test automatici su hook e componenti di integrazione

	Casi d'uso verificati
	Autenticazione e login
	Profilo docente
	Incarichi didattici, corsi ed esami
	Flusso di firma digitale
	Prenotazioni di spazi
	News ed emergenze
	Ricerca persone
	Ambito coperto dai test automatici

	Risultati e osservazioni
	Esito complessivo
	Incongruenze tra API e UI emerse durante i test
	Impatto sulla robustezza dell'integrazione

	Limitazioni della validazione tecnica
	Assenza di un backend reale
	Performance e carichi reali
	Sicurezza applicativa
	Copertura dei test automatici

	Conclusioni e Sviluppi Futuri
	Sintesi dei risultati ottenuti
	Impatto tecnico sul progetto PoliTO Faculty
	Limiti e margini di miglioramento
	Sviluppi futuri e possibili estensioni del sistema
	Considerazioni finali

	Bibliografia

