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Abstract

Semantic segmentation of 3D point clouds is a fundamental problem in computer
vision, particularly relevant to the digital preservation and automated analysis
of cultural heritage. Recent deep learning models such as Point Transformer v3
have achieved state-of-the-art performance by leveraging attention mechanisms
to capture both local geometry and long-range spatial relationships. However,
purely data-driven approaches still struggle to generalize in geometrically complex
or underrepresented classes, and they offer limited interpretability.

This thesis explores a neuro-symbolic framework that integrates logical rea-
soning into the learning process of a transformer-based point cloud segmentation
model. The proposed method combines the representational capacity of deep neural
networks with the interpretability and domain-awareness of Logic Tensor Networks
(LTN), implemented through the LTNTorch library. Symbolic knowledge about
architectural structures—such as coplanarity, verticality, and spatial relationships
between classes—is encoded as first-order logic rules and translated into differen-
tiable constraints that guide learning under a best-satisfiability objective. This
paired with standard empirical risk minimization provides a regularization effect,
encouraging predictions that are both data-consistent and logically coherent.

Experiments are conducted on the ARCH dataset, a large-scale benchmark
of annotated architectural point clouds. Point Transformer v3 is trained under
standard empirical risk minimization and achieves a mean Intersection-over-Union
(mIoU) of 77.5% on the SMV test scene and 71.8% on the SMG scene, outperforming
previous DGCNN-based benchmarks by over 20 percentage points. Motivated by
these strong results, the study then extends the analysis to the model trained on the
complete version of the ARCH dataset, where performance decreased noticeably.
A detailed per-class and qualitative analysis revealed semantic inconsistencies
in the predictions—for example, violations of spatial and structural coherence
between neighboring elements—that persist even in high-performing categories.
These inconsistencies motivated the introduction of symbolic priors to enforce
domain-consistent reasoning during training.

The neuro-symbolic variant integrates domain rules as trainable predicates,
designed to assess whether structured symbolic knowledge can complement data-
driven representations and promote logically consistent predictions.

Overall, this work establishes a reproducible framework for evaluating neuro-
symbolic reasoning in 3D point cloud segmentation, building upon a thorough
assessment of a state-of-the-art model on the ARCH dataset, and outlining promis-
ing directions for explainable scene understanding in digital heritage.
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Chapter 1

Introduction

The field of Artificial Intelligence (AI) has witnessed remarkable advancements in
recent years particularly in the use of sub-symbolic machine learning. While the
current era of the field can be described as the third Al summer’ characterized by
rapid advances in research and widespread commercialization, a central development
in this phase is the emergence of Neuro-Symbolic Al, which integrates symbolic
reasoning with sub-symbolic machine learning [1]. While there remains debate
over its necessity —with critics emphasizing the sufficiency of large-scale data-
driven approaches and others stressing the need for structured reasoning— this
paradigm combines the learning capabilities of deep neural networks with the
structured reasoning of symbolic logic, enabling models to generalize from data
while adhering to explicit rules and constraints. One promising application of
NeuroSymbolic Al is in Cultural Heritage preservation, where accurate and
interpretable AI models can assist in the analysis, restoration, and documentation
of historical artifacts and sites. A critical task in this domain is 3D semantic
segmentation, particularly when dealing with point cloud data, which provides
a detailed geometric representation of objects and environments. Point cloud
semantic segmentation plays a pivotal role in digitalizing cultural heritage, enabling
the classification of architectural elements, sculptures, and archaeological findings at
a granular level. State-of-the-art deep learning models, such as Point Transformer
V3 [2], have demonstrated exceptional performance in this task by leveraging self-
attention mechanisms to capture long-range dependencies in 3D space. However,
purely data-driven approaches often lack interpretability and may struggle in
scenarios where labeled data is scarce or where domain-specific constraints must be
enforced. To address these challenges, this thesis explores the integration of Logic
Tensor Networks (LTNs) [3] —a NeuroSymbolic framework that combines
differentiable learning with first-order logic reasoning— into point cloud semantic
segmentation.
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1.1 Goal

While Point Transformer V3 serves as a high-performance baseline, the proposed
approach trains a 3D semantic segmentation model from scratch, incorporating
logical rules that encode prior knowledge about structural and semantic relationships
in cultural heritage objects through a Neuro-symbolic framework called LTNTorch.
By doing so, the goal is for the model not only to learn from data but also to adhere
to domain-specific constraints, improving both accuracy and interpretability.

The contributions of this work include:

e A NeuroSymbolic framework for point cloud segmentation that integrates
deep learning with logical reasoning, extending the functionalities of [4].

o An evaluation of the addition of Logic Tensor Networks in a state-of-the-art
neural architecture like Point Transformer V3, with a case study on the Arch
Dataset [5], demonstrating how logical rules can enhance segmentation perfor-
mance and interpretability in scenarios with complex and variable geometric
structures.

By bridging neural and symbolic Al, this research aims to advance the field of
3D semantic segmentation by analyzing the integration of LTNTorch as a means to
build a more robust and explainable framework for cultural heritage preservation.

1.2 Structure of the thesis

The thesis is structured as follows:

1. Background: introduces the fundamental concepts of point cloud data,
Neuro-Symbolic AI, and Logic Tensor Networks, providing the theoretical
foundations necessary to contextualize the proposed approach.

2. State of the Art: reviews the current literature in Neuro-Symbolic learning
and 3D point cloud semantic segmentation, with particular attention to the
ARCH dataset, which constitutes the benchmark for this work.

3. Methods: defines the segmentation task, presents the full processing pipeline,
and details the construction of the logical theory integrated into LTNTorch.

4. Experiments: presents the dataset and analyzes all experimental results, in-
cluding comparisons with the state-of-the-art models, baseline studies, ablation
analyses, and the evaluation of knowledge-based rules.

5. Conclusions: summarizes the contributions of the thesis and outlines direc-
tions for future work.



Chapter 2

Background

2.1 Point Cloud Data and Semantic Segmenta-
tion

A point cloud is an unstructured 3D data representation of the world, typically
collected by LiDAR sensors, stereo cameras, or depth sensors. It comprises a
collection of individual points, each defined by spatial coordinates in R3

Semantic segmentation of point clouds is the task of assigning a semantic label
to each individual point in a 3D scene; let

P:{pi|pi€R3, Z:L,N}

be a point cloud consisting of N points, where each point p; = (;, y;, 2;) represents
its spatial coordinates. Depending on the acquisition device and preprocessing,
additional attributes such as color (74, ¢;, b;), surface normal vectors (n,,, ny,, n.,),
or intensity values I; may be available. The goal is to learn a function that maps
each point to a semantic class label chosen from a predefined set of categories:

fo:RE—=C
where d denotes the dimensionality of the point’s feature vector, and
C={c,c2,...,cx}

is the set of K predefined semantic categories.

In the following sections, i outline the foundational principles of symbolic and
statistical Al, and introduce neuro-symbolic frameworks—such as Logic Tensor
Networks—that aim to unify these paradigms. Such models provide a powerful
means of incorporating explicit logical constraints into continuous learning sys-
tems, offering a promising direction for structured and interpretable 3D scene
understanding.
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2.2 Symbolic and Statistical Al

Symbolic Al is a branch of Artificial Intelligence which goal is to learn the internal
symbolic representation of the world in scope. It uses symbols, rules and logic to
represent knowledge and enable reasoning, problem-solving and decision-making.
The knowledge is represented in a declarative fashion, concepts and their relation-
ships represent expert domain knowledge, common-sense knowledge or a semantic
web. Reasoning is performed through efficient combinatorial search and it can be
used for theorem proving, entailment or planning. In this setting we can translate
implicit human knowledge into a more formalized and declarative form, based
on rules and logic. In this category fall some of the earliest Al systems, such as
the Logic Theorist, the General Problem Solver (GPS) and expert systems like
MYCIN. Instead, Statistical Al is a field of Al in which knowledge is simplified
to labels, knowledge representation is in most cases sub-symbolic and distributed
while the system learns to infer labels through a mathematical mapping function
from the input to the output space. This category encompasses approaches such as
machine learning, deep learning and generative Al, which rely on algorithms to
automatically extract patterns from raw data to discern relationships and make
predictions based on learned representations. Examples of some of the earliest
AT systems that utilized statistical and sub-symbolic Al include the Perceptron
and the ADALINE. The approach evolved over time, achieving impressive results
in the most diverse fields, from computer vision to natural language processing.
Both approaches have their strength and weaknesses. In summary, symbolic Al
excels at incorporating domain knowledge, offering human-readable and highly ex-
plainable models, supporting systematic generalization and compositionality when
relevant knowledge is available. However, there is an inherent tradeoff between
interpretability and scalability: highly expressive symbolic systems enable rich
reasoning but can become computationally expensive, and once they grow in size or
complexity, the resulting structures may become difficult for humans to interpret.
On the other hand, statistical AI can learn directly from examples, is robust to
imperfect or partial knowledge, generalizes well within a domain, and is highly
scalable due to simple core algorithms. It is particularly effective at representation
learning. Nevertheless, statistical Al lacks clear mechanisms for incorporating
domain constraints, is sensitive to biases and shortcuts, requires large amounts of
data, and cannot easily generalize from few examples. Its systematic generalization
is limited, and explainability remains a challenge, often requiring post-hoc methods.

4
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2.3 Neuro-symbolic Al

The idea behind neuro-symbolic Al is to combine the strengths of both symbolic
and statistical Al to create more robust, flexible, and interpretable systems. Neuro-
symbolic Al aims to leverage these complementary paradigms so that models can
learn from data while also reasoning over explicit knowledge representations. It
encompasses a family of approaches that can be categorized in different ways.
One possible categorization, introduced by Henry Kautz in his essay The Third
Al Summer [6], is the Kautz Taxonomy, which describes six possible designs for
integrating symbolic reasoning and neural networks. These designs vary according
to where symbolic and neural components appear, and whether one acts as a
subroutine, coroutine, or embedded module within the other.

The taxonomy begins with the Symbolic — Neuro — Symbolic design, which
corresponds to the standard workflow of modern deep learning: symbolic inputs
are converted into vectors, processed by a neural network, and then mapped back
to symbolic categories or sequences via a softmax layer.

The next class of architectures includes the Symbolic|Neuro] design, in which
a neural pattern-recognition module is used as a subroutine within a symbolic
problem solver. A notable example is the Go engine AlphaGo.

This is followed by the Neuro | Symbolic design, where a neural network
converts non-symbolic inputs—such as pixels or raw text—into symbolic data
structures (e.g., concepts or logical predicates), which are then processed by a
symbolic reasoning system. The symbolic component provides feedback that guides
the training of the neural network.

The next approach, Neuro : Symbolic = Neuro, retains the standard neural
network architecture but employs a special training scheme based on symbolic
rules. Here, symbolic constraints are encoded as training examples, encouraging
the network to internalize these rules in its parameters and generalize to unseen
inputs.

A further design is the Neurosympoic approach, where symbolic rules are trans-
formed into structural templates within the neural network itself.

Finally, the taxonomy includes the Neuro[Symbolic] design, in which a symbolic
reasoning engine is embedded inside a larger neural system, mirroring Kahneman’s
“System 1 / System 2” dual-process theory. In this architecture, the neural network
handles fast, intuitive processing, while the symbolic module performs slower,
deliberate reasoning tasks.

The approach adopted in this work falls within the Neurosympoic family. In
particular, we employ Logic Tensor Networks (LTNs) [7], which will be described
in the following section.
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2.3.1 Abductive reasoning

Before delving into Logic Tensor Networks, it is interesting to understand the
concept of reasoning in Al systems; a key difference that we can observe in the
symbolic and statistical approach is the way they perform reasoning. Symbolic
AT relies on deductive reasoning, which starts from general premises and derives
specific conclusions. It is a sound and complete form of reasoning, meaning that if
the premises are true, the conclusion must be true as well. Statistical AI, on the
other hand, relies on inductive reasoning, which starts from specific observations
and derives general conclusions. It is a probabilistic form of reasoning, meaning
that the conclusion is not guaranteed to be true, even if the observations are true.

Abductive reasoning instead is a form of reasoning that starts from observations
and derives the most likely explanation for those observations, based on existing
knowledge and experience. It is a form of reasoning that is often used in scientific
inquiry, where scientists observe phenomena and then develop hypotheses to explain
those phenomena. In the context of neuro-symbolic Al, and in particular Logic
Tensor Networks, reasoning can be seen as a form of abduction, in which the prior
knowledge acts as constraints on the learning process, guiding the model to learn
from data. This process goal is to restricts the search space of possible solutions,
making it compatible with the prior domain knowledge.

2.4 Logic Tensor Networks

In this section Logic Tensor Networks (LTNs) are introduced, along with the
concept of Real Logic, the differentiable fuzzy logic on which LTNs are based, to
give a complete understanding of the framework.

"Logic Tensor Network is a NeuroSymbolic framework that supports querying,
learning and reasoning with both rich data and abstract knowledge about the
world" [7]. Its based on a infinitely-valued fuzzy logic, completely differentiable,
called Real Logic.

2.4.1 Real Logic

Real Logic is defined on a first-order language £, that contains:

a set C of constant symbols (objects),

a set F of functional symbols,

a set P of relational symbols (predicates),

a set X of variable symbols
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which form the signature of the language.

Terms are built from constants, variables, and function symbols, and they form
the basic components used to construct formulas. Predicates can be applied to an
appropriate number of terms to form atomic formulas, which express relational
information about variables and constants.

Real Logic is a typed logic, meaning that every symbol in the language is
associated with a type that specifies the domain of values it can take. We therefore
assume a non-empty set of domains D. Each symbol of the language £ is charac-
terized by an input type domain and an output type domain, both of which are
subsets of D.

Semantics in Real Logic To define semantics of £ we need to interpret domains
via assignment to tensors in the real field. Since the logic is typed each term is
interpreted as a tensor of real values, while functions are interpreted as mappings
between tensors and predicates are interpreted as mappings from tensors to truth
values in [0,1]. The word used to denote ’interpretation’ in Real Logic is ‘grounding’,
while the operation of replacing variables with actual values is called ‘instantiation’.
The grounding of variables, differently from first-order languages, is done by
assigning them to a sequence of values in their domain, instead of a single value.
Given this behaviour a term height(x) is also grounded in k different height values,
each corresponding to one instance. This means that a term containing n different
variables, each one composed of variable instances, namely £, instances for variable
v;, i grounded to a tensor of shape

ky, X Ky, X oo X ky, X d

where d is the dimension of the output domain of the term (in the case of a predicate
d = 1). The dimension associated with d can be called the feature dimension; in
the case of predicates it is always 1, since they output truth values. Here is an
illustration of grounding taken from [7].

[ ’

G(z) = (v1,v2,v3)
g(p(ﬂi, f(mvy)))
@_ G(f(x,y))

G(y) = (w1, ws)

Figure 2.1: Grounding of terms and predicates in Real Logic.

7
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Semantics of Connectives In Real Logic the semantics of logical connectives
follow the principles of first-order fuzzy logic. Each connective is associated with a
corresponding fuzzy operator:

« conjunction (A) is interpreted by a t-norm 7,
« disjunction (V) by a t-conorm S,

« implication (=) by a fuzzy implication I,

» negation (—) by a fuzzy negation N.

These operators, collectively denoted as FuzzyOp = {T, S, I, N}, map grounded
truth values in [0,1] to new grounded truth values.

Let ¢ and ¥ be formulas with free variables, possibly sharing k£ of them. For a
unary connective a and a binary connective 3, grounding is defined as:

G(ap) = FuzzyOp, (G(v)),

G(p B 1) = FuzzyOps(G(p), G(v)),

where grounding tensors are broadcast and aligned along axes corresponding to
shared variables. In grounding a binary connective, the fuzzy operator is applied
element-wise to all compatible combinations of instances of the free variables.

Semantics of Quantifiers Quantifiers are defined through aggregation operators.
Let Agg be a symmetric, continuous operator:

Agg : [0,1]" — [0,1]" ™.

For a formula ¢(z1,...,z,) and a quantifier () applied to the first h variables,
grounding proceeds by aggregating the corresponding axes of the grounding tensor.
This reduces the dimensionality of the grounding by collapsing the quantified
variables.

Diagonal Quantification Logic Tensor Networks also support diagonal quan-
tification, written:

QDiag(xla s 7xh) ¥
Assuming the variables x1, ..., z;, have groundings with the same number of

instances, diagonal quantification aggregates only the diagonal entries of the ground-
ing tensor:

G(QDiag(zy, ..., zn) p) = Aggg(G(©)i,...i) -
8
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Thus, instead of evaluating ¢ over all combinations of instances of the variables, the
evaluation uses only aligned tuples: the i-th instance of each variable is evaluated
together. For example, given samples x and corresponding labels y with matching
instance counts, the expression

VDiag(z,y) p(z,y)

checks p only on each pair (z;,y;), rather than on all |X| x |Y| combinations.
Diagonal quantification is particularly useful when grounding represents aligned
sample—target pairs or synchronized sequences.

Stable Configuration Not all fuzzy operators are equally suitable for gradient-
descent. Some choices can lead to numerical instability or poor convergence during
optimization. Given a and b, truth values in [0,1], the most effective configuration
of fuzzy operators for the purpose is called Product Real Logic and is defined as:

Not(a) =1 —a, And(a,b) = ab,
Or(a,b) =a+b— ab, Implies(a,b) =1 — a + ab.

While given n truth-values in [0,1], universal quantification is approximated by:

1/p
Appme(ar, ... a,) =1 — (Z(l—az’)p> ; p=>1,

which behaves as a smooth minimum, corresponding to 1 — RMSFE(a,1) when
p = 2 and approaching min(ay,...,a,) as p — co. Where RM SFE(a,1) is the root
mean square error between a and 1.

Since this configuration may still suffer from numerical instability during op-
timization, its operators are modified by projecting truth values slightly away from
the boundaries of [0,1]:

mo(a) = (1 —¢e)a+e, mi(a) = (1 —¢)a, e>0.

These projections define the Stable Product Real Logic operators:

Not'(a) = Not(a), And'(a,b) = And(mo(a), mo(D)),
Or'(a,b) = Or(m (a), m (b)), Implies'(a,b) = Implies(my(a), 7 (D)),
Avg(ar, ... a,) = Apyp(mi(ar), .. mi(an)).

These stabilized operators improve numerical behavior while preserving the
structure of Product Real Logic.
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2.4.2 Learning Real Logic, Logic Tensor Networks

In the Logic Tensor Networks framework, symbolic rules and neural components
are combined, and the learning procedure must ensure that the neural parameters
evolve in a way that respects both data and logical constraints. To do so we need
a parametric grounding for symbols, denoted as G(- | #), where 6 represents the set
of learnable parameters. In this way we have the possibility to ground learnable
constants, functions, and predicates. The latter can be given by a neural network
N, with parameters 6y, that maps input tensors to truth values in [0,1]. In the
case of semantic segmentation N takes as input a sequence of point features z; and
outputs a sequence of vectors of class probabilities §; = (Ye;, Yegs -+ Ye,,.) in [0,1]™,
where nc is the number of classes. So § = N (z | Oy).

Classical neural networks are trained under Empirical Risk Minimization (ERM),
where losses such as Cross-Entropy are minimized over examples. Logic Tensor
Networks (LTNs), instead, reformulate the objective as a best-satisfiability problem:
the aim is to adjust the parameters so that the logical theory is satisfied to the
highest possible degree.

A Real Logic theory is defined as T' = (I, G(- | 6),0), where K is the set of
formulas built from the language symbols, G(- | 0) is the parametric grounding that
interprets all symbols and connectives, and © is the parameter space. Learning
then becomes the problem of finding the parameters #* that maximize the overall
satisfiability of the theory:

0 = arg max SatAggeex Go(o). (2.1)

The operator SatAgg aggregates the truth values of all formulas into a single
score expressing the consistency of the grounded theory. It is defined in [0,1]% — [0,1]
and is implemented into the framework as a generalized mean with respect to error,

ApME5 )
1& » »
Sat Aggsex Go(6) =1~ | 31~ P(5) (22
i=1
where P(¢;) € [0,1] denotes the truth degree of formula ¢; given the grounding,

and p is a parameter controlling the aggregation behavior (e.g.,p = 1 for average,
p — oo for minimum), typically set to 2.

10



Chapter 3

State of the Art

3.1 Point Cloud Semantic Segmentation

Semantic segmentation of 3D point clouds has evolved from early point-based neural
networks toward graph-based and Transformer-based architectures. According to
the recent survey [8], Transformer-based models currently represent one of the
most impactful directions.

Transformers employ self-attention, that dynamically learns interactions between
points. Several architectures exploit this idea: channel self-attention models [9],
hybrid attention-GCN methods such as AGCN [10] and variants incorporating
enhanced positional encodings like Point Transformer v2 [11].

A key challenge highlighted by the survey is the computational cost of self-
attention, which scales quadratically with the number of points. To address this,
several efficient alternatives have been proposed, including low-rank approximations,
lightweight localized attention, and window-based models such as Stratified Trans-
former [12]. These approaches restrict or approximate attention while preserving
contextual reasoning.

Within this landscape, the Point Transformer family has emerged as a leading
architecture. The original Point Transformer [13] introduced MLP-based positional
encoding within vector attention, while Point Transformer v2 [11] strengthened
geometric encoding and introduced partition-based pooling. Point Transformer
v3 [2], the most recent variant, directly addresses efficiency concerns by replacing
expensive KNN searches with an efficient serialized neighborhood mapping to group
points, removing the need of neighborhood mechanism in the attention module. In
addition it replaces relative positional encoding with a simpler sparse convolutional
layer. This changes allow the expansion of the attention patch size from 16 to 1024
points while remaining computationally tractable, achieving a favorable balance
between accuracy, simplicity, and scalability. This makes Point Transformer v3

11
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well suited for large cultural heritage scenes, which are dense, irregular, and
geometrically complex.

3.2 Neuro Symbolic Learning

The neuro-symbolic learning approach adopted in this thesis corresponds to what
the survey [14] defines as “reasoning for learning.” In this paradigm, neural networks
perform a machine learning task while symbolic knowledge is incorporated directly
into the training process to improve both performance and interpretability.
Within this category, two main architectural families can be identified:

1. Regularization-based models, in which symbolic knowledge constrains the
learning process through an additional regularization term in the loss function.
As discussed in Section 2.4, this term is grounded from a knowledge base that
encodes the relevant symbolic information.

2. Knowledge-transfer models, which leverage symbolic knowledge to guide
learning in a target domain that differs from the domain used for training.

In the present work, we focus on the former category, where symbolic constraints
directly shape the optimization dynamics of the neural model.

Examples of Regularization-based frameworks are Semantic-based Regulariza-
tion (SBR) by Diligenti et al. [15], and the conceptually aligned Logic Tensor
Networks (LTN) [7], adopted in this thesis work. Both frameworks integrate sym-
bolic knowledge into the learning process by introducing a differentiable penalty
term in the loss function, which enforces the satisfaction of logical constraints.
They similarly use a fuzzy translation of first-order logic into real-valued semantics
to guide neural learning. In this sense, SBR and LTN share the same founda-
tional principle of using logic-driven regularization to shape the behavior and
interpretability of neural models. In particular, the LTN framework makes it
possible to express and efficiently carry out a wide range of core Al tasks within a
single, unified formalism. These tasks include multi-label classification, relational
reasoning, clustering, semi-supervised learning, regression, embedding, and query
answering.

3.2.1 Applications

Applications of neuro-symbolic learning are diverse, and several closely relate to
the task addressed in this thesis. Early work includes semantic segmentation in
remote sensing, dating back to 2013 [16], while more recent developments involve
point-cloud semantic segmentation for cultural heritage in 2023 [17]. Although both
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approaches incorporate expert knowledge, they differ from the regularization-based
methodology adopted in this thesis. The method in [16] begins with the prediction
probabilities produced by a baseline segmentor and iteratively refines the regions
that show the lowest agreement with expert knowledge. At each step, alternative
labels are evaluated using probability-based criteria, and the process continues
until predictions converge.

In contrast, KENN operates directly on the neural network’s output predictions
and applies a sequence of specialized layers to refine them, increasing satisfaction
of the encoded knowledge.

Both approaches fundamentally differ from the regularization-based strategy
used in this work, where symbolic knowledge directly modify the neural network’s
weights during training.

Raw image
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Figure 3.1: Architectures of [16] (left) and KENN (right).

Regularization-based methods Applications for regularization-based neuro
symbolic methods include Object and Part detection [18], classification tasks
[19] and semantic segmentation [20], where it shows interesting results, adding
robustness to the learning framework and improving the results, especially when
data is scarce or errors are present in the labels.
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3.3 Deep Learning for Cultural Heritage 3D Seg-
mentation

The survey [8] highlights the importance of deep 3D semantic segmentation for
cultural heritage preservation, where automated analysis of architectural scenes
enables accurate documentation, monitoring, and digital reconstruction of historic
environments. Within this context, a central reference for this thesis is the work
of Matrone et al. [21], which represents one of the first comprehensive evaluations
of machine learning and deep learning strategies for large-scale cultural heritage
point clouds.

Their proposed architecture, DGCNN-Mod+3Dfeat, extends the original
DGCNN [22] by integrating handcrafted geometric descriptors—such as normals,
planarity, verticality, omnivariance, and other covariance-based features—to im-
prove the segmentation of fine architectural elements. Their study demonstrates
that enriching point-wise representations with local geometric structure can signifi-
cantly benefit classes with thin, irregular geometry.

The present thesis builds directly upon this line of work by replacing the
handcrafted-feature-dependent DGCNN with a modern Transformer-based archi-
tecture (Point Transformer v3), capable of learning local and global geometric
relations end-to-end. This allows an updated and more expressive baseline to be
established on the ARCH dataset, ultimately enabling the integration of neuro-
symbolic reasoning for learning’ on a stronger geometric backbone.

14



Chapter 4

Methods

This chapter describes the methodological framework adopted to integrate neuro-
symbolic learning into the task of 3D point cloud semantic segmentation. The
proposed approach combines the representational power of deep neural networks
with the interpretability and domain-awareness of logical reasoning, leveraging the
LTNTorch library as a differentiable reasoning engine.

The goal of this methodology is, in a first instance, to train a state of the art
model in the task of point cloud semantic segmentation within a complex dataset
in the field of cultural heritage, to assess the capability of sub-symbolic models
of understanding and inferring semantic labels in 3D point clouds. In a second
instance to train the same model under logical constraint to assess the capability
of neuro-symbolic models to improve the segmentation performance by leveraging
symbolic knowledge in this task.

The remainder of this chapter is organized as follows: Section 4.1 formalizes
the segmentation problem in a neuro-symbolic context. Section 4.2 presents the
data processing pipeline, composed of the baseline network configuration and the
neuro-symbolic formulation implemented with LTNTorch.

4.1 Problem definition

To reach our goal of embedding knowledge in the baseline model, through the
definition of symbolic rules, we need to change the sub-symbolic objective. For
instance we need to move from a learning objective based on Empirical Risk
Minimization to an objective based on best satisfiability. As described in 2.4.2 |
in Logic Tensor Networks the learning objective is to find the parameters 6* that
maximize the overall satisfiability of the theory:

0" = arg max SatAggser Go(@). (4.1)
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When training is performed on mini-batches, this objective is adapted to stochas-
tic optimization. For a batch B of grounded samples and the set of clauses K, the
loss function is written as:

L=1- SatAgg(i)EIC g9,163(¢)7 (42)

so that minimizing £ corresponds to maximizing the satisfiability of the theory. In
this way, standard ERM losses can be incorporated.

Loss Function

In an effort to maintain the objective similar to the classic supervised learning
setting, to enable comparison, we can use an hybrid loss function that combines
domain specific knowledge with supervised loss:

L= »CCE + 'CLavasz + )\Edomain (43)

where Log and Li,q4s. are respectively the cross entropy and the Lovasz loss
functions, both defined in the baseline, while L£g,nqin is the objective defined before
and A is a hyperparameter that controls the weight of the domain knowledge loss.

4.2 Pipeline Overview

This section presents the complete processing and learning pipeline developed
for applying neuro-symbolic learning to point cloud semantic segmentation. The
proposed pipeline integrates both geometric and logical components combining
a deep learning backbone for feature extraction and semantic prediction with
domain-specific constraints through differentiable logic.

The overall workflow consists of three main stages. In the first stage, point
clouds are preprocessed to make them suitable for forwarding. In the second stage,
a semantic segmentation model based on Point Transformer v3 is trained under
one of two alternative configurations:

« a standard data-driven setting, where the network is optimized using only
conventional loss functions, namely CrossEntropy and Lovasz;

e a neuro-symbolic setting, where the model is trained incorporating logical
predicates and rules defined in LTNTorch to impose soft constraints during
learning.

The resulting predictions are reconstructed at full resolution and quantitatively
evaluated using standard segmentation metrics.

The following subsections describe each component of this pipeline in detail,
including preprocessing and feature extraction, baseline model configuration, inte-
gration of LTNTorch predicates, and evaluation of the final segmentation outputs.
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4.2.1 Preprocessing & Feature Extraction

In our case, the point cloud structure is as follows: each point is represented by its
spatial coordinates (z,y, z), color attributes (r, g, b), a semantic label, and surface
normal components (N, Ny, N.). These features were extracted and preprocessed
as described in the existing work on the dataset [5] to ensure consistency and
suitability for neural network processing.

In addition, in some experiments, the same 3D features used in a related study on
the dataset [21] were also incorporated. These features, inspired by prior works [23,
24], are derived from the eigenvalues of the covariance matrix computed over local
neighborhoods in the point cloud. Specifically, verticality, omnivariance, surface
variation, planarity, and a normalized z scalar field were extracted to capture
fine geometric properties of architectural elements. In some cases, the radii were
fine-tuned for the specific scene in order to better adapt to local geometric density
and scale variations. and stacked in the input vector, along with rgb and normals.
These 3D features were used to evaluate their impact on segmentation performance,
comparing baseline models with versions augmented by these descriptors.

The overall framework and preprocessing pipeline are adapted from Pointcept
[4], ensuring consistency with established best practices in point cloud semantic
segmentation.

The preprocessing pipeline for training the semantic segmentation model is
designed to augment and normalize the input point clouds, improving generalization
and model performance. The pipeline consists of a sequence of geometric and color
transformations, applied probabilistically to each sample during training. The
most important one is GridSample, in which the point cloud is voxelized, enforcing
spatial regularity and allowing serialization.

During validation and testing all the probabilistic augmentations are disabled and
only normalization and grid sampling are applied to ensure consistent evaluation.

4.2.2 Baseline

The adopted semantic segmentation model is Point Transformer v3 (PTV3)
2], which represents the state-of-the-art in point cloud segmentation due to its
ability to model both local geometric relationships and long-range dependencies. It
employs a transformer-based encoder-decoder architecture specifically designed for
unstructured 3D data.

Architectural Overview.

PTV3 introduces a hierarchical framework that alternates between grid pooling
and transformer-like blocks to progressively aggregate spatial context. The network
begins with a voxelization and serialization stage, where points are encoded and
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Figure 4.1: Overview of serialization and patch grouping, which includes creation
of serialization curve (left), ordering in respect to the serialization curve (middle),
patch grouping to prepare for local attention (right)
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Figure 4.2: Overview of Point Transformer v3 (PTV3) serialization stage, which
includes, in order,the selection of the serialization order (that is changed sequentially
on each attention layer of the encoder stage), point cloud serialization and ordering,
and finally padding of the last sequence by borrowing points from neighboring
patches,to ensure it is divisible by the designated patch size.

ordered in multiple ways using various space-filling curves (Z-order, Z-transformed,
Hilbert,Hilbert-transformed) as shown in figure 4.1. This serialization defines a
spatial ordering that allows the model to partition the point cloud into fixed-size
patches. Each point retains both its serialized index and inverse mapping, enabling

bidirectional transitions between original and serialized coordinates. A scheme of
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the process is shown in figure 4.2

Following serialization, the encoder is composed of five hierarchical stages, each
consisting of a SerializedPooling layer and several transformer Block modules.
Each block integrates a conditional positional encoding (based on sparse 3D
convolutions), a multi-head Serialized Attention mechanism, and a feed-forward
MLP. Serialized attention computes self-attention within localized point patches,
functioning similarly to windowed attention in vision transformers, but in this
case the patch boundaries depend on the serialization step. Successive pooling
stages increase the receptive field by merging neighboring points in serialized space,
allowing high-level stages to encode broader spatial structures while maintaining
computational efficiency.

The decoder mirrors the encoder hierarchy through SerializedUnpooling
layers, which restore the spatial resolution of points by inverting the pooling
operations using the saved parent-child mappings. Each decoder stage fuses
upsampled features with corresponding skip connections from the encoder, followed
by additional transformer blocks that refine semantic information. The final
segmentation head is a simple linear classifier that maps the decoder output
features to the target number of classes.
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Figure 4.3: Overview of Point Transformer v3 (PTV3) overall architecture

A diagram of the overall architecture is shown in figure 4.3.
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Loss Function

For training the baseline model on the point cloud semantic segmentation task, we
follow the loss formulation adopted by the original authors. The overall objective
consists of two components: the standard Cross-Entropy Loss and the Lovasz Loss.
Both terms contribute equally to the optimization, and the total loss is computed
as a unit-weighted sum of the two.

Cross-Entropy Loss Cross-Entropy Loss provides point-wise supervision and is
widely used for multi-class classification. For a point with predicted class probability
distribution p and ground-truth label y, the loss is defined as

Lcg = —logp,.

Given a point cloud with N points, the aggregated loss becomes

1 N
‘CCE = _N ; lOg Diyis

where y; is the ground truth label of point ¢. Encouraging the network to assign
high probability to the correct semantic class for each point.

Lovasz Loss The Lovasz Loss is a differentiable surrogate of the Intersection-over-
Union (IoU) [25], making it well-suited for segmentation tasks in which region-level
accuracy is more meaningful than point-wise accuracy alone. The Lovasz-Softmax
formulation computes the Lovasz extension of the IoU over the sorted point-wise
prediction errors. For a class ¢ with error vector m(© sorted in decreasing order,
the loss can be expressed as

1 (&
['Lovasz = 6 Z AIOU (m(C)) )
c=1

where A,y denotes the Lovasz extension of the IoU. This loss directly promotes
improvements in IoU by penalizing the points that most strongly affect class-level
segmentation performance.

Total Loss Since both terms are used with unitary weight, the final loss is simply
L= ECE + ELovasz-

This combination offers a balance between stable point-wise supervision and
IoU-oriented region-level optimization, which is crucial for achieving high-quality
point cloud semantic segmentation.
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Model Configuration.

Throughout this work, the model was configured following the original configuration
[2], with encoder depths of (2,2,2,6,2), encoder channels (32,64,128,256,512), and
head dimensions (2,4,8,16,32). The decoder mirrors this structure with four stages
of channels (64,64,128,256) and identical patch sizes of 1024. Each input point
is described by six or more features, corresponding to color (7, g,b) and surface
normals (N, Ny, N,), optionally extended with handcrafted 3D descriptors such as
verticality or omnivariance (see Section 4.2). For optimization, the network employs
a combination of CrossEntropy and Lovasz losses with unit weight, optimized with
the AdamW optimizer and a OneCycleLR scheduler.

Inference Characteristics and Comparison with DGCNN.

A key methodological distinction between this model and previous benchmarks
lies in the inference strategy. In [21], DGCNN was applied to subsampled point
clouds, where each scene was partitioned into smaller cuboid volumes forwarded
independently through the network. Predictions were computed only for the
sampled points, and the final outputs were not re-projected to the full-resolution
point cloud, resulting in metrics calculated over a reduced subset of points.

In contrast, Point Transformer v3 processes large spatial contexts, without the
need of manual partitioning of the scene, thanks to its hierarchical patch-wise
attention mechanism. Rather than relying on fixed cuboid, PTV3 attends to fixed-
size patches, computed during the serialization step for each scene. Its serialized
pooling progressively expands the receptive field, allowing the model to aggregate
information from increasingly larger neighborhoods. In our case up to an estimated
volume of approximately 33.5 m?® per patch in the deepest encoder stage !. During
evaluation, predictions are upsampled to all original points using nearest-neighbor
mapping, ensuring that every point in the scene contributes to the computed
metrics. This results in smoother and more coherent segmentations, particularly in
complex or high-detail regions.

This configuration makes Point Transformer v3 a robust baseline for evaluating
the integration of logical constraints through LTNTorch, serving as the foundation
for both the standard and neuro-symbolic training regimes described in the following
sections.

1Using grid size of 0.02, not considering Shift Order mechanism, a mechanism that allows all
the different serialization order to be attended sequentially, explained in detail in [2]
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4.2.3 Logic Tensor Network

This section will describe the integration of Logic Tensor Networks (LTN) into the
semantic segmentation pipeline,focusing on the definition of logical predicates and
grounding mechanisms used to incorporate domain knowledge.

A set of logical predicates was defined, derived from domain knowledge. The log-
ical predicates focus on a subset of classes, selected due to their lower segmentation
performance compared to other architectural elements, indicating potential areas
where domain knowledge could provide significant improvements. The notation
that will be used throughout this section can be found in the Background chapter
2.4.

Grounding
Signature and Assignment To define the Real Logic Theory for our problem
we need to define the signature and the assignment of the symbols.

Domains

1. Point , grounded in R3™¥ where F is the number of features per point (e.g.,
color, normals, handcrafted 3D features). It represents a single point in the
point cloud.

2. Logits, grounded in R, where C is the number of classes. They represent
the raw output scores from the segmentation model before applying softmax.
Constants

1. arch, moldings, column, floor, door _window, wall, stairs, vault, roof, other :
grounded in N'° representing the one-hot encoding of each class.

Variables

1. x : point belonging to the point cloud, grounded in R3+

Predicates

1. verticality(x) represent the degree of verticality of point x, derived from the
correspondent descriptor in input and normalized between 0 and 1 using
min-max normalization, based on the min and max values in the training set.
The same process is applied to the other geometric descriptors.

2. omnivariance(x) represent the degree of omnivariance of point x, derived from
the correspondent descriptor in input.
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3. planarity(x) represent the degree of planarity of point x, derived from the
correspondent descriptor in input.

4. surfaceVariation(x) represent the degree of surface variation of point x, derived
from the correspondent descriptor in input.

5. Coplanarity(x,y) represent the degree of coplanarity between points x and
y, its defined starting from normals and coordinates of points. The degree
of coplanarity is computed as a product of surface coplanarity of point y in
respect to x and then multiplied by the normal similarity of the two points.
Surface coplanarity is defined as

[V2y - na )
2
||Ua:y||

where v, is the vector from point x to point y, and n, is the normal vector at
point x. Normal similarity is defined as

(1 —l—nm'ny)a
2

where n, and n, are the normal vectors of points x and y respectively, and «
is a scaling factor to control the sharpness of the similarity measure. Both
metrics are bounded between 0 and 1 since n, and n, are normalized.

6. Near(x,y) represent the degree of proximity between points x and y, defined
as the gaussian of the euclidean distance between the two points, multiplied
by a scaling factor x to control the spread.

exp(—k x [|z — y||*)

7. GreatherThan(Predicate(x), Predicate(y)) represent the degree to which Pred-
icate(x) is greater than Predicate(y), is defined on the sigmoid of the difference
between the two predicates, multiplied by a scaling factor x to control the
steepness.

ok (pr(z) — p2(y)))

8. SimilarRGB(x,y) represent the degree of similarity in color between points x
and y, defined as the gaussian kernel of the euclidean distance between the rgh
values of the two points, multiplied by a scaling factor s to control the spread.

exp(—+ x |[rgb(z) — rgb(y)|*)

9. Arch(x), Moldings(x), Column(x), Floor(x), Door_ window(x), Wall(x), Stairs(x)|
Vault(x), Roof(x), Other(x) : represent the probability of point x belonging
to each class, it is obtained by applying sequentially a softmax and gather
function over the output logits of the baseline model.
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Logical Rules

The rules were defined based on domain knowledge and an analysis of the errors
made by the baseline model, focusing on the classes with lower segmentation
performance. Each rule will be presented in its logical form, justified by the brief
high level concept behind it. A concept to keep in mind while reading the rules is
that the predicates describing the grade of belonging to a certain class is directly
tied to the current model world representation, since it correspond to the probability
given to the class by the baseline.

Rules can be divided into type 1 and type 2. Type 1 rules operate on the features
of a single point, while Type 2 rules operate on relationships between neighboring
points. There could also be type 3 rules that operate on characteristics involving
more than two points—for example, rules applied to instances of architectural
elements—but these were not implemented in this work. Although they could be
interesting for future developments. Rules were grouped into sets to achieve a
certain general semantic, each group is associated with an abbreviation to facilitate
references. Some of the sets were created from general concepts, while others were
formulated in response to baseline model limitations or developed incrementally to
support reasoning during learning and prevent shortcut solutions from the model.

Type 1 Rules The explanation of this kind of rules is simple, they express low
level characteristics of the classes, for example that doors and windows are not
characterized by surface variation, or that walls are vertical structures.

o Door Window Rule, DW/ defines that each point belonging to the door_ window
class have a low surface variation:

Vx : Door_Window(x) = —SurfaceVariation(z)

e Column Rule, CR, defines that each point belonging to the column class have
a low planarity value:

Vz : Column(z) = —Planarity(z)

» Extended Column Rule, ECR, Since it was observed during the experiments
that the model frequently negated the antecedent when rules of the form

Class(x) = Characteristic(x)

were used, a complementary set of rules was created to supplement the existing
one. In particular, the rule construction was inverted to

Characteristic(vr) = Class(x)
24



Methods

The resulting rule for the CR set was:
Vo : —Planarity(z) = (Column(:r:)\/Arch(x)\/Door_Window(x)\/Other(x))‘
derived from domain knowledge and a per class feature analysis of the dataset.

Arch Rule, AR, tries to simplify a concept observed in the data for which
arches have high surface variation on their borders, while planarity is in a
characteristic medium range and verticality is high on the curvature maximum,
while lowering when approaching the curvature minimum. This concept was
hard to formalize with the current language, but an attempt was:

Vo : Arch(z) =
(SurfaceVariation(ac) A —(Planarity(x) v Verticality(x)))
Molding Rule, MR, defines that molding points have an high omnivariance

value:
Vo : Moldings(x) = Omnivariance(z)

Extended Molding Rule, EMR as discussed in the description of the rule
ECR, in an effort to prevent shortcut behaviour this set of rules was created:

Vz : ~Omnivariance(x)
= (Arch(a:) V Floor(z) V Wall(x) V vault(z) V Roof(x)

Floor Wall Verticality, FW'V, formalize the concept that points belonging to
Floor have low verticality and points belonging to Wall have high verticality:

Va : Floor(z) = —Verticality(x)
V@ Wall(x) = Verticality(x)

Extended Floor Wall Verticality, EFWV, as discussed in the description of
the rule FCR, in an effort to prevent shortcut behaviour this set of rules was
created:

Vr : —Verticality(x)

— (Floor(m) V Vault(z) V Arch(z) V Other(x) V Roof(z) V Stairs(x))
V : Verticality(x)

= (Wall(x) V Column(z) V Arch(x) V Moldings(z)

V Door_window(x) V Other(z))

derived from domain knowledge and a per class feature analysis of the dataset.
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Type 2 Rules

Door Window Pair, DWP, this pair of rules aim to express that doors have
higher omnivariance than neighboring wall points and that windows have
homogeneous color in a local neighborhood, that is different from neighboring
walls or moldings. The concept is to enforce this rule in a radius to guide the
model into satisfying this local constraint:

Vx,y € radius : (Door_Window(z) A Wall(y)>

= GreaterThan(Omnivariance(x), Omnivariance(y))

Va,y € radius : (Door_Window(x) A Door_Window(y))
= Similar_RGB(z,y)

Roof Floor Consistency, RFC, This group of rules aim to enforce continuity
in the locality of planar structures, particularly in floors and roofs, trying to
prevent misclassifications with class other and in the case of roofs with class
floor.

Va,y € radius : (Roof(x) A Coplanarity(z, y)) = —0ther(y)

Va,y € radius : (Floor(m) A Coplanarity(z, y)) = —0ther(y)
Va,y € radius : (Roof(a:) A Coplanarity(z, y)) = —Floor(y)

Three variants were formed to complement the former RFC rule, called ADD1,
ADD2 and ADD3

— ADD1 States that for all the pairs x,y of points in a radius, if point x is a
roof/floor then the neighboring point y is a roof/floor and is coplanar to y.
The rule is wrong because it doesn’t take into account elements attached
to roofs or floors, for examples chimneys, but is kept since it was tested:

Va,y € radius : Roof(zr) = (Roof(y) A Coplanarity(z, y))

Va,y: Floor(z) = (Floor(y) A Coplanarity(z, y))

— ADD2 States that for all the pairs x,y of points in a radius, if point x is
a roof /floor, all points y that are coplanar to x are roof/floor.

Vx,y € radius : Roof(z) A Coplanarity(x,y) = Roof(y)

Vx,y: Floor(x) A Coplanarity(z,y) = Floor(y)
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— ADD3 States that for all the pairs x,y of points in a radius, if both points
are roof/floors then they are coplanar:

Vx,y € radius : Roof(z) A Roof(y) = Coplanarity(z,y)
Vz,y : Floor(x) A Floor(y) = Coplanarity(z,y)

« Extended Roof Floor Consistency, RFC, as discussed in the description of
the rule ECR, in an effort to prevent shortcut behaviour this set of rules was
created. The first rule aims to reduce the probability of predicting class Other
when handling flat and planar structures:

Vz,y € radius : Coplanarity(z,y) A ~Verticality(z) A —Verticality(y)
= —(0ther(x) V Other(y))

The second rule instead is more restrictive and says that two points that lay
in the same flat and planar structure must be both Roof or both Floor.

Va,y € radius : Coplanarity(z,y) A —Verticality(z) A ~Verticality(y)
= (Roof(x) A Roof(y)) Y (Floor(x) A Floor(y))

The third rule aim to disincentive the model in the prediction of Floor for
each point whom z coordinate is over a certain threshold.

Va : Elevated(x,threshold) = —Floor(z)

4.2.4 Segmentation output and metrics calculation

After obtaining the output logits from the model, the predictions are computed by
taking the arg max over the class dimension for each sample.

As explained in the Baseline section (Section 4.2.2), during evaluation the
predictions are re-projected and then compared to the ground-truth segment labels
to calculate per-class intersection, union, and target counts. The intersection
represents the number of correctly predicted points for each class, the union is the
total number of points either predicted or labeled as a given class, and the target
is the total number of ground-truth points per class.

This three values are accumulated over the entire split and used to compute
various segmentation metrics. A small constant € is added to denominators to
prevent division by zero.

After all samples of the split have been processed, the following metrics are
computed:

e Per-class IoU: ) i
intersection,

IoU, =

union. + €
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Per-class accuracy:
Intersection,

Acc. =
target, + €

Mean IoU (mIoU): average of per-class IoUs,

1 C
mloU = — E IoU,
C c=1

Mean accuracy (mAcc): average of per-class accuracies,

1 C©
mAcc = — Z Acce,
O c=1

Overall accuracy (allAcc):

> . intersection,
> . target, + €

allAcc =

Additional metrics such as precision, recall, and F1-score were also computed,
particularly for the comparison of state-of-the-art. These were obtained using the
standard scikit-learn library.

4.2.5 Configuration and Reproducibility

All experimental settings, including seed, hyperparameters, data augmentations,
optimizer configurations, and training schedules, are specified through modular
configuration files following the structure adopted by the Pointcept framework [4].
These files define every component of the pipeline—model architecture, dataset
splits, data transformations, optimizer, and learning rate scheduler—ensuring
that experiments are fully reproducible and easily modifiable. The modular de-
sign also enables switching between training, validation, and test modes through
parameterized dataset definitions.This explicit configuration approach allows ex-
act reproduction of all experiments presented in Chapter 5 and facilitates future
extensions or ablation studies.
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Chapter 5
Experiments

This chapter presents the experimental setup and results obtained by applying the
proposed neuro-symbolic learning framework to the task of semantic segmentation
of 3D point clouds from the ARCH dataset. The experiments are designed to
evaluate the effectiveness of incorporating logical constraints, through LTNTorch
[26], into a data-driven segmentation model based on Point Transformer v3.

The objectives of this experimental evaluation are threefold:

o To assess the baseline performance of Point Transformer v3 on the ARCH
dataset under standard training conditions.

o To quantify the contribution of the neuro-symbolic component by comparing
the baseline model with its variant trained using LTNTorch.

o To analyze the impact of different logical rules and predicate formulations on
the overall segmentation accuracy and rule satisfiability.

We first describe the experimental setup, including implementation details,
training parameters, and dataset splits. We then report the results of both baseline
and neuro-symbolic configurations, comprised of a detailed analysis of per-class
performance and qualitative evaluations. Finally, we present ablation studies that
examine the influence of individual rules and knowledge components.

The remainder of this chapter is organized as follows: Section 5.1 introduces
the dataset used for evaluation; Section 5.2 details the experimental configuration;
Section 5.3 reports the quantitative and qualitative results of the baseline model;
Section 5.4 presents the quantitative and qualitative results of the neuro-symbolic
configurations, along with ablation studies on the knowledge base.
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5.1 Dataset

The experiments in this work are conducted on the ARCH dataset [5], a large-
scale benchmark for semantic segmentation of 3D point clouds in architectural
environments. The dataset comprises richly annotated scans of historical buildings,
providing point-wise semantic labels for various architectural elements such as walls,
floors, ceilings, door windows, columns, and moldings. Each point is described by
its spatial coordinates, color information, and surface normal vectors, offering a
comprehensive representation of the 3D structure and appearance of the scenes.

The dataset is publicly available at https://archdataset.polito.it/. It is
designed to support research in automated scene understanding, and digital heritage
documentation. The diversity and complexity of the scenes in ARCH make it
a suitable testbed for evaluating neuro-symbolic approaches that leverage both
data-driven learning and domain-specific logical constraints.

5.2 Experimental setup

All experiments were conducted using configuration files, which define every com-
ponent of the training and evaluation pipeline.

All the models were trained for 3000 epochs using the AdamW optimizer Ir
= 0.002, weight decay = 0.005 with a OneCycleLR scheduler employing cosine
annealing pct_ start=0.04, div_factor=10, final _div_factor=1000. The default
batch size was set to 12, with mixed-precision training enabled. A special learning
rate of 0.0002 is used for the Block layers of encoder and decoder. In some
experiments batch size was varied, in that case learning rate of each module was
adjusted proportionally. The metric used to select the best model on the validation
set was the mean Intersection-over-Union (mloU).

The ARCH dataset was split into training, validation, and test partitions,
following the same division as in [21],and all augmentations followed the same
pipeline described in Section 4.2.

5.3 Baseline

In this section, the results obtained by Ptv3 when trained and tested on the
reduced ARCH dataset are analyzed and compared with previously published
benchmarks. Subsequently, the results obtained by Ptv3 when trained and tested
on the complete dataset are examined, in order to identify a baseline configuration
for the neuro-symbolic framework.
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5.3.1 Comparison with Existing Benchmarks

To ensure a fair comparison with previously published results on the ARCH
dataset, this experiment was conducted on a dataset obtained after removing points
belonging to class 9 (Other), following the evaluation protocol of [21]. Metrics were
computed over the remaining nine semantic classes for both official test scenes,
Test_SMV and Test_SMG.

As mentioned in 4.2.2, during the prediction of the point clouds using the
DGCNN architecture each scene was spatially divided into N parallelograms
that were forwarded independently through the network, and predictions were
produced only for the sampled points within each volume. Therefore, in [21], the
evaluation metrics for DGCNN were computed only on the subsampled points that
were directly predicted within each parallelogram, without projecting the results
to the full-resolution point cloud. As a consequence, a conspicuous amount of
points was excluded from the quantitative assessment. In contrast, our evaluation
protocol follows the standard practice of reassigning predictions to every original
point through nearest-neighbor interpolation, ensuring that all geometric details
contribute to the reported metrics. This methodological difference should be taken
into account when interpreting the magnitude of the performance gap.

Training protocol. Two experiments were conducted to compare the two con-
figurations, differing from the inclusion of additional descriptors in input. Both
variants were trained using identical hyperparameters and data augmentations, with
batch size set to 6, differing only in the inclusion of the six handcrafted descriptors.
For each setup, the best model according to validation performance was evaluated
on the two test scenes. All metrics were computed on the full-resolution point
clouds after re-projection.

Quantitative Analysis

Table 5.1 summarizes the results obtained by our baseline model, Point Trans-
former v3 (PTV3), and the benchmark DGCNN [21], both evaluated separately on
the SMV and SMG test scenes.

We can see that PointTransformer v3 outperforms DGCNN by a substantial
margin on the SMV test scene, achieving a mean IoU of 77.51% compared to
55.56% for DGCNN, representing an improvement of over 21 percentage points.
This significant gain highlights the effectiveness of the transformer architecture in
capturing complex spatial relationships and fine-grained geometric details inherent
in architectural point clouds. Instead on the SMG test scene, PTV3 attains a
mean IoU of 71.79%, surpassing DGCNN’s 59.97% by nearly 12 percentage points.
Although the overall accuracy and F1l-score are slightly lower for PTV3 in this
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Table 5.1: Comparison of segmentation performance on the ARCH dataset (class 9
Other excluded). Precision, recall, and F1 are weighted averages. The results for
DGCNN are in [21] under the name of DGCNN-Mod-+3Dfeat.

Scene Method Overall Acc. Precision Recall F1 mloU

DGCNN  86.46% 85.32%  86.46%  85.57%  55.56%
SMV  Ptv3 91.02% 90.98% 91.02% 90.94%  77.51%
Diff +4.56% +5.66% +4.56% +5.37% +21.95%

DGCNN  91.44% 91.73%  91.45% 91.48%  59.97%
SMG  Ptv3 90.07% 90.94%  90.07%  90.29%  71.79%
Dift -1.37% -0.79%  -1.38% -1.19% +11.82%

scene, the substantial increase in mean IoU indicates that the model delivers more
balanced performance across all classes, particularly benefiting underrepresented
or geometrically complex categories. We will see in 5.3 that DGCNN outperforms
PTV3 only in the floor’ class.

In addition to the baseline configuration, PTV3 was also trained by incorporating
the same handcrafted 3D geometric descriptors used in [21] (verticality, planarity,
omnivariance, surface variation, and normalized height) as additional input channels.
However, this extended setup resulted in minimal changes in performance, with
variations within one percentage point for most metrics. This suggests that the
transformer backbone effectively learns comparable geometric relationships directly
from raw spatial coordinates and normal vectors, without requiring explicit 3D
features.

Table 5.2 reports the per-class precision, recall, F1-score, and IoU obtained on
the SMV test scene for both Point Transformer v3 and DGCNN [21].

Table 5.2: Per-class segmentation performance on the SMV test scene (class 9
Other excluded).

Class DGCNN-Mod (with additional 3D features) Point Transformer v3 (no 3D features)
Prec. Rec. F1 IoU Prec.  Rec. F1 IoU
arch (0) 0.2619 0.0631 0.1017 0.0536 0.7585 0.6536 0.7022 0.5410
column (1) 0.6940 0.6780 0.6859 0.5219 0.8858 0.9397 0.9120 0.8382
moldings (2) 0.5217 0.4418 0.4784 0.3144 0.7247 0.7167 0.7207 0.5633
floor (3) 0.7927 0.8921 0.8394 0.7233 0.9365 0.9696 0.9527 0.9097
door__window (4) 0.5660 0.2615 0.3578 0.2178 0.8298 0.7206 0.7713 0.6278
wall (5) 0.8447 0.8999 0.8714 0.7721 0.9324 0.9350 0.9337 0.8756
stairs (6) 0.8563 0.7837 0.8184 0.6926 0.9261 0.8901 0.9077 0.8310
vault (7) 0.8295 0.9474 0.8845 0.7929 0.8875 0.9646 0.9244 0.8595
roof (8) 0.9611 0.9464 0.9537 0.9115 0.9853 0.9432 0.9638 0.9301
Mean 0.7031 0.6571 0.6657 0.5556 0.8741 0.8592 0.8654 0.7751

Point Transformer v3 substantially improves the segmentation quality across all
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architectural categories. Large gains are observed in highly variable or structurally
fine-grained classes such as arch (F1: 0.10 — 0.70), door_window (0.36 — 0.77),
and moldings (0.48 — 0.72), demonstrating the model’s ability to capture both
local and global spatial context without explicit handcrafted features. For highly
regular classes such as floor, wall, and roof, PTV3 also achieves higher precision
and IoU, confirming its robustness in large planar regions. Overall, the mean
IoU increases from 0.56 for DGCNN to 0.78 for PTV3, marking a substantial
performance improvement on the SMV test scene. Table 5.3 presents the per-class

segmentation results obtained on the SMG test scene for both Point Transformer v3
and DGCNN [21].

Table 5.3: Per-class segmentation performance on the SMG test scene (class 9
Other excluded).

Class DGCNN (with additional 3D features) Point Transformer v3 (ours, no 3D features)
Prec. Rec. F1 IoU Prec. Rec. F1 IoU
arch (0) 0.5318 0.2578 0.3472 0.2100 0.6290 0.7341 0.6775 0.5123
column (1) 0.8497 0.9250 0.8858 0.7949 0.9825 0.9840 0.9832 0.9671
moldings (2) 0.6502 0.5959 0.6219 0.4512 0.8012 0.8207 0.8109 0.6819
floor (3) 0.9566 0.9030 0.9290 0.8673 0.7958 0.9078 (.8481 0.7363
door__window (4) 0.1355 0.1956 0.1601 0.0870 0.4217 0.6021 0.4960 0.3298
wall (5) 0.8797 0.8551 0.8672 0.7655 0.9396 0.9239 0.9317 0.8721
stairs (6) 0.4661 0.7101 0.5628 0.3915 0.6045 0.9155 0.7282 0.5726
vault (7) 0.8909 0.9688 0.9282 0.8660 0.9602 0.9894 0.9746 0.9504
roof (8) 0.9753 0.9880 0.9816 0.9630 0.9825 0.8509  0.9120 0.8382
Mean 0.7040 0.7110 0.6982 0.5997 0.7908 0.8587 0.8180 0.7179

On the SMG test scene, we can notice that Point Transformer v3 again surpasses
DGCNN in nearly all classes, confirming its robustness across different architectural
contexts. The overall mean IoU rises from 0.60 to 0.72, accompanied by a higher
macro Fl-score (0.82 vs. 0.70). However, the pattern of improvements differs from
the SMV scene, reflecting the distinct spatial composition and material variability
of SMG.

Significant gains are observed in classes with irregular geometry or lower represen-
tation in the dataset, such as arch (F1: 0.35 — 0.68), door_window (0.16 — 0.50),
and stairs (0.56 — 0.73). These improvements indicate that the transformer ar-
chitecture generalizes better to spatially complex elements compared to DGCNN.
Consistent improvements also occur in structural classes with strong geometric
regularity, such as column, wall, and vault, where PTV3 achieves near-perfect
F1-scores (above 0.93) and IoU values exceeding 0.86. The roof and floor classes,
on the other hand, show smaller or mixed changes: PTV3 achieves lower recall for
the roof class (0.85 vs. 0.99), and reduced precision for floor.
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Qualitative Analysis

Test Scene Sacri Monti of Varallo (SMV) Figure 5.1 presents a qualitative
comparison of semantic segmentation results on the SMV test scene, contrasting
DGCNN and Point Transformer v3 (PTv3) including all versions. The prediction
of each model is rendered with a consistent color scheme.

Ground
Truth

DGCNN w/3D feat

Ptv3 Ptv3 w/3D feat

Figure 5.1: Existing Benchmarks: Qualitative comparison test scene SMV
It depicts ground truth, DGCNN, PTv3, and their respective variants trained with
handcrafted 3D geometric features.
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The ground truth scene (top) exhibits a high level of geometric complexity,
characterized by arch elements, thin columns, and staircases. DGCNN predictions
capture the general spatial layout but suffer from irregular boundaries and partial
misclassifications around the arches, columns, door/windows and moldings. The
inclusion of 3D geometric descriptors moderately enhances these areas especially
by improving continuity along the columns and better capturing the door/window
regions; however, the global structure remains coarse.

By contrast, PTv3 produces substantially cleaner and more continuous segmen-
tation throughout all classes. A clear improvement can be seen in classes such
as arch, columns and moldings. The variant trained with 3D features exhibits
mixed results, for example further refinement in some small-scale details—such
as consistent labeling of the column bases, or misclassifications of moldings near
door windows, without improving the overall result. The model trained without
additional 3D features already provides robust and visually coherent predictions.

In summary, the SMV scene confirms the trends observed in the quantitative
analysis: Point Transformer v3 consistently outperforms DGCNN, achieving higher
structural fidelity and reduced fragmentation, while handcrafted features mainly
contribute minor refinements in fine-grained areas rather than broad improvements.

Scene Sacri Monti of Ghiffa (SMG) Figure 5.2 presents a qualitative com-
parison of segmentation outputs produced by DGCNN and Point Transformer v3
on representative regions from the SMG test scene. The visualizations highlight the
main differences in segmentation quality and boundary delineation for this scene.

Visually, DGCNN struggles to delineate fine structural elements such as arches,
moldings and columns, often producing discontinuous or noisy class boundaries. In
this case the addition of 3D features to DGCNN enhances boundary definition and
improves recognition of columns regions, while arches and moldings remain poorly
segmented.

In contrast, PTv3 yields markedly cleaner and more coherent predictions, success-
fully recovering the global architectural layout and preserving structural continuity
of columns, arches and moldings. The segmentation of this model outperforms
all classes, apart from floor and roof. The column elements are consistently seg-
mented, while arches have a good recall (0.73) with low precision (0.63) resulting
in coarse predictions. The inclusion of handcrafted 3D descriptors have mixed
results, improving the classification for some classes and worsening for others i.e.
improving arch and moldings segmentation while worsening door window’s. The
observed drop in precision for the floor class, exhibited by Ptv3 on SMG can be
fully explained by a particular portion of the cloud, the roof on the left, where the
misclassification of the entire roof as floor led to a major drop in class performances.
In fact we have lower precision but slightly higher recall for floor class.

Overall, the qualitative inspection corroborates the quantitative results presented
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Ground Truth
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Figure 5.2: Existing Benchmarks: Qualitative comparison test scene SMG
It depicts ground truth, DGCNN, PTv3, and their respective variants trained with
handcrafted 3D features.

above. PT v3 produces more coherent and geometrically consistent segmentation,
whereas DGCNN exhibits higher fragmentation. The additional geometric descrip-
tors have marginal results but are not essential for achieving semantically accurate
and visually stable predictions.

Summary

In summary, PTV3 exhibits a consistent advantage over DGCNN across all semantic
categories, with the largest relative improvements concentrated in fine-grained and
topologically challenging elements. This trend highlights the ability of transformer-
based encoders to adapt to diverse spatial contexts and scene structures without
relying on handcrafted 3D descriptors.

5.3.2 Baseline Analysis: Full ARCH Dataset

In this section results from the complete Arch Dataset, that contains an additional
class, are presented and analyzed. The models are trained from scratch with the
new dataset and tested again. The main objective of this experiment is to establish
a robust baseline on the complete dataset, which will serve as a reference point for
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subsequent evaluations of the neuro-symbolic learning framework.

A comparison assessing the difference in behavior of the Ptv3 architecture on
the reduced and complete dataset can be found in the end of this section: 5.3.2.

To obtain a more comprehensive and statistically stable evaluation of the baseline
performance, the two official test scenes (SMV and SMG) were merged into a single
aggregated test split. This configuration allowed to assess the overall behavior of
the model on the entire ARCH dataset and to isolate the effect of incorporating
handcrafted 3D geometric descriptors such as verticality, planarity, omnivariance,
surface variation, and normalized height. These features were concatenated into the
standard feature vector (rgb + normals) to form the “3D-feature” configuration,
while the "“No 3D-features”" baseline variant relied solely on raw geometric and
color information.

Training protocol. Six experiments were conducted to compare the two config-
urations (with and without additional 3D features) with different batch sizes. Both
variants were trained using identical hyperparameters and data augmentations,
differing only in the inclusion of the six handcrafted descriptors. Batch size was
varied between 3, 6, and 12 to explore scaling effects, and for each setup, the best
model according to validation performance was evaluated on the aggregated test set.
All metrics were computed on the full-resolution point clouds after re-projection.
The metrics were then averaged throughout experiments of the same configuration.

Quantitative Analysis

Table 5.4 shows average and max on the metrics across different training configura-
tions reporting both validation and test results in each setting.

Table 5.4: Results on the full ARCH dataset (SMV + SMG) comparing the
baseline Point Transformer v3 with and without handcrafted 3D features. Metrics
are calculated for each experiment on the weights of the epoch that performed best
in validation.

. No 3D features With additional 3D features
Setting
allAcc mAcc mloU allAcc mAcc mloU
Test 0.852 0.768 0.651 0.854 0.762 0.651
Validation 0.686  0.567 0.432 0.786 0.731 0.596
Max Test 0.855 0.797 0.669 0.863 0.764 0.656
Max Validation 0.687  0.571  0.447 0.796 0.743 0.605

The results indicate a strong consistency between the two variants in the test
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set. Across all metrics, the inclusion of handcrafted geometric descriptors produced
marginal differences — within 1 percentage points in the Test set. Interestingly, the
validation set displayed a larger gap between configurations (mloU 0.43 vs. 0.59),
suggesting that handcrafted features improve generalization under domain shift or
reduced scene coverage.

Per-class behavior. A more granular comparison of per-class IoU and accuracy
(Figure 5.3) in the test and validation set shows a comparison between both
configurations in both Validation and Test. While Figure 5.4 shows see the relative
representation of each class in the training, validation and test split.

In general the classes with the worst performance in the test split are arch,
moldings, door _window and other. These classes are more complex and variegated
in their geometry, making them more challenging to segment accurately. Results
on the Validation split highlight the strong dependency of validation performance
on the inclusion of additional geometric descriptors. The most pronounced gains
occur in arch, moldings, and vault, where IoU values nearly double when using
handcrafted features. This effect suggests that the handcrafted descriptors provide
meaningful geometric regularization in smaller subsets of the dataset. In the
validation split, for the configuration using additional geometric descriptors, the
per-class performance follows the same trend observed in the test set, with the
lowest segmentation quality occurring for : arch, moldings, door _window, and
other. This further confirms the challenges associated with these categories. In
addition, the class stairs also shows low performance in the validation split, but it
can be explained by the ambiguous labeling of ramp structures in the dataset.

It can be said that the representation of the classes in the training split is not
the solely reason for model performance during test and validation, highlighting
the model capacity to learn simple patterns from few samples.

In the next subsection a qualitative analysis will be performed, focusing on
each scene in the Validation and Test split for a total of three scenes. To do so a
representative model was chosen for each configuration, in particular both of them
were trained with batch size 6 and unvaried hyper parameters.

A table with the metrics achieved by both models can be found in 5.5

Qualitative analysis

This analysis will focus on three scenes, the first from the validation split and the
other two from the test split. Predictions are shown in A.1, A.2 and A.3. The goal
of the analysis is to highlight the strenght and the weaknesses of both variant. In
the validation scene A.1 we can see an overall improvement in the predictions of
the model trained including additional descriptors, resulting in cleaner and more
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Figure 5.3: Per-class IoU comparison between Ptv3 models on the full arch
dataset
Trained with (blue) and without (orange) handcrafted 3D features. Solid bars
indicate aggregated test results (SMV+SMG), while hatched bars correspond to
the validation scene.

Class Distribution Percentages in each split

m Test
e Training
mmm Validation

Percentage

Figure 5.4: Training label distribution
The chart shows the percentage distribution of each class in the splits of the
ARCH dataset. Interesting to notice is the high class imbalance, with some classes
like wall and vault being significantly more represented than others like stairs and
columns.
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Validation no feat bs6 3d feat bs6  Asgreat—nofeat ‘ Test ‘ no feat bs6 3d feat bs6  Asaeat—nofeat

allAcc 68.48% 78.19% 9.70% 85.33% 86.27% 0.94%
mAcc 56.74% 72.92% 16.17% 79.65% 76.04% -3.61%
mloU 44.73% 60.52% 15.79% 66.87% 65.59% -1.28%
Per Class IoU

arch 20.52% 47.72% 27.20% 45.18% 39.43% -5.75%
column 89.03% 94.90% 5.87% 92.38% 92.74% 0.36%
moldings 20.84% 43.19% 22.36% 45.68% 55.47% 9.79%
floor 68.39% 75.99% 7.60% 87.16% 80.40% -6.76%
door_window 44.70% 56.50% 11.80% 37.32% 30.73% -6.59%
wall 67.76% 70.87% 3.12% 77.59% 83.69% 6.10%
stairs 27.86% 28.49% 0.63% 75.91% 77.39% 1.48%
vault 26.34% 62.02% 35.68% 88.19% 85.14% -3.05%
roof 65.67% 85.13% 19.46% 89.70% 85.48% -4.22%
other 11.45% 36.29% 24.83% 29.62% 26.55% -3.07%

Table 5.5: Comparison of the baseline with and without the addition of descriptors
in input

correct boundaries. This is confirmed by the metrics. Regarding the test scene
SMV A.2 we can see that the model including additional 3D features struggles in
the correct predictions of arches (b), while the other variant offers a more consistent
recognition. Notably the part of the element arch that is badly recognized is the one
with low verticality. Another typical error of the model including the descriptors is
the loss of consistency in the prediction of the roof edges (c¢). In (a) instead we can
see an example where the model including descriptors outperforms the variant, in
particular in the tower on the left, we can see how the model correctly predicted a
downpipe (even if the ground truth lacks this annotation) and separated it from
the molding, while the variant predicted non-consistently. Finally, as we can see in
(c) the model with descriptors have a more coherent predictions of moldings and
door_ window, as shown by the class IoU.

Regarding the SMG test scene A.3 we still see misclassification of roof structures
in both variants (a), while the model including the descriptors misclassifies some
irregular part of the floor (left side of a). In (b) its noticeable the improvement
of the variant including descriptors in predicting downpipes, being part of others,
with little misclassifications, while the variant struggles. The problem in predicting
arch structures for the model that includes descriptors remains, as can be seen in
(d). In (c¢) we can notice that both models could not predict the paintings in the
corridor, being part of the other class; this can be explained by the scarcity of this
type of element in the training split.
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Summary

The results presented in this section establish a solid baseline for subsequent
neuro-symbolic experiments. Point Transformer v3 demonstrates strong general-
ization and high segmentation accuracy across both validation and test scenes,
confirming its capability to learn complex spatial relationships directly from raw
point attributes. The inclusion of hand-crafted geometric descriptors—such as
verticality, omnivariance, planarity, and surface variation—was shown to exert
only a marginal influence on quantitative performance, particularly in large and
diverse test scenarios. Nonetheless, these descriptors improved model stability and
generalization on the smaller validation subset by providing additional low-level
geometric priors. Since these geometric quantities facilitate the encoding of spatial
relationships relevant for logical reasoning, the configuration including handcrafted
3D features was retained for all subsequent neuro-symbolic experiments. This
choice ensures that both the neural and logical components operate on a shared,
geometrically enriched representation of the scene, facilitating the integration of
domain-specific reasoning within the LTNTorch framework.

The baseline analysis also highlighted certain semantic categories—such as arch,
moldings, door/window, and other—that remain challenging for purely data-driven
segmentation approaches. These classes exhibit lower IoU and precision scores,
likely due to the amount of different shapes and styles they can assume and/or
limited representation in the training set. Addressing these challenges motivates
the exploration of neuro-symbolic methods that can leverage domain knowledge
and logical constraints to enhance segmentation performance in these difficult
categories.

Comparison Reduced and Full Dataset

A comparison was performed between the model trained and tested on the reduced
dataset and the model trained and tested on the complete dataset. Both configu-
rations were trained using the same hyper-parameters, including a batch size of
6. In this comparison the versions trained without additional 3D descriptors were
selected.

Table 5.6 shows that Ptv3 performs worse on the complete dataset, with a
decrease of —5.67% mlIoU on SMV and —12.23% on SMG.

Table 5.7 shows that the segmentation of class other in the SMV scene performed
well, achieving an IoU of nearly 57%. In contrast, classes such as arch, moldings,
wall and vault experienced decreases of about 2-10%, and door window dropped
by almost 20%. The only category that improved clearly in the complete dataset
was column, with an increase of approximately 6%.

Table 5.8 shows that the class other achieves only 9% IoU in SMG. Most semantic
classes show consistent decreases: arch drops by 25% IoU, door_window by 20%,
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Method  Overall Acc. Precision  Recall F1 mloU

Reduced 91.02% 90.98%  91.02% 90.94%  77.51%
SMV  Complete 88.29% 88.62%  88.29%  88.10% = 71.84%
Dift -2.73% -2.36% -2.73% -2.84% -5.67%

Reduced 90.07% 90.94%  90.07% 90.29%  71.79%
SMG  Complete 84.58% 85.95%  84.58%  85.05%  59.55%
Dift -5.49% -4.99% -5.49% -5.24% -12.23%

Table 5.6: Comparison of Ptv3 results in reduced and complete Arch dataset

SMV reduced complete
Prec. Rec. F1 ToU Prec. Rec. F1 TIoU

arch (0) 0.7585 0.6536 0.7022 0.541 | 0.7935 0.5606 0.657  0.4893
column (1) 0.8858 0.9397 0.912 0.8382 | 0.9808 0.91 0.944 0.894
moldings (2) 0.7247 0.7167 0.7207 0.5633 | 0.623 0.6668 0.6442 0.4751
floor (3) 0.9365 0.9696 0.9527 0.9097 | 0.9165 0.9716 0.9432 0.8926
door_window (4) 0.8298 0.7206 0.7713 0.6278 | 0.8689 0.4766 0.6156  0.4447
wall (5) 0.9324 0.935 0.9337 0.8756 | 0.9203 0.919 09197 0.8513
stairs (6) 0.9261 0.8901 09077 0.831 | 0.9368 0.8946 0.9152 0.8437
vault (7) 0.8875 0.9646 0.9244 0.8595 | 0.8229 0.9793 0.8943 0.8089
roof (8) 0.9853 0.9432 0.9638 0.9301 | 0.9874 0.9259 0.9557 0.9151
other(9) 0.7151 0.7367 0.7257 0.5695
Mean 0.8741 0.8592 0.8654 0.7751 0.8565 0.8041 0.8215 0.7184

Table 5.7: Per class comparison of Ptv3 results, scene SMV, when trained and
tested on reduced or complete Arch dataset

and wall, moldings, vault by around 5%.

The large discrepancy in the performance of the other class between the two
scenes can be explained by their different compositions: SMV consists mostly of
balustrades, which the model predicts easily, while SMG contains more complex
elements such as shutters, paintings, and chimneys.

In summary, across both scenes, there is a consistent decrease in metrics for
classes such as moldings, vault, wall, and roof, while arch and door_window
experience the most significant drops. Overall, it is clear that the complete dataset
introduces greater noise, making correct predictions much more difficult for the
model. This dataset may be better suited for neuro-symbolic learning, where
regularization and ad hoc rules can improve training stability.
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SMG reduced complete
Prec. Rec. F1 ToU Prec. Rec. F1 ToU

arch (0) 0.629 0.7341 0.6775 0.5123 | 0.5554 0.3294 0.4135 0.2607
column (1) 0.9825 0.984 0.9832 0.9671 | 0.9882 0.9729 0.9805 0.9617
moldings (2) 0.8012 0.8207 0.8109 0.6819 | 0.7536 0.8216 0.7861 0.6476
floor (3) 0.7958 0.9078 0.8481 0.7363 | 0.8781 0.8475 0.8625 0.7583
door_window (4) 0.4217 0.6021 0.496 0.3298 | 0.1667 0.4235 0.2392  0.1359
wall (5) 0.9396 0.9239 0.9317 0.8721 | 0.9102 0.9005 0.9053 0.8271
stairs (6) 0.6045 0.9155 0.7282 0.5726 | 0.6199 0.8512 0.7173 0.5592
vault (7) 0.9602 0.9894 0.9746 0.9504 | 0.9071 0.9948 0.9489 0.9028
roof (8) 0.9825 0.8509 0.912 0.8382 | 0.9498 0.8442 0.8939 0.8081
other(9) 0.1623 0.1813 0.1713 0.0937
Mean 0.7908 0.8587 0.8180 0.7179 0.6891 0.7167 0.6919 0.5955

Table 5.8: Per class comparison of Ptv3 results, scene SMG, when trained and
tested on reduced or complete Arch dataset

5.4 Experiment with knowledge base

In this section, we present the experiments conducted to evaluate the impact of
progressively integrating logical knowledge into the segmentation pipeline. Starting
from a baseline model trained solely on data-driven supervision (described in detail
in Section 5.3.2), we introduce different sets of neuro-symbolic rules and analyze how
each configuration influences performance. To avoid biased choices when selecting
which rules to retain, all intermediate evaluations are carried out exclusively on the
validation split. Based on these validation results, a subset of rule configurations
is then chosen, the model is trained accordingly, and final performance is assessed
on the held-out test split.

Training protocol. Various experiments were conducted to compare the rule
configurations with batch size set to 6. All variants, including the baseline were
trained with the inclusion of additional 3D descriptors, using identical hyperpa-
rameters and data augmentations, apart from the weight given to the domain
knowledge loss, which was sometimes varied from the default value of 1. For each
setup, the best model according to validation performance was evaluated on the
aggregated test set. All metrics were computed on the full-resolution point clouds
after re-projection.

By examining the behavior of the system across increasingly rich knowledge bases,
we aim to understand how logical constraints interact with the learned features,
how they modify the model’s predictions, and to what extent they contribute to
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improvements in scene-level semantic segmentation. A first series of experiments is
showed in Table 5.9

RFC ADD1 ADD2 ADD3 FWV MR CR AR DWS DWP
v

CO 3 O UL i Wi+
NN
SSENEEENENEN

Nej
RN NN NN NEN

10
11 v

12 v

13 v

14 v
15 v

Table 5.9: Series of experiments linked to the sets of rules included in the training
process. The definition of each set can be found in Section 4.2.3.

To investigate how logical priors can help stabilize broad structural categories
such as roof and floor, we introduce a series of rules designed to enforce geometric
and contextual consistency. These categories often act as global scene anchors, yet
they remain challenging in certain scenarios, as pointed out in Section 5.3.2. Each
experiment applies increasingly rich variants of these rules (e.g., RFC, RFC+ADD,
RFC+ADD+FWV), allowing us to isolate the contribution of each individual
constraint set.

As documented in Table 5.10, introducing this family of rules leads to a slight
improvement in the validation split, averaging a +1.7% increase in overall accuracy
and +0.67% in mean intersection over union. Classes that are consistently improved
include moldings, wall, stairs, vault, roof, and other, while some categories show a
consistent decrease, namely arch, column, floor, and door window. Regarding the
contribution of the singular sets, we observed that the rules ADD1, ADD2, and
ADDS were ineffective, whereas adding the FWV rule consistently resulted in a
slight increase in mlIoU.

In addition to these structural rules, ad hoc rules for certain classes were created,
namely AR, CR, DWS, DWP, MR. Each experiment applied only one of them at a
time to asses the contribution of each set.
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Validation ‘ Baseline Mean Exp. ‘ A Representative A
allAcc 77.65% 79.37% 1.72% 2.51%
mloU 60.11% 60.78% 0.67% 1.85%

iou arch 47.72% 40.87% -6.85% -6.13%

iou column 94.90% 92.52% -2.38%  -0.42%
iou moldings 43.19%  48.67% | 5.47% 10.15%

iou floor 75.99% 75.00% -0.99% -1.61%

iou door window | 56.50% 53.81% -2.69% -0.75%

iou wall 70.87% 73.29% 2.41% 2.42%

iou stairs 28.49% 30.91% 2.42% 0.69%

iou vault 62.02% 63.89% 1.86% 2.94%

iou roof 85.13% 88.47% 3.35% 4.46%

iou other 36.29% 40.37% 4.08% 6.71%

Table 5.10: Mean performance and improvement (A) over the baseline 5.3.2
for experiments introducing combinations of Roof-Floor Consistency (RFC) and
Floor—-Wall Verticality (FWV) rules.

Validation | BASELINE| AR~ CR  DWS DWP MR
allAcc 77.65% 1.26%  2.67%  2.08%  -0.34%  -1.49%
mloU 60.11% 0.31% 1.74%  -043%  -257% -1.43%

iou arch 47.72% -11.99%  -2.67%  -8.77%  -7.34%  -7.39%

iou column 94.90% -0.37%  -4.21%  -0.63%  -0.84%  -0.51%
iou moldings 43.19% 8.11%  12.06% 8.55% 151%  -6.83%
iou floor 75.99% -0.34%  -2.52%  0.43% 2.11%  -0.04%

iou door window 56.50% 1.32% -4.35% -19.89% -21.85% -2.33%
iou wall 70.87% 1.07%  431%  1.66% -1.11%  -3.46%

iou stairs 28.49% 5.21% 1.19%  18.55% 2.59% 6.54%

iou vault 62.02% -1.47%  -257T%  0.46% 8.59% 4.17%

iou roof 85.13% 2.85% 1.22%  3.05% 1.26% 1.35%

iou other 36.29% -1.27% 11.90% -7.76% -6.43%  -5.76%

Table 5.11: Mean improvement over the baseline 5.3.2 for experiments introducing
per class rules

We can see in Table 5.11 that, in all cases, rules intended to improve a specific
semantic class instead led the model to predict that class less frequently. As
discussed in 4.2.3, this behavior is expected when using rules of the form

Class(x) = Characteristic(z),
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since the model can satisfy the rule by negating the antecedent rather than enforcing
the consequent. In any case, some of the implemented rules—such as AR, CR,
and DWS—still improve the general results, particularly for classes like moldings,
stairs, and roof. Notably, CR also improves the class other, suggesting that the
additional geometric and contextual constraints introduced by this rules may help
the model better distinguish residual or ambiguous regions.

Based on the results of the previous experiments, we selected a subset of rules
that either showed a positive impact on the validation split or could be meaningfully
extended due to their logical relevance. This selection was guided by the aggregated
trends reported in Table 5.10 for the structural rules and Table 5.11 for the per-class
rules. This analysis allowed us to discard rule configurations that consistently
degraded performance while retaining those that provided stable or meaningful
improvements.

The retained rule sets were then combined to produce several new model
configurations (listed in Table 5.12), which were subsequently evaluated in both
the validation split and the held-out test split to assess the generalization capacity
of the resulting knowledge bases.

| RFC+ERFC ADD2 | ADD3 | FWV+EFWV | MR+EMR | CR+ECR

FINAL1 v v v v v v
FINAL2 v v v v
FINAL3 v v

Table 5.12: Rule configurations used in the final experiments.

The results of the evaluation on these configurations, together with a selected
set of strong performers, are presented in Table 5.13.

Validation Finall Final2 Final3 1=0.1 RFC RFC_ADDI1 FWV =2 RFC_ADD1 FWV RFC_ADD3 FWV CR
allAcc 1.10% -0.20% 0.22% 2.83% 2.51% 1.41% 1.41% 2.67%
mloU 0.08% -1.15% -0.45% 1.60% 1.85% 0.54% 0.47% 1.74%

Test Finall Final2 Final3 1=0.1 RFC RFC_ADDI FWV =2 RFC_ADD1 FWV RFC_ADD3 FWV CR
allAcc -0.73% -0.36% -0.64% 0.31% 0.29% 0.54% 0.44% -1.60%
mloU -0.22% 0.23% 0.52% 1.06% 0.73% 1.93% 1.96% -1.43%

Table 5.13: Improvement over the baseline for Validation and Test Split on the
model trained with best performing configurations

We can see that the chosen configuration produced mixed results, without
clearly improving over the baseline. Instead, minimal sets of rules—especially those
focusing on the most represented classes, floor, roof, other, and wall—consistently
improved performance. In contrast, rules targeting single classes proved ineffective
in the test set.
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Focusing on the two configurations that demonstrated steady improvements
across both splits and achieved the best performance in the validation and test
sets—namely RFC, ADDS3, FWV and RFC, lambda=0.1—their corresponding
results are presented in Table 5.14 and Table 5.15.

arch column moldings floor door window  wall stairs  vault roof other
Test 16.77% 0.24% -33™% -2.35% -4.88% -0.81% 1.49% 2.42% 0.33% 0.78%
Validation -5.34% -1.06% 8.48% -1.85% -5.48% 3.50% 3.27% 1.57% 4.07% 8.82%

Table 5.14: Improvement in IoU per class for configuration that performed best
on the validation set, containing set of rules RFC [=0.1

arch (0) column (1) moldings (2) floor (3) door window (4) wall (5) stairs (6) vault (7) roof (8) other (9)
Test 16.81% -0.42% -1.99% 2.98% -0.30% -1.25%  -2.50% 5.04% -0.24%  1.49%

Validation — -4.84% -2.52% 3.82% -1.06% -5.46% 2.73%  2.13% 3.08% 1.67% 5.10%

Table 5.15: Improvement in IoU per class for configuration that performed best
on the test set, containing set of rules RFC, ADD3, FWV

In both configurations, the pattern of improvement differs between the test
and validation splits, particularly for the classes arch, moldings, and wall. This
suggests that the distribution of these classes varies between the test and validation
scenes—especially for the arch class, where the difference in improvement exceeds
20% IoU. It should also be noted that the baseline configuration used for comparison
was the worst-performing one for arches among all baseline setups (Figure 5.3), with
the best baseline achieving an IoU approximately 10% higher. Even accounting for
this, we can still assert that the configuration incorporating rules had a positive
effect on arch segmentation. Overall, the regularization introduced by the analyzed
rules enhances the segmentation of the arch class in the test set, while also improving
vault, other and roof or floor in both splits.

We can also note that the configuration containing the set of rules FWV improves
the metrics for floor compared to the other configuration and the baseline, showing
a clear enhancement attributable to the regularization introduced by this set.

Figures B.1, B.2, and B.3 present visualizations of the predictions from the
baseline and the two best-performing configurations using rules.

In the validation scene (Fig. B.1), we observe less “bleeding” in the predictions
of floor, roof, and stairs (b), a more consistent classification of vault (c), and overall
better classification of moldings.

In the test scene SMV (Fig. B.2), we see reduced confusion in the prediction
of roof edges (a, b), improved segmentation of arch (b), and a case where the
configuration RF'C [=0.1 (c) fails to predict a door that was partially detected by
the baseline. Both rule-based configurations are also less precise than the baseline
in segmenting moldings.
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The last analyzed scene is SMG (Fig. B.3), where the error regarding the roof on
the left is not fully corrected by any configuration, even though the segmentation
pattern changes—for example, by restricting the prediction of other (bottom left)
or partially predicting some areas correctly as roof (bottom right). Image (b) also
shows an improvement in the segmentation of arch in this scene.
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Chapter 6

Conclusion

The work presented in this thesis provide a comprehensive evaluation of the effects
of integrating logical knowledge into a transformer-based segmentation pipeline for
point cloud semantic segmentation, specifically on the ARCH dataset. A key finding
of this work is that enlarging the knowledge base by adding many heterogeneous
rules does not necessarily lead to better performance. In fact, broad or overly
specific rule sets often introduced noise into the optimization process, leading to
inconsistent or even degraded results across different scenes.

Conversely, a slim and carefully selected subset of rules proved consistently ben-
eficial. Rules targeting highly represented and structurally defining classes through
geometric cues such as coplanarity—particularly for roof, floor, and other—provided
a form of regularization that improved not only their own predictions but also
those of related classes. For instance, although the rules were primarily designed
for major structural elements, improvements were observed in classes such as arch,
and wvault, as documented in Tables 5.14 and 5.15. This suggests that enforcing
geometric and contextual consistency on core architectural components indirectly
stabilizes predictions in neighboring or semantically connected classes.

The results also show that rule sets designed for individual classes and that do
not introduce new geometric cues rarely produced the intended effect. Only a few
per-class rules, such as CR or FWYV, yielded measurable improvements, indicating
that this kind of semantic constraints must be formulated with particular care.

Overall, these findings highlight that within a neuro-symbolic framework, the
quality, focus, and geometric grounding of the knowledge base matter more than its
size. Compact rule sets that leverage meaningful geometric cues and align with
the architectural structure and dataset distribution provide a stable and effective
means of guiding the learning process.
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6.1 Future Work

The promising results obtained with compact structural rule sets open several
directions for future research. First, rules defined at the instance level could more
accurately capture the geometric structure of indoor and heritage environments.
Second, rules derived from new rich geometric insights, such as the co-planarity
prior used in this work, may provide stronger and more expressive constraints than
point-wise rules alone.

6.2 Thesis Contributions

This thesis presented the first complete analysis of a new transformer architecture
for point cloud semantic segmentation on the ARCH dataset, achieving a new state-
of-the-art on its benchmark. It introduced a full neuro-symbolic learning pipeline
built directly on top of the Pointcept engine [4] and extended using LTNTorch [26],
integrating Real Logic with a modern point-cloud transformer. The work included
a substantial effort in rule design, implementation, and systematic experimental
evaluation, resulting in actionable insights into how logical priors can interact with
geometric features to guide 3D semantic segmentation.

Together, these contributions demonstrate both the potential and the limitations
of neuro-symbolic methods in large-scale 3D understanding, setting the foundations
for more expressive and reliable regularization-based neuro-symbolic systems in
future work.
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Appendix A

Baseline comparison

-
]
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Figure A.1: Baseline variants: Qualitative comparison on validation scene.
Each subfigure shows a different viewpoint comparing the ground truth, model
trained without 3D features , and model trained with 3D features.
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Figure A.2: Baseline variants: Qualitative comparison on SMV scene. Each view
shows predictions from the model trained without 3D features (bottom), with 3D
features (top), and the ground truth.
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Baseline comparison

Figure A.3: Baseline variants: Qualitative comparison on SMG scene.
Each view shows three corresponding segmentations: from the model trained
without 3D features (bottom), with 3D features (top), and the ground truth.
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Rules effect comparison
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Rules effect comparison

Figure B.1: Qualitative comparison rules against baseline
Each subfigure shows a different viewpoint comparing the ground truth (top left),
baseline (top right) , configuration with rules RF'C, ADDS3, FWV (bottom right)
and configuration with rules RFC I=0.1 (bottom left)
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Rules effect comparison

Figure B.2: Qualitative comparison rules against baseline
Each subfigure shows a different viewpoint comparing the ground truth (top left),
baseline (top right) , configuration with rules RFC, ADD3, FWV (bottom right)
and configuration with rules RFC [=0.1 (bottom left)

57



Rules effect comparison

AR-383 best = 3.000000

AR-358 best = 3.000000

(b)

Figure B.3: Qualitative comparison rules against baseline
Each subfigure shows a different viewpoint comparing the ground truth (top left),
baseline (top right) , configuration with rules RF'C, ADDS3, FWV (bottom right)
and configuration with rules RFC [=0.1 (bottom left)
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