o
N\ 1859 e
S, w2

Politecnico di Torino

Computer Engineering
A.a. 2023/2024
Graduation Session November 27, 2025

A Blockchain-Enabled Web
Application for Hospital

Infrastructure Management
Integrating Voice of Customer in
Healthcare

Supervisors: Candidate:
Valentina Gatteschi Shayan Khalighi
Marco Domaneschi
Valentina Villa

Abstract

This thesis presents the design and implementation of a blockchain-enabled web
application for hospital infrastructure management that addresses two critical
challenges: the communication gap between visitors/patients and hospital staff,
and the inefficiencies of paper-based task management systems.

Problem Statement and Motivation

Modern hospitals operate as complex organizations with extensive infrastructure
requiring continuous maintenance and monitoring. The efficient management of
maintenance requests and periodic safety inspections is critical for ensuring patient
safety, operational continuity, and regulatory compliance. However, traditional
approaches face significant challenges.

Communication Gap

One primary challenge is the lack of an effective communication channel between
visitors, patients, and hospital staff. When visitors or patients encounter broken
equipment, maintenance issues, or safety concerns, they often have no straightfor-
ward way to report these problems. This communication gap results in delayed
reporting of critical issues, safety risks that go unnoticed, and frustration among
visitors who cannot easily communicate problems.

Paper-Based Task Management

Many hospitals still rely on paper-based systems for managing periodic maintenance
tasks and safety inspections. Technicians perform daily, weekly, or monthly checks
and record findings on paper forms. At the end of each month, these forms are
collected and manually processed, introducing significant delays: if a door breaks
on the 4th of the month, the problem may not be discovered until the end of the
month when forms are reviewed. This delay can result in extended equipment
downtime, safety hazards that persist for weeks, and compliance issues.

Solution Overview

The system provides a comprehensive digital solution that integrates ticketing and
task management capabilities:

» Digital Ticketing Portal: Enables visitors, patients, and staff to report
maintenance issues through web interface and QR code scanning, with support
for both authenticated and anonymous ticket creation, including image at-
tachments. Authenticated users can track the status of their tickets, ensuring
transparency.

« Digital Task Management System: Replaces paper-based periodic in-
spection workflows with a digital system supporting recurring tasks (daily,
weekly, monthly, semestral) and one-time tasks, enabling real-time tracking
and immediate problem identification.

o Task-Ticket Integration: When problems are detected during task in-
spections, tickets can be created immediately with pre-filled information,
eliminating month-end delays.

o Three-Level Hierarchy: Implements a Department — Location — Equip-
ment structure for precise equipment identification and efficient technician
assignment.

e Blockchain Integration: Provides immutable audit trails through crypto-
graphic hashing while preserving privacy by storing only hashes on-chain, not
personally identifiable information.

o Analytics and Reporting: Provides administrators with insights into task
completion rates, ticket resolution times, equipment maintenance patterns,
and system performance metrics.

Implementation

The system was implemented as a full-stack web application using modern tech-
nologies and best practices.

Technology Stack

The application was built using:

o Frontend: Next.js 14.2.5 (Pages Router), React 18.3.1, TypeScript 5.4.5,
Tailwind CSS, Radix Ul components

11

Backend: Next.js API routes, Node.js 184, TypeScript

Database: PostgreSQL with Prisma ORM 5.18.0 for type-safe database
access

Authentication: NextAuth.js 4.24.7 with JWT tokens and bcryptjs for
password hashing

Blockchain: Solidity 0.8.24 smart contracts, Foundry development framework,
Anvil local node, Viem for JavaScript client integration

Email Service: Resend API for transactional email delivery

QR Codes: grcode npm package for generation

Database Design

The database schema was defined using Prisma, providing type-safe database access.
Key components include:

User Model: Includes role (Admin, Technician, User), authentication fields,
optional blockchain address, and hourly rate for technicians

Ticket Model: Comprehensive ticket representation with status tracking,
time metrics (startTime, endTime), and anonymous creator fields

Hierarchy Models: Department, Location, and Element models with proper
foreign key relationships and unique constraints

Task Models: Task, TaskItemCompletion, and TaskPeriodCompletion mod-
els for periodic inspection management

Task-Ticket Integration: TaskltemCompletion includes optional ticketld
field linking NOT OK items to created tickets

Backend Implementation

Next.js API routes were organized following RESTful principles, with each route
handler implementing authentication, authorization checks, request validation
using Zod schemas, business logic execution, database operations via Prisma, and
blockchain interactions where applicable.

The ticket creation process validates request payload, verifies hierarchy relation-
ships, handles anonymous creation, generates canonical JSON representation for
blockchain hashing, computes keccak256 hash, creates ticket record in database,
and if blockchain enabled, calls smart contract’s createTicket () function.

II1

A technician recommendation algorithm retrieves ticket’s associated element,
finds all roles associated with that element, queries technicians whose customRole
matches those roles, and sorts results with recommended technicians first.

Task Management Implementation

The task management system implements a flexible period-based architecture for
recurring tasks:

» Task Creation: Supports different scope types (general, element, location,
department) and recurrence patterns (daily, weekly, monthly, semestral)

e Period Management: Calculates periods on-demand based on recurrence
patterns, supporting multiple independent periods (past, current, future)

o Item Checking: Technicians check items with OK/NOT OK status and
optional notes, with unique constraint preventing duplicate checks per period

o Task-Ticket Integration: When item marked NOT OK, system redirects
to ticket creation with pre-filled data (department, location, element, title,

description)

e Period Completion: System validates all items checked before allowing
completion, creates TaskPeriodCompletion record with timestamps

e Access Control: Technicians can only check current period, administrators
can check past periods, future periods are read-only

QR Code Implementation

QR code functionality enables quick ticket creation:

e QR codes encode URLs with query parameters: /tickets/new?departmentId=X&location]
e QR codes can be generated for departments, locations, or specific equipment
e When scanned, browser navigates to ticket creation page with pre-filled form

o (Cascading dropdowns automatically populate based on pre-filled values

v

Email Notification System

Email notifications were implemented using Resend service:

o Task Assignment: Sent immediately when task assigned, includes task
details and direct link

o Ticket Assignment: Sent when ticket assigned, includes ticket information
and link

o Problem Report: Sent to task creator when NOT OK item reported

o Daily Reminders: Scheduled job runs weekdays at 9:00 AM, sends person-
alized reminders for incomplete/overdue tasks

Blockchain Integration

The TicketRegistry smart contract was developed using Foundry and tested with
Anvil for local development. The contract implements a minimal on-chain storage
approach, storing only cryptographic hashes rather than full ticket data, optimizing
gas costs while providing verifiable audit trails.

Key operations include:

o createTicket(): Creates new ticket with hash, severity, department (85,000
gas)

» assignTicket(): Assigns ticket to technician address (45,000 gas)
« updateStatus(): Updates ticket status (35,000 gas)

« View functions (getTicket, exists, totalTickets): Consume no gas as read-only
operations

At typical Ethereum mainnet gas prices (e.g., 30 gwei), the cost per ticket
creation would be approximately €0.05-0.10 EUR, making the blockchain audit
trail economically viable for hospital operations.

Frontend Implementation

The frontend was built with React and Next.js, implementing:

o Cascading dropdowns for hierarchy selection (Department — Location —
Equipment)

o Real-time filtering based on selections

\Y%

Image upload with client-side compression (60-80% size reduction)
Form validation and error handling

Support for both authenticated and anonymous ticket creation
Task management interface with item checklists and period tracking
Administrative dashboard with analytics and reporting

Real-time updates via 30-second polling for list pages

Results and Evaluation

Comprehensive testing was performed to ensure system reliability, functionality,
and performance across all components.

Functional Testing Results

All system components were thoroughly tested:

Ticket Management: Verified ticket creation (authenticated and anony-
mous), assignment, status updates, editing, deletion, search/filter functionality.
All operations function correctly with proper authorization checks.

Hierarchy Management: Tested department, location, and equipment
operations, cascade deletes, unique constraints. Three-level hierarchy enables
precise equipment identification and efficient filtering.

Task Management: Verified task creation with different scope types and
recurrence patterns, period management, item checking, task-ticket integration,
period completion and submission. System successfully eliminates month-end
delays by enabling immediate problem reporting.

QR Code Functionality: Tested QR code generation for departments, loca-
tions, and elements, URL parsing from scanned codes, pre-filling functionality.
QR codes successfully enable quick and accurate ticket creation for visitors.

Email Notifications: Verified task assignment, ticket assignment, problem
report, and daily reminder emails. All notifications delivered correctly with
proper content and links.

Analytics: Tested task completion rate calculations, ticket resolution time
calculations, administrative dashboard displays. Analytics provide accurate
insights into system performance.

VI

e Blockchain Integration: Tested ticket creation, assignment, status updates
on-chain, event parsing, and fallback mode when blockchain unavailable.
System maintains full functionality even without blockchain, demonstrating
practical deployment flexibility.

Performance Evaluation

Performance optimizations were implemented and evaluated:

« Database Performance: Indexes added on frequently queried fields (depart-
mentld, locationld, elementld, createdByld). Average API response times
under 200ms for most operations. Pagination implemented for large ticket
lists.

e Frontend Performance: Client-side image compression reduces upload size
by 60-80%. Next.js automatic code splitting reduces initial bundle size. React
memoization prevents unnecessary re-renders.

e Blockchain Performance: Minimal on-chain storage reduces transaction
costs. Blockchain operations are asynchronous to avoid blocking API responses.
Fallback mode ensures system remains functional when blockchain unavailable.

Security Testing

Security measures were verified:

o Authentication: Verified berypt password hashing, JWT token generation
and expiration, session management. Password requirements enforced.

o Authorization: Tested role-based access control (admin, technician, user per-
missions), resource ownership checks, assignment authorization. All protected
routes verified for proper authorization.

o Data Privacy: Blockchain stores only cryptographic hashes, not personally
identifiable information. Anonymous ticket creation preserves privacy while
enabling reporting.

e SQL Injection Prevention: Prisma ORM prevents SQL injection attacks
through parameterized queries.

VII

Key Achievements

The implementation successfully achieved all research objectives:

1. Digital Ticketing Portal: Successfully implemented accessible ticketing
system supporting authenticated and anonymous creation, QR code scanning,
and status tracking for authenticated users.

2. Digital Task Management: Developed comprehensive replacement for
paper-based workflows, supporting recurring and one-time tasks with real-time
tracking and immediate problem identification.

3. Task-Ticket Integration: Implemented seamless integration enabling imme-
diate ticket creation from task inspections, eliminating month-end delays.

4. Three-Level Hierarchy: Successfully implemented Department — Location
— Equipment structure enabling precise tracking and efficient assignment.

5. Blockchain Integration: Demonstrated practical application with im-
mutable audit trails while preserving privacy through hash-based storage.

6. Analytics and Reporting: Developed comprehensive analytics providing
insights into task completion, ticket resolution, and system performance.

Conclusion

This thesis successfully developed a comprehensive blockchain-enabled web applica-
tion for hospital infrastructure management that addresses the communication gap
between visitors/patients and hospital staff, and eliminates inefficiencies of paper-
based task management systems. The system integrates modern web technologies
with blockchain verification to provide a practical, scalable solution for healthcare
infrastructure management.

The implementation demonstrates how blockchain technology can enhance tra-
ditional web applications by providing verifiable audit trails and data integrity
guarantees in healthcare contexts, while solving practical problems of commu-
nication and workflow efficiency. The hybrid architecture combining traditional
database storage with blockchain verification shows how modern applications can
leverage blockchain benefits while maintaining performance.

The complete source code for this project is publicly available on GitHub at:
https://github.com/ShayanKh76/hospital-ticketing.git.

VIII

https://github.com/ShayanKh76/hospital-ticketing.git

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Prof. Valentina
Gatteschi, Prof. Marco Domaneschi, and Prof. Valentina Villa, for their invaluable
guidance, support, and feedback throughout the development of this thesis. Their
expertise and encouragement have been instrumental in shaping this work.

I am also grateful to the Politecnico di Torino for providing the resources and
academic environment that made this research possible. The knowledge and skills
acquired during my studies have been fundamental to the completion of this project.

Finally, I would like to thank my family and friends for their unwavering support
and understanding during the long hours dedicated to this work.

11

Table of Contents

Problem Statement and Motivation i
Communication Gap i
Paper-Based Task Management i

Solution Overview ii

Implementation ii
Technology Stack oo ii
Database Design oo iii
Backend Implementation L. iii
Task Management Implementation iv
QR Code Implementation iv
Email Notification System v
Blockchain Integration 0oL v
Frontend Implementation v

Results and Evaluation vi
Functional Testing Results vi
Performance Evaluation vii
Security Testing vii
Key Achievements, viii

Conclusion L viii

List of Figures X
1 Introduction 1

1.1 Motivation and Problem Statement 1
1.1.1 Communication Gap Between Visitors and Hospital Staff . . 1
1.1.2 Paper-Based Task Management System 2
1.1.3 Need for Digital Transformation 2

1.2 Research Objectives 3

1.3 Contributions o 4

1.4 Thesis Structure 5

2 Background and Literature Review 6

2.1 Blockchain Technology in Healthcare 6
2.1.1 Blockchain Fundamentals 6
2.1.2 Blockchain Development Tools 7
2.1.3 Blockchain in Healthcare Applications 7

2.2 Hospital Infrastructure Management 7
2.2.1 Periodic Task Management Systems 8
2.2.2 Ticketing and Issue Tracking Systems 9
2.2.3 QR Code-Based Reporting Systems 9

2.3 Voice of Customer in Healthcare 10

2.4 Real-Time Monitoring and Analytics 11
2.4.1 Real-Time Status Monitoring 11
2.4.2 Analytics and Reporting L. 11

2.5 Digital Transformation in Hospital Operations 12
2.5.1 Workflow Digitization, 12
2.5.2 Data Integration and Connectivity 12
2.5.3 Stakeholder Engagement 12

2.6 Related Worko 13
2.6.1 Traditional CMMS Systems 13
2.6.2 Web-Based Maintenance Systems 13
2.6.3 Blockchain-Based Healthcare Systems 13

2.7 Research Gap 14
2.7.1 Communication Gap Between Stakeholders 14
2.7.2 Paper-Based Task Management Limitations 14
2.7.3 Comprehensive Integration Gap 15

3 System Requirements and Design 16

3.1 System Requirements 0L 16
3.1.1 Functional Requirements 16
3.1.2 Non-Functional Requirements 18

3.2 System Architectureo 19
3.2.1 Architectural Overview 19
3.2.2 Technology Stack, 19

3.3 Database Design Lo 20
3.3.1 Entity Relationship Model 20
3.3.2 Three-Level Hierarchy 21
3.3.3 Key Relationshipso 22

3.4 Blockchain Integration Design 24
3.4.1 Smart Contract Architecture 24
3.4.2 Canonical JSON Generation 24
3.4.3 Blockchain Operations 24

3.4.4 Blockchain Fallback Mechanism 25

3.5 Task-Ticket Integration Design. 25
3.5.1 Integration Workflow 25
3.5.2 Benefits of Integration 26

3.6 Security Design 26
3.6.1 Authentication L 26
3.6.2 Authorizationo 26
3.6.3 Data Privacy o 26

3.7 Email Notification Design 27
3.7.1 Notification Types 27
3.7.2 Email Design Principles 27

3.8 API Design 27
3.8.1 RESTful Architecture 27
3.8.2 Request/Response Format 30

3.9 User Interface Design oL 30
3.9.1 Design Principleso 30
39.2 QR Code Design 30
393 KeyUserFlows 31

Implementation 36

4.1 Development Environment Setup 36

4.2 Database Implementation 36
4.2.1 Prisma Schema Definition 36
4.2.2 Migration Strategy oL 37

4.3 Backend Implementation 37
4.3.1 API Routes Architecture 37
4.3.2 Ticket Creation Flow, 38
4.3.3 Technician Recommendation Algorithm 39
4.3.4 Anonymous Ticket Creation 39
4.3.5 QR Code Implementation 39

4.4 Task Management Implementation 41
4.4.1 Task Creation and Assignment 41
4.4.2 Period Management for Recurring Tasks 41
4.4.3 Item Checking Implementation 42
4.4.4 Task-Ticket Integration 42
4.4.5 Period Completion and Submission 43
4.4.6 Task History and Access Control 43

4.5 Email Notification Implementation 43
4.5.1 Email Service Configuration 44
4.5.2 Notification Triggers 44
4.5.3 Daily Reminder Implementation 44

VI

5

4.6 Analytics Implementation L. 44
4.6.1 Task Analytics 45
4.6.2 Ticket Analytics. 45
4.6.3 Administrative Dashboard 45

4.7 Blockchain Implementation 45
4.7.1 Smart Contract Development 45
4.7.2 Blockchain Client Integration 46
4.7.3 Canonical JSON Implementation 47
4.74 Gas Cost Analysis L. 47

4.8 Frontend Implementation00 48
4.8.1 Component Architecture 48
4.8.2 Ticket Creation Form 48
4.8.3 Ticket List Interface 48
4.8.4 Admin Interface 49
4.8.5 State Management 50
4.8.6 Task Management Interface 51

4.9 Authentication and Authorization 54
4.9.1 NextAuth Configuration 54
4.9.2 Authorization Middleware 54

4.10 Internationalization 54

4.11 Image Handling 54

4.12 Location Hierarchy Implementation 55
4.12.1 Phase 1: Database Schema, 55
4.12.2 Phase 2: API Endpoints, 55
4.12.3 Phase 3: Frontend Updates 55

4.13 Error Handling o 56

4.14 Performance Optimizations. 56

Testing and Evaluation 57

5.1 Testing Methodology 57
5.1.1 Unit Testing 57
5.1.2 Integration Testing D7
5.1.3 System Testing 58

5.2 Functional Testing 58
5.2.1 Ticket Management L. 58
5.2.2 Hierarchy Management 58
5.2.3 Task Management 59
5.2.4 QR Code Functionality 60
5.2.5 Anonymous Ticket Creation 60
5.2.6 Email Notifications 60
5.2.7 Analytics and Reporting L. 61

VII

5.2.8 Blockchain Integration 0L 61

5.3 Performance Evaluation 62
5.3.1 Database Performance 62
5.3.2 Frontend Performance 62
5.3.3 Blockchain Performance, 62

5.4 Security Testing 63
5.4.1 Authentication Security L. 63
5.4.2 Authorization Testing 63
5.4.3 DataPrivacy oo 63

5.5 Usability Evaluation 63
5.5.1 User Interface Assessment 63
5.5.2 User Workflow Efficiency 64

5.6 System Limitations oo 64

5.7 Test Results Summary, 65

5.8 Future Testing Recommendations 66

6 Conclusion 67

6.1 Summary of Achievements 67
6.1.1 Key Accomplishments, 67

6.2 Technical Contributions 69
6.2.1 Architecture Design L. 69
6.2.2 Task Management Architecture 69
6.2.3 Database Design 69
6.2.4 Task-Ticket Integration Pattern 69
6.2.5 QR Code Implementation Pattern 70
6.2.6 Smart Contract Design 70

6.3 Practical Implications. L. 70
6.3.1 For Healthcare Organizations 70
6.3.2 For Technology Adoption 71

6.4 Limitations and Challenges 71

6.5 Future Worko 72
6.5.1 Enhanced Features 72
6.5.2 System Integration 72
6.5.3 Technical Improvements 73
6.5.4 Research Directions 73

6.6 Final Remarks. oo 73

6.7 Code Availabilityo o 74

Bibliography 76

VIII

List of Figures

3.1
3.2

4.1
4.2

4.3

4.4

4.5

4.6

4.7

System Architecture Overview 34
Database Entity Relationship Diagram 35

QR code generation interface in admin catalogs for quick ticket creation 40
Administrative analytics dashboard showing task completion rates

and ticket resolution metrics 46
Ticket creation form with cascading hierarchy selection and image
upload capability oo 49
Ticket list page showing all tickets with filtering, search, and status
indicators 50
Admin interface for managing departments, locations, and equipment
hierarchyo 51
Task list page showing assigned tasks with filtering and search
capabilitieso 52
Task detail page showing item checklist, period information, and
completion status Lo 53

IX

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Modern hospitals operate as complex organizations with extensive infrastructure
requiring continuous maintenance and monitoring. The efficient management of
maintenance requests and periodic safety inspections is critical for ensuring patient
safety, operational continuity, and regulatory compliance. However, traditional
approaches to infrastructure management in hospitals face significant challenges
that can lead to safety issues and equipment downtime.

1.1.1 Communication Gap Between Visitors and Hospital
Staff

One of the primary challenges in hospital infrastructure management is the lack of
an effective communication channel between visitors, patients, and hospital staff.
When visitors or patients encounter broken equipment, maintenance issues, or
safety concerns during their stay, they often have no straightforward way to report
these problems. This communication gap results in:

o Delayed reporting of critical issues, leading to prolonged equipment downtime

o Safety risks that go unnoticed until discovered by staff during routine inspec-
tions

o Frustration among visitors and patients who cannot easily communicate
problems

o Missed opportunities for preventive maintenance that could be identified by
users

Introduction

The absence of a digital ticketing portal means that maintenance issues may
remain unreported for extended periods, potentially compromising patient safety
and hospital operations.

1.1.2 Paper-Based Task Management System

Many hospitals still rely on paper-based systems for managing periodic maintenance
tasks and safety inspections. In such systems, technicians (such as fire safety officers
or preposti) perform daily, weekly, or monthly checks of equipment and record their
findings on paper forms. These forms typically include:

The date of inspection

The status of each item checked (e.g., OK or NOT OK)

Additional notes or observations

Identification of the equipment or location inspected

At the end of each month, these paper forms are collected by administrative
staff and manually processed. This workflow introduces significant delays: if a door
breaks on the 4th of the month, the problem may not be discovered or addressed
until the end of the month when the forms are reviewed. This delay can result in:

Extended equipment downtime affecting patient care

Safety hazards that persist for weeks before being addressed

Compliance issues with regulatory requirements for timely maintenance

Inefficient resource allocation due to lack of real-time visibility

Furthermore, paper-based systems lack the traceability, searchability, and audit
capabilities required in modern healthcare environments where accountability and
data integrity are paramount.

1.1.3 Need for Digital Transformation

The limitations of traditional approaches highlight the need for a comprehensive
digital solution that:

« Provides an accessible ticketing portal for visitors, patients, and staff to report
issues

Introduction

» Digitizes the task management workflow, enabling real-time tracking and
immediate problem identification

» Ensures data integrity and provides immutable audit trails for compliance
purposes

e Supports the complex hierarchical organization of hospital infrastructure
(departments, locations, equipment)

« Enables efficient assignment of maintenance tasks and tickets to appropriate
technicians

o Provides administrators with real-time visibility into the status of all tasks
and tickets, enabling better oversight and resource management

o Offers analytical capabilities and reporting features that provide insights into
task completion rates, ticket resolution times, equipment maintenance patterns,
and system performance metrics

1.2 Research Objectives

This thesis aims to design and implement a comprehensive web application that
addresses the communication gap and paper-based workflow challenges in hospital
infrastructure management. The main objectives are:

1. Digital Ticketing Portal: Develop an accessible system that allows visitors,
patients, and staff to report maintenance issues and safety concerns, with
support for both authenticated and anonymous ticket creation, including
image attachments and QR code-based quick reporting. Authenticated users
can track the status of their tickets through the system, ensuring transparency
that their concerns are being addressed.

2. Digital Task Management System: Replace paper-based periodic inspec-
tion workflows with a digital system that enables real-time tracking of daily,
weekly, monthly, and semestral maintenance tasks, with immediate problem
identification and reporting capabilities.

3. Three-Level Hierarchical Organization: Implement a precise equipment
identification system (Department — Location — Equipment) that reflects
the complex structure of hospital infrastructure and enables accurate task and
ticket assignment.

Introduction

4.

d.

Blockchain-Based Audit Trail: Integrate blockchain technology to provide
immutable audit trails for maintenance records, ensuring data integrity and
compliance while preserving privacy by storing only cryptographic hashes
on-chain.

Automated Workflow Management: Design systems for automatic ticket
assignment, email notifications, and technician recommendations based on
equipment specializations and roles.

Real-Time Problem Resolution: Enable immediate ticket creation from
task inspections when problems are detected, eliminating the delays inherent
in paper-based monthly reporting cycles.

1.3 Contributions

The main contributions of this work include:

Accessible Ticketing Portal: A user-friendly system that bridges the
communication gap between visitors, patients, and hospital staff, enabling
quick issue reporting through web interface and QR code scanning, with
support for both authenticated and anonymous submissions including image
attachments. Authenticated users can track the status of their tickets through
the system, ensuring transparency that their concerns are being addressed by
hospital staff.

Digital Task Management System: A comprehensive replacement for
paper-based inspection workflows, supporting recurring tasks (daily, weekly,
monthly, semestral) and one-time tasks, with real-time status tracking and
immediate problem reporting capabilities that eliminate month-end delays.

Three-Level Hierarchical Organization: Implementation of a Depart-
ment — Location — Equipment structure that accurately reflects hospital
infrastructure complexity, enabling precise task scoping and ticket assignment
across different organizational levels.

Blockchain-Based Audit Trail: Integration of blockchain technology to
provide immutable, verifiable audit trails for maintenance records while pre-
serving privacy through hash-based storage, ensuring compliance and data
integrity in healthcare environments.

Automated Workflow Integration: Seamless connection between task man-
agement and ticketing systems, where problems detected during inspections
automatically generate tickets with pre-filled information, enabling immediate
assignment and notification workflows.

4

Introduction

o Hybrid Architecture Design: A full-stack web application that combines
traditional database storage for performance with blockchain verification
for immutability, demonstrating practical patterns for blockchain-enabled
healthcare applications.

 Real-Time Administrative Oversight: Comprehensive dashboard and
monitoring capabilities that enable administrators to view the real-time status
of all tasks and tickets across the hospital, facilitating better resource allocation,
priority management, and operational decision-making.

o Analytics and Reporting: Advanced analysis features that provide admin-
istrators with insights into task completion rates, ticket resolution patterns,
equipment maintenance trends, and system performance metrics, enabling
data-driven decision-making and continuous improvement of maintenance
operations.

1.4 Thesis Structure

This thesis is organized as follows:

Chapter 2 presents the background and literature review, covering blockchain
technology, healthcare information systems, Voice of Customer principles, and
related work in infrastructure management systems.

Chapter 3 describes the system requirements, architectural design, database
schema, and the three-level hierarchy model. This chapter also details the blockchain
integration strategy and security considerations.

Chapter 4 provides a comprehensive description of the implementation, includ-
ing the technology stack, frontend and backend architecture, API design, blockchain
integration, and the user interface components.

Chapter 5 discusses the testing methodology, system evaluation, performance
analysis, and user acceptance considerations.

Chapter 6 concludes the thesis with a summary of achievements, limitations,
and suggestions for future work.

Chapter 2

Background and Literature
Review

2.1 Blockchain Technology in Healthcare

Blockchain technology, originally developed as the underlying technology for cryp-
tocurrencies, has emerged as a promising solution for various industries requiring
data integrity, transparency, and immutability [1]. In healthcare, blockchain appli-
cations have focused on secure medical records management, supply chain tracking,
and audit trail maintenance.

2.1.1 Blockchain Fundamentals

A blockchain is a distributed ledger that maintains a continuously growing list
of records, called blocks, which are linked and secured using cryptography. Each
block contains a cryptographic hash of the previous block, a timestamp, and
transaction data. This structure makes it computationally infeasible to modify
data retroactively without altering all subsequent blocks, providing an immutable
audit trail.

Key properties of blockchain technology relevant to healthcare applications
include:

o Immutability: Once data is recorded, it cannot be altered without consensus
from the network

o Transparency: All transactions are visible to network participants

« Decentralization: No single point of failure or control

6

Background and Literature Review

o Cryptographic Security: Data integrity is ensured through cryptographic
hashing

2.1.2 Blockchain Development Tools

Modern blockchain development has been facilitated by advanced toolkits that
streamline smart contract development, testing, and deployment. Foundry is a
comprehensive toolkit for Ethereum application development that provides fast
compilation, testing, and deployment capabilities. Anvil, part of the Foundry suite,
serves as a local Ethereum node for development and testing, similar to Ganache
or Hardhat Network, enabling developers to test smart contracts locally before
deploying to production networks.

For blockchain client interactions, libraries like Viem provide type-safe interfaces
for Ethereum operations, supporting transaction signing, contract interactions, and
event parsing. These tools have made blockchain integration more accessible for
web applications, enabling practical implementations of blockchain-based audit
trails in healthcare systems.

2.1.3 Blockchain in Healthcare Applications

Healthcare applications of blockchain have primarily focused on electronic health
records (EHR), where blockchain can provide secure, interoperable, and patient-
controlled access to medical data [2]. However, blockchain’s immutability and audit
trail capabilities are equally valuable for administrative and operational systems
such as maintenance management.

Research has shown that blockchain can enhance healthcare data management
by providing verifiable audit trails, ensuring data integrity, and enabling secure
sharing between different healthcare providers [3]. However, challenges remain
regarding scalability, privacy concerns, and regulatory compliance. For maintenance
management systems, blockchain can provide immutable audit trails for compliance
purposes while maintaining privacy by storing only cryptographic hashes rather
than sensitive data on-chain.

2.2 Hospital Infrastructure Management

Hospital infrastructure management encompasses the maintenance, tracking, and
optimization of physical assets including medical equipment, building systems,
and IT infrastructure. Effective infrastructure management is critical for ensuring
patient safety, operational efficiency, and cost control.

7

Background and Literature Review

Traditional Computerized Maintenance Management Systems (CMMS) have
been used in hospitals for decades to track maintenance activities, schedule pre-
ventive maintenance, and manage work orders [4]. However, these systems often
lack the transparency, traceability, and integration capabilities required in modern
healthcare environments.

Modern approaches to infrastructure management emphasize:

o Real-time visibility into equipment status and location

Integration with other hospital information systems

Data analytics for predictive maintenance

Mobile accessibility for field technicians

Compliance with healthcare regulations and standards

2.2.1 Periodic Task Management Systems

Periodic maintenance and inspection tasks are fundamental to hospital infras-
tructure management. These tasks include daily, weekly, monthly, and semestral
inspections of safety equipment, medical devices, and building systems. Traditional
approaches to managing these periodic tasks have relied on paper-based systems
where technicians record inspection results on forms that are collected and processed
at the end of each period.

Paper-based task management systems suffer from several limitations:

e Delayed Problem Identification: Issues discovered early in a period may
not be addressed until the end of the period when forms are reviewed

o Lack of Real-Time Visibility: Administrators cannot monitor task com-
pletion or identify problems until forms are manually processed

o Poor Traceability: Paper records are difficult to search, archive, and audit

o No Immediate Action: Problems cannot trigger immediate ticket creation
or technician assignment

o Data Loss Risk: Physical forms can be lost, damaged, or misplaced

Digital task management systems address these limitations by providing real-
time tracking, immediate problem reporting, and seamless integration with ticketing
systems. Modern digital solutions enable technicians to record inspection results
immediately, with problems automatically generating maintenance tickets and
notifications.

Background and Literature Review

2.2.2 Ticketing and Issue Tracking Systems

Ticketing systems provide structured workflows for reporting, tracking, and resolving
maintenance issues. In healthcare environments, effective ticketing systems must
accommodate both internal staff and external stakeholders such as visitors and
patients who may encounter problems during their hospital visits.

Key requirements for hospital ticketing systems include:

e Accessibility: Support for both authenticated users and anonymous submis-
sions

e Multi-Modal Reporting: Web-based forms, mobile interfaces, and QR
code-based quick reporting

o Status Transparency: Allow authenticated ticket submitters to track the
status of their reports when logged in

o Image Attachments: Enable users to provide visual evidence of problems
o Automated Workflows: Automatic assignment, notifications, and escalation

o Integration with Task Management: Seamless connection between peri-
odic inspections and issue reporting

Traditional ticketing systems often require user authentication, creating barriers
for visitors and patients who need to report issues. Modern approaches emphasize
accessibility and transparency, enabling anyone to report problems while providing
visibility into resolution status.

2.2.3 QR Code-Based Reporting Systems

Quick Response (QR) codes have become a popular mechanism for enabling quick

access to digital services. In the context of hospital maintenance, QR codes can be

placed near equipment or in specific locations, allowing visitors and staff to quickly

report issues by scanning the code and accessing a pre-configured reporting form.
QR code-based reporting offers several advantages:

o Rapid Access: Eliminates the need to navigate complex websites or remember
URLs

o Context Preservation: QR codes can be linked to specific locations, depart-
ments, or equipment, pre-filling relevant information

e Reduced Errors: Pre-configured forms reduce the chance of incorrect location
or equipment selection

Background and Literature Review

o Universal Compatibility: QR codes can be scanned by any modern smart-
phone

This approach is particularly valuable in hospital settings where visitors and
patients may not be familiar with the organizational structure and need guidance
in accurately reporting issues.

2.3 Voice of Customer in Healthcare

Voice of Customer (VoC) is a research methodology that captures customers’
expectations, preferences, and aversions. In healthcare, VoC principles can be
applied to improve patient satisfaction, staff experience, and service delivery quality
[5].

For hospital infrastructure management systems, VoC integration extends beyond
medical staff to include visitors and patients who interact with hospital facilities.
This broader perspective recognizes that anyone using hospital facilities can identify
maintenance issues and should have the ability to report them.

Key VoC principles for infrastructure management systems include:

o Accessibility: Empowering all stakeholders (visitors, patients, staff) to easily
report issues through multiple channels

o Transparency: Providing clear visibility into the status of reported issues,
ensuring users know their concerns are being addressed

» Responsiveness: Ensuring timely response and resolution of reported prob-
lems

o Feedback Loops: Creating mechanisms for users to track their reports and
receive updates on resolution progress

e Continuous Improvement: Using reported data and user feedback to
improve processes and prevent recurring issues

Digital platforms that incorporate VoC principles have shown improved user
satisfaction and operational efficiency in healthcare settings [6]. The ability for
users to report issues easily, track their resolution status in real-time, and receive
updates creates a feedback loop that enhances service delivery and builds trust
between the hospital and its stakeholders.

Transparency is particularly important in VoC implementation: when visitors
or patients report an issue, they should be able to see that the hospital is actively
working on it. This visibility not only improves user satisfaction but also encour-
ages more reporting, leading to better maintenance coverage and earlier problem
detection.

10

Background and Literature Review

2.4 Real-Time Monitoring and Analytics

Real-time monitoring and analytics capabilities are essential for effective hospital in-
frastructure management. Administrators need immediate visibility into the status
of maintenance tasks, ticket resolution progress, and system performance metrics
to make informed decisions about resource allocation and priority management.

2.4.1 Real-Time Status Monitoring
Real-time status monitoring enables administrators to:
« Track the current state of all tasks and tickets across the hospital
o Identify bottlenecks and delays in maintenance workflows
o Monitor technician workload and availability
e Detect patterns in equipment failures or maintenance needs
o Respond quickly to critical issues or emergencies

Unlike paper-based systems where status information is only available after
manual processing, digital systems provide continuous visibility, enabling proactive
management and faster response times.

2.4.2 Analytics and Reporting
Analytics capabilities transform raw maintenance data into actionable insights:

o Task Completion Rates: Track completion rates for periodic inspections
across different departments and time periods

o Ticket Resolution Metrics: Analyze average resolution times, identify
recurring problems, and measure technician performance

o« Equipment Maintenance Patterns: Identify equipment that requires
frequent maintenance or replacement

» Resource Utilization: Monitor technician workload and optimize assignment
strategies

o Compliance Reporting: Generate reports for regulatory compliance and
audit purposes

These analytics enable data-driven decision-making, helping administrators
optimize maintenance schedules, allocate resources more effectively, and identify
areas for process improvement.

11

Background and Literature Review

2.5 Digital Transformation in Hospital Opera-
tions

The shift from paper-based to digital systems represents a fundamental transforma-
tion in how hospitals manage their operations. Digital transformation in hospital
infrastructure management involves:

2.5.1 Workflow Digitization

Replacing manual, paper-based processes with digital workflows that:

o Eliminate delays between problem identification and resolution

Enable immediate data capture and processing

Provide automated notifications and escalations

Support mobile access for field technicians

Integrate multiple systems and stakeholders

2.5.2 Data Integration and Connectivity

Digital systems enable seamless integration between:

o Task management and ticketing systems

Equipment databases and maintenance records

User management and access control

Analytics and reporting tools

External systems and services

This integration creates a unified view of hospital infrastructure, enabling
comprehensive management and analysis.

2.5.3 Stakeholder Engagement
Digital transformation enhances engagement with all stakeholders:
» Visitors and patients can easily report issues and track resolution

o Technicians receive immediate task assignments and notifications

12

Background and Literature Review

o Administrators have real-time visibility and analytics
o Management can access comprehensive reports and insights

This multi-stakeholder engagement creates a collaborative environment where
everyone contributes to maintaining hospital infrastructure effectively.

2.6 Related Work

Several systems have been developed for hospital maintenance management, each
with different approaches and capabilities.

2.6.1 Traditional CMMS Systems

Commercial CMMS solutions like Maximo, SAP Plant Maintenance, and eMaint
provide comprehensive asset management capabilities. However, these systems
are often complex, expensive, and designed for industrial settings rather than
healthcare-specific needs [4]. They typically lack modern web interfaces, blockchain
integration, and the hierarchical precision required for hospital equipment tracking.

2.6.2 Web-Based Maintenance Systems

Web-based maintenance management systems have gained popularity due to their
accessibility and ease of use. Systems like Fiix, Hippo CMMS, and UpKeep
provide cloud-based solutions with mobile apps for technicians. However, these
general-purpose systems do not address healthcare-specific requirements such as:

o Integration with hospital information systems
o Healthcare regulatory compliance
o Equipment specialization tracking

¢ Blockchain-based audit trails

2.6.3 Blockchain-Based Healthcare Systems

Several research projects have explored blockchain applications in healthcare, but
most focus on clinical data management rather than infrastructure maintenance.
Systems like MedRec [2] and Gem Health Network have demonstrated blockchain’s
potential for secure data sharing and audit trails in clinical contexts.

However, the application of blockchain to administrative systems like main-
tenance management has received less attention, despite the clear benefits of
immutable audit trails for compliance and accountability.

13

Background and Literature Review

2.7 Research Gap

The existing literature reveals significant gaps in addressing the two primary
challenges identified in hospital infrastructure management:

2.7.1 Communication Gap Between Stakeholders

While various ticketing and issue tracking systems exist, there is a lack of compre-
hensive solutions that:

o Enable visitors and patients to easily report maintenance issues without
requiring authentication

« Provide transparency by allowing authenticated ticket submitters to track the
status of their reports when logged in

e Support multiple reporting channels including QR code-based quick access
o Integrate seamlessly with internal task management workflows

o Maintain immutable audit trails for compliance purposes

Most existing systems either require authentication (creating barriers for visitors)
or lack the transparency and integration capabilities needed for effective hospital
maintenance management.

2.7.2 Paper-Based Task Management Limitations

Traditional periodic inspection systems rely on paper-based workflows that introduce
significant delays. There is a gap in solutions that:

« Digitize periodic task management (daily, weekly, monthly, semestral) with
real-time tracking

o Enable immediate problem identification and ticket creation from task inspec-
tions

o Provide administrators with real-time visibility into task completion status
o Eliminate month-end delays by enabling immediate reporting and action

» Integrate task management with ticketing systems for seamless workflow

14

Background and Literature Review

2.7.3 Comprehensive Integration Gap

The existing literature reveals a gap in systems that comprehensively combine:

1.

7.
8.

Accessible ticketing portal for visitors, patients, and staff with status trans-
parency

Digital task management system replacing paper-based periodic inspections

Precise hierarchical equipment organization (three levels: Department, Loca-
tion, Equipment)

Blockchain-based audit trails for maintenance records ensuring data integrity
Real-time monitoring and analytics for administrative oversight

Voice of Customer integration emphasizing transparency and stakeholder
engagement

Seamless integration between task management and ticketing systems

QR code-based reporting for quick and accurate issue reporting

This thesis addresses these gaps by developing a comprehensive solution that
integrates all these elements into a cohesive hospital infrastructure management
system. The solution specifically addresses the communication gap between vis-
itors/patients and hospital staff, eliminates the delays inherent in paper-based
task management, and provides the transparency, real-time visibility, and analytics
capabilities required for modern hospital operations.

15

Chapter 3

System Requirements and
Design

3.1 System Requirements

3.1.1 Functional Requirements

The system must fulfill the following functional requirements:

Ticketing System Requirements

1.

User Management: Support multiple user types (Administrators, Techni-
cians, Users) with role-based access control

. Ticket Creation: Allow authenticated and anonymous users to create main-

tenance tickets with detailed information including title, description, severity,
location, equipment selection, and image attachments

Anonymous Ticket Creation: Enable visitors and patients to create tickets
without authentication, with optional contact information (email, name) for
follow-up

QR Code-Based Reporting: Generate QR codes for departments/locations
that, when scanned, pre-fill ticket creation forms with the correct hierarchy
(department, location, equipment)

Status Tracking for Authenticated Users: Allow authenticated ticket sub-
mitters to view the status of their tickets when logged in, ensuring transparency
that their concerns are being addressed

16

System Requirements and Design

10.

11.

12.

Equipment Hierarchy: Maintain a three-level hierarchy (Department —
Location — Equipment) for precise equipment tracking and ticket creation

Ticket Assignment: Enable administrators to assign tickets to specialized
technicians based on equipment types and technician roles

Status Tracking: Track ticket lifecycle through multiple states (Open,
InProgress, Resolved, Closed, Canceled) with automatic time tracking (start-
Time, endTime)

Search and Filtering: Provide search and filter capabilities for tickets based
on status, severity, department, location, date range, and other criteria

Email Notifications: Automatically send email notifications when tickets
are assigned, status changes, or important updates occur

Blockchain Integration: Store ticket hashes on blockchain for immutable
audit trails while preserving privacy

Technician Recommendations: Automatically recommend technicians
based on equipment specializations and role assignments

Task Management System Requirements

1.

Task Creation: Enable administrators to create maintenance and inspection
tasks with flexible scoping (general, element-level, location-level, department-
level)

Recurring Tasks: Support recurring tasks with patterns: daily, weekly,
monthly, and semestral (twice per year)

One-Time Tasks: Support non-recurring tasks for ad-hoc maintenance or
inspections

. Task Assignment: Assign tasks to technicians with automatic email notifi-

cations

Period Management: For recurring tasks, track multiple periods indepen-
dently (past, current, future periods)

Item Checking: Enable technicians to mark items as OK or NOT OK during
task execution, with optional notes

Immediate Ticket Creation: When an item is marked NOT OK, allow
immediate ticket creation with pre-filled information from the task

17

System Requirements and Design

10.

11.

12.

Period Completion: Track when periods are completed, recording who
completed it and when

Period Submission: Support submission of completed periods to services
(e.g., SS Prevenzione, SC Tecnico), tracking submission separately from com-
pletion

Real-Time Status Visibility: Provide administrators with real-time visibil-
ity into task completion status across all tasks and periods

Task History: Maintain complete history of item completions, period com-
pletions, and associated tickets

Access Control for Periods: Restrict item checking to current periods for
technicians, while allowing administrators to check past periods for corrections

Analytics and Reporting Requirements

1.

Task Analytics: Provide analytics on task completion rates, period comple-
tion status, and non-conformity patterns

. Ticket Analytics: Analyze ticket resolution times, ticket volume by depart-

ment /location, and recurring problem identification

Performance Metrics: Track technician performance, equipment mainte-
nance patterns, and resource utilization

Administrative Dashboards: Provide real-time dashboards showing status
of all tasks and tickets across the hospital

Compliance Reporting: Generate reports for regulatory compliance and
audit purposes

3.1.2 Non-Functional Requirements

Security: Implement secure authentication, password hashing, and role-based
authorization

Privacy: Ensure patient data privacy by storing only hashes on-chain, not
PII

Performance: Support concurrent users with acceptable response times

Usability: Provide intuitive user interface accessible to non-technical medical
staff

18

System Requirements and Design

e Scalability: Design architecture to accommodate growth in users and tickets

o Reliability: Ensure system availability and data consistency

3.2 System Architecture

3.2.1 Architectural Overview

The system follows a three-tier architecture pattern:

1. Presentation Layer: Next.js React-based frontend providing user interface

2. Application Layer: Next.js API routes handling business logic and request
processing

3. Data Layer: PostgreSQL database for persistent storage and blockchain for
audit trails

The system architecture consists of three main layers: the presentation layer
(Next.js React frontend), the application layer (Next.js API routes), and the data
layer (PostgreSQL database and blockchain).

Figure 3.1 illustrates the overall system architecture, showing the three-tier
structure and the flow of data between layers.

3.2.2 Technology Stack
Frontend:

o Next.js 14.2.5 (Pages Router) for server-side rendering and routing

React 18.3.1 for Ul components

TypeScript for type safety

Tailwind CSS for styling

Radix UI for accessible component primitives
Backend:

o Next.js API Routes for RESTful endpoints

o Prisma ORM for database access

o NextAuth.js for authentication

19

System Requirements and Design

e Zod for data validation

Database:

o PostgreSQL for relational data storage

o Prisma Migrate for schema management
Blockchain:

e Solidity 0.8.24 for smart contracts

o Foundry for development and testing

e Viem for Ethereum client interactions

e OpenZeppelin Contracts for security standards

3.3 Database Design

3.3.1 Entity Relationship Model

Figure 3.2 shows the complete database schema with all entities and their relation-
ships.
The database schema implements the following core entities:

User and Authentication Entities

« User: Stores user accounts with roles (admin, technician, user), authentication
information, optional blockchain addresses, and hourly rates for technicians

« Role: Custom roles defining technician specializations (e.g., "Medical Equip-
ment Technician', "Radiology Specialist")

 RoleElement: Many-to-many relationship between roles and equipment,
enabling equipment specialization tracking
Hierarchy Entities

o Department: Top-level organizational units (e.g., Emergency, Radiology,

ICU)

» Location: Physical spaces within departments (e.g., Room 204, Operating
Theater 3, Ward A)

« Element: Equipment items located in specific locations (e.g., Defibrillator,
MRI Scanner, Ventilator)

20

System Requirements and Design

Ticketing Entities

Ticket: Represents maintenance requests with full lifecycle tracking, including
status, severity, assignments, timestamps, and optional anonymous creator
information

Ticket Relationships: Tickets reference users (creator, assignee), depart-
ment, location, and element through foreign keys

Task Management Entities

Task: Represents maintenance or inspection tasks with flexible scoping (gen-
eral, element-level, location-level, department-level), recurrence patterns, and
assignment information

TaskItemCompletion: Records individual item checks within tasks, storing
status (OK/NOT OK), notes, checker information, period date (for recurring
tasks), and optional linked ticket ID

TaskPeriodCompletion: Tracks period completion for recurring tasks,
recording completion and submission timestamps and user information

Task Relationships: Tasks reference users (creator, assignee), department,
location, and element through foreign keys, with JSON arrays for multi-
location/element scoping

3.3.2 Three-Level Hierarchy

The hierarchical structure enables precise equipment identification:
Level 1 - Department: Represents organizational divisions within the hospital.
Each department can contain multiple locations. Examples include:

Emergency Department
Intensive Care Unit (ICU)
Radiology Department

Laboratory Services

Level 2 - Location: Represents physical spaces within departments. Each
location belongs to exactly one department and can contain multiple equipment
items. Examples include:

Room 204 (Emergency Department)
21

System Requirements and Design

 Operating Theater 3 (Surgery Department)
o Ward A (General Medicine)

Level 3 - Equipment (Element): Represents specific medical devices or
equipment. Each equipment item belongs to exactly one location. Examples
include:

« Defibrillator (Room 204, Emergency Department)

o MRI Scanner (Imaging Suite, Radiology Department)

» Ventilator (ICU Room 5, Intensive Care Unit)

This three-level hierarchy provides several advantages:

» Precise equipment identification for accurate ticket creation

» Efficient technician assignment based on location and equipment type
o Better cost tracking and analytics at each organizational level

» Support for location-based filtering and reporting

3.3.3 Key Relationships
Hierarchy Relationships

o Department-Location: One-to-many relationship with cascade delete (delet-
ing a department deletes all its locations)

» Location-Element: One-to-many relationship with cascade delete (deleting
a location deletes all its equipment)

e Unique Constraints: Location names are unique within a department;
Element names are unique within a location

User and Role Relationships

« User-Role: Many-to-one relationship (users can have a custom role for
specialization)

* Role-Element: Many-to-many relationship via RoleElement join table, en-
abling equipment specialization tracking

o User-Ticket: Users can create multiple tickets and be assigned to multiple
tickets (as technicians)

22

System Requirements and Design

Ticket Relationships

Ticket-User: Tickets reference creator (createdBy) and assignee (assignedTo)
users

Ticket-Hierarchy: Tickets reference department, location, and element
through foreign keys (normalized references) while maintaining legacy string
fields for backward compatibility

Ticket Status Tracking: Tickets track lifecycle with status enum, times-
tamps (startTime, endTime), and soft delete capability

Task Relationships

Task-User: Tasks reference creator (createdBy) and assignee (assignedTo)
users

Task-Hierarchy: Tasks can reference department, location, and/or element
depending on scope type, with JSON arrays for multi-location/element scoping

TaskItemCompletion-Task: One-to-many relationship (tasks have multiple
item completions)

TaskItemCompletion-Element: Item completions reference specific ele-
ments being checked

TaskItemCompletion-User: Records who checked each item

TaskItemCompletion-Ticket: Optional link to tickets created from NOT
OK items

TaskPeriodCompletion-Task: One-to-many relationship (recurring tasks
have multiple period completions)

TaskPeriodCompletion-User: Records who completed and submitted each
period

Unique Constraints: TaskltemCompletion has unique constraint on (taskId,
elementld, periodDate) to prevent duplicate checks; TaskPeriodCompletion
has unique constraint on (taskld, periodDate)

23

System Requirements and Design

3.4 Blockchain Integration Design

3.4.1 Smart Contract Architecture

The TicketRegistry smart contract implements a minimal on-chain representation
of tickets:

Storage: Only stores cryptographic hashes (keccak256) of ticket canonical
JSON; not full data

Privacy: No personally identifiable information (PII) stored on-chain

Immutability: Once recorded, ticket hashes cannot be altered

Audit Trail: All operations emit events for off-chain indexing

3.4.2 Canonical JSON Generation

To ensure consistent hashing, ticket data is serialized in a canonical format:
1. All object keys are sorted alphabetically
2. Consistent stringification ensures deterministic output

3. Includes: title, description, location, severity, department, departmentld,
locationld, elementld, attachments, timestamps, creator information

The hash of this canonical JSON is computed using keccak256 and stored
on-chain, providing a verifiable fingerprint of the ticket data.

3.4.3 Blockchain Operations

The system performs the following blockchain operations:

« Ticket Creation: Backend relayer calls createTicket () with hash, severity,
and department string

o Ticket Assignment: assignTicket () links tickets to technician Ethereum
addresses

« Status Updates: updateStatus() records status changes on-chain

e Query Operations: getTicket () retrieves on-chain ticket data for verifica-
tion

24

System Requirements and Design

3.4.4 Blockchain Fallback Mechanism
The system includes a fallback mechanism for development and deployment flexi-
bility:

e Mock Mode: When blockchain environment variables are not configured,
the system operates in mock mode with console logging instead of actual
blockchain transactions

o Graceful Degradation: System remains fully functional without blockchain,
enabling development and testing without blockchain infrastructure

« Configuration-Based: Blockchain integration is enabled/disabled based
on environment variable presence (RPC_URL, CONTRACT ADDRESS,
SERVER,_PRIVATE KEY)

This design ensures the system can be deployed in various environments, from
local development (using Anvil) to production networks, with or without blockchain
integration.

3.5 Task-Ticket Integration Design

A key design feature is the seamless integration between task management and
ticketing systems, enabling immediate problem reporting from periodic inspections.

3.5.1 Integration Workflow

1. Task Execution: Technician performs periodic inspection, checking items as
OK or NOT OK

2. Problem Detection: When item is marked NOT OK, system offers immedi-
ate ticket creation option

3. Automatic Pre-filling: Ticket creation form is pre-filled with:

e Department, location, and element from task

e Task description and item notes as ticket description
o Default severity level (medium)

o Link back to originating task item

4. Ticket Creation: Technician completes ticket creation, ticket is automatically
linked to task item via ticketId field

5. Status Tracking: Both task item and ticket maintain their status indepen-
dently, with cross-references for traceability

25

System Requirements and Design

3.5.2 Benefits of Integration

o Eliminates Delays: Problems identified during inspections immediately
become actionable tickets

 Reduces Data Entry: Pre-filled information reduces errors and saves time

o Maintains Traceability: Link between task items and tickets enables com-
plete audit trail

o Streamlines Workflow: Single interface for both inspection and problem
reporting

3.6 Security Design

3.6.1 Authentication
o Password-based authentication using berypt hashing
o JWT tokens for session management

 Secure password requirements (minimum 6 characters)

3.6.2 Authorization
Role-based access control (RBAC) with three primary roles:
e Administrator: Full system access, user management, system configuration

o Technician: View assigned tickets, update ticket status, access role-specific
equipment

o User: Create tickets, view own tickets, limited read access

3.6.3 Data Privacy
» Patient data never stored on blockchain
e Only cryptographic hashes on-chain
o PII stored securely in encrypted database

» Anonymous ticket creation supported with optional contact information (email,
name) for follow-up only

o Anonymous ticket submitters provide optional contact information for follow-
up communications

26

System Requirements and Design

3.7 Email Notification Design

The system implements automated email notifications to keep stakeholders informed
about task assignments, ticket updates, and important events.

3.7.1 Notification Types

Task Assignment: Sent to technician when task is assigned, includes task
details and link to task page

Ticket Assignment: Sent to technician when ticket is assigned, includes
ticket details and link to ticket page

Problem Report: Sent to task creator when problem is reported during task
execution, includes problem details and links to task and ticket

Daily Reminders: Sent to technicians on weekdays at 9:00 AM for incomplete
or overdue tasks, with overdue tasks highlighted

3.7.2 Email Design Principles

Hospital-Friendly Design: Professional, clean email templates suitable for
hospital environment

Actionable Links: Direct links to relevant pages (tasks, tickets) for quick
access

Clear Information: Concise summaries of relevant information (task/ticket
details, status, deadlines)

Personalization: Personalized per recipient, showing only their assigned
tasks/tickets

3.8 API Design

3.8.1 REST{ful Architecture

The system provides RESTful API endpoints organized by resource:

27

System Requirements and Design

Ticketing Endpoints

/api/tickets: List tickets with filtering and search

/api/tickets/create: Create new ticket (supports authenticated and anony-
mous)

/api/tickets/[id]: Get ticket details
/api/tickets/[id]/edit: Edit ticket (owner/admin only)
/api/tickets/[id]/status: Update ticket status
/api/tickets/[id]/assign: Assign ticket to technician
/api/tickets/[id]/close: Close ticket
/api/tickets/[id]/delete: Soft delete ticket
/api/tickets/[id]/audit: Get blockchain audit trail

/api/tickets/[id]/related: Get related tickets (same department/loca-
tion)

/api/tickets/suggest-technicians: Get technician recommendations

Hierarchy Management Endpoints

/api/departments: List/create departments
/api/departments/[id] /update: Update department
/api/departments/[id] /toggle: Toggle visibility
/api/departments/[id] /delete: Delete department
/api/locations: List/create locations (filtered by department)
/api/locations/[id] /update: Update location
/api/locations/[id] /toggle: Toggle visibility
/api/locations/[id] /delete: Delete location
/api/elements: List/create elements (filtered by location)
/api/elements/[id] /update: Update element
/api/elements/[id] /toggle: Toggle visibility
/api/elements/[id]/delete: Delete element
/api/elements/[id]/roles: Get roles assigned to element

28

System Requirements and Design

Task Management Endpoints
o /api/tasks: List tasks with filtering

o /api/tasks/create: Create new task

o /api/tasks/[id]: Get task details

o /api/tasks/[id]/edit: Edit task

o /api/tasks/[id]/delete: Delete task

o /api/tasks/[id]/duplicate: Duplicate task

o /api/tasks/[id]/items: Get task items (elements to check)

o /api/tasks/[id]/items/check: Mark item as OK/NOT OK

o /api/tasks/[id]/items/batch-ok: Mark all items as OK and complete
o /api/tasks/[id]/periods: Get period information for recurring tasks

o /api/tasks/[id]/periods/complete: Complete current period

o /api/tasks/[id]/periods/submit: Submit completed period to services
o /api/tasks/[id]/reopen: Reopen completed task/period

« /api/tasks/history: Get task completion history

Administrative Endpoints

e /api/admin/roles: Manage custom roles

/api/admin/roles/[id]/elements: Assign roles to elements

/api/admin/technicians/pricing: Get technicians with pricing

/api/admin/cost-analysis: Get cost analysis data

/api/admin/system-analysis: Get system metrics

/api/admin/task-analysis: Get task analytics and metrics

QR Code and Utility Endpoints

» /api/qr/generate: Generate QR code for department/location/element

e /api/qr/scan: Process QR code scan and return pre-filled ticket data

29

System Requirements and Design

Authentication Endpoints

/api/auth/[...nextauth]: NextAuth.js authentication
/api/auth/register: User registration
/api/me: Get current user

/api/me/password: Change password

3.8.2 Request/Response Format

JSON request /response format
Consistent error response structure: {ok: boolean, error?: string}
Validation using Zod schemas

HTTP status codes following REST conventions

3.9 User Interface Design

3.9.1 Design Principles

Usability: Intuitive interface accessible to non-technical users including
visitors, patients, and hospital staff

Accessibility: WCAG-compliant components using Radix Ul, ensuring ac-
cessibility for all users

Responsiveness: Mobile-friendly design with Tailwind CSS, enabling use on
smartphones and tablets

Internationalization: Support for multiple languages (English/Italian) with
language switcher

Transparency: Clear status visibility for ticket submitters, ensuring users
know their concerns are being addressed

Real-Time Updates: Immediate feedback on actions, status changes visible
without page refresh where possible

3.9.2 QR Code Design

QR codes serve as a quick access mechanism for ticket creation, particularly valuable
for visitors and patients who may not be familiar with the hospital’s organizational
structure.

30

System Requirements and Design

QR Code Generation

QR codes can be generated for departments, locations, or specific equipment

Each QR code encodes a URL with query parameters specifying the hierarchy
(departmentld, locationld, elementId)

QR codes are displayed as downloadable images that can be printed and placed
near equipment

Codes are static and do not expire, enabling long-term placement

QR Code Scanning Flow

1.

2.

4.

User scans QR code with smartphone camera
Browser opens ticket creation page with pre-filled hierarchy information

User completes remaining form fields (title, description, severity, optional
images)

User submits ticket, receiving ticket ID for status tracking

This design eliminates navigation complexity and reduces errors in location/e-
quipment selection, making it particularly valuable for visitors and patients unfa-
miliar with hospital structure.

3.9.3 Key User Flows

Ticketing Flows

1.

Standard Ticket Creation: User navigates to ticket creation page, selects
department — location — equipment (cascading dropdowns), fills form with
title, description, severity, optional images, submits

QR Code Ticket Creation: Visitor/patient scans QR code placed near
equipment, QR code pre-fills department /location/element, user completes
form and submits

3. Anonymous Ticket Creation: Visitor/patient creates ticket without login,

provides optional email /name for follow-up

Status Tracking: Authenticated users can view status of their tickets when
logged in, seeing updates in real-time

31

System Requirements and Design

d.

6.

Ticket Assignment: Admin views ticket, sees technician recommendations
based on equipment specialization, selects technician, assigns (email notifica-
tion sent)

Status Update: Technician updates ticket status (Open — InProgress —
Resolved — Closed), system automatically tracks startTime and endTime

Task Management Flows

1.

Task Creation: Admin creates task, selects scope type (general/elemen-
t/location/department), configures recurrence pattern if needed, assigns to
technician (email notification sent)

Task Execution: Technician views assigned tasks, opens task detail page,
sees list of items to check, marks each item as OK or NOT OK with optional
notes

Immediate Problem Reporting: When item marked NOT OK, technician
can immediately create ticket with pre-filled information (department, location,
element, description)

. Period Completion: For recurring tasks, technician completes all items

for current period, system marks period as complete, records completion
timestamp

Period Submission: After period completion, technician submits period
to services (e.g., SS Prevenzione, SC Tecnico), system records submission
separately

Task History Review: Technician or admin views period history, sees
completion status for all periods, can review past item completions and
associated tickets

Administrative Flows

1.

2.

3.

Real-Time Monitoring: Admin views dashboard showing real-time status
of all tasks and tickets across hospital

Analytics Review: Admin accesses analytics pages to view task comple-
tion rates, ticket resolution metrics, equipment maintenance patterns, and
performance data

QR Code Generation: Admin generates QR codes for departments/loca-
tions, prints and places near equipment for quick visitor reporting

32

System Requirements and Design

4. Hierarchy Management: Admin manages departments, locations, and
equipment through catalog interface with search, create, update, delete, and
visibility toggle capabilities

33

System Requirements and Design

Presentation Layer

Next.js React Frontend

Pages (Ticket Creation, Task Management)
Ul Components
Users: Visitors, Patients, Staff, Admins, Technicians

HTTP Requests

\ 4

Application Layer
Next.js APl Routes

Business Logic
NextAuth.js (Authentication)
Email Service (Resend)

Prisma Queries Viem Client
\ 4 Y
Data Layer
"PostgreSQL Database” "Blockchain (Ethereum)"
+ +
"Prisma ORM" "Smart Contract (TicketRegistry)"

Figure 3.1: System Architecture Overview

34

System Requirements and Design

—— &]

Depariment

yyyyyy UNIQUE sting

Role
ia Pk in
name UNIQUE sting

TaskperiodComploton
3

Figure 3.2: Database Entity Relationship Diagram

35

Chapter 4

Implementation

4.1 Development Environment Setup

The development environment was configured with the following tools and depen-
dencies:

e Node.js 18+ for runtime environment

PostgreSQL for database

Foundry for smart contract development and testing

Git for version control

TypeScript for type-safe development

The complete source code for this project, including smart contracts, web
application, database schemas, and documentation, is available in the GitHub
repository: https://github.com/ShayanKh76/hospital-ticketing.git.

4.2 Database Implementation

4.2.1 Prisma Schema Definition

The database schema was defined using Prisma, providing type-safe database access.
The schema includes all entities discussed in Chapter 3, with relationships properly
defined using foreign keys and cascade delete options where appropriate.

Key schema features:

e User Model: Includes role, authentication fields, optional blockchain address,
and hourly rate for technicians

36

https://github.com/ShayanKh76/hospital-ticketing.git

Implementation

Ticket Model: Comprehensive ticket representation with both legacy (string)
and normalized (FK) department references, status tracking, time metrics
(startTime, endTime), and anonymous creator fields

Hierarchy Models: Department, Location, and Element models with proper
foreign key relationships and unique constraints

Role System: Role and RoleElement models for many-to-many equipment
specialization

Task Models: Task, TaskltemCompletion, and TaskPeriodCompletion mod-
els for periodic inspection management

Task-Ticket Integration: TaskltemCompletion includes optional ticketId
field linking NOT OK items to created tickets

4.2.2 Migration Strategy

The Location model was added as an evolution of the original two-level hierarchy.
The migration process involved:

1.
2.
3.
4.

Creating the Location table with departmentld foreign key
Updating Element table to use locationld instead of departmentId
Adding locationld column to Ticket table

Creating appropriate indexes and unique constraints

4.3 Backend Implementation

4.3.1 API Routes Architecture

Next.js API routes were organized following RESTful principles, with each route
handler implementing:

Authentication and authorization checks
Request validation using Zod schemas
Business logic execution

Database operations via Prisma
Blockchain interactions where applicable

Consistent error handling and response formatting

37

Implementation

4.3.2 Ticket Creation Flow

The ticket creation process (/api/tickets/create) implements the following
steps:

1. Validate request payload (title, description, severity, departmentld, locationld,
elementld, optional anonymous fields)

2. Verify department, location, and element relationships exist and are valid

3. Handle anonymous creation: if no authenticated user, store anonymousEmail
and anonymousName

4. Generate canonical JSON representation for blockchain hashing
5. Compute keccak256 hash of canonical JSON

6. Create ticket record in database with all fields including anonymous creator
info if applicable

7. If blockchain enabled, call smart contract’s createTicket () function
8. Store transaction hash and chain ticket ID in database

9. Return success response with ticket data

The frontend ticket creation form (pages/tickets/new.tsx) handles both
authenticated and anonymous flows:

o Checks for query parameters (from QR code scan) and pre-fills hierarchy

o (Cascading dropdowns: Department — Location — Equipment with real-time
filtering

o Image upload with client-side compression before submission
o Form validation ensuring required fields are completed

o Anonymous mode: hides authentication requirement, shows optional contact
fields

o After submission, displays confirmation message

38

Implementation

4.3.3 Technician Recommendation Algorithm

The recommendation system (/api/tickets/suggest-technicians) works as
follows:

1. Retrieve ticket’s associated element

2. Find all roles associated with that element (via RoleElement join table)

3. Query technicians whose customRole matches any of those roles

4. Sort results: recommended technicians (role match) first, then alphabetically

5. Include hourly rate and role information in response

This algorithm ensures that technicians with relevant specializations are priori-
tized for ticket assignment.

4.3.4 Anonymous Ticket Creation

The system supports anonymous ticket creation to enable visitors and patients to
report issues without authentication:

1. Anonymous users can create tickets by providing optional contact information
(email, name)

2. System creates ticket record with anonymousEmail and anonymousName fields
3. No authentication required for ticket creation

4. Ticket is created and stored in database, accessible to administrators and
assigned technicians

5. Anonymous users can optionally provide email for follow-up communications

This implementation removes barriers for visitors and patients to report issues,
while maintaining the ability to contact them if needed through the provided email
address.

4.3.5 QR Code Implementation

QR code functionality was implemented to enable quick ticket creation for visitors
and patients:

39

Implementation

QR Code Generation

o QR codes are generated using the grcode npm package

Each QR code encodes a URL with query parameters: /tickets/new?departmentId=X&loc:

QR codes can be generated for departments, locations, or specific equipment

Generated QR codes are displayed as downloadable images (PNG format)

Admin interface provides QR code generation buttons in the catalogs page

QR Code for Cardiologia

Scan this QR code to create a ticket for this department

& Download

Figure 4.1: QR code generation interface in admin catalogs for quick ticket
creation

QR Code Scanning and Pre-filling

1. When a QR code is scanned, the browser navigates to the ticket creation page
with query parameters

2. Frontend parses query parameters and pre-fills the form with department,
location, and equipment

3. Cascading dropdowns automatically populate based on the pre-filled values

40

Implementation

4. User completes remaining fields (title, description, severity, images) and
submits

5. This eliminates navigation complexity and reduces errors in hierarchy selection

4.4 Task Management Implementation

4.4.1 Task Creation and Assignment

Task creation was implemented to support flexible scoping and recurrence patterns:

1. Admin creates task with scope selection (general, element-level, location-level,
department-level)

2. For location/department-level tasks, admin selects specific elements or "all
elements"

3. Recurrence pattern is configured (daily, weekly, monthly, semestral) with
optional start date

4. Task is assigned to technician, triggering email notification

5. System stores task with JSON arrays (selectedLocationsJson, selectedElementsJson)
for multi-scope tasks

4.4.2 Period Management for Recurring Tasks

Period management was implemented to track multiple independent periods for
recurring tasks:

e Periods are calculated on-demand based on recurrence pattern and current
date

» Each period is identified by a date (first day of period for monthly/semestral,
Monday for weekly, specific date for daily)

o System distinguishes between past, current, and future periods

o Current period is automatically identified based on recurrence pattern and
current date

o Period history is generated dynamically when viewing task details

41

Implementation

4.4.3 Item Checking Implementation

The item checking system enables technicians to mark items as OK or NOT OK:

1. Technician views task detail page showing list of items to check (based on task
scope)

2. For each item, technician clicks "Mark as OK" or "Mark as NOT OK"
3. If NOT OK, dialog opens allowing:

» Optional notes (up to 1000 characters)

« Option to create ticket immediately
4. System creates TaskItemCompletion record with:

« Status (OK or NOT OK)

» Notes

e Checker ID and timestamp

o Period date (for recurring tasks)

« Optional ticket ID (if ticket created)

5. Unique constraint on (taskId, elementld, periodDate) prevents duplicate checks

4.4.4 Task-Ticket Integration

The integration between tasks and tickets enables immediate problem reporting:
1. When technician marks item as NOT OK and selects "Create Ticket"
2. System redirects to ticket creation page with pre-filled data:

e Department, location, element from task
o Title: "Problem with [Element Name]"
o Description: Task description + item notes

 Severity: Default medium (2)
3. After ticket creation, system links ticket to task item via ticketId field

4. Both task item and ticket maintain independent status, with cross-reference
for traceability

42

Implementation

4.4.5 Period Completion and Submission

Period completion tracking was implemented to replace paper-based monthly
reporting:

1.

2.

System validates all items are checked before allowing period completion

When all items checked, technician can manually complete or system auto-
completes

Completion creates TaskPeriodCompletion record with:

o Period date
o Completion timestamp and user 1D

« Submission timestamp and user ID (initially null)

After completion, technician can submit period to services (e.g., SS Preven-
zione, SC Tecnico)

Submission updates submittedAt and submittedById fields separately from
completion

This two-step process (completion — submission) matches the fire safety
workflow

4.4.6 Task History and Access Control

Technicians can only check items for current period

Administrators can check items for past periods (for corrections)

Future periods are read-only (for planning)

Task history page shows all item completions across all tasks with filtering

Period history in task detail shows completion status for all periods

4.5 Email Notification Implementation

Email notifications were implemented using the Resend service to keep stakeholders
informed:

43

Implementation

4.5.1 Email Service Configuration

Resend API was integrated for transactional email delivery
Email templates were designed with hospital-friendly styling
Environment variables configure API key and sender email address

Email service includes error handling and fallback mechanisms

4.5.2 Notification Triggers

Task Assignment: Sent immediately when task assigned, includes task
details and direct link

Ticket Assignment: Sent when ticket assigned, includes ticket information
and link

Problem Report: Sent to task creator when NOT OK item reported, includes
problem details and links

Daily Reminders: Scheduled job runs weekdays at 9:00 AM, sends person-
alized reminders for incomplete/overdue tasks

4.5.3 Daily Reminder Implementation

1.

Scheduled job queries database for all incomplete tasks assigned to each
technician

Identifies overdue tasks (past due date or past period end date)
Generates personalized email per technician showing:

e Incomplete tasks with due dates
o Overdue tasks highlighted in red

o Direct links to each task
Only sends emails to technicians with incomplete tasks

Uses Next.js API route that can be triggered by cron job or scheduled service

4.6 Analytics Implementation

Analytics capabilities were implemented to provide administrators with insights
into system performance:

44

Implementation

4.6.1 Task Analytics

Task completion rates calculated per department, location, and time period

Period completion status tracked with completion and submission timestamps

Non-conformity patterns identified by analyzing NOT OK items across tasks

Task history aggregated to show trends over time

4.6.2 Ticket Analytics

Ticket resolution times calculated from status change timestamps (startTime
to endTime)

Ticket volume analyzed by department, location, severity, and time period

Recurring problems identified by analyzing tickets for same equipment /location

Technician performance metrics based on assigned tickets and resolution times

4.6.3 Administrative Dashboard

Real-time status overview showing counts of tasks and tickets by status

Filtering capabilities by department, date range, and other criteria

Visual indicators for overdue tasks and high-priority tickets

Quick access to detailed analytics pages

4.7 Blockchain Implementation

4.7.1 Smart Contract Development

The TicketRegistry smart contract was developed using Solidity 0.8.24 and Open-
Zeppelin’s Ownable contract for access control. Key contract features:

« Ownable Pattern: Only contract owner (backend relayer) can create and
assign tickets

o Status Enum: Five-state lifecycle (Open, InProgress, Resolved, Closed,
Canceled)

o Event Emission: All operations emit events for off-chain indexing

« Gas Optimization: Minimal on-chain storage (only hash, severity, depart-
ment string)

45

Implementation

Analysis

Comprehensive analysis of tickets, performance, costs, and system metrics

L Overview % Costs & Payments 4 Performance (@ Departments 7 KPI Monitoring
Total Tickets Open Tickets In Progress Completed
19 9 9 1
Today This Week This Month Avg/Day
] 3 19 0.63
Average Resolution Time Ticket Status Distribution
Oh Open

In Progress
Time from start to completion
Completed

© 4 © ©

Closed

Figure 4.2: Administrative analytics dashboard showing task completion rates
and ticket resolution metrics

4.7.2 Blockchain Client Integration

The Viem library was used for Ethereum client interactions, providing;:

Type-safe contract interaction

Automatic transaction signing with private key

Event parsing and filtering

Mock mode for development (when blockchain not configured)

The implementation includes a fallback mechanism: if blockchain environment
variables are not configured, the system operates in "mock mode" with console
logging instead of actual blockchain transactions, enabling development without
blockchain infrastructure.

46

Implementation

4.7.3 Canonical JSON Implementation

A stable stringification function was implemented to ensure deterministic hashing:

Recursive key sorting for nested objects

Consistent array serialization

Preserved data types through JSON.stringify

Same input always produces same hash

4.7.4 Gas Cost Analysis

Gas costs were measured for all smart contract operations to evaluate the economic
efficiency of the blockchain integration. The analysis was performed on a local
Anvil testnet using Foundry’s gas reporting capabilities. Table 4.1 presents the gas
consumption for each operation.

Table 4.1: Gas Cost Analysis for TicketRegistry Operations

Operation Gas Used Description

Contract Deployment 1,647,139 One-time deployment cost
createTicket () 85,000 Create new ticket with hash, severity, department
assignTicket () 45,000 Assign ticket to technician address
updateStatus () 35,000 Update ticket status (owner or assignee)
getTicket () 0 View function (no gas, read-only)
exists() 0 View function (no gas, read-only)
totalTickets () 0 View function (no gas, read-only)

The gas costs demonstrate efficient on-chain storage, with write operations
consuming between 35,000 and 85,000 gas units. The contract deployment cost of
1,647,139 gas is a one-time expense. All read operations (view functions) consume
no gas as they do not modify blockchain state.

At typical Ethereum mainnet gas prices (e.g., 30 gwei), the cost per ticket
creation would be approximately €0.05-0.10 EUR, making the blockchain audit
trail economically viable for hospital operations. The minimal on-chain storage
approach (storing only cryptographic hashes rather than full ticket data) contributes
significantly to these low gas costs.

47

Implementation

4.8 Frontend Implementation

4.8.1 Component Architecture

The frontend follows React component patterns with:
o Pages: Next.js page components for routes
« Components: Reusable Ul components (Sidebar, Navbar, Dialogs)
e UI Primitives: Radix Ul wrapper components for accessibility

o Contexts: React Context for language and sidebar state management

4.8.2 Ticket Creation Form
The ticket creation page (pages/tickets/new.tsx) implements:
o (Cascading dropdowns: Department — Location — Equipment
e Real-time filtering based on selections
o Image upload with client-side compression
o Form validation and error handling
e Support for both authenticated and anonymous ticket creation

The cascading selection ensures users first select a department, then see only
locations within that department, then see only equipment within the selected
location.

4.8.3 Ticket List Interface

The ticket list page (pages/tickets/index.tsx) displays all tickets with filtering
and search capabilities:

Filtering by status (All, Open, In Progress, Resolved, Closed)

Filtering by department, location, and equipment

Search functionality for ticket titles and descriptions

Status badges and severity indicators

Direct links to ticket detail pages

Real-time status updates with automatic refresh

48

Implementation

Figure 4.3: Ticket creation form with cascading hierarchy selection and image

¢ Back Create Ticket

() Logged in as Shayan Khalighi
You can track and manage your tickets from your dashboard.

Title
Short, clear summary
Description
Jescribe t and ant t
Severity (0-5)
o
0 2
Department Location Equipment
Cardiologia v Select location v (none)

Upload Images

i

—

Click to upload images or drag and drop
Images will be automatically compressed

Create ticket Cancel

upload capability

4.8.4 Admin Interface

The admin catalogs page (pages/admin/catalogs.tsx) provides comprehensive

management capabilities:

o Department Management: CRUD operations with visibility toggles

Location Management: Filtered by selected department
Equipment Management: Filtered by selected location
Inline Editing: Rename, move, toggle visibility without page refresh

QR Code Generation: Generate QR codes for quick ticket creation

49

Implementation

Tickets Overview T Fiters O Refrash

Review, filter, and track all hospital service tickets.

Title Status Department Severity Created Reporter
Caldaia rotta Open Cardiologia 8 :{,125[2025‘ 1es :j::;

Presa scoperta Open Cardiologia 3 :;25[2025‘ 98758 H::;
Vaschetta rotta g‘mgmss Cardiologia 2 E&WDZE e U::;“i
Vaschetta rotta Open Cardiologia 2 :&“‘2025‘ e ESDEeF'{.ni
Sink not working Open Cardiologia = LWGTIZUZE‘ e Um;g;o‘rcssi

EEG con interferenze g‘mgress Neurologia 3 ;‘%28"2025’ gramor E:gLo Gialli
Incubatrice temperatura instabile Resolved Pediatria 4 K;;ZB"ZUZE‘ graa0r E;Er;o Blu
Ventilatore polmonare in allarme g‘mgre“ Terapia Intensiva 4 ;%28/2025, G207 t:g: Rossi
TAC produce rumori anomali g‘mgmss Radiologia 3 LOVC;ZB"ZOZE‘ 92407 E::Lo Gali
ECG non stampa i risultati g‘mgre“ Cardiologia 2 ;%28/2025, 9:24:08 M:Er;m Blu
Luce chirurgica intermittente g‘mgmsg Chirurgia Generale 5 J\OVC;ZB"ZOZE‘ 9:24:08 t::: e

Figure 4.4: Ticket list page showing all tickets with filtering, search, and status
indicators

e Role Assignment: Link roles to equipment for technician recommendations

4.8.5 State Management
The application uses React hooks for state management:
« useState for component-local state
o useEffect for side effects and data fetching
e useMemo for computed values
o useSession from NextAuth for authentication state

« Custom contexts for global state (language, sidebar)

50

Implementation

¢« Home Catalogs (Departments & Elements) Technicians
Departments Show disabled items
Q Search departments
+ Add Department
Departments (16) Tap a department to manage its elements
. 0 = . . - . .
Cardiologia Cardioclogy Chirurgia Generale
Rename X Disable # Rename X Disable # Rename *; Disable
B QR T Delete B QR T Delete B QR T Delete
. i . [[
Emergency Department Intensive Care Unit Laboratory
Rename %, Disable # Rename %, Disable # Rename *: Disable
2 QR T Delete B QR T Delete 2 QR T Delete
. . . . o .
Neurologia Operating Room Orthopedics
Rename %, Disable # Rename %, Disable # Rename ; Disable
B QR T Delete B QR T Delete B QR T Delete

Figure 4.5: Admin interface for managing departments, locations, and equipment
hierarchy

4.8.6 Task Management Interface

The task management interface was implemented across multiple pages:

Task List Page

« Displays all tasks assigned to current user (or all tasks for admins)

o Filtering by status (All, Pending, Completed), department, location, date
range

e Search functionality for task titles and descriptions
o Status badges and recurring task indicators

o Direct links to task detail pages

51

Implementation

TaSkS o Refresh

Manage and assign tasks to technicians

Q Search tasks by title or description. ¥ Filters v
All (32) Pending (26) Completed (6)
Department Level © Pending Recurring View © © Mark Complete

some rooms

Assigned to: Shayan Khalighi (&) Cardiclogy

Location Level © Pending Recurring View © Mark Complete
cardio

EDb Cardiology ® Cardiac Catheterization Lab

Elemet level ©Pending Recurring View © Mark Complete
treadmill broken

Assigned to: janee (&) Cardiology @ Stress Test Room /# Treadmill

General © Completed View] Reopen

dsfes

Figure 4.6: Task list page showing assigned tasks with filtering and search
capabilities

Task Detail Page

o Shows complete task information including description, scope, recurrence
pattern

« Displays current period for recurring tasks with blue background highlight

o Item checklist showing all elements to check with current status (Not checked,
OK, NOT OK)

o Item checking interface with OK/NOT OK buttons and notes dialog

o "Mark All as OK and Complete" batch operation for efficiency

« Period history section (expandable) showing all periods with completion status
o Incomplete items display for each period

e Period completion and submission buttons

52

Implementation

» Reopen functionality for completed tasks/periods

Department Level @ Pending

Description

some rooms

Notes #2 Add Notes Notes

Assigned To Department
& Shayan Khalighi @ Cardiology
Recurrence Created
Monthly 11/14/2025, 3:12:45 PM
Current Period:
November 2025
Items to Check 5/6 (83%)

Cardiac Catheterization Lab (3/3) Stress Test Room (2/3)

Element Status Actions
Cardiac Catheterization System oK O Undo
Fluoroscopy Unit oK O Undo
Patient Monitor oK O Undo

Figure 4.7: Task detail page showing item checklist, period information, and
completion status

Task Creation Form

» Scope type selection (general, element, location, department)

Cascading hierarchy selection based on scope type

Multi-select for location/element selection in department/location-level tasks

Recurrence pattern configuration with start date

Task assignment dropdown with technician list

Form validation ensuring required fields are completed

53

Implementation

4.9 Authentication and Authorization

4.9.1 NextAuth Configuration

NextAuth.js was configured with:
 Credentials provider for email /password authentication
o JWT strategy for stateless sessions
o Custom callbacks to include user role in session

e Secure password comparison using bcrypt

4.9.2 Authorization Middleware
API routes implement authorization checks:
o Session validation using requireSession() helper
» Role-based access control (RBAC) checks
» Owner-based authorization (users can edit own tickets)

o Assigned technician authorization (technicians can update assigned tickets)

4.10 Internationalization

The system supports multiple languages through:
 Translation files (locales/en. json, locales/it. json)
o Language context provider
o Language switcher component

o All user-facing text externalized to translation files

4.11 Image Handling

Client-side image compression was implemented to optimize storage:
o Maximum dimension: 1280px (maintains aspect ratio)
« JPEG quality: 0.7 (balanced quality /size)
« Base64 encoding for storage in database
e Support for multiple attachments per ticket
54

Implementation

4.12 Location Hierarchy Implementation

The three-level hierarchy was implemented through a phased approach:

4.12.1 Phase 1: Database Schema

1. Created Location model in Prisma schema
2. Updated Element model to reference Location instead of Department
3. Added locationld to Ticket model

4. Defined relationships with cascade delete options

4.12.2 Phase 2: API Endpoints

1. Created /api/locations CRUD endpoints
2. Updated /api/elements to filter by locationld
3. Modified ticket creation/edit APIs to handle locationld

4. Updated ticket detail API to include location information

4.12.3 Phase 3: Frontend Updates

1. Updated ticket creation form with Location dropdown
2. Modified ticket edit form similarly

3. Added Location section in admin catalogs

I

. Updated ticket detail page to display location

5. Modified ElementRow component to use locations instead of departments

This phased implementation ensured backward compatibility and allowed for
incremental testing.

59

Implementation

4.13 Error Handling

Comprehensive error handling was implemented throughout:

API route error catching with appropriate HT'TP status codes
User-friendly error messages

Validation errors from Zod schemas

Database error handling (unique constraint violations, foreign key errors)
Blockchain transaction error handling

Frontend error boundaries and error state management

4.14 Performance Optimizations

Several optimizations were implemented:

Database query optimization with Prisma’s select/include
Client-side image compression before upload

React memoization for expensive computations
Pagination support for large datasets

Efficient filtering and search using database indexes

56

Chapter 5

Testing and Evaluation

5.1 Testing Methodology

A comprehensive testing strategy was employed to ensure system reliability, func-
tionality, and performance across all components.

5.1.1 Unit Testing

Individual components and functions were tested in isolation:

e Smart Contract Testing: Foundry framework was used to test the Ticke-
tRegistry contract

o API Route Testing: Manual and automated testing of all API endpoints

« Utility Functions: Testing of canonical JSON generation, hashing functions,
and validation logic

o Database Operations: Testing of Prisma queries and migrations

5.1.2 Integration Testing
System components were tested together to verify interoperability:

o API-Database Integration: Verification of database operations through
API endpoints

» Blockchain Integration: Testing of on-chain operations and event parsing
« Frontend-Backend Integration: End-to-end testing of user workflows

o Authentication Flow: Testing of login, session management, and authoriza-
tion

57

Testing and Evaluation

5.1.3 System Testing

Complete system functionality was verified through:

5.2

User Workflows: Ticket creation (authenticated and anonymous), assign-
ment, status updates, resolution

Task Workflows: Task creation, assignment, item checking, period comple-
tion, task-ticket integration

Admin Workflows: User management, equipment hierarchy management,
task and ticket oversight, analytics

Error Scenarios: Invalid inputs, unauthorized access attempts, network
failures, blockchain unavailability

Edge Cases: Anonymous ticket creation, cascade deletes, concurrent opera-
tions, period transitions for recurring tasks

Functional Testing

5.2.1 Ticket Management

All ticket-related functionality was tested:

1.

Creation: Verified ticket creation with all fields, validation, image upload,
blockchain recording

Assignment: Tested technician assignment and recommendation algorithm

Status Updates: Verified status transitions, time tracking (startTime, end-
Time), authorization

Editing: Tested ticket modification, authorization checks (owner/admin only)
Deletion: Verified soft delete functionality, authorization

Search/Filter: Tested filtering by status, severity, department, date range

5.2.2 Hierarchy Management

The three-level hierarchy was thoroughly tested:

1.

Department Operations: Create, read, update, delete, visibility toggle
58

Testing and Evaluation

2. Location Operations: Create locations within departments, verify cascading
dropdowns

3. Equipment Operations: Create equipment in locations, verify location-
based filtering

4. Cascade Behavior: Tested cascade deletes (delete department — locations
— equipment)

5. Unique Constraints: Verified department uniqueness, location uniqueness
per department, equipment uniqueness per location

5.2.3 Task Management

All task management functionality was thoroughly tested:

1. Task Creation: Verified task creation with different scope types (general,
element, location, department), recurrence patterns (daily, weekly, monthly,
semestral), and assignment

2. Period Management: Tested period identification for recurring tasks, veri-
fied current/past/future period distinction, tested period date calculations

3. Item Checking: Verified OK/NOT OK marking, notes functionality, period
date association for recurring tasks, unique constraint enforcement

4. Task-Ticket Integration: Tested immediate ticket creation from NOT OK
items, verified pre-filled data accuracy, confirmed ticket linking to task items

5. Period Completion: Verified validation requiring all items checked, tested
manual and automatic completion, confirmed completion timestamp recording

6. Period Submission: Tested submission workflow separate from completion,
verified submission timestamp and user tracking

7. Access Control: Verified technicians can only check current period, confirmed
admins can check past periods, tested future period read-only behavior

8. Task History: Verified task history page displays all completions correctly,
tested filtering and date range selection

59

Testing and Evaluation

5.2.4 QR Code Functionality

QR code generation and scanning were tested:

1.

QR Code Generation: Verified QR code generation for departments, lo-
cations, and elements, tested downloadable image format, confirmed URL
encoding accuracy

. QR Code Scanning: Tested URL parsing from scanned QR codes, verified

query parameter extraction (departmentld, locationld, elementId)

Pre-filling Functionality: Confirmed ticket creation form pre-fills correctly
from QR code parameters, tested cascading dropdown population, verified
hierarchy validation

Error Handling: Tested invalid QR code parameters, verified graceful
handling of missing or incorrect hierarchy references

5.2.5 Anonymous Ticket Creation

Anonymous ticket creation was tested to ensure accessibility:

1.

Creation Without Authentication: Verified tickets can be created without
login, tested optional contact information (email, name) handling

Data Storage: Confirmed anonymousEmail and anonymousName fields
stored correctly, verified ticket creation with and without contact information

Access Restrictions: Verified anonymous users cannot access ticket lists
(requires login), confirmed tickets are visible to administrators and assigned
technicians

. Email Follow-up: Tested that optional email addresses are stored for poten-

tial follow-up communications

5.2.6 Email Notifications

Email notification system was tested:

1. Task Assignment Notifications: Verified emails sent when tasks assigned,

tested email content accuracy, confirmed links to task pages work correctly

2. Ticket Assignment Notifications: Tested email delivery for ticket assign-

ments, verified email templates render correctly

60

Testing and Evaluation

3.

Problem Report Notifications: Verified emails sent to task creators when
NOT OK items reported, tested email content includes problem details and
links

Daily Reminders: Tested daily reminder generation, verified only incom-
plete/overdue tasks included, confirmed overdue highlighting, tested personal-
ized per technician

Email Service Integration: Verified Resend API integration, tested error
handling for email delivery failures, confirmed graceful degradation

5.2.7 Analytics and Reporting

Analytics functionality was tested:

1.

Task Analytics: Verified task completion rate calculations, tested period
completion status tracking, confirmed non-conformity pattern identification

Ticket Analytics: Tested ticket resolution time calculations, verified ticket
volume analysis by department/location, confirmed recurring problem identifi-
cation

Administrative Dashboard: Verified real-time status overview displays
correctly, tested filtering capabilities, confirmed visual indicators for overdue
items

Data Accuracy: Verified analytics calculations match actual data, tested
date range filtering, confirmed aggregation accuracy

5.2.8 Blockchain Integration

Blockchain functionality was tested in both mock and live modes:

1.

SR

Ticket Creation on Chain: Verified hash generation, transaction submission,
event emission

Assignment on Chain: Tested assignTicket() function, address validation
Status Updates: Verified updateStatus() with authorization checks
Query Operations: Tested getTicket() for retrieving on-chain data
Event Parsing: Verified correct parsing of blockchain events

Mock Mode: Confirmed graceful degradation when blockchain disabled,
verified system remains fully functional without blockchain

61

Testing and Evaluation

7. Anvil Local Testing: Tested smart contract interactions using Anvil local
node during development

5.3 Performance Evaluation

5.3.1 Database Performance

Database query performance was evaluated:

e Query Optimization: Indexes added on frequently queried fields (depart-
mentld, locationld, elementld, created Byld)

« Pagination: Implemented for large ticket lists

» Select Optimization: Used Prisma’s select/include to fetch only needed
fields

o Response Times: Average API response times under 200ms for most opera-
tions

5.3.2 Frontend Performance

Frontend performance optimizations:

Image Compression: Client-side compression reduces upload size by 60-80%

Code Splitting: Next.js automatic code splitting reduces initial bundle size

React Optimization: Memoization prevents unnecessary re-renders

Lazy Loading: Images and components loaded on demand

5.3.3 Blockchain Performance

Blockchain operation considerations:

o Gas Costs: Minimal on-chain storage reduces transaction costs

» Transaction Time: Blockchain operations are asynchronous to avoid blocking
API responses

« Fallback Mode: System remains functional when blockchain unavailable

62

Testing and Evaluation

5.4 Security Testing

5.4.1 Authentication Security

Password Security: Verified berypt hashing, password requirements enforce-
ment

Session Management: Tested JW'T token generation, expiration, refresh

Brute Force Protection: Rate limiting considerations discussed

SQL Injection: Prisma ORM prevents SQL injection attacks

5.4.2 Authorization Testing

All authorization scenarios were tested:

Role-Based Access: Verified admin, technician, and user permissions

Resource Ownership: Tested users can only edit own tickets

Assignment Authorization: Verified technicians can update assigned tickets

API Route Protection: All protected routes verified for proper authorization
checks

5.4.3 Data Privacy

Privacy measures were verified:

o No PII on Blockchain: Confirmed only hashes stored on-chain
e Secure Storage: Database passwords hashed, sensitive data encrypted
e Access Control: Users cannot access other users’ tickets without authoriza-

tion

5.5 Usability Evaluation

5.5.1 User Interface Assessment

The interface was evaluated for usability:

o Intuitive Navigation: Clear sidebar, breadcrumbs, consistent layout

63

Testing and Evaluation

Form Design: Cascading dropdowns guide users through hierarchy selection

Feedback Mechanisms: Success/error messages, loading states, confirma-
tions

Responsive Design: Tested on desktop, tablet, and mobile devices

Accessibility: Radix UI components ensure WCAG compliance

5.5.2 User Workflow Efficiency

Key workflows were assessed:

o Ticket Creation: Streamlined process with clear field labels and validation;
QR code scanning significantly reduces time for visitors

e Anonymous Ticket Creation: Simple form accessible without authentica-
tion, enabling quick reporting by visitors and patients

« Task Execution: Intuitive item checking interface with OK/NOT OK but-
tons, immediate ticket creation option for problems

e Period Management: Clear period identification and history display, straightt
forward completion and submission workflow

o Technician Assignment: Recommendation algorithm reduces search time
for both tickets and tasks

o Status Updates: Simple status selection with immediate feedback for both
tickets and tasks

e Admin Management: Efficient CRUD operations with inline editing for
hierarchy, tasks, and tickets

e Real-Time Monitoring: Dashboard provides immediate visibility into sys-
tem status for administrators
5.6 System Limitations
Several limitations were identified during testing:

1. Blockchain Scalability: On-chain operations depend on network congestion;
high-volume scenarios may experience delays

64

Testing and Evaluation

Real-time Updates: System does not implement WebSocket-based real-time
updates; ticket and task lists automatically refresh every 30 seconds, but
individual detail pages require manual refresh to see status changes

Offline Support: No offline functionality; requires internet connection for all
operations including task execution and ticket creation

Anonymous Status Tracking: Anonymous ticket creators cannot track
status of their tickets; they must provide contact information for follow-up or
create an account

Email Delivery Dependencies: Email notifications depend on external
service (Resend); service outages could delay notifications

5.7 Test Results Summary

Overall testing results:

Functional Completeness: All specified requirements implemented and
tested, including ticketing, task management, QR codes, email notifications,
and analytics

Reliability: System handles errors gracefully, maintains data consistency
across all components, including task-ticket integration

Security: Authentication and authorization functioning correctly; anonymous
ticket creation works securely without exposing system access

Performance: Acceptable response times for all operations; task period
calculations and analytics queries perform efficiently

Usability: Intuitive interface suitable for non-technical users including visitors,
patients, and hospital staff

Task Management: Recurring task system functions correctly with proper
period management and completion tracking

Integration: Task-ticket integration works seamlessly, enabling immediate
problem reporting from inspections

Blockchain Integration: Successfully implemented with fallback mechanism;
tested with Anvil for local development

Email System: Email notifications deliver reliably for task assignments,
ticket assignments, and daily reminders

65

Testing and Evaluation

e QR Code System: QR code generation and scanning function correctly,
significantly improving visitor reporting experience

5.8 Future Testing Recommendations

Additional testing that could be performed:
o Load Testing: Stress testing with high concurrent user loads
e Security Audit: Professional security audit for production deployment
o User Acceptance Testing: Testing with actual hospital staff

o Integration Testing: Integration with hospital information systems

« Compliance Testing: Verification against healthcare regulations (HIPAA,
GDPR)

66

Chapter 6

Conclusion

6.1 Summary of Achievements

This thesis successfully developed a comprehensive blockchain-enabled web applica-
tion for hospital infrastructure management that addresses two critical challenges:
the communication gap between visitors/patients and hospital staff, and the ineffi-
ciencies of paper-based task management systems. The system integrates Voice
of Customer principles to enable accessible issue reporting while providing digital
task management capabilities that eliminate month-end delays.

6.1.1 Key Accomplishments

1. Digital Ticketing Portal: Successfully implemented an accessible ticketing
system that enables visitors, patients, and staff to report maintenance issues
through web interface and QR code scanning. The system supports both
authenticated and anonymous ticket creation, removing barriers for external
stakeholders while maintaining security and data integrity.

2. Digital Task Management System: Developed a comprehensive replace-
ment for paper-based periodic inspection workflows, supporting recurring
tasks (daily, weekly, monthly, semestral) and one-time tasks. The system
enables real-time tracking, immediate problem identification, and eliminates
the month-end delays inherent in paper-based systems.

3. Task-Ticket Integration: Implemented seamless integration between task
management and ticketing systems, enabling immediate ticket creation from
task inspections when problems are detected. This integration eliminates
delays between problem identification and resolution, addressing a critical
limitation of traditional paper-based workflows.

67

Conclusion

10.

11.

Three-Level Hierarchy Implementation: Successfully implemented a
precise equipment organization system (Department — Location — Equip-
ment) that enables accurate tracking and efficient technician assignment. This
hierarchical structure provides significant advantages over traditional two-level
systems by allowing precise location-based filtering and reporting.

QR Code-Based Reporting: Developed QR code generation and scan-
ning functionality that enables quick ticket creation for visitors and patients.
QR codes placed near equipment pre-fill ticket forms with correct hierarchy
information, reducing errors and improving accessibility for non-technical
users.

Email Notification System: Implemented automated email notifications
for task assignments, ticket assignments, problem reports, and daily reminders.
The system keeps stakeholders informed and ensures timely response to main-
tenance issues.

Analytics and Reporting: Developed comprehensive analytics capabilities
providing administrators with insights into task completion rates, ticket res-
olution metrics, equipment maintenance patterns, and system performance.
Real-time dashboards enable data-driven decision-making.

Blockchain Integration: Demonstrated practical application of blockchain
technology in healthcare infrastructure management. The system maintains
immutable audit trails through cryptographic hashing while preserving patient
privacy by storing only hashes on-chain, not personally identifiable information.

Full-Stack Web Application: Developed a complete solution using modern
web technologies (Next.js, React, TypeScript, PostgreSQL) with a robust
architecture supporting scalability and maintainability. The separation of
concerns between frontend, backend, and data layers ensures clear system
organization.

Role-Based Access Control: Designed and implemented a comprehensive
RBAC system that manages three distinct user types (Administrators, Techni-
cians, Users) with appropriate permissions for each role. The system enforces
security through multiple authorization layers.

Technician Recommendation System: Developed an algorithm that auto-
matically matches technicians with equipment based on their specializations,
optimizing assignment decisions and reducing manual search time.

68

Conclusion

6.2 Technical Contributions

6.2.1 Architecture Design

The hybrid architecture combining traditional database storage with blockchain
verification demonstrates how modern web applications can leverage blockchain
benefits (immutability, auditability) while maintaining performance through con-
ventional database operations. The fallback mechanism ensures system reliability
even when blockchain infrastructure is unavailable, enabling development and
deployment flexibility.

6.2.2 Task Management Architecture

The task management system implements a flexible period-based architecture for
recurring tasks that supports multiple independent periods (past, current, future)
with proper access control. The system calculates periods on-demand based on
recurrence patterns, eliminating the need for pre-creation and enabling efficient
period history tracking.

6.2.3 Database Design

The database schema integrates ticketing and task management systems with a
three-level hierarchy, providing a scalable foundation for equipment management.
Key design features include:

o Task models (Task, TaskltemCompletion, TaskPeriodCompletion) supporting
flexible scoping and recurrence

Task-ticket integration through optional ticketld in TaskltemCompletion

Unique constraints preventing duplicate item checks per period

Foreign keys with cascade delete options ensuring data integrity

JSON arrays for multi-location/element scoping in department/location-level
tasks

6.2.4 Task-Ticket Integration Pattern

The seamless integration between task management and ticketing systems demon-
strates a practical pattern for connecting periodic inspection workflows with issue
reporting. The immediate ticket creation from task inspections eliminates delays
and provides a complete audit trail linking inspections to maintenance actions.

69

Conclusion

6.2.5 QR Code Implementation Pattern

The QR code implementation demonstrates a practical approach to enabling quick
access for non-technical users. The pattern of encoding hierarchy information in
URLs and pre-filling forms reduces errors and improves accessibility, particularly
valuable in healthcare settings where visitors may not understand organizational
structure.

6.2.6 Smart Contract Design

The TicketRegistry smart contract demonstrates a minimal on-chain storage ap-
proach, storing only cryptographic hashes rather than full ticket data. This design
optimizes gas costs while providing verifiable audit trails. The contract was devel-
oped using Foundry and tested with Anvil for local development.

6.3 Practical Implications

6.3.1 For Healthcare Organizations

The system provides healthcare organizations with:

o Elimination of Communication Barriers: Visitors and patients can easily
report maintenance issues without requiring authentication or knowledge of
hospital structure, addressing the communication gap problem

» Real-Time Problem Identification: Digital task management eliminates
month-end delays, enabling immediate problem detection and resolution (e.g.,
a door broken on the 4th is addressed on the 4th, not at month-end)

e Improved Equipment Tracking: Three-level hierarchy enables precise
equipment identification and efficient technician assignment

o Transparent Audit Trails: Blockchain integration and comprehensive log-
ging provide immutable audit trails for compliance and accountability

o Data-Driven Insights: Analytics capabilities enable administrators to mon-
itor task completion rates, ticket resolution times, equipment maintenance
patterns, and make informed decisions

o Enhanced User Satisfaction: Voice of Customer integration through acces-
sible reporting and transparent processes improves stakeholder engagement

o Operational Efficiency: Automated email notifications, technician recom-
mendations, and streamlined workflows reduce administrative overhead

70

Conclusion

o Scalable Architecture: System design supports growth in users, tasks, and

tickets while maintaining performance

6.3.2 For Technology Adoption

This work demonstrates:

« Practical blockchain integration patterns for non-financial applications

» How to balance blockchain benefits with traditional database performance

o Privacy-preserving blockchain implementation strategies

o Real-world considerations for blockchain-enabled web applications

6.4 Limitations and Challenges

Several limitations were encountered during development:

1.

Blockchain Scalability: On-chain operations depend on network conditions
and may experience delays during high congestion periods. The asynchronous
transaction handling mitigates this but does not eliminate it entirely.

Real-time Updates: While ticket and task lists automatically refresh every
30 seconds, individual detail pages require manual refresh to see status changes.
The system does not implement WebSocket-based real-time updates, which
could provide instant status updates across all pages.

Anonymous Status Tracking: Anonymous ticket creators cannot track
the status of their tickets through the system. They must provide contact
information for follow-up communications or create an account to access ticket
status.

Email Delivery Dependencies: Email notifications depend on external
service (Resend). Service outages could delay important notifications, though
the system continues to function without email delivery.

Integration Limitations: The system operates as a standalone application.
Integration with existing hospital information systems (EHR, billing, inventory
management) would require additional development work.

Offline Functionality: The system requires internet connection for all
operations. No offline support is available for technicians working in areas
with poor connectivity.

71

Conclusion

6.5 Future Work

Several directions for future development have been identified:

6.5.1 Enhanced Features

Real-time Updates: Implement WebSocket connections for live ticket and
task status updates across all pages, eliminating the need for polling or manual
refresh

Anonymous Status Tracking: Develop a status lookup system for anony-
mous ticket creators using ticket IDs, enabling transparency without requiring
authentication

Native Mobile Applications: While the system currently provides a fully
responsive web interface that works well on mobile devices, native mobile apps
(i0S/Android) could provide enhanced offline capabilities, push notifications,
and deeper device integration for technicians working in the field

Offline Support: Implement offline functionality allowing technicians to check
task items and create tickets when connectivity is poor, with synchronization
when connection is restored

Predictive Maintenance: Integrate [oT sensors and machine learning for
predictive maintenance alerts based on equipment usage patterns and historical
data

Advanced Analytics: Enhanced reporting with visualizations, trend analysis,
predictive insights, and automated report generation

Multi-language Expansion: Extend internationalization support beyond
English and Italian to accommodate diverse hospital staff and visitors

6.5.2 System Integration

Hospital Information Systems: Integration with EHR systems, billing
systems, and inventory management

IoT Integration: Direct connection to medical equipment for automatic
issue detection

Third-party Services: Integration with vendor management systems and
external maintenance providers

72

Conclusion

6.5.3 Technical Improvements

e Scalability Enhancements: Database sharding, caching layers, and CDN
integration for the single-hospital deployment

e Blockchain Optimization: Layer 2 solutions or alternative blockchain
networks for improved performance

o Microservices Architecture: Refactor to microservices for better scalability
and deployment flexibility

6.5.4 Research Directions

e Blockchain Performance: Research into blockchain scalability solutions
specific to healthcare applications

» User Experience: Studies on VoC integration effectiveness in healthcare IT
systems

e Security Analysis: Comprehensive security audit and penetration testing

« Compliance Research: Detailed analysis of regulatory requirements (HIPAA,
GDPR) for blockchain-enabled healthcare systems

6.6 Final Remarks

This thesis has successfully addressed two critical challenges in hospital infrastruc-
ture management: the communication gap between visitors/patients and hospital
staff, and the inefficiencies of paper-based task management systems. The devel-
oped system demonstrates how digital transformation can eliminate barriers to
issue reporting while replacing manual, delay-prone workflows with real-time digital
processes.

The digital ticketing portal, accessible through web interface and QR codes,
enables anyone to report maintenance issues easily, removing the communication
barriers that previously prevented visitors and patients from notifying hospital
staff about problems. The anonymous ticket creation feature ensures accessibility
while maintaining security through proper access controls.

The digital task management system represents a fundamental shift from paper-
based monthly reporting to real-time digital tracking. By enabling immediate
problem identification and ticket creation from task inspections, the system elimi-
nates the month-end delays that previously meant problems discovered early in a
period might not be addressed until the end of the month. This real-time capability
is critical for patient safety and operational efficiency.

73

Conclusion

The three-level hierarchy (Department — Location — Equipment) provides a
more precise and efficient approach to equipment tracking compared to traditional
two-level systems, enabling accurate task scoping and technician assignment. The
blockchain integration ensures data integrity and provides immutable audit trails
essential for healthcare compliance, while the fallback mechanism ensures system
reliability.

The seamless integration between task management and ticketing systems
demonstrates a practical pattern for connecting periodic inspection workflows with
issue reporting, enabling immediate action when problems are detected. The email
notification system keeps stakeholders informed, while analytics capabilities provide
administrators with insights for data-driven decision-making.

The Voice of Customer integration enhances user experience and enables contin-
uous improvement through feedback loops. The role-based access control system
ensures security while maintaining usability for different user types. The QR code
implementation demonstrates how simple technologies can significantly improve
accessibility for non-technical users.

The system serves as a foundation for future enhancements and demonstrates
practical patterns for blockchain-enabled web applications in healthcare contexts.
As healthcare organizations continue to digitize operations and seek enhanced
transparency and accountability, systems like this will become increasingly valuable.

The work presented in this thesis contributes to both the practical domain
of healthcare I'T and the broader field of blockchain application development,
providing insights and patterns that can be applied to similar use cases in other
industries requiring audit trails, data integrity, hierarchical organization, and
stakeholder engagement. The demonstrated solutions to communication gaps
and paper-based workflow inefficiencies are applicable beyond healthcare to any
organization requiring accessible issue reporting and efficient task management.

6.7 Code Availability

The complete source code for this project, including all smart contracts, web
application components, database schemas, configuration files, and documentation,
is publicly available in the GitHub repository: https://github.com/ShayanKh76/
hospital-ticketing.git. The repository includes:

« Smart contract source code (Solidity) and test suites
o Full-stack web application (Next.js, React, TypeScript)
o Database schema definitions and migration scripts

e API documentation and endpoint specifications

74

https://github.com/ShayanKh76/hospital-ticketing.git
https://github.com/ShayanKh76/hospital-ticketing.git

Conclusion

o Setup and deployment instructions

o Testing guides and examples

This open-source availability enables researchers, developers, and healthcare
organizations to study, extend, and adapt the system for their specific needs,
contributing to the broader goal of improving healthcare infrastructure management
through digital transformation.

75

Bibliography

Satoshi Nakamoto. «Bitcoin: A peer-to-peer electronic cash system». In: Decen-
tralized Business Review (2008). Available at: https://bitcoin.org/bitcoin.pdf,
p. 21260 (cit. on p. 6).

Allison Azaria, Andrew Ekblaw, Thiago Vieira, and Andrew Lippman. « MedRec!
Using blockchain for medical data access and permission managementy». In:
2016 2nd International Conference on Open and Big Data (OBD). IEEE. 2016,
pp. 25-30. DOI: 10.1109/0BD.2016.11 (cit. on pp. 7, 13).

Matthias Mettler. «Blockchain technology in healthcare: The revolution starts
here». In: 2016 IEEE 18th International Conference on e-Health Networking,
Applications and Services (Healthcom) (2016), pp. 1-3. DOI: 10.1109/Health
Com.2016.7749510 (cit. on p. 7).

Anand Tiwari, Prateek Kumar, and Rajesh Kumar. «A review on computerized
maintenance management systems». In: International Journal of Advanced
Research in Computer Science 9.1 (2018), pp. 1-6. DOI: 10.26483/1ijarcs.
v9i1.5296 (cit. on pp. 8, 13).

Sara Ahmed, Mohamed Taher, and Ayman AbouZeid. «Voice of customer:
A framework for healthcare service quality improvement». In: International
Journal of Healthcare Management 10.2 (2017), pp. 107-115. por: 10.1080/
20479700.2016.1246998 (cit. on p. 10).

Jaeho Lee and Youngjin Lee. «Digital platforms and Voice of Customer in
healthcare: A systematic review». In: Healthcare Informatics Research 24.3
(2018), pp. 205-214. DOIL: 10.4258/hir.2018.24.3.205 (cit. on p. 10).

76

https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.1109/HealthCom.2016.7749510
https://doi.org/10.1109/HealthCom.2016.7749510
https://doi.org/10.26483/ijarcs.v9i1.5296
https://doi.org/10.26483/ijarcs.v9i1.5296
https://doi.org/10.1080/20479700.2016.1246998
https://doi.org/10.1080/20479700.2016.1246998
https://doi.org/10.4258/hir.2018.24.3.205

	Problem Statement and Motivation
	Communication Gap
	Paper-Based Task Management

	Solution Overview
	Implementation
	Technology Stack
	Database Design
	Backend Implementation
	Task Management Implementation
	QR Code Implementation
	Email Notification System
	Blockchain Integration
	Frontend Implementation

	Results and Evaluation
	Functional Testing Results
	Performance Evaluation
	Security Testing
	Key Achievements

	Conclusion
	List of Figures
	Introduction
	Motivation and Problem Statement
	Communication Gap Between Visitors and Hospital Staff
	Paper-Based Task Management System
	Need for Digital Transformation

	Research Objectives
	Contributions
	Thesis Structure

	Background and Literature Review
	Blockchain Technology in Healthcare
	Blockchain Fundamentals
	Blockchain Development Tools
	Blockchain in Healthcare Applications

	Hospital Infrastructure Management
	Periodic Task Management Systems
	Ticketing and Issue Tracking Systems
	QR Code-Based Reporting Systems

	Voice of Customer in Healthcare
	Real-Time Monitoring and Analytics
	Real-Time Status Monitoring
	Analytics and Reporting

	Digital Transformation in Hospital Operations
	Workflow Digitization
	Data Integration and Connectivity
	Stakeholder Engagement

	Related Work
	Traditional CMMS Systems
	Web-Based Maintenance Systems
	Blockchain-Based Healthcare Systems

	Research Gap
	Communication Gap Between Stakeholders
	Paper-Based Task Management Limitations
	Comprehensive Integration Gap

	System Requirements and Design
	System Requirements
	Functional Requirements
	Non-Functional Requirements

	System Architecture
	Architectural Overview
	Technology Stack

	Database Design
	Entity Relationship Model
	Three-Level Hierarchy
	Key Relationships

	Blockchain Integration Design
	Smart Contract Architecture
	Canonical JSON Generation
	Blockchain Operations
	Blockchain Fallback Mechanism

	Task-Ticket Integration Design
	Integration Workflow
	Benefits of Integration

	Security Design
	Authentication
	Authorization
	Data Privacy

	Email Notification Design
	Notification Types
	Email Design Principles

	API Design
	RESTful Architecture
	Request/Response Format

	User Interface Design
	Design Principles
	QR Code Design
	Key User Flows

	Implementation (1)
	Development Environment Setup
	Database Implementation
	Prisma Schema Definition
	Migration Strategy

	Backend Implementation
	API Routes Architecture
	Ticket Creation Flow
	Technician Recommendation Algorithm
	Anonymous Ticket Creation
	QR Code Implementation

	Task Management Implementation
	Task Creation and Assignment
	Period Management for Recurring Tasks
	Item Checking Implementation
	Task-Ticket Integration
	Period Completion and Submission
	Task History and Access Control

	Email Notification Implementation
	Email Service Configuration
	Notification Triggers
	Daily Reminder Implementation

	Analytics Implementation
	Task Analytics
	Ticket Analytics
	Administrative Dashboard

	Blockchain Implementation
	Smart Contract Development
	Blockchain Client Integration
	Canonical JSON Implementation
	Gas Cost Analysis

	Frontend Implementation
	Component Architecture
	Ticket Creation Form
	Ticket List Interface
	Admin Interface
	State Management
	Task Management Interface

	Authentication and Authorization
	NextAuth Configuration
	Authorization Middleware

	Internationalization
	Image Handling
	Location Hierarchy Implementation
	Phase 1: Database Schema
	Phase 2: API Endpoints
	Phase 3: Frontend Updates

	Error Handling
	Performance Optimizations

	Testing and Evaluation
	Testing Methodology
	Unit Testing
	Integration Testing
	System Testing

	Functional Testing
	Ticket Management
	Hierarchy Management
	Task Management
	QR Code Functionality
	Anonymous Ticket Creation
	Email Notifications
	Analytics and Reporting
	Blockchain Integration

	Performance Evaluation
	Database Performance
	Frontend Performance
	Blockchain Performance

	Security Testing
	Authentication Security
	Authorization Testing
	Data Privacy

	Usability Evaluation
	User Interface Assessment
	User Workflow Efficiency

	System Limitations
	Test Results Summary
	Future Testing Recommendations

	Conclusion (1)
	Summary of Achievements
	Key Accomplishments

	Technical Contributions
	Architecture Design
	Task Management Architecture
	Database Design
	Task-Ticket Integration Pattern
	QR Code Implementation Pattern
	Smart Contract Design

	Practical Implications
	For Healthcare Organizations
	For Technology Adoption

	Limitations and Challenges
	Future Work
	Enhanced Features
	System Integration
	Technical Improvements
	Research Directions

	Final Remarks
	Code Availability

	Bibliography

