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Abstract

Financial crimes pose significant risks to financial institutions, national economies,
and society as a whole. The major threats in this domain are addressed through
specific regulatory frameworks, such as Anti Money Laundering (AML), Combating
the Financing of Terrorism (CFT) and opposing the proliferation of weapons of
mass destruction. To mitigate these risks, supervisory authorities impose substan-
tial penalties on institutions that do not adopt effective measures of prevention.
Consequently, banks are required to comply with strict regulations designed to
detect and prevent such crimes. Although these tasks have traditionally been
handled by rule-based Transaction Monitoring (TxM) systems, recent advances
in Machine Learning have introduced new paradigms to address this complex
challenge.

This thesis presents a real-world case study on the adoption of unsupervised and
semi-supervised Machine Learning techniques for anomaly detection in the context
of a traditional banking system, a sector typically characterized by strong conser-
vatism. In the next pages, the “Multicriteria Anomaly Detection” (MAD) project
is described in detail: using approximately 3.3 billion anonymized transactions
collected over 12 months by an Italian financial institution, a Machine Learning
pipeline for TxM was developed, optimized, and deployed in production.

The work spans the entire process: from the presentation of the datasets,
to the extraction of 98 aggregated features describing each account’s monthly
transactional behavior, to the training and hyperparameter tuning of a semi-
supervised AutoEncoder, and finally to the evaluation of its performance with
dedicated metrics. Comparative analyses were also carried out against other
unsupervised anomaly detection models, specifically One-Class Support Vector
Machine and Isolation Forest. This exploration is particularly relevant given the
increasing demand for more effective approaches to counter financial crimes and
highlights how the application of Machine Learning can contribute to the evolution
of monitoring systems in this critical sector.
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Chapter 1
Introduction

The Financial Action Task Force (FATF) is an intergovernmental body created by
the Paris G7 in 1989 with the aim of establishing global standards and strategies
to combat money laundering of illicit origin (“Anti Money Laundering” or AML),
terrorism financing (“Combating the Financing of Terrorism” or CFT) and the
financing of the proliferation of weapons of mass destruction. In summary, the
FATF is the world’s leading and standard-setting body in the fight against financial
crime, aiming to protect the global financial system.

The organization issues the 40 Recommendations|1]: international principles
and measures that are used by countries to prevent and combat these crimes. As
of September 2025, the 20th recommendation states that

“if a financial institution suspects or has reasonable grounds to suspect that
funds are the proceeds of a criminal activity, or are related to terrorist financing,
it should be required, by law, to report promptly its suspicions to the Financial
Intelligence Unit (FIU)”[1].

Financial institutions rely on Transaction Monitoring (TxM) systems to comply
with this regulation: these systems process hundreds of millions of transactions to
model accounts’ behaviors in search of the suspicious ones. TxM systems are often
deployed as a set of deterministic rules, causing alerts when an account triggers one
of them. However, in recent years, a new approach has been applied to make these
systems more accurate and, most importantly, able to evolve in time, in order to
constantly follow the evolution of criminal behavior: applying Machine Learning to
TxM.

This thesis presents a real-world case study on using semi-supervised Machine
Learning techniques to detect anomalies for AML. In the next pages, the “Multi-
modal Anomaly Detection” (MAD) project will be presented: using approximately
3.3 billion anonymized bank transactions registered over 12 months one of the
largest Italian financial institutions, a Machine Learning pipeline for TxM was
developed, tuned, and deployed in production.
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Introduction

1.1 Subject of study

The project presented in this thesis is the follow-up of a previous work, developed
between March and September 2024 by Politecnico di Torino and fan italian
financial institution, and its aim is to expand the scope of the former one. By
introducing MAD 2024 [2], some additional background on TxM and financial
regulations will be provided, as well as some common vocabulary.

A customer of a financial institution is defined as an entity that performs
interactions with the mentioned institution. A customer can be a physical person
or a legal entity, and can interact with the institution through an account, like a
savings or a checking account. Each account is identified by an account ID, for
example, the American Bankers Association (“ABA”) routing transit number in
the USA, or the International Bank Account Number (“IBAN”) in Europe. A
single customer can operate several accounts for distinct purposes, while a single
account can also be shared among multiple customers.

Each account enables the execution of transactions. These can be performed
directly between the bank and the customer (for instance, withdrawing funds from
an ATM) or between two distinct parties (such as a bank transfer). If a set of
transactions is considered potentially malicious by a financial institution, it is
mandatory that the institution report the suspicious activities to FIUs, by means
of a so-called “Suspicious Activity Report” (SAR). SARs are required to contain
information on the customer who performed the suspicious activity (the “subject”
of the SAR) and the set of financial operations that characterize the suspicious
activity (the “object” of the SAR).

As mentioned above, financial institutions fulfill this requirement by implement-
ing TxM systems: a set of rules that analyze hundreds of millions of transactions
to catch the potentially suspicious accounts and customers. Since the system is
not required to work in real-time, TxM systems typically run every month.

The alerts generated by the automated part are then subject to several layers of
investigation, carried out by different human operators within what is known as
the competence center. These centers usually function on two tiers: L1 and L2. At
the L1 stage, a preliminary assessment is conducted to filter out clearly irrelevant
alerts. Those considered potentially significant are escalated to L2, where further
in-depth investigations are performed. The result of this process is that the alert is
either classified as a false positive (meaning it is judged to be not suspicious) or as
sufficiently concerning to justify the creation of a SAR, which is then forwarded to
the FIU.

The FIU proceeds with its own investigation and takes appropriate actions,
which may include involving law enforcement. Typically, the FIU does not provide
explicit feedback on the investigation’s final outcome, but only indicates whether
the SAR has been archived (deemed unimportant) or left open. In this thesis,
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non-archived SARs are evaluated as true positives.

1.2 Formal problem formulation

The set of all existing customers is referred to as C' = {cy, ¢o, ...}, and the set of all
existing accounts is referred to as A = {ay, as,...}. By representing as P(X) the
power set of X, the relationship between customers and accounts can be modeled
with two functions:

o owns(+) : C'— P(A)\ 0, indicating that a customer is the owner of an account
(that is, the owner uses the account to perform transactions);

e isOwned(:) : A — P(C)\0, indicating that an account is owned by a customer.

In both cases, a power set must be used, as a customer can own multiple accounts
and an account can be owned by more than one customer, in which case a pri-
mary owner is identified for the account (this relationship can be referred to as
primaryOuwns(-) : A — C.

At the beginning of each month, each account is also associated to the available
amount of money, the so called balance: balance(-) : A — R.

Each customer is associated with a customer type, representing a general
description of the customer, which is determined during the Know Your Customer
(KYC) due diligence phase. The set S of known customer types is made only of
two possible values: Physical Person and Legal Entity. A customer is associated to
its type via customerType(:) : C — S.

Transactions can also be divided into different categories: wire transfers, cash
(such as deposits and withdrawals) or none of these two. Cash transactions are
usually performed between one customer and the financial institution, while wire
transfers generally involve two customers as parties, with the institution being just
and intermediary. However, for this thesis, the counterpart of a wire transfer was
not made available.

Also a set R of reasons for each transaction is provided: it contains a description
of the reason motivating a transaction.

Thus, each transaction is described by the 4-tuple (a, m, ¢, d), where a € A is the
account performing the operations, m € R is the amount of the operation (positive
if the amount is deposited on the account, negative otherwise), t € R is the reason
and d represents the timestamp (that is, date and time) of the operation. Further
details about accounts, customers and transactions descriptions will be provided in
the section dedicated to the description of the datasets.

In this thesis, reference to specific attributes of a transaction will be made
by means of functions. For instance, a(t) will be used to refer to the account of
transaction ¢, m(t) will be the amount associated with that transaction, and so
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on. Furthermore, Toasy and Ty re will refer to the sets of all CASH and WIRE
transactions processed by the financial institution, respectively.

To keep the results consistent with the current regulations, as well as to lighten
the computational load by reducing the volumes of data, TxM is performed over
batches of data belonging to a specific time span. Specifically, a single month will
be adopted as time span. Thus, we can define a window of time, delimited by a
beginning dpegin, and an end depq timestamp, and then consider the transactions
occurring within that time frame, for instance: Ty grp flzzgdm = {t € Twrre |
dpegin < d(t) < dena}. Finally, the set of transactions performed by a specific
account a = « will be referred to as T,; so, for instance, the set of cash transactions
performed by user a will be: Toaspa = {t € Teasu, a(t) = a}.

Having defined this notation, the goal of the work will be to produce a set of
subjects of interest, A4, i.e. a set of accounts which behavior seems suspicious
and that are consequently selected to undergo further evaluation by the competence
center and, eventually, become part of a SAR.

For the semi-supervised part, a ground truth will be used, consisting of past
cases that have been reported as suspicious by either the L1 or L2 stages or that
have been inserted into a forwarded SAR. As mentioned, further details about the
ground truth will be given in the datasets’ description section.

1.3 Machine Learning approaches to AML

The use of Machine Learning methods for identifying suspicious activities is ex-
tensively documented in the literature. Several studies have investigated different
strategies aimed at improving the performance and reliability of anti-money laun-
dering (AML) systems.

However, the fast-paced evolution of money laundering methods and the difficulty
of handling incomplete and continuously changing data in real time, often makes it
challenging for existing models to remain effective. With the clear goal of obtaining
a system that is proactive (rather than just reactive) in addressing emerging threats,
MAD 2024[2] adopts an unsupervised approach.

In the AML domain, unsupervised learning techniques are primarily employed
for anomaly detection and clustering. Methods such as Isolation Forest, One-Class
SVM, and Local Outlier Factor aim to identify instances that deviate from the
general data distribution. Nevertheless, one of the main challenges is that anomalies
do not always correspond to suspicious or fraudulent behaviors, which often leads
to high false positive rates. An additional approach that has gained attention in
this context is the use of autoencoder-based models, which offer a flexible and
scalable alternative for uncovering hidden irregularities, potentially enabling the
detection of future anomalies that differ from those currently observed.
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Another critical challenge lies in the scale of real-world data, where the volume
often reaches billions of transactions, yet only a tiny fraction (typically around
0.01%) turns out to be malicious. This scenario underscores the necessity for robust
and scalable approaches that can effectively identify rare events within highly
complex and realistic environments.

In the following chapter, a detailed overview of the machine learning models
that form the foundation of MAD 2024 is presented. These models constitute
the methodological basis explored and analyzed in this thesis. By revisiting and
applying the same approaches, this work aims not only to reproduce their effective-
ness, but also to critically assess their applicability, limitations, and potential for
improvement.



Chapter 2

Related works

From this point onward, the focus will be on the unsupervised learning techniques
already adopted in MAD 2024 and further explored in this project. These methods
have proven to be effective and, most importantly, feasible in real-world situations,
where scalability and computational efficiency are of top priority. These traits
will be essential to ensure seamless integration and full functionality in production
deployments.

The following sections will show the aforementioned ML models as well as
some supervised models that will exploit the available labeled data to improve the
performance of the TxM system.

2.1 One-Class Support Vector Machine

Support Vector Machines (SVMs) are a highly successful class of supervised learning
algorithms for classification and regression. The central idea of SVMs is to find
the optimal hyperplane that can maximally separate data points belonging to
different classes. This principle of maximization of the margins provides strong
generalization capabilities, making SVMs particularly effective in spaces of high
dimensionality and in cases where the number of features exceeds the number
of samples. Over the years, SVMs have been successfully applied in numerous
applications from image classification to text classification and bioinformatics.
Based on the idea of basic SVMs, the One-Class SVM (OC-SVM) was introduced
as an extension to novelty detection and anomaly detection problems. Unlike
traditional SVMs that require labeled data from multiple classes, the OC-SVM is
trained only on a single class of data and learns a decision boundary that encloses
the majority of the training instances. New samples can then be classified as either
belonging to the learned distribution or as outliers. This approach has been shown
to perform well in cases where negative examples are scarce or difficult to obtain,
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such as fraud detection, network intrusion detection, and fault diagnosis.

The One-Class SVM, following the formulation of Schélkopf et al.[3], frames
novelty or anomaly detection as support estimation: given samples from an unknown
distribution P, its goal is to estimate a region S in the input space such that the
probability that a new point falls outside it is less than a predefined threshold v.
The method to approach this problem is to try to estimate a function f which
is positive on S and negative on the complement. In other words, OC-SVM is
an algorithm which computes a binary function which is supposed to find the
regions of the input space where the probability density lives (its support), i.e. a
function such that most of the data will be found in the region where the function
is non-zero.

The One-Class SVM problem is defined as follows. It takes some unlabeled data
x1,%2...2; € X and a feature map ®(x) which maps X — F, that is, a function
that maps X into a dot product space F' such that the dot product in the image of
® can be computed by evaluating a simpler kernel:

k(x,y) = ®(x) - (y)

The goal is to develop an algorithm which returns a function f that takes the value
+1 in a “small” region capturing most of the data points, and —1 elsewhere. In
other words, the strategy is to seek an hyperplane that separates the mapped data
from the origin with maximum margin, yielding a decision function that is positive
on the estimated support and negative outside it. This turns the problem into a
large-margin, kernelizable optimization well-suited to high-dimensional settings.

In its primal form, the determination of the f function is a problem of minimizing
the norm of the weight vector w = >>; a;®(x;) while allowing slack for violations,
controlled by a parameter v € (0,1]. The canonical dual yields a sparse kernel
expansion:

¢
flz) = Z:aik(ﬂfuf’?) -p

where p represents the bias term. This problem is subject to the constraints
0< ;< % and Y, a5 = 1. Points with f(x) > 0 are considered inliers while those
with f(z) < 0 are outliers. The threshold p is recovered from any “free” support
vector with 0 < o5 < uiz by enforcing f(z;) = 0.

From a practical perspective, OC-SVM is attractive because (1) it requires
only positive (normal) data at training time, (2) it inherits SVMs’ robustness in
high dimensions via margin control, and (3) it presents two easily interpretable
hyperparameters: v (expected outlier rate, or model sparsity) and the kernel scale
(e.g., RBF width), which shapes the granularity of the support. Proper feature
scaling and a simple grid over v and the kernel width are typically enough for
effective models.
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2.2 Isolation Forest

Decision Trees represent one of the most fundamental and widely used methods in
machine learning, offering a simple and powerful way to model decision-making
processes. Their hierarchical structure, based on a recursive partitioning of the
feature space, makes them extremely intuitive to human interpretation and very
efficient for classification or regression tasks. Thanks to their transparency, Decision
Trees have often been employed as both standalone predictive models and as building
blocks for more advanced methods.

With this assumption in mind, the Isolation Forest algorithm extends the idea of
tree-like structures to the domain of anomaly detection. Instead of modeling normal
data distributions in an explicit manner, Isolation Forest isolates anomalies by
randomly partitioning the data space, based on the intuition that anomalous points
are easier to separate than normal points. This tree-based ensemble approach
combines the interpretability of decision trees with the robustness and scalability
required by high-dimensional datasets, making it a widely adopted method in the
field of unsupervised anomaly detection.

Here, a brief description of the Isolation Forest (iForest) algorithm is proposed,
following its original formulation by Liu et al.[4].

The core intuition behind Isolation Forest is that anomalies are rare and sig-
nificantly different from the other points. Unlike traditional anomaly detection
techniques that attempt to create a profile of normal instances, this method pro-
poses a different approach: it focuses on isolating points that deviate from most
of the data, without the need to profile the mass. The algorithm constructs a set
of binary trees, called isolation trees (iTrees), by recursively partitioning the data
through a random selection of features and split values. At each node, a feature
is selected at random together with a split value, chosen uniformly between the
minimum and maximum values of the features. This recursive process continues
until either all points are isolated or a predefined tree height is reached.

Since anomalous points are typically rare and exhibit attribute values that are
significantly different from normal ones, they tend to be isolated with fewer splits.
Consequently, the average path length from the root node to a given data point
becomes a natural indicator of its degree of abnormality: shorter paths suggest a
higher likelihood of being an anomaly.

The notion of path length plays a central role in the detection process. For a
given data point x, the path length h(x) is defined as the number of edges traversed
from the root node to the terminating node in the iTree. As already mentioned,
anomalies tend to be easier to isolate: since they can be separated using less random
splits, and that is why they show a shorter average path length across the set.
On the other hand, normal instances, which are more densely clustered, typically
require deeper partitions to be isolated.
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To normalize the expected path length across datasets of different sizes, Liu
et al.[4] introduce the average path length ¢(n) of unsuccessful searches in Binary
Search Trees, defined as:

2(n—1)

cn)=2H(n—1) — -

where H (i) is the i-th harmonic number, approximated by In(i) + -, where 7 is
the Euler-Mascheroni constant. This quantity represents the average path length
for a dataset of size n.

Based on this, the anomaly score for a point z is given by:

Elh(2)]
s(x,n) =2 "™

where E[h(z)] is the average path length of x across all trees. Scores close to
1 indicate anomalies, while scores significantly lower than 0.5 suggest normal
observations. The formalization of the average path length provides a clear and
intuitive criteria for distinguishing between normal and anomalous data points.

The key strengths of Isolation Forest are its efficiency and scalability. The
algorithm operates with linear time complexity relative to the size of the dataset
and requires a memory footprint significantly smaller than distance-based or density-
based methods. This makes it especially suitable for high-dimensional data or
large-scale applications where traditional approaches, such as K-Nearest Neighbors
or clustering-based methods, become computationally challenging. Furthermore,
because the partitions are created randomly, Isolation Forest avoids assumptions
about data distribution and maintains robustness across diverse domains, including
fraud detection, intrusion detection in cybersecurity, and fault detection in industrial
systems.

2.3 Local Outlier Factor

The Local Outlier Factor (LOF) algorithm, introduced by Breunig et al.[5], is
one of the most widely used methods for unsupervised anomaly detection. Unlike
global approaches that rely on a single notion of distance or density, LOF identifies
anomalies by comparing the local density of a data point to that of its neighbors.
Specifically, while other algorithms treat being an outlier as a binary property, it
tries to assign to each object a degree of being an outlier. This degree is called
outlier score and it reflects how isolated the point is with respect to the surrounding
neighbors: points that have a substantially lower density than their neighbors are
considered outliers. This local perspective makes LOF particularly effective in
datasets with heterogeneous density distributions, where global threshold-based
methods often fail. Since its introduction, LOF has been extensively applied in
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domains such as fraud detection, network intrusion detection, and fault diagnosis,
and it has inspired several variants and extensions aimed at improving scalability
and robustness.

The core concept of the Local Outlier Factor algorithm is that of local density,
which is estimated using the notion of reachability distance between points. For a
given object, its local reachability density is defined as the inverse of the average
reachability distance with respect to its k-nearest neighbors. This density measure
captures how closely a point is surrounded by others in its neighborhood. Given a
point p and one of its k-nearest neighbors o, the reachability distance is defined as:

reach_ dist(p, 0) = max{k-distance(o), d(p,0)}

where d(p, 0) is the Euclidean distance between p and o, and k-distance(o) is the
distance between o and its k-th nearest neighbor. This definition ensures that very
close neighbors do not dominate the density estimation, which provides robustness
against noise.

Using this measure, the local reachability density (LRD) of a point p is expressed
as:

> oen. () reach_dist(p, o) -1
h"dk(p) = ( Sl ‘Nk(p)|

where Ni(p) denotes the set of the k-nearest neighbors of p. Intuitively, rdy(p)
reflects how densely p is surrounded by its neighbors: a higher value means a denser
region around p, and vice versa.

The LOF score of an object is then computed as the average ratio of the local
reachability densities of its neighbors to its own. Analytically, the Local Outlier
Factor of a point p is defined as:

Irdy (o)
ZOGNk (p) lrd:(p)

‘Nk(p)|

Intuitively, a score close to 1 indicates that the point has a density comparable to
its neighbors (that is, p lies in a region of similar density as its neighbors), while a
value significantly greater than 1 indicates that the point is in a relatively sparse
region, and thus it is likely to be an outlier.

One of the most important characteristics of LOF is its relative nature. Instead
of relying on fixed global thresholds, the algorithm adapts to the local structure
of the data, which allows it to detect anomalies even in regions with varying
densities. For example, in datasets containing both dense and sparse clusters,
traditional distance-based outlier detection methods tend to misclassify points in
sparse clusters as outliers. LOF avoids this issue by evaluating each point with
respect to its local context, ensuring that points in naturally sparse regions are not
automatically flagged as anomalous.
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Breunig et al.[5] also demonstrated that LOF is highly effective in distinguishing
between true outliers (points that are meaningfully different from their neighbors)
from simple borderline points at the edges of clusters. This distinction is important
in practical applications, where mislabeling boundary points as anomalies could
lead to the detection of false positives. However, the choice of the parameter k,
which indicates the size of the neighborhood, plays a critical role: smaller values
make the algorithm sensitive to noise, while larger values may blur local structures.

2.4 Autoencoder

Following the discussion on traditional machine learning approaches for anomaly
detection, it is now worth considering the advances introduced by deep learning.
Deep learning techniques extend traditional neural network models by incorporating
multiple layers of abstraction, which allow them to capture complex patterns in
data, which are often inaccessible to shallow models or conventional algorithms.
This capability has made deep learning a powerful paradigm for tasks involving
high-dimensional or unstructured data.

One of the core concepts of deep learning is Artificial Neural Networks (ANNs):
computational models inspired by the functioning of biological neural systems.
ANNSs are designed to learn non-linear relationships directly from data and they can
be employed to adapt to a large variety of problem domains. Their ability to extract
meaningful representations makes them particularly suitable for anomaly detection
scenarios, where subtle irregularities may not be easily captured by traditional
methods.

Within this context, Autoencoders have been one of the most widely adopted
neural network architectures for anomaly detection. Designed to learn compressed
representations of the input data, Autoencoders attempt to reconstruct the original
input as accurately as possible. Although they are mainly used for tasks such
as dimensionality reduction, data compression, and denoising, they have also
proven valuable for anomaly detection. Given the reconstructed data as output,
anomalies can be detected by analyzing the reconstruction error: data points that
significantly deviate from the learned representation are flagged as potential outliers.
This property has led to a growing interest in Autoencoder-based methods across
multiple domains, including cybersecurity, financial crime detection, and industrial
monitoring. Here is presented a brief introduction to Autoencoder models inspired
by the description made by Hinton and Salakhutdinov[6].

2.4.1 Architecture

Autoencoders are a specific family of feedforward neural networks that are trained to
reproduce their input at the output through a bottleneck of reduced dimensionality.
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Conceptually, an autoencoder is designed to take an input, compress it into a
lower-dimensional representation, and then reconstruct the original input from
that compressed form. This process forces the model to learn the most important
features of the data. The architecture of an autoencoder consists of three main
components:

1. Encoder The encoder is the component of the network responsible for mapping
the input data into a compact, lower-dimensional representation. By applying
successive layers of non-linear transformations, the encoder is able to extract
the most informative features while discarding redundancy. Formally, the
encoder can be described as a function f(-) that projects the input x into a
latent representation z = f(x).

In practice, the encoder is implemented as a stack of fully connected layers.
Each layer progressively reduces the dimensionality of the data, so that both
the number of layers and the width of each layer (i.e., the number of neurons)
act as hyperparameters to be tuned during model design and training.

Denoting by ag = m, ..., ag = n the widths of the decoder layers, a generic
layer update can be written as

heJrl = ¢e(we ~he + be) (21)
where e=0, ..., £ — 1. Here

o W, € R%+1X% jg the weight matrix between layer e and e+ 1,
e b, € R%*! is the bias term,

e ¢, denotes the activation function that must be applied to the output
vector of layer e before passing it to layer e+1 (e.g. ReLU, tanh, sigmoid).

It is important to notice that the first layer corresponds to the input hy = x
and the final one is the latent representation hy = z.

2. Latent space (or code) At the center of the autoencoder is the latent space,
also called the bottleneck. The latent representation z is a compressed version
of the input, typically with much lower dimensionality than the original data.
Its purpose is to retain only the most relevant features while discarding noise
or redundant information. Ideally, the latent space captures the essential
structure of the data, providing a compact encoding that can later be used
for reconstruction or for tasks such as anomaly detection.

Formally, the code is commonly denoted by Z C R™, where m is the latent
dimension. If the input space is X C R", with n being the input dimensionality,
typically m < n.
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The dimensionality of z is a key hyperparameter: if it is too large, the network
may simply learn to copy the input without extracting useful features; if
it is too small, the model may fail to preserve important information. The
hyperparameter m is hence tuned during model design and training.

3. Decoder The decoder is the final part of the network and is responsible for
reconstructing the input from its latent representation. Realized as a stack of
fully connected layers, it symmetrically mirrors the encoder’s structure and
gradually expands the compressed code back to the original dimensionality of
the data.

Formally, the decoder can be expressed as a function g(-) that takes the latent
vector z and produces a reconstruction X = g(z).

Denoting by ag = m, ..., ap = n the widths of the decoder layers, a generic
layer update can be written as

hi1 = ¢s(Wy-hy+by) (2.2)
where d =10, ..., D — 1. Here

o W, € R%+1%% jg the weight matrix between layer d and d+ 1,
e by € R%+1 is the bias term,

e ¢4 denotes the activation function that must be applied to the output
vector of layer d before passing it to layer d + 1.

It is important to notice that the first layer corresponds to the code hy = z
and the final one to the reconstructed output hp = X.

Particular care must be used when chosing the output activation ¢ of the
last layer, since it has to be consistent with the data distribution: the most
relevant activation functions are the identity (i.e, no activation function)
for unconstrained real-valued outputs (paired with Mean Squared Error), a
sigmoid for binary data (paired with Binary Cross-Entropy), or a softmax for
categorical outputs (paired with Categorical Cross-Entropy).

If the encoder has succeeded in extracting meaningful features, the recon-
structed output X will be very close to the original input x. The similarity
between input and reconstruction is measured through a loss function, such
as mean squared error or cross-entropy, which guides the training of both
encoder and decoder.

Together, encoder, latent space and decoder define the autoencoder mapping
X — X = (go f)(x). Proper architectural choices and loss functions selection ensure

13



Related works

that this mapping approximates the identity on the data while providing a compact,
useful representation for the incoming tasks.

Input x Reconstructed output x

(El‘

Latent space z

T2 §

T3 4

Ty 4

Encoder Decoder

Figure 2.1: Simplified representation of an Autoencoder with fully connected
layers.

2.4.2 Training

The training of an autoencoder consists in learning the parameters of the encoder
f(-) and decoder g(-) such that the composition X = (g o f)(x) approximates
the identity mapping on the input data. In other words, the model is trained to
minimize the discrepancy between the original input x and its reconstruction X,
while simultaneously forcing the information to pass through the reduced latent
representation z.

Formally, given a dataset {z;}., C R", where T is the cardinality of the set,
the training objective is to minimize the reconstruction loss

L(f.q) = ;;L(xi,gwm), (2.3)

where L(-, -) is a suitable loss function that measures the distance between input
and reconstruction. The choice of L depends on the data distribution and on the
activation function v applied at the decoder output. Possible alternatives are:

« Mean Squared Error (MSE) for continuous, real-valued data, paired with

linear outputs: L(x,X) = % Pz — 2%

e Binary Cross-Entropy (BCE) for binary or [0,1]-bounded data, paired with

sigmoid output activations: L(x,%X) = —+ 37 [xz log #; + (1 — ;) log(1 — :%@)},

» Categorical Cross-Entropy for one-hot encoded categorical data, paired
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with softmax activations: L(x,%) = — X%, x;log2;, where C denotes the
number of classes.

Optimization proceeds by adjusting the parameters 6 = (f, g) through iterative
updates based on the gradient descent:

0+ 0 — nVoL(0), (2.4)

where 17 > 0 is the learning rate. In practice, variants such as mini-batch gradient
descent and adaptive optimizers (e.g., Adam, RMSProp) are typically employed,
as they accelerate convergence and improve stability.

Gradients of the loss with respect to the parameters of each layer are computed
via the backpropagation algorithm. This procedure relies on the chain rule to
efficiently propagate the error from the output layer backward through the decoder
and then the encoder, updating weights W, and W, and biases b, and b, at each
step.

Through this training process, the encoder learns to extract compact, informative
features into the latent representation z, while the decoder learns to use such features
to reconstruct the input as accurately as possible.

2.5 k-Nearest Neighbors

The k-Nearest Neighbors (kNN) algorithm is one of the simplest yet most intuitive
supervised learning methods, relying solely on the concept of similarity or distance
between instances. The basic idea is that a new point to be classified (or predicted)
will assume the most common class (or value) among its k nearest neighbors in the
training dataset, according to a chosen metric, typically the Euclidean distance.
Its simplicity makes it highly interpretable and often used as a baseline for a wide
range of classification or regression tasks.

In the original work by Thomas M. Cover and Peter E. Hart, a fundamental
theoretical analysis of the one-nearest neighbor rule was provided: the authors
demonstrated that, as the number of training samples approaches infinity, the error
rate of the nearest neighbor rule does not exceed twice the Bayes optimal error
(i.e., the theoretical minimum error) [7]. This asymptotic guarantee established a
crucial theoretical benchmark for pattern classification.

The algorithm operates straightforwardly: given a point x to predict, the distance
between x and all points in the training set is computed, the k closest points are
selected, and x is assigned the most frequent class among those neighbors. Although
the mathematical formulation is simple, the choice of k and the distance metric,
as well as the handling of noise and high-dimensional data, are critical factors for
achieving good performance.
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Among its limitations, the kNN algorithm particularly suffers from the so-called
“curse of dimensionality”: as the number of dimensions increases, distances between
points tend to become similar, reducing the discriminative power of the notion
of proximity. Moreover, being a lazy learning method, the entire training dataset
must be stored in memory, and prediction requires a distance computation against
every training sample, resulting in a computational complexity of O(n) per query,
where n is the number of training examples, resulting in a total complexity of
O(n?).

Nonetheless, the strength of kNN lies in its versatility and its lack of strong
assumptions about the data distribution: it does not require, for instance, the
explicit estimation of a density function or a parametric model. For this reason,
it is widely used not only in general classification tasks but also in fields such
as pattern recognition, recommender systems, bioinformatics, and data mining.
However, for large datasets or high-dimensional data, dimensionality reduction
techniques are commonly applied before using kNN.

2.6 Logistic Regression

Logistic Regression is one of the most fundamental and interpretable algorithms for
binary classification, serving as a bridge between traditional statistical modeling
and modern machine learning. Originally formalized by David R. Cox in 1958 [§], it
models the probability that an input x belongs to a particular class using a logistic
(sigmoid) transformation applied to a linear combination of input features. The
logistic function maps any real-valued input to the interval (0,1), making it suitable
for probabilistic interpretation. Formally, the model predicts the conditional
probability of class y = 1 as

1

P(y:l\x):m7

(2.5)

where w represents the weight vector and b the bias term. Training the model
consists in estimating these parameters by maximizing the likelihood of the observed
data, or equivalently, by minimizing the negative log-likelihood (cross-entropy) loss:

N
£(w,b) =~ 3 [wlos() + (1~ ) log(1 — 3.)], (2.
i=1

where ¢; is the predicted probability for the i-th sample. Despite its simplicity,
logistic regression provides strong theoretical guarantees and interpretable coeffi-
cients, making it a preferred baseline in many supervised learning pipelines. The
linear decision boundary in the input space is given by w'x + b = 0, separating
the two classes. However, this linearity also represents its main limitation, as
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it struggles with non-linearly separable data unless feature engineering or kernel
extensions are applied. Still, due to its efficiency, scalability, and statistical rigor,
logistic regression remains a cornerstone model in domains such as credit scoring,
medical diagnosis, and natural language processing, often serving as a benchmark
against which more complex models are compared.

2.7 Decision Tree

The Decision Tree algorithm represents one of the most interpretable and intuitive
models in supervised learning, capable of handling both classification and regression
tasks. Its operation is based on recursively partitioning the input space into regions
that are as homogeneous as possible with respect to the target variable. In the work
by J. Ross Quinlan [9], the ID3 algorithm was introduced, laying the foundation
for subsequent methods. A decision tree can be viewed as a hierarchical structure
where each internal node corresponds to a feature test, each branch represents an
outcome of that test, and each leaf node denotes a predicted class or value. The
core idea is to select, at each step, the feature that best splits the data according
to a given impurity measure, such as information gain, Gini index, or entropy
reduction. The entropy of a dataset S is defined as

—>_p(c)logy p(c) (2.7)

ceC

where p(c) denotes the proportion of samples belonging to class ¢. The informa-
tion gain achieved by splitting on a feature A is then given by

Gain(S,A) = H(S)— ¥

vEValues(A)

H(S,). (2.8)

which quantifies the expected reduction in entropy. The recursive process
continues until a stopping criterion is met, such as a maximum depth or a minimum
number of samples per node. Decision trees naturally handle both categorical and
numerical attributes and require minimal data preprocessing. However, they are
prone to overfitting, as they can grow excessively complex and adapt too closely to
the training data. To mitigate this issue, pruning techniques or ensemble approaches
such as Random Forests are commonly employed. Despite their limitations, decision
trees remain a cornerstone of interpretable machine learning, valued for their clarity,
low computational cost and ability to capture non-linear decision boundaries.
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2.8 Random Forest

The Random Forest algorithm, introduced by Leo Breiman in 2001 [10], is an
ensemble learning method designed to improve the predictive performance and
stability of decision trees while mitigating their tendency to overfit. The core idea
is to build a large collection of decorrelated decision trees and aggregate their
predictions through majority voting (for classification) or averaging (for regression).
Each tree in the ensemble is trained on a different sample of the training dataset
and, at each split, a random subset of features is considered, introducing further
diversity among the trees. Formally, given B trees, the final prediction for an input
X is computed as

7= 52 hix) 29)

where f,(x) denotes the prediction of the b-th decision tree. This ensemble
mechanism substantially reduces the model variance without increasing the bias,
resulting in robust generalization across a wide range of datasets. The randomness
introduced during training ensures that individual trees capture different structures
within the data, while their aggregation smooths out noise and irregularities.
Furthermore, Random Forests provide an estimate of feature importance, typically
computed as the average decrease in impurity or as the reduction in prediction
accuracy when the values of a feature are permuted.

Despite their efficiency and scalability, Random Forests are less interpretable
than single decision trees, and their performance can degrade when applied to
very high-dimensional or sparse datasets. Due to their balance between accuracy,
robustness, and ease of use, Random Forests have become one of the most widely
adopted ensemble methods in modern machine learning, serving as a strong baseline
for both academic research and industrial applications.

2.9 Support Vector Machine

The Support Vector Machine (SVM) is a powerful supervised learning algorithm
introduced by Corinna Cortes and Vladimir Vapnik in 1995 [11]. It is founded on
the principle of finding the optimal hyperplane that separates the data points of
different classes in the feature space. The optimal hyperplane is defined as the
one that maximizes the margin, i.e., the distance between the hyperplane and the
nearest data points from each class, known as support vectors. Given a set of
labeled samples {(x1,%1),--.,(Xn,yn)}, where y; € {—1,+1}, the optimization
problem can be formulated as
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Iniil ;|w|2 subject to wi(w'x; +b)>1, i=1,...,N, (2.10)

where w and b define the separating hyperplane. To handle non-linearly separa-
ble data, the soft-margin SVM introduces slack variables &; and a regularization
parameter C' that balances margin maximization and classification error. Fur-
thermore, through the use of kernel functions, the SVM can implicitly map input
vectors into a higher-dimensional feature space, where linear separation becomes
possible. The most common kernel is the Radial Basis Function (RBF), defined as

K (x;,x;) = el (2.11)

where v controls the influence of individual training samples. This kernel trick
allows SVMs to construct highly flexible, non-linear decision boundaries without
explicitly computing the high-dimensional mapping. Although SVMs provide strong
theoretical guarantees and often achieve high accuracy, their computational cost
can be prohibitive for large datasets due to the quadratic optimization process.
Nevertheless, they remain one of the most influential algorithms in machine learning,
particularly valued for their robustness, mathematical elegance, and effectiveness
in high-dimensional spaces such as text classification, bioinformatics, and image
recognition.
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Chapter 3

Proposed methodology

This chapter presents the workflow followed during the development of this thesis.
The process began with a thorough data exploration phase: the bank provided
several datasets along with their guidance and expertise to explain the structure of
each table and field. The exploration focused on assessing the data distributions,
identifying missing values and, most importantly, determining which variables were
most relevant. A detailed discussion of this step is provided in Section 3.1.

The objective of the data exploration was to lay the foundation for the subsequent
feature extraction phase (Section 3.2). In close collaboration with the bank’s experts,
we defined the set of features required to model the transactional behavior of each
account. This step was particularly critical, as these features serve as input to the
machine learning models to enable the detection of anomalies and, consequently,
potential criminal activities.

To ensure a fair evaluation of the models, a set of performance metrics was also
established, as described in Section 3.3. Finally, all these steps were consolidated
into a unified data processing pipeline (Section 3.6), designed for adoption by the
bank in its production environment.

In order to comply with current privacy regulations and to safeguard the confi-
dentiality of the institution’s customers, all datasets underwent an anonymization
process before being made available for this work. This procedure was entirely
managed by the institution, which provided datasets where sensitive attributes
(such as customer names or account reference numbers) had been fully anonymized.
For the same reason, some of the data reported in this thesis are presented in an
altered form: certain field names have been modified, and some distributions have
been scaled by standard deviation (e.g., divided by the standard deviation, which
is not reported) to preserve the confidentiality of the aggregated data.
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3.1 Datasets description

3.1.1 Transactions

The central dataset used in this thesis is the transactions dataset, which records
the complete set of financial operations performed by customers during the year
2024 (from 01/01/2024 to 31/12/2024). In total, the dataset contains 3722744 322
transactions carried out by 13351999 distinct accounts (accounts are formally
defined in Section 1.2).

This dataset is of primary importance since it captures the core of the customers’
financial activity. It provides both the temporal dimension of the behavior (through
timestamps) and the economic one (through transaction amounts). In addition,
categorical information such as the reason for the transaction enables a richer
characterization of account activity.

The structure of the dataset is summarized in Table 3.1:

Column name | Data type | Description

ACCOUNT _ID | String Unique identifier of the account that performed
the transaction.

TIMESTAMP DateTime Exact date and time when the transaction was

executed.

REASON_ 1D String Encoded reason of the transaction (as explained
in Sub-section 3.1.2).

AMOUNT Numeric Monetary value of the transaction (positive or

negative, normalized as explained in Section 3).

Table 3.1: Transactions dataset structure.

A number of preliminary observations can be made on this dataset. First,
the scale is particularly relevant, with the transactions being evenly distributed
throughout the months, as shown in Table 3.2.
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Month | Transactions count
2024-01 311249514
2024-02 277769 084
2024-03 282 881084
2024-04 313559128
2024-05 307 876 069
2024-06 289525 314
2024-07 353409 685
2024-08 294 295 522
2024-09 306 488 090
2024-10 333623 526
2024-11 297315472
2024-12 354751834

Table 3.2: Number of transactions per month in 2024.

Second, the distribution of transactions across accounts is highly heterogeneous
(Figure 3.1): while the vast majority of accounts are associated with only one
or a few transactions over the year, a small subset exhibits extremely intense
activity. This behavior becomes even clearer when analyzed through the Empirical
Cumulative Distribution Function (ECDF), shown in Figure 3.2, which represents
the proportion of accounts that perform up to a given number of transactions.
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Figure 3.1: Distribution of the number  Figure 3.2: Empirical Cumulative Dis-
of accounts per number of transactions.  tribution Function of the number of
transactions per number of accounts.

Finally, the range of transaction amounts spans several orders of magnitude.
Due to privacy considerations, only the order of magnitude of the transaction
values is shown in Figure 3.3. The distribution is approximately bell-shaped and
resembles a normal distribution, with the vast majority of transactions having
relatively low values, while a small fraction reaches extremely high amounts. This
is confirmed by the Empirical Cumulative Distribution Function (ECDF) of the
absolute value of the order of magnitude of the transactions shown in Figure 3.4.
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3.1.2 Reasons

In addition to the transaction data set, the reason data set provides the semantic
and categorical context of the financial operations. Each transaction recorded in
the main dataset is associated with exactly one REASON__ID, which acts as a
foreign key referencing this dataset. In total, the dataset contains 1483 distinct
reasons, enabling the interpretation of transaction purposes and thus supporting a
better understanding of financial behavior.

The structure of the dataset is summarized in Table 3.3:

Column name Data type | Description

REASON_ID String Unique identifier of the transaction rea-
son.

REASON_DESCRIPTION | String Human-readable description of the reason
(e.g., “Salary payment”, “Tax payment”).

CATEGORY String High-level category grouping similar

transaction reasons (e.g.,“Administrative
Transactions”, “Service Fees”).

IS WIRE Boolean Indicates whether the transaction corre-
sponds to a wire transfer.
IS CASH Boolean Indicates whether the transaction corre-

sponds to a cash operation.

Table 3.3: Reasons dataset structure.

The categorization of reasons allows grouping transactions into meaningful
classes. Table 3.4 reports the categories and their frequency in the reasons and

transactions datasets.
Additionally, among all reasons, 85 are explicitly associated with wire transfers
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Category Reasons [%)] | Transactions [%)]
Non-attributable transactions 22 72.06
Contract-Related Payments 23.4 10.11
Service Fees 21.6 9.49
Ad-hoc Transaction 15.7 4.08
Recurring Transaction 0.9 2.14
Administrative Transactions 16.4 2.11

Table 3.4: Distribution of reasons and transactions across categories.

(IS_WIRE = true), and 57 correspond to cash operations (IS_CASH = true). It
is important to note that the dataset design ensures mutual exclusivity: no reason
can simultaneously be classified as both wire and cash.

3.1.3 Balances

The balances dataset provides information about the monthly amount of funds
available for each account. For every account, the dataset records the balance
at the end of each month, thus complementing the transactions dataset with an
aggregated financial perspective over time. The total cardinality of the dataset is
184624 194 records. The structure is summarized in Table 3.5.

Column name | Data type | Description
ACCOUNT_ID | String Unique identifier of the account.
YEAR_MONTH | Numeric Reference month of the record, expressed as
YYYYMM.
BALANCE Numeric Balance of the account at the end of the reference
month.
Table 3.5: Balances dataset structure.

Before employing this dataset in the analysis, a data quality process was carried

out to handle missing values. Two distinct strategies were applied:

o If an account had no valid (non-null) balance values across all months, the
balance at the end of December 2023 was assumed to be zero; from this
baseline, the balance for January 2024 was reconstructed by applying the net
effect of transactions occurring in January, and subsequent monthly balances
were obtained by cumulatively adding the amounts of the corresponding
transactions.

o If at least one valid balance value was available for an account, this was
used as a starting point to reconstruct the balances of the other months by
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propagating the effect of transactions forward and backward in time.

This preprocessing step ensured a consistent and complete representation of monthly
balances across all accounts, enabling reliable use of this dataset in later modeling
phases.

3.1.4 Relationships

The relationships dataset is fundamental because it enables the mapping of each
ACCOUNT __ID to a CUSTOMER, ID, thus establishing the association between
accounts and their owners. In the case of shared accounts, an account is associated
with a JOINT ACCOUNT ID, as will be explained in Section 3.1.6. The dataset
contains a total of 123190 721 records. Its structure is reported in Table 3.6.

Column name Data type | Description

CUSTOMER_ ID String Unique identifier of the customer owning the
account or of a joint account.

ACCOUNT_ID String Unique identifier of the account.

ACCOUNT_TYPE | String Code that identifies the type of bank account,

such as savings account, current account, prepaid
card, and similar categories.

VALIDITY START | DateTime Date and time when the association between the
account and the customer becomes valid.
VALIDITY END DateTime Date and time when the association between the
account and the customer ceases to be valid.

Table 3.6: Relationships dataset structure.

It is important to highlight that account ownership can change over time. For
this reason, the same account can be associated with multiple customers at different
periods. Whenever this occurs, a condition of mutual exclusivity is enforced: the
validity end of one association must always precede the validity start of the next
one, ensuring that two ownership intervals for the same account never overlap.
While a customer can hold multiple accounts simultaneously, an account can only
be associated with a single customer identifier or with a joint account identifier in
the case of shared ownership.

3.1.5 Registry

The registry dataset contains specific information about customers. It includes a
total of 43870876 records and its structure is reported in Table 3.7.
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Column name Data type | Description

CUSTOMER,__ID String Unique identifier of the customer owning the
account or of a joint account.

CUSTOMER._ TYPE | String Type of customer: physical person, legal entity
or joint account.

BIRTH_ YEAR Numeric Year of birth of a physical person or year of
foundation of a legal entity.

D23 Numeric Code representing the economic segmentation
of the customer.

D23__DESCRIPTION | String Textual description corresponding to the D23
code.

Table 3.7: Registry dataset structure.

CUSTOMER_ TYPE
The field CUSTOMER__ TYPE distinguishes among three categories of customers.

o The first category is “physical person”, which identifies natural persons acting
as individual account holders. A total of 30759168 records, representing
approximately 70% of all entries in the dataset, fall into this category.

o The second is “legal entity”, which refers to juridical persons such as companies,
institutions or other organizations. Approximately 11.5% of the records
(5008084 entries) belong to this category.

e The third category is “joint account”, which indicates that the identifier refers
to multiple account holders; in this case, the mapping between a joint account
identifier and the corresponding individuals is managed in the links dataset
(Section 3.1.6). This category accounts for 8 103 624 records, corresponding to
18.5% of the dataset.

This field is particularly relevant for behavioral analysis, as the type of customer
provides implicit information on the expected patterns of activity.

BIRTH__YEAR

The field BIRTH YEAR is relevant because it enables the derivation of two features:
the age of the individual in the case of physical persons, and the active time in the
case of legal entities. These features will be formally introduced in Section 3.2.
During the initial data quality assessment, several inconsistencies regarding
this field were identified. Some values are implausible, with the earliest recorded
birth year being 1051, which is clearly unacceptable. In total, approximately
130 records report a birth year prior to 1800. Moreover, about 843,300 records
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(roughly 2% of the dataset) correspond to a birth year earlier than 1925, which
would imply customers aged 90 years or more. The distribution and the ECDF of
BIRTH YEAR, restricted to values greater than 1900 for visualization purposes,
are illustrated in Figure 3.5 and 3.6.
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Figure 3.5: Distribution of the birth  Figure 3.6: Empirical Cumulative Dis-
year. tribution Function of the number of the
birth year.

A further critical issue concerns missing values. A total of 9234546 records
contain a null value for this field, representing 21% of the dataset. The strategies
adopted to address these data quality problems, and their implications for features
extraction, are discussed in Section 3.2.3.

D23

The fields D23 and D23 DESCRIPTION provide an economic segmentation of the
customers. This classification was introduced by the Italian Financial Intelligence
Unit (Unita di Informazione Finanziaria per 'Italia, UIF) in collaboration with the
Bank of Italy (Banca d’[talia). Its most recent update [12] defines a segmentation
scheme that condenses the essential characteristics of a customer’s economic activity
into approximately thirty categories. Specifically, the D23 code integrates two
complementary dimensions:

1. the ATECO classification, a hierarchical system adopted by the Italian
government to identify and encode the economic activity of a customer;

2. the SAE classification, a banking standard used to categorize subjects accord-
ing to their economic sector.

The resulting segmentation enables a compact but meaningful representation of
economic roles, which is fundamental for anomaly detection tasks.

Table 3.8 reports an exhaustive list of possible values of the D23 field together
with their corresponding descriptions.
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D23 Code | Description

101 Central and other public administrations.

102 Local administrations.

103 Public health services.

104 Public welfare, recreational and cultural services.

200 Insurance companies and pension funds.

310 Banking system.

311 Financial intermediaries.

312 Other financial intermediaries.

410 Agriculture.

411 Mining, energy, petrochemical and steel industries.

412 Construction industry.

413 Machinery and equipment manufacturing.

414 Food industry.

415 Textile industry.

416 Other industrial products.

510 Wholesale trade.

511 Retail trade.

512 Hospitality and catering.

513 Transport services.

514 Real estate rental and financial auxiliary services.

515 Waste management services.

516 Healthcare services.

517 Other services for sale.

600 Household consumers.

601 Household producers.

711 Rest of the world — non-financial corporations, households, and public
administrations.

712 Rest of the world — banking corporations.

713 Rest of the world — financial corporations.

811 Others.

812 Non-profit sector.

Table 3.8: Examples of D23 codes and corresponding descriptions.

As indicated by the field CUSTOMER_ TYPE, the majority of the population
belongs to the category of physical persons. A similar trend emerges when analyzing
the distribution of customers across the different D23 codes, as illustrated in
Figure 3.7. The strong correlation between the two columns is shown in Figure 3.8.

It is important to note, due to the logarithmic scale on the y-axis, that approxi-
mately 85.5% of the records are concentrated in the D23 code “600”, corresponding
to the description “Household consumers”, generally referring to private individuals,
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Figure 3.8: Distribution of category of D23 across CUSTOMER,_ TYPE.

while the remaining 14.5% corresponds to corporate and institutional entities. This
strong predominance highlights a significant imbalance in the dataset: training
a machine learning model directly on this data could lead to the unintended
consequence of systematically classifying all non-household consumers (such as
companies, institutions or organizations) as anomalous solely because of their
category. Intuitively, this observation is well-founded, as the transactional behavior
of a private individual is considerably different from that of a company or a national
institution, both in terms of transaction volumes and frequency. Addressing this
imbalance is a crucial challenge, and the strategy adopted in this thesis to mitigate
it will be described in Chapter 4.
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3.1.6 Links

As introduced in Section 3.1.4, the links dataset is employed to record all the
holders associated with a joint account. The dataset contains 17411 555 records
and its structure is presented in Table 3.9.

Column name Data type | Description

JOINT ACCOUNT_ID String CUSTOMER.__ID of the joint ac-
count.

JOINT ACCOUNT_HOLDER,_ ID | String CUSTOMER__ID of the joint ac-
count holder.

HOLDER NUMBER Numeric Ordinal number of the account
holder.

Table 3.9: Links dataset structure.

The field JOINT ACCOUNT _ID corresponds to a CUSTOMER__ ID whose
CUSTOMER_TYPE is set to “joint account”. In this case, the identifier does
not represent a single physical or legal entity, but rather a group of customers.
All the holders associated with that account are identified by means of their
JOINT ACCOUNT_HOLDER, ID, which must always refer to individual cus-
tomers and never to another joint account. For legal reasons, one of the holders
must be designated as the primary account holder: this role is determined through
the field HOLDER NUMBER, where the lowest value indicates the main holder.
This association is fundamental, as it enables the extraction of specific features
that would otherwise be impossible to derive, as will be detailed in Section 3.2.

3.1.7 Ground Truth

The Ground Truth dataset is employed for the performance evaluation of the
trained models. Its structure, summarized in Table 3.10, is straightforward: for
each month, every reported account (as introduced in Section 1.1) is assigned a
label that specifies whether the detection corresponds to a True Positive (TP) or a
False Positive (FP).

Column name | Data type | Description

ACCOUNT _ID | String Unique identifier of the account.

YEAR_MONTH | Numeric Reference month of the record, expressed as
YYYYMM.

STATUS STRING Current status for the account (either “TP” or
“FP”).

Table 3.10: Ground truth dataset structure.
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It is worth noting that the dataset does not specify whether the decision originates
from competence centres L1, L2, or from the FIU. Consequently, the assigned
status may be provisional, as the evaluation of each case can evolve over time with
the progression of the analysis performed at different levels of competence.

The dataset consists of 78330 entries distributed across the months of 2024.
Table 3.11 provides the monthly distribution of records, highlighting the relative
proportion of TPs and FPs. The analysis shows that False Positives dominate
across all months while True Positives maintain a minority share.

Month | Records [%] | TPs [%] | FPs [%]
2024-01 8 21.92 78.08
2024-02 7.7 23.07 76.93
2024-03 8.3 21.24 78.76
2024-04 7.4 23.63 76.37
2024-05 8.5 20.97 79.03
2024-06 8.2 18.82 81.18
2024-07 9.6 19.44 80.56
2024-08 7 16.85 83.15
2024-09 7.1 19.21 80.79
2024-10 8.6 17.58 82.42
2024-11 8.5 15.98 84.02
2024-12 11 12.73 87.27

Table 3.11: Distribution of TPs and FPs across months in the Ground Truth
dataset.

3.2 Features extraction

For each account, uniquely identified by the anonymized hash ACCOUNT 1D, a
set of 98 human-readable features is computed to characterize the monthly behavior
of the account.

The calculation relies on both the incoming operations (credits) and the outgoing
operations (debits) registered within the month under analysis. These two categories
of movements represent the fundamental basis from which the majority of behavioral
indicators are derived, allowing the activity of the account to be quantified in terms
of both volume and frequency.

However, for the computation of certain features, it was necessary to extend the
analysis beyond the transactions of the current month. In these cases, additional
information was incorporated concerning the historical activity of the account,
ensuring that temporal dependencies were adequately captured. The specific
requirements and methodological details for these cases are discussed within the
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individual feature descriptions.

3.2.1 Accounts and transactions excluded from the analysis

According to the guidelines provided by the bank’s experts, certain accounts and
specific categories of transactions were excluded from the feature extraction process.

Excluded accounts

The excluded accounts are:

o A category of accounts, namely “savings accounts”, as they were deemed not
relevant in terms of transaction activity;

o Accounts with minimal activity, defined as those with both credit and debit
volumes below a specific threshold (not disclosed here for confidentiality
reasons). Additionally, only accounts performing at least three transactions,
including at least one cash operation or wire transfer, were retained for analysis.

The suspiciousness of the excluded accounts may be considered in future investiga-
tions.

Excluded transactions

Regarding transactions, exclusions were applied to those associated with a specific
set of REASON _IDs. In particular, these correspond to pairs of transactions and
their reversals. A reversal occurs when a transaction is canceled, which may happen
for various reasons; in this case, the original transaction and its corresponding
reversal form a pair. All such pairs were removed from the dataset, as they are
equivalent to transactions that never actually took place. The percentage of users

for whom features were successfully extracted in each month of 2024 is reported in
Table 3.12.

3.2.2 Movements description features

These features are designed to capture the fundamental characteristics of account
activity. They are computed considering both the number and the amount of
transactions performed during a month, distinguishing between credits and debits,
as well as between operations performed in cash and by wire transfer. A transaction
is defined as “credit” if its corresponding amount is positive, whereas it is a “debit”
if its amount is negative. Each transaction can be a cash operation (flagged by
the variable IS _CASH), a wire transfer (flagged by the variable IS WIRE) or
neither. For clarity, the unit of measure of each feature is always reported in square
brackets.
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Month | Percentage of users
2024-01 69.62%
2024-02 72.61%
2024-03 69.43%
2024-04 70.38%
2024-05 73.46%
2024-06 74.00%
2024-07 72.87%
2024-08 72.65%
2024-09 72.83%
2024-10 69.93%
2024-11 74.29%
2024-12 75.21%

Table 3.12: Monthly percentage of users for whom feature extraction was success-
fully performed.

Features based on credits

1. NUM_ CREDITS Number of credit transactions (i.e., operations with
positive amount) [count].

2. CREDITS VOLUME Total sum of the amounts of all credit transactions
[€].

3. CREDITS__MIN Minimum amount of credit transactions [€].

4. CREDITS__MAX Maximum amount of credit transactions [€].

5. CREDITS__MEAN Average amount of credit transactions [€].

6. CREDITS__MEDIAN Median amount of credit transactions [€].

7. CREDITS STD Standard deviation of the amount of credit transactions
[€].

Features based on debits

8. NUM_ DEBITS Number of debit transactions (i.e., operations with negative
amount) [count].

9. DEBITS_VOLUME Total sum of the amounts of all debit transactions
(absolute value) [€].

10. DEBITS__MIN Minimum amount of debit transactions (absolute value) [€].
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11.

12.

13.

14.

DEBITS_MAX Maximum amount of debit transactions (absolute value)
[€].

DEBITS__MEAN Average amount of debit transactions (absolute value)
[€].

DEBITS__MEDIAN Median amount of debit transactions (absolute value)
[€].

DEBITS_ STD Standard deviation of the amount of debit transactions
(absolute value) [€].

Features based on total transactions

15.

16.

17.

18.

19.

NUM_ TRANSACTIONS Total number of transactions (credits + debits)
[count).

TOTAL MOVEMENT Total sum of the amounts of all transactions
(absolute value) [€].

AVG_TX__VALUE Average amount of all transactions (absolute value) [€].

MEDIAN_ TX_VALUE Median amount of all transactions (absolute value)
[€].

STD_ TX__VALUE Standard deviation of transaction amounts (absolute
value) [€].

Features based on wire transfers only

20.

21.

22.

23.

24.

NUM__CREDITS__W Number of credit transactions identified as wire
transfers [count].

CREDITS W_VOLUME Total sum of amounts of credit wire transfers
[€].

CREDITS W_ MIN Minimum transaction amount of credit wire transfers
[€].
CREDITS W__MAX Maximum transaction amount of credit wire transfers
[€].

CREDITS_W_ MEAN Average transaction amount of credit wire transfers
[€].
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25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

CREDITS W__MEDIAN Median transaction amount of wire credit trans-
fers [€].

CREDITS W __STD Standard deviation of the amount of credit wire
transfers [€].

NUM_DEBITS W Number of debit transactions identified as wire trans-
fers [count].

DEBITS W_VOLUME Total sum of amounts of debit wire transfers
(absolute value) [€].

DEBITS W__MIN Minimum transaction amount of debit wire transfers
(absolute value) [€].

DEBITS W__MAX Maximum transaction amount of debit wire transfers
(absolute value) [€].

DEBITS__W__ MEAN Average transaction amount of debit wire transfers
(absolute value) [€].

DEBITS _ W__MEDIAN Median transaction amount of debit wire transfers
(absolute value) [€].

DEBITS_ W __STD Standard deviation of the amounts of debit wire transfers
(absolute value) [€].

NUM_ TXS W Total number of transactions identified as wire transfers
(credits + debits) [count].

TOTAL_ MOVEMENT W Total sum of all amounts of wire transfers
(absolute value) [€].

TOTAL_W__MEAN Average amount of wire transfers (absolute value) [€].

TOTAL_W_ MEDIAN Median amount of wire transfers (absolute value)
[€].

TOTAL_W__STD Standard deviation of the amounts of wire transfers
(absolute value) [€].

35



Proposed methodology

Features based on cash operations only

39.

40.

41.
42.
43.
44.
45.

46.

47.

48.

49.

20.

ol.

02.

NUM_CREDITS_ C Number of credit transactions identified as cash
operations [count].

CREDITS__C__VOLUME Total sum of amounts of cash credit operations
[€].

CREDITS__C__MIN Minimum amount of credit cash operations [€].
CREDITS__C_MAX Maximum amount of credit cash operations [€].
CREDITS__C_MEAN Average amount of credit cash operations [€].
CREDITS__C__MEDIAN Median amount of credit cash operations [€].

CREDITS_ C_STD Standard deviation of the amounts of credit cash
operations [€].

NUM_ DEBITS__ C Number of debit transactions identified as cash opera-
tions [count).

DEBITS__C__VOLUME Total sum of the amounts of cash debit operations
(absolute value) [€].

DEBITS_ C_ MIN Minimum amount of debit cash operations (absolute
value) [€].

DEBITS__C__MAX Maximum amount of debit cash operations (absolute
value) [€].

DEBITS__C_MEAN Average amount of debit cash operations (absolute
value) [€].

DEBITS_ C_MEDIAN Median amount of debit cash operations (absolute
value) [€].

DEBITS__C__STD Standard deviation of the amounts of debit cash opera-
tions (absolute value) [€].

Features based on total transactions

23.

o4.

NUM_ TXS_ C Total number of transactions identified as cash operations
(credits + debits) [count].

TOTAL_MOVEMENT __C Total sum of the amounts of all cash operations
(absolute value) [€].
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59.

26.

o7,

TOTAL_ C_MEAN Average amount of cash operations (absolute value)
[€].

TOTAL_ C_MEDIAN Median amount of cash operations (absolute value)
[€].

TOTAL_ C__STD Standard deviation of the amounts of cash operations
(absolute value) [€].

Additional movements-based features

Further features related to the transactions performed within the month under
analysis are considered:

28.

59.

60.

61.

62.

63.

64.

AVERAGE__DAILY_ ACCOUNT__BALANCE Average daily balance
of the account [€].

NUM_ DAYS__CASH Number of days with at least one transaction identi-
fied as a cash operation [days].

AVG_DAYS_BETWEEN__CASH__CREDITS Average number of days

between two cash credit transactions [days].

AVG_DAYS_BETWEEN_ CASH_ DEBITS Average number of days
between two cash debit transactions [days].

CASH__STRUCTURING Boolean value indicating whether the total
volume of all cash transactions (in absolute value) exceeds 10000€ and,
simultaneously, the total volume of cash transactions (in absolute value)
with individual amounts below 1000€ is lower than 10000€ [dimensionless].

WIRE_STRUCTURING_ DEBIT Boolean value indicating whether the
total volume of debit wire transactions (in absolute value) with individual
amounts below 5000€ exceeds 15 000€ [dimensionless].

WIRE_STRUCTURING_ CREDIT Boolean value indicating whether
the total volume of incoming wire transactions with individual amounts below

5000€ exceeds 15000€ [dimensionless].

3.2.3 Subjective and demographic features

These features describe static and categorical characteristics of the account holder,
which are then referred to the account and are useful for understanding the economic
profile of the user.
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In the case of joint accounts, a hierarchy among co-holders is defined with the
support of domain experts, as described in Section 3.1.6: the primary account
holder’s CUSTOMER, 1D is used to compute these features.

In the case where the BIRTH YEAR value is unavailable, the missing value is
propagated to the derived feature.

65. ACTIVE__MONTHS Number of months of past account activity; a maxi-
mum value of 12 is assigned if the user has been a client for more than one
year [months].

66. NUMBER__OF _PARTICIPANTS Number of account holders in the case

of a joint account, otherwise equal to one [users].
67. D23 Economic segmentation code, as described in Section 3.1.5.

68. CURRENT_BALANCE Account balance at the end of the current month
[€].

69. CUSTOMER_ TYPE Account holder’s customer type, as described in
Section 3.1.5, with only two possible values: “physical person” or “legal entity”
[category].

70. AGE Account holder’s age, calculated as the difference between the current
year and the customer’s BIRTH__YEAR if the customer is a “physical person”,
left empty otherwise; a maximum value of 100 is assigned if the user has a
reported age higher than that [count].

71. RECENT__ACTIVATION Boolean value indicating whether the period
of activity of the account is smaller than two years if the customer is a
“legal entity”, left empty otherwise. The period of activity is calculated as
the difference between the current year and the customer’s BIRTH__YEAR
(considered as the year of foundation of a legal entity) [dimensionless].

3.2.4 Features for trend evaluation

These features describe the behavior of the account during the previous month and
the differences between the previous and current, allowing for the analysis of its
temporal evolution and the detection of significant changes in its usage.

72. PREVIOUS__BALANCE Account balance at the end of the previous
month [€].

73. PREVIOUS__AVERAGE_DAILY_ACCOUNT_BALANCE Aver-
age daily account balance during the previous month [€].
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74.

75.

76.

7.

78.

79.

DELTA__CREDITS__ VOLUME Difference between CREDITS VOLUME
and the total amount of credits during the previous month [€].

DELTA DEBITS VOLUME Difference between DEBITS VOLUME
and the total amount of debits (in absolute value) during the previous month

€.

DELTA_CREDITS__W_ VOLUME Difference between CREDITS W__
VOLUME and the total amount of wire transfer credits during the previous
month [€].

DELTA_DEBITS W__VOLUME Difference between DEBITS W
VOLUME and the total amount of wire transfer debits (in absolute value)
during the previous month [€].

DELTA__CREDITS__C__VOLUME Difference between CREDITS C
VOLUME and the total amount of cash credit operations during the previous
month [€].

DELTA_ DEBITS C_VOLUME Difference between DEBITS C
VOLUME and the total amount of cash debit operations (in absolute value)
during the previous month [€].

3.2.5 Features on weekly movements

These features capture the weekly behavioral variations of the account holder and
are defined over a period of six weeks, counted backwards from the last full week
(Monday to Sunday) entirely contained within the month under analysis. For
example, if November 2024 ends on a Saturday, the last full week within the month
corresponds to the period from Monday, November 18th to Sunday, November
24th.

For each of the six weeks, the following quantities are computed:

Cash transactions

« WEEK C_DEBIT_ VOLUME: Total amount of debit cash operations during

the week [€].

« WEEK C CREDIT VOLUME: Total amount of debit cash operations

during the week [€].
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Wire transfers

« WEEK_ W_DEBIT VOLUME: Total amount of debit wire transfers during
the week [€].

« WEEK_ _W_CREDIT VOLUME: Total amount of credit wire transfers during
the week [€].

Based on these values, the following features are defined:

Weekly cash debits

80. WEEK_C_DEBIT_VOLUME__MEAN Mean value of WEEK C
DEBIT_VOLUME across the six weeks [€].

81. WEEK C_ DEBIT VOLUME STD Standard deviation of WEEK C
_DEBIT_VOLUME across the six weeks [€].

Weekly cash credits

82. WEEK_C__ CREDIT_ VOLUME__MEAN Mean value of WEEK C
CREDIT _ VOLUME across the six weeks [€].

83. WEEK__C__CREDIT__VOLUME_ STD Standard deviation of WEEK
C_CREDIT_VOLUME across the six weeks [€].

Weekly wire debits

84. WEEK__W_ DEBIT_ VOLUME__MEAN Mean value of WEEK_W__
DEBIT_VOLUME across the six weeks [€].

85. WEEK_W_DEBIT VOLUME_ STD Standard deviation of WEEK
~ W_DEBIT_ VOLUME across the six weeks [€].

Weekly wire credits
86. WEEK__W_ CREDIT_VOLUME__MEAN Mean value of WEEK_W__
CREDIT VOLUME across the six weeks [€].
87. WEEK__W__ CREDIT__VOLUME_ STD Standard deviation of WEEK__
W_CREDIT_VOLUME across the six weeks [€].
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3.2.6 Savers feature

This feature is designed to capture the long-term saving behavior associated with
the analyzed account over a six-month period, starting from the month currently
under analysis. The computation is based on the application of a linear regression
model to the sequence of monthly account balances observed during the last six
months.

The regression line, estimated by minimizing the residual error with respect to
the six data points, provides a quantitative representation of the temporal evolution
of the account balance. The slope of this line constitutes the extracted feature, as it
reflects the general trend of the account. A positive and steeper slope is indicative
of an increasing balance, which may be interpreted as a stronger propensity toward
saving. Meanwhile, a negative slope suggests a progressive reduction in the account
balance. In instances where the account has been active for less than six months,
the missing observations are completed by propagating the balance value of the
earliest available month. This ensures consistency in the temporal dimension and
preserves the comparability of the resulting feature across accounts. Formally, the
extracted feature is defined as:

88. SAVERS__COEFFICIENT Slope coefficient of the regression line estimated
on the sequence of monthly balances over the last six months [dimensionless].

3.2.7 High-Rotation features

These features are designed to capture financial behaviors characterized by rapid
inflows and outflows of similar monetary amounts. For their computation, both
the transactions recorded in the current month and those from the last D days of
the previous month are considered, where D is defined as: D =45 — N, with N
being the number of days in the current month. This formulation ensures a fixed
observation window of 45 consecutive days.

The analysis is restricted to transactions classified either as wire transfers or as
cash operations. Within this transaction set, a rolling window of 5 days is defined,
starting from the first of the considered days. The window is advanced by one day
at a time, resulting in a total of 41 overlapping five-day windows.

For each window, a set of indicators is computed in order to quantify the degree
of high rotation of the account:

« TOT_WINDOW: total transaction volume (absolute value) [€].

« RVCD: ratio between credit volume and debit volume (“Ratio of Volume
between Credits and Debits”)[dimensionless].

o NUM__CREDITS: number of transactions with positive amounts [count].
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« NUM_DEBITS: number of transactions with negative amounts [count].

Then the windows are filtered: only the windows where at least one credit and
one debit transaction were performed and with an almost even volume of credits
and debits (i.e., RVCD value close to 1 are) preserved. Formally, only the windows
satisfying the following conditions are retained:

« NUM_CREDITS > 1;
« NUM_DEBITS > 1;
« RVCD € [0.8,1.2]

All other windows are discarded. If at least one window passes the filter, the
account is classified as “High Rotational”. On the filtered set of windows, the
following features are subsequently computed:

9. FILT TOT_ WINDOW __MIN Minimum value of TOT WINDOW across
filtered windows [€].

90. FILT _TOT_ WINDOW__MAX Maximum value of TOT WINDOW
across filtered windows [€].

91. FILT_TOT_WINDOW_ MEAN Average value of TOT WINDOW

across filtered windows [€].

92. FILT _TOT_WINDOW_ MEDIAN Median of TOT _WINDOW across
filtered windows [€].

93. FILT _TOT_ WINDOW _ STD Standard deviation of TOT WINDOW
across filtered windows [€].

94. FILT_TOT_ WINDOW_ COUNT Number of filtered windows [count].

3.2.8 Exfiltration Features

Money muling[13] is a criminal practice in which individuals are exploited, knowingly
or unknowingly, to transfer illicitly obtained funds on behalf of organized groups.
This mechanism plays a critical role in the process of money laundering, as it allows
criminals to obscure the origin of illegal profits and move them across different
accounts, institutions, or even countries.

The “exfiltration” features are specifically designed to capture this type of
criminal behavior, typically characterized by an inflow of funds followed shortly
by an outflow of a similar amount, reflecting the mule’s role in transferring and
obscuring the origin of the proceeds.

42



Proposed methodology

For the computation of these features, only cash and wire operations are con-
sidered. For each credit transaction, the proportion of its amount that is offset
within the subsequent five days by one or more debit transactions is evaluated.
Such matching is allowed across categories, meaning that a credit executed via a
wire transfer can be offset by a debit executed in cash, and vice versa. Once a debit
(or part of it) has been used to offset a credit, the corresponding amount cannot
be reused to offset other credits. This methodology enables the measurement of
sequential fund movements within each account, providing an ordered analysis of
inflows and outflows.

For analytical purposes, only transactions with an absolute value greater than
or equal to 30€ are considered. Moreover, a debit is regarded as a relevant outgoing
transaction (“exfiltration”, abbreviated as “exfil”) only if its amount corresponds
to at least 20% of the credit being evaluated or if it is greater than or equal to
1 000€, irrespective of the credit size.

The resulting features are computed within a sliding five-days window over the
last 45 days of account activity (as described in Section 3.2.7) and are defined as
follows:

95. EXFIL_CASH_TO_CASH Total exfiltrated amount from cash credits
to cash debits [€].

96. EXFIL CASH_TO__WIRE Total exfiltrated amount from cash credits
to wire debits [€].

97. EXFIL WIRE TO_CASH Total exfiltrated amount from wire credits
to cash debits [€].

98. EXFIL WIRE TO_ WIRE Total exfiltrated amount from wire credits to
wire debits [€].

3.3 Evaluation metrics

In the context of this thesis and, generally, of financial crime detection, since
fraudulent or criminal activities are typically rare compared to legitimate ones, the
datasets are highly imbalanced, making traditional accuracy metrics insufficient
to evaluate model performances. Furthermore, a reliable evaluation framework
is essential to ensure that the models not only identify true anomalies but also
minimize false alerts that could generate a high amount of detections, with the
consequence of compromising the operational efficiency of the competence center.

For these reasons, evaluation metrics such as Precision, Recall, F1-Score and Nor-
malized Discounted Cumulative Gain (NDCG) are used to assess the effectiveness
of the models. Precision, Recall, and F1-Score are employed to quantify a model’s
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ability to correctly identify suspicious accounts while avoiding misclassification of
legitimate ones. Meanwhile, NDCG offers an additional perspective by evaluating
the quality of the ranking produced by the model, particularly relevant when
anomalies are ranked by their likelihood score.

3.3.1 Precision

Precision measures the proportion of correctly predicted positive instances out of
all instances predicted as positive. It quantifies how many of the model’s positive
predictions are actually correct. High precision indicates a low rate of false positives.
It is defined as:

TP
Precision = ————— 3.1
recision = (3.1)
where TP (True Positives) is the number of correctly predicted positive cases and

FP (False Positives) is the number of negative cases incorrectly classified as positive.

3.3.2 Recall

Recall, also known as sensitivity or true positive rate, measures the proportion of
correctly predicted positive instances out of all actual positive instances. It assesses
the model’s ability to identify all relevant cases. A high recall value means that
the model successfully captures most of the positive examples. The formula is:

TP
Recall = m (32)

where FN (False Negatives) are positive cases incorrectly classified as negative.

3.3.3 F1-Score

The F1-Score is the harmonic mean of Precision and Recall, providing a single
metric that balances both. It is particularly useful when the dataset is imbalanced,
as it penalizes models that achieve high precision but low recall, or vice versa. It is
defined as:

Precision - Recall TP

F1-Score = 2 - -
T %" Precision + Recall TP + L(FP + FN)

(3.3)

An F1-Score close to 1 indicates strong performance across both metrics, whereas
lower values reveal an imbalance or poor classification capability.
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3.3.4 Normalized Discounted Cumulative Gain (NDCG)

Normalized Discounted Cumulative Gain is a metric primarily used to evaluate
ranking models by measuring how well the predicted order of items of a ranked
list matches their true relevance. The NDCG metric is based on two components:
the Discounted Cumulative Gain (DCG) and the Ideal DCG (IDCG). The DCG
measures the quality of the predicted ranking by assigning higher importance to
relevant items appearing at the top of the list, while using a logarithmic discounting
factor to progressively penalize the contribution of items in the lower positions.
The IDCG, instead, represents the maximum possible DCG obtained when all
relevant items are ideally placed at the top of the ranking. The ratio between the
two provides a normalized score between 0 and 1, making the metric comparable
across different datasets or models.

In this thesis, the NDCG is computed according to the following implementation.
Let G ={g1,92,--.,9m} be the set of ground truth anomalous items (i.e., accounts
with the status of true positives), and let R = [ry, 79, ...,7,] be the list of items
ranked by the model according to their anomaly scores. The evaluation is performed
considering the top-k elements of R. Each ranked element 7; is assigned a relevance
score defined as:

1, ifr;
rel; = ¢ e G (3.4)
0, otherwise

The Discounted Cumulative Gain (DCG) at position k is computed as:

k .
DG k=Y (3.5)
i=1

— log,(i + 1)

The logarithmic denominator introduces the discount factor that reduces the
contribution of relevant items appearing in lower ranks, thus rewarding models
that correctly place relevant items (in this case, suspicious accounts) near the top
of the list.

The Ideal Discounted Cumulative Gain (IDCG) represents the maximum possible
DCG achievable if all relevant items were ranked at the top positions. It is defined
as:

min(|G|,k) 1

IDOG @k=

~  logy(i+1) (3.6)

Finally, the Normalized Discounted Cumulative Gain (NDCG) is obtained as the
ratio between the actual and ideal gains:
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DCG @k
NDCG @k ={DoGag o PG @k=0 (3.7)
0, otherwise

The resulting value of NDCG @ k lies in the range [0, 1], where 1 indicates a perfect
ranking (i.e., all truly anomalous accounts appear at the top of the model’s ranking)
and a value closer to 1 indicates that the predicted ranking closely matches the
ideal one.

Together, these metrics provide a comprehensive evaluation framework. Preci-
sion, Recall, and F1-Score are focused on the classification nature of the problem,
where the distinction between positive and negative classes matters, while NDCG
is particularly suited for the ranking task, where the order of predictions affects
utility. This combination of metrics was deemed appropriate to accurately assess
model performance and ensure that it aligns with the intended goals.

3.4 Features pre-processing

Before training the models, a comprehensive pre-processing step is applied to ensure
data consistency, handle missing values, and appropriately transform numerical
and categorical features. The pre-processing strategy is designed to standardize
heterogeneous features, mitigate skewness, and encode categorical information for
compatibility with the machine learning algorithms. The overall pre-processing
procedure can be summarized as follows.

3.4.1 Data cleaning
Missing values handling

Initially, the missing numeric values are imputed with the default value of —1 when
the feature represents a standard deviation and with 0 otherwise. When missing,
boolean values are always imputed with the default value of 0. This approach
aims at preserving potentially meaningful distinctions between missing statistical
features and missing count-based or transactional variables.

D23 clustering

Furthermore, domain-specific corrections are applied to the categorical D23 feature.
Missing values are replaced with the default value “811”, and a dimensionality
reduction is performed through clustering of values, based on domain experts
knowledge.
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This procedure aims at grouping semantically similar and underrepresented cat-
egories, thereby simplifying the analysis and improving the model’s generalization.
The resulting semantic clusters of D23 codes are the following:

« Banks cluster: includes categories 310 (Banking system) and 712 (Rest of
the World — Banking companies), both associated with banking activities.

» Financial intermediaries cluster: aggregates codes 311 (Financial inter-
mediaries), 312 (Other financial intermediaries), 713 (Rest of the World —
Financial companies), and 200 (Insurance companies and pension funds),
representing entities operating in financial intermediation and insurance.

» Healthcare cluster: groups codes 103 (Public healthcare services) and 516
(Healthcare services), both belonging to the healthcare sector.

o Administrations cluster: includes codes 101 (Central administrations) and
102 (Local administrations), representing the institutional public sector.

e “Others” category: includes code 811 and missing values, used as a residual
class for cases not attributable to structured groups.

3.4.2 Logarithmic transformation of skewed features

Highly skewed numerical variables are transformed using a signed logarithmic
function, defined as: 2’ = sign(x) - log(1 + |x|). This operation is applied selec-
tively to the features identified as non-normally distributed. The objective of this
transformation is to reduce the influence of extreme values, improve the symmetry
of the feature distributions and facilitate the convergence of distance-based and
gradient-based algorithms: by compressing the magnitude of large observations,
the models become less sensitive to outliers while preserving the relative ordering
of data points.

3.4.3 Features scaling

After the logarithmic transformation, numerical features are standardized using the
z-score normalization, defined as: x” = %, where p and o represent the mean
and standard deviation of the feature, respectively. This standardization ensures
that all numerical variables contribute equally to the learning process, preventing
features with large numerical ranges from dominating the optimization dynamics.
Standard scaling is particularly relevant for algorithms such as One-Class SVM
and Autoencoder which rely on distance-based computations in their latent space.
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3.4.4 Categorical encoding

Categorical variables such as D23 and CUSTOMER__TYPE are encoded using
one-hot encoding. The encoding process ignores unseen categories at inference
time, in order to prevent errors due to data drift or the appearance of unexpected
values in production environments.

The resulting encoded features form a sparse representation in which each
category is mapped to an independent binary vector to enable compatibility with
the input requirements of machine learning algorithms. This representation ensures
that no artificial ordinal relationships are introduced among categorical features.

3.4.5 Pipeline integration

The pre-processing pipeline distinguishes three main groups of features:

e Numerical features, which undergo conditional imputation, logarithmic
transformation and standardization. They represent a total of 92 features.

o Binary features, which are only imputed, as scaling or transformation could
distort their semantic meaning. Only four features belong to this category.

« Categorical features, including only D23, which undergoes dimensionality
reduction, and CUSTOMER, TYPE, which are encoded. After this process,
26 features represent this group.

This structured pre-processing design guarantees that all input data follow
a uniform format and scale, mitigating the impact of outliers and categorical
inconsistencies. Such standardization is crucial for unsupervised anomaly detection
models, where subtle variations in feature distributions can significantly influence
the learned representations and the overall detection performance.

3.5 Model configuration

3.5.1 Semi-supervised autoencoder

For the task addressed in this thesis, a semi-supervised autoencoder architecture
was adopted. This model extends a traditional autoencoder by attaching a super-
vised head to its latent space, along with specific modifications to the training
and prediction procedures, which will be detailed in this section. A schematic
representation of the semi-supervised autoencoder is shown in Figure 3.9.

The reason behind this choice is to leverage the available ground truth infor-
mation on accounts that have been reported and assessed as suspicious, in order
to enhance the model’s ability to rank the most anomalous accounts at the top
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positions. This approach combines supervised and unsupervised learning within a
unified framework, making it particularly suitable for scenarios in which labeled
data is only partially available or updated intermittently over time.

Input x Reconstructed output x
I N
Latent space z
25
T3 4
Tn A/

Supervised head

Figure 3.9: Semi-supervised autoencoder with a supervised head connected to
the latent space.

3.5.2 Model architecture

The autoencoder consists of three main components: the encoder, the decoder
and the supervised head. The encoder projects the input vector x € R" into a
lower-dimensional latent representation z € R™ through a sequence of nyyers fully
connected linear layers. Each linear layer is followed by a ReLU (Rectified Linear
Unit) activation function, defined as

ReLU(z) = max(0, x) (3.8)

which was chosen to introduce non-linearity while keeping the computational cost
low.

The decoder architecture is symmetric with respect to the encoder. It recon-
structs the input vector from the latent representation by reversing the sequence
of transformations applied by the encoder. The last layer of the decoder does
not include any activation function, allowing the reconstruction to remain uncon-
strained by non-linear transformations. The dimensions of the hidden layers follow
a logarithmic progression: in the encoder, each layer’s size decreases approximately
as the base-2 logarithm of the previous one, from n to m. The decoder mirrors
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this structure, with the size of each hidden layer increasing logarithmically until it
matches the original input dimension.

The dimensionality m of the latent space, also known as hidden size, the
number nyayers Of hidden layers, and the learning rate are all determined during the
hyperparameter tuning phase, described later in Section 4.2.

3.5.3 Loss functions

The overall loss function combines multiple error components, each corresponding
to a specific feature type:

« Continuous loss, computed as the Mean Squared Error (MSE) between the
original and reconstructed values:

S P (3.9)

Ncont i=1

*Ccont -

where N, is the number of continuous features.

« Binary loss, computed using the Binary Cross Entropy with logits:

1 Nbyin A A
Liin = N Z [z;log(o(%;)) + (1 — x;) log(1 — o(2;))] (3.10)
11 l:l
where where Ny, is the number of binary features and o(-) denotes the sigmoid
function: )
pu— -1].
o) = 1 (3.11)

o Categorical loss, computed using the Cross-Entropy Loss over the one-hot
encoded categorical features. Let C' be the number of classes for a given feature.
For each account ¢, the model outputs a logits vector X; = [Z; 1, Zi2, ..., Zic),
where each logit Z; . represents the unnormalized confidence score that account
¢ belongs to class ¢. The logits are converted into probabilities via the softmax
function:

softmax(Z;.) = - (3.12)

chzl exi,k
Given the true label x;, represented as a one-hot encoded vector, and the
predicted probability distribution p, = softmax(x;), the categorical loss is

defined as:
1 Ncat C
Lcat = _N Z Z Tic log(pi,c> (313)
cat ;=1 c=1
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where N, is the number of categorical features.

The total unsupervised loss is defined as a weighted sum of the individual
components:

Eunsup = Qlpjip ° Ebin + Qcat * Ecat + Econt (314)

where the coefficients ap;, and ae,; control the relative contribution of the
corresponding feature types. The values of these hyperparameters are determined
during the model tuning phase, as detailed in section 4.3.

3.5.4 Supervised head

In parallel with the reconstruction pathway, the autoencoder includes a supervised
head composed of one or more linear layers with ReLLU activation and a final scalar
output. This component learns a binary classification function that estimates the
probability of an account being suspicious, using as input the latent representation
produced by the encoder.

The supervised training phase can operate in two distinct modes:

o Encoder-updating mode, in which the gradient of the supervised loss is
propagated through the encoder, allowing the latent representation to be
influenced by the classification process;

o Frozen-encoder mode, in which the supervised head is trained independently,
keeping the encoder weights fixed.

This flexibility is particularly valuable since the supervised head is updated only
when new ground truth labels become available, typically at different time intervals
compared to the unsupervised training of the autoencoder. Assessing which of the
two training approaches is the best is one of the objectives of this thesis and it will
be discussed in Section 4.5.

Eventually, the overall training loss integrates both the unsupervised and super-
vised components into a single loss function:

/v‘total = Olynsup * Lunsup + Qgyp - 'Csup (315)

where Lg,, denotes the supervised binary classification loss, typically computed
as Binary Cross Entropy, and aynsyp and oy, are scalar weights controlling their
relative influence which will be determined during the model tuning phase.

3.5.5 Incremental training

The architecture supports incremental training, allowing the model to reuse previ-
ously learned weights as initialization for subsequent training phases.
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In production, the autoencoder is periodically retrained, typically at the end of
each month, updating its latent representation based on newly available data while
preserving previously acquired knowledge.

This design is particularly advantageous in operational environments where
the data distribution may evolve gradually over time. By updating the model
incrementally, it is possible to maintain the effectiveness without retraining from
scratch at each iteration, thereby improving efficiency and reducing training costs.

3.6 Data processing pipeline

- Q
— Excluded © b o QN An
=] = | accounts and | ey — —_— || — ..:' — —
=) transactions pu— [N
) O
Datasets (transactions Accounts to Features Accounts with Semi-supervised Top-K C

and others) analyse extraction features Autoencoder accounts centre analysis

A
[
— Involved >» | —
el > accounts [
Historical Labelled accounts

Ground Truth with features

Figure 3.10: The complete data processing pipeline.

The aim of this section is to summarize all the previously described components
and illustrate how their sequential execution constitutes the complete pipeline
through which the data flow from their initial availability in the datasets to the
model’s final predictions, which ultimately generate reports on potentially suspicious
customers.

As this project is being implemented for the first time, the current starting point
(at the end of the first month of operation in the production environment) consists
of the data becoming available in the datasets described in Section 3.1. These
data are filtered and passed to the feature extraction algorithm, which models each
customer’s behavior through the 98 features detailed in Section 3.2. Subsequently,
the features undergo the pre-processing steps outlined in Section 3.4, making them
ready for model ingestion.

The model then processes the accounts and produces a ranking: each user is
assigned an anomaly score derived from both the reconstruction error and the
supervised anomaly score. Users are sorted in descending order according to this
score, and the top A most anomalous cases are reported to the competence center,
where they are analyzed by human experts with access to non-anonymized data
and additional contextual information (for instance, all the accounts associated
with a customer flagged as suspicious).
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After the competence center’s review, feedback is provided and incorporated
into the ground truth table described in Section 3.1.7, where suspicious accounts
are labeled as either true positives or false positives. Each update to the ground
truth dataset triggers a retraining of the supervised head which can, optionally,
influence the encoder.

The pipeline then continues in a cyclical fashion: at the end of each month,
following the update of the transactions table, the semi-supervised model is retrained
to update its unsupervised component, while the supervised head is updated
whenever new ground truth labels are received.
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Chapter 4

Experimental results

Given the large volume of data and the heterogeneity observed both in the pop-
ulation distribution and in the transactional patterns of the users, the training
strategy for the autoencoder was designed by distinguishing between two cases:
physical persons and legal entities. As previously discussed in Section 3.1.5, this
issue motivated the decision to partition the users according to the value of the
D23 feature, resulting in two separate and well-defined groups:

» Physical persons, defined as all users for whom D23 takes the value ‘600’.
This code encompasses accounts whose transactional behavior is comparable
to that of individual human users;

» Legal entities, comprising all remaining D23 codes. This group includes, in
broader terms, organizations of various types, each one potentially exhibiting
distinct behavioral patterns.

Training a single autoencoder to model and reconstruct such a heterogeneous
set of accounts would have been detrimental to performance. For this reason, the
decision was made to train two separate autoencoder models, one dedicated to
each of the mentioned categories. Throughout this chapter, a detailed description
of all experiments is presented. Every experiment was conducted for each model
independently, which we refer to as ‘Physical Person’ and ‘Legal Entity’ from this
point onwards. On a monthly basis, the dataset includes approximately 6 million
accounts labeled as physical persons and around 1.5 million accounts associated
with legal entities, reflecting a significant imbalance in population size between the
two categories.

All analyses presented in this chapter were carried out on data from October 2024.
This month was chosen as it represents a particularly stable and representative
period: unlike summer months, it is not affected by seasonal holidays or atypical
spending patterns, and unlike December, it is not influenced by Christmas-related
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peaks in transactions. October also typically lacks major national holidays or
exceptional events that might distort users’ transactional behavior, making it a
suitable reference point for model evaluation.

The goal of these experiments is to improve both the learning and classification
capabilities of the autoencoder models. Performance is assessed using the evaluation
metrics introduced in Section 3.3. In particular, the evaluation focuses on the
top—K positions of the ranking, with K € {1000, 2500, 5000, 10000}. Although
multiple values of K are examined, the threshold of K = 5000 is especially relevant,
as it reflects the stated benchmark from the bank. Ultimately, the objective is
to maximize each model’s ability to position the most suspicious cases at the
top of the ranking. These flagged accounts are subsequently forwarded to the
competence center, where specialized analysts, with access to non-anonymized
data and additional contextual information, conduct an in-depth assessment to
determine whether the users are involved in financial crime.

4.1 Incremental versus single-shot training

This experiment investigates two alternative training strategies for the autoencoder:
a single-shot approach and an incremental approach. In the single-shot configura-
tion, the model is trained independently for each month, reinitializing all weights
at random before every new training cycle. In contrast, the incremental strategy
initializes the model for month ¢ using the weights learned at month ¢t — 1, thereby
enabling the model to accumulate information across time.

The evaluation was conducted separately on the top-5000 accounts in the ranking
for three account groups: Legal Entities, Physical Persons, and the entire population.
This design makes it possible to assess not only the effect of the training strategy
but also the impact of population heterogeneity on model performance.
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Figure 4.1: NDCG and Recall at K = 5000 for the entire population.
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Figure 4.2: NDCG and Recall at K = 5000 for Legal Entities.
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Figure 4.3: NDCG and Recall at K = 5000 for Physical Persons.

The parameters used for model training were inherited from an earlier configura-
tion and are therefore not optimal; this limitation will be addressed in Section 4.2.
All models were initially trained using the single-shot strategy on June 2024, and the
resulting model served as the starting point for the incremental training performed
in the subsequent months.

The results lead to two main conclusions. First, the incremental strategy
consistently outperforms the single-shot approach: it achieves higher overall perfor-
mance and significantly reduces training time, confirming the benefits of leveraging
previously learned representations.

Second, training a single model jointly on Legal Entities and Physical Persons
results in degraded performance compared with training two specialised models. The
strong heterogeneity between the groups, both in terms of behavioural patterns and
in the relative number of accounts, negatively affects the global model, reinforcing
the importance of maintaining separate models for the two populations.
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4.2 Hyper-parameter tuning of the unsupervised
Autoencoders

The first stage of the experimental process consisted of tuning some of the hy-
perparameters only on the unsupervised part of the model, independently for the
Physical Persons and Legal Entities autoencoders. For both, a grid search was
carried out over the following set of hyperparameter values:

hidden size € {4, 8, 16},
number of layers € {2, 4}, (4.1)
learning rate € {107%, 107%, 107°}.

A total of 18 configurations were trained for 200 epochs with a batch size of 1024
accounts, without applying incremental training at this stage. For each experiment,
performance was evaluated using the NDCG and recall metrics, with a focus on
the values at £ = 5000 and k£ = 10000, as these thresholds are especially relevant
for the operational constraints already discussed. The figures reported in this
section display, for each group and metric, the top three configurations achieving
the highest values at these cutoffs.

The results of the grid search reveal substantial differences between the two
user categories. For the Legal Entities model, the best-performing configuration
consisted of a latent size of 16, four layers, and a learning rate of 1073, suggesting
the need for a latent representation with higher dimensionality in order to capture
the more diversified behaviors characteristic of this group. Conversely, the Physical
persons model achieved its best results with a latent size of 4, four layers, and a
learning rate of 107°, reflecting the more homogeneous structure of transactional
patterns within this population. In Figures 4.4 and 4.5 the best configuration is
highlited with respect to the other ones.

These findings confirm the necessity to tailor the architecture and the learning
dynamics of each autoencoder to the statistical properties of the corresponding
accounts group, reinforcing the reason for training two separate models.

Beyond NDCG and recall, additional metrics were considered during the evalua-
tion phase, including precision and their corresponding variants computed on false
positives. Although false positives do not directly contribute to the identification
of confirmed suspicious accounts, they remain of interest in this context: a high-
quality model should also be capable of detecting accounts that previously triggered
human suspicion, even when they were not ultimately confirmed as anomalous.
For the sake of brevity, and given their lower relevance to the core analysis, these
supplementary metrics are reported in Appendix A, Section A.1.

A further set of analyses examined the stability of each hyperparameter con-
figuration. Specifically, for a fixed value of one hyperparameter, all combinations
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Figure 4.4: NDCG and Recall at K for Legal Entities.
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Figure 4.5: NDCG and Recall at K for Physical Persons.

of the remaining two were evaluated to assess whether a given choice consistently
yielded strong performance across different settings. A hyperparameter value can
be considered reliable only when its effectiveness holds regardless of the configura-
tion. The results of this robustness assessment confirmed that the configurations
identified as optimal in the grid search maintain high performance across all tested
variations. Consequently, these configurations can be adopted as the baseline for
the unsupervised component of the model moving forward. The detailed results of
this stability analysis are also provided in Appendix A, Section A.1.

4.3 Loss coefficients tuning

As shown in Equation 3.14, two linear coefficients, ay;, and ae,t, are associated
with the binary and categorical loss components in the unsupervised loss. In the
previous experiment on hyperparameter tuning of the unsupervised Autoencoders
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(Section 4.2), both coefficients associated with the binary loss terms were fixed to
1.

A subsequent analysis was conducted, focused on determining more suitable
values for these coefficients. For optimisation purposes, the fine-tuning phase
targeted only the binary-loss coefficient, while keeping .,y = 1. Using the five
best-performing configurations identified in Section 4.2, separately for legal entities
and physical persons, the Autoencoders were retrained by varying the binary-loss
weight apy, across the set {0.25,0.50,0.75,1}.
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Figure 4.6: NDCG for the best unsupervised configurations at different values of
apin and K for Legal Entities.
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Figure 4.7: Recall for the best unsupervised configurations at different values of
apin and K for Legal Entities.
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Figure 4.8: NDCG for the best unsupervised configurations at different values of
apin and K for Physical Persons.
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Figure 4.9: Recall for the best unsupervised configurations at different values of
apin and K for Physical Persons.

For both groups, an initial observation is that the best configuration, which
are highlighted in the heatmaps, consistently outperforms the others regardless of
the value of ap;,. This provides further confirmation of the validity of the selected
hyperparameters.

As illustrated in the heatmaps, when analysing the behaviour of the metrics
as apy, varies for £ = 5000 and £ = 10000, the highest performance—both in
terms of NDCG and recall—is obtained with ay;, = 1 for the Physical Persons and
apin = 0.5 for the Legal Entities.
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4.4 Seed variation experiment

This experiment evaluates the sensitivity of the results to variations in the random
seed (or random state). All configurations tested so far used a fixed seed value of
42; in this analysis, seeds from 1 to 7 were explored. The experiment was conducted
on June data only, in order to avoid repeatedly analysing October and thus reduce
the risk of overfitting to a specific month.
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Figure 4.10: NDCG and Recall at K through different random seed values for
Legal Entities.
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Figure 4.11: NDCG and Recall at K through different random seed values for
Physical Persons.

The first step consisted in evaluating the performance of each model configuration.
The two resulting plots report the mean behaviour across the seven seeds, together
with the corresponding standard deviation and the minimum and maximum value
achieved at each K. As shown in the Figures 4.10 and 4.11, performance remains
stable for both Legal Entities and Physical Persons: the variations induced by
changing the seed are small and do not deviate meaningfully from the baseline
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obtained with seed = 42, which is highlighted.

Subsequently, for K = 5000, the stability of the ranking produced by the seven
runs (i.e., seed = {1,2,...,7}) was analysed. Specifically, for each account, the
number of times it appears in the top—5000 across the seven runs (a frequency
between 1 and 7) was counted and visualised through the Empirical Cumulative
Distribution Function (ECDF) of these frequencies, as shown in figures 4.12 and
4.13. The total number of distinct accounts who appear at least once in the
top—5000 of any run, i.e., the size of the union of the seven rankings was also
computed.
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Figure 4.12: ECDF of the frequency of Figure 4.13: ECDF of the frequency of
each account appearing in the top-5000 each account appearing in the top-5000
of the ranking for Legal Entities. of the ranking for Physical Persons.

The same analysis was then repeated for the users appearing in the ground truth,
distinguishing between true positives (TP) and false positives (FP). For clarity
and completeness, the corresponding ECDF plots are provided in Appendix A,
Section A.2.

For Legal Entities, the union of the seven top—5000 rankings comprises 18,165
distinct accounts, of which 451 (2.5%) appear consistently across all runs. Within
the ground truth, 457 accounts are present overall (48 TPs and 409 FPs), and
among the persistent users, 50 belong to the ground truth (2 TPs and 48 FPs).

For Physical Persons, the union contains 12,340 distinct accounts, with 849 of
them (6.8%) appearing in all seven rankings. Of the 184 ground-truth accounts
detected in at least one run (44 TPs and 140 FPs), only 9 are persistent across all
seeds (1 TP and 8 FPs).

Overall, these results indicate that seed variation introduces limited instability
in the top—5000 rankings. Although a non-negligible number of accounts appear
intermittently across runs, only a small fraction of users is consistently present
in all top—5000 lists, and most of these persistent users are false positives. The
ECDF curves further confirm that the majority of accounts appear only a few
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times across seeds, while a comparatively small subset exhibits high cross-seed
consistency. These findings suggest that, while seed variation affects the exact
composition of the top-ranked users, the magnitude of these fluctuations remains
moderate. To complement this analysis and to obtain a more quantitative measure
of ranking stability across seeds, a correlation-based evaluation was then conducted.

Pearson correlation analysis

To further assess the stability of the ranking with respect to seed variation, Pearson’s
correlation coefficient was computed between every pair of rankings derived from
different seeds. Pearson’s coefficient measures the strength of the linear relationship
between two numerical vectors; in this context, the vectors correspond to the
ranking scores assigned to users by two independent model runs. A value of r =1
indicates perfect alignment between the rankings, while » = 0 indicates no linear
relationship. Negative values would imply an inverse ordering, which is not expected
in this setting. High values of r thus correspond directly to high ranking stability.

For each of the (;) = 21 seed pairs, Pearson’s r was computed, together with

its statistical significance (p-value). Following standard practice, correlations with
p > 0.01 were deemed unreliable and were therefore set to zero; the number of
discarded correlations was also recorded. The final stability indicators are the mean
and variance of the 21 resulting r values.

For Legal Entities, the mean Pearson correlation is 0.848 with a variance of
0.0075. For Physical Persons, the mean correlation is 0.837 with a variance of
0.0016. Importantly, no pair exceeded the p > 0.01 threshold, indicating that all
computed correlations are statistically meaningful. These results demonstrate a
very strong linear consistency between rankings generated with different seeds,
confirming that the overall ranking structure is robust to stochastic variation.

A complementary perspective is provided by analysing the intersection ratio
between seed pairs, defined as:

topK(7) N topK(j)
e :

ratioi,j =

This metric captures the degree of agreement specifically in the top portion of the
ranking. For Physical Persons, the mean intersection ratio is 0.545 (variance 0.0068),
indicating that two runs typically share about 54% of their top—5000 accounts.
For Legal Entities, the mean ratio is 0.331 (variance 0.0055), reflecting a greater
variability in the very top-ranked segment: an expected outcome, as intersection
ratios are sensitive to small perturbations within the upper tail, whereas Pearson
correlations capture global linear alignment.

Taken together, these analyses confirm that while seed variation can influence
which specific accounts appear in the highest-ranked subset, the global ranking
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structure remains highly stable. Consequently, and in the absence of a clearly
superior alternative, the original seed value of 42 was retained for the remainder of
the study.

4.5 Joint vs Sequential Training of the Semi-
Supervised Autoencoder

This experiment represents the first evaluation of the supervised head of the
semi-supervised autoencoder. The supervised head is trained on a monthly basis.
To simulate an incremental learning scenario, all accounts reported in previous
months are collected from the ground-truth dataset, their feature representations
are extracted, and these are passed through the encoder and then through the
supervised head for training. All ground-truth accounts (both true positives and
false positives) are assigned label 1, whereas negative samples are obtained via
random sampling from the set of accounts not present in the ground truth. The
sampling ratio is controlled by the parameter ‘pos_to_ neg ratio’, set to 0.5,
ensuring a balanced dataset with an equal number of positive and negative samples.

Another key parameter is «, which determines the proportion of supervised
samples within each training batch. Here, a = 0.3, meaning that in every batch,
30% of the data points are used by the supervised head (that is, they are labeled),
while the remaining 70% contribute to the unsupervised reconstruction loss.

Two training strategies were evaluated:

e Sequential training: the supervised head is trained after the unsupervised
autoencoder has been fully trained. During this phase, the unsupervised en-
coder—decoder remains frozen, preventing the supervised head from modifying
encoder weights. The hyperparameters used for the unsupervised component
correspond to those obtained in the previous hyperparameter-tuning stage
described in Section 4.2.

e Joint training: both the supervised and unsupervised heads are trained
simultaneously. In this configuration, gradients from the supervised head
are allowed to propagate through the encoder, altering its weights. The
unsupervised branch uses the same set of tuned hyperparameters as in the
sequential setup.

The resulting plots compare the performance of the two approaches across
multiple configurations. Rankings labelled “Unsupervised” correspond to those
generated using the reconstruction error from the unsupervised head, while rankings
labelled “Supervised” correspond to the output of the supervised classifier.

The results highlight two clear findings. First, the supervised head trained jointly
with the unsupervised component exhibits substantially better performance than
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Figure 4.15: NDCG and Recall at K for Physical Persons.

when trained sequentially. Allowing the supervised loss to influence the encoder
during training leads to latent representations that are more discriminative for the
detection task, thereby enhancing downstream ranking performance. In contrast,
the unsupervised head shows only minimal differences between the two settings.
This is expected, as the reconstruction objective remains structurally unchanged:
even when trained jointly, its contribution dominates 70% of each batch, and the
reconstruction loss is largely insensitive to the relatively sparse supervised signal.

Second, when trained jointly, the supervised head significantly outperforms the
unsupervised ranking. This confirms that the semi-supervised architecture provides
a clear advantage over relying solely on a classical unsupervised autoencoder: the
supervised signal effectively guides the encoder towards learning meaningful, task-
relevant structures, leading to a considerable improvement in detection capability.
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4.6 Benchmarking unsupervised baselines against
the autoencoder models

To assess the relative performance of the proposed Autoencoder architectures, two
of the classical unsupervised anomaly detection models described in Section 3
(One-Class SVM and Isolation Forest) were selected as baselines. Each baseline
model was tuned and evaluated separately on the Legal Entities and Physical
Persons datasets. Local Outlier Factor (LOF) was initially considered as a third
baseline; however, it was discarded because the algorithm does not scale to the
dimensionality and volume of the data, failing to converge within feasible memory
and time constraints.

Hyperparameter tuning was performed via an exhaustive grid search. The
One-Class SVM was evaluated across 32 configurations, while the Isolation Forest
was evaluated across 72 configurations. These models were trained on the month of
June 2024 and the following six months were used as test sets. For both models, the
preprocessing steps were aligned with those used for the Autoencoder, as described
in Section 3.4. Additional steps, such as dimensionality reduction, correlation-
based feature selection and PCA, were optionally applied depending on the model
configuration. When enabled, PCA was applied to reduce the feature space to the
number of components explaining 90% of the variance.

The performance comparison focuses on NDCG and Recall evaluated over the
top-5000 ranked accounts, contrasting each baseline model with the unsupervised
Autoencoder and with the unsupervised output of the semi-supervised Autoencoder.
The resulting trends indicate that the baseline methods achieve performance broadly
comparable to the unsupervised Autoencoders, with notable differences depending
on the dataset:

o Legal Entities: both the unsupervised and semi-supervised Autoencoders
clearly outperform the baseline models.

o Physical Persons: the baseline models retrieve a larger number of true
positives but also a disproportionately high number of false positives, as
confirmed by the dedicated metric plots. Consequently, the Autoencoder
models exhibit lower values of both metrics in this setting, as they perform
more novelty detection.

Among the baselines, Isolation Forest is observed to perform relatively well.
This is consistent with its ability to isolate anomalies along individual features;
when highly specialised domain-specific features are present, like High-Rotation
3.2.7 or Exfiltration 3.2.8 features, Isolation Forest can effectively exploit them.
In contrast, the Autoencoder redistributes representational importance through
learned weights in the encoder, rather than treating each feature independently.
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Figure 4.16: NDCG and Recall across months for Legal Entities.
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Figure 4.17: NDCG and Recall across months for Physical Persons.

Among the baselines, Isolation Forest is observed to perform relatively well.
This is consistent with its ability to isolate anomalies along individual features;
when highly specialised domain-specific features are present, such as the High-
Rotation features discussed in Section 3.2.7 or the Exfiltration features introduced
in Section 3.2.8, Isolation Forest can effectively exploit these dimensions. In
contrast, the Autoencoder distributes representational importance across multiple
features through learned weights in the encoder, rather than treating each feature
independently.

Despite the reasonable performance of One-Class SVM and Isolation Forest, the
Autoencoder models remain preferable for two fundamental reasons. First, the
baseline models cannot support incremental training and therefore cannot leverage
temporal continuity in the data.

Second, they are unable to exploit historical ground-truth data, and thus cannot
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Figure 4.18: NDCG and Recall on False Positives across months for Physical
Persons.

incorporate a supervised training signal. These limitations prevent them from
reaching the performance levels achieved by the semi-supervised Autoencoder, whose
supervised head guides the encoder toward more discriminative representations.

4.7 Benchmarking supervised classifiers on latent
representations

This experiment evaluates the discriminative quality of the latent spaces produced
by the two Autoencoder architectures: the unsupervised Autoencoder, whose latent
representation is shaped solely by reconstruction objectives, and the semi-supervised
Autoencoder, in which the supervised head actively influences the structure of
the latent space. The goal is to assess whether the representations learned in the
semi-supervised setting provide a measurable advantage when used as input to
downstream classification models.

A suite of shallow learning classifiers was trained on top of the respective latent
embeddings: K-Nearest Neighbors (KNN), Logistic Regression, Support Vector
Machine (SVM), Decision Tree, Random Forest and a feed-forward neural network
(FENN) mirroring the architecture of the supervised head of the semi-supervised
Autoencoder (a single linear layer with input dimensionality equal to the latent size
and a one-dimensional output). Model training and hyperparameter optimisation
were performed on a balanced dataset comprising 50% ground-truth accounts (from
January to May, approximately 15000 accounts) and 50% accounts sampled at
random from the June population.

After obtaining the latent representations from the unsupervised Autoencoder
trained in single-shot mode on June, an exhaustive hyperparameter search was

68



Experimental results

carried out for each classifier. The configuration maximising the Recall was selected
for both Legal Entities and Physical Persons, which were treated independently in

all experiments.

Each tuned classifier was then applied to the full June population (approximately
6 million accounts for Physical Persons and 1.2 million for Legal Entities), using
the predict_ proba() function to generate a continuous anomaly score. This score
enables a direct comparation between this ranking and the one produced by the

semi-supervised Autoencoder.
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Figure 4.20: NDCG and Recall at K = 5000 for Physical Persons.

The resulting performance metrics show that the semi-supervised Autoencoder
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consistently outperforms the supervised classifiers trained on the unsupervised
latent space representation, as illustrated by the red dashed line in Figure 4.19 and
4.20. These results reinforce the conclusion that the training of the supervised head
in the semi-supervised Autoencoder shapes a more informative and discriminative
latent space, thereby justifying its adoption in subsequent analyses.

4.8 Evaluation of a fully supervised baseline

In this experiment, the goal is to compare the semi-supervised pipeline of the
Autoencoder with a fully supervised alternative. The same data used in the previous
experiment were retained; however, instead of relying on the latent representations
produced by the Autoencoder, the models were trained directly on the 98 original
features.

The preprocessing pipeline was aligned with the one adopted for the Autoencoder.
First, the standard preprocessing steps were applied, followed by correlation-based
feature reduction, where features with pairwise correlation greater than 0.9 were
removed. Principal Component Analysis (PCA) was then applied, retaining the
components that explained 90% of the total variance. After these transformations,
the same set of classifiers: K-Nearest Neighbors (KNN), Logistic Regression, Sup-
port Vector Machine (SVM), Decision Tree, Random Forest, and a feed-forward
neural network (FFNN) was trained on the same balanced dataset used in the pre-
vious experiment (approximately 30000 accounts selected using the same sampling
strategy described in Section 4.7), and subsequently used to perform inference on
the June population.

A first relevant observation is that, for both Legal Entities and Physical Persons,
the combination of preprocessing, feature reduction and PCA resulted in 26 principal
components explaining approximately 91% of the variance.

The overall conclusion mirrors the findings of the previous experiment: the
ranking-based metrics consistently indicate that the semi-supervised Autoencoder
(represented by the red dashed line in Figure 4.21 and 4.22) outperforms the fully
supervised pipeline. This further confirms the superiority of integrating a supervised
head within the Autoencoder architecture over relying solely on a conventional
supervised learning pipeline.
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Chapter 5

Conclusion

5.1 Final results

The work presented in this thesis explores a semi-supervised approach to anomaly
detection in standard banking accounts, with the goal of producing a monthly
ranking of accounts based on their likelihood of engaging in financial misconduct.
The core model is an Autoencoder, selected both for its strong ability to capture
unusual behavioural patterns through reconstruction error and for its flexibility in
supporting unsupervised and supervised extensions.

The project unfolded in several stages. The bank’s datasets were first examined
in depth, leading to the extraction of 98 features characterizing each account’s
transactional behaviour. After filtering and preprocessing, these features were used
to train two separate Autoencoder models: one for Physical Persons and one for
Legal Entities.

The architecture combines a classical encoder—decoder with an additional feed-
forward neural network attached to the latent space. Each component produces
its own ranking: the unsupervised part relies on reconstruction error, while the
supervised head outputs a logit score for each account. These scores, together with
historical labels of reported accounts (True Positives and False Positives), allow
the computation of metrics such as Precision, Recall and Normalized Discounted
Cumulative Gain, which serve as performance indicators.

Throughout development, a broad set of experiments was conducted to refine
and test the models. These included comparisons between incremental and single-
shot training, hyperparameter optimization for the unsupervised setup, sensitivity
analyses across random seeds, and an evaluation of supervised classifiers built on
latent representations. The Autoencoders were also benchmarked against standard
unsupervised baselines and a fully supervised pipeline. Overall, the experiments
show that separating Physical Persons and Legal Entities improves results, that
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incremental and joint training strategies strengthen detection quality, and that
the semi-supervised Autoencoder consistently outperforms both pure unsupervised
models and fully supervised alternatives.

These investigations enabled a detailed assessment of model behaviour, sum-
marized in the final plots shown in this Section, comparing metrics across the
unsupervised AE, the unsupervised component of the semi-supervised AE, and the
supervised component of the semi-supervised AE.
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Figure 5.1: NDCG and Recall on June 2024 for Legal Entities.
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Figure 5.2: NDCG and Recall at K = 5000 for Legal Entities.

The results indicate that the semi-supervised Autoencoder achieves competitive
or superior performance compared to alternative methods. Even in cases where the
number of identified true positives is similar, the AE tends to produce noticeably
fewer false positives: an important practical advantage, as it reduces the workload
for analysts in the competence centre. In addition, the ability to inspect feature-
level reconstruction errors provides valuable interpretability, helping domain experts
understand why an account has been flagged.

In conclusion, this work illustrates that Autoencoder-based anomaly detection
effectively captures meaningful behavioural signatures in financial data, aligns
well with domain knowledge and offers tangible operational benefits. Experts
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Figure 5.4: NDCG and Recall at K = 5000 for Physical Persons.

feedback has been positive, and there is a concrete possibility for this system to be
deployed in production as an enhancement or even a replacement for the existing
rule-based Transaction Monitoring framework. The combination of interpretability,
reduced false positives and the adaptability of semi-supervised methods highlights
the potential of the proposed approach, while ongoing collaboration with domain
specialists and the progressive integration of new labelled data will be essential for
continuous improvement.

5.2 Future works

Despite the encouraging results and the positive feedback from domain experts,
several limitations remain. The most significant challenge is the extreme class
imbalance: truly anomalous accounts represent only about 0.25% of all Legal
Entities and roughly 0.05% of Physical Persons. This imbalance not only makes
the task intrinsically difficult but also limits the maximum achievable performance
of any detection system.

Future work could explore several promising directions:
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o Merging supervised and unsupervised rankings. A unified ranking
could be built by jointly fine-tuning the loss coefficients of both components,
allowing the model to better balance reconstruction-based and logit-based
anomaly signals.

o Learning feature-specific weights. Introducing trainable or carefully
tuned per-feature weights may help the model focus on the most informative
behavioural patterns, improving both reconstruction and supervised discrimi-
nation.

» Applying post-processing techniques. Additional post-processing strate-
gies, similar to those investigated in MAD 2024[2], could further refine the
ranking and correct residual weaknesses of the raw model outputs.

Pursuing these directions may enhance both performance and stability, making
the system more robust in a scenario where anomalies are rare and difficult to
detect.
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Appendix A

Additions to experimental
results

A.1 Hyper-parameter tuning of the unsupervised
Autoencoders

Additional evaluations metrics

This section reports supplementary evaluation metrics considered during the analysis
in Section 4.2, including precision and measures derived from false positives. While
not central to the main discussion, these metrics provide additional insight into
the model’s behaviour.
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Figure A.1: Precision at K for Legal Figure A.2: Precision on FP at K for
Entities. Legal Entities.
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Figure A.3: NDCG on FP at K for Figure A.4: Recall on FP at K for
Physical Persons. Physical Persons.

Hyperparameter stability verification

This section presents the results of the stability analysis conducted across different
hyperparameter configurations, expanding the analysis of Section 4.2. By fixing
one hyperparameter at a time and varying the remaining ones, the evaluation
assesses whether the selected values demonstrate consistent performance, thereby
supporting their reliability for deployment. The analysis was conducted on NDCG
and Recall with a fixed value of K = 5000.
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Figure A.5: NDCG at hidden size val- Figure A.6: NDCG at learning rate
ues for Legal Entities. values for Legal Entities.
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Figure A.9: Recall at learning rate
values for Legal Entities.
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Figure A.11: NDCG at hidden size
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Figure A.12: NDCG at learning rate
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A.2 Seed variation experiment

ECDF analysis of TP and FP frequency across seed-dependent top—5000
rankings

This subsection reports the Empirical Cumulative Distribution Functions (ECDFs)
describing how frequently each ground truth account, both true positives (TP)
and false positives (FP), appears in the top—5000 rankings across the seven seed
values. These plots complement the aggregate statistics presented in Section 4.4 by
providing a more granular view of ranking stability at the level of individual users.
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Figure A.17: ECDF of the appearance
frequency of true-positive (TP) accounts
in the top—5000 rankings across seven
seeds (Legal Entities).
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Figure A.19: ECDF of the appearance
frequency of true-positive (TP) accounts
in the top—5000 rankings across seven
seeds (Physical Persons).
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Figure A.18: ECDF of the appearance
frequency of false-positive (FP) accounts
in the top—5000 rankings across seven
seeds (Legal Entities).
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Figure A.20: ECDF of the appearance
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