Llh\ |Il||

w
gyl S

o
\\ 1859
S, w2

Politecnico di Torino

Ingegneria Informatica
A.a. 2024/2025

Sessione di laurea Dicembre 2025

Versionamento Adattivo nel
Creative Coding: Strumento per
I’Esplorazione Artistica basato su

Relatori: Candidato:
Juan Pablo Sdenz Moreno Stefano Di Leo

Luigi De Russis

Ringraziamenti

Giunto al termine di questo lungo e sofferto percorso universitario, vorrei ringraziare
alcune persone senza le quali non sarei riuscito ad arrivare al traguardo.

Innanzitutto ringrazio i miei relatori Juan Pablo Sdenz Morenoe Luigi De Russis
per avermi guidato durante questa ultima prova.

Ringrazio poi i miei genitori Antonella e Marcello per avermi sostenuto e permesso
di studiare, oltre che per la loro pazienza e disponibilita. Ringrazio anche mia
sorella Chiara, per avermi aiutato quando ne avevo bisogno e per essermi stata
vicina, anche da lontano.

Infine grazie ai miei amici vecchi e nuovi, con i quali ho passato il tempo libero,
lavorato a progetti universitari e non e che sono stati una preziosa lezione di vita.

11

Indice

Elenco delle tabelle VI

Elenco delle figure VII

Glossario X

1 Introduzione 1

1.1 Obiettivo 2

1.2 Struttura della tesi 2

2 Background e Lavori Correlati 4

2.1 Creative Coding 4

2.2 Creative Coding e Versionamento del codice 8
2.3 Ideazione di un Version Control System su misura per il Creative

Coding basato su Abstract Syntax Tree 11

3 Progettazione 13

3.1 Requisiti 13

3.1.1 Versionamento capillare 13

3.1.2 Salvataggio automatico 14

3.1.3 Navigazione tra versioni, 15

3.14 Facilitaduso 15

3.1.5 Gestione efficiente di un gran numero di versioni 15

3.2 Prototiposucarta 16

3.3 Web Application o estensione Visual Studio Code 18

4 Implementazione 20

4.1 Tecnologie utilizzate oL 20

411 phijs o o 20

4.1.2 Tree-sitter 21

4.1.3 Y S .o 21

4.1.4 Monaco

415 React
4.2 AST diff
4.3 Modifiche apportatea pb
4.4 Struttura dei thread
4.4.1 DrawerWorkero
4.4.2 ParserWorker
45 UL/UX . .o
4.5.1 Timeline
4.5.2 Cronologia variabili
4.5.3 Aiuti per 'utente
4.5.4 Alcune considerazioni estetiche

5 Valutazione

5.1 Introduzione
5.2 Preparazione
5.3 Esecuzione
5.4 Risultati
541 Task
5.4.2 Domande aperte Lo

6 Conclusioni

6.1 Sviluppi futuri

6.2 Utilizzo dell’applicazione con altre librerie o in altri contesti

A Test di usabilita

A.1 Introduzione
A2 Task
A.3 Domande di approfondimento

Bibliografia

41
41
41
42
44
44
45

46
47
48

50
50
51
53

54

Elenco delle tabelle

4.1 Principali librerie utilizzate. o0
4.2 Risultati del benchmark.
5.1 Elenco delle task.
5.2 Misure ottenute dal test.

VI

Elenco delle figure

2.1
2.2

2.3

24

2.5

3.1

3.2
3.3
3.4

4.4
4.1
4.2

4.3

4.6
4.5
4.7
4.8

4.9
4.10

L’IDE di Processing che esegue uno sketch ottenuto da OpenProcessing. 5
Esempio di un popolare sketch su OpenProcessing, con annessa

visualizzazione dei fork. o000 9
Interfaccia grafica per la visualizzazione delle versioni di Quickpose.
Immagine tratta da [8]. 9
Interfaccia grafica per la visualizzazione di timeline di SHARP.
Immagine tratta da [9]. 10
Rappresentazione grafica dell’AST di uno sketch vuoto. 11

Esempio di wariation di uno sketch che ottiene uno stile distinto
unicamente modificando le variabili gia esistenti. Immagine tratta

da [7]. .« . o 14
Prima idea di timeline. 16
Seconda idea di timeline. L 17
Interfaccia grafica completa. 18
La timeline, durante la creazione di un nuovo snapshot. 34
Una rappresentazione delle interazioni descritte nella sezione 4.4. . . 35
La timeline, che presenta molteplici snapshot e con 1'ultima versione

selezionata. 36
La timeline, che presenta molteplici snapshot. Su uno di essi e stato

passato il cursore del mouse, rivelando il numero di versione. 36
Dichiarazione di alcune variabili tracciate in uno sketch. 36

La timeline, in caso di errore durante la creazione di un nuovo snapshot. 37
L’inserto contenente la cronologia della variabile noiseScale. 37
L’inserto contenente la cronologia della variabile alpha, espanso in

modo da mostrarlo interamente.o 37
Messaggio placeholder mostrato quando ’editor non contiene testo. 38

Esempio in cui viene mostrata la documentazione della funzione fi11
insieme ad un warning riguardante la variabile alpha. 39

VII

4.11 L’interfaccia completa dell’applicazione mentre esegue il popolare
sketch “perlin noise” [31] ottenuto da OpenProcessing.

VIII

Glossario

CcC
Creative Coding

VCS

Version Control System

AST
Abstract Syntax Tree

DOM
Document Object Model

CRDT
Conflict-free Replicated Data Type

API

Application Programming Interface

Ul

User Interface

UX

User Experience

IDE

Integrated Development Environment

Capitolo 1
Introduzione

Fin dalla loro comparsa, i computer sono stati utilizzati anche per la realizzazione
di opere artistiche e creative nelle maniere piu disparate: si pensi agli strumenti
per il disegno digitale molto utilizzati dagli artisti, ma come il Creative Coding.

Di particolare interesse per questa tesi € la pratica del Creative Coding, nella
quale gli artisti utilizzano codice in linguaggi di programmazione per realizzare le
proprie opere che in questo contesto prendono il nome di sketch. In tale pratica, gli
artisti procedono in maniera fortemente iterativa, scrivendo, modificando e talvolta
scartando il proprio codice, osservandone la resa e raffinando il loro lavoro poco
alla volta. Gli artisti non procedono necessariamente in maniera deterministica
0 con uno scopo preciso, bensi fanno numerosi tentativi finché non si imbattono
in un’opera che li soddisfi. In un certo senso essi “esplorano” e “giocano” con il
codice in maniera molto diversa da quanto avviene nella programmazione nella sua
accezione piu comunemente intesa. Per questo motivo il Creative Coding si puo
considerare come una branca dell’*Exploratory Programming”.

Nel corso del tempo, attorno alla pratica si sono formate numerose comunita
di appassionati e sono stati sviluppati numerosi strumenti — open-source e non —
per agevolare il lavoro dei programmatori creativi, strumenti che hanno migliorato
I’ergonomia del processo creativo, rendendo possibili miglioramenti come feedback
essenzialmente in tempo reale e permettendo quindi iterazioni ancora piu rapide e
numerose.

Ultimamente, infatti, sempre piu artisti si sono avvicinati al mondo della pro-
grammazione e del Creative Coding proprio per sfruttarne le nuove potenzialita che
essi offrono per la creazione di opere d’arte, soprattutto se paragonati alle tecniche
piu tradizionali di espressione artistica. Inoltre per molti, il Creative Coding
costituisce un tassello importante nel loro percorso di istruzione in quanto le sue
proprieta sono adatte all'insegnamento della programmazione e permettono di dare
libero sfogo alla creativita degli studenti sia a scuola che in campo universitario.

1

Introduzione

Tuttavia non esistono strumenti che agevolino la gestione delle versioni delle
opere in maniera che si adatti naturalmente alla natura esplorativa del Creative
Coding, lasciando gli artisti a dover usare strumenti pensati per lo sviluppo software
classico e portando molti di loro ad ideare sistemi manuali di organizzazione dei
propri lavori.

[sistemi per la gestione delle versioni attuali (Version Control System), infatti,
risultano difficili da imparare e non forniscono meccanismi per far fronte alle
numerose e frequenti modifiche che vengono apportate alle opere durante il processo
di creazine ed esplorazione. Inoltre non forniscono feedback visivo sull’aspetto
dell’opera rendendo inutilmente macchinoso e controintuitivo spostarsi in un’altra
versione desiderata.

Per questo motivo si rende necessario uno strumento che possa essere utilizzato
sia da neofiti che da esperti e realizzato su misura per risolvere le criticita delle
soluzioni esistenti.

1.1 Obiettivo

Data la natura esplorativa e open-ended del Creative Coding e data la mancanza di
uno strumento che supporti tale uso ¢ stato realizzato uno strumento per la gestione
di versioni (VCS), con l'obiettivo di correggere le mancanze degli attuali strumenti di
versionamento (molto comuni nello sviluppo software) che pero risultano inadeguati
per il Creative Coding e quindi risultano sottoutilizzati dai programmatori creativi.
In particolare lo strumento deve permettere all’utente di seguire 1’evoluzione del

La prima fase ¢ consistita interamente nell’analisi degli articoli accademici
disponibili riguardo Creative Coding e nell’analisi degli strumenti disponibili, sia
popolari e ben conosciuti nel campo, che di strumenti piu sperimentali e meno
conosciuti.

E seguita poi una fase di realizzazione di sketch p5 con versionamento manuale
tramite Git in modo da sperimentare in prima persona le differenze tra sviluppo
software "convenzionale" e Creative Coding, oltre ai punti di forza e criticita degli
attuali strumenti di versionamento quando applicati a quest’ultimo.

Individuate le principali criticita, si sono discusse quali funzionalita basa-
te sul parsing del codice e sull’analisi del relativo Abstract Syntax Tree po-
tessero maggiormente migliorare il processo creativo degli utenti e si ¢ passati
all’implementazione.

1.2 Struttura della tesi

La tesi ¢ strutturata su sei capitoli, partendo dal Capitolo 1 che contiene una breve
introduzione al concetto di Creative Coding e la descrizione degli obiettivi.

2

Introduzione

Il Capitolo 2 Background e Lavori Correlati descrive lo stato attuale della
strumentazione per il versionamento di codice per il Creative Coding, le limitazioni
delle soluzioni esistenti, le principali barriere riscontrate dai Programmatori Creativi
e 'analisi di alcuni studi e progetti realizzati nel campo.

Nel Capitolo 3 Progettazione vengono esposti i requisiti identificati e la scelta
della piattaforma impiegata.

Nel Capitolo 4 Implementazione vengono descritte le tecnologie e gli algoritmi
utilizzati, la struttura e la relazione tra i vari elementi funzionali dell’applicazione
e le funzionalita fornite all’'utente oltre a descriverne i dettagli implementativi
rilevanti, con considerazioni di UIl/UX.

Il Capitolo 5 Valutazione descrive il test di usabilita condotto con utenti non
necessariamente familiari con il Creative Coding e ne discute i risultati.

Nel Capitolo 6 Conclusioni vengono commentati i risultati ottenuti, valutandone
la compatibilita con 1'obiettivo della tesi. Vengono successivamente esplorate le
direzioni che si potrebbero intraprendere a partire da questo lavoro per sviluppi
futuri.

Capitolo 2

Background e Lavori
Correlati

2.1 Creative Coding

Il Creative Coding ¢ una forma di programmazione in cui ’obiettivo principale e
I’espressione artistica piuttosto che l'efficienza funzionale. Consiste nello scrivere
codice per creare opere artistiche. Esso nasce dall’intersezione tra arte e tecnologia
e di tale pratica si possono trovare esempi fin dagli albori dell’informatica (anni
’60).

Il dominio del Creative Coding ¢ molto vasto e se ne possono trovare manifesta-
zioni in innumerevoli forme: da videogiochi ed esperienze interattive a installazioni
artistiche visive, fino ad arrivare alla produzione di audio e musica. Ogni opera puo
far uso di diverse fonti di informazioni, generando cosi opere che possono essere
statiche e sempre uguali ad ogni esecuzione, fino ad arrivare a lavori procedurali,
che producono un risultato potenzialmente diverso ad ogni esecuzione e che possono
reagire agli input dello spettatore [1].

Visti i numerosi settori in cui gli artisti si trovano a lavorare, spesso devono
interagire con programmatori per integrare i loro lavori in un contesto piu ampio
(ad esempio nel campo dei videogiochi). Viste le differenze tra i due campi, la
comunicazione tra sviluppatore e artista puo risultare difficile, sarebbe quindi
utile far avvicinare i creativi al mondo della programmazione, permettendo loro di
capire i processi degli sviluppatori agevolando la comunicazione e potenzialmente
permettendo loro anche di partecipare attivamente al prodotto completo. Per questo
motivo, sono stati istituiti anche corsi che forniscano sia conoscenze estetiche che
informatiche per agevolare 'avvicinamento di questi due mondi e creati numerosi
strumenti dedicati al Creative Coding.

Background e Lavori Correlati

Negli ultimi decenni, complice anche la crescente accessibilita dei calcolatori, il
CC e gradualmente acquisito popolarita e ha visto un rapido sviluppo di librerie e
strumenti dedicati.

Tra i pitt importanti e comuni possiamo trovare Processing, creata da Casey Reas
e Ben Fry nel 2001 [2]: si tratta di una libreria per il linguaggio di programmazione
Java e di un Integrated Development Environment realizzato per la realizzazione
di sketch con lo scopo di insegnare i concetti fondamentali di programmazione
in un contesto visivo a coloro che non si occupano di programmazione. Esso ha
un’interfaccia molto semplice: si presenta come una finestra con un ampio campo
di testo in cui scrivere il codice e due pulsanti che permettono di eseguirlo o di
fermarne ’esecuzione. Durante ’esecuzione dello sketch, viene creata una nuova
finestra che ne mostri il risultato.

T o S
O sketch 2511262 - O X TQ sketch_251126a | Processing 3.5.4 — u] X W
File Modifica Sketch Debug Strumenti Aiuto

sketch_251126a

[l //Raven Kok aka Guo, Ruiwen
// ravenkwok . com

&)/ /vimeo. con/ravenkwok

B // lickr. com/photos/ravenkwok

Arraylist<Particle> pts;
boolean onPressed, showInstruction;
PFont f;

B void setup() {
size(1024, 1024, P2D);|
smooth();
frameRate (30);
colorMode (RGB) ;
rectMode (CENTER) ;

pts = new ArraylList<Particle>();

showInstruction = true:

EM Console A Errori

Figura 2.1: L’IDE di Processing che esegue uno sketch ottenuto da OpenProces-
sing.

Vista la popolarita di Processing, nel corso del tempo sono state realizzate
numerose altre librerie con lo scopo di adattare i suoi principi ad altri linguaggi di
programmagzione. Di particolare importanza e p5: si tratta di una libreria scritta in
JavaScript che permette la realizzazione di sketch che vengono eseguiti direttamente
nel browser, e pertanto non e necessaria l'installazione di strumenti dedicati.

Non ¢ raro che, in letteratura, il Creative Coding venga usato come sinonimo di
Generative Art, seppure i due termini identifichino concetti differenti: la Genera-
tive Art, infatti, indica 'utilizzo di algoritmi o processi automatici dedicati alla
generazione di opere a partire da un input ridotto fornito dall’utente, come avviene
per la generazione di immagini a partire da testo. E importante anche notare che
I’Arte Generativa non e necessariamente legata al mondo informatico. Il Creative

5

Background e Lavori Correlati

Coding, invece, si focalizza sul programmatore come responsabile in prima persona
dell’opera della la quale sceglie ogni particolare.

Il Creative Coding si puo classificare come un ramo della Programmazione
Esplorativa (Exploratory Programming), con la quale condivide una mancanza
di un preciso obiettivo e che invece incentiva libera sperimentazione “open-ended”
e un ciclo di sviluppo rapido con feedback immediato. Per questo la Program-
mazione Esplorativa e il Creative Coding vengono spesso utilizzati nel campo
dell’insegnamento della programmazione a neofiti [3].

La rapidita dello sviluppo, 'alta frequenza delle iterazioni e la natura “open-
ended” del Creative Coding, rendono desiderabile la possibilita di tenere traccia
delle modifiche apportate nel tempo in modo da poter visualizzare ’evoluzione
delle proprie opere e permettendo una sperimentazione piu efficace nel processo
artistico. Una simile necessita ¢ riscontrata anche dai programmatori non creativi,
per i quali sono stati quindi creati strumenti appositi per la gestione delle versioni
del software. Tali strumenti prendono il nome di Version Control System, una
classe di software che per 'appunto consente all’utente di gestire ’evoluzione nel
tempo di file. Sono principalmente utilizzati per codice sorgente (e quindi file di
testo), ma in generale sono applicabili a qualunque tipo di file.

Durante lo sviluppo di software, infatti, i programmatori apportano modifiche
in maniera continua e spesso di dimensione ridotta se paragonate alla dimensione
complessiva del progetto, ma che possono cambiarne significativamente il funziona-
mento. Prima del rilascio di una nuova versione, ¢ normale che vengano applicate
un gran numero di tali modifiche, da parte di individui differenti e in tempi diversi.
Tenere traccia di ogni modifica manualmente diventa estremamente complicato, se
non impossibile, senza un sistema dedicato che permetta di isolare ogni modifica e
metterla in relazione con altre modifiche in ordine temporale.

La soluzione piu semplice, sarebbe una gestione manuale delle versioni salvando
piu copie del codice sorgente ed etichettando ogni versione in maniera appropriata.
Tale approccio, tuttavia, richiede molto lavoro da parte dei programmatori oltre ad
essere estremamente inefficiente sia in termini di spazio di archiviazione utilizzato
che in termini di difficolta nel rintracciare i cambiamenti applicati e particolarmente
suscettibile ad errori umani [4].

Nel tempo sono stati quindi sviluppate diverse soluzioni software per agevolare
il processo di versionamento del codice e collaborazione tra programmatori. Alcuni
dei primi esempi di tale software furono SCCS (Source Code Control System)
sviluppato da Marc J. Rochkind di Bell Labs nel 1972 [5] e RCS (Revision Control
System) sviluppato da Walter F. Tichy della Purdue University nel 1982 [4].

Successivamente sono state realizzate altre soluzioni tra le quali CVS (Concur-
rent Version System) e Subversion, fino ad arrivare agli strumenti moderni come
Mercurial e Git. Questi ultimi si differenziano per la loro natura decentralizzata,
permettendo ai programmatori di lavorare ognuno sulla propria versione della

6

Background e Lavori Correlati

“repository” in autonomia e per poi richiedere I'inclusione delle proprie modifiche
in un secondo momento nella “repository” principale che si differenzia dalle altre
solamente per convenzione ma senza alcuna differenza dal punto di vista tecnico.
Cio si contrappone direttamente ai VCS di tipo client /server che invece pongono
restrizioni al lavoro che gli sviluppatori possono svolgere offline in autonomia.

Tali strumenti, tuttavia, sono sottoutilizzati dai programmatori creativi, tanto
che il fenomeno e stato analizzato nel passato in alcuni studi pubblicati su come
i programmatori creativi interagiscono con i VCS, tra cui “The Art of Creating
Code-Based Artworks” [6], nel quale sono stati intervistati cinque Creative Coders,
con esperienza in tecnologie diverse, provenienti da quattro paesi diversi e con
preparazioni che spaziano dalla produzione musicale e Graphic Design fino ad
arrivare a Fisica Matematica e Scienze Ottiche Applicate.

Per adattarsi alla natura esplorativa del CC, i partecipanti allo studio general-
mente tendono a creare numerosi file per sperimentare con le loro idee. In base
al gradimento del risultato, questi possono fungere come campione da integrare
in opere future. Per gestire la grande quantita di file risultanti dalla loro speri-
mentazione, i partecipanti necessitano di sviluppare strategie e meccanismi per
organizzare e categorizzare il proprio lavoro.

Come evidenziato nella sezione precedente, tale strategia di gestione delle versio-
ni e poco efficiente e porta facilmente ad errori e il fatto che gli artisti la impieghino
comunque nel loro lavoro ¢ un indizio importante sull’inadeguatezza delle soluzioni
di VCS per il Creative Coding. Sebbene queste ultime si siano dimostrate estrema-
mente utili e produttive per la programmazione “tradizionale”, un partecipante nota
come spesso nel CC le modifiche apportate siano troppo piccole per giustificare la
creazione di un “commit” (spesso viene aggiornato il valore di una singola variabile)
mentre un secondo esprime comunque il desiderio di salvare le modifiche in maniera
automatica e periodica.

Un altro fattore significativo evidenziato dalle interviste riguarda la difficolta di
apprendimento dei moderni strumenti di VCS. Tali difficolta sono esacerbate dal
fatto che molti Programmatori Creativi non sono programmatori professionisti e
non sono interessati a diventarlo o stanno ancora imparando a programmare.

Alcuni partecipanti notano, inoltre, come sia fondamentale per loro avere a
disposizione una rappresentazione visiva degli sketch, in modo da poterli identificare
piu agevolmente. A tal scopo, uno di loro descrive come utilizzi la funzionalita di
cattura dello schermo fornita dalla libreria da lui utilizzata per salvare anteprime
degli sketch nella stessa cartella, un altro, invece, utilizza un social network per
archiviare il risultato del proprio lavoro.

In sintesi, dalle interviste emerge la necessita di strumenti per il versionamento di
codice pensati nello specifico per il CC, capaci di gestire modifiche molto frequenti
e di dimensione ridotta, oltre alla possibilita di salvare informazioni aggiuntive
come un’anteprima dello sketch.

Background e Lavori Correlati

2.2 Creative Coding e Version Control System

Nel tempo sono stati sviluppati diversi strumenti per la gestione delle versioni degli
sketch, alcuni piu sperimentali e altri che invece hanno acquisito popolarita e sono
diventati di uso comune per i programmatori creativi. Tra quelli piu sperimentali si
annoverano SHARP e Quickpose, mentre tra gli altri ¢ di spicco OpenProcessing.

OpenProcessing ¢ una comunita online e piattaforma focalizzata sulla creazione
e la condivisione di progetti di Creative Coding e supporta sketch scritti per le
librerie p5 e Processing.

Essa e gratuita e permette di scrivere codice per uno sketch e visualizzarne
il risultato direttamente nel browser, rendendo la pratica del CC estremamente
accessibile.

La funzionalita di OpenProcessing piu rilevante per questa tesi e la possibilita di
creare un fork di uno sketch. Il processo ¢ manuale e permette all'utente, tramite
un’interfaccia intuitiva, di “congelare” il codice di uno sketch nel tempo, dando
poi la possibilita di riutilizzarlo come punto di partenza per versioni future. E
possibile salvare un numero arbitrario di versioni e, funzionalita molto importante
per 'aspetto di comunita della piattaforma, si possono visualizzare le versioni
salvate da altri utenti che chiunque puo utilizzare come punto di partenza per
il proprio lavoro. Le versioni vengono visualizzate tramite una rappresentazione
ad “albero” che mostra ’evoluzione dell’opera nel tempo sia per mano dell’autore
originale che per mano degli altri utenti (Figura 2.2).

Tale struttura incentiva la condivisione degli sketch e porta alla formazione di
una comunita creativa e vivace.

Nel 2023, Sabbaraman et al. [7], hanno pubblicato uno studio che esamina la
comunita di OpenProcessing, e nello specifico le abitudini degli utenti per quanto
riguarda 1'utilizzo della funzione di fork, analizzando tutte le opere pubbliche
presenti sulla piattaforma (oltre un milione ai tempi dello studio). Lo studio ha
evidenziato quattro strategie di utilizzo della funzionalita fork: come modo di
salvare gli sketch fatti da altri senza apportare ulteriori modifiche, come modo
di annotare il codice con commenti per tenere traccia del progresso personale,
come modo per estendere uno sketch tramite aggiunte di codice sostanziali e per
finire come modo per perfezionare lo sketch tramite piccole variazioni dei valori
di variabili esistenti (ma che possono portare a risultati estremamente diversi). I
lavoro di questa tesi si concentra prevalentemente sulle ultime due casistiche.

OpenProcessing, tuttavia, non e in grado di tenere traccia di cambiamenti
piccoli tra una versione e l'altra, necessitando dell’input dell’'utente. Tale modo
di procedere e utile, come appena discusso, per gli scopi della condivisione e
dell’evoluzione degli sketch da parte di piu individui indipendenti ma non risolve le
criticita dei VCS analizzate sopra, non fornendo agli utenti informazioni dettagliate
sull’evoluzione dei loro lavori.

Background e Lavori Correlati

@ E‘,errhr—:nmfs‘e i sz []3 Psss O

mySketch

perlin noise

var particles_a = [];
var particles_b = [];

var particles_c = [];

var nums =200;

var noiseScale = 800;

function setup(){
createCanvas(windowWidth, windowHeight);
background(21, 8, 50);

for(var 1 = @; i < nums; i++){

particles_a[i] = new Particle(random(@, width),random(@,height)

particles_b[i] = new Particle(random(@, width),random(®,height)

particles_c[i] = new Particle(random(@, width),random(@,height))|

}
¥

function draw(){
noStroke();
smooth();

for(var 1 = @; 1 < nums; i++){

var radius = map(i,@,nums,1,2);

var alpha = map(i,@,nums,@,250);

fi11(69,33,124,alpha);
particles_a[i].move();
particles_a[i].display(radius);
particles_a[i].checkEdge();

f111(7,153,242,alpha);
particles_b[i].move();

Figura 2.2: Esempio di un popolare sketch su OpenProcessing, con annessa
visualizzazione dei fork.

Quickpose [8] & un VCS realizzato da Eric Rawn et al. nel 2023 pensato per

Processing. Esso permette agli utenti di salvare versioni del proprio codice per

poi visualizzarle in un grafo orientato dove i nodi rappresentano le versioni dello

sketch con anteprima. L’utente puo riorganizzare il grafo e aggiungere annotazioni

a proprio piacimento e puo iniziare dai fork a partire da un qualunque nodo. Il

processo di salvataggio di una nuova versione e manuale e deve essere iniziato

dall'utente.

A B/rco-108

Figura 2.3: Interfaccia grafica per la visualizzazione delle versioni di Quickpose.
Immagine tratta da [8].

Background e Lavori Correlati

Infine SHARP [9] ¢ stato realizzato per il “live coding” musicale, una forma
di Creative Coding nella quale si produce musica dal vivo anche di fronte ad un
pubblico. Realizzato da Manesh et al. nel 2024, tale strumento mira a fornire agli
artisti un VCS su misura per la loro variante di CC.

Nel “live coding” musicale, il codice ¢ strutturato in pattern, ovvero sezioni di
codice paragonabili ad uno strumento in una banda musicale o una traccia in una
Digital Audio Workstation (DAW). Durante una performance, i pattern possono
venire eseguiti piu volte, con modifiche eseguite dal vivo tra un’esecuzione e l'altra.
Per questo SHARP si focalizza nel tracciare i cambiamenti di ogni pattern ogni
volta che vengono eseguiti in maniera completamente automatica e che non richieda
comandi espliciti da parte dell’utente.

SHARP visualizza le versioni in molteplici timeline direttamente in linea, ognuna
nella riga immediatamente antecedente al pattern corrispondente. Interagendo con
le timeline, I'utente puo riportare il singolo pattern ad una versione precedente in
modo da eseguirlo nuovamente o come punto di partenza per nuovi pattern.

—— —0

dl

$ off (1/16) (|- gain 0.15)
$ off (1/8) (|- gain 0.18)
$ superimpose (|+ up 7)

$ s "dbass:7x4"

d2

$ stack [

chop 4 $ s "leaves" # n "<1 2>" # gain 0.1,
s "kick:5" # pan "<0.3 0.7>"

1

Figura 2.4: Interfaccia grafica per la visualizzazione di timeline di SHARP.
Immagine tratta da [9].

10

T W N =

Background e Lavori Correlati

2.3 Ideazione di un Version Control System per
il Creative Coding basato su Abstract Syntax
Tree

Viste le difficolta riscontrate dai programmatori creativi descritte in questo capitolo,
si possono pensare funzionalita che mirino a risolverle o mitigarle. Tra queste,
figurano la proposta di un partecipante ad uno degli studi analizzati in precedenza
di implementare un salvataggio periodico e automatico di nuove versioni, ma anche
un’analisi precisa ed ad-hoc del codice sorgente dello sketch in modo da individuare
con cognizione di causa le modifiche apportate e la loro natura.

Questo lavoro, seppure tocchi entrambi questi aspetti, tenta di innovare soprat-
tutto nel secondo caso impiegando particolari strutture dati dette Abstract Syntax
Tree. Si tratta di una particolare rappresentazione strutturata del codice sotto
forma di albero che viene generato a partire da quella testuale in un qualunque
linguaggio di programmazione. Ogni nodo in tali strutture fa riferimento ad un
preciso elemento semantico (con annessa tipologia) del codice e ne descrive la
relazione con gli altri elementi. In questo modo, viene quindi rappresentato il
codice in maniera indipendente da formattazione del testo e spazi bianchi, elementi
che modificano 'aspetto del codice senza influenzarne la funzionalita. Cio per-
mette di concentrarsi sulle modifiche funzionali ignorandone tutte le minuzie della
rappresentazione testuale.

mmmmmm

funcion dentifer

identier . dentifer

Figura 2.5: Rappresentazione grafica dell’AST di uno sketch vuoto.

function setup() {

createCanvas (windowWidth, windowHeight) ;
}
function draw () {

}

Listing 2.1: Codice relativo alla figura 2.5.

Gli AST sono molto utilizzati nella realizzazione di compilatori e vengono
prodotti da programmi chiamati parser.

11

Background e Lavori Correlati

Tramite le loro proprieta sarebbe quindi possibile rilevare in maniera piu precisa
e capillare le modifiche che sono state apportate ad uno sketch in modo da metterle
in relazione con le altre versioni cosi da realizzare un VCS che possa adattarsi
alle esigenze dei programmatori creativi interpretandone con maggior precisione le
intenzioni.

12

Capitolo 3

Progettazione

3.1 Requisiti

Viste le difficolta descritte dai programmatori creativi nell’adottare VCS per i loro
sketch, sono stati identificati i requisiti da soddisfare con lo sviluppo dell’applicazione.
Il lavoro degli artisti e infatti molto iterativo, per cui vengono cambiate con alta
frequenza piccole porzioni di codice. Pertanto creare dei “commit” manualmente
per ogni cambiamento non ¢ assolutamente pratico, sarebbe pertanto auspicabile
un automatismo per il salvataggio di nuove versioni del codice. Per affrontare i
problemi appena descritti sono stati pensati i primi due requisiti (3.1.1 e 3.1.2).

Inoltre, un ulteriore obiettivo € quello di permettere 1'utilizzo dell’applicazione
anche da parte di utenti inesperti, che rende quindi auspicabile dare priorita alla
facilita d’utilizzo (3.1.4).

3.1.1 Versionamento capillare

Data la natura del Creative Coding, ogni piccolo cambiamento puo avere un
impatto significativo sul risultato finale e, dal momento che esso valorizza lo sketch,
e importante essere in grado di seguire ogni modifica nel tempo indipendentemente
dalla sua dimensione.

Per distinguere il tipo di modifica, sono stati definiti due termini simili che pero
implicano una sostanziale differenza version e variation: con wversion, infatti, si
intende una modifica strutturale al codice sorgente dello sketch che ne cambia le
funzionalita e la rappresentazione durante il parsing. Con variation, invece, ci si
riferisce a modifiche dei valori di variabili gia esistenti. Come detto in precedenza,
tali modifiche possono portare ad un risultato molto diverso seppure apportino al
codice cambiamenti non strutturali e di dimensione ridotta.

L’applicazione deve essere quindi in grado di salvare nuove version quando e
necessario, e deve poter rilevare e tenere traccia delle variation.

13

Progettazione

mySize / 1;

margin = mySize / 108@; mar‘
for (let i=0; i<int(random(5@, 1@@)); i++) { ... } for (let i=@; i<int(random(5e0, 10@)); i++) { ... }
theShader.setUniform(theShader.setUniform(
'u_time', 'u_time',
millis¢) / 1000 millis{) 7/ 1
¥ '
let version = random([1,2,4,6,8])*1@8; let version = random{[200,150,77,58, 140]%10@;
let ¢ = random(2@60, 5000); let ¢ = random(106@, 2008);
colorMode (HSB, 360, 100, 160, 100); colorMode (HSB, 21, 1@, 18, 10);

Figura 3.1: Esempio di wvariation di uno sketch che ottiene uno stile distinto
unicamente modificando le variabili gia esistenti. Immagine tratta da [7].

La tesi esplora 1'utilizzo di parser per il linguaggio di programmazione usato per
lo sketch con generazione di Abstract Syntax Tree per distinguere tra version e
variation.

3.1.2 Salvataggio automatico

Dalle interviste analizzate nel Capitolo 2, € emerso che alcuni partecipanti abbiano
ritenuto eccessivo creare un commit con un Version Control System per apportare
delle modifiche che erano frequentemente molto piccole (pochi caratteri) e uno di loro
aveva suggerito di salvare una nuova versione automaticamente e periodicamente
ogni pochi secondi. Per questo motivo, in questa tesi si e scelto di rendere il
processo di salvataggio automatico nel momento in cui venisse rilevata una modifica
allo sketch.

Operando in questo modo, tuttavia, ci si espone alla possibilita di salvare sketch
contenenti errori nella cronologia. In questo modo, pero, I'utente non potrebbe
fare affidamento ad una qualunque versione salvata in quanto potrebbe contenere
errori che ne impediscono 1’esecuzione o la visualizzazione del risultato, rendendo

14

Progettazione

potenzialmente impossibile capire se vi siano informazioni utili per il processo
creativo. Inoltre, uno sketch contenente errori rende impossibile il parsing e I’analisi
dello stesso, negando la ragion d’essere del progetto.

Si e resa quindi necessaria una metodologia per tentare di rilevare errori nello
sketch prima di salvarli nel database e che possa operare con sufficiente affidabilita
da rilevare la maggior parte degli sketch non validi.

Vista la mole di operazioni da compiere ad ogni salvataggio, ¢ imperativo porre
particolare attenzione alle prestazioni dell’applicazione in modo che 1’esperienza
dell'utente non venga intralciata da blocchi e rallentamenti improvvisi, soprattutto
su hardware di fascia piu bassa.

3.1.3 Navigazione tra versioni

Come gia spiegato, la possibilita di rivisitare versioni passate in maniera facile e
intuitiva e di fondamentale importanza per i Creative Coders. Per questo motivo si
¢ pensato ad una timeline che rappresentasse ogni versione dello sketch con annessa
anteprima mediante la quale 'utente possa interagire per spostarsi tra versioni.

L’intenzione iniziale era la realizzazione di una timeline ad “albero” che permet-
tesse forks. Successivamente, tuttavia, si & preferito utilizzare una timeline lineare
per via della natura “single user” dello strumento.

3.1.4 Facilita d’uso

Nel Capitolo 2 sono state evidenziate le difficolta riscontrate dai Programmatori
Creativi nell’utilizzo dei Version Control System. L’utilizzo dei VCS moderni come
Git, richiede infatti la conoscenza di diversi concetti come commit, branch, merge,
merge conflict e repository oltre che dimestichezza con la linea di comando.

Molti IDE moderni forniscono delle interfacce grafiche proprio per agevolare
I'utilizzo di Git ed evitare all’'utente di utilizzare la linea di comando. Tuttavia,
tali GUI per essere funzionali devono necessariamente esporre I'utente ai concetti
del VCS sottostante, e quindi possono comunque risultare troppo complicati.

Dal momento che il Creative Coding e una pratica spesso adottata da individui
che stanno ancora imparando a programmare o che non sono interessati ad appro-
fondire le proprie conoscenze generali di programmazione [6], ¢ importante che la
soluzione adottata per questo progetto sia il piu semplice e intuitiva possibile.

3.1.5 Gestione efficiente di un gran numero di versioni

Visti i requisiti descritti nelle sezioni 3.1.2 e 3.1.1, ¢ facile immaginare che, durante
un uso normale dello strumento, verranno salvate un gran numero di versioni. E

15

Progettazione

quindi desiderabile minimizzare il piu possibile lo spazio su disco occupato da ogni
versione e garantire una navigazione tra versioni il piu rapida ed efficiente possibile.

3.2 Prototipo su carta

La prima fase nella progettazione dell’interfaccia utente & consistita nella rea-
lizzazione di paper prototype, ovvero di schizzi che rappresentano 1’applicazione
eseguiti con carta e penna in modo da farsi un’idea di come disporre gli elementi
nell’applicazione ponendo importanza sulla natura dei dati mostrati e sulla loro
posizione relativa, senza doversi preoccupare degli aspetti estetici.

La progettazione ha visto la creazione di diverse interfacce. Inizialmente, 1'idea
era di permettere all’'utente di creare branch. Di conseguenza i design iniziali
riflettono tale intenzione.

JeRsS o~ VAQ\AT O

”)tmp — VRN S oM

B o\?ﬂ « VAATONS
>R<14~u-4

UNnA V> cu—l 7]

i \) AlD(\) Tvmswvr

Figura 3.2: Prima idea di timeline.

La figura 3.2, mostra un design della timeline che occupa gran parte dello
schermo. E strutturata come un insieme di nodi, ognuno dei quali rappresenta
una versione. In questa fase, 'intenzione era ancora distinguere le version dalle

16

Progettazione

variation. Ogni riga rappresenta una version, mentre ogni colonna rappresenta una
variation. Sulla destra e visibile una rappresentazione alternativa e piu compatta
della timeline, anch’essa strutturata in maniera tale da distinguere tra version e
variation.

eV cABS FE__%

: s | -
&/ td '54 H——5-
+ - o G oo AL .
i % CRERE W L L= = 3% R e
TVE.RS(@A/\C@’V
AT RPCRING

Figura 3.3: Seconda idea di timeline.

La figura 3.3, invece, mostra una visualizzazione della timeline ad albero. In
questa versione ¢ stata abbandonata la differenziazione tra version e variation.
Questa versione si ispira alla rappresentazione di diverse branch di Git.

Infine, nella figura 3.4, viene mostrato uno schizzo dell’interfaccia grafica com-
pleta. In questo prototipo, fortemente influenzato dall’editor online di p5.js [10]
e OpenProcessing [11], ¢ stata abbandonato il concetto di branch, a favore di
una timeline lineare e quindi piu semplice da implementare ma anche per 'utente
da comprendere e utilizzare. In questa versione i valori delle variabili tracciate
dall’applicazione sono mostrate in un panel che si sovrappone all’anteprima in alto
a destra nella finestra.

Quest’ultima versione ha subito ulteriori variazioni durante lo sviluppo del
progetto che non sono state rappresentato in uno schizzo su carta: la timeline
stata spostata nella parte alta della finestra e la visualizzazione delle variabili &
stata implementata come dei pannelli in-line che possono essere mostrati e nascosti
a piacimento.

17

Progettazione

Figura 3.4: Interfaccia grafica completa.

3.3 Web Application o plug-in per un editor
esistente

Una scelta importante per il progetto riguarda la piattaforma per cui sviluppare
I’applicazione. Tra le possibili alternative, ne sono state isolate due in particolare:
la creazione di una nuova Web Application o la realizzazione di un plug-in per un
editor di codice gia esistente.

Tra i numerosi editor di codice disponibili, e stato isolato Visual Studio Code
(VSCode), per via della sua popolarita e relativa facilita d’uso.

Un plug-in per VSCode presenta il vantaggio di essere molto diffuso tra pro-
grammatori sia esperti che neofiti, offre un’enorme libreria di plug-in gia disponibili
e mette in condizione 1'utente di utilizzare uno strumento possibilmente familiare e
gia configurato per le proprie necessita.

Al contrario, una nuova Applicazione Web non richiede installazione di software
aggiuntivo (almeno nel caso in cui l'utente si avvicini per la prima volta al mondo

18

Progettazione

della programmazione), permette maggiore flessibilita di personalizzazione dell’a-
spetto visivo per adattarsi al meglio alle esigenze dell’'utente ed e accessibile anche
da piattaforme piu limitate, come tablet Android e Apple.

Dal momento che gli utenti potenziali dell’applicazione potrebbero essere neofiti o
non a proprio agio con gli strumenti piu avanzati, li si vuole dotare di uno strumento
piu intuitivo in modo che esso non rappresenti per gli utilizzatori una sfida tecnica.
Date queste premesse, con questo lavoro, si € deciso quindi di proseguire con la
creazione di una nuova Web Application.

19

Capitolo 4

Implementazione

4.1 Tecnologie utilizzate

In questa sezione verranno analizzate le principali tecnologie utilizzate per lo
sviluppo dell’applicazione con le annesse motivazioni che hanno portato alla loro
scelta. Sono state usate pd come libreria di base per la realizzazione degli sketch,
Tree-sitter per il parsing e la generazione degli Abstract Syntax Tree, Yjs per la
gestione nelle versioni, Monaco per 'implementazione dell’editor di codice e React
per la realizzazione dell’interfaccia grafica.

4.1.1 pS.js

Vista la necessita di supportare la creazione di sketch all’interno del browser, ¢ ne-
cessario scegliere una libreria per il Creative Coding che sia realizzata nativamente
per il Web o che possa essere in qualche modo eseguita in tale contesto oltre ad
essere sufficientemente popolare da permetterne I'utilizzo ai programmatori creativi
con esperienza e facilitare la ricerca di informazioni nel caso in cui si necessitino
aiuti o chiarimenti. Tra le alternative disponibili spiccano p5 e Processing. Que-
st’ultima, sebbene sia in grado di essere eseguita nel browser come dimostrato da
OpenProcessing, necessita di accorgimenti aggiuntivi e richiede la conoscenza del
linguaggio di programmazione Java (pitt complesso da imparare per un neofita).
Per questo motivo si e scelto di basare il progetto su pb5.

p5 [12] ¢ una libreria JavaScript molto conosciuta e utilizzata nell’ambito del
Creative Coding creata da Lauren Lee McCarthy nel 2013 come alternativa alla
popolare libreria Processing [2] per il web. Essendo il progetto realizzato per questa
tesi un’applicazione web e vista la popolarita di p5, quest’ultima e stata scelta
come base degli sketch supportati.

p5 semplifica molto la creazione di uno sketch dal momento che accede diretta-
mente al DOM del browser e crea autonomamente gli elementi necessari, come un

20

Implementazione

canvas HTML. Come verra descritto in seguito, tuttavia, tale funzionalita, seppure
di grande aiuto per gli utenti di p5, non e appropriata per questo progetto, in quanto
& necessario che pb si occupi solamente di “disegnare” sul canvas, lasciandone la
creazione e la gestione all’applicazione.

Per questo motivo, & stato compiuto il vendoring (ovvero I'inclusione del codice
sorgente all’interno del progetto) dell’ultima versione stabile di p5 disponibile (v2.0.5
al momento della creazione del progetto) in modo da modificarla per adattarla alle
esigente di questa tesi.

4.1.2 Tree-sitter

Per generare ’AST a partire dal codice JavaScript dell’utente, € necessario un
parser. Ne esistono diverse alternative, tra le quali sono state analizzate Tree-sitter
e Babel. La seconda ¢ una libreria realizzata appositamente per il web per il
parsing dei linguaggi JavaScript e TypeScript; vista la rappresentazione dei dati
e le funzionalita fornite per I'esplorazione dell’AST meno ergonomiche al fine di
implementare 1’algoritmo GumTree descritto in seguito, si € preferito utilizzare
Tree-sitter per le sue prestazioni superiori e ’API matura e completa oltre alla
enorme disponibilita di parser per gran parte dei linguaggi di programmazione
(utile nel caso si decidesse di adattare questo progetto per 1'uso con altre tecnologie).

Tree-sitter [13] ¢ uno strumento per la generazione di parser e una libreria per il
parsing incrementale. E stata creata da Max Brunsfeld nel 2018 e si & velocemente
diffusa per la sua solidita e prestazioni. Grazie a questo strumento, sono stati
realizzati parser per numerosi linguaggi di programmazione, tra cui JavaScript.

I parser Tree-sitter, normalmente compilati in codice macchina, sono anche
compilabili per il web come binari WebAssembly e disponibili su npm.

In particolare, per questa tesi, viene utilizzato il parser JavaScript.

4.1.3 Yijs

Vista la necessita di tenere traccia delle modifiche apportate al codice da parte
dell'utente, necessitando di una rappresentazione su disco efficiente e la capacita di
gestire una gran numero di modifiche, ¢ stata scelta in maniera insolita la libreria
Yjs, la quale supporta le funzionalita necessarie anche se pensata principalmente
per un altro scopo.

Essa [14] ¢ un Conflict-free Replicated Data Type ad alte prestazioni scritto in
JavaScript. I CRDT sono particolari strutture dati che possono essere replicate
tra molteplici computer, dove ogni replica puo essere aggiornata indipendente-
mente dalle altre. Per quanto ogni copia diverga dalle altre, ¢ sempre possibile
riconciliarle in maniera automatica e senza conflitti [15]. Sono molto utilizzati per

21

Implementazione

realizzare applicativi che permettono a piu utenti di modificare lo stesso documento
contemporaneamente, tra cui Google Docs e Notion.

Esistono diversi tipi di CRDT, ma i Commutative Replicated Data Types
(CmRDT) come Yjs funzionano salvando ogni modifica apportata al documento a
partire dalla sua creazione (nel caso di documenti di testo, ogni carattere inserito o
rimosso). Tali informazioni possono essere utilizzate per implementare un sistema
di versioning, possibilita offerta da Yjs tramite la sua funzionalita di snapshot.

Tra le implementazioni di CRDT disponibili, Yjs e stato scelto per via della sua
affidabilita, prestazioni elevate, ridotto uso di spazio di archiviazione e disponibilita
di integrazioni per Monaco e IndexedDb.

4.1.4 Monaco

Per quanto riguarda 'editor di testo, ne serviva uno che fosse ricco di funzionalita
e in grado di supportare 'utilizzo sia da parte di utenti neofiti che avanzati. Per
questo ¢ stato scelta la libreria Monaco [16].

E questa la libreria sviluppata da Microsoft alla base di Visual Studio Code,
estratta da quest’ultimo per permetterne 1'utilizzo sul web. Essa fornisce supporto
per la colorazione della sintassi per JavaScript, completamento del codice e numerose
API che permettono di estenderne le funzionalita oltre a personalizzarne aspetto e
comportamento.

4.1.5 React

Per la realizzazione dell’interfaccia grafica, al fine di impiegare una tecnologia
matura e ben conosciuta basata su un paradigma ormai molto diffuso, ¢ stata scelta
la libreria React [17], scritta in JavaScript e sviluppata da Meta, con 'obiettivo di
semplificare la creazione di interfacce grafiche basandosi su “componenti”, ovvero
parti di codice modulari, riutilizzabili e indipendenti.

La libreria adotta uno stile “dichiarativo”, ovvero che permette al programmatore
di specificare la struttura dell’interfaccia grafica senza definire i dettagli di come
questa verra effettivamente realizzata: la libreria si occupera in maniera autonoma
di aggiornare il DOM in modo da ottenere il risultato desiderato. Per migliorare le
prestazioni, React impiega il Virtual DOM, che permette di aggiornare solamente
le parti dell’interfaccia che sono cambiate senza dover ricostruire l'intera pagina.

4.2 AST diff

I Version Control System per lo sviluppo software piu utilizzati come Git, tengono
traccia dell’evoluzione dei file basandosi sulle differenze tra le righe di codice nei
file di testo con algoritmi come quello di Myers [18, 19].

22

Implementazione

Libreria

Funzionalita

@js-sdsl/hash-map
@js-sdsl/ordered-map
fast-deep-equal
@monaco-editor/react
async-mutex

comlink

idb

1ib0

monaco-editor
monaco-themes
overlayscrollbars
overlayscrollbars-react
po

react

yJs

y-monaco

HashMap. Usata per impl. GumTree

Mappa (Red Black Tree). Usata in impl. GumTree
Deep equality. Usata per impl. GumTree
Adattatore per includere Monaco in un’app React
Implementazione di Mutex FIFO

Wrapper async/await per WebWorker

Wrapper async/await per IndexedDb

Utility functions. Usato per Observables

Vedi sezione 4.1.4

Temi per Monaco editor

Scrollbar che si sovrappongono a contenuto
Adattatore React per overlayscrollbars

Vedi sezione 4.1.1

Vedi sezione 4.1.5

Vedi sezione 4.1.3

Adattatore per collegare Yjs a Monaco

Tabella 4.1: Principali librerie utilizzate.

23

0 1O Ui Wi =

Implementazione

Lo svantaggio di tale approccio ¢ che il sistema non ¢ in grado di capire se vi
siano state modifiche strutturali del codice o meno. Cio si puo risolvere eseguendo
il parsing del codice sorgente ottenendo un AST, che ne descrive la struttura senza
essere influenzato da spazi bianchi o formattazione del documento in generale
e successivamente confrontando gli AST del codice prima e dopo la modifica.
Tale operazione consiste nella generazione di un edit script, ovvero una lista di
operazioni che descrive le differenze tra i due alberi in termini di aggiunta, rimozione
e spostamento di nodi.

Tuttavia, la generazione di un edit script ottimale di dimensioni minime che
supporti operazioni di add, delete, update ¢ un problema NP-hard [20] e il miglior
algoritmo noto al momento, RTED, ha complessita O(n?), dove n ¢ il numero di
nodi dell’AST [21].

Da un punto di vista pratico, pero, per gli utenti di un VCS la garanzia di
ottenere un edit script ottimale ¢ superflua: in questo contesto un algoritmo dalle
prestazioni elevate basato su euristiche & da preferirsi ad un algoritmo ottimale ma
molto piu lento.

Un algoritmo che rispetta le esigenze appena descritte ¢ GumTree, realizzato
da Jean-Rémy Falleri nel 2014 [22]. Seppure abbia complessita O(n?) nel caso
peggiore, risulta essere sufficientemente performante per 1'uso in un VCS come
quello sviluppato in questa sede.

La principale implementazione di questo algoritmo e disponibile su GitHub ed e
stata realizzata dallo stesso Falleri in Java [23]. Ad oggi, non sembrano esistere
implementazioni dell’algoritmo che possano essere utilizzate in un contesto web,
quindi nella prima fase del progetto ¢ stato eseguito il porting della suddetta
implementazione Java in TypeScript.

Dettagli di implementazione

Il port re-implementa la struttura dati che rappresenta I’AST, chiamata LightTree
che implementa 'interfaccia ILightTree:

export interface ILightTree {
type: string;
text: string;
startPosition: Point;
endPosition: Point;
startIndex: number;
endIndex: number;
children: Array<ILightTree>;
childCount: number;
parent: ILightTree | null;
nextSibling: ILightTree | null;
descendantCount: number;
metrics?: Metrics;

24

14
15
16
17
18
19
20
21
22

Implementazione

walk(): LightTreeCursor;

insertChild(t: ILightTree, pos: number): void;
removeChild (pos: number): ILightTree | undefined;
isIsomorphicTo(tree: ILightTree): boolean;
isIsoStructuralTo(tree: ILightTree): boolean;
getLabel () : string;

hasSameTypeAndLabel (t: ILightTree): boolean;

ILightTree si ispira alla rappresentazione di Tree-sitter, aggiungendo campi
e metodi utili per questo progetto (metrics, insertChild, isIsomorphicTo, etc.) e
rimuovendone di superflui.

L’algoritmo si puo suddividere in quattro fasi:

Generazione degli AST: tramite Tree-sitter, vengono generati i due AST
corrispondenti al codice sorgente prima e dopo una modifica per poi convertirli
in LightTree;

Greedy top-down matching: in questa fase avviene la ricerca dei sotto-alberi
isomorfici di dimensione massima;

Bottom-up matching: questa fase parte dai risultati della fase precedente
e determina se due nodi corrispondano verificando che vi sia una buona
corrispondenza tra i rispettivi discendenti e successivamente utilizzando un
algoritmo ottimale per la generazione delle mappature finali tra AST sorgente
e destinazione;

Generazione dell’edit script: le mappature della fase precedente vengono poi
fornite in input all’algoritmo di Chawathe [24], che restituira ’edit script
finale.

L’edit script ¢ un array di Action, che possono rappresentare inserzioni, rimozioni,
aggiornamenti o spostamenti dei nodi.

Valutazione qualitativa delle prestazioni

Per decidere come procedere con la strategia di salvataggio automatico, sono stati
eseguiti alcuni semplici benchmark per verificare il tempo di esecuzione su alcuni
sketch di esempio. Lo scopo del benchmark non e ottenere risultati precisi e
riproducibili, quanto farsi un’idea dell’ordine di grandezza del tempo impiegato per
I’esecuzione del port dell’algoritmo GumTree nel caso di modifiche molto piccole
(pochi caratteri) allo sketch, come potrebbero esserle in pratica nell’utilizzo effettivo
dell’applicativo.

25

Implementazione

Sketch Durata media (ms) Errore (%) Runs Bytes (src/dst)
Waves 18.1 +1.45 71 1929/1928
Sea Weeds 27.8 £5.43 32 5803/5802
Frozen Brush 26.0 +3.24 52 3340/3340

Tabella 4.2: Risultati del benchmark.

26

Implementazione

I risultati del benchmark rivelano che, almeno su hardware di fascia bassa e per
sketch di medie dimensioni, I'esecuzione dell’algoritmo ¢ si molto rapida (decine di
millisecondi), ma comunque non a sufficienza da poter essere eseguito sul thread
principale insieme all’interfaccia grafica, soprattutto vista la frequenza con cui
viene eseguito l'algoritmo. Si potrebbero verificare infatti, specialmente nel caso di
sketch piu grandi, stutter e “impuntamenti”, che porterebbero ad un peggioramento
significativo dell’esperienza utente.

Note sulla licenza del progetto

L’implementazione dell’algoritmo GumTree di J. R. Falleri, ¢ rilasciato al pubblico
sotto licenza GNU Lesser General Public License Version 3 (LGPL-3.0) [25]. Dal
momento che il progetto contiene il porting parziale di tale codice, ¢ stata adottata
la stessa licenza.

4.3 Modifiche apportate a p5

Come accennato nella sezione 4.1.1, e stato eseguito il vendoring della libreria p5 e
sono state apportate alcune modifiche per permetterne il funzionamento “headless’
in un WebWorker. In questa sezione verranno descritte tali modifiche alla libreria
e come essa viene utilizzata all’interno del progetto.

)

Semplificando molto, quando viene importata in una pagina web, p5 inizializza
i propri moduli, che implementano le funzionalita della libreria tra cui input e
output, eventi (ad esempio mouse e tastiera), funzionalita matematiche, webgl
e altri e, di default, rende il tutto disponibile nello scope globale di esecuzione
JavaScript. Successivamente, tenta di individuare il codice dello sketch dell’'utente,
lo analizza utilizzando un parser chiamato “acorn” in modo da rilevare dichiarazioni
di funzioni o variabili che vanno in conflitto con le quelle fornite da p5 stessa,
verifica la presenza delle funzioni setup e draw nello sketch, esegue la funzione
setup e successivamente da inizio ad un ciclo infinito nel quale ad ogni iterazione
viene chiamata la funzione draw e che si ripete ad ogni frame grazie alla funzione
requestAnimationFrame fornita dai browser.

Nella funzione setup dello sketch, 'utente deve chiamare createCanvas, che si
occupa della creazione di un Renderer, ovvero di una classe che fornisce le funzionalita
per il disegno sul canvas e che puo basarsi semplicemente sul canvas stesso o su
WebGL. 11 Renderer si occupa a sua volta, tra le altre cose, della creazione di
un canvas HTML che viene automaticamente aggiunto nella pagina accedendo
direttamente al DOM.

27

© 00 O UL Wi

—_
o

Implementazione

Rimpiazzo di window € document

Dal momento che, dall’interno di un WebWorker, p5 non puo accedere alle proprieta
fornite normalmente dal browser, queste vengono passate dall’esterno durante la
creazione del WebWorker in un oggetto che rispetta l'interfaccia P5Dom:

export interface P5Dom {
screen: {
width: number,
height: number
};
innerWidth: number;
innerHeight: number;
devicePixelRatio: number;
orientation: number;

Separatamente, come parametri del costruttore del WebWorker, vengono anche
passati il codice sorgente dello sketch, i callback necessari per la comunicare con il
thread principale e il canvas sotto forma di un 0ffscreenCanvas [26], “collegato” ad
un canvas HTML creato nel thread principale. Tali dati e il contenuto di P5Dom,
verranno copiati all’interno della proprieta self.

Per poter accedere a tali informazioni, pb e stato modificato in modo da non
utilizzare le proprieta window e document, rimpiazzandole per 'appunto con self.
Invece di creare un nuovo canvas, infine, p5 & stato modificato in modo da utilizzare
quello fornito dal thread principale durante I’'inizializzazione.

Implementazione funzionalita di heartbeat

Per verificare che gli sketch non si blocchino ad esempio a causa di un ciclo infinito,
portando quindi al salvataggio di uno sketch non funzionante, e stata implementata
una funzionalita di heartbeat, con la quale il WebWorker notifica periodicamente il
thread principale permettendogli di capire che I'esecuzione procede come previsto.
L’implementazione ¢ stata aggiunta all’interno del metodo _draw di p5 nel file
main. js, che viene eseguita per ogni frame e che chiama a sua volta la funzione draw
dell’utente.

Ad ogni esecuzione viene misurato il tempo impiegato dal frame precedente in
millisecondi e viene sommato ad un contatore. Quando il contatore raggiunge o
supera una soglia arbitraria (in questo caso di 3s), viene emesso un segnale e il
contatore viene resettato.

Un sistema simile ¢ utilizzato da diversi sistemi come Microsoft Windows,
Android e gli stessi browser per determinare se gli applicativi in esecuzione si siano
bloccati.

28

Implementazione

Questa semplice strategia, ha il limite che nel caso in cui la produzione di un
frame dovesse impiegare troppo tempo, il sistema terminerebbe lo sketch, anche se
questo non dovesse essere effettivamente bloccato.

Esposizione dei warning di p5 al thread principale

Nel file core/friendly_errors/sketch_verifier.js, p5 utilizza il parser “acorn” pre-
cedentemente citato per eseguire il parsing dello sketch e per verificare che esso
non contenga definizioni di funzioni o variabili che vadano in conflitto con i simboli
dichiarati da p5 stesso. Nella versione originale, p5 puo segnalare all’'utente la
presenza dei conflitti solamente uno alla volta e tramite un messaggio in console
che risulta fuori luogo se visualizzato in linea.

E stato quindi modificato il template del messaggio di errore ed ¢ stata modificata
la logica che produce gli errori in modo da poterne generare piu di uno alla volta per
poi mandarli al thread principale all’interno di un oggetto che contiene informazioni
aggiuntive, come la riga e la colonna in cui ¢ stato trovato il problema, tramite
uno dei callback forniti durante la creazione del WebWorker.

const message = “${errorTypel} "${name}" on line ${line} is being
redeclared and conflicts with a p5.js ${errorType.toLowerCase ()
}. p5.js reference: ${url}";

Listing 4.1: Template originale per la generazione dei messaggi di errore di p5

const message = “${errorTypel} "${namel}" is being redeclared and
conflicts with a p5.js ${errorType.toLowerCase()}. p5.js
reference: ${url} ;

Listing 4.2: Template modificato per la generazione dei messaggi di errore in
linea

Vantaggi e svantaggi di questo approccio e soluzione alternativa

Gli editor esistenti basati su p5 come quello “originale” della libreria [10] e Open-
Processing [11], usano un approccio diverso: impiegano un iframe nel quale vengono
caricati lo sketch e p5 stesso, che poi vengono eseguiti in maniera isolata dal resto
dell’applicazione. Tale approccio ha diversi vantaggi, tra cui la possibilita di uti-
lizzare la libreria p5 senza modificarla, che garantisce anche una maggiore facilita
nell’adottarne gli aggiornamenti. Potenzialmente sarebbe anche possibile eseguire
molteplici sketch allo stesso tempo (necessario per questo progetto), creando diversi
iframe nascosti e mostrando solo il piu recente.

Questo modo di procedere, tuttavia, non garantisce 1’esecuzione in parallelo
degli sketch, dal momento che il browser ¢ libero di decidere se eseguire il codice
dell’iframe in un thread separato o nello stesso thread del resto dell’applicazione.

29

Implementazione

Oltre a causare potenziali rallentamenti per via del tempo di esecuzione fisiologico
degli sketch, nel caso di sketch particolarmente pesanti o di scrittura accidentale di
cicli infiniti da parte dell’'utente, I'intera applicazione verrebbe bloccata peggiorando
I’esperienza utente, potenzialmente causando la perdita di dati nel caso in cui fossero
in corso delle scritture sul database.

Note sulla licenza di p5 in relazione a quella del progetto

Come accennato in precedenza, questo progetto ¢ pubblicato con licenza LGLP-3.0,
p5 invece con licenza LGPL-2.0 [27], che & incompatibile con quella del progetto.
Per rispettarne i termini, quindi, p5 non ¢ stata inclusa nel bundle con il resto del
codice ma viene caricata dinamicamente quando necessario, permettendo all’utente
di rimpiazzarla con una copia personalizzata a proprio piacimento (qualora lo
desiderasse).

4.4 Struttura dei thread

Per migliorare I'esperienza utente ed evitare “impuntamenti”, il codice relativo
all’interfaccia grafica e la “business logic” vengono eseguite su thread diversi che,
nel mondo web, prendono il nome di WebWorkers. Oltre ad eseguire codice su un
thread separato, essi forniscono anche una “sandbox” che impedisce loro di accedere
direttamente alle variabili negli altri Workers e al DOM nel thread principale. Ogni
comunicazione tra thread deve essere effettuata tramite messaggi inviati usando il
metodo postMessage e ricevuti registrando il callback onmessage [28]. Tali limitazioni,
specialmente utili per garantire la sicurezza dell’applicazione (considerazione molto
importante ogni qual volta si esegue l'input dell’utente), hanno pero lo svantaggio
di renderne I'utilizzo piu macchinoso, motivo per cui e stata utilizzata la libreria
Comlink sviluppata da Google [29], libreria che espone le funzioni definite all’interno
dei WebWorker ad altri thread come funzioni con la stessa signature ma asincrone.

Oltre a quello principale, nell’applicazione vengono usate due ulteriori tipologie
di Worker: DrawerWorker e ParserWorker.

4.4.1 DrawerWorker

Lifetime e ordine di esecuzione

Il DrawerWorker si occupa di eseguire p5 e lo sketch dell’'utente. Disegna direttamente
su un OffscreenCanvas che gli viene passato dal thread principale al quale puo essere
associato un canvas HTML in modo da mostrare all’'utente il risultato del proprio
lavoro in tempo reale. Il numero di istanze in esecuzione contemporaneamente
non é fisso e puo variare nel tempo. Ogni qual volta il thread principale decida di

30

Implementazione

salvare una nuovo snapshot, infatti, viene creato un nuovo DrawerWorker che esegua
lo sketch. 1l thread principale verifica quindi che il Worker emetta due heartbeat (la
cui generazione e stata descritta in 4.3) e che non produca errori. Una volta superati
tali controlli, il thread principale inizia la procedura di salvataggio di un nuovo
snapshot e quando questo viene completato con successo, il Worker viene terminato,
ma solo nel caso in cui durante il salvataggio ne sia stato eseguito uno nuovo che
possa rimpiazzarlo, altrimenti viene lasciato in esecuzione. Come accennato in
precedenza, dal momento che 'utente potrebbe apportare delle modifiche al codice
dello sketch durante le verifiche appena descritte o durante la scrittura su disco,
¢ possibile che vengano eseguiti piul DrawerWorker contemporaneamente, ognuno
dei quali relativo ad una versione diversa dello sketch. Anche se ¢ possibile che
molteplici sketch vengano eseguiti contemporaneamente, solo uno alla volta di essi,
ovvero quello creato per ultimo, avra un canvas HTML associato che ne mostri
I’esecuzione all’utente, gli altri lavoreranno interamente “headless”.

Vista la possibilita che vengano eseguiti molteplici DrawerWorker contemporanea-
mente, ognuno associato a sketch con tempi di avvio ed esecuzione potenzialmente
significativamente diversi, ¢ importante garantire che le operazioni di salvataggio
che vengono lanciate successivamente al superamento dei controlli appena descritti
si svolgano nell’ordine corretto. Per questo motivo, le “sezioni critiche” sono protet-
te da Mutex [30] la cui implementazione garantisce in ordine FIFO lo smaltimento
delle operazioni in attesa.

Gestione degli input

pb permette la creazione di sketch interattivi, fornendo API per I'accesso a dispositivi
di input tra cui mouse e tastiera basate sulle API analoghe fornite dal browser. Tali
API, tuttavia, non sono accessibili dall’interno di un WebWorker: si rende quindi
necessario catturare gli eventi rilevanti nel thread principale ed inoltrarli al Worker,
operazione non possibile direttamente in quanto gli oggetti che rappresentano
gli eventi non sono copiabili tramite una structuredClone. Per questo motivo, in
utils/events.ts sono stati definiti i campi necessari per il corretto funzionamento
di p5 oltre a funzioni d’appoggio per poter convertire gli eventi generati dal browser
in oggetti strutturalmente simili, ma trasferibili al WebWorker.

Sono stati realizzati surrogati degli eventi MouseEvent, KeyboardEvent, WheelEvent,
UlEvent e FocusEvent. Per I’evento DragEvent, invece, nonostante sia supportato da
pH, non é stata realizzata un’alternativa in quanto puo contenere dati arbitrari al
suo interno di cui non e triviale garantire la trasferibilita.

31

00 O Ui W N

11
12
13
14
15
16
17
18
19

Implementazione

4.4.2 ParserWorker

Il ParserWorker ha una durata di esecuzione che coincide con quella dell’applicazione.
Per tutta la vita del programma ne esiste una sola istanza. Esso si comporta come
servizio che fornisce all’applicazione le funzionalita di lettura e il salvataggio di
dati da e nel database, oltre ad occuparsi del parsing e dell’analisi (parzialmente
descritta nella sezione 4.2) degli sketch fornitigli dal thread principale.

Keypoint e tracciamento delle variabili tra snapshot

Durante il processo di salvataggio di uno snapshot, viene impiegato 1’algoritmo
GumTree descritto nella sezione 4.2, il cui risultato consiste nell’edit script, ovvero
un array di Action che descrive le modifiche apportate allo sketch. Per poter
determinare se tali modifiche siano state apportate al valore iniziale di una variabile,
e necessario individuare i nodi di tipo variable_declarator. I nodi dell’AST associati
ad ogni Action, pero, possono essere di qualunque tipo, non necessariamente
riferiti a dichiarazioni di variabili: per questa ragione, ¢ necessario verificare
che il cambiamento rilevato coinvolga effettivamente i sotto-alberi rilevanti. Cio
avviene esplorando ’AST “verso il basso” a partire dal nodo associato all’Action
per verificare se vi siano discendenti del tipo desiderato; nel caso in cui non ne
vengano trovati, procedendo “verso l’alto” per verificare se la modifica sia avvenuta
all’interno di una dichiarazione di variabile.

Una volta disponibile la lista di nodi variable_declarator associati ad ogni Action,
e possibile, per ognuna di esse, calcolare le azioni di creazione o modifica di relativi
Keypoint:

export interface Keypoint {
/ **
* The id of the series of updates referring to this node
*/

seriesId: number;

VEX;

* The value of the current node or null if this is a
temporary node to link to an older snapshot

*/

value: string | null;

VEX:
* The position of the text snipped related to this Update
*/
pos: {
startIndex: number,
endIndex: number,
identifierEndIndex: number,

};
32

20
21
22
23
24
25
26
27

28
29
30

Implementazione

/ * %
* The id of the Snapshot in which this change was made
*/
snapshotId: number;
/ * %
* The id of the Update object referring to the same node in a
previous Snapshot
*/
predecessorId: number | null;
b

Ad ogni variabile viene associato un “identificatore di serie”, salvato in seriesId,
e ogni Keypoint € associato allo snapshot in cui e stata rilevata la modifica. La
posizione di ogni variabile in termini di indici nella stringa che rappresenta lo
sketch, & salvata nel campo pos e il valore dell’inizializzazione & salvato nel campo
value come stringa. Per semplificare ’accesso ai Keypoint in modo che sia possibile
accedervi con una singola query al database, il campo value puo avere come valore
null, per segnalare che si tratta di un Keypoint “temporaneo”. Esso viene aggiornato
ad ogni creazione di uno snapshot e permette di tenere traccia della posizione delle
variabili nello sketch (visto che modificando il codice dello sketch, gli indici dei nodi
successivi possono cambiare) e di determinare se una serie di Keypoint sia terminata
o meno. Se tra i Keypoint dell’ultimo snapshot non ne sono presenti di associati
ad una certa serie, significa che essa € terminata, ovvero che la dichiarazione di
variabile corrispondente e stata rimossa. Per ogni serie, puo esistere al pitt un
Keypoint “temporaneo”, ognuno dei quali sara sempre associato allo snapshot piu
recente.

Transazionalita dei salvataggi

Per garantire 'integrita dei dati nel database, tutte le operazioni di elaborazione
ed analisi dello sketch descritte fino ad ora, vengono eseguite all’interno di un’unica
transazione. Nel caso in cui qualunque parte dell’analisi dovesse fallire inaspetta-
tamente, la transazione viene annullata prevenendo la scrittura di dati parziali o
incorretti su disco.

Tra i dati da salvare, vi & anche lo stato del documento di Yjs (libreria descritta
nella sezione 4.1.3). Come gia accennato, tra le caratteristiche che hanno portato
alla sua scelta vi era la disponibilita della libreria y-indexeddb, realizzata dagli stessi
autori, che permette la sincronizzazione automatica dello stato di un documento
Yjs con un database IndexedDb. Tuttavia, y-indereddb accede al database ed

33

Implementazione

esegue le scritture tramite transazioni in maniera indipendente e non personalizza-
bile dall'utente, caratteristica che viola i requisiti transazionali dell’algoritmo di
salvataggio descritti poc’anzi.

Per questa ragione il codice di y-indexeddb ¢ stato incluso nel progetto e significa-
tivamente modificato in modo da poter utilizzare la stessa connessione al database
e la stessa transazione usate dal resto della funzione di salvataggio, operazione
agevolata dalla brevita del codice originale.

4.5 UI/UX

In questa sezione verranno descritte le scelte di User Interface e User Experience
ovvero gli elementi grafici e le funzionalita che compongono I’applicazione e come
esse sono esposte all'utente.

4.5.1 Timeline

La timeline ¢ posizionata nella parte superiore dell’applicazione. E composta
da una lista orizzontale di elementi, ognuno dei quali rappresenta uno snapshot.
Cliccando su un’anteprima, 'utente puo visualizzare il codice di quella versione
dello sketch. Passando il mouse sulle anteprime, vengono visualizzati i relativi
numeri di versione.

Ai lati della timeline, sono stati aggiunti due bottoni a forma di freccia. Posi-
zionando il mouse su di essi, la timeline avanza nella direzione corrispondente a
velocita costante. Cliccandoci sopra, si viene portati all’inizio o alla fine, in base
alla direzione indicata.

Nell’arco temporale necessario per il salvataggio di una nuova versione, viene
impedito all’'utente di spostarsi in altri snapshot per evitare la perdita di dati nel
caso di fallimento e viene mostrata un’animazione di caricamento all’interno di un
nuova anteprima vuota, per comunicare che sta avvenendo la creazione di un nuovo
snapshot. Per segnalare I'impossibilita di spostarsi in altre versioni, invece, viene
applicato un filtro grayscale a tutte le altre anteprime che vengono anche ruotate
leggermente, in modo da far notare la diversa interfaccia anche nel caso di sketch
in bianco e nero o con colori poco saturi.

Figura 4.4: La timeline, durante la creazione di un nuovo snapshot.

34

Implementazione

Za\

Figura 4.1: Una rappresentazione delle interazioni descritte nella sezione 4.4.

Se durante il salvataggio venire rilevato un errore, la possibilita di spostarsi
in altre versioni rimane disabilitata fino a quando questi non vengano corretti in
modo da evitare la perdita delle modifiche effettuate e viene mostrata una pseudo
anteprima che segnali ’errore e che, una volta cliccata, mostra maggiori dettagli a

riguardo.

35

Main Thread ParserWorker
I
I
<<create>> |
---------- DrawerWorker |
I
I
_ Pp3 static analysis warnings |
o~ I
P first frame produced :
S
I
. loop /| [every few seconds] |
I
I
P heartbeat |
~
I
I
I
parse and save
-
I
parsing and saving result |
PO R T RS ety i Y . __-__~
opt) [save successful and newer DrawerWorker running]
terminate L\ 4

Implementazione

Figura 4.2: La timeline, che presenta molteplici snapshot e con 1'ultima versione
selezionata.

Figura 4.3: La timeline, che presenta molteplici snapshot. Su uno di essi e stato
passato il cursore del mouse, rivelando il numero di versione.

4.5.2 Cronologia variabili

Quando si sta visualizzando lo snapshot piu recente, nel codice sorgente appaiono
delle icone che rappresentano un cronometro a destra di ogni dichiarazione di
variabile tracciata. Cliccandole, viene mostrato un inserto in linea che mostra tutti
i valori che quella variabile ha assunto nel tempo a partire dalla sua dichiarazione,
compresi i numeri di versione in cui essa ha assunto il valore corrispondente (fig.

4.6).

particles_a
particles b
particles ¢ 3

= 200;

noiseScale

Figura 4.6: Dichiarazione di alcune variabili tracciate in uno sketch.

Interagendo con i valori mostrati, viene visualizzata un’anteprima dell’aspetto
dello sketch con la variabile che assume il valore scelto. Se si e soddisfatti del
risultato si puo usare il bottone “Apply” per applicare la modifica e creare un nuovo
snapshot, altrimenti, con il tasto “Cancel” viene nascosto 'inserto e ricaricato lo
sketch salvato nel database (fig. 4.7).

36

Implementazione

Figura 4.5: La timeline, in caso di errore durante la creazione di un nuovo
snapshot.

var noiseScale @

‘Cancel’

Figura 4.7: L’inserto contenente la cronologia della variabile noiseScale.

Se il valore della variabile dovesse risultare troppo lungo per essere mostrato
nell’inserto, verra troncato e poi espanso nel momento in cui I'utente vi passi sopra
il cursore del mouse. Se il valore risultasse comunque troppo lungo, viene applicato
uno scorrimento automatico in modo da mostrarne comunque completamente il
valore.

function draw(){
noStroke();
smooth();
@; i < nums; i++){
= map(i,@,nums,1,2);
map(i,®,nums,0,250);

oy |2

Figura 4.8: L’inserto contenente la cronologia della variabile alpha, espanso in
modo da mostrarlo interamente.

37

0 O Ui Wi

[T S Sy
T W= OO

Implementazione

// Welcome! You can use this tool to make sketches

// based on pb library (v2.0.5) and explore it across
// different versions. You can find p5’s documentation
// with many examples at https://pb5js.org/

// Here’s an example to get you started:

function setup() {
createCanvas (windowWidth, windowHeight) ;
background (100) ;

}

function draw () {
circle (mouseX, mouseY, 20);

}

Listing 4.3: sketch predefinito mostrato all’'utente. Tramite Ctrl + click, e
possibile visitare direttamente il link alla documentazione di p5.

4.5.3 Aiuti per 'utente
Sketch predefinito

In modo da guidare I'utente nella creazione di uno sketch, al primo avvio ne
viene mostrato uno predefinito che contiene un commento con un link che porta
direttamente alla documentazione di p5. Nel caso in cui I'utente dovesse rimuoverlo,
viene mostrato un messaggio per evitare di lasciare un utente potenzialmente
inesperto senza alcuna indicazione. Inoltre, tramite la funzionalita di gestione degli
errori di p5 modificata e descritta nella sezione 4.3, vengono mostrati messaggi di
errori che guidano 'utente alla definizione delle funzioni setup e draw.

|-‘u"ef.come! You can use this tool to make sketches based on p5 Library

(v2.8.5) and explore 1t across different versions. CLick here to vieu
p5's documentation.

Figura 4.9: Messaggio placeholder mostrato quando 1’editor non contiene testo.

Integrazione con Monaco

Per agevolare la creazione di sketch, vengono importate in Monaco le definizioni dei
tipi di pb, permettendo all’editor di fornire completamento automatico del codice

38

Implementazione

in tempo reale e di mostrare la documentazione delle funzionalita fornite da p5
posizionando il cursore del mouse su funzioni e variabili.

Inoltre, al fine di fornire all’'utente feedback preciso e accurato, gli errori e
i warning emessi durante ’esecuzione degli sketch vengono mostrati tramite la
funzionalita di evidenziazione di Monaco, permettendo di capire a colpo d’occhio a
quali parti del codice siano relativi gli avvisi e dando la possibilita di visualizzare
maggiori informazioni nuovamente posizionando il cursore sopra il testo evidenziato.

function draw(){
noStroke();
smooth();
for(var i 8; 1 < nums; i++){
var radius = map(i,@,nums,1,2);
var alpha ¢ = map(i,@,nums,0,250);

AAAAKRAAAN AAARAAAARANA D

fi11(69,33,124,alpha);

function fill(vl: number, v2: number, v3: number, alpha:
number): void (+4 overloads)

Sets the color used to fill shapes.Calling fill(255, 165, @) or

fill('orange') means all shapes drawn after the fill command will be
filled with the color orange.The version of fill() with one parameter
interprets the value one of three ways. If the parameter isa Number , it's
interpreted as a grayscale value. If the parameterisa String, it's
interpreted as a CSS color string. A p5.Color object can also be provided to
set the fill color.The version of fill() with three parameters interprets
them as RGB, HSB, or HSL colors, depending on the current colorMode(). The
default color space is RGB, with each value in the range from 0 to 255.

particles_c|i].checkEdge();

Figura 4.10: Esempio in cui viene mostrata la documentazione della funzione
£ill insieme ad un warning riguardante la variabile alpha.

4.5.4 Alcune considerazioni estetiche
Palette colori

I colori utilizzati per gli elementi dell’interfaccia grafica dell’applicazione, vengono
estratti direttamente dal tema usato da Monaco e assegnati a variabili CSS, usate
a loro volta dalle definizioni degli stili di tutti gli elementi della UI: nel momento
in cui si decidesse di usare un tema di Monaco diverso, il resto dell’interfaccia
grafica si adatterebbe automaticamente al cambiamento risultando in una palette
cromatica sempre coerente.

39

Implementazione

Ridimensionamento automatico del canvas dello sketch

Durante la creazione del canvas, ¢ necessario sceglierne la dimensione in modo che
lo sketch sia sempre interamente visibile e con le corrette proporzioni. In base
alle dimensioni dello sketch scelte dall'utente con la chiamata a createCanvas (ad
esempio utilizzando i valori predefiniti windowWidth e windowHeight per ereditare le
dimensioni del viewport o usando dimensioni maggiori dello spazio disponibile), cio
potrebbe portare alla creazione di un canvas che, nel caso di ridimensionamento
della finestra del browser da parte dell'utente, non si adatta correttamente alle nuove
dimensioni. Per mitigare tale effetto, I’applicazione rileva tali ridimensionamenti e
ricrea il DrawerWorker con l’annesso canvas usando le dimensioni corrette, mostrando
all'utente lo sketch nitidamente e nella sua interezza.

random(@, width),random(@,heigt
random(@, width),random(@,heigt
e(random(@, width),randon(e,heigt

function draw(){

noStrok
smooth(
ar i @ = 0; i < nums; i++){
radius ap(i,0,nums,1,2);
var alpha (0} = map(i,0,nums,0,250);

£111(69,33,124,alpha);
particles_a[i].move();
particles_a[i].display(radius);
particles_a[i].checkEdge();

.move();
i].display(radius);
i].checkEdge();

£111(255,255,255,alpha) ;
particles_c[i].move();
particles_c[i].display(radius);
particles_c[i].checkEdge();

Figura 4.11: L’interfaccia completa dell’applicazione mentre esegue il popolare
sketch “perlin noise” [31] ottenuto da OpenProcessing.

40

Capitolo 5

Valutazione

5.1 Introduzione

Successivamente all’'implementazione, ¢ stato svolto un piccolo test preliminare
dell’usabilita in ambiente controllato per valutare l'intuitivita e l'efficacia del-
I’applicazione. L’obiettivo era verificare se gli utenti ritenessero le funzionalita
implementate utili allo sviluppo e facili da usare con 1’obiettivo di correggerne le
eventuali mancanze, criticita e punti deboli.

Un aspetto importante del test sono le metriche usate per valutare 1'operato
degli utenti. Esse possono essere soggettive o quantitative. Le prime riguardano il
background di ciascun soggetto (come eta, conoscenze, competenze) e servono per
contestualizzare il risultato del test in rapporto alle esperienze pregresse di ogni
partecipante. Esse comprendono anche le risposte alle domande aperte poste alla fine
del test. Le metriche quantitative, invece, riguardano come gli utenti interagiscono
con 'applicazione durante la prova, il tempo impiegato per il completamento di
ciascuna Task e, ad esempio, quante persone hanno completato ogni Task. Altre
metriche quantitative includono dati aggregati su tutti i partecipanti, come gli Errori
Critici, gli Errori non critici, il Tasso di completamento e il Tasso di completamento
senza errori. | primi riguardano errori che hanno impedito all'utente di completare
la Task, i secondi riguardano gli errori che 'utente é riuscito ad individuare e
correggere autonomamente e che quindi non hanno impedito il completamento
della Task.

Il test si divide in tre fasi: preparazione, esecuzione e analisi.

5.2 Preparazione

Durante la preparazione sono state pensate otto task da far svolgere agli utenti.
In questi casi, il numero ideale di task va dalle cinque alle dieci e devono essere

41

Valutazione

chiare e precise. Per ogni task e stato definito una metrica per determinarne il
completamento e il tempo massimo in cui essa deve essere svolta per risultare
valida. Le task utilizzate sono riportate tradotte in italiano nella Tabella 5.1 e in
lingua inglese nell’Appendice A.

Per questa valutazione e stato scelto di osservare i partecipanti e prendere nota
delle loro azioni durante lo svolgimento delle task per poi fare loro alcune domande
alla fine del test.

Per garantire che ogni partecipante riceva le stesse informazioni, ¢ stato scritto un
“copione” da seguire all’inizio della sessione, anch’esso riportato nell’Appendice A. 11
copione include una breve introduzione, tutte le task, le metriche di completamento,
le domande aperte da porre alla fine del test e una breve sezione per salutare e
ringraziare i partecipanti.

Per 'ultima fase del test, sono state preparate alcune domande aperte in modo
da ricevere riscontro direttamente dall’utente stesso:

Quale task ti ha causato maggior difficolta?

Useresti queste funzionalita per i tuoi sketch?

Ritieni che queste funzionalita siano utili?

Ritieni che salvare un’immagine del tuo sketch sia difficile?

Ti é chiaro cosa sia uno snapshot?

Hai altri suggerimenti o commenti da farci?

5.3 Esecuzione

Al test hanno partecipato quattro persone con I'eta compresa tra i 25 e i 30 anni,
tutti con esperienze pregresse di programmazione in JavaScript e nell'uso di Version
Control System, ma senza esperienza nel Creative Coding. Due di loro erano
neo-dottorandi, i rimanenti invece lavoratori nel campo dell’ingegneria informatica
anche se con diversa maturazione lavorativa. Nessuno di loro ha esperienza nel
campo del Creative Coding e sono stati scelti proprio per questo motivo: si voleva
infatti verificare 'immediatezza e la facilita d’uso per un utente che non conosce
il campo, seppure abbiano competenze di programmazione. Tale campione si
posiziona a meta strada tra coloro che non hanno alcun tipo di esperienza nella
programmazione e i programmatori creativi professionisti, fornendo quindi un buon
punto di partenza per ulteriori indagini future.

Il test e stato svolto di persona utilizzando lo stesso computer per tutti i
partecipanti. Durante la prova i partecipanti hanno avuto modo di fare domande e

42

Valutazione

Task

Criterio successo

Tempo
massimo

Vuoi continuare a lavorare su uno
sketch, ma non ricordi cosa faccia
la funzione background(). Trova
un modo di leggerne la documen-
tazione.

Il partecipante ¢ in grado
di leggere la documentazio-
ne della funzione.

2 minuti

Vuoi iniziare a creare: aggiungi
una linea che vada da (10,10) a
(100, 100).

Il partecipante e in grado di
capire quali funzioni siano
necessarie per disegnare una
linea e le usa correttamente.

5 minuti

La linea non ha un bell’aspetto:
assegnale un colore salvandolo in
una variabile.

Il partecipante ¢ in grado di
creare una nuova variabile
contenente il colore della li-
nea.

2 minuti

Vorresti sperimentare con altri co-
lori per la linea: provane un altro.

Il partecipante ¢ in grado di
cambiare il valore della va-
riabile

2 minuti

Ti ricordi che qualche versione fa,
lo sketch aveva uno sfondo di un
bel colore. Passa ad una versione
precedente per vedere che aspetto
avesse.

Il partecipante nota la time-
line in cima alla finestra e la
usa per passare ad una ver-
sione precedente.

2 minuti

Preferisci il colore di sfondo dell’ul-
tima versione. Ritorna all’ultimo
snapshot.

Il partecipante e in grado di
ritornare all'ultima versione.

2 minuti

Preferivi il colore che avevi asse-
gnato alla linea nella Task 2. Ri-
pristina quel valore senza usare la
tastiera.

Il partecipante nota le icone
a forma di cronometro a fian-
co dei nomi delle variabili, le
clicca e usa l'interfaccia in
linea per ripristinare il pre-
cedente colore.

2 minuti

Ti piace 'aspetto di questo sketch.
Salvalo come immagine sul disco.

Il partecipante riesce a salva-
re lo sketch come immagine
su disco.

2 minuti.

Tabella 5.1: Elenco delle task.

43

Valutazione

chiedere chiarimenti, anche se non ¢ sempre stato possibile fornire maggiori dettagli
per evitare di influenzarne il risultato. Alla conclusione del test ¢ stato chiesto
loro di rispondere alle domande aperte descritte sopra e, se lo desiderassero, di
aggiungere ulteriori commenti.

5.4 Risultati

In questa sezione verranno analizzati e commentati i risultati del test con utenti
ponendo attenzione su quali Task abbiano causato maggiore difficolta durante la
prova e riportando alcune delle risposte alle domande aperte insieme al pensiero
generale degli stessi.

5.4.1 Task
Task Errori Errori non Tasso di Tasso di
Critici critici completam. compl.
senza errori
1 0 0 1 1
2 1 2 0.75 0.33
3 0 0 1 1
4 0 0 1 1
5 0 1 1 0.75
6 0 0 1 1
7 0 2 1 0.50
8 0 0 1 1

Tabella 5.2: Misure ottenute dal test.

Durante la prova, gli utenti sono riusciti a completare tutte le task, anche se in
tempi diversi. Le principali difficolta osservate hanno riguardato le Task 2 e 7.

Nel caso della Task 2, le problematicita riscontrate sono state dovute all’ine-
sperienza degli utenti sia nell’utilizzo della libreria p5 e sia nella mancanza di
conoscenza di come gli sketch realizzati per essa siano strutturati.

Nel caso della Task 7, i partecipanti non sono riusciti a notare immediatamente
le icone a forma di cronometro a fianco dei nomi delle dichiarazioni di variabili, e
hanno invece cercato di interagire principalmente con la timeline. Le altre task
sono state eseguite senza troppe difficolta ed hanno portato al risultato sperato.

44

Valutazione

5.4.2 Domande aperte

Per quanto riguarda le domande poste alla conclusione del test, gli utenti hanno
fornito feedback in generale positivo e hanno espresso interesse nell’utilizzo di
questo strumento qualora avessero necessita di lavorare su degli sketch. E anche
emerso che delle funzionalita analoghe sarebbero state apprezzate anche al di fuori
del Creative Coding.

In particolare un utente mi ha fatto notare che “sarebbe bello avere un modulo
per vedere elencate le funzioni disponibili, perché da persona che non sa quali
funzioni sono disponibili e stato difficile capire cosa potessi fare”. Un altro dice “in
realta una cosa del genere [la cronologia delle versioni| la userei anche in generale,
non solo per questo [il CC]”, opinione condivisa anche da altri. Un ulteriore
commento ¢ stato “non le vedevo [icone per accedere alla cronologia delle versioni]...
non gli cambierei il colore perché sapendo che ci sono si notano, ma farei tipo un
pop-up che spiega cosa di puo fare la prima volta che si apre 'applicazione”.

La principale critica si ricollega alle difficolta osservate nella Task 2: in questo
caso e stato suggerito di apportare un miglioramento alla Ul al fine di rendere
piu evidenti i pulsanti per la visualizzazione della cronologia dei valori di una
variabile. E stato anche suggerito di aggiungere un pannello per la visualizzazione
delle funzioni di p5 disponibili in modo da agevolare gli utenti meno esperti. Infine
e stata anche notato il numero eccessivo di snapshot creati durante la modifica dello
sketch, problematica migliorabile tramite I'implementazione di logica piu raffinata
per la determinazione di cosa costituisca una nuova versione.

45

Capitolo 6

Conclusioni

Quello che mi sono prefissato con la stesura di questa tesi relativa al Creative
Coding ¢ stato realizzare un’applicazione web che faciliti la creazione e I’evoluzione
di sketch sia da parte dei programmatori creativi che da parte di coloro si avvicinano
per la prima volta al mondo della programmazione.

Viste le limitazioni che gli strumenti relativi al versionamento del codice presen-
tano quando utilizzati nello specifico per il Creative Coding, sono state prese in
considerazione le principali criticita lamentate dagli utenti (evidenziate anche dai
molteplici studi sull’argomento analizzati durante questo elaborato nel Capitolo
2) e che sono state utilizzate come spunto per la creazione di uno strumento che,
basandosi sull’analisi della struttura del codice sorgente relativo agli sketch, possa
fornire delle funzionalita e un’esperienza il piu utile e organica possibile. Tale
strumento cerca, infatti, di permettere all’'utente di interagire con gli elementi
costitutivi del codice in maniera intuitiva e di non richiedere conoscenze nell’ambito
dei Version Control System, prediligendo una modalita di operazione il piu possibile
automatizzata e autonoma.

A tal fine sono stati definiti e descritti i requisiti dell’applicazione e le funzionalita
desiderate in modo da affrontare i problemi individuati nel corso della tesi, sono
state mostrate le fasi di ideazione dell’interfaccia utente tramite prototipi su carta
con annessa evoluzione della UX nel corso della progettazione; ¢ stata poi motivata
la scelta di realizzare una nuova applicazione invece di creare un’estensione per uno
strumento gia esistente al fine di realizzare un applicativo facilmente accessibile
anche da utenti meno esperti.

Successivamente sono state descritte le tecnologie utilizzate e le scelte di imple-
mentazione delle quali la tecnologia alla base della generazione degli AST, I'uso e
il vendoring di p5, l'algoritmo alla base del confronto tra versioni dello sketch, la
struttura e 'interazione tra i vari elementi del programma e la strategia adottata
per il salvataggio delle informazioni rilevanti su disco, sono le piu significative.

46

Conclusioni

L’applicazione realizzata ha la potenzialita di integrarsi naturalmente nell’eco-
sistema degli strumenti basati su pb5 come OpenProcessing e dai quali ha anche
tratto ispirazione.

Il lavoro svolto non ha l'intenzione di essere esaustivo o di risolvere tutte le
criticita riscontrate ma, come ogni ricerca, vuole proseguire il lavoro svolto da altri
individui e tesisti prima di me; nel contempo, vuole fornire un punto di partenza
e ulteriori informazioni a coloro che decidessero di proseguire la ricerca in questo
ambito.

A coronamento della realizzazione del programma, e stato eseguito un test di
usabilita con utenti non necessariamente avvezzi al Creative Coding in modo da
valutarne quindi la facilita di utilizzo anche per individui poco esperti. In seguito
a tale processo di valutazione, il feedback ottenuto ¢ stato riportato in questo
documento nel Capitolo 5 in modo da essere utile per sviluppi futuri.

6.1 Sviluppi futuri

Durante la creazione dell’applicazione, sono state proposte delle funzionalita che
non sono state implementate per via di vincoli di tempo. In aggiunta, durante
i test di usabilita gli utenti hanno fornito suggerimenti riguardo a funzionalita
che gradirebbero usare nell’applicazione. In questa sezione verranno descritte tali
“desiderata”, implementabili usando questo lavoro come punto di partenza.

Una delle aggiunte riguarda la UX dei nuovi utenti, che quindi non sono a
conoscenza delle funzionalita fornite dall’applicazione. Per questi ultimi sarebbe
utile aggiungere un pop-up visibile solamente alla prima apertura dell’applicazione
che spieghi cosa sia possibile fare e che, in particolare, porti I’attenzione sulle icone
“cronometro” usate per mostrare la cronologia dei valori di una variabile. E infatti
emerso che esse non risultano immediatamente evidenti agli utenti neofiti, ma che
sono chiare e ben visibili per coloro che invece ne conoscono 1'esistenza.

Un’altra funzionalita suggerita riguarda la possibilita di avere a disposizione
una sezione dell’interfaccia che elenchi le funzioni fornite da p5 in modo da rendere
I’applicazione piu accessibile anche per coloro che si avvicinano per la prima volta
alla libreria e per i quali la documentazione consultabile in linea non e sufficiente.

Sempre durante i test, € emerso anche che, vista la natura fortemente iterativa
del Creative Coding, il salvataggio automatico porta alla creazione di un grande
numero di snapshot molto simili tra di loro. Ne consegue che potrebbe essere
desiderabile ampliare la logica che determina la creazione di una nuova versione
in modo che venga unita alla versione precedente qualora il risultato dello sketch
risultasse uguale o molto simile, ad esempio tramite 'impiego di soluzioni di
Computer Vision. Inoltre, risulterebbe utile permettere agli utenti di assegnare agli

47

Conclusioni

snapshot una descrizione testuale arbitraria in modo da avere un’organizzazione
piu navigabile delle versioni o di eliminare quelli che non ritengono piu utili.

Durante lo sviluppo dell’applicazione e stata data priorita alle funzionalita
descritte in questo documento, mentre non sono ne sono state implementate altre
utili come la creazione di piu di uno sketch alla volta. La struttura interna, tuttavia,
rende possibile I'implementazione di una galleria che permetta di gestire molteplici
sketch, in maniera relativamente semplice e immediata.

Un'’ulteriore possibile sviluppo riguarda un maggiore utilizzo dell’AST e dell’ edit
script per tenere traccia di ulteriori aspetti dell’applicazione. Se in questo momento
infatti vengono solamente tracciate le dichiarazioni di variabili, le informazioni
disponibili permettono di analizzare qualunque aspetto del codice degli sketch.
Alcuni esempi delle funzionalita che le informazioni disponibili rendono possibili
potrebbero essere:

« la deduzione dei tipi di valori immagazzinati in una variabile con la conseguente
possibilita di utilizzare elementi grafici specifici per quel valore (come un color
picker per variabili che rappresentano un colore);

« il tracciamento anche degli argomenti delle funzioni;

 la possibilita di visualizzare la corrispondenza tra una determinata sezione di
codice e un particolare elemento riprodotto nel canvas e viceversa.

Inoltre, visto I'utilizzo di Yjs, sarebbe possibile adattare ’applicazione per per-
metterne I'utilizzo a piu individui contemporaneamente. Tale funzionalita potrebbe
dare agli utenti la possibilita di realizzare nuove forme di opere collaborative o age-
volare l'interazione tra insegnanti e studenti durante 'apprendimento dei concetti
di programmazione anche da remoto.

In ultimo, viste le limitazioni del test con utenti e basandosi sui suoi risultati
incoraggianti, sarebbe auspicabile eseguirne un altro con piu partecipanti che ab-
biano esperienze pregresse nel Creative Coding, in modo da verificare ulteriormente
I'adeguatezza dell’applicazione e il raggiungimento degli obiettivi preposti per tutte
le categorie di utenti individuate nel corso della tesi.

6.2 Utilizzo dell’applicazione con altre librerie o
in altri contesti

Durante il testing con utenti uno di loro ha espresso interesse riguardo alla possi-
bilita di utilizzare le funzionalita presentate anche in contesti esterni al Creative
Coding o con altre librerie. Sebbene I'algoritmo GumTree e la logica relativa al
tracciamento delle variabili siano generiche e applicabili a qualunque linguaggio di

48

Conclusioni

programmazione (a patto che esista una corrispondente grammar Tree-sitter), que-
sta applicazione ¢ costruita attorno e per p5. Aggiungere supporto per altre librerie
come Processing, seppure possibile a livello teorico, necessiterebbe la creazione di
layer di astrazione e cambiamenti strutturali non previste durante lo sviluppo e
quindi non semplici da implementare in maniera organica.

49

Appendice A

Test di usabilita

In questa sezione viene riportato il “copione” da seguire per guidare gli utenti
durante il test e le task che questi ultimi dovranno svolgere.

A.1 Introduzione

Hello, . Thank you for participating in this test. My name is and I'll be
guiding you through this session.

Before we begin, here are a few informations to ensure we are on the same page.
We are testing a Web Application built to help Creative Coders create and evolve
their sketches, which should also be useful for people learning programming. With
this test, we want to better understand how this application behaves in the hands
of actual users and to see if they find it intuitive and if they like the features they
see.

This session is going to take around 20 minutes. While you work, I'm going
take notes about how you interact with the application. Keep in mind, however,
that we are not evaluating you, we are evaluating the application itself, so do not
worry about making mistakes. Feel free to ask question at any time during the
test, but keep in mind that I won’t be able to answer some of them right away for
the sake of the test.

At the end of the session, I'll ask some follow-up questions to better understand
what could be inproved. Do you have any questions so far?

You can navigate around the app if you want, once you are ready we’ll start
with the tasks.

[Let the user navigate around the application for a few seconds |

50

Test di usabilita

A.2 Task

Task 1

You want to continue working on a sketch, but you do not remember what the
background () function does. Find a way to read its documentation.

Success Criteria: The participant is able to view the function’s documentation.
Metrics:
« Successful task completion (T/F)

e Time on Task: 2 minutes

Task 2
You want to start creating. Add a line going from (10, 10) to (100, 100).

Success Criteria: The participant is able to understand which functions are
needed to draw a line and uses them correctly.

Metrics:
« Successful task completion (T/F)

e Time on Task: 5 minutes

Methodology: Cooperative

Task 3

The line looks bland, give it a color, but store it in a variable.

Success Criteria: The participant is able to create a new variable containing the
line’s color.

Metrics:
« Successful task completion (T/F)

e Time on Task: 2 minutes

51

Test di usabilita

Task 4
You'd like to experiment with some other color for that line, change it.
Success Criteria: The participant is able to change the variable’s value.
Metrics:

« Successful task completion (T/F)

e Time on Task: 2 minutes

Task 5

You remember that a few versions ago, the sketch had a nice background color.
Try peeking old sketches to see how they look like.

Success Criteria: The participant notices the timeline on the top of the window
and is able to use it to jump to a previous snapshot.

Metrics:
« Successful task completion (T/F)

e Time on Task: 2 minutes

Task 6

You decided you like the background color of the latest version, go back to the
latest snapshot.

Success Criteria: The participant is able to return to the latest version.
Metrics:
« Successful task completion (T/F)

e Time on Task: 2 minutes

Task 7

You liked the first color you chose for the line in task 2. Change it back to that
without typing it on the keyboard.

Success Criteria: The participant notices the clock icon next to the variable’s
name, clicks it and uses the inline interface to restore the previous value.

Metrics:

52

Test di usabilita

« Successful task completion (T/F)

e Time on Task: 2 minutes
Task 8
You like the look of this sketch. Save it as an image on the hard drive.

Success Criteria: The participant is able to save the sketch on the hard drive as
an image.

Metrics:
« Successful task completion (T/F)

e Time on Task: 2 minutes

A.3 Domande di approfondimento

Thank you for participating. I'd now like to ask you a few questions regarding your
experience using this application to gather some feedback about the test:

o Which task did you find more difficult?

Would you use these functionalities to create your own sketches?

Do you think these functionalities are useful?

Did you find saving an image of your sketch difficult?

Is it clear what a snapshot is?

Do you have any suggestions for us?

Thanks again for participating. Now that we are done, do you have any other
question for me?

53

Bibliografia

Tyler Angert, Miroslav Suzara, Jenny Han, Christopher Pondoc e Hariharan
Subramonyam. «Spellburst: A Node-based Interface for Exploratory Creative
Coding with Natural Language Prompts». In: Proceedings of the 36th Annual
ACM Symposium on User Interface Software and Technology. UIST '23. San
Francisco, CA, USA: Association for Computing Machinery, 2023. ISBN:
9798400701320. por1: 10.1145/3586183.3606719. URL: https://doi.org/
10.1145/3586183.3606719 (cit. a p. 4).

Processing. https://processing.org/. Visitato il giorno 09/11/2025 (cit.
alle pp. 5, 20).

Mary Beth Kery e Brad A. Myers. «Exploring exploratory programmingy. In:
2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 2017, pp. 25-29. DOI: 10.1109/VLHCC. 2017 . 8103446 (cit. a
p. 6).

N. Deepa, B. Prabadevi, L..B. Krithika e B. Deepa. «An analysis on Version
Control Systems». In: 2020 International Conference on Emerging Trends
in Information Technology and Engineering (ic-ETITE). 2020, pp. 1-9. DoOT:
10.1109/1c-ETITE47903.2020.39 (cit. a p. 6).

Marc J. Rochkind. «The source code control system». In: IEEE Transactions
on Software Engineering SE-1.4 (1975), pp. 364-370. por: 10.1109/TSE.
1975.6312866 (cit. a p. 6).

Mauricio Verano Merino e Juan Pablo Sdenz. «The Art of Creating Code-
Based Artworksy». In: Extended Abstracts of the 2023 CHI Conference on
Human Factors in Computing Systems. CHI EA ’23. Hamburg, Germany:
Association for Computing Machinery, 2023. 1SBN: 9781450394222. DOTI: 10.
1145/ 3544549 . 35685743. URL: https://doi.org/10. 1145 /3544549 .
3585743 (cit. alle pp. 7, 15).

Blair Subbaraman, Shenna Shim e Nadya Peek. «Forking a Sketch: How
the OpenProcessing Community Uses Remixing to Collect, Annotate, Tune,
and Extend Creative Code». In: Proceedings of the 2023 ACM Designing

o4

https://doi.org/10.1145/3586183.3606719
https://doi.org/10.1145/3586183.3606719
https://doi.org/10.1145/3586183.3606719
https://processing.org/
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1109/ic-ETITE47903.2020.39
https://doi.org/10.1109/TSE.1975.6312866
https://doi.org/10.1109/TSE.1975.6312866
https://doi.org/10.1145/3544549.3585743
https://doi.org/10.1145/3544549.3585743
https://doi.org/10.1145/3544549.3585743
https://doi.org/10.1145/3544549.3585743

BIBLIOGRAFIA

Interactive Systems Conference. DIS '23. Pittsburgh, PA, USA: Association
for Computing Machinery, 2023, pp. 326-342. 1SBN: 9781450398930. DOI:
10.1145/3563657 . 3595969. URL: https://doi.org/10.1145/3563657 .
3595969 (cit. alle pp. 8, 14).

Eric Rawn, Jingyi Li, Eric Paulos e Sarah E. Chasins. « Understanding Version
Control as Material Interaction with Quickpose». In: Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems. CHI '23. Hamburg,
Germany: Association for Computing Machinery, 2023. 1SBN: 9781450394215.
DOI: 10 . 1145 /3544548 . 3581394. URL: https://doi.org/10. 1145/
3544548.3581394 (cit. a p. 9).

Daniel Manesh, Douglas Bowman Jr. e Sang Won Lee. «SHARP: Exploring
Version Control Systems in Live Coding Music». In: Proceedings of the 16th
Conference on Creativity € Cognition. C&C '24. Chicago, 1L, USA: Association
for Computing Machinery, 2024, pp. 426-437. 1SBN: 9798400704857. DOTI:
10.1145/3635636 . 3656195. URL: https://doi.org/10.1145/3635636 .
3656195 (cit. a p. 10).

p5.js Web Editor. https://editor.p5js.org. (Visitato il giorno 08/11/2025)
(cit. alle pp. 17, 29).

OpenProcessing Web Editor. https://openprocessing.org/sketch/creat
e. (Visitato il giorno 08/11/2025) (cit. alle pp. 17, 29).

pb.js. https://p5js.org. Visitato il giorno 08/11/2025 (cit. a p. 20).
Tree-sitter. https://tree-sitter.github.io/tree-sitter/. Visitato il
giorno 09/11/2025 (cit. a p. 21).

Yjs. https://docs.yjs.dev/. Visitato il giorno 09/11/2025 (cit. a p. 21).
Marc Shapiro, Nuno Preguica, Carlos Baquero e Marek Zawirski. « Conflict-
Free Replicated Data Types». In: Stabilization, Safety, and Security of Di-
stributed Systems. A cura di Xavier Défago, Franck Petit e Vincent Villain.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 386—400. 1SBN:
978-3-642-24550-3 (cit. a p. 21).

Monaco. https://microsoft . github.io/monaco-editor/. Visitato il
giorno 09/11/2025 (cit. a p. 22).

React. https://react.dev/. Visitato il giorno 09/11/2025 (cit. a p. 22).

git-diff Documentation. https://git-scm.com/docs/git-diff. Visitato il
giorno 10/11/2025 (cit. a p. 22).

Eugene W. Myers. « AnO(ND) difference algorithm and its variations». In:
Algorithmica 1.1 (nov. 1986), pp. 251-266. 1sSN: 1432-0541. DOI: 10.1007/
BF01840446. URL: https://doi.org/10.1007/BF01840446 (cit. a p. 22).

59

https://doi.org/10.1145/3563657.3595969
https://doi.org/10.1145/3563657.3595969
https://doi.org/10.1145/3563657.3595969
https://doi.org/10.1145/3544548.3581394
https://doi.org/10.1145/3544548.3581394
https://doi.org/10.1145/3544548.3581394
https://doi.org/10.1145/3635636.3656195
https://doi.org/10.1145/3635636.3656195
https://doi.org/10.1145/3635636.3656195
https://editor.p5js.org
https://openprocessing.org/sketch/create
https://openprocessing.org/sketch/create
https://p5js.org
https://tree-sitter.github.io/tree-sitter/
https://docs.yjs.dev/
https://microsoft.github.io/monaco-editor/
https://react.dev/
https://git-scm.com/docs/git-diff
https://doi.org/10.1007/BF01840446
https://doi.org/10.1007/BF01840446
https://doi.org/10.1007/BF01840446

BIBLIOGRAFIA

[20]

[21]

23]

[24]

Philip Bille. «A survey on tree edit distance and related problemsy. In:
Theoretical Computer Science 337.1 (2005), pp. 217-239. 1SSN: 0304-3975.
DOIL: https://doi.org/10.1016/j.tcs.2004.12.030. URL: https:
//www.sciencedirect.com/science/article/pii/S0304397505000174
(cit. a p. 24).

Mateusz Pawlik e Nikolaus Augsten. « RTED: a robust algorithm for the tree
edit distance». In: Proc. VLDB Endow. 5.4 (dic. 2011), pp. 334-345. 1SSN:
2150-8097. poOI: 10.14778/2095686 .2095692. URL: https://doi.org/10.
14778/2095686.2095692 (cit. a p. 24).

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez e Martin
Monperrus. «Fine-grained and accurate source code differencing». In: Procee-
dings of the 29th ACM/IEEFE International Conference on Automated Software
Engineering. ASE "14. Vasteras, Sweden: Association for Computing Machine-
ry, 2014, pp. 313-324. 1SBN: 9781450330138. DOI: 10.1145/2642937 . 2642982.
URL: https://doi.org/10.1145/2642937.2642982 (cit. a p. 24).

gumtree: an awesome code differencing tool. https://github.com/GumnTree
Diff/gumtree. Visitato il giorno 10/11/2025 (cit. a p. 24).

Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina e Jen-
nifer Widom. «Change detection in hierarchically structured information».
In: Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’96. Montreal, Quebec, Canada: Associa-
tion for Computing Machinery, 1996, pp. 493-504. 1SBN: 0897917944. DOTI:
10.1145/233269.233366. URL: https://doi.org/10.1145/233269.233366
(cit. a p. 25).

GNU Lesser General Public License v3.0. https://www.gnu.org/licenses/
1gpl-3.0.en.html. Visitato il giorno 12/11/2025 (cit. a p. 27).

OffscreenCanvas. https://developer .mozilla.org/en-US/docs/Web/
API/0ffscreenCanvas. Visitato il giorno 11/11/2025 (cit. a p. 28).

GNU Lesser General Public License v2.0. https://www.gnu.org/licenses/
1gpl-2.0.en.html. Visitato il giorno 12/11/2025 (cit. a p. 30).

Using Web Workers. https://developer.mozilla.org/en-US/docs/Web/
API/Web_Workers_API/Using web_workers. Visitato il giorno 12/11/2025
(cit. a p. 30).

Comlink. https://github. com/GoogleChromeLabs/comlink. Visitato il
giorno 12/11/2025 (cit. a p. 30).

async-mutex. https://github.com/DirtyHairy/async-mutex. Visitato il
giorno 15/11/2025 (cit. a p. 31).

56

https://doi.org/https://doi.org/10.1016/j.tcs.2004.12.030
https://www.sciencedirect.com/science/article/pii/S0304397505000174
https://www.sciencedirect.com/science/article/pii/S0304397505000174
https://doi.org/10.14778/2095686.2095692
https://doi.org/10.14778/2095686.2095692
https://doi.org/10.14778/2095686.2095692
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://github.com/GumTreeDiff/gumtree
https://github.com/GumTreeDiff/gumtree
https://doi.org/10.1145/233269.233366
https://doi.org/10.1145/233269.233366
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas
https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas
https://www.gnu.org/licenses/lgpl-2.0.en.html
https://www.gnu.org/licenses/lgpl-2.0.en.html
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://github.com/GoogleChromeLabs/comlink
https://github.com/DirtyHairy/async-mutex

BIBLIOGRAFIA

[31] perlin noise. https://openprocessing . org/sketch/494102. Visitato il
giorno 16/11/2025 (cit. a p. 40).

57

https://openprocessing.org/sketch/494102

	Elenco delle tabelle
	Elenco delle figure
	Glossario
	Introduzione
	Obiettivo
	Struttura della tesi

	Background e Lavori Correlati
	Creative Coding
	Creative Coding e Versionamento del codice
	Ideazione di un Version Control System su misura per il Creative Coding basato su Abstract Syntax Tree

	Progettazione
	Requisiti
	Versionamento capillare
	Salvataggio automatico
	Navigazione tra versioni
	Facilità d'uso
	Gestione efficiente di un gran numero di versioni

	Prototipo su carta
	Web Application o estensione Visual Studio Code

	Implementazione
	Tecnologie utilizzate
	p5.js
	Tree-sitter
	Yjs
	Monaco
	React

	AST diff
	Modifiche apportate a p5
	Struttura dei thread
	DrawerWorker
	ParserWorker

	UI/UX
	Timeline
	Cronologia variabili
	Aiuti per l'utente
	Alcune considerazioni estetiche

	Valutazione
	Introduzione
	Preparazione
	Esecuzione
	Risultati
	Task
	Domande aperte

	Conclusioni
	Sviluppi futuri
	Utilizzo dell'applicazione con altre librerie o in altri contesti

	Test di usabilità
	Introduzione
	Task
	Domande di approfondimento

	Bibliografia

