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Abstract

Vision-Language-Action (VLA) models are emerging as powerful tools for embodied
AI, allowing robots to merge visual perception with language understanding to
execute complex tasks. Their potential lies in combining perception, reasoning, and
control within a single framework, which could greatly enhance robotics pipelines
and boost generalization.

However, it remains uncertain how effectively today’s open, mid-size vision-
language models (VLMs) can be adapted into practical VLAs. Previous works like
RT-2 have demonstrated impressive results but rely on large proprietary models and
undisclosed training methods, while OpenVLA presents an open-source alternative
based on composite architectures. In contrast, this study investigates whether a
single, open, mid-size model like LLaMA 3.2 Vision Instruct can be fine-tuned into
a functional VLA using only limited computational resources, along with carefully
designed prompting and training strategies.

The approach is evaluated on two complementary benchmarks: ALFRED, which
emphasizes high-level household reasoning and long-horizon planning, and Open
X-Embodiment (OpenX), which concentrates on low-level robotic manipulation
trajectories. For ALFRED, the model is fine-tuned to generate both a natural
language plan and a discrete sequence of actions (e.g., GoToLocation, PickupObject).
This is achieved by creating structured prompts that enforce the chronological order
of observations and conditionally integrate scene objects, effectively introducing
dropout to enhance robustness. This framework enables the model to produce
coherent and aligned language–action plans, even though the inference time per
sample remains significant.

For OpenX, a discrete action vocabulary is established by mapping 256 un-
common LLaMA tokens to 8-dimensional robot actions (termination, 3D position,
rotation, gripper). While single-frame baselines struggle to follow meaningful
trajectories, reframing the task as multi-frame sequence prediction with tempo-
ral windows and object-focused prompts allows the model to maintain trajectory
consistency, termination, and gripper control.

The results show that these fine-tuned models significantly surpass baseline
configurations that lack fine-tuning or prompt design. Even when using only a
small subset of the original datasets and training with limited resources, the models
display promising abilities in both high-level reasoning and low-level control.

Overall, the findings suggest that mid-sized, open models like LLaMA 3.2
Vision can serve as effective foundations for embodied AI when combined with
efficient fine-tuning and carefully engineered inputs. These insights illuminate future
research directions, including scaling data and computational resources, refining



prompting strategies, and ultimately fostering the development of general-purpose,
resource-efficient VLA systems for robotics.
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Chapter 1

Introduction

The ability to instruct a robot using natural human language, transforming verbal
instructions into executable physical actions, has long been a core ambition in
robotics and artificial intelligence. Traditionally, to perform even simple tasks, such
as “to place the cup in the sink” requires a complex and fragile modular pipeline.
These pipelines typically involve object detectors, pose estimators, symbolic plan-
ners, and motion controllers, each of which must be separately trained, manually
integrated, and precisely calibrated. This fragmentation creates systems that are
difficult to scale, fragile in edge cases, and highly dependent on domain-specific
engineering.

In recent years, the emergence of large multimodal models has opened the door
to a fundamentally different approach. These models jointly process language
and vision, enabling them to reason over images and textual input in a unified
architecture. One such model is LLaMA 3.2 Vision-Instruct, the first vision-
language model in the LLaMA family, which combines a visual encoder and an 11-
billion-parameter language decoder to perform grounded reasoning and instruction
following. Using its capacity to interpret scenes and respond to natural language,
this model offers a potential route to collapse the traditional pipeline into a single,
learned system. More recent generations in the same family, such as LLaMA 4,
further extend this line with mixture-of-experts architectures and very long context
windows, but in this dissertation we intentionally focus on a medium-sized, widely
accessible backbone as a realistic starting point for robotic applications.

This dissertation investigates whether such a model can be used to program a
robotic arm, receiving natural language instructions and producing appropriate
robot actions, without relying on explicitly engineered intermediate steps. We
explore three progressively grounded output modalities:

• Natural-language task plans: textual sub-task lists describing what to do
step-by-step,
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• Symbolic plans: structured action representations encoded in JSON,

• Low-level control vectors: compact 8-token outputs encoding motion and
manipulation commands.

The study is organised around four central research questions:

1. To what extent can a frozen LLaMA 3.2 Vision-Instruct model, conditioned
only through prompting, generate coherent and plausible task plans on the
ALFRED benchmark?

2. How much does parameter-efficient fine tuning with LoRA on ALFRED
improve the model’s ability to produce structured and executable plans, both
in natural language and as discrete JSON action traces, and which failure
modes remain?

3. Can the same backbone, equipped with dedicated LoRA adapters, be reused as
a controller on the Open X-Embodiment dataset, mapping visual observations
and instructions to 8-token control vectors that capture meaningful continuous
behaviour?

4. Under realistic resource constraints, what trade offs arise when compressing
these adapted models with 4 bit weight-only quantisation, in terms of memory
and latency gains versus degradation of planning and control performance?

To answer these questions, we design a multi-phase experimental pipeline. We
begin by evaluating the model’s reasoning capabilities using one-shot and few-shot
prompt engineering techniques, such as Chain-of-Thought (CoT), ReAct-style
reasoning and visual-based prompting, in a curated subset of ALFRED tasks. We
then perform supervised fine-tuning on the full ALFRED dataset to teach the
model how to generate executable natural-language and symbolic action plans. In
the next phase, we adapt the same architecture to low-level robotic control using
Open X-Embodiment demonstrations, training it to predict discrete action vectors
suitable for real-time manipulation. Finally, we apply quantization techniques to
assess the feasibility of deploying the full pipeline on edge hardware.

The remainder of this dissertation details the methodology, datasets, and empir-
ical results across each stage.
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Chapter 2

Background and Related
Work

Recent years have seen fast progress in vision-and-language models, and more
broadly, in the use of large language models (LLMs) within robotics. These systems
combine visual perception with natural-language reasoning and generation, allowing
robots to interpret images, understand verbal instructions, and produce action
descriptions or control commands in a single architecture. When scaled, LLMs
provide rich semantic knowledge and strong capabilities for symbolic reasoning and
long-horizon planning.

Yet, a central challenge remains: grounding these capabilities in the physical
world. A text-only LLM has no direct access to sensor data or robot dynamics, so
it cannot guarantee that its plans are feasible or safe when executed on a particular
platform [1]. The physical environment does not respond to abstract descriptions
but to concrete motor commands that must respect geometry, kinematics, and
contact constraints.

To bridge this gap, recent work has proposed multimodal and hybrid architectures
that fuse vision, language, and low-level control into unified models [2]. Vision-
language-action systems learn from paired trajectories, images, and instructions so
that perception, planning, and action are optimized jointly rather than engineered
as separate modules. This marks a shift away from traditional modular pipelines
toward foundation-style models that can reason about tasks while remaining
connected to sensory input and motor output.

This chapter first reviews key previous work along this trajectory and then
introduces the approach adopted in this dissertation: adapting LLaMA 3.2 Vision–
Instruct to ALFRED and Open X-Embodiment, constructing task-specific datasets,
and designing a training and evaluation pipeline that spans high-level planning
and low-level control.
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2.1 Classical Modular Pipelines in Robotics
Robots have traditionally followed a Sense-Plan–Act architecture: sensors capture
data (e.g., cameras, LiDAR), which a perception module processes to estimate the
environment. A planner generates actions or trajectories, and a controller executes
them [2].

This modular design allows for clean separation between perception, planning,
and control, making analysis and debugging easy to manage. The approach is
backed by strong theoretical foundations in optimal control and motion planning.

However, this decomposition shows limitations in the real world. Small upstream
errors cascade downstream, and handcrafted components require extensive per-task
tuning. Pipelines designed for “pick-and-place” tasks often fail in more complex
settings like “folding laundry.”

To overcome these issues, end-to-end learning has emerged [3, 4]: models map
raw sensory input directly to motor output, bypassing intermediate engineered
representations. The idea is that, given sufficient data and compute, a network can
learn the pixel-to-action mapping more effectively than handcrafted systems [5].

While the balance between engineered and learned components remains de-
bated [2], the emergence of foundation models, large vision-language-action systems
trained on diverse robot data, has opened new avenues. The next sections examine
these models and their enabling datasets.

2.2 Advanced Vision-Language Models for
Robotic Control

2.2.1 Gato: A Multimodal Generalist Agent

A key milestone in unifying robot-control policies is Gato, introduced by DeepMind
in 2022 as a multimodal, multi-task generalist model [3]. Gato is a single autore-
gressive Transformer trained on over 600 tasks, including dialogue, Atari games,
image captioning, and robotic manipulation. It can output text tokens, gamepad
commands, or joint torques from the same weights, depending on context.

This is enabled by modality-specific embeddings for text, vision, and proprio-
ception, all decoded as unified token sequences.

Although smaller than current LLMs (~1.18B parameters), Gato matched
domain-specific systems on simple skills like block stacking [3]. Although it did
not surpass handcrafted baselines, it demonstrated the feasibility of multitask,
multimodal learning in a single Transformer, paving the way for robot-centric
foundation models.

4



Background and Related Work

2.2.2 BC-Z: Generalisation from Natural Task Descriptions
BC-Z is a large-scale imitation learning framework designed for zero-shot gener-
alization to new tasks using language or video prompts [6]. Instead of task IDs,
BC-Z uses semantically rich inputs like text or videos of humans performing the
task.

The architecture combines a text/video encoder with a visual convolutional
backbone, feeding into a policy network for a 7-DoF arm. It was trained with
behavior cloning on 25,877 demonstrations across 100 tasks via teleoperation and
shared autonomy. The resulting policy generalizes zero-shot to unseen objects and
task goals.

2.2.3 Robotics Transformer: RT-1 and RT-2
Google Robotics introduced RT-1 and RT-2 to combine Transformer flexibility
with robot-specific data.

RT-1 is a decoder-only Transformer trained on over 130,000 teleoperated episodes
spanning 700 domestic tasks [4]. It encodes instructions and image sequences via
a visual backbone and the TokenLearner module, producing 11 discrete tokens
representing a 7-DoF arm and mobile base. Despite its discrete action space, RT-1
behaves as a continuous policy, generalising across novel tasks, distractors, and
long-horizon plans, outperforming earlier models like Gato and BC-Z.

RT-2 builds on RT-1 by co-training robot data with web-scale vision-language
knowledge [5]. Leveraging large pretrained models such as PaLI-X and PaLM-E [7],
RT-2 encodes robot actions as text tokens and learns from both real-world robot
demonstrations and Internet-scale imagery and captions. This results in emergent
abilities absent in robot-only training, for instance recognising unseen objects,
interpreting symbolic references (e.g., “on square 5”), or reasoning over object
attributes (e.g., “pick the smallest”).

An even greater generalization was achieved with the Open X-Embodiment
dataset [8], comprising over 1 million demonstrations from 60 sources and 22 robot
morphologies. Fine-tuning RT-1 and RT-2 on this dataset produces RT-1-X and RT-
2-X, which significantly outperform their predecessors. RT-2-X, for example, triples
success on unseen tasks and exhibits finer spatial understanding (e.g., distinguishing
“on the table” from “near the table”). This confirms that scaling data diversity
across robots, tasks, and environments enhances generalisation while reducing the
need for task-specific fine-tuning.

However, RT-2 and its Open-X variants are not publicly released, and their
architectures are tightly coupled to the PaLI-X and PaLM-E backbones. In this
dissertation, we instead adopt LLaMA 3.2 Vision–Instruct as a medium-sized,
publicly available backbone and take inspiration only from the high-level design of
RT-style discrete action tokens, using an 8-token parameterization for termination,
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Cartesian deltas, rotations, and gripper state while designing our own training and
evaluation pipeline.

2.2.4 Language-Driven Planning: SayCan
A complementary line of work treats large language models (LLMs) as high-level
planners while delegating physical execution to low-level controllers. SayCan [1]
couples a 540B-parameter PaLM LLM with a mobile manipulator. The LLM acts
as a semantic “brain,” decomposing a user instruction into candidate sub-actions
(e.g., navigate, grasp, open drawer). Each primitive skill is paired with a learned
value function that estimates its chance of success in the current scene. At each
step, the system selects the candidate that maximizes the product of what the
LLM says and what the robot can do, hence the name “Say” + “Can”.

This grounding-by-affordances mechanism enables the robot to take advantage
of the rich world knowledge of the LLM while filtering out infeasible suggestions.
Experiments show that the robot can execute multi-step kitchen tasks expressed
in natural language, such as “Bring me a Coke from the living room; if none is
present, fetch a bottle of water from the kitchen,” requiring conditional planning
and object reasoning.

The study underscores that, while an LLM can propose plausible plans in the
abstract, linking its output to real-time perception and embodied value functions
yields a far more reliable agent. SayCan therefore exemplifies a loosely coupled
integration: the LLM plans, and the robot executes, constrained by affordance
scores.

2.2.5 PaLM-E: An Embodied Multimodal Language Model
PaLM-E [7] pushes the integration of language and embodiment further by em-
bedding a large-scale LLM (PaLM) inside an end-to-end multimodal architecture
that directly ingests robot sensory data. RGB images, joint angles, and other state
signals are encoded into PaLM-compatible “sentences” and interleaved with natural-
language instructions. The entire sequence is processed by a unified Transformer,
jointly fine-tuned on diverse embodied tasks, robotic planning, visual question
answering, and image captioning, alongside web-scale text corpora.

At 562B parameters, PaLM-E achieves strong cross-domain generalization: it
solves manipulation tasks across multiple robot platforms and achieves state-of-
the-art results on knowledge-intensive benchmarks such as OK-VQA, all while
maintaining its original linguistic capabilities.

Scale and task diversity prove mutually beneficial: vision-language pretraining
enhances robotic reasoning, and exposure to physical-world tasks does not degrade,
and can even improve, pure NLP or vision performance. PaLM-E thus demonstrates
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the viability of a single foundation model that can understand, perceive, plan, and
explain, an important milestone toward general-purpose robotic intelligence.

2.2.6 Large-Scale Vision-Language Models: Flamingo and
PaLI-X

While not originally designed for robotics, large-scale vision-language models have
laid key foundations by serving as visual backbones or pretraining components.
Two prominent examples are Flamingo and PaLI-X.

Flamingo [9] is a family of few-shot multimodal models that integrate a pretrained
vision encoder (e.g., EfficientNet or ViT) with a language model (e.g., GPT) via
cross-modal attention layers. This allows flexible processing of image-text sequences.
Without any task-specific fine-tuning, Flamingo achieves state-of-the-art results on
open-ended tasks such as visual question answering, image captioning, and video
understanding, using only a few in-context examples. Its web-scale multimodal
training enables generalization to novel domains and has directly influenced robotic
systems, such as RoboFlamingo [10], which uses Flamingo-like backbones for visual
manipulation.

PaLI-X [11], derived from the PaLI (Pathways Language & Image) project,
expands this paradigm with a multilingual encoder-decoder architecture. Trained
on over 25 vision-language tasks, including captioning, document reading, object
recognition, and video QA, PaLI-X sets state-of-the-art performance across nearly
all benchmarks. It demonstrates emergent capabilities such as accurate object
counting and multilingual grounding, even without explicit supervision.

These generalization trends mirror those in large monomodal LLMs and confirm
the benefits of scale and task diversity. In robotics, models like RT-2 directly inherit
PaLI-X’s weights as vision-language encoders and policy initializers, bringing its
broad perceptual and semantic knowledge into embodied settings.

More recently, the LLaMA family has introduced multimodal variants such as
LLaMA 3.2 Vision–Instruct and, subsequently, LLaMA 4. These models pair visual
encoders with large language backbones and, in the case of LLaMA 4, adopt a
mixture-of-experts design in which only a subset of parameters is activated for
each input, improving efficiency and scalability. Although they are not specifically
tailored for robotics, their ability to process images and text jointly, together with
extended context windows aimed at long-range reasoning, makes them attractive
candidates for history-aware control policies. This dissertation explores this direc-
tion with LLaMA 3.2 Vision–Instruct as an accessible medium-sized backbone, while
Chapter 10 discusses how future work could leverage newer LLaMA generations.
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Chapter 3

LLaMA 3.2 Vision Instruct

3.1 The LLaMA 3.2 Vision Instruct Model

Figure 3.1: Schematic view of the LLaMA 3.2 Vision-Language architecture,
with a dual-path vision encoder and cross-attention layers in the language decoder.
Source: [12]

LLaMA 3.2 Vision Instruct is a multimodal extension of Meta’s LLaMA 3.1
language model, designed to handle both text and image inputs within a single
autoregressive framework. While the original LLaMA 3.1 model is purely text-based
and comes in 11B and 90B parameter versions, the Vision variant adds a dedicated
visual processing module that allows the model to reason about visual content in
conjunction with language.
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At the core of this extension is a modular vision adapter that connects a two-
stage vision encoder to the language model. The encoder consists of a 32-layer local
transformer followed by an 8-layer global transformer, with gating mechanisms
that regulate the flow of visual information. Intermediate features from several
layers (e.g., layers 3, 7, 15, 23, and 30) are preserved, projected into the language
model’s token space, and fed into the LLM via cross-attention layers inserted at
regular intervals throughout the transformer stack.

This selective integration, sometimes described as controlled fusion, avoids both
early and late fusion extremes and instead allows the model to attend to visual
features precisely when and where they are needed during text generation. As a
result, LLaMA 3.2 Vision is able to combine fine-grained visual perception with
high-level reasoning in a way that remains fully compatible with the autoregressive
nature of the language model.

The model accepts image and text as input and produces text as output. It
supports up to 128k tokens of context, making it suitable for long-form, multi-turn
interactions. While the language model itself is multilingual, English is currently
the only officially supported language for vision-related tasks.

Thanks to its architecture, LLaMA 3.2 Vision performs well on a wide range of
multimodal benchmarks, including image captioning, visual question answering,
and visually grounded instruction following. Moreover, because the core language
model can remain frozen during fine-tuning, the system is especially well-suited for
domain-specific adaptation such as robotics where visual grounding is required but
preserving the model’s linguistic capabilities is essential.

LLaMA 3.2 Vision Instruct offers a well-balanced and flexible approach to
multimodal reasoning. Its design reflects a thoughtful combination of modularity,
efficiency, and scalability, making it a strong candidate for real-world applications
that rely on both perception and language understanding [12].

3.2 Positioning within Language Model Architec-
tures

Transformer-based language models can be broadly categorized into three main
paradigms: Causal Language Models (CLMs), Masked Language Models (MLMs),
and Sequence-to-Sequence (Seq2Seq) models, each defined by distinct training
objectives and suited to different downstream applications.

LLaMA 3.2 belongs to the family of CLMs, which are trained with an autore-
gressive objective, predicting each token based solely on past tokens in the input
sequence. This causal constraint ensures that the model processes text from left to
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right, without access to future context during generation. Such models are widely
adopted for open-ended generation and instruction-following tasks.

In contrast, Masked Language Models like BERT are trained to recover randomly
masked tokens using full bidirectional attention. This enables them to capture
rich contextual dependencies and makes them highly suitable for discriminative
tasks such as classification or token-level inference. However, their design does not
naturally support sequential generation without auxiliary mechanisms.

Sequence-to-Sequence models, such as T5 and BART, adopt an encoder-decoder
structure. The input sequence is first processed by a full-context encoder, and
then decoded token by token using an autoregressive decoder. This architecture is
particularly suited to tasks that require structured input-output transformations,
including summarization and translation. While these models combine bidirectional
and autoregressive processing, they tend to be more complex in both architecture
and training dynamics.

Understanding the distinctions between these modeling paradigms provides
essential context for evaluating how LLaMA 3.2 Vision may be adapted to per-
form multimodal reasoning and robotic planning tasks, which are explored in the
methodology presented in the following chapter.

10



Chapter 4

Methodology

This chapter presents the updated methodology adopted to adapt a pre-trained
vision-language model to robotic manipulation tasks at multiple levels of abstraction.
The training curriculum was refined to probe data efficiency, the impact of prompt
conditioning, and the integration of temporal grounding through multi-frame inputs.
A high-level overview of the pipeline is provided in the following sections.

4.1 Task Formulation
The project is structured around three complementary tasks:

• Natural language planning: generation of procedural instructions in free-form
text, conditioned on visual sequences and task goals.

• Symbolic action planning: prediction of structured action sequences, encoded
as JSON objects containing discrete high-level actions with arguments.

• Low-level action prediction: generation of 8-dimensional robot control vectors
discretized into 8-token sequences (termination flag, 3D world vector, 3D
rotation vector, and scalar gripper state).

Each capability was first addressed in isolation and then integrated into a shared
fine-tuning and evaluation framework.

4.2 Prompt-Based Evaluation
Before fine-tuning, the frozen model (LLaMA 3.2 Vision Instruct) was evaluated
on the full Test Unseen split of the ALFRED dataset (648 samples) using several
prompting strategies, including zero-shot, one-shot, few-shot, chain-of-thought
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(CoT), visual-focused, and RaR (Rephrase and Respond). These results established
the baseline for subsequent fine-tuning.

4.3 Task-Specific Fine-Tuning
Fine-tuning was performed using Low-Rank Adaptation (LoRA), inserting low-rank
adapters into both attention and MLP blocks while keeping the pretrained backbone
frozen. Hyper-parameter details are reported in Chapter 6.

4.3.1 ALFRED Training
ALFRED fine-tuning was conducted in two main phases reflecting the progressive
introduction of task structure and supervision.

Phase A: Natural-language planning (50% split, 15 images). The model was
trained on a random 50% subset of ALFRED episodes using 15 RGB frames
per sample and natural-language plans as targets. No auxiliary prompt, input
dropout, or targeted conditioning was applied. This phase corresponds to the
natural-language planner analysed in Section 7.5.

Phase B: Structured planning (full dataset, 15 images). The model was then
fine-tuned on the full dataset to generate structured JSON outputs contain-
ing both the natural-language plan and the discrete action list required to
complete each task, as detailed in Chapter 7. Earlier exploratory runs with
intermediate data fractions (for example a 70% split with 10 frames) did not
yield competitive results and are therefore omitted from the main analysis.

4.3.2 OpenX Robotic Control Training
The OpenX dataset provides paired visual observations and continuous robot
control trajectories. Each timestep contains a termination flag, a 3D world vector,
a 3D rotation vector, and a scalar gripper state. These four components form an
8-dimensional control vector that is discretized into an 8-token representation and
mapped to a reserved range in the LLaMA tokenizer to ensure compatibility with
the language modeling framework.

Two training regimes were explored:

Single-frame (baseline). Each sample included one RGB frame and the task
instruction. The model predicted the subsequent 8-token action vector directly
from this input.
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Multi-frame temporal window. A second setup used a sliding window of four
consecutive frames. The model predicted the next action conditioned on the visual
history and previous actions. A custom prompt guided cross-attention toward
relevant frames and spatial regions, improving temporal grounding without explicit
motion supervision.

4.4 Evaluation Protocols
Evaluation is conducted separately for the ALFRED and OpenX domains, focusing
on complementary dimensions of reasoning and control.

ALFRED. Evaluation distinguishes between two output formats. For the natural-
language planning phases, text quality was measured using BLEU, ROUGE-1/2/L,
and F1 overlap scores, complemented by an average composite score, format validity,
and success rate. For the structured JSON planning phase, metrics assessed both
the textual plan and the discrete action list, including JSON validity, action type,
argument, and sequence similarity, and an overall comprehensive score aggregating
plan quality and structural correctness.

Open X-Embodiment. Evaluation follows a multi-level scheme on the dis-
cretised 8-token action representation. Per-sample metrics include token-level,
position, rotation, gripper, and termination accuracies, as well as exact-match ratio.
Continuous and relative error variants are computed from detokenized vectors,
reporting L2 and RMS-per-axis errors for position, rotation, and gripper compo-
nents. Action-space analysis supplements these measures with directional accuracy,
cosine similarity, and angular deviation between predicted and ground-truth action
deltas. These scores summarize how well the model aligns its per-step commands
with the reference commands over an episode, complementing discrete fidelity
and continuous error with information about directional consistency and effective
progress along the intended motion.

Quantized model evaluation. After fine-tuning, the best-performing models
were quantized using the BitsAndBytes framework with a 4-bit NormalFloat (NF4)
representation. This post-training quantization was applied directly to the LoRA-
merged weights to assess how reduced precision affects model efficiency and inference
speed. Quantized models were evaluated using the same metric suite adopted for
the full-precision LoRA versions, allowing a direct comparison in terms of accuracy,
latency, and computational cost.
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Chapter 5

Datasets

5.1 Overview
This study relies on multimodal datasets that combine visual observations with
natural language instructions and action level annotations. The selected corpora
are designed to support learning across several levels of abstraction, ranging from
high level planning in natural language to structured symbolic action sequences
and low level robotic control vectors, so that the same backbone model can be
evaluated consistently across tasks.

Two datasets are used primarily throughout this work. The first is the ALFRED
dataset, a simulated environment featuring goal oriented household tasks annotated
with natural language plans and symbolic action sequences. The second is the Open
X-Embodiment dataset, a large scale collection of real world robotic demonstrations
that spans a wide variety of platforms and behaviours.

Because of hardware constraints and the computational cost of multimodal
training, only a fraction of the original data is utilised. Representative subsets are
sampled from each dataset to balance coverage, diversity and tractability, while
preserving the core structure and distribution of the full corpora and enabling
practical experimentation on a single high memory GPU.

5.2 The ALFRED Dataset
The ALFRED (Action Learning From Realistic Environments and Directives)
dataset [13] is a large scale benchmark designed to train and evaluate embodied
agents in household environments. It combines visual observations, natural lan-
guage instructions and structured action sequences within simulated indoor scenes
rendered using the AI2 THOR simulator. Each episode provides a high level goal
(for example “Put a hot cup in the microwave”) expressed in free form language,
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accompanied by a corresponding demonstration trajectory composed of symbolic
and low level actions.

Instruction: Put an alarm clock on the desk in the corner, above the drawers.

Ground truth plan:

1. Go straight to the small wooden desk with clocks on it.

2. Grab the alarm clock closest to the back wall and beside the lamp.

3. Turn to your right and walk to the end of the desk.

4. Place the alarm clock on the desk, above the drawers.

Figure 5.1: Example from the ALFRED dataset showing the 15 frame visual
context, the natural language instruction and its corresponding four step reference
plan.

What distinguishes ALFRED from other benchmarks is its emphasis on compo-
sitional generalization and temporally extended reasoning. Agents must perceive
the visual scene, parse complex multi step instructions and execute structured
sequences of manipulation and navigation steps in order to complete each task. The
dataset therefore offers supervision at three distinct levels, namely high level natural
language plans, intermediate symbolic action programs and low level primitive
motor actions, which makes it particularly suitable for training and evaluating
vision language action models across multiple layers of abstraction.

In this dissertation we focus on two supervision settings. The first is a text only
regime for high level plan generation, while the second is a structured JSON format
for instruction to action prediction that includes both free form language plans and
sequences of discrete actions.
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5.2.1 ALFRED Dataset Construction and Preparation
Natural language Planning Subset (text only)

ALFRED was adapted to the text only supervision setting by extracting the essential
components required for high level plan generation. Each sample comprises:

• An instruction in natural language specifying the task goal.

• A sequence of 15 egocentric RGB frames uniformly sampled from the episode.

• A ground truth plan in natural language, detailing the sequence of subtasks.

For each trajectory multiple training samples are generated by using the different
high level natural language descriptions (high_descs) provided in the annotation.
These descriptions represent semantically equivalent alternative expressions of the
same task, differing in phrasing and structure, and they increase linguistic diversity
while preserving the underlying demonstration content.

Each training sample is constructed so that the instruction corresponds to
the high level task description, while the ground truth response is obtained by
concatenating the high_descs into a semicolon separated sequence that represents
the full plan. Repeating this process across all annotation variants yields a dataset
enriched with paraphrased examples suitable for robust plan generation.

Structured JSON Planning Subset

An alternative version of the ALFRED dataset was prepared using structured
outputs in JSON format, retaining task specific structure by including a symbolic
action sequence alongside the natural language plan. Each response is formatted
as follows:

{
"nl_plan": "Walk forward to the small desk in front of you;

Pick up the middle alarm clock from the desk;
Turn right and walk to the right side of the larger wooden desk;
Put the clock down on the desk just right of the book.",

"discrete_action_list": [
{"action": "GotoLocation", "args": ["sidetable"]},
{"action": "PickupObject", "args": ["alarmclock"]},
{"action": "GotoLocation", "args": ["desk"]},
{"action": "PutObject", "args": ["alarmclock", "desk"]},
{"action": "NoOp", "args": []}

]
}
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This format enables supervised learning of structured robotic plans with inter-
pretable action steps. Discrete action sequences provide a compact and symbolic
representation suitable for integration with downstream planning or control policies.

For each sample, a list of all detected objects in the scene is also stored:

"object_in_scene": [
"CellPhone_3bc3970e", "Pen_2830e300", "Laptop_c51d9cc5",
"AlarmClock_6316eacc", "Book_d16fbaa0", "CreditCard_a5a087c0",
"TennisRacket_feb6b631"

]

This auxiliary information can be used to constrain predictions to available
objects, to perform object conditioned decoding and to ground object mentions in
a semantic scene context. The structured JSON format in turn supports precise
evaluation by enabling token level comparison of action steps, argument correctness
and task completion criteria.

Taken together, the natural language only and symbolic JSON variants support
complementary training paradigms in which the same input, consisting of an
instruction and a set of images, can be used either to train an instruction following
planner or to train a task planner that predicts structured actions grounded in
object and location semantics.

ALFRED Train and Test Partitions

Given the scale of the ALFRED dataset and the available computational budget,
a reduced version was constructed for both training and evaluation. The subset
maintains the structural and task diversity of the original benchmark while enabling
tractable fine tuning and testing.

Specifically:

• Train split: 18,774 samples totaling 281,610 images, with each episode con-
tributing 15 uniformly sampled RGB frames. The average instruction length
is 9.24 words, and the average natural language plan is 79.25 words.

• Test Unseen split: 648 samples (9,720 images), representing novel tasks not
encountered during training. Instructions average 9.30 words, with plans
averaging 79.73 words.

Each split is balanced in the number of images per sample, which is always
fifteen, and maintains consistent instruction styles. These subsets are used for all
training and evaluation experiments in both text only and structured supervision
settings.
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5.3 The Open X-Embodiment Dataset
The Open X-Embodiment (OXE) dataset [14] represents a major milestone in
robotic learning, as it aims to enable the development of generalist policies capable
of operating across a wide range of robots, environments and manipulation skills.
The corpus is constructed by merging sixty existing datasets collected from thirty
four academic and industrial laboratories worldwide and spans twenty two distinct
robotic embodiments, from single arm manipulators to bimanual platforms and
quadrupeds. This large scale effort is motivated by the success of general purpose
pretraining in areas such as natural language processing and computer vision and
by the ambition to obtain comparable levels of generalization in robotics.

OXE provides more than one million real world trajectories stored in the RLDS
(Reinforcement Learning Dataset Standard) format, which supports a wide range
of sensor modalities including RGB, depth and point clouds, as well as diverse
action representations. Data are organized hierarchically into episodes and steps:
an episode corresponds to an entire execution of a task, from the initial observation
to the final termination, while each step captures a single time instant and includes
the observations (images, depth, robot state), the executed action, and associated
metadata. The RLDS schema also allows efficient parallelized loading in major
deep learning frameworks, making it a scalable choice for training transformer
based policies that require substantial data.

Because the individual datasets contributing to Open X-Embodiment origi-
nate from different laboratories and robot platforms, their action formats are
heterogeneous. Absolute end-effector poses are typically represented as 7D vec-
tors (base_pose_tool_reached) combining 3D position and a 4D quaternion
(x, y, z, qw, qx, qy, qz), whereas incremental motions are often expressed as 6D deltas
with three translational and three rotational components (for example Euler angles
or axis–angle rotations). In this work we explicitly focus on incremental end-effector
displacements rather than absolute poses: instead of predicting a 7D pose at each
step, the model outputs 6D deltas (translation and rotation) that update the
current pose over time. We therefore restrict attention to the RT-1 Robot Actions
subset of Open X-Embodiment, where actions are already provided in this delta
form, and operate throughout with this representation. This choice keeps the action
space compact and easy to interpret while remaining expressive enough for the
pick-and-place style manipulation considered here. Absolute end-effector poses are
still present in the RLDS observations and can be reconstructed by integrating
the deltas over time, but they are not used as inputs or training targets in our
experiments.

Concretely, each continuous action in the RT-1 subset is composed of:

• a 2D base translation vector (base_displacement_vector ∈ R2) that specifies
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the planar motion of the mobile base in the global frame;

• a scalar base yaw rotation (base_displacement_vertical_rotation ∈ R) around
the vertical axis;

• a 3D end-effector translation vector (world_vector ∈ R3) encoding Cartesian
displacement of the tool;

• a 3D end-effector rotation delta (rotation_delta ∈ R3) encoding the change in
orientation;

• a scalar gripper closedness value (gripper_closedness_action ∈ R) encoding
smooth gripper control;

• a three-way one-hot termination signal (terminate_episode ∈ {0,1}3) indicat-
ing continue, terminate, or failure/timeout.

In this work we discard the two base-motion components and treat the base as
fixed, concentrating instead on the 6D end-effector deltas (translation and rotation)
plus gripper and termination. The resulting 8-dimensional control vector (6 for the
arm, 1 for the gripper, 1 for the terminate flag) is the quantity that we tokenize
and feed to the language model in later chapters.

The overarching goal of the dataset is to explore X embodiment learning, that
is the ability to transfer knowledge across different robot morphologies, sensory
inputs and manipulation tasks. Experimental results reported in [14] show that
training high capacity models such as RT 1 [4] and RT 2 [5] on this merged corpus
improves performance and generalization over single robot training baselines.

5.3.1 Open X-Embodiment Dataset for Robotic Control
Before distinguishing between single frame and multi frame variants it is useful
to outline the rationale behind this two stage design. The initial goal was to
test whether a backbone that was originally developed for language and general
vision tasks, rather than for robotics, could be conditioned reliably to produce 8
discrete action tokens per step in the Open X-Embodiment setting. To keep this
feasibility study tractable, a relatively small single frame subset was extracted
from the original data and used as a baseline environment in which to validate
the tokenization scheme, the prompting strategy and the loss formulation. Once
this baseline confirmed that the method could learn meaningful mappings from
images and instructions to 8 token actions, the focus shifted to a richer multi frame
dataset, in which each sample carries temporal context and a larger number of
episodes and trajectories are retained for training and evaluation.
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Instruction: pick brown chip bag from top
drawer and place on counter

Ground truth action (JSON):

1 {
2 "base_displacement_vector": [0.0, 0.0],
3 "base_displacement_vertical_rotation": [0.0],
4 "gripper_closedness_action": [0.0],
5 "rotation_delta": [0.0948, -0.0247, 0.1408],
6 "terminate_episode": [0, 1, 0],
7 "world_vector": [0.0417, 0.0015, -0.0655]
8 }
9

Figure 5.2: Example episode from Open X-Embodiment: egocentric visual
observation, natural language instruction and corresponding ground truth action.

20



Datasets

Action tokenization. Following the RT-1 codebase [4], continuous control
vectors are converted into 8-token discrete actions before being fed to the language
model. The termination flag is first obtained by applying an arg max over the
three-dimensional one-hot vector, yielding a class index in {0,1,2} that becomes the
first token and encodes whether the agent should continue, terminate the episode, or
signal a failure/timeout. The remaining components (world_vector, rotation_delta,
gripper_closedness_action) are discretized independently along each dimension:
values are clipped to their nominal ranges ([−1,1] for translations and gripper,
[−π

2 , π
2 ] for rotations), linearly normalized to [0,1], and mapped uniformly to one of

256 bins via rounding. For convenience, the resulting integers in [0,255] are then
shifted into a reserved vocabulary band (IDs 126000–126255), which is rarely used
by natural text and therefore avoids collisions with human-readable tokens. At
inference time, the reverse mapping is applied: discrete tokens are dequantized
back to approximate continuous controls, allowing the model to operate entirely in
token space while still interacting with real-valued robot actuators.
Formally, after tokenization each low-level action is represented as an 8-token vector

Action = {t0, t1, t2, t3, t4, t5, t6, t7},

where
• t0 encodes the termination flag (three-way decision: continue, terminate,

failure/timeout),

• t1:3 encode the world position delta (∆x, ∆y, ∆z),

• t4:6 encode the rotation delta (rx, ry, rz),

• t7 represents the gripper closedness action.

Single Frame Open X-Embodiment Subset for Reactive Control

For the Open X-Embodiment dataset [14], training was conducted on the same
subset used by the original RT 1 model [4], comprising 73,499 robot trajectories
collected from a mobile manipulator in the Google Micro Kitchen environment.
This subset was selected both to ensure comparability with prior work and to
contain the computational cost of using the full dataset.

In the single frame configuration only one RGB frame per step is extracted and
temporal history is discarded. Each training example consists of:

• One RGB image of the current step;

• One high level natural language instruction;

• One action represented as an 8-token string encoding termination, position,
rotation and gripper state.
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Figure 5.3: Example of instruction–action alignment in the Open X-Embodiment
subset. The model receives a textual instruction (e.g., “move the gripper slightly
upward and close”) and produces an 8-token vector, where each token corresponds
to a quantized control component (terminate flag, Cartesian displacement, rotation,
and gripper state).
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Dataset Statistics and Train/Test Split Table 5.1 summarises the main
statistics of the single frame subset and its train/test partition. The split contains
48,625 samples overall, with 40,531 (83.4%) allocated to training and 8,094 (16.6%)
to testing. These samples are drawn from 1,146 unique episodes. Across all splits,
episodes comprise on average 42.43 timesteps (min: 2, max: 311); the training
episodes have 2/42.84/311 steps (min/mean/max), while the test episodes have
2/40.47/122 steps. At the instruction level, the subset contains 316 distinct natural-
language instructions overall, of which 307 appear in the training split and 66 in
the test split.

Table 5.1: Single frame Open X-Embodiment dataset statistics.

Quantity Value
Total samples 48,625
Training samples 40,531 (83.4%)
Test samples 8,094 (16.6%)
Unique episodes 1,146
Unique instructions (all/train/test) 316 (307 / 66)
Average steps per episode 42.43 (min: 2, max: 311)

Unless otherwise stated, all subsequent figures and tables describing ranges, means,
and token histograms for the single frame subset are computed on the entire
dataset prior to the train/test division. Separate inspections of the two splits yield
empirically indistinguishable histograms, both in continuous and tokenised space,
so the global distributions provide an accurate and non-redundant summary of the
underlying data.

Continuous Action Statistics Although the action space is nominally defined
over fixed ranges, translational deltas in [−1,1] and rotational deltas in [−π

2 , π
2 ], the

empirical distributions in Figure 5.4 show that, in practice, almost all actions occupy
a much narrower region concentrated around zero. This indicates that the robot
predominantly performs fine-grained adjustments rather than large displacements.
The gripper signal exhibits a characteristic bimodal profile, reflecting the fact that
it remains open for most of the trajectory and transitions to the closed state only
when required to secure an object. These behavioral priors clarify why, in the
evaluation discussed in Chapter 8, relative errors may appear substantial despite
numerically small absolute deviations: the effective operating range is significantly
compressed compared to the theoretical bounds, magnifying the perceived impact
of small discrepancies.
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Table 5.2: Ranges and means of continuous action components in the single frame
setting.

Component Min Max Mean
World Vector X −0.6938 0.5551 0.0076
World Vector Y −0.3443 0.3114 0.0065
World Vector Z −0.6178 0.5100 −0.0105
Rotation Delta X −1.1288 1.4320 0.0461
Rotation Delta Y −0.9476 1.0538 −0.0059
Rotation Delta Z −1.2851 1.3340 0.0039
Gripper Closedness −1.0000 1.0000 0.0259

Values outside [−1,1] for translations and [−π
2 , π

2 ] for rotations are clipped to the
nearest boundary before tokenization, so they occupy the first or last discrete
bin.

Discrete Token Statistics All continuous components were quantized into 256
discrete bins and mapped to reserved token IDs in the range from 126000 to 126255,
producing an 8 token representation for every action.

Table 5.3: Per component discrete token statistics in the single frame setting.

Component Min Token Max Token Most Frequent Token (Count)
Terminate Episode 0 2 1 (46,194×)
World Vector X 39 198 128 (8,843×)
World Vector Y 84 167 128 (10,541×)
World Vector Z 49 193 128 (7,381×)
Rotation Delta X 36 244 128 (7,627×)
Rotation Delta Y 51 213 128 (7,593×)
Rotation Delta Z 23 236 128 (8,138×)
Gripper Closedness 0 255 128 (33,756×)

The bins span [0,255], but they are offset to 126000–126255 to avoid collisions with
textual tokens, so ID 126000 corresponds to bin 0, ID 126001 to bin 1, and so forth.
Because the continuous values cluster around zero, the central bin (token 128)
accumulates most labels, leading to a strong imbalance: a naïve model can lower its
loss simply by predicting the most frequent token. Chapter 8 therefore examines
whether the learned policies genuinely use contextual signals to break this bias.
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World Vector Rotation Delta

Gripper Action

Figure 5.4: Continuous action distributions for the single frame Open X-
Embodiment subset. Translation and rotation values remain concentrated near zero
despite the nominal [−1,1] and [−π

2 , π
2 ] ranges, while the gripper shows a bimodal

pattern corresponding to mostly open or occasionally closed states.
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Table 5.4: Terminate token class counts (discrete) in the single frame setting.

Split Class 0 (Terminate) Class 1 (Continue) Class 2 (Failure flag)
All 2,290 46,194 141
Train 1,890 38,501 140
Test 400 7,693 1

The terminate statistics are instead reported separately for all, train, and test
splits, as they quantify how many positive termination examples (class 0) are
actually observed during training and highlight the scarcity of explicit failure flags
(class 2) available to the model.

In the underlying continuous data the termination signal is encoded as a three
dimensional vector. When an episode ends, a step with value [1,0,0] is followed by
a final step with value [0,0,0]. During discretization both are mapped to the same
terminate token (class 0), so every episode contributes two discrete termination
labels even though only the first is explicitly one hot. Because the single frame
subset includes a broader variety of tasks (not only pick style episodes), the failure
flag (class 2) is more common here than in the multi frame split. Nevertheless,
detecting failures is outside the scope of this work; the focus remains on predicting
the continuous controls.
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World Vector X World Vector Y

World Vector Z

Figure 5.5: Token distributions for the three position components in the single
frame dataset. All axes peak at the central bin (token 128), signalling that most
samples correspond to near-zero displacements a key reason why priors dominate
unless the model leverages visual context.
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Rotation Delta Rx Rotation Delta Ry

Rotation Delta Rz Gripper Closedness

Figure 5.6: Token distributions for rotation components and gripper closedness
in the single frame dataset. Rotation bins peak at token 128, indicating that most
steps involve small angular corrections; the gripper exhibits a dominant central
peak (steady open state) plus sparse counts near the extremes with 255 representing
the full closed state and 0 the fully open state.
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Multi Frame Open X-Embodiment Subset for Temporal Grounding

To improve temporal grounding and history aware control a multi frame version
of the dataset was constructed, in which each training sample includes a sliding
window of five consecutive egocentric RGB frames from the same episode. In
this context, temporal grounding means that each predicted action is conditioned
on a short history of observations and past actions, so that the policy reasons
about an evolving trajectory rather than an isolated frame; Chapter 8 provides
a more detailed discussion of grounding within the multi frame controller. This
configuration captures the continuity of motion and objects over time. The Open
X-Embodiment dataset [14] was used, selecting 2,300 episodes in total, with 2,000
used for training and 300 reserved for testing.

Each training example consists of:

• A window of four RGB images from consecutive timesteps;

• One high level natural language instruction;

• A list of three previous actions, each corresponding to the frame that precedes
it in the window;

• An action represented as 8 discrete tokens that encode termination, position,
rotation and gripper state.

Temporal alignment is ensured by matching each previous action to the corre-
sponding preceding frame. When fewer than five steps are available, for instance at
the start of an episode, black placeholder images are inserted and padding token ID
126256 is used for missing previous actions. Chapter 8 analyses how this temporal
grounding influences the behaviour of the controller.

Dataset Statistics Table 5.5 summarises the multi frame partition and its
train/test split. The subset contains 127,381 samples from 2,300 episodes, with
110,752 (86.9%) allocated to training and 16,629 (13.1%) to testing. Every sample
includes four historical frames, the current frame, and three previous actions, and
the 72 instruction types focus on pick style behaviours. Across all splits, episodes
comprise on average 55.38 timesteps (min: 2, max: 200); the training episodes
have 2/55.38/200 steps (min/mean/max), while the test episodes have 2/55.43/134
steps. At the instruction level there are 72 unique natural-language instructions
overall, with 70 distinct forms in the training split and 55 in the test split.
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Table 5.5: Multi frame Open X-Embodiment dataset statistics.

Quantity Value
Total samples 127,381
Training samples 110,752 (86.9%)
Test samples 16,629 (13.1%)
Unique episodes 2,300
Unique instructions (all/train/test) 72 (70 / 55)
Average steps per episode 55.38 (min: 2, max: 200)

As for the single frame subset, all subsequent figures and tables reporting ranges,
means, and token histograms for the multi frame data are computed on the entire
multi frame dataset before the train/test split. The corresponding histograms for
the two splits are nearly identical in both continuous and tokenized representations,
so reporting global distributions is sufficient for characterizing the statistics of the
control signals.

Continuous Action Statistics Also in the multi frame setting the effective
operating range is much smaller than the nominal bounds: Figure 5.7 shows that
position and rotation deltas remain sharply peaked around zero, with only slightly
heavier tails than in the single frame case. The gripper continues to exhibit a
bimodal pattern with a dominant open state. Consequently, the relative error
metrics reported in Chapter 8 must be read in the context of this compressed range,
as apparently large percentages often correspond to sub-centimetre deviations in
absolute terms.
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Table 5.6: Ranges and means of continuous action components in the multi frame
setting.

Component Min Max Mean
World Vector X −0.8482 2.1878 0.0176
World Vector Y −0.5564 1.1785 0.0043
World Vector Z −1.7527 0.5993 −0.0021∗

Rotation Delta X −1.2811 1.5506 0.0385
Rotation Delta Y −1.0808 0.9406 −0.0225
Rotation Delta Z −1.3646 1.5675 −0.0074
Gripper Closedness −1.0000 1.0000 0.0017

∗Values outside the nominal ranges are saturated to the nearest boundary
([−1,1] for world vectors and gripper, [−π

2 , π
2 ] for rotations) before discretization,

so they effectively collapse into the first or last bin during tokenization.
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World Vector Rotation Delta

Gripper Action

Figure 5.7: Continuous action distributions for the multi frame Open X-
Embodiment subset. Translation and rotation retain a pronounced peak near
zero with slightly heavier tails than in the single frame case, while the gripper
remains mostly bimodal.
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Discrete Token Statistics Quantization in the multi frame split follows the
same scheme used for the single frame data: 256 uniformly spaced bins in [0,255]
mapped to IDs 126000–126255, yielding an 8 token representation per action.

Table 5.7: Global token statistics.

Metric Value
Most frequent token ID 128 (83,879×)
Second most frequent token ID 1 (46,194×)
Second most frequent positional token ID 128 (10,541×)
Least frequent token ID 12 (2×)

Table 5.8: Per component token statistics.

Component Min Token Max Token Most Frequent Token (Count)
Terminate Episode 0 2 1 (122,758×)
World Vector X 19 255 128 (26,223×)
World Vector Y 57 255 128 (27,531×)
World Vector Z 0 204 128 (13,907×)
Rotation Delta X 24 253 128 (20,175×)
Rotation Delta Y 40 204 128 (20,401×)
Rotation Delta Z 17 255 128 (21,725×)
Gripper Closedness 0 255 128 (96,152×)

As before, the central bins dominate because most motion deltas lie near zero,
and the gripper signal is mostly bimodal with an open state prevailing. Temporal
context helps the model resist the temptation to predict the most frequent token
blindly, but the imbalance still affects learning and motivates the relative error
analysis in Chapter 8. The terminate token counts now reflect the fact that this
split focuses on pick style episodes, which fail far less often than the broader single
frame subset.

Table 5.9: Terminate token class counts (discrete) in the multi frame setting.

Split Class 0 (Terminate) Class 1 (Continue) Class 2 (Failure flag)
All 4,600 122,758 23
Train 4,000 106,735 17
Test 600 16,023 6
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Here too the terminate counts are stratified by split to make explicit how many
terminating steps are available during optimisation and to emphasise that failure
events are effectively negligible in the multi frame training data.

As in the single frame case, termination in the continuous trajectories is repre-
sented as a vector that switches to [1,0,0] and is then followed by a concluding step
with [0,0,0]. Both of these are discretised to the terminate token, so each episode
yields two discrete terminations near its end. Because the multi frame split focuses
on pick tasks that rarely fail, the failure flag (class 2) is almost absent. As noted
earlier, identifying failures is not a direct goal of this work; these statistics simply
provide context for the termination metrics reported later.

World Vector X World Vector Y

World Vector Z

Figure 5.8: Token distributions for positional components in the multi frame
dataset. The mass concentrates near the central bins, indicating small motions
around a neutral pose. Termination counts are summarised separately.
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Rotation Delta RX Rotation Delta RY

Rotation Delta RZ Gripper Closedness

Figure 5.9: Token distributions for rotational components and gripper closedness
in the multi frame dataset. Components are centred around the neutral bin,
reflecting small rotational deltas and modest gripper adjustments.
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Chapter 6

Experimental Setup

6.1 Hardware and Software Environment
All experiments were conducted on a single NVIDIA A100 GPU with 80GB of
VRAM, a setup commonly used in high-performance deep learning research. The
software stack included Python 3.10, PyTorch 2.3.0, HuggingFace Transformers
4.51.3, PEFT 0.10.0, and DeepSpeed 0.13.4. Training progress and evaluation
metrics were monitored via TensorBoard.

Instantiating the base LLaMA 3.2 Vision–Instruct 11B checkpoint on this
hardware already occupies roughly 23 183 MiB of GPU memory (about 23 GiB),
before any task-specific heads or visual inputs are added. In later chapters we will
see that the effective footprint during inference can grow substantially above this
baseline, depending on the number of image frames, the length of the prompt, and
whether quantization is applied.

To ensure reproducibility, random seeds were fixed for all relevant libraries, and
all configuration files used in the experiments are archived in the project repository
github.com/Vittorix99/VLARobotics.

6.2 Training Framework and Implementation
The training process was implemented using a modular framework built on top
of HuggingFace Transformers and DeepSpeed, enabling scalable fine-tuning with
support for parameter-efficient adaptation through the PEFT library.

Given the large size of the LLaMA 3.2 Vision-Instruct model (11B parameters),
full fine-tuning was computationally infeasible. Instead, the model was fine-tuned
using Low-Rank Adaptation (LoRA), updating only a small number of trainable
matrices in the language and vision branches while keeping the backbone frozen.
The image projection layer was also included in the optimization.

36

https://github.com/Vittorix99/VLARobotics


Experimental Setup

Mixed-precision training (FP16) and gradient checkpoint were activated to
reduce memory consumption and increase training throughput.

Each training instance consisted of multimodal inputs and task-specific outputs:

• ALFRED: sequences of 15 RGB frames, paired with natural language instruc-
tions and either textual plans or symbolic JSON actions.

• Open X-Embodiment: single- or four-frame inputs, each paired with discretized
8-token vectors representing low-level robotic control actions.

All image inputs were resized to 560 × 560 pixels and normalized according to the
vision encoder specifications. At this resolution, each image occupies a single visual
tile out of the four supported by the LLaMA 3.2 Vision Instruct 11B architecture
(maximum layout: 2×2 tiles for 1120 × 1120 inputs). Prompt templates followed an
instruction-tuning format, while a custom tokenizer handled the mapping between
symbolic or discretized actions and reserved token IDs, ensuring full compatibility
with the multimodal LLM.

6.3 Training Configurations

The tables below summarize the core hyperparameters and settings used across all
fine-tuning stages.

All reported experiments were carried out in FP16 precision. During subsequent
troubleshooting, we observed that some long runs developed numerical instabilities
in FP16 that did not appear when the same configuration was re-run in BF16.
This behavior is consistent with the more limited dynamic range of FP16, whose
five-bit exponent makes it more prone to overflow in intermediate quantities such
as attention projections, normalization layers, or LoRA updates. Once infinities
or NaNs appear in activations or gradients, they propagate through DeepSpeed’s
sharded parameters and dynamic loss scaling, eventually leading to training failures.
In contrast, BF16 preserves the FP32 exponent range and proved numerically
robust in our tests. Re-running all fine-tuning stages in BF16 was not feasible
within the available budget, so the main results rely on FP16 together with
gradient checkpointing to reduce memory usage by roughly one third. The cosine
learning-rate schedule with a 0.03 warmup ratio was chosen to avoid abrupt changes
during the first few hundred steps and to provide a smooth decay over the single
training epoch, which is particularly important when fine-tuning LoRA adapters
on heterogeneous multimodal data.
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6.3.1 ALFRED Fine Tuning

Table 6.1: ALFRED fine tuning configurations used in the reported experiments.

Phase Split Images Batch/Accum. Prompting/Target

A 50% 15 2/2 Plan only (natural-language planning)
B 100% 15 1/4 Plan + JSON (structured planning, few shot prompt)

Phase A corresponds to the natural-language planning fine tuning analysed in
Section 7.5 and uses a 50% subset of the ALFRED training data. Phase B extends
the same backbone to the structured planner with JSON outputs described in
Chapter 7 and is trained on the full training split. Several additional configurations
with different data fractions or image counts were explored during early experimen-
tation, but they did not provide consistent improvements and are therefore not
discussed further.

Common hyperparameters.

• LoRA rank: 32; LoRA alpha: 32; LoRA dropout: 0.05

• Learning rate: 1 × 10−6

• Projector learning rate: 5 × 10−5

• Vision learning rate: 1 × 10−5

• Weight decay: 0.1

• Optimizer: AdamW

• Precision: FP16

• Scheduler: cosine with warmup ratio 0.03

• Number of epochs: 1

Batch size and gradient accumulation were tuned empirically, gradually increas-
ing the effective batch until the GPU reached its memory limit. A representative
example is the ALFRED training run described in Chapter 7, where switching the
accumulation factor from one to two halved the effective batch per step and led
to a markedly smoother loss curve. The base learning rate of 10−6 was likewise
selected after several trial runs, keeping the optimiser stable across tasks while
leaving most of the adaptation burden to the LoRA layers. A rank of 32 with
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matching alpha offered a good compromise between expressiveness and stability for
an 11B-parameter backbone, in line with values commonly used for models in the
7B–13B range, without exhausting GPU memory when combined with 15-frame
visual inputs.

6.3.2 Open X-Embodiment Fine Tuning

Table 6.2: Open X-Embodiment fine tuning configurations for the single frame
and multi frame controllers.

Experiment Frames Batch/Accum. Epochs Base LR Projector LR Vision LR

Single frame 1 16/2 5 1 × 10−6 1 × 10−5 4 × 10−5

Multi frame 5 4/4 1 3 × 10−6 5 × 10−5 1 × 10−5

During preliminary experimentation we tested several learning rates, projector
schedules and batch sizes, but the combinations in Table 6.2 offered the most stable
convergence and were retained for all analyses. In particular, label smoothing was
not used in the final Open X-Embodiment runs, as it led to unstable optimization
under the Transformers version adopted in this work; the underlying issue and its
impact on loss computation are documented in detail in Appendix A.

Other hyperparameters.

• Optimizer: AdamW

• Weight decay: 0.1

• LoRA rank: 32; LoRA alpha: 32; LoRA dropout: 0.05

• Precision: FP16

• Scheduler: cosine with warmup ratio 0.03

As for ALFRED, batch size and accumulation were selected by trial and error,
probing how far the A100 GPU could be pushed without triggering out-of-memory
errors. The higher visual and temporal load of the multi frame controller required
a smaller per device batch than the single frame baseline, and the shared learning
rate of 10−6 was validated through inspection of the loss curves. Projector and
vision learning rates in the 10−5 range proved sufficient to adapt the visual pathway
without destabilising the frozen backbone and, although FP16 precision could lead
to numerical instability (a number of earlier FP16 runs had to be discarded due
to the NaN-related instabilities discussed above), we have been able through a
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Zero-2 DeepSpeed configuration and gradient checkpointing to complete the final
single-frame (5 epochs) and multi-frame (1 epoch) Open X runs on a single GPU,
albeit at the cost of several weeks of wall-clock time

6.4 Logging and Reproducibility
Training progress was tracked using TensorBoard, logging metrics such as total
loss, token-level accuracy, and checkpoint snapshots every N steps. Random seeds
were fixed across all libraries to ensure reproducibility. Complete configurations
and scripts are available in the codebase.

LoRA adapters were crucial for enabling experimentation on a single A100 GPU
while maintaining reasonable training speed and capacity. All results reported in
the following chapters are obtained with label smoothing disabled, which empiri-
cally provided the most stable optimization behavior for the multimodal LLaMA
backbone used in this dissertation.
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Chapter 7

ALFRED Benchmark:
Evaluation and Results

7.1 Overview of Phases A and B
This chapter evaluates the proposed Vision–Language–Action (VLA) planner on
the ALFRED benchmark, tracing its evolution from purely linguistic planning
to structured, executable task representations. We consider two complementary
phases:

• Phase 1 – Natural Language Planning (text-only): The model generates
step-by-step natural-language plans describing how to achieve a given goal from
egocentric visual observations. Evaluation combines lexical metrics (BLEU,
ROUGE, F1) and semantic alignment measures based on sentence embeddings
to capture both surface and conceptual similarity to ground-truth plans.

• Phase 2 – Structured Planning (text + discrete actions): The model
emits, alongside the natural-language plan, a corresponding sequence of sym-
bolic actions (discrete action list). The structured representation is serialised
as JSON so that downstream robotic controllers can parse and execute it
without extra post-processing. This dual output keeps the planning interface
readable while exposing precise procedures to the control stack.

Moving toward discrete actions strengthens the link between language and
control: it surfaces explicit preconditions and arguments, enables safety checks
before execution, and matches the symbolic interfaces required for embodied
deployment. The remainder of the chapter combines quantitative metrics with
qualitative inspection to understand how fine-tuning and output structuring improve
grounding, coherence, and procedural reasoning on the test-unseen split of
ALFRED.
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7.1.1 Task Definition and Output Format

Each episode provides a natural-language instruction and 15 egocentric frames
sampled from an ALFRED trajectory. The planner must transform this input into
phase-specific outputs:

Phase A (Natural-Language Planning). The model generates a semicolon-
delimited sequence of imperative steps describing how to accomplish the task.
This plan is purely textual and targets human readability while preserving
the chronological order of sub-actions.

Phase B (Structured Planning with Discrete Actions). In addition to the
Phase A plan, the model emits a discrete action trace encoded as JSON. Every
entry specifies an action type together with its arguments (e.g., GotoLocation,
PickupObject, PutObject), allowing downstream controllers to parse, validate,
and execute the program without extra post-processing.

The dual-output format preserves compatibility with Phase A analyses while
introducing a machine-interpretable specification for deployment.

7.1.2 Action Vocabulary

The discrete branch in Phase B relies on a fixed action vocabulary aligned with the
ALFRED simulator. Each element of the structured trace consists of an action type
and a list of arguments. Action primitives cover navigation (e.g., GotoLocation),
manipulation (PickupObject, PutObject, OpenObject, etc.), and control markers
such as NoOp. Arguments identify the semantic entities involved, such as objects,
receptacles, or target locations. For example, the instruction “move the alarm clock
from one desk to another” yields

{"discrete action list": [
{"action": "GotoLocation", "args": ["sidetable"]},
{"action": "PickupObject", "args": ["alarmclock"]},
{"action": "GotoLocation", "args": ["desk"]},
{"action": "PutObject", "args": ["alarmclock", "desk"]},
{"action": "NoOp", "args": []}

]}

which enumerates the path (side table → desk) and the necessary object interactions.
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7.2 Evaluation Metrics

7.2.1 Phase A: Lexical and Semantic Metrics
To assess natural-language plan quality we adopt a combination of lexical and
semantic diagnostics that jointly measure linguistic accuracy, semantic grounding,
and temporal consistency.

Lexical Metrics. Lexical metrics capture word- and phrase-level overlap between
predicted and reference plans. They are commonly used in text generation and
translation, providing a first approximation of fidelity and fluency.

• BLEU [15]: Sentence-level BLEU with smoothing to evaluate n-gram precision
over short phrases.

• ROUGE-1 / ROUGE-2 / ROUGE-L [16]: F-measure variants computed
over unigrams, bigrams, and the longest common subsequence.

• Token F1: Harmonic mean of token-level precision and recall, offering a
robust indicator of coverage beyond exact lexical matches.

To consolidate these scores, we compute a weighted Average Score:

Average Score = 0.10 · BLEU + 0.30 · F1 + 0.10 · ROUGE-1
+ 0.15 · ROUGE-2 + 0.35 · ROUGE-L (7.1)

This weighting emphasises ROUGE-L (0.35) and Token F1 (0.30) to reward
structural fidelity and overall lexical coverage. ROUGE-2 (0.15) keeps some local
order sensitivity, while ROUGE-1 (0.10) and BLEU (0.10) provide a lightweight
check on base vocabulary and historical n-gram precision without dominating the
score.

Semantic Metrics Lexical overlap metrics such as BLEU [15] or ROUGE [16] fail
to capture paraphrasing, reordered steps, or semantically equivalent reformulations.
To evaluate deeper semantic alignment, both predicted and reference plans are
embedded using the sentence-transformers/all-MiniLM-L6-v2 model [17, 18], and
cosine similarities are computed between the resulting sentence embeddings. Each
plan is segmented into atomic steps by splitting on semicolons, ensuring a one-to-one
mapping between sub-actions.

Semantic Textual Similarity (STS) [19] The STS score measures the cosine
similarity between the embeddings of the full predicted and reference plans:

STS = cos (E(PGT), E(PPred)) . (7.2)
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Values close to 1.0 indicate near-identical plans, scores in the range [0.7, 0.9] suggest
strong semantic overlap with minor differences, and scores below 0.4 typically
correspond to unrelated tasks. Since STS operates on entire plan embeddings, it
does not account for step count or order.

Stepwise Semantic Similarity (SSS) [20] Following the BERTScore formu-
lation [20], SSS computes the mean cosine similarity between each ground-truth
step and its best-matching predicted step via greedy one-to-one alignment:

SSS = 1
N

NØ
i=1

cos (e(GTi), e(Predi⋆)) , (7.3)

where i⋆ = arg maxj cos (e(GTi), e(Predj)). High SSS scores ([0.7, 0.9]) indicate
strong step-level semantic alignment, while scores in [0.4, 0.69] reflect partial
matches, and values below 0.4 suggest weak or inconsistent correspondence. SSS
evaluates step-level similarity irrespective of order.

Coverage@0.7 [21] Inspired by the thresholded coverage metric from Visual
Programming [21], Coverage@0.7 quantifies the fraction of ground-truth steps with
at least one predicted step exceeding a cosine similarity threshold of 0.7:

Coverage@0.7 = 1
N

NØ
i=1

1
;

max
j

cos (e(GTi), e(Predj)) ≥ 0.7
<

. (7.4)

A value of 0.5 indicates that approximately half of the reference steps are semanti-
cally covered by the predicted plan.

Step Temporal Consistency (STC) [22] After identifying the best-matching
predicted step index ji for each ground-truth step i, STC computes the Pearson
correlation between the ground-truth and matched predicted step indices:

STC = corrPearson (i, ji) ∈ [−1, 1]. (7.5)

High values ([0.7, 1.0]) indicate preserved temporal order, mid-range scores ([0.3, 0.69])
suggest partial consistency, and negative or low values ([−1, 0.29]) reflect disordered
or reversed sequences.

Average Off-Diagonal Similarity (AvgOffDiag) [23] Extending the redun-
dancy analysis from Inner Monologue [23], AvgOffDiag computes the mean cosine
similarity of non-diagonal entries in the step-to-step similarity matrix:

AvgOffDiag = 1
|Ω|

Ø
(i,j)∈Ω

cos (e(GTi), e(Predj)) , Ω = {(i, j) : i /= j}. (7.6)

Values above 0.4 suggest redundant or overlapping steps, while values below 0.2
indicate a clean one-to-one correspondence.
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Following Reimers and Gurevych [17], Ethayarajh [24], and Gao et al. [25],
cosine similarity between L2-normalized sentence embeddings serves as a proxy for
semantic relatedness. With all-MiniLM-L6-v2, values above 0.9 typically indicate
near-paraphrases, [0.7, 0.9] denotes strong conceptual overlap, [0.4, 0.69] reflects
moderate topical relatedness, and values below 0.4 suggest weak or no semantic
alignment. In the ALFRED dataset, stepwise scores around [0.4, 0.55] indicate
partial alignment, where predicted plans capture the correct scenario but may
merge or reorder actions. Unlike BERT, which exhibits anisotropy that can inflate
cosine similarities [24], all-MiniLM-L6-v2 is contrastively trained to produce a more
isotropic embedding space [25]. Thus, cosine similarities (e.g., [0.4, 0.55]) reliably
reflect partial correspondence without requiring post-processing like whitening [26].

Auxiliary Diagnostics. Complementary indicators quantify structural correct-
ness and computational efficiency:

• Format Score: In Phase A this checks the natural-language plan structure
(semicolon-separated steps earn 1.0, single-clause plans 0.5, malformed strings
0.0); in Phase B it also verifies JSON compliance of the discrete action list,
yielding 1.0 only when both branches are well-formed.

• Inference Time: Average generation latency per sample, useful for deploy-
ment evaluation.

• Token Count: Average total tokens across prompt and response, reflecting
verbosity and memory usage.

The selected metrics provide several points of view to assess the planning
quality, spanning lexical accuracy, semantic grounding, temporal structure, and
computational cost, enabling fair comparison between zero-shot and fine-tuned
models on ALFRED.

7.2.2 Phase B: Discrete Action Metrics and Procedural
Diagnostics

Evaluation protocols in embodied AI can be broadly categorized into online and
offline regimes. Online metrics (Success Rate, Goal-Condition Success, SPL) require
executing predicted plans inside a simulator. Our study adopts an offline setup:
plans are not executed in ALFRED, so we focus on metrics that directly compare
the predicted natural-language plan and discrete action trace to ground truth,
emphasizing fidelity and procedural structure.

For the discrete branch we report:
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• JSON validation score (format_scoreJSON), taking values in {0, 0.5, 1} and
defined as the average of two binary checks: whether the JSON output
contains a field nl_plan whose value is a string, and whether it contains a
field discrete_action_list whose value is a list.

• Action type similarity: Jaccard overlap1 between the sets of action types TG

and TP ; we denote it by Stype and compute

Stype = |TG ∩ TP |
|TG ∪ TP |

. (7.7)

• Action sequence similarity: positional agreement between action types; we
denote it by Sseq and compute

Sseq = 1
max(m, n)

min(m,n)Ø
i=1

⊮
è
tG
i = tP

i

é
. (7.8)

• Action argument similarity: Jaccard overlap between the aggregated argument
sets UG and UP ; denoted by Sarg and defined as

Sarg = |UG ∩ UP |
|UG ∪ UP |

. (7.9)

• Combined action score: arithmetic mean of the three components; we denote
it by Scomb and compute

Scomb = 1
3

3
Stype + Sseq + Sarg

4
. (7.10)

These metrics jointly assess both the textual plan and the discrete action trace,
quantifying the fidelity of the predicted format, the semantic and structural overlap
of action types, and the alignment of action arguments. Together, they provide a
measure of plan accuracy and procedural coherence in the offline setting.

Procedural diagnostics. To expose interpretable failure modes we introduce
a suite of diagnostics on the discrete action trace. They quantify what entities
are manipulated (objects), where manipulations occur (containers and locations),
and how frequently arguments appear. We partition argument coverage into

1Also known as the Jaccard index, it is defined for two sets A and B as |A∩B|
|A∪B| and quantifies

the proportion of shared elements.
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three set-based F1 scores, one for each semantic category, and a global frequency-
aware micro-F1 that reflects overall argument agreement across all categories. Let
AGT = {aGT

1 , . . . , aGT
m } and APred = {aPred

1 , . . . , aPred
n } denote the ground-truth and

predicted action sequences, and let Aobj
GT, Acont

GT , and Aloc
GT denote the sets of object,

container, and location arguments extracted from AGT, with analogous definitions
Aobj

Pred, Acont
Pred, and Aloc

Pred for the predicted trace.

Object Coverage F1 (F obj
1 ) Measures set-based alignment of object arguments.

Define precision and recall as

P obj = |Aobj
Pred ∩ Aobj

GT|
|Aobj

Pred|
, Robj = |Aobj

Pred ∩ Aobj
GT|

|Aobj
GT|

, (7.11)

and compute

F obj
1 = 2P objRobj

P obj + Robj . (7.12)

By convention, F obj
1 = 1.0 if both sets are empty, and F obj

1 = 0.0 if exactly one
set is empty. This metric captures what is manipulated, ignoring multiplicity
and order.

Container Coverage F1 (F cont
1 ) Measures set-based alignment of container ar-

guments; definitions mirror those above.

Location Coverage F1 (F loc
1 ) Measures location agreement, highlighting navi-

gation accuracy irrespective of action order.

Argument Micro-F1 (Type Bucket) Aggregates objects, containers, and loca-
tions into a frequency-aware micro-F1 that weights repeated arguments and
reflects overall argument recovery. Let NTP be the number of correctly pre-
dicted argument occurrences, NPred the total number of predicted arguments,
and NGT the total number of ground-truth arguments; we compute

F micro
1 = 2NTP

NPred + NGT
. (7.13)

Argument Consistency Index (ACI) Weighted combination of the four cover-
age scores capturing consistent recovery of objects, containers, locations, and
their joint distribution.

Canonical Pair Coverage Fraction of ground-truth canonical object-location
pairs (mug, sink) recovered in the predicted trace.

Movement Precision and Recall (Pmove, Rmove) Precision/recall over destina-
tions visited by GotoLocation actions, diagnosing navigation fidelity.
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Extra and Missing Steps Extra steps are counted as ∆extra = max{0, |APred| −
|AGT|} and missing steps as ∆miss = max{0, |AGT| − |APred|}, averaged across
the dataset to quantify over- and under-generation.

All action-based scores lie in [0, 1]: values above 0.8 indicate near-perfect overlap
between predicted and reference traces; the 0.6–0.8 band signals strong agreement
with occasional deviations, whereas 0.3–0.5 reflects partial alignment (often caused
by merged or reordered actions).

This section presents the zero-shot evaluation of the LLaMA 3.2 Vision-Instruct
model on the ALFRED dataset, focusing exclusively on high-level planning: gener-
ating natural language action plans from visual observations and task instructions.
This evaluation investigates the model’s innate ability to understand egocentric
scenes and follow instructions, without any task-specific fine-tuning.

7.3 Zero-Shot Baseline Evaluation
This section presents the zero-shot evaluation of the LLaMA 3.2 Vision-Instruct
model on the ALFRED dataset, focusing exclusively on high-level planning: gener-
ating natural language action plans from visual observations and task instructions.
This evaluation investigates the model’s innate ability to understand egocentric
scenes and follow instructions, without any task-specific fine-tuning.

Task Definition: Natural Language Planning
Given a natural language instruction and a sequence of 15 egocentric images from
an ALFRED episode, the model is prompted to generate a detailed multi-step
natural language plan in the phase A or a JSON structure text containing both the
natural language plan and the corresponding discrete list of actions describing the
subtasks required to complete the goal. In both cases, the output should ideally
follow a structured format (e.g., a semicolon-separated list of short imperative
sentences or a well-formed JSON object containing nl plan and discrete action list).

Prompting Strategies
To guide the model in producing consistent and actionable plans, six prompt
templates were designed and tested. For each prompt, we crafted two variants: one
for Phase A (natural language plan only) and one for Phase B (natural language
plan + discrete action list in JSON). Each prompt incorporates the same core
elements, namely task instruction, visual context, and output format, but varies in
style and structure to explore different elicitation strategies. The six prompting
strategies are:
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1. One shot: A single worked example of a natural-language plan, followed
by the query episode; it primarily teaches the expected semicolon-separated
format and the level of granularity for individual steps.

2. Few shot: Multiple demonstrations of related tasks (e.g., moving different
objects between receptacles) to promote in-context generalization of both
structure and semantics beyond a single scenario.

3. Style: A description written in the style of a robot instruction manual,
encouraging concise, imperative commands with an emphasis on clear, low-
level actions rather than free-form narration.

4. RAR: A three-stage template (Retrieve, Reason, Respond) that first asks the
model to list relevant objects, locations, and actions, then to reason about
start and goal states, and finally to produce the step-by-step plan.

5. CoT: A chain-of-thought template that explicitly instructs the model to
analyze the scene and think through the logical sequence of actions before
emitting the final plan, thereby scaffolding intermediate reasoning.

6. Visual focus: Explicit references to the visual frames that instruct the model
to carefully inspect objects, positions, state changes, and spatial relationships
in each image, enhancing grounding and encouraging each step to be tied to
observable evidence.

These prompting strategies were selected to cover complementary dimensions of
reasoning and control: from minimal examples (One-shot) to structured reasoning
chains (CoT) and visually grounded descriptions (Visual focus). This diversity
enables a systematic comparison of how different forms of contextualization affect
linguistic fluency, semantic alignment, and temporal coherence in subsequent
evaluations, and anticipates the central role that visual grounding will play in our
analysis of stepwise semantic alignment.

Each template concludes with the common question

“Given the images above, what are the sequential subtasks I should
perform to successfully complete the task: ’{instruction}’?”

which re-states the user goal while anchoring the model to the accompanying
frames.

Output normalization. Prompted generations often begin with a preamble
rather than the plan itself (e.g., "Based on the provided images, here is a step-by-
step plan to complete the task ’task’:"). In practice, these preambles consistently
terminate with a colon followed by a newline (“:\n”). Our cleaning rule removes
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everything up to and including this marker, so that evaluation only considers the
plan content. For step segmentation, we adopt the dataset convention that each
step ends with a semicolon; the plan is therefore tokenized by splitting on “;”. This
guarantees that both lexical and semantic analyses operate on the intended step
list in natural language.

7.4 Zero-Shot Baseline Evaluation (Phase A)
Zero-shot experiments follow the same offline protocol across both phases: we
evaluate on the test-unseen split (648 episodes) without simulator roll-outs,
parse each model response, normalize it, and compute the metrics defined above.

7.4.1 Quantitative and Qualitative Results
We benchmark six prompting strategies on the ALFRED test-unseen split (648
episodes, 9 720 egocentric frames). Tables 7.1 and 7.2 summarize the numerical
scores (mean ± std), while Figures 7.1, 7.6 and 7.5 visualize the main trends
(ranking by average score; best-prompt lexical vs semantic radars; stepwise vs
plan-level similarity distributions).

Table 7.1: Phase 1 lexical metrics per prompt (mean ± standard deviation).

Prompt Avg. Score BLEU ROUGE-1 ROUGE-2 ROUGE-L #Token Inf. Time (s)

Few-shot 0.341 ± 0.10 0.093 ± 0.08 0.415 ± 0.13 0.225 ± 0.10 0.357 ± 0.11 59.199 ± 23.77 16.835 ± 5.18
One-shot 0.333 ± 0.09 0.087 ± 0.08 0.403 ± 0.12 0.218 ± 0.09 0.347 ± 0.11 60.606 ± 32.46 17.750 ± 7.61
Visual focus 0.313 ± 0.09 0.070 ± 0.07 0.386 ± 0.12 0.205 ± 0.09 0.323 ± 0.09 71.830 ± 51.47 20.668 ± 11.02
Style 0.301 ± 0.08 0.076 ± 0.07 0.386 ± 0.10 0.189 ± 0.08 0.316 ± 0.08 68.715 ± 34.97 20.531 ± 8.03
Cot 0.303 ± 0.08 0.068 ± 0.07 0.375 ± 0.11 0.196 ± 0.09 0.314 ± 0.09 62.394 ± 29.14 19.183 ± 6.82
Rar 0.280 ± 0.10 0.070 ± 0.06 0.350 ± 0.14 0.173 ± 0.09 0.286 ± 0.11 138.201 ± 77.04 40.528 ± 20.49

Lexical metric analysis. Few-shot is the strongest prompt on textual metrics:
weighted average (0.341), ROUGE-1 (0.415), ROUGE-2 (0.225), and ROUGE-L
(0.357) outperform the alternatives (Tab. 7.1; Fig. 7.6, left). In this setting:

• BLEU is typically low (~0.09 here) because it relies on strict n-gram matching,
heavily penalising paraphrases (“pick up” vs “grab”), word-order changes, and
ignoring semantic equivalences (“put” vs “place”).

• ROUGE-1 measures unigram overlap: scores around 0.35–0.45 are good in
open-ended NL, indicating that a substantial share of key words (objects,
verbs, locations) match.
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• ROUGE-2 evaluates bigrams and local cohesion: it is lower than ROUGE-1
(~0.17–0.22; 0.225 for Few-shot), meaning the lexicon is correct but phras-
ing/order often changes.

• ROUGE-L (LCS) reflects global structure: scores around 0.30–0.40 indicate
main actions appear in the right order, despite formulation variations or minor
omissions.

In ALFRED, higher ROUGE suggests the model talks about the same scenario,
but does not guarantee identical procedural structure.

Figure 7.1: Ranking by weighted average score across prompts. Few-shot ranks
first; bars also indicate dispersion across episodes.

Table 7.2: Phase 1 semantic metrics per prompt (mean ± standard deviation).

Prompt STS SSS AvgOffDiag Coverage@0.7 STC

Few-shot 0.756 ± 0.14 0.452 ± 0.11 0.443 ± 0.08 0.516 ± 0.22 0.311 ± 0.39
One-shot 0.758 ± 0.13 0.445 ± 0.11 0.442 ± 0.08 0.509 ± 0.21 0.284 ± 0.40
Visual focus 0.770 ± 0.11 0.494 ± 0.11 0.503 ± 0.08 0.468 ± 0.21 0.302 ± 0.40
Style 0.770 ± 0.09 0.483 ± 0.09 0.485 ± 0.07 0.488 ± 0.21 0.273 ± 0.39
Cot 0.764 ± 0.09 0.485 ± 0.10 0.485 ± 0.07 0.483 ± 0.19 0.241 ± 0.38
Rar 0.700 ± 0.14 0.394 ± 0.13 0.429 ± 0.11 0.437 ± 0.21 0.269 ± 0.39
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Semantical metric analysis. Across prompts, plan-level similarity is uniformly
high: STS is ∼0.70–0.77, so predictions generally describe the same scenario as the
references. Stepwise alignment is only moderate: SSS lies ∼0.39–0.49, with Visual
focus near the top (≈0.49) and RAR at the bottom (≈0.39). Off-diagonal similarity
is high (AvgOffDiag ∼0.44–0.50), signaling entanglement (redundant/overlapping
steps). Few-shot and One-shot achieve the highest Coverage@0.7 (≈0.52/0.51) but
do not substantially improve stepwise alignment or ordering; STC remains low
(∼0.24–0.31) and variable. Overall, the typical profile is high STS, medium SSS,
low STC. Visual focus tends to deliver the best stepwise compromise thanks to
stronger visual grounding, while Few-shot/One-shot ‘touch’ more reference steps
without ensuring consistent step-by-step or temporal fidelity.

SSS and STC capture complementary aspects: SSS measures semantic alignment
at the step level, while STC measures whether those aligned steps appear in the
correct temporal order. High SSS with low (or even negative) STC implies the right
actions expressed in the wrong sequence. This is particularly evident when safety
refusals or hallucinations disrupt the structure: in such cases, STC can approach
zero or become negative (cf. Fig. 7.2). Two representative cases follow.

Limitations of prompt-only semantics. Even when prompt-only generation
looks effective, several limitations remain for household task execution: (i) the
output is not fully controllable, and safety or refusal behaviors can surface unex-
pectedly (cf. Fig. 7.2); (ii) the visual context is sampled into a short clip (14–15
egocentric frames), which may omit critical transitions. As a consequence, pre-
dictions can achieve high plan-level similarity (STS) while failing to preserve the
correct temporal structure (low STC), as in Fig. 7.4. In practical terms, this means
that a plan may “sound right” overall but still miss or reorder the precise steps
needed to complete the task safely and efficiently in a real home environment.
These observations motivate structured outputs and tighter control mechanisms
beyond prompting alone.
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Figure 7.2: One-shot prompt, instruction "Put the heated egg on the trash bin".
The generation triggered safety mechanisms (model refused the action and produced
a helpline preamble).

Figure 7.3: Semantic alignment heatmap (Visual focus, pick-and-place). Cells
encode cosine similarity between ground-truth and predicted steps. The strong
diagonal indicates high stepwise alignment (SSS), with ordering consistency reflected
in a high STC; an extra final step appears off-diagonal.
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Figure 7.4: High STS but low STC (Visual focus, place two pillows). The plan-
level meaning (STS=0.94) is close to the reference, yet the ordering is inconsistent
(STC=0.17): diagonally weak bands and shifted peaks indicate reordering/merging
of steps.
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Figure 7.5: SSS vs STS distributions. Left: SSS measures step-by-step semantic
similarity and is sensitive to inversions, missing steps, and merges; Right: STS
measures plan-level similarity and is less sensitive to step order.

Figure 7.6: Side-by-side best-prompt radars. Left: lexical radar where BLEU is
close to zero due to strict n-gram matching. Right: semantic radar where SSS is
the lowest among semantic metrics, reflecting the difficulty of stepwise alignment.
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Efficiency and verbosity. From a computational-cost perspective (Fig. 7.1),
Few-shot achieves the lowest inference time (~16.8 s) with concise plans (~59 tokens).
RAR is notably slower (~40.5 s) and verbose (~138 tokens), consistent with its
three phase design (Retrieve to select relevant objects, Reason to compare initial
and target state, and Respond to produce the final plan).

Figure 7.7: Average inference time (bars, left axis) and average token count
(dashed line, right axis) per prompt. RAR incurs the highest latency and verbosity;
Few-shot is the most efficient.

Qualitative comparisons. Beyond aggregate scores, we present full predictions
across prompts in Tables 7.2, 7.3 and 7.4. The examples highlight systematic
differences: few-shot and one-shot prompts, which include real in-context examples,
tend to produce outputs whose structure more closely mirrors the reference plans;
in contrast, stylistic or reasoning-oriented prompts can be more verbose or prone
to local reorderings, despite comparable plan-level similarity.
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Instruction Move a knife in a cup to the sink.

Ground Truth Turn right and move to stand in front of the sink. Pick up the butter knife from
inside the sink. Turn left and move to stand in front of the coffee maker right after
the stove. Open the cupboard above the coffee maker and place the knife in the
green cup on the right. Pick up the cup with the knife inside from the cupboard.
Turn left and carry the cup and knife to the sink. Place the cup with the knife inside
in the sink.

One-Shot Output Walk to the counter; Open the drawer; Take the knife in the cup from the drawer;
Close the drawer; Walk to the sink; Place the knife in the cup in the sink.

Few-Shot Output Walk to the counter; Open the cabinet door; Take a knife from the cabinet; Take a
cup from the cabinet; Close the cabinet door; Walk to the sink; Place the knife in
the cup in the sink.

CoT Output 1. Locate the knife in the cup; 2. Move the cup with the knife towards the sink;
3. Position the cup with the knife over the sink; 4. Place the cup with the knife into
the sink.

Style Output 1. Locate the knife in the cup on the countertop; 2. Grasp the cup containing the
knife; 3. Lift the cup off the countertop; 4. Carry the cup towards the sink; 5. Lower
the cup into the sink; 6. Release the cup.

Visual Focus Out-
put

1. Take the knife from the counter; 2. Place the knife in the cup; 3. Carry the cup
with the knife to the sink; 4. Empty the cup into the sink; 5. Place the cup on the
counter; 6. Put the knife in the sink.

Table 7.3: Qualitative comparison of model outputs for the same ALFRED
task under different prompting strategies. Even prompts with high automatic
scores diverge from the ground truth: typical issues include hallucinated objects
(One-Shot, Few-Shot), oversimplification (CoT), excessive verbosity (Style), and
grounding errors (Visual Focus).
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Instruction Pick up the white pencil on the desk and put it on another spot on the desk.

Ground Truth Go to the right side of the wooden desk in front of you. Pick up the white pencil on
the desk. Turn around and look behind you and then turn back around. Place the
white pencil on the desk near the books.

One-Shot Output Walk to the desk; Look for the white pencil on the desk; Pick up the white pencil;
Walk to another spot on the desk; Place the white pencil on the other spot on the
desk.

Few-Shot Output Walk to the desk; Look for the white pencil on the desk; Pick up the white pencil;
Walk to the other spot on the desk; Place the white pencil on the other spot on the
desk.

CoT Output 1. Locate the white pencil on the desk; 2. Identify a suitable spot on the desk to
place the pencil; 3. Pick up the pencil; 4. Move towards the identified spot; 5. Place
the pencil on the new spot.

Visual Focus Out-
put

1. Locate the white pencil on the desk; 2. Pick up the pencil; 3. Move towards the
empty space on the desk; 4. Place the pencil on the empty space.

Style Output 1. Locate the white pencil on the desk; 2. Reach out to pick it up; 3. Grasp the pencil
firmly; 4. Lift it off the desk; 5. Move to another spot; 6. Place it on the desk.

RAR Output Step 1: RETRIEVE — Objects: White pencil on the desk, Desk, Bookshelf.
Step 2: REASON — Initial state: pencil on desk. Goal state: pencil relocated.
Step 3: RESPOND — 1. Pick up the pencil; 2. Move it; 3. Place it in a new spot.

Table 7.4: Qualitative comparison for a simpler relocation task. Here One-Shot
and Few-Shot are almost perfectly aligned with the ground truth; CoT and Style
add verbosity but remain valid; RAR follows a retrieve–reason–respond template.
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7.5 Fine-Tuning on ALFRED – Natural-Language
Planning (Phase A)

Fine-tuning in Phase A targets the main failure modes observed in the zero-shot
prompts: plans sounded fluent but often missed, reordered, or duplicated actions.
We therefore train on a 50% subset of our ALFRED dataset using 15 egocentric
frames per episode, aiming to improve step alignment, temporal consistency, and
redundancy control while keeping inference cost manageable.

Evaluation reuses the metric suite in Section 7.2. Lexical overlap (BLEU,
ROUGE, F1) is complemented with semantic alignment diagnostics (STS, SSS,
Coverage@0.7, AvgOffDiag, STC) and efficiency indicators, providing a holistic
view of how supervision moves the model toward execution-faithful plans.

7.5.1 Training Configuration and Loss Trends
The fine-tuning setup follows the experimental framework in Chapter 6, using
LoRA adaptation on LLaMA 3.2 Vision-Instruct 11B for one epoch with FP16
precision.

Figure 7.8: Training and validation loss curves for Phase A fine-tuning. The
model demonstrates smooth convergence and stable optimization under LoRA
adaptation.

The loss curve in Figure 7.8 shows a consistent and monotonic decrease up to
approximately 1.1 across all resumed sessions, each represented by a different color
segment corresponding to checkpoint restarts. The stability of this trend indicates
smooth convergence and effective gradient flow under the LoRA configuration, with
no signs of divergence or overfitting. Even limited supervised fine-tuning therefore
proves sufficient to enhance the model’s ability to produce coherent and temporally
structured natural-language plans compared to purely prompt-based baselines.
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7.5.2 Quantitative and Qualitative Results
We benchmark the fine-tuned model on the same ALFRED test-unseen split
introduced above (648 episodes, 9 720 egocentric frames). Table 7.5 reports the
aggregate lexical metrics, while Table 7.6 focuses on semantic alignment.

Table 7.5: Phase A lexical metrics (fine-tuned model, mean ± standard deviation).

Metric Mean ± Std Dev

Average Score 0.454 ± 0.094
BLEU 0.140 ± 0.093
ROUGE-1 0.547 ± 0.117
ROUGE-2 0.342 ± 0.101
ROUGE-L 0.463 ± 0.109
Token Count 47.91 ± 34.03
Inference Time (s) 13.98 ± 7.78

Table 7.6: Phase A semantic metrics (fine-tuned model, mean ± standard devia-
tion).

Metric Mean ± Std Dev

STS 0.845 ± 0.069
SSS 0.664 ± 0.104
AvgOffDiag 0.525 ± 0.058
Coverage@0.7 0.730 ± 0.184
STC 0.474 ± 0.352

Lexical metric analysis. Fine-tuning closes much of the lexical gap left by
prompt-only generation. The composite score climbs from 0.341 for the Few-shot
prompting (Tab. 7.1) to 0.454, with the highest gains on ROUGE-2 (+0.12 absolute)
and BLEU (doubling to 0.14). This points to better local sequencing and richer
n-gram overlap, while ROUGE-L reaching 0.463 confirms that the global action
order is now tracked more faithfully. The fine-tuned model is also more economical:
average responses shrink to 48 tokens and inference drops to 14 s, outperforming
Few-shot prompting (59 tokens, 16.8 s). Figure 7.9 (lexical radar) summarizes
these outward shifts.

Semantic metric analysis. Plan-level alignment benefits in parallel. STS rises
to 0.845 and Coverage@0.7 to 0.73, indicating that most ground-truth steps now
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find a high-similarity counterpart compared with the prompt-only spectrum in
Tab. 7.2. Stepwise alignment (SSS) grows to 0.664 and AvgOffDiag falls, signaling
reduced step entanglement, while STC nearly doubles relative to the best prompt.
However, the large variance on STC reveals residual inversions on harder episodes.
The distributions in Fig. 7.10 highlight how the tail of poorly aligned plans shrinks
yet persists.

Figure 7.9: Phase A radar plots. Left: lexical metrics expand uniformly after
fine-tuning. Right: semantic radar shows higher SSS and STC, though temporal
consistency remains the weakest axis.

Figure 7.10: Phase A semantic distributions. Left: SSS concentrates near 0.65
and the tail of poorly aligned episodes contracts. Right: STS clusters around 0.85,
evidencing strong plan-level agreement despite residual variance.
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Behavioral observations. Qualitative inspection confirms the quantitative
trends. Compared with the zero-shot regime, the fine-tuned model no longer emits
refusal messages and rarely omits entire action categories, yet long-horizon tasks can
still wander toward incorrect receptacles or skip optional clean-up steps. Figure 7.11
illustrates an ideal alignment, whereas Fig. 7.12 collects two counter-examples.
These residual errors motivate the structured representation introduced in Phase B,
which offers tighter control over ordering and grounding.

Figure 7.11: Phase A best-case heatmap: the plunger relocation task attains
STS 0.97 and STC 1.00, with a clean diagonal and negligible off-diagonal bleed.

STS 0.96, STC 0.20 STS 0.57, STC 0.00

Figure 7.12: Representative failure modes. Left: high plan-level overlap but
scrambled ordering. Right: the lowest-ranked sample, fluent yet instruction-
mismatched.
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To substantiate these findings, Table 7.7 reports three indicative episodes analyzed
qualitatively. The first mirrors the reference plan almost exactly, whereas the other
two expose residual ordering and grounding issues.

Table 7.7: Representative Phase A samples (fine-tuned model).

Instruction Ground Truth Plan Fine-tuned Model Output

Place the bat on
the bed

Turn toward the doorway, collect
the bat from the floor, walk back
to the bed, place the bat on the
blanket.

Turn around, walk to the wall,
pick up the bat, walk to the bed,
place the bat on the bed.

Move the corner
bat to the bed

Navigate to the corner, grab the
bat, return to the bed, drop the
bat on the mattress.

Walk to the desk, pick up the bat,
return it to the corner, leave it
there.

Move a cup from
the shelf to the
desk

Approach the desk, take the cup
from the upper shelf, move to the
desk edge, set the cup down.

Walk to the bookshelf, pick up the
cup, walk to the desk, put the cup
on the shelf (reverse direction).

These samples reinforce the narrative drawn from the heatmaps: supervision
delivers consistent, well-structured language plans, yet precise grounding and
directionality still demand the action decomposition introduced in Phase B, where
plans are emitted as concise sequences of discrete decisions rather than free-form
prose.

7.6 Zero-Shot Prompt Comparison (Phase B)
Phase A showed that natural-language fine-tuning improves fluency, yet grounding
mistakes remain. Phase B responds by adding a discrete action head aligned
with the JSON representation defined in Chapter 4. The model now emits two
synchronized outputs: a sentence-level plan that humans can read and a sequence
of symbolic actions that a controller can execute.

The structured branch pursues three goals:

• preserve the readable planning interface introduced in Phase A;

• expose an executable recipe that downstream controllers can follow without
extra parsing;

• diagnose grounding errors by aligning language tokens with explicit action
arguments.
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This dual output keeps the planning interface familiar while giving downstream
modules a grounded bridge between text and control.

7.6.1 Quantitative and Qualitative Results
We compare five zero-shot prompting strategies adapted to the structured objective:
One shot, Few shot, Visual focus, CoT, and RAR.2 Each template preserves
the natural-language question format introduced in Phase A but extends the
output instructions so that the model must emit both the semicolon-delimited
plan and a consistent discrete action list. Despite these additional constraints,
all surviving prompts achieve perfect format compliance (1.0): outputs are well-
formed JSON objects with the expected nl_plan and discrete_action_list
fields, so downstream errors are driven by content rather than schema violations.
We therefore report natural-language metrics, semantic alignment, discrete-action
fidelity, and procedural diagnostics separately.

Lexical analysis. The natural-language results in Table 7.8 mirror the trends
observed in Phase A (cf. Table 7.1): Visual focus and Few shot are the strongest
prompting strategies on text-based metrics, with Visual focus slightly outperforming
Few shot on both the average score and Token–F1. Notably, Phase B even achieves
a modest improvement over the best Phase A setting: the average score for Visual
focus reaches 0.350 here, compared with 0.342 for the best Phase A prompt (Few
shot). By contrast, CoT and RAR tend to depress average scores because, in the
dual-output setting, they may interleave fragments of the discrete action list or
auxiliary boilerplate into the natural-language plan. Despite the more demanding
objective in Phase B, Visual focus and Few shot remain effective at anchoring the
model to a clean plan format; we defer to the semantic analysis for a discussion of
persistent issues already highlighted in Chapter 7. As we will see in the qualitative
analysis (Table 7.12), a side-by-side prompt comparison further illustrates these
behaviors.
Table 7.8: Phase 2 natural-language metrics per prompt (mean ± standard
deviation on test-unseen). Best values in each column are in bold.

Prompt Average score BLEU Token-F1 ROUGE-1 ROUGE-2 ROUGE-L

Visual focus 0.316 ± 0.100 0.073 ± 0.084 0.463 ± 0.108 0.405 ± 0.133 0.253 ± 0.104 0.358 ± 0.117
Few shot 0.302 ± 0.083 0.074 ± 0.076 0.429 ± 0.085 0.399 ± 0.112 0.234 ± 0.088 0.352 ± 0.101
One shot 0.297 ± 0.081 0.076 ± 0.076 0.416 ± 0.084 0.395 ± 0.110 0.228 ± 0.087 0.347 ± 0.097
CoT 0.046 ± 0.090 0.007 ± 0.034 0.099 ± 0.120 0.043 ± 0.120 0.025 ± 0.076 0.040 ± 0.109
RAR 0.026 ± 0.058 0.003 ± 0.026 0.071 ± 0.078 0.017 ± 0.074 0.009 ± 0.048 0.016 ± 0.069

2The “Style” template used in Phase A was removed because preliminary runs produced brittle
JSON scaffolding and frequent format violations once discrete actions were requested.
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Semantic analysis and heatmaps. Table 7.9 shows Few shot edging the
other prompts on plan-level similarity (STS) and coverage, while Visual focus still
claims the highest stepwise score (SSS = 0.535). Few shot and One shot remain
clustered in the 0.45–0.47 band, confirming that improvements on step alignment
are incremental. The distributions in Figure 7.14 confirm that Visual focus narrows
variance but still delivers only modest absolute gains.

Compared with the Phase A baseline in Table 7.2, Visual focus incurs only
a mild drop in plan-level similarity (STS 0.770 → 0.748) but further improves
semantic alignment at the step level, raising the stepwise score from 0.494 to 0.535
and remaining the strongest prompt on SSS across both phases. In other words, it
segments plans into discrete steps more reliably than the other prompts and aligns
them more closely with the ground-truth boundaries, even if the absolute SSS value
remains modest. This behavior is consistent with the Visual focus template itself:
before emitting JSON, the prompt explicitly instructs the model to (i) look at all
objects, their positions, and their states, (ii) notice changes between images that
indicate progress, (iii) pay attention to spatial relationships and accessibility, and
(iv) identify the exact locations and objects involved. These visual-grounding cues
encourage the language branch to track per-step changes in the scene, improving
stepwise semantic similarity despite the heavier decoding task.

Figure 7.15 illustrates these dynamics: the high-scoring episode (STS = 0.95,
SSS = 0.66) follows the reference trajectory with only minor omissions, whereas the
low-scoring case collapses into macro-action jargon (GotoLocation, PickupObject)
inside the prose similarly to what happens in the CoT and RaR prompts. This
prompt-driven mixing of the natural-language plan with the JSON format is what
probably causes the steep decline in semantic scores when the model fails.

Table 7.9: Phase 2 semantic metrics per prompt (mean ± standard deviation).

Prompt STS SSS Coverage@0.7 STC AvgOffDiag

Few shot 0.768 ± 0.082 0.474 ± 0.112 0.512 ± 0.219 0.322 ± 0.369 0.446 ± 0.059
One shot 0.760 ± 0.084 0.453 ± 0.096 0.509 ± 0.212 0.262 ± 0.374 0.451 ± 0.056
Visual focus 0.748 ± 0.113 0.535 ± 0.127 0.489 ± 0.240 0.359 ± 0.338 0.453 ± 0.076
CoT 0.219 ± 0.217 0.195 ± 0.131 0.056 ± 0.164 0.280 ± 0.355 0.156 ± 0.106
RAR 0.169 ± 0.145 0.165 ± 0.084 0.023 ± 0.109 0.269 ± 0.352 0.130 ± 0.069

Figure 7.13 makes the trade-off between language fluency and procedural alignment
explicit. Visual focus sweeps the lexical axes while Few shot keeps semantic coverage
competitive, underscoring that no single prompt dominates both radar charts.

The distribution plots in Figure 7.14 confirm a long tail of under-aligned plans:
most samples cluster around moderate similarity, but a non-negligible mass drops
near zero, signaling poor grounding.
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Figure 7.13: Composite radar plots. Left: natural-language metrics (Average
score, BLEU, Token-F1, ROUGE). Right: semantic metrics (STS, Step Cosine
Similarity, Coverage@0.7, STC).

Figure 7.14: Distributions of NL plan semantic similarity (left) and step cosine
similarity (right) for the Visual focus prompt.
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Figure 7.15: Phase B semantic heatmaps for the Visual focus prompt. Left: high
alignment (STS = 0.95, SSS = 0.66) with a clear diagonal. Right: failure case
(STS = 0.04, SSS = 0.08) where the text plan collapses into macro actions.

Discrete-action analysis. Table 7.10 highlights how prompt design steers the
discrete head. CoT attains the highest action score (0.452), with strong action-type
(0.753) and sequence similarity (0.431), despite delivering some of the weakest
natural-language plans in Table 7.8. The chain-of-thought template explicitly
scaffolds intermediate reasoning prior to emitting the JSON block, which appears
to stabilise the symbolic branch and encourages the model to enumerate canonical
transitions even when the accompanying prose degenerates. RAR follows closely on
structural overlap (type 0.764, sequence 0.438) but its argument similarity collapses
(0.123) because the prompt favours templated responses that omit contextual details.
Crucially, neither CoT nor RAR provide in-context examples of how objects and
locations are named in ALFRED; once the model has visually identified an entity,
it therefore defaults to its own vocabulary rather than the ground-truth labels,
further depressing argument similarity scores. More descriptive prompts such as
One shot and Few shot provide richer grounding for arguments (up to 0.240) yet
trail the structured templates on ordering fidelity. Visual focus sits between these
extremes: visual hints help recover argument tokens, but the additional textual
burden reduces type and sequence agreement compared with CoT.

This mirrors the Phase 2 prompt scripts: CoT encourages step-by-step reasoning
before emitting JSON, which helps preserve action order, but none of the templates
explicitly supervise argument vocabulary, so grounding quality remains fragile in
the zero-shot regime. The lack of a dedicated argument-level fine-tuning step limits
absolute performance overall, as across prompts the similarity rarely exceeds 0.25,
underscoring that object and receptacle grounding remains the primary failure
mode for the discrete branch.

Figure 7.16 reinforces this split: CoT and RAR deliver compact, well-aligned
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Table 7.10: Phase 2 discrete-action metrics per prompt (mean ± standard
deviation).

Prompt Type sim. Sequence sim. Argument sim. Action score

One shot 0.493 ± 0.142 0.310 ± 0.205 0.240 ± 0.192 0.348 ± 0.117
Few shot 0.516 ± 0.172 0.341 ± 0.227 0.230 ± 0.165 0.362 ± 0.126
RAR 0.764 ± 0.166 0.438 ± 0.159 0.123 ± 0.159 0.442 ± 0.099
CoT 0.753 ± 0.171 0.431 ± 0.166 0.171 ± 0.166 0.452 ± 0.105
Visual focus 0.581 ± 0.185 0.403 ± 0.233 0.194 ± 0.160 0.393 ± 0.138

Figure 7.16: Action sequence coherence (left) and object argument understanding
(right) across prompts. Both plots show Few shot and Visual focus balancing
structural fidelity with partial gains on object grounding, whereas CoT and RAR
favour strict order over argument coverage.
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sequences yet fail to recover argument vocabulary, while Visual focus and Few shot
trade some ordering precision for richer object grounding.

Joint perspective. Figure 7.17 summarises the trade-offs across prompts. Struc-
tured templates such as CoT and RAR secure high action scores (0.45 and 0.44) but
collapse on natural-language quality (0.05 and 0.03), reflecting the lexical/semantic
issues already discussed. Conversely, Visual focus leads the language branch (NL
comprehensive ≈ 0.32) while maintaining solid discrete actions (0.39), and Few
shot offers the most balanced compromise (0.30 vs 0.36). This dispersion confirms
that a single aggregated score would hide important prompt-specific behaviour;
evaluating lexical, semantic, and action metrics separately is crucial when dual
outputs are required. Inspecting the Phase 2 prompt templates shows why: CoT
and RAR emphasise internal reasoning steps before emitting JSON, prioritising
structural fidelity, whereas Visual focus and One/Few-shot devote more budget to
descriptive cues, favouring the natural-language plan.

Figure 7.17: Ranking prompts by the dual comprehensive score (average of
natural-language and action branches).

Efficiency and verbosity. Inference slows down in Phase B due to the added
JSON output, with per-episode times rising to about 32–45 s. Reasoning-style
prompts (RAR, CoT) become the fastest and most compact, though their brevity
largely reflects plans that collapse into macro primitives rather than full semicolon-
separated steps. One-Shot and Few-Shot show the highest latency and longest
outputs because they retain a detailed step-by-step structure, while Visual Focus
falls in between, combining moderate length with more grounded descriptions.
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Procedural Diagnostics We use the Argument Consistency Index (ACI), a
single measure that summarises how consistently the model recovers object, con-
tainer, location, and type arguments, to inspect procedural fidelity. Table 7.11
contrasts CoT and Few-shot: CoT keeps traces short and structurally aligned
(high canonical-pair coverage, low extra steps) but misses actions entirely, whereas
Few-shot covers more containers yet over-generates and still omits required moves.
Figure 7.18 complements this view: the KDE of ACI values is bimodal, with peaks
near 0.1 and 0.6, signalling unstable grounding. Scenario-wise, “Pick Cool Then
Place in Receptacle” sits just below 0.6 because its two-stage routine is predictable,
while “Pick and Place with Movable Receptacle” falls toward 0.3 as both object
and receptacle shift. Even the better-performing routines therefore underline that
receptacle reasoning remains the main bottleneck.

Table 7.11: Key procedural metrics for CoT and Few-shot prompts.

Metric CoT Visual Focus

Argument Consistency Index (ACI) 0.35 0.34
Object Coverage F1 0.57 0.53
Container Coverage F1 0.18 0.20
Location Coverage F1 0.18 0.18
Type-Bucket Arg Micro-F1 0.30 0.28
Canonical Pair Coverage 0.80 0.67
Movement Precision 0.22 0.21
Movement Recall 0.14 0.14
Extra Steps (Pred − GT ≥ 0) 0.14 0.20
Missing Steps (GT − Pred ≥ 0) 2.91 3.01
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Figure 7.18: Argument Consistency Index diagnostics. Left: overall distribution
across prompts. Right: scenario-level breakdown showing that container-heavy
tasks amplify variance.
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Qualitative synthesis. Table 7.12 examines a representative episode (“move
two bars of soap to the bin”) and reflects the broader zero-shot trends. CoT
and RAR,despite competitive discrete scores, still output macro-level placeholders
in the natural-language plan and fail to adopt the expected semicolon-separated
structure, as we already analyzed in the previous sections; their JSON traces are
similarly compact and often omit the second transfer. By contrast, the descriptive
prompts (One-Shot, Few-Shot, Visual Focus) recover both moves in plain English.
The first two remain concise and procedural, whereas Visual Focus introduces color
and object descriptors that enhance grounding at the cost of longer narratives.
Overall, zero-shot prompting helps stabilize formatting and preserves structural
coherence, but the argument layer remains fragile; targeted adaptation—via fine-
tuning, constrained decoding, or richer supervision—is required to mitigate missing
steps and improve argument fidelity.
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Instruction Move two bars of soap from the sink to a small black bin.

Ground Truth NL plan: Turn left and walk towards the wall, then hang a right
and walk up to the sink; pick up the rightmost bar of soap; walk to
the bin; drop it; return to the sink; pick up the second soap; walk
back to the bin; place it inside.
Discrete actions: GotoLocation(sink basin) → PickupOb-
ject(soapbar) → GotoLocation(garbagecan) → PutObject(soapbar,
garbagecan) → GotoLocation(sink basin) → PickupObject(soapbar)
→ GotoLocation(garbagecan) → PutObject(soapbar, garbagecan)
→ NoOp().

One-Shot NL plan: Walk to the sink; open the sink; take a bar of soap from
the sink; place the bar of soap in the bin; take another bar of soap
from the sink; place the bar of soap in the bin; close the sink.
Discrete actions: GotoLocation(sink) → OpenObject(sink) →
PickupObject(soap) → PutObject(soap, bin) → PickupObject(soap)
→ PutObject(soap, bin) → CloseObject(sink).

Few-Shot NL plan: Walk to the sink; grab the soap on the sink; walk to the
bin; put the soap in the bin; grab the other soap on the sink; walk
to the bin; put the soap in the bin.
Discrete actions: GotoLocation(sink) → PickupObject(soap) →
GotoLocation(bin) → PutObject(soap, bin) → GotoLocation(sink)
→ PickupObject(soap) → GotoLocation(bin) → PutObject(soap,
bin) → NoOp().

CoT NL plan: GotoLocation; PickupObject; GotoLocation; PutObject;
NoOp.
Discrete actions: GotoLocation(Sink) → PickupObject(Soap) →
GotoLocation(Black Bin) → PutObject(Soap, Black Bin) → NoOp().

RAR NL plan: GotoLocation; PickupObject; GotoLocation; PutObject;
NoOp.
Discrete actions: GotoLocation(Sink) → PickupObject(Soap) →
GotoLocation(Black Bin) → PutObject(Soap, Black Bin) → NoOp().

Visual Focus NL plan: Walk to the sink; pick up the pink bar of soap on the sink;
walk to the black bin; put the pink bar of soap on the black bin; walk
to the sink; pick up the yellow bar of soap on the sink; walk to the
black bin; put the yellow bar of soap on the black bin.
Discrete actions: GotoLocation(sink) → PickupObject(pink bar
of soap) → GotoLocation(black bin) → PutObject(pink bar of soap,
black bin) → GotoLocation(sink) → PickupObject(yellow bar of
soap) → GotoLocation(black bin) → PutObject(yellow bar of soap,
black bin).

Table 7.12: Qualitative comparison across prompts for the “move two bars of
soap to the bin” task. Natural-language plans and discrete action traces highlight
how each prompt balances fluency and grounded execution on the same episode.
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7.7 Fine-Tuned Model on ALFRED – Structured
Planning with Discrete Actions (Phase B)

Fine-tuning in Phase B targets the failure modes highlighted by the zero-shot
prompts: argument slots remained brittle, discrete traces often skipped actions,
and semicolon-delimited plans occasionally devolved into macro tokens. The
contextual fine-tuning recipe introduced in Chapter 6 is therefore applied to the
Phase B objective, with the vision encoder and base LLM kept frozen while only the
multimodal projector and LoRA heads are updated. Evaluation reuses the metric
suite from Section 7.2, now interpreted for the dual-output setting (natural-language
branch plus discrete-action branch).

7.7.1 Training Configuration and Loss Trends
The contextual run started from the configuration per-device batch size 1, gradient
accumulation 8, a cosine schedule with base rate 1 × 10−6 (warm-up ratio 0.03),
Deepspeed ZeRO-2, FP16, and gradient checkpointing, while both the vision
tower and LLM weights remained frozen. Early logs revealed that such a large
accumulation factor smoothed gradients excessively; therefore, around step 2.5k
we switched to batch size 2 with accumulation 2 (keeping the effective batch at 4).
Figure 7.19 shows the corresponding loss trace: immediately after the change the
curve drops sharply from roughly 3 to 1.5 and resumes a steady descent, confirming
that the smaller accumulation unlocked faster optimization without destabilizing
training.

Figure 7.19: Fine-tuning loss for the contextual planner. The discontinuity near
step 2.5k corresponds to reducing gradient accumulation from 4 to 2, which yields
a noticeably steeper descent.

After the adjustment, the loss stabilizes around 1.4–1.6 with mild oscillations
caused by checkpoint restarts, matching the stable optimization observed in Phase A
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(Figure 7.8).
In principle, the effective batch size should be held constant across a run to

keep the optimization regime comparable; here hardware limits forced us to reduce
it mid-training. Despite this constraint, the model not only exhibited the sharp
loss break documented above, but also proved to be the best-performing variant
across our experiments, after several prior runs that had to be discarded. This
suggests that, for our setting, smaller accumulation (and hence fresher gradients)
was preferable to a larger, smoother batch.

7.7.2 Prompting Strategy and Grounding Techniques
We adopt a compact chat template to improve visual grounding, task focus, and
output-format consistency during fine-tuning. The design combines three comple-
mentary ingredients.

Temporal grounding via numbered observations. Each input frame is
introduced by a textual marker (Observation 1, Observation 2, ...), followed by the
corresponding image. These markers act as anchors for the cross-attention layers:
each "Observation i:" is a text prefix immediately preceding the visual tokens of
the next image, so visual blocks are separated by distinct linguistic contexts, and
subsequent text can attend to the relevant block based on the index. Explicit frame
indexing has shown similar benefits in Video-LLaMA [27].

Semantic grounding via object-list dropout. With fixed probability p = 0.15,
we append a natural-language list of objects available in the scene drawn from
ALFRED annotations (e.g., “Available objects in the scene: mug, plate, table”).
When present, this list anchors visual entities to text; when omitted, the model
must rely solely on images. This controlled stochasticity acts as input dropout,
preventing over-reliance on textual hints and improving cross-modal robustness.

Task anchoring through a fixed system prompt. A concise system instruc-
tion specifies the role and enforces the output schema: two fields (nl_plan and
discrete action list) returned only in JSON, with actions chosen from the ALFRED
inventory (GotoLocation, PickupObject, PutObject, ...). System-level constraints
of this kind stabilise instruction-tuned VLMs [28, 29], reducing off-task generation
and format drift.

The prompting template combines three key elements: observation numbering,
object-list dropout, and a fixed system prompt. Observation numbering provides a
lightweight temporal reference across images; the probabilistic object list regularizes
visual–textual conditioning; and the system prompt enforces a consistent output
format. Together, these design choices improved JSON compliance, grounding
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accuracy, and argument recovery without relying on the object list being always
present. The full chat template specification and implementation are available in
the project’s GitHub repository.

7.7.3 Quantitative and Qualitative Results
We evaluate the fine-tuned structured planner on the ALFRED test-unseen split
using the same metrics defined in Section 7.2 and the experimental setup of
Chapter 6. The analysis is organized along five axes: natural-language metrics, plan-
level and stepwise semantics, discrete-action similarity (types, order, arguments),
procedural diagnostics (ACI and coverage), and qualitative examples.

Efficiency and decoding stability. Token counts remain moderate on average
(106.6 ± 35.9 tokens), yet Figure 7.20 exposes a heavy-tailed compute profile. Most
episodes finish within a minute, but a non-trivial subset stretches beyond 10 minutes,
yielding an inference-time mean of 129.0 s with a large standard deviation (±189.5 s).
The shallow correlation (ρ ≈ 0.06) between length and latency suggests that the
spikes stem from decoder instabilities rather than sheer output size, often when
the model struggles to terminate JSON generation. This variance is a practical
limitation: downstream systems need guardrails (time-outs, constrained decoding,
partial responses) to avoid stalling on the worst cases, and future work should target
steadier decoding without sacrificing plan quality. From a memory perspective,
instantiating the base LLaMA 3.2 Vision–Instruct checkpoint in our ALFRED
Phase B setup already occupies roughly 23 183 MiB on the 80 GiB GPU, and the
fine-tuned planner peaks at about 35 641 MiB (43.5% of device memory) during
inference with 15-frame inputs. In Chapter 9 we therefore investigate whether
4-bit bnb-int4 quantization can deliver a more efficient planner—reducing memory
footprint and latency while preserving acceptable plan quality.
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Figure 7.20: Phase B fine-tuned planner: inference time vs. output length
(tokens). The weak correlation (ρ ≈ 0.06) and heavy tail of slow episodes highlight
that latency spikes stem from decoding instabilities rather than sheer plan length,
motivating the use of guardrails and more efficient decoding schemes.
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Lexical analysis. The fine-tuned Phase B model demonstrates substantial im-
provements across all lexical evaluation metrics on the test-unseen split, as sum-
marised in Table 7.13. The average composite score reaches 0.522, representing a
notable advancement of +0.172 points over the best-performing zero-shot configu-
ration (Visual focus at 0.350) and a +0.068 gain relative to the Phase A fine-tuned
baseline (0.454). This performance elevation reflects the model’s enhanced capacity
to generate coherent, well-structured natural language plans while maintaining
strict adherence to the required JSON output format. The improvements are par-
ticularly pronounced in surface-level similarity metrics, with BLEU scores rising to
0.290, a substantial increase of +0.150 points compared to Phase A fine-tuning and
a remarkable +0.217 improvement over Phase B zero-shot performance. Similarly,
Token-F1 achieves 0.629, indicating strong lexical overlap with reference plans, while
the ROUGE family of metrics demonstrates consistent gains: ROUGE-1 reaches
0.618, ROUGE-2 attains 0.379, and ROUGE-L consolidates at 0.532. The latter
metric is particularly significant, as it captures global structural alignment and
shows improvements of +0.174 relative to zero-shot Phase B and +0.069 compared
to Phase A fine-tuning. The rise of the average score above 0.5 indicates that the
model has learned to appropriately sequence contextual information including task
instructions, visual cues, and object references. However, perfect natural language
planning remains challenging for complex multi-step tasks requiring reasoning over
15 egocentric frames, particularly under stringent metrics like BLEU. The model’s
perfect format compliance (1.0) alongside these lexical gains demonstrates the
effectiveness of structured fine-tuning.

Table 7.13: Phase B lexical metrics (fine-tuned model, test-unseen, mean ±
standard deviation).

Metric Mean ± Std.

Average Score 0.522 ± 0.083
BLEU 0.290 ± 0.110
Token F1 0.629 ± 0.083
ROUGE-1 0.618 ± 0.087
ROUGE-2 0.379 ± 0.095
ROUGE-L 0.532 ± 0.088

Semantic analysis and heatmaps. Relative to Phase A (Table 7.6), the fine-
tuned model exhibits consistent, albeit moderate, gains on all semantic indicators
(Table 7.14). The largest improvement concerns temporal coherence: STC rises from
0.474 to 0.664, signaling a stronger preservation of step order between predicted
and reference plans. Plan-level similarity also slightly improves (STS 0.861 vs.
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0.845), as well as stepwise alignment (SSS 0.742 vs. 0.664). The distributional
view in Figure 7.21 corroborates this trend: compared with Phase A (Figure 7.10,
right panel), the SSS curve is clearly displaced to the right, indicating a higher
mass of well-aligned steps while maintaining a comparable overall shape.

Heatmap evidence reflects the same pattern. In Figure 7.22, the left panel shows
an almost perfect diagonal (SSS close to 1, STC near 1) for the instruction “Place
a rinsed egg in the microwave”, where every ground-truth step finds a precise coun-
terpart. The right panel, drawn from one of the lowest-scoring episodes, illustrates
residual failure modes: occasional hallucinations or off-topic turns (e.g., turning to
face furniture unrelated to the goal) introduce off-diagonal mass. Nevertheless, the
plan is rarely degenerate; most steps still lie near the diagonal and are not omitted.

Taken together, these results indicate that fine-tuning improves semantic faith-
fulness and temporal stability of the natural-language plans, though not uniformly
across scenarios. Remaining errors appear linked primarily to visual ambiguity
in the 15-frame context and to mild stylistic biases (for instance, stereotyped
openings such as “Turn around and . . . ”). While such biases can be mitigated
with targeted supervision or decoding constraints, the present level of semantic
reliability is sufficient for our purposes, especially given the strong discrete-action
quality reported below.

Table 7.14: Phase B semantic metrics (fine-tuned model, mean ± standard
deviation on test-unseen).

Metric Mean ± Std.

STS 0.861 ± 0.068
SSS 0.742 ± 0.093
Coverage@0.7 0.806 ± 0.170
STC 0.664 ± 0.298
AvgOffDiag 0.517 ± 0.058
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Figure 7.21: Fine-tuned Phase B distributions: STS (left) and SSS (right).
Plan-level similarity is tightly concentrated near 0.85, while the stepwise curve
shifts markedly to the right compared with zero-shot baselines, confirming that
fine-tuning narrows variance and increases the proportion of well-aligned steps.

Figure 7.22: Fine-tuned Phase B semantic heatmaps: best case (left) and difficult
case (right). The near-perfect diagonal on the left illustrates how most ground-
truth steps find clean matches after fine-tuning, whereas the right-hand failure case
still shows off-diagonal mass triggered by hallucinated turns and receptacle errors,
highlighting the residual scenarios where grounding breaks down.
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Figure 7.23: Fine-tuned Phase B radars: lexical (left) and semantic (right).

Discrete-action analysis and procedural diagnostics. The discrete-action
branch exhibits the most remarkable progress across all experimental phases. As
shown in Figure 7.25, the fine-tuned radar forms an almost perfect square, indicating
that type, sequence, argument, and overall action accuracy have converged to
comparable, near-optimal levels around 0.9. This geometric symmetry contrasts
sharply with the irregular and unbalanced profiles observed in the zero-shot prompts,
where sequence fidelity and argument grounding often diverged. Fine-tuning thus
yields a highly stable and coherent controller that reproduces the symbolic structure
and its corresponding arguments with exceptional consistency.

Quantitatively, Table 7.15 confirms this convergence: type similarity reaches
0.955, sequence similarity 0.883, argument similarity 0.865, and the combined action
score 0.901. These values mark a decisive leap from the zero-shot regime, where
scores rarely exceeded 0.45. The improvement is directly linked to the contextual
fine-tuning recipe described in Chapter 6, in which the Prompting Strategy and
Grounding Techniques (Section 7.7.1), notably observation numbering, object-list
dropout, and a fixed system instruction, jointly enhance the model’s temporal
grounding, argument recovery, and JSON stability. By coupling architectural
alignment with controlled prompting, the model learns to anchor every symbolic
step to visual evidence while preserving strict syntactic compliance.

Procedural diagnostics reinforce this interpretation. The Argument Consistency
Index (ACI) averages 0.901 (Table 7.16), while canonical-pair coverage rises to
0.969, indicating that canonical transitions such as GotoLocation → PickupObject
and OpenObject → PutObject are faithfully recovered. Object, container, and
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location coverage scores remain consistently above 0.88, and the frequency-aware
Type-Bucket Micro-F1 (0.877) confirms that the model also preserves repetition
patterns, not merely unique arguments. The ACI distribution in Figure 7.26
collapses into a sharp unimodal peak near 0.9, in contrast with the wide bimodal
spread seen in the zero-shot regime, demonstrating both structural and procedural
regularity. Scenario-wise breakdowns further show that even container-intensive
routines, previously unstable, now achieve uniform consistency.

In sum, the combination of contextual fine-tuning and structured prompting
transforms the discrete-action branch from a brittle symbolic emitter into a reliable
procedural planner. The nearly symmetric radar profile and concentrated ACI
peak testify to a model that has internalized the causal and temporal dependencies
underlying ALFRED-style plans. Although there remains scope for refinement,
particularly in fine-grained argument precision and over-generation control, the
results already demonstrate a decisive leap in procedural reliability after a single
epoch of adaptation. The following section on Qualitative synthesis provides
concrete visual and textual evidence of this behaviour, showcasing how the model
now generates grounded, executable discrete plans with unprecedented coherence.

We report discrete-action similarities in Table 7.15 and summarise structure
and grounding in Figure 7.24.

Table 7.15: Phase B discrete-action metrics (fine-tuned model, test-unseen,
mean ± standard deviation).

Metric Mean ± Std.

Type sim. 0.955 ± 0.093
Sequence sim. 0.883 ± 0.219
Argument sim. 0.865 ± 0.192
Action score 0.901 ± 0.121
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Table 7.16: Phase B procedural diagnostics (fine-tuned model, test-unseen;
mean ± std).

ACI 0.901 ± 0.146
Canonical Pair Coverage 0.969 ± 0.106
Object Coverage F1 0.927 ± 0.226
Container Coverage F1 0.890 ± 0.177
Location Coverage F1 0.884 ± 0.186
Type Micro-F1 (Obj/Cont/Loc) 0.877 ± 0.159
Movement Precision 0.858 ± 0.196
Movement Recall 0.865 ± 0.200
Extra Steps 0.310 ± 0.837
Missing Steps 0.260 ± 0.890

Figure 7.24: Fine-tuned Phase B: sequence similarity (left) and argument sim-
ilarity (right) distributions. Both histograms collapse near 1.0 after fine-tuning,
showing that the discrete branch now recovers the correct action order and object
arguments for almost every episode, with only a few low-similarity outliers remain-
ing.
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Figure 7.25: Fine-tuned Phase B discrete-action radar.

Figure 7.26: Fine-tuned Phase B: overall ACI distribution (left) and ACI by
scenario (right).
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Qualitative synthesis. Table 7.17 reports representative Phase B samples
pairing the natural-language plan with the corresponding discrete action list.

A recurring pattern observable across several fine-tuned samples is the systematic
presence of the redundant prefix “turn around and walk. . . ” at the beginning of
a several natural-language plan. This stylistic artifact reflects a dataset-induced
bias rather than a genuine procedural need. Since many ALFRED demonstrations
start from an egocentric viewpoint where the initial step often involves a re-
orientation action (e.g., “turn left,” “turn right,” “turn around”), the fine-tuned
model has internalized these orientation verbs as the most probable opening
transition. Consequently, even when the initial rotation is unnecessary in context,
the model tends to include it by default, revealing a strong prior over directional
motion rather than scene-specific reasoning.

Despite this redundant phrasing, the underlying procedural structure remains
coherent and executable. The model consistently preserves the causal and spatial
dependencies required to complete the task, as evidenced by its near-perfect
discrete-action precision. In both examples, the symbolic traces align closely with
the reference plans: every action type, sequence order, and argument pairing is
correctly recovered, demonstrating that fine-tuning has yielded a controller capable
of executing well-grounded and temporally consistent procedures.

The overall comprehensive score computed as the mean between the natural-
language and discrete-action branches reaches approximately 0.81, combining a
high discrete-action accuracy (Action Score ≈ 0.90) with solid lexical alignment
(≈ 0.72). This confirms that, while the model occasionally over-generalises frequent
motion patterns inherited from training data, it nevertheless maintains excellent
procedural fidelity. In particular the discrete branch exhibits high precision and
stability, reflecting a robust internalization of task structure and a clear ability to
translate visual context and language instructions into precise, executable symbolic
actions.
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Instruction Prediction

put a bowl and a pencil
between the books on the
desk

NL plan (GT): go to the desk; pick up the pencil from the desk; re-approach
the desk where the bowl is; put the pencil in the bowl; pick up the bowl with
the pencil; take the bowl to the right side of the desk; set the bowl on the desk
between the two rows of books on the bottom shelf.
Discrete actions (GT): GotoLocation(desk) → PickupObject(pencil) → Go-
toLocation(bowl) → PutObject(pencil, bowl) → PickupObject(bowl) → Go-
toLocation(shelf) → PutObject(bowl, shelf) → NoOp().
NL plan (Pred): turn around and walk to the desk; pick up the pencil on the
desk; turn around and walk to the wall; put the pencil in the bowl on the desk;
pick up the bowl on the desk; turn around and walk to the desk; put the bowl
between the books on the desk.
Discrete actions (Pred): GotoLocation(desk) → PickupObject(pencil) →
GotoLocation(bowl) → PutObject(pencil, bowl) → PickupObject(bowl) →
GotoLocation(desk) → PutObject(bowl, desk) → NoOp().

put green cup and knife
into sink basin

NL plan (GT): walk to face counter behind sink; pick up butter knife from
under sponge on counter; walk to face counter to left of stove; put knife into
green cup on the left on the counter; pick up the green cup from counter; turn
to face the kitchen sink; put green cup into sink basin.
Discrete actions (GT): GotoLocation(countertop) → PickupOb-
ject(butterknife) → GotoLocation(cup) → PutObject(butterknife, cup)
→ PickupObject(cup) → GotoLocation(sinkbasin) → PutObject(cup, sinkbasin)
→ NoOp().
NL plan (Pred): turn around and walk to the counter to the right of the sink;
pick up the knife from the counter; turn around and walk to the counter to the
right of the sink; put the knife into the green cup on the counter; pick up the
green cup from the counter; turn around and walk to the sink; put the green
cup into the sink basin.
Discrete actions (Pred): GotoLocation(countertop) → PickupOb-
ject(butterknife) → GotoLocation(cup) → PutObject(butterknife, cup) → Pick-
upObject(cup) → GotoLocation(sinkbasin) → PutObject(cup, sinkbasin) →
NoOp().

Table 7.17: Representative Phase B samples (fine-tuned model). Each row
shows the instruction, the associated natural-language plan and the discrete action
sequence (GT for the first row; model prediction for the second).
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Chapter 8

Open X-Embodiment:
Evaluation and Results

8.1 Introduction
In this chapter, we investigate the extension of the LLaMA 3.2 Vision 11B model
toward low-level motor control using the Open X-Embodiment dataset. Unlike the
previous ALFRED experiments, where the output consisted of structured symbolic
plans or natural-language instructions, the model here is required to generate
continuous control actions represented as discretized 8-token vectors. Each action
vector encodes the physical command issued to the robot at a given timestep,
enabling a direct link between visual perception and actuation.

All experiments in this phase are conducted in an offline setup, meaning that the
model is not deployed in a closed-loop robotic environment but rather evaluated
on pre-recorded trajectories. This choice is primarily motivated by computational
constraints: training a vision-language model on the complete RT-1 subset of
the Open X-Embodiment dataset, which spans multiple robotic platforms and
embodiments, would require resources beyond the scope of this work. Nonetheless,
Open X-Embodiment provides an ideal framework to assess cross-embodiment gen-
eralization, offering diverse manipulation and navigation demonstrations collected
from real robots.

The purpose of this study is therefore not to achieve fully interactive control
but to examine whether a medium-sized Vision-Language Model, such as LLaMA
3.2 Vision 11B, can be effectively adapted for robotic control through fine-tuning
and prompting-based conditioning. Rather than designing a specialized control
architecture, we treat the model as a general multimodal transformer and investigate
to what extent it can learn to output 8-token control vectors when grounded on
visual observations and textual instructions. This approach establishes a proof of
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concept for using compact VLMs as scalable foundations for embodied intelligence.
At inference time, every predicted action is decoded into the 8-token format

introduced in Chapter 5 (Section 5.3.1): one token for termination, three for
Cartesian displacement, three for rotation, and one for gripper state, all obtained
by discretizing continuous controls into 256 uniform bins mapped to reserved
vocabulary IDs. Because the original LLaMA 3.2 Vision model is not inherently
designed to output numeric control tokens, a dedicated conditioning phase was
required.

Building upon this baseline, we then explored context-augmented fine-tuning,
where the model receives a temporal window of four consecutive frames along with
a short history of previously executed actions.

8.2 Evaluation Metrics
To assess model performance on Open X, we adopt a unified evaluation suite
capturing discrete accuracy, continuous reconstruction error, and action-space
alignment. These metrics are consistent with recent embodied learning frameworks
and tailored to the 8-token action representation described above.

1. Per-sample Discrete Accuracy

We compute the fraction of correctly predicted tokens:

TokenAcc = 1
8

7Ø
i=0

1[pi = gi],

and component-wise accuracies:

PosAcc = 1
3

3Ø
i=1

1[pi = gi], RotAcc = 1
3

6Ø
i=4

1[pi = gi], GripAcc = 1[p7 = g7].

The strict exact-match criterion is defined as

ExactMatch = 1[∀i, pi = gi].

Discrete action tokens are detokenized into continuous control vectors â and
agt, representing predicted and ground-truth actions, respectively. We evaluate
reconstruction quality using absolute and normalized errors for position, rotation,
and gripper components.
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Absolute error. The absolute L2 distance between predicted and reference
values quantifies the deviation in the model’s continuous control prediction:

epos = ∥v̂pos − vgt
pos∥2, erot = ∥v̂rot − vgt

rot∥2, egrip = |ĝ − ggt|.

These quantities are expressed in native units (translation in normalized Cartesian
space, rotation in radians, gripper in unitless scale).

Relative error. To make results comparable across components with different
scales, we compute relative (normalized) errors by dividing each vector by its nom-
inal span. Let spos, srot, and sgrip denote the valid dynamic ranges for translation,
rotation, and gripper respectively (e.g., spos = 2 for range [−1,1]). The relative
error is thus:

epos,rel =
∥v̂pos − vgt

pos∥2

spos
, erot,rel = ∥v̂rot − vgt

rot∥2

srot
, egrip,rel = |ĝ − ggt|

sgrip
.

This normalization yields a dimensionless measure that reflects the fraction of the
control range covered by the prediction error.

Per-axis RMS percentage error. Because position and rotation are three-
dimensional, we report a more interpretable variant: the per-axis root-mean-square
(RMS) percentage error obtained by averaging the normalized error over all axes:

epos,RMS% = epos,rel√
3

× 100,

erot,RMS% = erot,rel√
3

× 100,

egrip,RMS% = egrip,rel × 100.

This metric expresses the mean per-axis deviation as a percentage of the full
dynamic range, providing a uniform scale to compare translation, rotation, and
gripper performance. For example, a position RMS error of 2% indicates that, on
average, each positional axis deviates by roughly 2% of its valid span.

Metric usage. In the following analyses, we report both the absolute and RMS
percentage errors. Absolute L2 errors highlight the raw physical deviations, while
the RMS percentage formulation enables fair cross-component comparison (position,
rotation, and gripper) regardless of their original scales. This normalization is
particularly useful when interpreting Open X metrics across embodiments and
motion types, where the underlying spans differ in units and magnitude.
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3. Action-Space Analysis
Beyond per-sample metrics, action-space measures assess how well the model
aligns its per-step action deltas with the ground-truth commands over an entire
episode. At each timestep we compare the predicted action vector (position delta,
rotation delta, gripper command) with the corresponding ground-truth vector and
compute directional scores, then aggregate these per-step values over time and
across episodes. High scores therefore indicate that, on average, successive actions
move in the intended direction and with roughly appropriate magnitude, while low
scores reveal sequences that stall, oscillate, or drift away from the target motion. In
our setting, the policy is trained and evaluated only on these per-step displacement
vectors rather than on absolute end-effector poses, even though the underlying
RLDS logs expose fields such as base pose of the end effector (Chapter 5). Classical
path-tracking measures like along-track error are therefore not directly applicable,
as they assume access to absolute poses and a continuous reference trajectory.
Instead, we rely on local, delta-based criteria that evaluate whether the predicted
deltas follow the correct direction, orientation, and relative progression of the
ground-truth motion, rather than focusing solely on exact numerical values.

Directional Accuracy (DirAcc). In sequential robotic control, this notion of
“progress” is crucial: a model may produce predictions that are close in absolute
error yet fail to move the system in the correct direction, or conversely, may align
directionally while underestimating magnitude. Directional Accuracy (DirAcc)
measures, at each timestep i, how much of the ground-truth command the model
applies along the correct direction, clipped to the range [0,1]. For a generic action
component (position or rotation) with predicted vector apred(i) and ground-truth
vector agt(i), we define

DirAcc(i) = clip
A

apred(i) · agt(i)
∥agt(i)∥2 , 0, 1

B
.

Here 1 means that the model matches or overshoots the ground-truth command in
the correct direction, 0.5 corresponds to applying roughly half of the ground-truth
magnitude along the right direction, and 0 indicates either no useful progress or
motion in the opposite direction. The same definition is used for the gripper, treating
its scalar command as a one-dimensional vector. DirAcc is computed independently
for position, rotation, and gripper components. Typical interpretation thresholds
are:

• Poor: < 0.2 - little or opposite progress.

• Acceptable: 0.3–0.5 - partial directional consistency.
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• Strong: > 0.6 (excellent when ≥ 0.7) - accurate, magnitude-consistent motion.

This metric is not intended as a new standard, but rather as a task-specific
diagnostic tool tailored to our robotic setting. It complements cosine similarity by
penalizing both under- and over-shooting, and complements L2 error by evaluating
alignment with the desired motion direction. Its role is to provide a sequence-level
signal in action space indicating whether the model understands the structure of
the task, even when discrete token predictions are imperfect.

Cosine Similarity (CosSim). To isolate angular agreement independently of
step length, we compute, for the same pair (apred, agt):

CosSim = apred · agt

∥apred∥ ∥agt∥
∈ [−1, 1].

CosSim reflects pure directional alignment: 1.0 indicates perfect orientation, 0
orthogonal movement, and −1.0 opposite direction. Interpretation thresholds are:

• Poor: < 0.2 or negative - divergent or reversed direction.

• Moderate: 0.3–0.5 - partial angular consistency.

• Good: > 0.6 (excellent when ≥ 0.7) - strong directional agreement.

While DirAcc measures “how far” progress advances toward the correct direc-
tion, CosSim measures “how aligned” the movement orientation is regardless of
magnitude.

Angular Deviation (Angle Deg). We also express directional agreement in
degrees for better interpretability:

θdeg = arccos(CosSim) × 180
π

.

Angles closer to 0◦ indicate better alignment (< 45◦ very good, 60–90◦ moderate,
> 90◦ poor). This view makes it straightforward to assess how tightly the model
follows the intended motion direction.

Aggregation across time and episodes. For both DirAcc and CosSim we
report two types of aggregates. First, an episode-level score, obtained by averaging
the per-step values within each episode and then taking the mean of these episode
means across the test set; this emphasizes how consistently the controller behaves
over complete trajectories. Second, a global step-weighted score, computed as the
plain average over all timesteps of all episodes; this reflects the overall fraction of
steps that are well aligned, regardless of how long each episode lasts.
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8.3 Training Configurations and Loss Trends
We trained two models on the Open X-Embodiment dataset under distinct settings:
a single-frame policy and a multi-frame policy. Both share the same LoRA configu-
ration (rank 32, α = 32, dropout=0.05), frozen vision and language backbones, and
identical optimization setup (AdamW, cosine scheduler, mixed precision, ZeRO-2).
The primary differences lie in temporal context, learning rate, and batch setup.

The single-frame configuration uses one RGB frame per step and predicts a
single 8-token action vector. It was trained for five epochs with an effective batch
size of 32 (16 samples, gradient accumulation 2) and a learning rate of 1 × 10−6.
This setup establishes the baseline reactive mapping between a static image and
its corresponding control vector.

The multi-frame configuration, as we already mentioned, introduces a temporal
window of four frames with 3 being the previous frames in the episode and the
last being the current frame, enabling short-term reasoning over motion. Because
this increases input dimensionality, the batch size was reduced to 4 (no gradient
accumulation as we it noticeably degraded performances in the previous trainings
on ALFRED) and the learning rate raised to 3 × 10−6 to maintain convergence
speed. Additionally, an input dropout of 20% was applied to the action-history
tokens, forcing the model to rely on visual cues when historical context is partially
missing.

Figure 8.1 compares the loss curves of the two training regimes. The single-frame
model exhibits a smooth and monotonic decay, stabilizing around 2.3 after 5,000
steps, indicative of consistent convergence. In contrast, the multi-frame model
achieves a significantly lower final loss (around 1.8) but displays high-frequency
oscillations throughout training. This instability is likely due to the increased
temporal complexity and stochastic dropout on the previous-action tokens, which
intermittently disrupts temporal consistency. Despite this, the overall downward
trend suggests successful adaptation to the multi-frame temporal conditioning.

Figure 8.1: Loss trends for the single-frame (left) and multi-frame (right) training
configurations. The multi-frame model achieves lower loss but exhibits higher
variance due to temporal complexity and input dropout.
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8.4 Evaluation and Results
The following section consolidates quantitative and qualitative results for the two
policies considered in this study. We first present the single-frame baseline to
establish reactive performance without temporal context, then analyse the multi-
frame policy that incorporates short-term history and dynamic prompting. Finally,
we provide a direct comparative analysis highlighting trade-offs, improvements,
and limitations across both models.

Token Range, Quantization, and Label Imbalance Each control component
is discretized into 256 uniform bins mapped to token IDs in the 126000–126255
range, with nominal spans of [−1, +1] for translations and gripper motion and
[−π/2, +π/2] for rotations. This mapping simplifies interfacing with the language
model but introduces representation effects that influence metrics and behavior.

First, since bins are spaced uniformly across the nominal span while most Open
X-Embodiment actions lie in narrower intervals (approximately [−0.6, +0.6] for
position and about [−1.3, +1.5] rad for rotation), high-density central regions are
under-resolved: many fine-grained motion differences collapse into the same bin.
Discretized errors can thus look smaller than the underlying continuous deviations.
See the distribution plots in the dataset chapter (Figures 5.4, 5.5, 5.6).

Second, the relative errors we report, namely the per-axis RMS percentage
errors for position and for rotation, are normalized using the nominal spans, not
the actual ranges present in the data. Because the robot typically moves within
a smaller range than nominal, the same absolute error takes up a larger share of
the true range. In practice this means percentages like 1.5–2.4% are optimistic:
if we rescale by the empirical data ranges (or by the RT-1 control ranges), the
percentage errors become higher.

In addition, the label distribution is strongly imbalanced. Central token values
around 127–128 for translations and gripper, and the termination token near 1,
dominate the dataset, as shown by the single-frame token histograms (Figures 5.5,
5.6) and the multi-frame panels (Figures 5.8, 5.9). In the single-frame setting,
limited context encourages regression toward these frequent tokens and makes it
difficult to detect episode boundaries. In the multi-frame setting, temporal context
and prompting reduce reliance on priors and produce more coherent, context-aware
action sequences despite the imbalance.

8.4.1 Single-Frame Policy
The single-frame policy serves as a foundational approach for mapping visual
observations to robot control actions. In this configuration, the model receives
a single RGB frame and is tasked with predicting the corresponding 8-token
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control vector for each timestep. This setup is inherently reactive, relying solely on
instantaneous spatial cues without access to temporal information from previous or
future frames. As such, while it can capture immediate visual context, it may face
challenges in producing stable and coherent sequences of actions across consecutive
timesteps. The evaluation was conducted on a total of 8,094 samples drawn from
the Open X-Embodiment dataset, corresponding to multiple episodes across diverse
manipulation tasks.

Prompting Strategy For both training and evaluation, the model is conditioned
using a templated prompt of the form:

<image> What should the robot do to ‘{instruction}’?

This prompt structure introduces the rendered frame and directly links the provided
natural-language instruction to the desired action prediction. The single-turn
prompting approach maintains a lightweight interface, explicitly grounding the
model’s attention toward the task objective specified by the instruction. This
represents a minimal grounding strategy that will later evolve into more structured
and context-rich prompting techniques.

Grid Search and Inference Parameter Analysis To establish a robust infer-
ence protocol, we conducted a grid search over key decoding hyperparameters. The
parameters explored include temperature (which sharpens or flattens the output
distribution), top-p (nucleus sampling, restricting sampling to the most proba-
ble tokens whose cumulative probability exceeds a threshold), top-k (restricting
sampling to the top k tokens), and the do_sample flag (which toggles between
stochastic sampling and deterministic greedy decoding). When do_sample is set to
False, decoding becomes deterministic, rendering top-p and top-k inactive, while
temperature continues to affect the sharpness of the output probabilities.

The results of this hyperparameter sweep are summarized in Table 8.1. The
highest exact-match accuracy achieved is approximately 0.0039 (0.39% of actions
with all eight tokens correct), which is consistent with the stringent nature of the
exact-match criterion. Consequently, the primary focus at this stage is not on
achieving perfect action sequences but on ensuring that the model reliably predicts
the correct control direction. For subsequent analyses, we adopt the configuration
with greedy decoding as the reference setting.
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Tag Temperature Top-p Top-k do_sample Seq. acc. (×10−3) Token acc. (%)

G0 N/A N/A N/A False 3.94 28.87
G1 0.2 0.9 0 True 3.33 28.95
G3 0.7 0.95 0 True 2.46 26.09
G2 0.5 0.92 40 True 2.34 28.02
G4 0.9 0.8 50 True 0.99 25.86

Table 8.1: Grid search over decoding parameters for the single-frame policy.
Sequence accuracy corresponds to the fraction of actions whose eight tokens exactly
match the ground truth; values are expressed as ×10−3 to highlight the low exact-
match rate. Token accuracy reports the average percentage of correctly predicted
tokens.
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Quantitative Evaluation

We summarize the primary metrics for the single-frame policy in Table 8.2. Results
confirm that the discrete objective is not learned in a task-consistent way: exact-
match remains below 0.39%, while mean per-token accuracy is 28.87%. Absolute
and span-normalized (relative) errors appear small, but, as discussed later, this is
largely an artifact of the tokenization span and value concentration around zero.

Metric Value

Exact match (%) 0.39
Token accuracy (mean, %) 28.87
Position accuracy (discrete, %) 19.33
Rotation accuracy (discrete, %) 15.60
Gripper accuracy (discrete, %) 31.13

Position error (abs, unitless) 0.0825
Rotation error (abs, rad) 0.1791
Gripper error (abs, unitless) 0.6461
Position error (RMS/axis, %) 2.38
Rotation error (RMS/axis, %) 3.29
Gripper error (relative, %) 32.30

Terminate recall / precision (%) 0.0 / 0.0
Positive / negative supports 402 / 7713

Table 8.2: Primary quantitative metrics for the single-frame policy evaluated on
8,094 samples. Percentages report means multiplied by 100.

Discrete accuracy. Discrete metrics are markedly low: the exact-match rate does
not exceed 0.39%, indicating that the model rarely produces fully correct 8-token
actions. Qualitative inspection shows frequent collapses toward high-prior patterns
such as “1 128 128 128 128 128 128 128”, the statistically most probable token
tuple rather than task-consistent actions. While exact-match is a strict criterion
for discretized continuous control, even per-component accuracies remain modest
(position 19.33%, rotation 15.60%, gripper 31.13%). For this reason, we refrain
from presenting figures in this subsection and focus on the numerical evidence.

Continuous Error Analysis. Absolute and relative measures offer comple-
mentary views of continuous reconstruction. In absolute terms, mean positional
deviation is 0.0825 (normalized Cartesian units) and mean rotational deviation
is 0.179 radians. To compare heterogeneous dimensions, errors are also expressed
as a fraction of the nominal control span ([−1, +1] for translation and gripper,

96



Open X-Embodiment: Evaluation and Results

[−π/2, +π/2] for rotation). We report both the global relative error and the per-axis
RMS percentage, the latter dividing the 3-D relative error by

√
3 and multiplying

by 100 to reflect the average deviation on each axis. Under this convention, position
and rotation attain 2.38% and 3.29% RMS per-axis (about 4.1% and 5.7% on the
non-RMS vector), respectively.

As discussed earlier in the span analysis, these percentages are conservative
because normalization uses nominal rather than empirical ranges. Furthermore, the
apparent low error values can be partly attributed to the model’s tendency to exploit
the statistical bias of the dataset. In practice, by frequently predicting the central
token (around 127), which corresponds to near-zero deltas in both position and
rotation, the model minimizes reconstruction loss even without learning meaningful
control dynamics. This behavior is reinforced by the fact that most ground-truth
deltas for translation and rotation are themselves concentrated near zero, making
such “static” predictions yield deceptively low continuous errors despite producing
a dummy motion.

Figure 8.2 shows the distributions for position and rotation. Both are sharply
peaked near zero with heavier tails for rotation, indicating that rotational compo-
nents are harder to reconstruct. Most mass lies between 2–4% RMS, but the tails
extend toward ∼10%, consistent with occasional drift over time when operating
without temporal context.

The gripper exhibits a distinct pattern. Because its control is effectively quasi-
binary (open vs close, with short transients), the error distribution is bimodal and
much broader, yielding a mean relative error around 32%. This reflects two effects
highlighted in the token-imbalance discussion: (i) a strong prior toward the most
frequent “open” token and (ii) the fact that gripper uses the full [−1, +1] span more
often than translation and rotation deltas concentrated near zero. Consequently,
small absolute mistakes translate into larger relative percentages for the gripper
than for position or rotation.

Quantization plays a minor role here. With 256 bins, the expected per-axis
quantization noise is roughly 0.23% of span for translation and 0.35% for rota-
tion, well below the empirical errors; the limiting factor is model prediction, not
discretization. This is corroborated by Figure 8.3, where absolute position errors
versus detokenized-discrete and original-continuous targets are nearly overlapping.

Efficiency and memory footprint. As discussed in Chapter 6, loading the
base LLaMA 3.2 Vision checkpoint already consumes roughly 23 183 MiB on the
A100 80GB GPU used in our experiments. In the Open X single-frame configuration,
peak inference memory remains close to this baseline (approximately 23 044 MiB),
and the mean inference time is around 0.63 s per sample, corresponding to a control
frequency of roughly 1.6 Hz. While this latency appears modest in absolute terms,
it is far below the tens of Hertz typically required for closed-loop robot control,
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Position error (per-axis RMS, percent
of span).

Rotation error (per-axis RMS, percent
of span).

Gripper error (relative, percent of span).

Figure 8.2: Single-frame baseline: relative error distributions for position, rotation,
and gripper.
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Figure 8.3: Absolute position error (L2, normalized units) against detokenized-
discrete and original-continuous targets. The curves are nearly overlapping, indi-
cating limited impact of quantization.
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confirming that the single-frame configuration is suitable for offline analysis rather
than real-time deployment.

Terminate token failure. The first token in the 8-token action vector encodes
whether the episode should terminate (positive class) or continue (negative class).
Under the current class mapping, the model never predicts the termination class,
yielding 0.0% recall and 0.0% precision on positives (support 402). In other words,
it always outputs the non-terminating value, so episodes are never explicitly closed
by the learned policy. The resulting confusion counts are reported in Table 8.3. For
this diagnostic the key quantity is therefore the number of predicted positives, which
remains identically zero. This behavior points to a strong prior and/or inadequate
loss weighting for the class-imbalanced termination token; class-balanced or focal
losses for the first token are advisable.

TP FP TN FN

Terminate detection 0 0 7692 402

Table 8.3: Confusion counts for the termination detector. Positives correspond
to terminating timesteps, negatives to non-terminating ones. The model never
predicts the positive class: all ground-truth terminations are missed (FN=402),
with no false positives on non-terminating steps (TN=7692).

Action-Space Analysis. Action-space metrics based on DirAcc and CosSim
summarise how well, on average, the per-step action deltas predicted by the model
align with the corresponding ground-truth commands across an episode. For the
single-frame policy, these metrics reveal that the controller behaves as a purely
reactive system, with spatial actions that are essentially misaligned with the
reference commands.

Quantitatively, the mean directional accuracies remain extremely low for position
and rotation (about 0.06 and 0.03 respectively), while the gripper achieves a
moderate value around 0.5 depending on the aggregation scheme (episode mean
versus global step-weighted mean). Cosine similarities are even more discouraging
for the spatial components: position and rotation average roughly −0.05 and −0.09,
corresponding to angles near 93◦ and 95◦, that is, motion that is slightly biased
toward the wrong direction rather than aligned with the target.

The per-episode histograms (Figure 8.6) make this pattern explicit. Most
episodes cluster near zero directional accuracy for position and rotation, confirming
that translational and rotational commands rarely advance along the correct
direction. In contrast, the gripper distribution is centered around 0.5, indicating
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that the model often applies roughly half of the desired opening or closing command
in the right direction, even though this scalar consistency does not translate into
coherent spatial motion.

Step-wise aggregate plots (Figures 8.4–8.5) further confirm the absence of
structured behavior in the spatial channels. For each step index we average DirAcc
and CosSim across all episodes that reach that step, so the curves summarize
typical alignment for actions occurring at the same relative position in the sequence
rather than tracking a single trajectory. The mean DirAcc curves for position
and rotation hover close to zero throughout and exhibit erratic fluctuations, while
the gripper curve oscillates around 0.5 for the first 70–80 steps before becoming
dominated by noise when only a few long episodes remain. Cosine similarities for
position and rotation stay mildly negative over most of the horizon and become
increasingly unstable toward the end, reflecting both cumulative drift and the small
number of trajectories contributing at high step indices.

Taken together, these results indicate that the single-frame model does not
exhibit true trajectory-following capability. It tends to produce quasi-static spa-
tial outputs (often the most frequent central tokens), achieving deceptively low
continuous errors while failing to move along the ground-truth motion directions.
In practical terms, the policy performs what can be described as dumb inference:
it minimizes the loss function through statistical bias rather than by learning
physically consistent motion patterns.

Figure 8.4: Mean directional accuracy over steps for position, rotation, and
gripper. Position and rotation remain close to zero at all horizons, while the gripper
hovers around 0.5 for early steps and then becomes noisy once only a few long
episodes contribute, confirming that spatial motion lacks consistent progression
even when gripper commands are partially aligned.
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Figure 8.5: Mean cosine similarity over steps for position and rotation. Values
stay mildly negative over most of the episode and become highly unstable toward
the end, indicating that predicted spatial actions are often oriented opposite to the
ground-truth motion rather than aligned with it.

Position directional accu-
racy distribution. Mean:
0.04.

Rotation directional accu-
racy distribution. Mean:
0.02.

Gripper directional accu-
racy distribution. Mean:
≈ 0.5.

Figure 8.6: Episode-level directional accuracy distributions for position, rotation,
and gripper. Position and rotation are strongly concentrated near zero, confirming
the lack of meaningful spatial alignment, whereas the gripper is centered around
0.5, indicating partial but not full alignment of opening and closing commands.
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Figure 8.7: Episode-level cosine similarity distributions for position and rotation.
Both distributions are centered slightly below zero, indicating a systematic bias
toward misaligned or even reversed motion directions rather than genuine alignment
with the ground truth.
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Despite these limitations, the single-frame policy serves as a valuable diagnostic
baseline. It reveals the constraints of purely reactive vision-to-action mapping and
highlights how statistical biases dominate when temporal or contextual cues are
absent. The findings underscore the necessity of richer multimodal grounding to
achieve temporally coherent control.

In the following section, we extend this framework to a multi-frame policy trained
on a larger subset of Open X data. This new configuration introduces both a
more explicit prompting strategy and a temporal observation window that includes
the most recent frames and previously executed actions. The goal is to assess
whether short-term temporal conditioning and contextual grounding can mitigate
the limitations observed in the single-frame setup, improving both action-space
alignment and control stability.

8.4.2 Multi-Frame Policy
The multi-frame policy extends the single-frame baseline by introducing temporal
conditioning, a richer dataset and a more structured prompting strategy, allowing
us to assess whether short-term temporal context improves the coherence and
causal consistency of generated control sequences. The experiment is conducted on
a larger and more diverse subset of the Open X-Embodiment dataset comprising
roughly 2,300 unique episodes and 127,381 total samples, split into 110,752 for
training (86.9%) and 16,629 for testing (13.1%). The test split covers 300 unique
episodes, each with consecutive RGB observations and their corresponding low-level
robot actions across a variety of real-world manipulation tasks.

A temporal observation window of four consecutive frames, chosen as a practical
hyperparameter, provides short-term motion context while maintaining computa-
tional efficiency, and the model is fine-tuned for a single epoch on this extended
dataset following the setup described in Section 8.3. Compared to the single-frame
policy, this configuration trades longer training duration for broader data diver-
sity and explicit temporal reasoning, aiming to strengthen the consistency and
causality of generated control trajectories. As part of this study we evaluated
the multi-frame policy under two inference regimes to assess its dependence on
temporal context: in the primary configuration, Full-Context Inference, all previous
observations and action-history tokens are provided to the model, corresponding
to the intended deployment setting where full temporal information is available,
whereas in Masked-Context Inference an input-dropout probability of 0.2 is applied
at inference time so that portions of the history tokens are randomly removed,
simulating situations where parts of the recent action sequence are unavailable or
ambiguous. This comparison quantifies how strongly the model relies on explicit
temporal conditioning and whether it can still infer motion direction and intent
from visual cues alone.
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Prompt Design and Temporal Grounding. In this setting, grounding denotes
the process of establishing consistent links between language, visual observations,
and low-level actions. At the perceptual level, words in the instruction and prompt
are expected to anchor to specific regions in the images, such as the robot gripper,
the manipulated object, or the target surface. At the action level, the eight control
tokens must correspond to observable changes in the robot state, so that a predicted
translation, rotation, or gripper command is reflected in the subsequent frame.
Temporal grounding further requires each prediction to be conditioned on the
history of observations and previously executed actions, enabling the model to
reason about an evolving trajectory rather than a single frame in isolation.

As observed in the ALFRED experiments presented in previous chapters, the
textual prompt plays a crucial role in aligning visual and linguistic modalities. For
this policy, the prompt was redesigned to explicitly encode temporal order and
causal relationships between past observations, executed actions, and the current
visual state.

Each training example follows a structured prompt composed of three main
stages:

1. Temporal framing. The input begins with a sequence of past observations
and corresponding actions, denoted as:

Observation 1: [image] → Robot performed action: [tokenized action]

This is repeated for up to three previous timesteps. This structure provides
the model with a notion of temporal flow and causality, namely what the
robot has already seen and done.

2. Grounding. After the temporal context, a concise grounding statement
follows:

Focus on the robot arm pose, gripper status, and objects on the table.

This phrase acts as a visual attention anchor, orienting the cross-modal
alignment toward key elements of the scene.

3. Goal-conditioned reasoning. Finally, the current frame is introduced with
the instruction-conditioned query:

Based on the observation history and the current observation, what should
the robot arm do to [instruction]?

This stage explicitly links the temporal history with the task objective, prompt-
ing the model to infer the next appropriate control action.
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An input dropout of 0.2 was applied to the action-history tokens during training,
randomly removing the tokenized representations of previous actions from the
prompt and forcing the model to rely more heavily on visual cues when temporal in-
formation is incomplete. In practice this serves two purposes: it prevents overfitting
to fixed action patterns in the training data and it regularizes cross-modal attention
by encouraging the model to infer missing context from the visual sequence rather
than memorizing explicit action histories.

This prompting scheme transforms the task from a static image-to-action map-
ping into a temporally grounded reasoning process, and, as the cross-attention
maps will later show, visual tokens from past frames are effectively linked to their
corresponding action tokens, indicating that the model learns to attend selectively
to historical visual evidence when generating its next control output.

Quantitative Evaluation

We now report the quantitative results obtained with the multi-frame policy. The
evaluation was performed on the 16,629 sample test split (300 unique episodes)
using the same metric suite described in Section 8.4. Table 8.4 summarizes the
main results.

Metric Value

Exact match (%) 3.41
Token accuracy (mean, %) 38.68
Position accuracy (discrete, %) 24.62
Rotation accuracy (discrete, %) 19.97
Gripper accuracy (discrete, %) 77.39

Position error (abs, unitless) 0.0517
Rotation error (abs, rad) 0.1159
Gripper error (abs, unitless) 0.0999
Position error (RMS/axis, %) 1.49
Rotation error (RMS/axis, %) 2.13
Gripper error (relative, %) 4.99

Table 8.4: Primary quantitative metrics for the multi-frame policy evaluated on
16,629 samples. All values represent mean percentages over the test set.

The improvements over the single-frame policy are substantial across all di-
mensions. Exact-match accuracy increases by nearly an order of magnitude (from
0.39% to 3.4%), and mean token accuracy rises from 28.9% to 38.7%. Among the
control components, the gripper benefits most, reaching 77.4% discrete accuracy,
more than double the previous score. This reflects the model’s ability to recognize
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the opening/closing phases typical of manipulation episodes, rather than simply
outputting the most frequent token. Position and rotation accuracies also improve
significantly (roughly +5–8%), though their relative improvement appears moderate
due to the compressed span of valid motion values discussed earlier.

Continuous Error Analysis. In absolute terms, the mean positional deviation
decreases to 0.0517 (normalized units), and the mean rotational deviation to
0.116 rad. Expressed as RMS-per-axis fractions of span, these correspond to
1.49% for position and 2.13% for rotation, almost a twofold reduction relative to
the single-frame baseline (2.38% and 3.29%). The gripper shows an even greater
improvement, with its relative error dropping from 32.3% to only 5.0%. These
results indicate that temporal grounding and richer contextual prompts enable
much more stable reconstruction of continuous actions.

Figure 8.8 visualizes the relative error distributions for position, rotation, and
gripper. Compared to the single-frame case, the distributions are notably narrower
and more peaked near zero, with the bulk of samples lying within 0–5% of the
nominal span. The gripper’s distribution remains bimodal but the secondary lobe
around 50% of span, corresponding to mispredicted opening/closing transitions, is
now greatly attenuated, indicating improved phase discrimination.

Position error (RMS/axis,
percent of span).

Rotation error (RMS/axis,
percent of span).

Gripper error (relative,
percent of span).

Figure 8.8: Multi-frame policy: relative error distributions for position, rotation,
and gripper. All curves are more concentrated near zero compared to the single-
frame baseline, confirming improved reconstruction fidelity.

As with the single-frame case, quantization effects remain negligible. Figure 8.9
compares the L2 position errors computed against both the detokenized discrete
and original continuous ground-truth vectors. The near-overlapping curves confirm
that discretization noise, theoretically below 0.3% of the span, is well within
measurement noise and model variability.
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Figure 8.9: Absolute position error (L2, normalized units) against detokenized-
discrete and original-continuous ground truth. The overlap of the two curves
indicates that quantization noise is negligible compared to model prediction error.
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Termination detection. A particularly notable improvement emerges in the
termination flag prediction. As in the single-frame case, the first token represents a
binary decision where positives correspond to terminating timesteps and negatives
to non-terminating ones. Each episode contributes two terminating steps in the
labels, but the model usually predicts only the final one (with about 20 episodes as
exceptions). Despite this imbalance, the multi-frame policy reaches 99.4% precision
and 53.3% recall on the positive class, corresponding to an F1 score of 0.69. In
absolute terms, it recovers 320 ground-truth terminations with 2 false alarms and
280 misses (Table 8.5), marking a clear improvement over the single-frame baseline
where the termination class was never predicted. This behavior indicates that
temporal conditioning allows the model to recognize episode endings with high
confidence once sufficient contextual evidence accumulates.

TP FP TN FN

Terminate detection 320 2 16,027 280

Table 8.5: Confusion counts for termination detection under the multi-frame
policy. Positives correspond to terminating timesteps, negatives to non-terminating
ones. The model correctly identifies over half of the true episode endings.

Thus, these results highlight the effectiveness of temporal conditioning. The
model no longer collapses toward static, high-prior token patterns but instead
learns to modulate its outputs consistently with recent visual and action history.
Although the numerical differences in RMS error appear small in absolute terms,
within the compressed operational range of Open X they correspond to meaningful
gains in control precision and phase recognition.

Efficiency and memory footprint. From a systems perspective, the multi-
frame policy is substantially heavier than the single-frame baseline. Instantiating
the base LLaMA 3.2 Vision checkpoint in the Open X setup already consumes
roughly 23 183 MiB on the 80 GiB GPU, even before any images are processed.
During inference with a four-frame window and the extended temporal prompt,
peak memory increases to about 28 636 MiB, and the mean inference time rises
to approximately 1.88 s per sample, corresponding to a control frequency of only
∼ 0.53 Hz. This slowdown reflects both the larger visual context and the longer
textual conditioning required by the multi-frame prompt. As in the single-frame
case, these numbers are acceptable for offline evaluation but fall well below the
frequencies typically needed for responsive real-world control, motivating more
compact models or aggressively quantised deployments.
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Action-Space Analysis. Compared with the single-frame baseline, where spatial
DirAcc scores were close to zero and cosine similarities hovered around or below
zero, the multi-frame configuration exhibits a clear and substantial improvement
on all components. Using the episode-level aggregates, the mean DirAcc reaches
approximately 0.62 for position, 0.51 for rotation, and 0.70 for the gripper, while
the corresponding cosine similarities average about 0.82 for position and 0.73 for
rotation, with angles around 35◦ and 43◦. In the taxonomy introduced earlier,
position and gripper operate firmly in the “strong” regime, and rotation lies at the
upper end of the “acceptable” band.

These results indicate that the multi-frame controller is generally able to steer its
predicted deltas along the correct direction with a reasonably accurate magnitude:
most steps now advance along the ground-truth motion instead of drifting randomly
or reversing direction, and a non-trivial fraction of episodes achieve almost perfect
directional alignment. At the same time, the metrics still fall short of near-perfect
per-step agreement (for example DirAcc and CosSim close to 1), so individual actions
remain somewhat noisy and occasionally over- or under-shoot the desired command,
especially at later timesteps where error accumulation and sparse statistics play a
larger role.

The per-episode histograms in Figure 8.10 illustrate this improvement clearly:
the distributions are centered around relatively high mean values (about 0.62, 0.51,
and 0.70), and most mass lies above 0.5, indicating strong directional alignment
across episodes. The rotation distribution remains slightly broader than that of
position, confirming that rotational control continues to be more challenging, while
the gripper shows the most stable and peaked profile, consistent with its simpler
scalar nature.

Position directional accu-
racy distribution. Mean:
0.62.

Rotation directional accu-
racy distribution. Mean:
0.51.

Gripper directional accu-
racy distribution. Mean:
0.70.

Figure 8.10: Episode-level directional accuracy distributions for position, rotation,
and gripper. Compared to the single-frame policy, most episodes now exhibit strong
directional alignment with the ground-truth trajectories, with position, rotation,
and gripper commands concentrated well above 0.5.
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The cosine similarity distributions (Figure 8.11) further confirm the trend with
both position and rotation curves have shifted decisively toward high positive cosine
values, with most mass between 0.6 and 0.9 and a subset of samples approaching
1.0 for position and about 0.9 for rotation. This transition from a nearly symmetric
distribution around zero (in the single-frame case) to a tight right-skewed peak
demonstrates that the model now predicts motion directions largely consistent with
the underlying dynamics.

Figure 8.11: Episode-level cosine similarity distributions for position and rotation.
Both curves are tightly concentrated between 0.6 and 0.9, with the position density
reaching values close to 1.0 and rotation peaking around 0.9, indicating that many
episodes achieve near-perfect directional alignment in action space.

Step-wise aggregate plots (Figures 8.12 and 8.13) provide additional insight into
how these metrics behave at different step indices. At each index we average DirAcc
and CosSim across all episodes that contain that step, so the curves summarize
typical alignment for actions occurring early, mid, or late in the sequence rather
than the evolution of any single trajectory. The mean DirAcc stabilizes around 0.6
for position and 0.5 for rotation over most of the horizon, while cosine similarities
remain high. The sharp oscillations that appear after roughly 60 steps have two
main causes. Statistically, only a handful of long episodes contribute to the tail
of the curves, so each late timestep averages over very few samples and can be
dominated by a single atypical trajectory. From a modeling perspective, error
accumulation at long horizons makes the remaining trajectories more unstable:
some policies keep making reasonable corrections while others overshoot or jitter,
and with so few episodes this mixture shows up directly as large swings in DirAcc
and cosine similarity.
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Figure 8.12: Mean directional accuracy per step for position, rotation, and gripper.
Position and rotation stabilize around 0.6 and 0.5 for most of the horizon, while
the gripper climbs from low values in the initial steps to peaks close to 1.0 before
the tail becomes noisy when only a few long episodes remain, confirming strong
but not perfectly stable forward progress.

Figure 8.13: Mean cosine similarity per step for position and rotation. Cosine
values remain high throughout most of the trajectory (around 0.8 for position and
0.7 for rotation), with sharp drops only in the final steps where very few episodes
contribute, indicating robust directional alignment whenever sufficient temporal
context is available.
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Eval Context Token Acc Exact Pos RMS Rot RMS DirAcc (P,R,G) Cos (P,R)

Full 38.68 3.41 1.49 2.13 0.62/0.51/0.70 0.82/0.73
Masked (p=0.2) 36.69 2.64 2.19 2.88 0.55/0.43/0.70 0.73/0.59

Table 8.6: Ablation on history-token dropout. Models are trained with input-
dropout p=0.2 and evaluated either with full temporal context or with masked
previous actions. Percentages for Token Acc, Exact, and RMS columns.

While the results are not yet sufficient for real-world deployment, the improve-
ment over the single-frame baseline is substantial: the model no longer performs
random or prior-driven inference but instead generates directionally coherent motion
aligned with sequence history. It effectively learns short-term kinematic consistency,
laying the foundation for future extensions toward closed-loop embodied control.
It is worth noting that these evaluations were conducted without input dropout at
inference time; as shown in subsequent experiments, reintroducing a 0.2 dropout
on previous actions during evaluation leads to degraded performance, confirming
that the strongest improvements rely on leveraging complete temporal context.

Ablation: Effect of History-Token Dropout. To assess the model’s depen-
dence on explicit temporal context, we conducted an ablation study by re-evaluating
the multi-frame policy with an input-dropout probability of 0.2 applied at inference
time. This configuration (Masked-Context Inference) randomly removes previously
tokenized actions from the prompt, mimicking situations in which the robot re-
ceives incomplete or noisy temporal information. All other evaluation parameters
remained identical to the Full-Context run.

As summarized in Table 8.6, masking historical context at inference time consis-
tently degrades performance. Mean token accuracy drops from 38.7 % to 36.7 %,
and exact-match decreases from 3.4 % to 2.6 %. Continuous reconstruction errors
roughly double in relative terms (position RMS from 1.49 % → 2.19 %; rotation
RMS from 2.13 % → 2.88 %), confirming that the model relies heavily on temporal
cues to maintain geometric precision.

Action-space metrics are particularly affected. Directional accuracies fall from
about 0.62 to 0.55 for position and from 0.51 to 0.43 for rotation, and cosine
similarities drop from roughly 0.82 to 0.73 (position) and from 0.73 to 0.59 (rotation),
moving away from the strong-alignment regime toward more moderate agreement.
Interestingly, the gripper DirAcc remains almost unchanged (about 0.70 in both
settings), indicating that the main degradation concerns spatial alignment rather
than open/close commands.

Figures 8.14 and 8.15 illustrate these trends. When history information is masked,
the per-step DirAcc curves for position and rotation settle around lower plateaus
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and exhibit stronger fluctuations, while the gripper retains roughly the same rising
profile observed under full context. Cosine-similarity plots and distributions remain
clearly positive but shift left and become broader, indicating weaker and less stable
directional alignment between predicted and ground-truth actions.

Figure 8.14: Masked-Context Inference: step-wise DirAcc (top) and CosSim
(bottom). Position and rotation drop to lower plateaus and become more variable
when history tokens are masked, while the gripper retains a similar rising trend to
the full-context controller.
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Figure 8.15: Masked-Context Inference: episode-level cosine similarity distri-
butions. Compared with full context, both position and rotation distributions
broaden and shift left, indicating reduced and less stable directional alignment in
action space.

115



Open X-Embodiment: Evaluation and Results

8.4.3 Cross-Attention Analysis
To complement the quantitative evaluation of both the single-frame and multi-
frame policies, we performed an extensive qualitative analysis of the cross-attention
patterns generated by the LLaMA 3.2 Vision model during inference. The objective
of this study is to understand how the model distributes attention across past and
current visual observations, how different parts of the prompt influence cross-modal
grounding, and how these internal mechanisms relate to the observed behavior in
action space. The analysis is conducted on a curated set of samples drawn from
the multi-frame evaluation, with additional comparisons against the single-frame
baseline.

For each selected example, we extracted cross-attention maps from a predefined
set of decoder layers

L = {3, 8, 13, 18, 23, 28, 33, 38},

corresponding to evenly spaced checkpoints across the model depth. Attention
tensors are obtained by enabling output_attentions=True during inference and
averaging the multi-head attention weights over heads, yielding a matrix

attnmean ∈ RTtext×Timg .

For multi-frame inputs, the image-token axis is segmented into per-frame slices
and reduced to the first 1601 visual tokens (CLS + 1600 patch tokens). Text
tokens are grouped into three semantic spans identified with simple prompt-parsing
utilities: History covers the repeated blocks that pair past observations with
their executed actions, Focus contains the short grounding sentence that directs
attention to the arm, gripper, and nearby objects, and Question corresponds to
the final instruction-conditioned query that asks what the robot should do next.
For each span and each layer, we visualize both per-token top-K patch activations
(highlighting the most attended regions for each selected text token) and global
top-K patch activations obtained by averaging attention across all tokens in the
span.

This extraction setup enables a detailed examination of how the model distributes
attention across past and current frames, how visual regions are linked to the
different textual components of the prompt, and how these behaviors evolve across
network depth. In the remainder of this subsection, we summarize the qualitative
patterns consistently observed across layers, spans, and trajectories.

History Span: Temporal Integration and Frame-wise Grounding. The
History span contains up to three previous observations, each paired with their
executed actions. Across all examined samples, this span produces the most
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distributed form of cross-attention: nearly all layers assign non-negligible attention
to every available frame, indicating that the temporal window is indeed being
utilized for contextual grounding. Importantly, even when early timesteps contain
black placeholder frames, typical in the initial phase of the sliding window, the
model still allocates attention mass to these frames. This behavior is expected,
as the history sequence is structurally aligned across examples and the model
does not explicitly distinguish blank inputs from valid visual content. However,
placeholder frames do not introduce meaningful visual gradients, and attention
on them contributes little to the action prediction (cf. Figures 8.16 and 8.17).
Consequently, predictions at early timesteps (when the temporal window is still
incomplete) exhibit reduced stability, a limitation also reflected by higher continuous
and action-space errors for initial steps (cf. Figures 8.12 and 8.13).

Despite this limitation, once all history frames become valid, the cross-attention
consistently links the visual patches corresponding to the robot arm, manipulated
object, and relevant workspace regions to the previously executed actions. This
confirms that the model does not only use the history span as text but genuinely
integrates multi-frame visual structure into its hidden representations.
Example (episode_15589_34). Instruction: “pick redbull can from middle drawer
and place on counter”. The history span shows attention over all frames (Figures 8.16
and 8.17). Despite a token accuracy of only 0.25, each component of the predicted
action lies very close to the ground-truth tokens, yielding an almost exact vector
match that is rarely observed in the single-frame baseline.

Figure 8.16: History span, Layer 13 (per-token). Attention distributed across all
frames with token-wise clusters over arm, drawer and objects. Instruction: “pick
redbull can from middle drawer and place on counter”. Token accuracy = 0.25.
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Figure 8.17: History span, Layer 13 (global). All four frames attract non-negligible
attention, evidencing temporal integration in the sliding window. Instruction as
above.
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Focus Span: Spatial Anchoring and Localized Grounding. The Focus
span contains a short textual sentence (e.g., “Focus on the robot arm pose, gripper
status, and objects on the table”) designed to provide a lightweight visual anchor.
Across mid-level cross-attention layers, especially layers 8 and 13, the Focus span
produces some of the most interpretable patterns observed in the model. Per-token
attention maps consistently highlight compact clusters around the robot arm, the
gripper, and the immediate neighborhood of the manipulated object. When the
scene contains bowls, drawers, or objects partially occluded by the arm, mid-level
layers tend to produce stable and semantically consistent localization.

These observations demonstrate that the inclusion of a grounding phrase in the
prompt substantially improves visual-textual alignment, an effect already noted in
the ALFRED experiments of Chapter 7. See Figures 8.18 and 8.19 for representative
mid-level examples. The Focus span therefore acts as a bridge between the temporal
visual context provided by the history and the goal-conditioned reasoning captured
by the question.
Examples.

• episode_15589_44 (“pick redbull can ...”): perfect alignment, token accuracy
1.00, sequence match true. Focus maps at layers 08/13 show compact clusters
on arm, gripper, drawer and can (Figures 8.18 and 8.19).

• episode_14829_37 (“pick apple ...”): gripper parzialmente occluso e localiz-
zazione leggermente offset. Focus L13 per-token evidenzia l’area corretta ma la
sequenza è errata: Pred [1, 132, 130, 129, 126, 130, 123, 128] vs GT [1, 132, 133,
127, 122, 131, 123, 0] (token accuracy 0.375); cf. Figure 8.24.
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(a) Per-token (b) Global

Figure 8.18: Focus span, Layer 08. Per-token and global attention concentrate
on arm, gripper, drawer and the can, yielding compact and consistent localization.
Instruction: “pick redbull can from middle drawer and place on counter”. Token
accuracy = 1.00.

(a) Per-token (b) Global

Figure 8.19: Focus span, Layer 13. Strong object-centric clusters around gripper
and manipulated objects; stable spatial anchoring across frames. Same instruction
as above.
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Question Span: Goal-Conditioned Integration. The final span, which
introduces the current frame and the natural-language instruction, generates some
of the most semantically aligned cross-attention patterns. Per-token maps at
mid-level layers (in particular layer 13) frequently place coloured boxes for object-
and goal-related tokens directly over the emerging grasp region, while other tokens
activate more scattered patches that behave as structured noise. This behavior
is consistent with the general picture described by Frai et al. [30], where early
multimodal layers jointly encode spatial correspondences and emerging semantic
structure. See Figures 8.20 and 8.21 for representative examples.
Example (episode_15296_10). Instruction: “pick blue chip bag from top drawer
and place on counter”. Pred [1, 133, 122, 113, 107, 120, 139, 128] vs GT [1, 132,
122, 114, 107, 121, 142, 128] (token accuracy 0.50). The Question-span per-token
map at layer 13 concentrates several object tokens around the blue chip bag and
the gripper in the final frame (Figure 8.20).

An analogous pattern appears in episode_14873_35, where the cluster of ques-
tion tokens progressively moves onto the orange can despite residual scattered
activations in the background (Figure 8.21).
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Figure 8.20: Question span, Layer 13 (per-token). Coloured boxes corresponding
to object- and goal-related tokens cluster around the blue chip bag and gripper in
the final frame, while a subset of tokens activates scattered patches elsewhere in
the scene. Instruction: “pick blue chip bag from top drawer and place on counter”.
Token accuracy = 0.50.
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Figure 8.21: Question span, Layer 13 (per-token). Attention shifts toward the
grasp region around the orange can despite residual scattered activations that
resemble structured noise. Instruction: “pick orange can from bottom drawer and
place on counter”. Token accuracy = 0.50.
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Layer-wise Behavior and Relation to Prior Work. Across depth, cross-
attention exhibits a consistent progression. Mid-level layers (particularly 8 and 13)
yield the sharpest, object-centric patterns: in the Question span for episode_15589_34,
layer 08 concentrates almost all per-token boxes around the gripper and the redbull
can in the final frame. Deeper layers (23–38) distribute mass more broadly and
semantically, integrating instruction tokens with the global visual context; in the
same example, layer 38 spreads activations over a wider portion of the scene while
retaining only a weaker focus near the grasp (Figure 8.22). This transition from
spatial grounding to abstract multimodal representations aligns with the layered
view proposed by Frai et al. [30] and with the action-space improvements observed
for the multi-frame policy.

(a) Layer 08 (per-token) (b) Layer 38 (per-token)

Figure 8.22: Question span, episode_15589_34. Per-token attention at Layer 08
concentrates around the gripper and target can in the final frame, while Layer 38
becomes more diffuse across the scene but retains some mass near the grasp.
Instruction: “pick redbull can from middle drawer and place on counter”.

Failure Modes and Attention-driven Misalignment. While the majority
of examined samples show consistent alignment between attention patterns and
predicted actions, two recurring failure modes emerge. First, when early frames
contain black placeholders or visually ambiguous content, cross-attention may
incorrectly assign weight to these frames. Although the model continues to perform
reasonably well once the window is filled, these early-frame pathologies sometimes
cause near-static predictions (e.g., choosing the most frequent token value across
components) or incorrect directional deltas; see Figure 8.23. In episode_14873_0
the placeholder frames coincide with poor alignment: Pred [1, 128, 128, 128, 128,
128, 128, 128] vs GT [1, 126, 133, 111, 146, 132, 129, 128] (token accuracy 0.25).
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Second, when the gripper or manipulated object is partially occluded or posi-
tioned near the edge of the frame, mid-level cross-attention may localize slightly
offset from the true object location. In such cases, the resulting action tends to
exhibit correct motion direction but incorrect gripper configuration, highlighting
a limitation of relying solely on visual grounding without explicit state encoding.
These behaviors are consistent with the gripper’s higher sensitivity observed in
the continuous and discrete metrics of Section 8.4.2. The occlusion/offset case is
illustrated in Figure 8.24 (episode_14829_37).

Single-frame Baseline Reference. In absence of temporal context, attention
may still hit salient regions but fails to produce coherent sequences; cf. Figures 8.25
and 8.26. In episode_3132_24 (“pick apple from white bowl”), Pred [1, 127, 127,
127, 127, 127, 127, 0] vs GT [1, 128, 128, 128, 128, 128, 128, 220] (token accuracy
0.125).

Figure 8.23: Failure mode: Placeholder frames. History span (Layer 13, global)
assigns attention to early black frames, which contributes little to action prediction.
Token accuracy = 0.25.
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Figure 8.24: Failure mode: Occlusion/offset. Focus span (Layer 13, per-token)
localizes near arm and scene objects but gripper is partially occluded and attention
is slightly offset from the apple; the predicted sequence is wrong (token accuracy =
0.375).
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Figure 8.25: Single-frame baseline, Layer 08 (per-token). Attention hits salient
regions but lacks temporal grounding; prediction is incoherent (token accuracy =
0.125).

Figure 8.26: Single-frame baseline, Layer 13 (global). Attention appears more
diffuse and less spatially grounded compared to multi-frame.
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Chapter 9

Quantized Models and 4-bit
BnB

9.1 Overview of 4-bit Quantization
Deploying large vision–language models on resource-constrained hardware remains a
central challenge in embodied AI. To enable LLaMA 3.2 Vision–Instruct to operate
within the memory constraints of a single 80 GiB GPU, we adopt weight-only 4-bit
quantization via the BitsAndBytes bnb-int4 backend. Under this scheme, the
large linear layers of the model are compressed to 4-bit precision, while activations
and all matrix multiplications remain in bfloat16. This hybrid approach preserves
numerical stability in the forward pass and maintains compatibility with the
standard autoregressive generation interface, while substantially reducing the
VRAM footprint of stored model weights.

Concretely, the quantizer employs the NF4 (NormalFloat4) scheme: weights
within small blocks are normalized and mapped to one of 16 codebook entries
designed to approximate a normal distribution, then rescaled at runtime via learned
floating-point scale factors. In our configuration, double quantization of these scales
is disabled, leaving scale parameters in floating point. During inference, compressed
weights are dequantized on-the-fly into bfloat16 for matrix multiplications and
discarded immediately afterward, ensuring that memory overhead remains minimal.

This chapter examines how 4-bit quantization interacts with the two main
experimental settings presented in this dissertation: the structured ALFRED
planners (Chapter 7) and the continuous Open X controllers (Chapter 8). Rather
than exhaustively sweeping quantization configurations, we focus on characterising
the practical trade-offs in terms of memory footprint, inference latency, and task-
specific performance for a representative NF4 setup widely adopted in contemporary
applications.
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9.2 Memory and Latency Improvements
Quantizing the LLaMA 3.2 Vision backbone yields measurable gains in both memory
footprint and inference time for ALFRED and Open X. Table 9.1 reports the main
figures used in this dissertation, comparing full-precision and bnb-int4 variants
across domains.

Table 9.1: Summary of memory usage and mean inference time before and after
4-bit bnb-int4 quantization. Memory values refer to peak GPU usage when the
model is loaded without inputs (loaded) and during evaluation on the corresponding
benchmark (inference).

Domain / model Precision Mem. loaded (MiB) Mem. inference (MiB) Time (s/sample)
ALFRED Phase B planner Full 23 183 35 641 129.0
ALFRED Phase B planner 4-bit bnb-int4 11 719 22 689 28.1
Open X single-frame controller Full 23 183 23 044 0.63
Open X multi-frame controller Full 23 183 28 636 1.88
Open X multi-frame controller 4-bit bnb-int4 11 719 14 730 1.63

ALFRED Phase B Planner
In the ALFRED experiments, quantization is applied after LoRA fine-tuning of
the Phase B structured planner. The full-precision model, when evaluated with
15-frame inputs and JSON output, peaks at roughly 35 641 MiB on the 80 GiB
GPU, corresponding to about 43.5% of available memory and a mean inference
time of 129.0 s per episode (Section 7.6). The 4-bit bnb-int4 version reduces the
loaded footprint to approximately 11 719 MiB (14.3%) and the inference peak to
around 22 689 MiB (27.7%), freeing more than 12 GiB of VRAM while preserving
the same decoding protocol.

The time–length relationship for the quantized planner is illustrated in Figure 9.1.
Most samples cluster between 25 s and 50 s of inference time, with a smaller band of
outliers around 120–130 s. The average inference time drops to 28.07 s, a reduction
of more than four times compared to the full-precision planner. However, this
speed-up comes at the cost of reduced plan quality, a trade-off that is analyzed in
more detail in the dedicated quantized-planner section below.
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Figure 9.1: Quantised ALFRED Phase B planner (4-bit bnb-int4): inference
time versus output length on the test-unseen split. The majority of samples lie
between 25 s and 50 s, with a smaller group of outliers around 125 s, and a Pearson
correlation of 0.86 between sequence length and latency.
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Open X-Embodiment Controllers
For Open X, quantization is applied to the multi-frame control policy, which is
the most demanding configuration in terms of memory and computation. The
unquantized multi-frame controller reaches a peak of about 28 636 MiB during
inference, compared with roughly 23 044 MiB for the single-frame baseline. In terms
of latency, single-frame decoding averages around 0.63 s per sample (about 1.6 Hz),
whereas the multi-frame policy slows down to approximately 1.88 s per sample
(about 0.53 Hz), reflecting the cost of processing four images and a longer temporal
prompt at each step.

The bnb-int4 multi-frame model substantially reduces the memory footprint,
peaking at roughly 14 730 MiB during inference and using only 11 719 MiB when
loaded without inputs. Despite this compression, the quantized controller maintains
a mean inference time of about 1.63 s per sample (approximately 0.61 Hz), slightly
faster than its full-precision counterpart on the same hardware. The behavior of
discrete and continuous error metrics for the quantized controller, together with its
action-space alignment, is examined in the dedicated Open X analysis section later
in this chapter.

9.3 Analysis of the Quantized ALFRED Planner
The ALFRED Phase B planner generates a structured JSON output that first
contains a natural language plan and then a discrete action list with symbolic actions
and object arguments. Evaluation follows the same lexical, semantic, and discrete
action diagnostics introduced in Chapter 7 and is carried out on the ALFRED
test-unseen split. After quantization, the natural language component remains
comparatively robust, while the discrete action list shows a marked degradation,
especially in its ability to recover arguments and coherent sequences.

Natural language plan: lexical and semantic analysis. Table 9.2 sum-
marizes lexical metrics for the full-precision and quantized Phase B planners.
Quantization slightly reduces BLEU (from 0.29 to 0.24), ROUGE scores (for ex-
ample ROUGE-L from 0.53 to 0.49), and the composite Average Score (from 0.52
to 0.49). Table 9.3 reports the corresponding semantic metrics: plan-level cosine
similarity (STS) remains around 0.85, step-wise similarity stays close to 0.68–0.74,
and Coverage@0.7 and STC decrease only marginally. At the same time, the
average token count shrinks from about 107 to 68 tokens per plan, and the mean
inference time decreases from roughly 129 s to 28 s per episode, in line with the
latency gains discussed earlier. Taken together, these trends suggest that the
quantized planner continues to behave reasonably well on natural-language plan
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generation, in contrast to the more severe degradation observed for the discrete
action branch.

Table 9.2: Lexical metrics for the ALFRED Phase B planner (best prompt).

Metric Full precision 4-bit bnb-int4

BLEU 0.290 0.237
Token F1 0.629 0.604
ROUGE-1 0.618 0.585
ROUGE-2 0.379 0.355
ROUGE-L 0.532 0.492
Average Score 0.522 0.489

Table 9.3: Semantic metrics for the ALFRED Phase B planner on the test-unseen
split (best prompt).

Metric Full precision 4-bit bnb-int4

STS 0.861 0.852
SSS 0.742 0.679
Coverage@0.7 0.806 0.744
STC 0.664 0.577
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Lexical metrics Semantic metrics

Figure 9.2: Lexical and semantic radar plots for the quantized ALFRED Phase B
planner on the test-unseen split. The overall shape remains similar to the full-
precision model, with moderate shrinkage along lexical axes and near-identical
semantic alignment.
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Discrete action list analysis. The discrete action metrics in Table 9.4 and
the radar in Figure 9.4 exhibit a clear failure mode. Relative to the full-precision
planner, action type similarity drops from 0.96 to 0.67 and sequence similarity
from 0.88 to 0.54, while action argument similarity falls from 0.87 to 0.00. In the
radar plot this corresponds to a global shrinkage of the polygon and, in particular,
to the arguments vertex collapsing to zero. The combined action score and the
action-specific comprehensive score decrease from about 0.90 to 0.41. Per-episode
diagnostics and the example in Figure 9.3 show that the quantized model often
predicts a flat list of action labels such as GotoLocation, PickupObject, PutObject,
PickupObject, PutObject, instead of a list of JSON objects with explicit arguments
like countertop, spoon, fridge, or mug.

Table 9.4: Discrete action metrics for the ALFRED Phase B planner on the
test-unseen split (best prompt).

Metric Full precision 4-bit bnb-int4

Action type similarity 0.955 0.675
Action sequence similarity 0.883 0.543
Action argument similarity 0.865 0.000
Action comprehensive score 0.901 0.406
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Instruction

Put a mug with a spoon in it on the counter.

Ground-truth discrete action list

[
{"action": "GotoLocation", "args": ["countertop"]},
{"action": "PickupObject", "args": ["spoon"]},
{"action": "GotoLocation", "args": ["mug"]},
{"action": "PutObject", "args": ["spoon", "mug"]},
{"action": "PickupObject", "args": ["mug"]},
{"action": "GotoLocation", "args": ["countertop"]},
{"action": "PutObject", "args": ["mug", "countertop"]},
{"action": "NoOp", "args": []}

]

Quantized model output (comprehensive score = 0.39)

{
"nl_plan": "Turn left and go to the counter with the toaster on it. ; Pick up
the spoon on the counter. ; Put the spoon in the mug on the counter. ; Pick up
the mug with the spoon in it. ; Put the mug with the spoon in it on the counter.",
"discrete_action_list": [

"GotoLocation",
"PickupObject",
"PutObject",
"PickupObject",
"PutObject"

]
}

Figure 9.3: Representative sample from the test-unseen split. The quantized
planner produces a fluent natural language plan but collapses the discrete action
list to a flat sequence of action types without arguments.
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The impact on sequence-level structure is visible in Figure 9.5, which reports the
distribution of sequence coherence scores between predicted and reference action
lists. Compared with the full-precision planner, the quantized model produces
many more low-coherence episodes and far fewer high-coherence ones, indicating
that action sequences more often drift from the reference order, contain redundant
repetitions, and fail to emit the terminating step, the NoOp string. Together
with the near-zero argument similarity, this confirms that the discrete branch has
undergone substantial forgetting: the model retains only a coarse scaffold of action
types while largely failing to recover object bindings and precise step sequences.

One possible interpretation is that weight-only 4-bit quantization disproportion-
ately harms the structured discrete-action head that populates the discrete action
field of the JSON output. The planner is trained to emit a single JSON object with
one field for the natural-language plan and one for the discrete action list, and the
quantized model appears to prioritize the linguistic component while defaulting to
underspecified patterns for the symbolic component, such as emitting action names
without arguments. This explanation is consistent with the observed metrics and
examples but remains a hypothesis; isolating the relative contribution of output
structure, loss weighting, and quantization configuration would require targeted
experiments.

Future work could address this imbalance by reweighting the loss toward the
discrete action segment, training specialized heads or prompts that place the
action list earlier in the sequence, or fine-tuning directly on quantized weights
with a curriculum that emphasizes argument recovery and sequence coherence.
Given that the natural language plan remains stable under NF4 quantization,
these interventions could focus on restoring structured control information without
sacrificing the efficiency gains reported in Chapter 9.
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Figure 9.4: Discrete action radar plot for the quantized ALFRED Phase B
planner on the test-unseen split. Action type similarity remains moderate, but
action arguments and sequence metrics are strongly degraded relative to the full-
precision model.

Figure 9.5: Sequence coherence for the discrete action list of the quantized
ALFRED Phase B planner. Many episodes exhibit low similarity between predicted
and ground-truth sequences, reflecting missing arguments, repeated actions, and
altered ordering.
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9.4 Analysis of the Quantized OpenX Controller
This section analyzes the quantized Open X multi-frame controller, comparing dis-
crete accuracies, continuous errors, action-space metrics, and termination detection
performance against the full-precision baseline reported in Chapter 8.

Discrete and continuous metrics. Table 9.5 compares primary action metrics
for the full-precision and quantized multi-frame policies. At a first glance, the
two models behave very similarly: discrete accuracies for position and rotation
remain close (from 24.6% to 22.8% and from 20.0% to 18.1%, respectively), and
gripper accuracy stays high, with only a modest reduction (from 77.4% to 75.8%).
Continuous errors show the same pattern. The mean positional deviation rises
only slightly (from 0.0517 to 0.0581 in normalized units), and the mean rotational
deviation from 0.116 to 0.123 rad. In RMS-per-axis form, position and rotation
errors increase from 1.49% and 2.13% to 1.68% and 2.26%, while the gripper error
grows from 4.99% to 5.50%.

Figure 9.6 confirms this impression visually: the relative error distributions
for position, rotation, and gripper are very similar to those of the non-quantized
controller reported in Chapter 8, with only a mild broadening of the peaks. On
aggregate, the quantized model therefore appears to preserve the continuous ac-
curacy of the full-precision policy. The main discrepancy lies in the exact-match
metric, which drops from 3.41% to 0.55%, and, as will be discussed in the following
paragraphs, in the temporal behavior of the gripper and in the degraded termination
detection, both of which contribute to mismatches at the level of complete 8-token
actions.

Table 9.5: Primary quantitative metrics for the Open X-Embodiment multi-frame
controller: full-precision versus 4-bit bnb-int4 quantized model.

Metric Full precision 4-bit bnb-int4

Exact match (%) 3.41 0.55
Token accuracy (mean, %) 38.68 36.86
Position accuracy (discrete, %) 24.62 22.77
Rotation accuracy (discrete, %) 19.97 18.06
Gripper accuracy (discrete, %) 77.39 75.83

Position error (abs, unitless) 0.0517 0.0581
Rotation error (abs, rad) 0.1159 0.1232
Gripper error (abs, unitless) 0.0999 0.1101
Position error (RMS/axis, %) 1.49 1.68
Rotation error (RMS/axis, %) 2.13 2.26
Gripper error (relative, %) 4.99 5.50
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Position error (RMS/axis,
percent of span).

Rotation error (RMS/axis,
percent of span).

Gripper error (relative,
percent of span).

Figure 9.6: Relative error distributions for the quantised multi-frame controller.
Position and rotation remain close to the full-precision model, while the gripper
retains a sharp peak near zero with a slightly heavier tail.

Action-space metrics and gripper dynamics. Action-space alignment metrics
for the quantized controller are summarised in Table 9.6. Directional accuracy
for position remains very close to the full-precision value (from 0.62 to 0.59), and,
interestingly, rotational directional accuracy even increases slightly (from 0.51 to
0.53). Cosine similarities decrease only marginally (position from 0.82 to 0.79,
rotation from 0.73 to 0.72). The corresponding mean angular deviations grow by
just a few degrees, from roughly 34.6◦ and 42.7◦ to 37.0◦ and 44.0◦, indicating that
spatial commands remain strongly aligned with the ground-truth action directions
after quantization.

In contrast, the gripper branch degrades much more markedly. While the per-
step gripper error remains low (Table 9.5), the directional accuracy for the gripper
drops from approximately 0.70 to 0.33. This apparent discrepancy arises because
gripper error metrics average absolute deviations over all timesteps, including long
stretches where the gripper remains stationary and predictions are close to the
ground truth. Directional accuracy, instead, is dominated by steps where the
ground-truth gripper signal changes and therefore exposes failures in opening and
closing dynamics.

Three transitions from episode 14765 make this effect concrete and are sum-
marised in Figure 9.7. Between steps 33 and 34 the ground-truth gripper opens
(from approximately −0.28 to −0.04) and the full-precision model tracks this
change, whereas the quantised model moves from about +0.12 to −0.05, yielding
a small absolute error on the final value but a delta with opposite sign. Between
steps 34 and 35 the ground truth opens slightly (from about −0.04 to 0.00); the
full-precision model again produces a small positive delta, while the quantised
model keeps the gripper almost constant, resulting in an almost zero delta. A
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similar pattern appears between steps 15 and 16, where the ground truth opens from
roughly 0.35 to 0.04: the full-precision prediction moves in the correct direction,
whereas the quantised prediction crosses zero and changes in the opposite direction.
In all three cases the instantaneous gripper values stay numerically close to the
targets, but the step-to-step variations either have the wrong sign or are too small,
causing directional accuracy to collapse precisely on these timesteps.

The episode-level distributions in Figure 9.9 and the step-wise aggregates in
Figure 9.8 make this pattern explicit: the position and rotation curves remain in
the strong alignment regime, whereas the gripper curve is substantially flattened,
signalling degraded temporal coherence in opening and closing phases.

Table 9.6: Action-space alignment metrics for the Open X multi-frame controller:
full-precision versus 4-bit bnb-int4 quantized model.

Metric Full precision 4-bit bnb-int4

Directional accuracy (position) 0.62 0.59
Directional accuracy (rotation) 0.51 0.53
Directional accuracy (gripper) 0.70 0.33
Cosine similarity (position) 0.82 0.79
Cosine similarity (rotation) 0.73 0.72
Mean angle (position, degrees) 34.6 37.0
Mean angle (rotation, degrees) 42.7 44.0

Transition ∆gGT ∆gFull ∆gQuant.

Episode 14765, steps 33 → 34 +0.24 (opens) +0.24 (aligns) −0.17 (closes)
Episode 14765, steps 34 → 35 +0.05 (opens) +0.07 (aligns) 0.00 (no change)
Episode 14765, steps 15 → 16 −0.31 (opens) −0.24 (aligns) +0.20 (closes)

Figure 9.7: Illustrative gripper transitions from episode 14765. In all three cases
the full-precision model follows the ground-truth change, whereas the quantized
model produces deltas that are too small or have the wrong sign, despite relatively
low frame-wise errors.
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Figure 9.8: Mean directional accuracy over steps for the quantized multi-frame
controller. Position and rotation remain close to the full-precision trends, while
the gripper curve is noticeably lower than in the non-quantized model, reflecting
weaker alignment on opening and closing transitions.

Position Rotation Gripper

Figure 9.9: Episode-level directional accuracy distributions for the quantized
multi-frame controller. Position and rotation remain in a strong-alignment regime
(means around 0.59 and 0.53), whereas gripper accuracies are shifted toward lower
values (mean around 0.33), indicating unstable temporal behavior on gripper
transitions.
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Figure 9.10: Episode-level cosine similarity distributions for the quantized multi-
frame controller. Both position and rotation remain strongly aligned with the
ground-truth action directions, with densities concentrated between 0.6 and 0.9.
The position curve reaches values close to 1.0, while the rotation curve peaks
slightly lower, around 0.9, showing only a minor shift relative to the full-precision
controller.
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Termination detection under quantization. Quantization has a particularly
pronounced effect on the termination head. In full precision, the multi-frame
controller detects more than half of the termination tokens (precision 99.4%, recall
53.3%, F1 = 69.4%), correctly identifying 320 of the 600 labelled episode endings
while producing only two false positives. After 4-bit quantization, precision remains
at 100% but recall drops to 5.5% (33 true positives), so most true terminations are
missed and episodes are rarely closed by the policy.

This behavior indicates that 4-bit quantization effectively shifts the decision
boundary of the termination classifier toward the non-terminating class: logits
for the terminate token are suppressed except in a handful of highly confident
cases. In practice, the quantized model therefore behaves as if termination were
an exceptional event, even in situations where the full-precision controller would
reliably emit an end-of-episode flag, suggesting that explicit reweighting or post-hoc
calibration of the termination head would be required in a quantized deployment.

Table 9.7: Termination detection metrics for the Open X multi-frame controller:
full-precision versus 4-bit bnb-int4 quantized model.

Metric Full precision 4-bit bnb-int4

Recall (terminate, %) 53.33 5.50
Precision (terminate, %) 99.38 100.0
F1 (terminate, %) 69.41 10.43
Positive support 600 600
Negative support 16,029 16,029
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Chapter 10

Conclusions and Future
Work

10.1 Conclusions
This dissertation examined the feasibility of using LLaMA 3.2 Vision Instruct
as a unified foundation for robotic reasoning and control. Through a series of
offline experiments across ALFRED and Open X Embodiment, we explored how
a medium sized vision language model can support heterogeneous functionalities
ranging from high level task understanding to low level continuous control. The
results demonstrate that, when equipped with appropriate prompting structures
and lightweight adaptation mechanisms, a single backbone can be specialized to
operate meaningfully across multiple levels of abstraction.

A recurring insight throughout the work is the central role of cross attention be-
tween visual and textual modalities. In ALFRED, performance improves markedly
when training and inference prompts provide a stable, structured context that
the model can anchor to: concise preambles with precise instructions, explicit
descriptions of the objects in the scene, and a sense of temporal progression in-
troduced through labels such as “Observation 1”, “Observation 2”, and so on. In
Open X, where the challenge is even greater, coherent behavior emerges only when
the model focuses its attention on key semantic regions of the scene, such as the
objects to be manipulated, the gripper, and task relevant spatial cues. Across both
domains, the experiments showed that seemingly minor changes in prompt ordering,
phrasing, or the grounding between visual and textual inputs can substantially
impact performance, underlining how crucial conditioning is for effective VLM
based control.

On the ALFRED benchmark, the model was adapted to produce both natural
language plans and structured action traces. Under full precision, the system
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generates semantically coherent plans and high quality discrete action sequences,
suggesting that VLMs can be pushed beyond narrative descriptions to produce
representations that approximate executable robotic programs. On Open X, the
same backbone functioned as a multi frame controller that begins to capture
trajectory structure: continuous errors remain low, and directional alignment
improves markedly relative to the single frame baseline.

Despite these strengths, the system remains far from deployable in real world
conditions. In ALFRED, the planner emits full programs in a single step, relying on
high level primitives such as GotoLocation; a practical robotic agent would require
incremental next action prediction, finer grained navigation and manipulation
primitives, and explicit mechanisms for state dependent branching. In Open X,
the controller exhibits an early understanding of trajectory geometry, but lacks
robustness, fails to detect or correct failure modes, and operates at a control
frequency unsuitable for real time interaction. These limitations highlight the gap
between offline evaluation and embodied deployment.

The scope of the study was also shaped by tight computational constraints,
since adaptation relied on LoRA with modest ranks, restricting the number of
trainable parameters. Both ALFRED and Open X were subsampled to fit within
available resources, and the model was quantized only after fine tuning, without
quantization aware training. These choices provided a controlled experimental
setting under realistic hardware budgets, but they also imply that current results
are a conservative estimate of what such models might achieve under more extensive
adaptation.

10.2 Future Work
The limitations identified in this study open several avenues for further research.
These can be grouped along two main axes: high-level action planning in symbolic
spaces (ALFRED) and low-level continuous control for robot arms (Open X). For
each axis, we distinguish near-term extensions that could be implemented within
the current framework from longer-term directions that require more substantial
changes in modeling or infrastructure.

10.2.1 Action Planning and Symbolic Reasoning
Near-term extensions. On the planning side, several improvements can be
pursued without changing the overall architecture. A first step is to move from
single-shot program generation to incremental next-action prediction, so that the
planner produces one instruction or symbolic action at a time conditioned on the
evolving state. This would enable state-dependent corrections, safety checks, and
dynamic replanning, rather than committing to a full sequence upfront. Expanding
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the discrete action vocabulary with finer-grained primitives (for example short
forward motions, small rotations, or incremental gripper commands) would further
narrow the gap between high-level GotoLocation-style programs and the control
interfaces expected by real robots. Finally, latency and decoding stability can be
improved by experimenting with action-only decoding modes, constrained JSON
generation, and prompt designs that prioritize symbolic completeness over verbose
natural-language plans.

Longer-term directions. In the longer term, action planning should be evalu-
ated in closed-loop settings and on physical or high-fidelity robotic platforms. This
entails coupling the planner to navigation and manipulation stacks that execute the
generated programs, monitoring execution outcomes, and feeding back failures or de-
viations as additional supervision. Sim-to-real transfer also remains a key challenge:
ALFRED’s synthetic environments differ substantially from real households, calling
for domain adaptation, visual fine-tuning on robot data, or hybrid datasets that
blend simulated and real scenes. Beyond single-task evaluation, multi-task training
regimes in which the same backbone plans for multiple embodied benchmarks,
with behavior modulated entirely by the prompt or by lightweight adapters, offer
a promising route toward general-purpose planners that generalize across tasks,
environments, and robot morphologies.

10.2.2 Low-Level Control for Robot Arms

Near-term extensions. For Open X-style continuous control, the most immedi-
ate priority is to move beyond purely offline evaluation and study the controller in
closed loop, at least in realistic simulators. Running the learned policy so that its
actions influence subsequent observations would reveal failure modes that remain
hidden in one-step metrics, and would make it possible to design simple recovery
strategies, such as re-planning or resetting when trajectories drift too far from
the target. At the modeling level, promising short-term improvements include
loss reweighting for rare but critical tokens such as the termination flag, better
calibration of gripper dynamics, and incorporation of additional state signals as
inputs. The RLDS logs expose 7D end-effector poses (position plus quaternion)
and orientation descriptors tied to objects or workspace regions; encoding these as
continuous features or discretized state tokens would give the model explicit access
to the robot configuration while still predicting per-step deltas, potentially yield-
ing more accurate and stable motion. Quantization-aware fine-tuning, structured
pruning, or distilled backbones can also be explored to reduce latency and memory
footprint without the quality loss observed with naive post-hoc 4-bit quantization.
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Longer-term directions. At a broader scale, future work on continuous control
should aim at hierarchical, data-efficient policies that bridge language, perception,
and low-level actuation. One avenue is to train controllers jointly across multiple
embodiments and datasets, using a mixture of shared and robot-specific adapters so
that experience on one platform benefits others. Another is to integrate reinforce-
ment learning or closed-loop imitation into the fine-tuning loop, allowing the model
to refine its control policy based on task success rather than token-level objectives
alone. Scaling up along data, model capacity, and context length, for example
by leveraging LLaMA 4 (released in April 2025, with mixture-of-experts routing
and longer visual histories), will likely be necessary to capture richer long-horizon
behaviors. Any such scaling, however, must remain compatible with efficient de-
ployment: quantization, pruning, and architectural simplification will continue to
play a central role in making VLM-based controllers practical for real-world robot
arms.
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Appendix A

Training Troubleshooting

A.1 Label Smoothing and Loss Computation
During preliminary experiments we explored enabling label smoothing in the
Hugging Face Trainer for the MllamaForConditionalGeneration model used in this
dissertation. Label smoothing is a regularisation technique that replaces one-hot
targets with softened distributions, assigning most of the probability mass to
the correct class but reserving a small share for the remaining classes. In causal
language modelling this is typically applied after shifting the targets by one position,
so that each prediction at time step t is trained against the ground-truth token at
time t + 1 (next-token prediction).

Under Transformers 4.51.3 we discovered that the automatic label-smoothing
logic did not recognise MllamaForConditionalGeneration as a causal language
model. Internally, the Trainer consults a registry of causal language-model names,
exposed in the library as the constant MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
to decide whether labels should be shifted before computing the smoothed loss.
Because MllamaForConditionalGeneration was not treated as a causal model in
that registry, the Trainer applied label smoothing without shifting the labels.

The relevant pseudocode can be summarised as:

if self.label_smoother is not None:
if model_name in causal_lm_names:

loss = self.label_smoother(
outputs, labels, shift_labels=True

)
else:

loss = self.label_smoother(
outputs, labels

) # incorrect for Mllama
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When label smoothing was enabled from the start of training, the loss appeared
to decrease normally and the optimisation curves looked perfectly reasonable. How-
ever, generation quality degraded severely: models trained under this configuration
produced incoherent token sequences and invalid JSON outputs, despite the ap-
parently convergent loss. The issue became undeniable when resuming from a
checkpoint that had been trained with label_smoothing = 0.0. That checkpoint
exhibited a stable loss around 0.4–0.5 and good qualitative behaviour on validation
samples. As soon as training was resumed with label_smoothing = 0.05, the
reported loss jumped abruptly to values in the 20–30 range and failed to recover,
signalling a mismatch between the Trainer’s objective and the model’s predictions.

To verify the hypothesis we recomputed the loss manually using the standard
causal shift:

# Correct manual computation (causal shift)
shift_logits = logits[:, :-1, :].contiguous()
shift_labels = labels[:, 1:].contiguous()
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
manual_loss = loss_fct(

shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1)

)

The manually computed loss was consistent with the pre-smoothing checkpoints,
confirming that the problem lay in how the Trainer combined label smoothing with
causal modelling for this specific architecture, rather than in the model itself.

In principle the bug can be patched by providing a custom loss function that
always performs the causal shift before applying smoothing. For the purposes
of this dissertation, however, we opted for a simpler and safer solution: all final
runs reported in Chapters 7, 8 and 9 were trained with label smoothing disabled
(label_smoothing = 0.0). This choice avoids subtle training instabilities while
keeping the experimental setup compatible with the standard Hugging Face tooling.
The discussion in this appendix is meant as a troubleshooting note for future work
that may want to revisit label smoothing with updated library versions or custom
training loops.
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