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Abstract

This thesis investigates the real-time implementation of a Model Predictive
Path Integral controller for quadrotor platforms, focusing on how numerical
precision affects computational performance on embedded hardware. Al-
though MPPI is well established for nonlinear optimal control, its deployment
on resource-limited devices remains challenging because each control cycle
requires evaluating thousands of trajectory rollouts. Surprisingly, no previous
work has examined whether reduced-precision arithmetic can speed up MPPI
on embedded systems without compromising the accuracy needed for stable
flight.

To address this question, an MPPI controller was integrated into the
TeleKyb3 framework and adapted to interface directly with the existing
attitude controller by reformulating the system dynamics in terms of desired
angular velocities. This avoided additional control layers and enabled real-
time execution on an NVIDIA Jetson Orin Nano. The controller was first
validated in Gazebo through different tests, then deployed retuning on
the mkquad5 platform in an indoor VICON environment. The real-world
experiments confirmed stable behavior, with hovering accuracy within ±5 mm
and trajectory tracking errors around 5–10 cm.

A dedicated numerical study was then conducted using a custom Mu-
JoCo implementation running directly on the Jetson, allowing a systematic
comparison between float32 and float16 across thirty controller configu-
rations. The results show that half-precision arithmetic consistently reduces
computation time, typically by 7–15%, while maintaining tracking accuracy
effectively identical to float32.

These findings indicate that MPPI naturally tolerates the rounding errors
introduced by reduced precision, thanks to its sampling-based structure and
receding-horizon updates. Based on this, the thesis outlines several guidelines
for hardware-oriented implementations, including using 16-bit arithmetic as
a sensible default and adopting mixed-precision strategies where necessary.
Overall, the work shows that numerical precision can be safely reduced
without loss of control quality, offering a practical pathway toward efficient
and hardware-aware predictive controllers for autonomous aerial systems.
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Chapter 1

Introduction

1.1 Context and Motivation
In recent years, real-time control of autonomous systems has become a
central focus in robotics and automation research. In particular, the use
of drones and autonomous aerial platforms requires the development of
increasingly sophisticated and advanced controllers capable of combining
precision, robustness, execution speed, and stability.

Model Predictive Path Integral (MPPI) control has emerged as one
of the most promising techniques for optimal control in complex environments.
MPPI is based on the idea of generating and evaluating a large number
of candidate trajectories in parallel, selecting the one that minimizes a cost
function in real time. However, the computationally intensive nature of this
approach limits its applicability on embedded hardware, where resources and
time margins are very limited.

This thesis, conducted at the INRIA research center in collaboration with
the Rainbow and TARAN teams, examines precisely these scenarios and
aims to explore the implementation of an MPPI controller on a quadrotor
drone equipped with the NVIDIA Jetson Orin platform via TeleKyb3,
and to evaluate the numerical precision that can be used to accelerate the
controller on dedicated hardware. The motivation stems from the desire to
combine two areas of great scientific interest: advanced drone control and
performance optimization on accelerated hardware. The idea of being able to
develop a truly operational control system, capable of running in real time on
a real device, represents a fascinating challenge and a concrete contribution
toward the integration of control theory and practical implementation.

1

https://team.inria.fr/rainbow/
https://team.inria.fr/taran/


Introduction

During the project, the work involved both simulations in the Gazebo
environment, with real-time and non-real-time tests, and experiments on a
real drone controlled via a VICON motion capture system and integrated
into the TeleKyb3 framework. The main technologies used include CUDA
for GPU parallelization and JAX for efficient management of numerical
operations.

1.2 Problem Statement
The implementation of optimization-based control algorithms, such as Model
Predictive Path Integral (MPPI), poses significant computational chal-
lenges. These algorithms rely on the simultaneous generation and evaluation
of numerous candidate trajectories, with the goal of selecting the one that
minimizes a cost function in real time. Each control cycle therefore requires a
large number of simulations, evaluations, and command updates, all executed
within a matter of milliseconds. On systems with limited resources, such
as the Jetson modules mounted on drones, this results in a computational
load that often approaches the limit of the hardware’s capabilities.

To make control truly executable in real time, it is necessary to maximize
the potential of accelerated hardware by optimizing each phase of the com-
putational process. In this context, one of the most critical aspects is the
numerical precision used in the calculations. Floating-point representation
directly impacts both processing speed and the numerical stability of the
results. Using reduced precision speeds up operations, reducing execution
times and improving parallelization capacity on GPUs and/or FPGAs.
However, lower precision can introduce quantization and stability errors,
compromising system control.

To the best of our knowledge, no prior work has systematically investigated
how numerical precision influences MPPI performance when implemented
on embedded hardware for real-time aerial control.

The central issue addressed in this thesis therefore concerns the trade-off
between numerical precision and control performance in the context of real-
time execution of an MPPI controller on a quadrotor drone. Specifically,
the goal is to determine whether using reduced precision can offer sufficient
computational speed to meet control requirements while maintaining an
acceptable level of accuracy in trajectory tracking.

The implementation leverages the parallel computing capabilities offered by

2
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the NVIDIA Jetson Orin GPU, using CUDA for simultaneous trajectory
generation and JAX for efficient management of numerical operations and
automatic differentiation.

The experiments focus on two main evaluation metrics:

• Computation time per control iteration, which determines real-
time feasibility and the maximum frequency achievable by the system.

• Tracking error, which measures the drone’s ability to accurately follow
reference trajectories.

The results show that calculations performed with float16 precision are
significantly faster than those with float32, while maintaining comparable
control performance. This suggests that using reduced precision may rep-
resent an effective solution for improving computational efficiency without
compromising control quality. The findings also provide an opportunity to
evaluate future implementations on FPGAs, where low precision arithmetic
could be exploited to achieve higher operating frequencies and lower latencies,
further improving the responsiveness of real-time control systems and halving
the controller’s computational time.

1.3 Objectives
The objectives of this thesis stem directly from the motivations and the iden-
tified research problem. The work aims to thoroughly analyze how numerical
precision affects the real-time performance of the Model Predictive Path
Integral (MPPI) controller when running on embedded hardware intended
for quadrotor drone control.

Specifically, the research is structured around four main objectives:

1. Develop and integrate an MPPI controller into the TeleKyb3
framework.
The algorithm was implemented using JAX and CUDA to parallelize
computations on the GPU.

2. Conduct a systematic analysis of numerical precision.
Comparative experiments were conducted between float32 and float16
representations on the NVIDIA Jetson platform, with the aim of
evaluating the effects of arithmetic precision on computation times,
tracking accuracy, and control stability.

3
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3. Verify real-time feasibility on embedded hardware.
We analyzed whether the speed increase achieved with reduced precision
allows achieving high control frequencies while maintaining satisfactory
dynamic performance and control quality consistent with the required
specifications.

4. Define guidelines for future FPGA implementations.
Based on the experimental results, we formulated considerations and rec-
ommendations for choosing numerical formats for the design of dedicated
hardware.

In summary, the overall goal is to contribute to the development of
hardware-aware controllers, i.e., controllers designed to consciously ex-
ploit the characteristics and limitations of the hardware on which they run.
This approach aims to bridge the gap between control theory, embedded
computing, and real-time implementation, providing a concrete basis for the
creation of more efficient and responsive autonomous systems.

Relation to Sustainable Development Goals. Although this thesis
focuses on a technical problem in real-time control and embedded numerical
optimization, its outcomes are directly aligned with the United Nations
Sustainable Development Goal 9 (Industry, Innovation and In-
frastructure). The work advances hardware-aware control strategies and
computationally efficient algorithms that enable reliable autonomous systems
to operate on resource-constrained platforms. Demonstrating that numer-
ical precision can be reduced without degrading control quality provides
concrete guidance for designing lighter, faster, and more efficient embedded
controllers. These contributions support SDG 9 by promoting technological
innovation and improving the efficiency of advanced robotic systems, which
are increasingly used in industrial inspection, infrastructure monitoring, and
other mission-critical applications where real-time performance and energy
constraints are key considerations.

1.4 Thesis Structure
The thesis is divided into five main chapters, each dedicated to a specific
aspect of the research, from the initial motivation to the conclusions and
future perspectives.

4
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Chapter 1 – Introduction presents the general context, the motivations
that guided the project’s development, the research problem addressed, and
the objectives pursued.

Chapter 2 – Background and Related Work delves into the theo-
retical and technological foundations necessary to understand the work. It
introduces the principles of MPPI control, drone dynamic modeling, and
the operation of the TeleKyb3 framework, providing a review of the most
relevant contributions in the literature related to this work.

Chapter 3 – Methodology describes the controller design and imple-
mentation process in detail. It illustrates the mathematical formulation of
the algorithm from a coding perspective, the methods of integration into the
TeleKyb3 framework, the development of the simulation environment, and
the experimental methodology adopted to analyze the impact of numerical
precision.

Chapter 4 – Experiments and Results reports the experimental eval-
uation of the proposed approach. The hardware and software configurations
used are described, followed by a quantitative analysis of the results obtained
in terms of computation time and tracking accuracy. The trade-off between
computational speed and control quality is also discussed, with reference to
the system’s real-time implementation.

Finally, Chapter 5 – Conclusions and Future Works summarizes
the main results achieved, highlights the original contributions of the work,
and discusses the limitations encountered. The chapter concludes with some
suggestions for future research, particularly regarding hardware-accelerated
implementations dedicated to the MPPI controller.

5



Chapter 2

Background and Related
Work

2.1 MPPI Theory
The MPPI (Model Predictive Path Integral) control system is a predictive
control framework that applies the principles of PIC (Path Integral Control)
and numerical approximation through MCS (Monte Carlo Sampling), lever-
aging the information-theoretic foundations of optimal control [1, 2, 3]. This
approach allows direct handling of nonlinear systems and nonconvex cost
functions, overcoming the limitations of classical controllers such as PID
(Proportional–Integral–Derivative), LQR (Linear Quadratic Regulator), and
MPC (Model Predictive Control).

In the optimal control problem, the objective is to compute a sequence of
commands u0:T that minimizes a cost functional:

J = E
C
ϕ(xT ) +

Ú T

0
q(xt, ut) dt

D
, (2.1)

where ϕ(xT ) represents the terminal cost, and q(xt, ut) is the instantaneous
cost associated with the state and control. The HJB (Hamilton–Jacobi–Bellman)
equation provides the formal solution to this problem by computing the opti-
mal policy. However, it is intractable for most nonlinear or high-dimensional
systems.

PIC is used to address this issue. This approach reformulates the problem
using probabilistic methods, where the solution is expressed as a weighted av-
erage over a set of stochastic trajectories. In this context, MCS techniques can

6
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be used to approximate the expected cost and the optimal control, enabling
implementations based on the parallel sampling of multiple trajectories.

Given this, MPPI applies a sampling-based strategy: at each iteration,
multiple trajectories are generated through random perturbations of the
nominal control sequence. Each trajectory is evaluated according to its cost
function and weighted based on its associated cost value. The optimal control
is computed as a weighted average of the perturbations corresponding to
the lowest-cost trajectories. By applying this method, the controller does
not need to compute gradients or solve complex optimization problems, but
simply calculates a weighted average of several control inputs.

From a theoretical point of view, MPPI can also be interpreted through
the lens of information theory. In this formulation, the optimal control
problem can be expressed as the minimization of the expected cost plus a
regularization term that measures the information divergence between the
controlled and uncontrolled trajectory distributions:

F = EQ[S(τ)] + λKL(Q∥P), (2.2)

where P and Q denote, respectively, the probability distributions of the
uncontrolled and controlled trajectories, S(τ) is the trajectory cost, and
KL(Q∥P) is the Kullback–Leibler divergence between them [1].

Minimizing this functional leads to the optimal distribution of trajectories:

dQ∗

dP
∝ exp

A
−1
λ
S(τ)

B
, (2.3)

which shows that lower-cost trajectories are exponentially more likely under
the optimal policy. This formulation provides a theoretical justification
for the exponential weighting used in MPPI and clarifies the role of the
temperature parameter λ, which balances exploration (through stochastic
perturbations) and exploitation (selection of low-cost trajectories).

This information-theoretic formulation also highlights the flexibility of
MPPI in handling nondifferentiable costs and complex constraints while
maintaining real-time feasibility through efficient parallelization on modern
GPU (Graphics Processing Unit) architectures.

In the following sections, the theoretical foundations of the two main
components are presented: the formulation of the PIC and the numerical
approximation through MCS.

7
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2.1.1 Path Integral Control
Path Integral Control (PIC) provides the theoretical foundation of the MPPI
method, offering a probabilistic formulation of optimal control that avoids
the direct solution of the HJB equation. Originally introduced by Kappen [1,
4], the path integral control framework addresses nonlinear stochastic optimal
control problems by estimating expectations over system trajectories, for
example through MCS (Monte Carlo Sampling).

Consider the following dynamics:

dxt =
è
f(xt, t) +G(xt, t)u(xt, t)

é
dt+B(xt, t)dω, (2.4)

where xt = x(t) ∈ RN is the system state, u(xt, t) ∈ Rm is the control input,
and dωt ∈ Rp is a Brownian disturbance. The system is affine in the control
input.

Let ϕ(xT , T ) denote the terminal cost, q(xt, t) the running cost, and
R(xt, t) a positive-definite control cost matrix. The value function of this
stochastic optimal control problem is defined as:

V (xt, t) = minu EQ
5
ϕ(xT , T ) + s T

t

3
q(xt, t) + 1

2u(xt, t)⊤R(xt, t)u(xt, t)
46
, (2.5)

where EQ[·] denotes the expectation with respect to controlled trajectories,
i.e., the stochastic process defined in (2.4).

The associated HJB equation is:

−∂tV = min
u

C
(f +Gu)⊤∇xV + 1

2tr(BB⊤∇xxV ) + q + 1
2u

⊤Ru

D
, (2.6)

with boundary condition V (xT , T ) = ϕ(xT , T ). The minimization is convex
with respect to the control inputs ut, so the optimum is obtained by setting
the gradient with respect to u equal to zero:

u∗ = −R−1G⊤∇xV. (2.7)

Substituting (2.7) into (2.6) yields:

−∂tV = q + f⊤∇xV −
1
2∇xV

⊤GR−1G⊤∇xV + 1
2tr(BB⊤∇xxV ). (2.8)

Since this nonlinear PDE is generally intractable, a desirability function
ψ(x, t) is introduced as:
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V (x, t) = −λ log(ψ(x, t)), (2.9)
where λ is a positive constant. Substituting (2.9) into (2.8) and simplifying
gives:

∂tψ = 1
λqψ − f

⊤∇xψ + 1
2∇

⊤
xψGR

−1G⊤∇xψ − 1
2tr(BB⊤∇xψx) + 1

2ψ∇
⊤
xψBB

⊤∇xψ. (2.10)

The quadratic terms in ψ cancel if and only if BB⊤ = λGR−1G⊤, which
constrains the choice of the matrix R but leads to a physically meaningful
control cost structure. With suitable R and λ, the HJB equation becomes
linear:

∂tψ = 1
λ
qψ − f⊤∇xψ −

1
2tr

1
BB⊤∇xψx

2
. (2.11)

Applying the Feynman–Kac formula yields the solution:

ψ(xt0, t) = EP

C
exp

A
−1
λ
S(τ)

BD
, (2.12)

where
S(τ) = ϕ(xT ) +

Ú
t
0T q(xs, s) ds (2.13)

is the cumulative cost (state-dependent cost-to-go) along the trajectory τ .
Here, EP[·] denotes the expectation over uncontrolled trajectories governed
by:

dx = f(xt, t) dt+B(xt, t) dω. (2.14)
The optimal control can then be expressed as:

u∗ = λR−1G⊤∇xψ
ψ

. (2.15)

If the dynamics can be decomposed into directly and indirectly actuated
components, the matrices can be written as:

G(xt, t) =
A

0
Gc(xt, t)

B
, B(xt, t) =

A
0

Bc(xt, t)

B
. (2.16)

In this case, the gradient can be computed analytically [1], and the optimal
control takes the form:

u∗ dt = R−1G⊤
c (GcR

−1G⊤
c )−1Bc

EP
è
exp

1
− 1
λS(τ)

2
dωt

é
EP

è
exp

1
− 1
λS(τ)

2é . (2.17)

9



Background and Related Work

If the dynamics cannot be easily decomposed in this form, a suitable
transformation can be introduced to obtain an equivalent structure. For
systems that are not affine in the control, an affine approximation can be
obtained by linearizing the dynamics around a previously estimated sequence
of optimal controls [5, 2].

2.1.2 Monte Carlo Sampling
As introduced in Equation (2.9), the expectation in the path integral for-
mulation must be computed with respect to the uncontrolled dynamics
of the system. Since the exact evaluation of this expectation is generally
intractable for nonlinear or high-dimensional systems, a numerical approx-
imation through MCS is employed [1]. In this method, a large number of
trajectories are generated by simulating the system under random distur-
bances, and the expectation is estimated as the weighted average over these
trajectories. The accuracy of the estimation improves with the number of
samples, but at the cost of increased computational effort, which makes
efficient sampling strategies essential in practice.

Figure 2.1 illustrates a classical example from [1] of a particle moving with
a constant horizontal velocity, while its vertical position evolves according to
the following stochastic dynamics:

dx = u dt+ dω, (2.18)

where u is the control input and dω represents a Brownian perturbation.
In this scenario, the cost is quadratic around zero at the final time t = 2,
and it becomes infinite when the particle collides with the lateral boundaries
(depicted in blue). This configuration, often referred to as the double-
slit problem, provides an intuitive visualization of how stochastic sampling
behaves in the presence of hard constraints.

The figure clearly demonstrates the inefficiency of performing sampling
directly from the uncontrolled dynamics. Most sampled trajectories violate
the boundary conditions, leading to an infinite cost and thus providing
no useful contribution to the estimation of the value function. Only a
small fraction of trajectories, those that successfully pass through the slits,
meaningfully contribute to the expected cost-to-go estimate. As a result,
the computational cost required to obtain an accurate estimation becomes
prohibitively high, especially as the dimensionality of the system increases.
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Figure 2.1: Example of Monte Carlo sampling of V (x, t = 0) for the double-
slit problem. (a) Sampled trajectories with initial point x used to estimate
V (x, t). Most trajectories encounter an infinite cost due to collisions with
the walls. (b) Monte Carlo estimation of V (x, t = 0) using N = 100,000
trajectories for each x. Figure adapted from [1].

This phenomenon is known as the curse of dimensionality, which severely
limits the scalability of naive MCS methods.

Several strategies have been proposed in the literature to improve the
efficiency of sampling [2, 6, 7]. These include importance sampling tech-
niques, where trajectories are generated from a biased distribution that
favors regions of the state space with lower cost, and their contribution
is later reweighted to maintain unbiasedness. Such techniques reduce the
variance of the estimator and concentrate computational resources on more
relevant trajectories. Another class of improvements involves adaptive or
iterative sampling, in which the nominal control sequence is updated based
on the statistics of previously sampled trajectories, progressively steering the
sampling distribution toward the optimal policy.

More recent approaches have focused on MPC-based formulations, among
which the MPPI control algorithm has gained particular attention. In MPPI,
at each control step, the algorithm generates samples around a nominal
control sequence defined by the previously computed optimal control and
shifts this sequence forward in time. This allows for an adaptive, receding-
horizon implementation that effectively combines MCS estimation with
real-time predictive optimization. By continuously updating the nominal
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control and reusing information from past samples, MPPI achieves a balance
between exploration and exploitation, maintaining real-time performance
even in complex and nonlinear dynamical systems.

2.2 Drone Dynamics

The dynamic model used for simulation and real-world control through MPPI
is that of a quadrotor [8, 9, 10]. The quadrotor is a platform consisting of
four electric rotors arranged in a symmetric cross configuration. It is widely
used in research due to its mechanical simplicity, high maneuverability, and
versatility in control applications. The dynamics of the quadrotor exhibit a
strongly nonlinear and coupled behavior, since the translational and rotational
motions are closely interdependent [11]. The thrust produced by the rotors
not only determines the linear acceleration but also generates rotational
torques around the three principal body axes.

The system state is defined by the vector:

x = [ p, q, v, ω ],

where:

• p = [x, y, z]⊤ is the position of the center of mass in the world frame;

• q = [qw, qx, qy, qz]⊤ represents the orientation expressed in terms of
unit quaternions;

• v = [vx, vy, vz]⊤ is the linear velocity of the center of mass in the world
frame;

• ω = [ωx, ωy, ωz]⊤ is the angular velocity of the body expressed in the
body frame.

The evolution of the system state is described by the following set of
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differential equations: 

ṗ = v,

q̇ = 1
2 Q(q)⊙

0
ω

 ,
v̇ = 1

m
R(q)

 0
Ft

 + g,

ω̇ = J−1 (τ − ω × Jω) ,

(2.19)

where:

• m is the mass of the drone;

• g = [0, 0, −g]⊤ is the gravity acceleration vector;

• J is the inertia matrix of the rigid body, which is generally diagonal for
symmetric configurations;

• R(q) is the rotation matrix derived from the quaternion q;

• Q(q) represents the quaternion product operator, used to update the
orientation over time.

From a control perspective, in these equations the system inputs are the
thrust and torque actions generated by the motors, collected in the vector:

u = [ τ , Ft ],

where τ = [τx, τy, τz]⊤ represents the torques acting around the roll, pitch,
and yaw axes, while Ft is the total thrust force along the vertical body axis.
In the case of a quadrotor, these quantities are directly derived from the
rotational speeds of the four rotors:

Ft = Cf
4Ø
i=1

ω2
i , τ =


lCf (ω2

2 − ω2
4)

lCf (ω2
3 − ω2

1)
Cτ (ω2

1 − ω2
2 + ω2

3 − ω2
4)

 ,
where l is the distance between the drone’s center and each motor, Cf is
the aerodynamic thrust coefficient, and Cτ denotes the aerodynamic torque
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coefficient [9, 8]. Each rotor thus produces a thrust Fi = Cfω
2
i and a reactive

torque proportional to Cτω2
i .

The model described above allows the complete dynamics of the drone to
be accurately simulated, taking into account the coupling between rotational
and translational motion. The equations (2.19) are valid under the rigid
body assumption, neglecting secondary dynamic effects such as air resistance,
turbulence, or variations in payload during flight [10]. These assumptions,
however, are acceptable for control purposes, since they offer a good balance
between accuracy and computational simplicity.

A particularly advantageous aspect of this formulation is the use of quater-
nions to represent the system orientation. Unlike Euler angles, quaternions
overcome several issues such as singularities (gimbal lock) and allow stable
numerical integration over time [12]. This is a fundamental requirement
for the proper functioning of the MPPI controller in real time. Moreover,
the compact structure of the equations allows efficient implementation on
parallel architectures such as GPU, enabling the generation and simultaneous
simulation of thousands of trajectories in very short computation times.

In conclusion, the dynamic model reported in (2.19) represents an effective
compromise between physical realism and computational simplicity. It
provides the mathematical foundation on which the MPPI controller builds
its predictive evaluation, allowing the stochastic and parallel assessment of
drone trajectories as a function of possible control input sequences.

2.3 TeleKyb3 Framework

The aerial system used in this work is based on the TeleKyb3 software
framework [13, 14], a modular open-source platform designed for the control
and management of autonomous aerial robots, with particular attention
to physical interaction applications. The framework was developed at the
LAAS-CNRS laboratory in Toulouse as part of the OpenRobots ecosystem
and represents the evolution of the previous TeleKyb control stacks. The idea
behind the project was to create a flexible, easily extendable infrastructure
based on the principles of modularity, interoperability, and reusability — all
essential aspects for research in aerial robotics.
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The framework is currently widely used by the robotics group at LAAS-
CNRS for a variety of experiments, ranging from manipulation to hu-
man–robot physical interaction. A significant example is the work by Corsini
et al. [15], who demonstrated the effectiveness of TeleKyb3 in implementing
NMPC applied to human–drone handover scenarios. The architecture was
explicitly designed to ensure deterministic real time performance, making it
suitable for integrating advanced controllers such as the MPPI used in this
work.

From an architectural point of view, TeleKyb3 is based on the GenoM3
formalism (Generator of Modules), a system that allows defining software
components independent of the underlying middleware, with clearly specified
interfaces. This enables the system to run on different robotic communi-
cation environments, such as Pocolibs, without losing compatibility among
the modules. Each functionality (state estimation, control, perception) is
implemented as a separate GenoM3 component, which greatly facilitates
incremental development and modular validation.

For this thesis work, TeleKyb3 was chosen mainly for its real time nature
and for the ease with which it allows the integration of stochastic predictive
controllers such as the MPPI. Thanks to its modular interface, it is possible
to replace or update individual functional blocks without modifying the
overall structure of the control system.

2.3.1 Main Components
The control stack of TeleKyb3 is composed of several GenoM3 modules, each
with a specific function. The main ones are:

• rotorcraft-genom3: handles the low-level interface with flight con-
trollers, managing motors, PWM signals, and rotation speed (RPM);

• nhfc-genom3: a near-hovering flight controller for quadrotors, imple-
mented using a cascaded PID-based control structure;

• uavatt-genom3 and uavpos-genom3: dedicated respectively to atti-
tude and position control for fully actuated UAVs;

• maneuver-genom3: manages trajectory generation and waypoint exe-
cution using polynomial interpolations to achieve smooth and continuous
motions.
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All these components can be operated independently and communicate
through the deterministic channels provided by the Pocolibs middleware,
which ensures low latency and predictable timing behavior.

2.3.2 Perception and Estimation Modules
In addition to the core control modules, TeleKyb3 integrates several compo-
nents dedicated to perception and state estimation, which are fundamental
for any closed-loop control system. Among them:

• pom-genom3: implements an UKF for sensor fusion, combining data
from IMU, GPS, and motion capture systems;

• optitrack-genom3 and realsense-genom3: provide interfaces for the
Optitrack motion capture system and Intel Realsense depth sensors,
respectively;

• gps-genom3: handles communication with GPS receivers (U-blox,
Novatel, Tersus), ensuring accurate global localization.

The integration of these modules guarantees high accuracy in state estimation
and effective synchronization between sensors and controller. This architec-
ture is particularly relevant for implementing robust predictive control while
maintaining response times compatible with real time operation.

2.3.3 UAVAtt Control Module
The uavatt-genom3 module handles the drone’s attitude control using a
geometric approach formulated on the Lie group SE(3), as described in [16].
This type of controller allows the orientation and angular velocity of the
vehicle to be regulated stably, avoiding the typical problems associated with
Euler angle representation (singularities, gimbal lock).

From a practical perspective, the module takes the current drone state
and compares it with the desired state generated by higher level modules (for
instance, uavpos-genom3 or maneuver-genom3 ). The desired state includes
the reference quaternion qd, the angular velocity ωd, and the total force fd
to be applied along the vertical direction of the body.
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The orientation error is computed from the current rotation matrix R
and the desired one Rd as:

eR = 1
2


(R⊤

d R −R⊤Rd)32
(R⊤

d R −R⊤Rd)13
(R⊤

d R −R⊤Rd)21

 , (2.20)

while the angular velocity error, expressed in the body frame, is given by:

eω = ω −R⊤Rdωd. (2.21)

The controller then computes the body-frame control torque τ as a
proportional–derivative combination:

τ = −KReR −Kωeω, (2.22)

where KR and Kω are diagonal matrices containing the proportional and
derivative gains for the three axes. In the code, these gains are defined as:

KR = diag(Kqxy , Kqxy , Kqz), Kω = diag(Kwxy , Kwxy , Kwz).

The resulting control action is combined with the total force fd to form
the wrench vector w = [fd, τ ]⊤, representing the overall force and torque
required on the rigid body. The vector w is then mapped into the propeller
space through the allocation matrix G−1, which distributes the contributions
to each motor:

ω2
p = G−1w, (2.23)

where ωp denotes the propeller angular velocities.
Since the motors have physical limits on admissible speeds (ωmin, ωmax),

a wrench saturation procedure is applied. This procedure is implemented as
a QP problem solved using the ProxQP library [17], which minimizes the
deviation from the ideal wrench while respecting mechanical constraints:

minx

Ø
i

ki(xi − 1)2 s.t. ω2
min ≤ G−1w ≤ ω2

max. (2.24)

The result provides a balance between control authority and actuator con-
straint compliance, improving stability even when the motors reach their
limits.
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To ensure robustness, the module continuously monitors the accuracy of
attitude and angular velocity estimates. In the event of large deviations (for
example, due to sensor noise or temporary loss of localization), the controller
automatically switches to an emergency mode, maintaining the most recent
desired orientation until reliable data are recovered.

Overall, the uavatt-genom3 module provides precise, robust, and compu-
tationally efficient attitude control, natively integrated within the TeleKyb3
framework. The modular structure based on GenoM3 also allows the con-
troller to be replaced or extended with alternative logics without altering
the communication pipeline or actuator management.

2.3.4 Summary TeleKyb3
In conclusion, TeleKyb3 offers a complete and reliable infrastructure for
managing autonomous UAVs, providing advanced tools for control, estima-
tion, and perception. Thanks to its modular architecture and compatibility
with multiple middleware systems, it represents an ideal environment for
developing and testing advanced predictive controllers such as MPPI, which
is employed in this work.

Resources:

• Project repository: https://git.openrobots.org/projects/telekyb3

• Official documentation: https://git.openrobots.org/projects/telekyb3/
pages/index

2.4 Hardware Acceleration and FPGA Archi-
tecture Design

In recent years, hardware acceleration techniques have become increasingly
important in the development of advanced control systems, particularly
in applications that require high computational capability and extremely
low response times. The term hardware acceleration refers to the use of
dedicated hardware devices to perform the most computationally demanding
operations in parallel, thereby reducing overall latency compared to purely
software-based solutions. Unlike traditional CPUs, which execute instructions
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sequentially, and GPUs, which provide parallelism but follow a general-
purpose architecture, FPGAs (Field Programmable Gate Arrays) allow the
design of customized logical circuits specifically optimized for the target
application.

An FPGA consists of a network of reconfigurable logic blocks and a
programmable interconnection structure. This makes it possible to implement
hardware architectures capable of executing a large number of operations
simultaneously. Thanks to this property, FPGAs are particularly suitable for
real-time control applications, where it is essential to minimize the latency
between sensor measurements and the application of control commands.

Figure 2.2 shows the general architecture of an FPGA–host control system.
In this setup, sensors acquire the system state and send the data to the host
unit, which processes the information and forwards it to the FPGA. The
FPGA receives the system states, reference conditions, and nominal control
inputs, then computes multiple control candidates in parallel and returns
the optimal ones to the host, which finally transmits them to the actuators.

Figure 2.2: Host–FPGA architecture for real-time control. The host
communicates with the FPGA, which performs parallel trajectory evaluations
and returns the optimal control input.

2.4.1 FPGA-based MPPI Design
In the MPPI control framework, computing the optimal command requires
evaluating a large number of stochastic trajectories (rollouts), each obtained
by integrating the system dynamics over a prediction horizon H and comput-
ing the corresponding cumulative cost. This procedure is computationally
intensive, especially when the number of rollouts is high. For this reason,
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the Taran Team developed a dedicated FPGA-based architecture designed
to accelerate the MPPI control algorithm by exploiting the possibility of
executing multiple simulations in parallel.

The hardware implementation parallelizes the rollouts by employing mul-
tiple computation pipelines, each responsible for simulating an independent
trajectory. In particular, the FPGA instantiates N parallel pipelines: for
example, if the total number of rollouts is 1000 and N = 200, the FPGA is
invoked five consecutive times, each time processing 200 trajectories. This
approach significantly reduces computation time while preserving control
accuracy.

Figure 2.3 illustrates the logical structure of the computation pipeline
implemented on the FPGA. Each blue block represents an independent
simulation pipeline, while the green blocks are responsible for computing the
final trajectory cost. The architecture replicates N pipelines, each of which
propagates the system dynamics across the prediction horizon H.

Figure 2.3: FPGA pipeline architecture for the parallel evaluation of MPPI
rollouts. Each pipeline computes the dynamics, instantaneous costs, and
total trajectory cost.

In detail:

• F : represents the system dynamics, which update the state x based on
the control inputs u and the random disturbances c;

• L: computes the instantaneous cost associated with the current state;

• H: prediction horizon length;
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• N : number of parallel pipeline instantiations;

• x: system state;

• c: random disturbance applied to each trajectory;

• u: control inputs;

• J : total cost of each trajectory computed in output.

The main advantage of this architecture is its ability to execute hundreds
of independent trajectories simultaneously, reducing overall computation time
and enabling real-time operation even on embedded platforms. The hardware
implementation also removes the need for a general-purpose operating system,
further minimizing communication latency and timing variability.

The Taran Team experimentally validated the FPGA implementation
by comparing it to an equivalent GPU-based version. The results demon-

(a) FPGA pipeline – 200 parallel simula-
tions.

(b) GPU version – 2000 parallel simula-
tions.

Figure 2.4: Comparison between the trajectories computed by the MPPI
controller executed on FPGA (a) and on GPU (b). The FPGA implemen-
tation achieves comparable performance with a smaller number of parallel
computations.

strated that, despite using a smaller number of parallel computations, the
FPGA achieved comparable performance, with better temporal efficiency
and smoother control behavior.
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In conclusion, the FPGA implementation of the MPPI controller proved
to be both effective and suitable for systems requiring real-time predictive
computation. The ability to parallelize rollouts and reduce latency makes
this hardware solution a competitive alternative to GPU implementations,
offering improved energy efficiency and a fully customizable architecture.

2.5 Related Work
In recent years, stochastic predictive control has attracted increasing interest
within the scientific community, particularly in the fields of autonomous
robotics and real-time control. The common goal of these studies is to
develop strategies capable of combining computational efficiency, stability,
and adaptability in complex dynamic scenarios. In this context, MPPI
control represents one of the most promising solutions, as it combines the
probabilistic formulation of optimal control with the numerical efficiency of
MCS techniques.
Theoretical Foundations and Limitations. The origins of this approach
trace back to the works of Kappen [1, 4], who introduced the concept of PIC.
This formulation reinterpreted the stochastic optimal control problem in prob-
abilistic terms, avoiding the need to directly solve the HJB equation. While
Kappen’s theoretical framework established the mathematical foundations
of path integral control, it assumed continuous-time dynamics and did not
address practical implementation constraints such as finite sampling, discrete-
time integration errors, or limited computational precision. Subsequently,
Theodorou et al. [2, 5] proposed a computational version based on MCS,
where the optimal solution is approximated through the weighted average
of a large number of randomly generated trajectories. However, their work
primarily focused on systems with relatively low state dimensionality and did
not systematically investigate the scalability to high-frequency control loops
typical of aerial platforms. In our work, we extend these foundational re-
sults by explicitly analyzing how numerical precision affects the stability and
convergence of the Monte Carlo approximation when deployed on embedded
hardware with constrained arithmetic capabilities.
GPU Implementations and Numerical Precision Gaps. The practical
implementation and experimental validation of the method were advanced by
Williams et al. [7, 18], who demonstrated its effectiveness in real-time control
of autonomous vehicles and drones. Their work showed that it is possible to
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sample thousands of trajectories in parallel by exploiting GPU architectures,
drastically reducing computation times. The algorithm thus combines the
predictive optimization typical of MPC with the flexibility of stochastic
sampling, overcoming many of the limitations of classical controllers such as
PID and LQR. Despite these advances, Williams’ implementation exclusively
used float32 precision and did not investigate whether reduced-precision
arithmetic could offer further efficiency gains without compromising control
quality. This represents a significant gap, particularly for embedded systems
where memory bandwidth and power consumption are critical constraints.
Furthermore, their experiments focused on ground vehicles with relatively
slow dynamics (≤ 2 m/s), whereas our work targets highly dynamic aerial
platforms requiring higher control frequencies (> 100 Hz) and tighter real-
time constraints. This motivated our systematic investigation of the precision-
performance trade-off on the Jetson Orin platform—an aspect that has not
been previously addressed in the MPPI literature.

Extensions and Application-Specific Challenges. Building on these
results, numerous studies have proposed variations and improvements of the
approach. Nagabandi et al. [19] integrated neural networks to learn system
dynamics models, introducing the concept of MBRL. This combination of
machine learning and predictive control opened the way to hybrid controllers
capable of autonomously adapting to unforeseen conditions. However, learned
models introduce additional sources of numerical error and may amplify the
effects of reduced precision—an interaction that remains unexplored. At the
same time, Schenk and Schilling [20] explored the use of MPPI on multirotor
platforms for pursuit and dynamic planning scenarios, while Franchi et al.
[21] demonstrated its applicability to drone–environment physical interaction
tasks, maintaining stability even in the presence of actuator saturation
or unexpected contact events. While these works successfully extended
MPPI to challenging robotic scenarios, none of them analyzed the sensitivity
of the controller to arithmetic precision, nor did they provide guidelines
for selecting numerical formats in hardware-accelerated implementations.
Our contribution addresses this gap by conducting controlled experiments
comparing float16 and float32 representations, with the explicit goal of
informing future FPGA designs.

Hardware Acceleration and FPGA Deployment Considerations.
In parallel, research has focused on optimizing computational performance.
The first versions of the algorithm were indeed limited by the number of
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trajectories that could be evaluated in real time. To address this issue,
several authors exploited parallel computation on GPU [22, 23], achieving a
significant increase in speed and numerical stability. More recently, the Taran
Team developed a dedicated FPGA-based architecture capable of executing
hundreds of simulations in parallel, with reduced latency and greater energy
efficiency compared to GPU implementations. These results demonstrate
that MPPI is now fully compatible with the real-time control requirements
of robotic systems. However, a critical limitation of existing hardware
acceleration work is the lack of systematic analysis regarding the minimal
precision required to maintain control performance. While the Taran Team’s
FPGA implementation achieved impressive latency reduction, it did not
investigate how aggressively precision could be reduced without introducing
instabilities or degrading tracking accuracy. This is a fundamental question
for FPGA design, where arithmetic precision can be customized at the
hardware level to optimize resource utilization and operating frequency.
Unlike previous GPU-based studies that are constrained to standard floating-
point formats (float32, float16), our work provides quantitative guidelines
for selecting numerical representations by directly measuring the impact of
precision reduction on both computation time and control quality. This
analysis serves as a bridge between software prototyping and dedicated
hardware implementation.
Software Frameworks and Integration Challenges. A complementary
yet fundamental aspect concerns the software infrastructures that enable
the integration of such controllers into complex systems. In this regard,
the TeleKyb3 framework [13, 14], developed at the LAAS-CNRS laboratory,
represents one of the most advanced solutions. Based on the GenoM3
formalism, it allows the creation of modular components independent of
the underlying middleware, facilitating deterministic communication and
compatibility with real-time environments. Thanks to this architecture,
predictive controllers such as MPPI can be implemented and tested seamlessly
on autonomous aerial platforms, such as the drones used in this work.
However, integrating sampling-based controllers like MPPI into existing
low-level control architectures requires careful attention to interface design
and timing synchronization—aspects that are often underrepresented in the
literature. In our implementation, we explicitly addressed these challenges
by modifying the system dynamics formulation to match the control inputs
expected by the TeleKyb3 attitude controller, ensuring seamless integration
without introducing additional latency or requiring invasive modifications to
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the existing codebase.
Contribution and Positioning of This Work. In summary, while the
literature demonstrates MPPI’s effectiveness for real-time control, three crit-
ical gaps remain unaddressed: (1) the impact of reduced numerical precision
on control stability and tracking accuracy has not been systematically stud-
ied, particularly for aerial platforms with fast dynamics; (2) existing GPU
implementations do not provide actionable guidelines for FPGA deployment,
where arithmetic precision can be explicitly tailored during hardware design;
and (3) the interaction between precision reduction and controller hyper-
parameters (prediction horizon, number of samples, temperature) has not
been characterized. This thesis addresses all three gaps by conducting
a comprehensive numerical precision analysis of MPPI on a quadrotor drone
using the Jetson Orin platform. Specifically, our contributions are: (i) a
rigorous comparison of float16 and float32 precision across varying controller
configurations, (ii) quantitative measurements of the precision-performance
trade-off in terms of computation time and tracking error, and (iii) practi-
cal recommendations for future FPGA implementations based on empirical
evidence from embedded hardware experiments. Unlike previous work that
treated numerical precision as a fixed constraint, we demonstrate that preci-
sion can be strategically reduced to improve computational efficiency without
sacrificing control quality—a finding that has direct implications for the
design of next-generation hardware-accelerated control systems.
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Chapter 3

Methodology

3.1 MPPI Algorithm Design

3.1.1 Model Predictive Path Integral (MPPI)
The Model Predictive Path Integral (MPPI) algorithm [24, 18] represents a
practical formulation of the theoretical framework of Path Integral Control
(PIC), which allows solving stochastic optimal control problems in real
time. The main idea combines the probabilistic formulation of PIC with
the receding-horizon structure typical of Model Predictive Control (MPC),
resulting in a predictive controller capable of continuously adapting to the
evolution of the system state.

The fundamental concept is to iteratively estimate the optimal control
through sampling around a nominal control sequence. At each control step,
a sequence of inputs is considered:

U = [u0, u1, . . . , uT−1],

applied over a prediction horizon of length T . From this sequence, the
algorithm generates K perturbed trajectories by adding Gaussian noise to
the commands:

δu
(k)
t ∼ N (0,Σ),

thus obtaining, for each trajectory k, a perturbed control sequence:

u
(k)
t = ut + δu

(k)
t , t = 0, . . . , T − 1.

26



Methodology

Each trajectory is then propagated forward in time according to the system
dynamics, producing a sequence of states x0, x

(k)
1 , . . . , x

(k)
T and an associated

cumulative cost:

S(k) = ϕ(x(k)
T ) +

T−1Ø
t=0

C
q(x(k)

t , u
(k)
t ) + 1

2(u(k)
t )⊤Ru

(k)
t

D
. (3.1)

The specific cost function adopted in this work, as well as the modifications
introduced in the system dynamics to match the low-level control inputs,
will be discussed in Section 3.2.

The path integral principle states that the optimal control can be approxi-
mated as a weighted average of the perturbations δu(k)

t , where each weight
is proportional to the negative exponential of the corresponding trajectory
cost:

wk = exp
A
−1
λ
S(k)

B
, (3.2)

where λ is the “temperature” parameter that regulates the balance between
exploration and exploitation.

The updated control is then computed as:

u∗
t = ut +

qK
k=1wk δu

(k)
tqK

k=1wk
. (3.3)

The temperature parameter λ plays a crucial role in shaping the behavior
of the controller. It regulates how strongly the algorithm favors trajectories
with lower cost, acting as a balance between exploration and exploitation.
When λ takes small values, the exponential weighting in Equation (3.2)
gives dominant importance to the best rollouts, causing the controller to
focus almost exclusively on the lowest-cost trajectories. In contrast, a higher
value of λ smooths the weight distribution, allowing a broader range of
sampled trajectories to contribute to the control update. This leads to more
exploratory behavior, which can improve robustness in uncertain or noisy
environments, although at the expense of precision. Choosing an appropriate
λ is therefore critical: too small a value may cause instability due to aggressive
updates, while too large a value can make the control response sluggish. In
practice, λ is tuned experimentally to achieve a trade-off between stability,
responsiveness, and robustness.
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In practice, MPPI is executed in a receding-horizon fashion, applying at
each control cycle only the first optimized command u∗

0, while the prediction
window is shifted forward in time:

U ← [u∗
1, u

∗
2, . . . , u

∗
T−1, u

new
T ].

This continuous update allows the controller to react in real time to new
state measurements and to dynamically adapt to changes in the system.

The MPPI algorithm can be summarized in the following main steps:

1. Generate K sequences of perturbations δu(k)
t ∼ N (0,Σ);

2. Simulate the trajectories and compute the total cost S(k);

3. Compute the weights wk = exp(−S(k)/λ);

4. Update the control sequence according to Equation (3.3);

5. Apply the first control u∗
0 and repeat the cycle at the next step.

Thanks to this formulation, MPPI does not require linearization of the
system dynamics or gradient-based optimization methods. The approach
relies solely on direct simulations and Monte Carlo sampling (MCS), making
it particularly suitable for complex and highly nonlinear systems, such as
autonomous drones and, more generally, dynamic robotic platforms.

To provide a clearer understanding of the operational flow, the next
section presents a schematic representation of the algorithm in the form of
pseudocode. This step-by-step description helps to visualize the sequence of
operations performed at each control cycle and highlights the iterative logic
at the core of the MPPI method.

3.1.2 Pseudocode Implementation
To provide a clear and concise overview of the algorithmic workflow, the
implementation of the MPPI controller is summarized in Algorithm 1. The
pseudocode describes the iterative structure of the control loop, showing how
trajectories are sampled, evaluated, and used to update the control command
at each iteration. This representation makes it easier to understand the
sequence of operations involved in the real-time execution of the algorithm.
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At the beginning, the nominal control sequence Unom = [u0, u1, . . . , uT−1] is
initialized with a default value, usually corresponding to a hovering condition
for aerial systems. During each control cycle, the current system state x̂
is retrieved from the state estimator, and K trajectories (or rollouts) are
simulated forward in time according to the system dynamics. Each trajectory
is perturbed by Gaussian noise sampled from N (0,Σ), and its total cost is
computed through the cost function defined in Section 3.1.

Once all trajectories have been evaluated, their associated weights are
computed according to the exponential weighting rule described in Equa-
tion (3.2). The nominal control sequence is then updated as a weighted
average of the applied perturbations, following Equation (3.3). Finally, the
first control command u∗

0 is applied to the system, and the prediction horizon
is shifted forward for the next iteration.

This structure highlights the simplicity and efficiency of the MPPI algo-
rithm. All computations — such as trajectory propagation, cost evaluation,
and weight normalization — are easily parallelizable and can be distributed
across multiple threads or GPU cores. This characteristic makes MPPI
particularly suitable for real-time control on embedded platforms, where
computational resources are limited but parallel execution is available.

3.2 Implementation on TeleKyb3
The mathematical formulation presented so far defines the theoretical struc-
ture of the MPPI controller, including its sampling strategy and optimization
criteria. However, to achieve real-time execution on embedded hardware,
this formulation must be carefully adapted to the specific architecture of
the experimental framework used in this work. This section presents the
integration of the MPPI controller within the TeleKyb3 framework and its
connection with the low-level UAVAtt module. The following subsections
describe the modifications introduced to the system dynamics, the commu-
nication interface between the modules, and the architectural design that
enables real-time execution on embedded hardware.

3.2.1 Modified Dynamics
The MPPI controller described in the previous section was originally formu-
lated using the system dynamics presented in Section 2.2. In that model,
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Algorithm 1 Model Predictive Path Integral Control
Require: Initial control sequence uinit; cost function ComputeCost(xk, uk);

system dynamics function fRK4
Parameters:Number of rollouts K, time steps N , noise covariance Σ,
time step ∆t

1: Initialize nominal control: unom
j ← uinit, for j = 0, . . . , N − 1

2: while control task not completed do
3: Obtain current system state: x̂← CurrentStateEstimate()
4: for k = 1, . . . , K do ▷ Simulate K rollouts
5: Initialize xk0 ← x̂
6: for j = 0, . . . , N − 1 do
7: Sample noise: δukj ∼ N (0,Σ)
8: Compute perturbed control: ukj = unom

j + δukj
9: Propagate dynamics: xkj+1 = xkj + fRK4(xkj , ukj ,∆t)

10: end for
11: Evaluate trajectory cost: Sk = ComputeCost(xk, uk)
12: end for
13: Compute weights: wk = exp(−Sk/λ)
14: for j = 0, . . . , N − 1 do
15: Update control: unom

j ← unom
j +

qK

k=1 wkδu
k
jqK

k=1 wk

16: end for
17: Apply first control: ApplyToSystem(unom

0 )
18: Shift horizon: unom

N−1 ← uinit
19: end while

the control inputs were expressed as the total thrust and the body torques
applied to the quadrotor:

u =
è
F τx τy τz

é⊤
.

However, the low-level UAVAtt controller implemented in the experimental
platform does not directly receive torques as input commands. Instead, it
expects the total thrust and the desired angular velocity components in the
body frame, ωx, ωy, ωz, which are then internally converted into torques by
the attitude control layer.

To ensure full compatibility between the high-level MPPI policy and
the existing control architecture, the system dynamics model was modified
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accordingly. The input vector was redefined as:

u =
è
F ωx ωy ωz

é⊤
,

and a dedicated conversion function was introduced to compute the equiva-
lent body torques required by the physical dynamics. This function, named
omega_to_torque(), computes the torque vector corresponding to the de-
sired body rates according to:

τ = Jω̇d + ω × (Jω),

where J is the inertia matrix of the vehicle, and ω̇d is approximated as

ω̇d = ωd − ω
∆t ,

representing the change in angular velocity over the control timestep.

Through this modification, the model used within the MPPI simulation
loop produces the same internal dynamics as the physical system governed by
the low-level controller. This alignment ensures that the control commands
generated by the MPPI algorithm can be applied directly to the UAVAtt
module without further conversion or adaptation, maintaining a consistent
relationship between simulation and real-world behavior.

From a numerical standpoint, this redefinition of the control inputs also
improves the stability and precision of the trajectory propagation step. By
avoiding the direct integration of torque inputs—which can amplify numerical
errors in the attitude dynamics—the model achieves smoother transitions and
better consistency with the real vehicle’s response. This aspect is particularly
relevant given the main goal of this work: enhancing numerical precision and
real-time efficiency in sampling-based predictive control.

In summary, the modification of the dynamics serves a dual purpose: it
guarantees hardware-level compatibility with the TeleKyb3 control framework
and, at the same time, improves numerical accuracy in the high-frequency
simulation loop used by the MPPI algorithm.

This refinement directly contributes to the main objective of this work,
namely improving numerical precision and the overall stability of the predic-
tive control loop.
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3.2.2 Cost Function Definition
The design of the cost function is a key aspect of the MPPI controller, since
it defines the criteria according to which each trajectory is evaluated during
the optimization process. In this work, the cost is formulated to guide the
quadrotor toward a desired reference state while maintaining smooth and
dynamically feasible control actions.

At each time step, the algorithm computes a running cost based on the
difference between the current state of the drone and the reference trajectory.
The system state is represented as

x =
è
p q v ω

é⊤
,

where p ∈ R3 denotes the position, q ∈ R4 the orientation expressed as a
quaternion, v ∈ R3 the linear velocity, and ω ∈ R3 the angular velocity.

In general, the reference quantities xref and uref can originate from any
external source, such as a predefined trajectory, a human-operated command,
or another higher-level planner. In the present implementation, the references
are computed through a differential flatness-based trajectory generator, which
provides smooth and dynamically consistent profiles for position, velocity,
and orientation. This approach ensures that the reference states are always
physically realizable by the quadrotor dynamics, preventing discontinuities
and improving numerical stability during trajectory propagation. Moreover,
the differential flatness formulation allows the computation of all state and
input references directly from a set of flat outputs, resulting in a compact
and computationally efficient representation of the desired motion.

In this implementation, the control input vector is defined as

u =
è
Ft ωx ωy ωz

é⊤
,

where Ft is the total thrust along the body-frame z axis, and ωx, ωy, ωz
are the desired angular velocity components expressed in the body frame.
These quantities correspond directly to the control inputs expected by the
low-level UAVAtt controller. Within the simulation model, these desired
angular velocities are internally converted into body torques through the
function omega_to_torque(), ensuring that the simulated dynamics remain
consistent with the physical response of the real platform.
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The instantaneous cost penalizes deviations from the reference state in
terms of position, attitude, velocity, and angular velocity. To properly
account for the orientation error, the difference between the current and
desired quaternions is computed through quaternion algebra:

qerr = q−1 ⊗ qref,

from which the vector part of the quaternion is extracted to represent the
rotational discrepancy. The running cost can therefore be expressed as:

ℓ(x, u, xref, uref) = wp∥p− pref∥2 + wq∥qerr∥2

+ wv∥v − vref∥2 + wω∥ω − ωref∥2

+ (u− uref)⊤R(u− uref), (3.4)

where wp, wq, wv, wω are scalar weights that balance the contribution of each
term, and R is a diagonal matrix penalizing large variations in the control
inputs.

The cumulative cost of a trajectory is obtained by summing the running
cost along the prediction horizon, optionally including a final cost term:

S(k) = ϕ(x(k)
T ) +

T−1Ø
t=0

ℓ(x(k)
t , u

(k)
t , xref, uref), (3.5)

where ϕ(·) denotes the terminal cost, which in this implementation is set
to zero since the objective is to achieve steady-state regulation rather than
point-to-point trajectory tracking.

Additional constraints can be introduced to account for environmental
interactions, such as obstacle avoidance or workspace limitations. In this
work, soft constraints were defined to penalize proximity to obstacles within
a given radius, ensuring that the sampled trajectories respect feasible flight
conditions.

The weighting coefficients of Equation (3.4) were tuned empirically to
achieve a good compromise between tracking accuracy, stability, and smooth-
ness of the generated control signals. The exact numerical values used in the
experiments are presented in Section 4.1.

Finally, it is important to highlight that the combination of the differential-
flatness-based reference generation and the modified dynamics described

33



Methodology

in Section 3.2 directly supports the main goal of this thesis — improving
numerical precision and stability in real-time predictive control. This integra-
tion ensures that the MPPI controller operates coherently with the low-level
architecture of the drone, which will be detailed in the following subsection.

3.2.3 Integration with the Low-Level Controller
Within the TeleKyb3 framework, the flight control architecture is organized
into several interconnected modules, each responsible for a specific layer of
the control hierarchy. Among these components, the UAVAtt and Rotorcraft
modules play a central role in handling attitude stabilization and motor-
level control, respectively. The MPPI controller developed in this work
was integrated into this structure as a high-level control node, replacing
the standard position controller while remaining fully compatible with the
existing low-level layers.

In the default configuration of TeleKyb3, the UAVPos module generates de-
sired attitude and thrust commands based on a reference trajectory, typically
computed through differential flatness. These commands are then passed to
the UAVAtt module, which converts them into individual rotor speed refer-
ences through the Rotorcraft interface. However, in this implementation,
the MPPI controller directly replaces the UAVPos block, providing control
commands in the form of:

uinput = [Fz, ωx, ωy, ωz]⊤,

which correspond to the total thrust and the desired angular velocity compo-
nents expressed in the body frame.

This choice was made to ensure seamless compatibility with the UAVAtt
module, which expects precisely these inputs to compute the required body
torques and generate rotor speed commands. In this configuration, the MPPI
controller receives the estimated vehicle state directly from the onboard state
estimator and produces the desired control inputs at each iteration. These
inputs are then processed by UAVAtt, which internally performs the necessary
transformations to translate angular velocity and thrust commands into the
corresponding motor signals through the Rotorcraft component.

The resulting structure, illustrated in Figure 3.1, highlights how the
proposed controller integrates into the existing control pipeline without
altering the underlying communication mechanisms. By maintaining the
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same message interfaces used by TeleKyb3, the implementation preserves
full compatibility with the middleware and can be executed in real time on
the embedded hardware.

Figure 3.1: Integration of the MPPI controller within the TeleKyb3 ar-
chitecture. The MPPI replaces the UAVPos component, providing desired
thrust and angular rates to UAVAtt, which computes the corresponding rotor
commands through Rotorcraft.

This modular integration approach ensures that the MPPI controller can
exploit the existing attitude and motor control loops, reducing implementa-
tion complexity and avoiding redundancy in software design. Furthermore,
by maintaining a direct interface with UAVAtt, the controller benefits from
precise attitude stabilization and motor feedback, which are essential for
ensuring real-time performance and improving the numerical precision of the
predictive control computations.
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3.3 Drone Simulation Environment

Simulation environments play a fundamental role in the development and
validation of control algorithms for aerial robotics. Modern simulators have
evolved significantly over the past decade, becoming increasingly accurate
and capable of reproducing the complex physics of the real world. They
incorporate high-fidelity aerodynamic models, realistic sensor noise, and
communication delays, allowing researchers to evaluate the performance of
control strategies under conditions that closely resemble those encountered
in flight experiments. For these reasons, simulation represents a crucial step
between the theoretical formulation of a controller and its deployment on an
actual platform, ensuring safety, repeatability, and cost efficiency.

In this work, two complementary simulation environments were employed,
each serving a specific purpose within the overall validation process. The first
environment, based on Gazebo and integrated with the TeleKyb3 framework,
was used to evaluate the real-time behavior of the controller within the com-
plete system architecture. The second environment, implemented in Python
using the MuJoCo physics engine, was designed to analyze numerical pre-
cision and computational performance directly on the embedded Jetson
Orin platform. Together, these two setups provided a complete validation
framework, enabling both system-level and numerical-level evaluation of the
proposed MPPI algorithm.

3.3.1 Simulation in Gazebo with TeleKyb3

The TeleKyb3 framework natively supports the Gazebo simulator, providing
an environment in which both high-level and low-level control components can
be executed in real time. Gazebo offers a physics engine capable of simulating
rigid-body dynamics, aerodynamic interactions, and sensor feedback with
sufficient accuracy for aerial robotics applications. The integration between
TeleKyb3 and Gazebo enables seamless communication between the simulated
drone and the software modules through the same middleware used in the
real system. As a result, every control component operates exactly as it
would on a physical vehicle.

In this setup, the MPPI controller interacts with the low-level UAVAtt
module, which converts the received commands (total thrust and desired
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angular velocities) into rotor speed references for the ROTORCRAFT com-
ponent. This structure mirrors the real control pipeline and allows testing
the proposed approach in a software-in-the-loop configuration, where all
timing constraints and communication interfaces are faithfully preserved.
The resulting simulation provides a reliable assessment of the controller’s
stability, responsiveness, and robustness under realistic operating conditions.

Quadrotor Simulation Model. All Gazebo-based experiments in this
thesis used an SDF (Simulation Description Format) model that replicates
the mechanical structure and inertial properties of the mkquad5 platform
employed in the physical tests. The model represents the drone as a single
rigid body with mass 1.3 kg and an inertia matrix derived from the real
platform’s geometry. Four rotors are attached via revolute joints positioned
according to the measured arm layout, with their aerodynamic behavior
(thrust and drag) handled by the mrsim Gazebo plugin. This plugin also
introduces realistic effects such as motor noise and first-order rotor dynamics,
which help reproduce the response characteristics observed in flight.

To maintain computational efficiency while preserving physical accuracy,
the visual and collision geometries were simplified: the body is represented
as a box, and the rotors as cylinders. This simplification ensures stable
contact detection and real-time simulation performance without significantly
affecting the dynamics relevant to control evaluation. Overall, the SDF
configuration provides a reasonable balance between fidelity and computa-
tional cost, making it well-suited for testing the MPPI controller within the
TeleKyb3 framework before transitioning to actual hardware.

3.3.2 Simulation in MuJoCo for Numerical Precision
Analysis

While the Gazebo-based environment offers an accurate and integrated rep-
resentation of the full control architecture, it is computationally demanding
and not fully compatible with the embedded Jetson Orin platform used
in this work. To overcome these limitations, a second simulation setup
was developed in Python, leveraging the MuJoCo physics engine. Mu-
JoCo provides a highly efficient and differentiable simulator, well suited for
high-frequency control and detailed numerical studies.

In this environment, the MPPI controller and the drone dynamics were
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implemented entirely in Python, using the same mathematical formulation
described in Section 2.2. The simulation ran directly on the Jetson hardware,
allowing precise measurement of execution times and the impact of different
floating-point precisions (float32 and float16) on control performance.
Although the simulation was not strictly real-time, a timing synchronization
mechanism was introduced to maintain an update rate comparable to that
of the real system. This approach made it possible to emulate the temporal
behavior of an onboard control loop while retaining full control over the
numerical and computational aspects of the algorithm.

Overall, the MuJoCo-based setup provided a lightweight and flexible
testing framework that complemented the Gazebo simulation. It allowed
isolating the numerical properties of the controller from the rest of the system
and directly observing how different precision levels affected convergence
and stability. The results obtained from this environment were essential to
validate the core objective of the thesis — improving numerical precision
and computational efficiency in real-time predictive control.

3.4 Numerical Precision Analysis for FPGA
A central challenge in implementing real-time predictive control algorithms
on hardware accelerators such as FPGAs lies in balancing numerical precision
and computational performance. While higher-precision arithmetic improves
numerical stability and robustness, it also increases latency, memory usage,
and power consumption. Conversely, lower-precision formats enable faster
computation and reduced resource utilization but may compromise the accu-
racy of the controller’s internal computations. This trade-off is particularly
relevant for sampling-based methods such as MPPI, where thousands of
trajectory rollouts are simulated at every control cycle. In this context,
identifying the lowest viable precision that preserves control performance is
essential for efficient hardware deployment.

The investigation conducted in this work aims to answer the following
research question:

“What numerical precision should be adopted on FPGA to improve
the control performance and computational efficiency of the MPPI
algorithmy?”
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To explore this question, a set of experiments was carried out using the
MuJoCo-based simulation environment described in the previous section.
The tests were executed on the Jetson Orin platform, which allows con-
trolled manipulation of numerical precision through the JAX computation
framework. Although the experiments were not performed directly on an
FPGA, they were designed to reproduce the arithmetic constraints of a
fixed-point or low-precision implementation. By explicitly controlling the
numerical representation of all computations, the behavior observed in these
tests provides a realistic prediction of the expected performance once deployed
on reconfigurable hardware.

Within JAX, the smallest supported floating-point format is FP16, while
float8 is not available. The default format FP32 was therefore used as
a reference to evaluate the effects of precision reduction. In each test, all
quantities in the computation pipeline—state variables, control inputs, and
constant parameters such as inertia and weight matrices—were consistently
represented using either FP16 or FP32. This ensured a uniform numerical en-
vironment and avoided hybrid-precision inconsistencies that could otherwise
mask the true influence of arithmetic resolution.

Each experiment consisted of running the MPPI controller under varying
configurations of two key hyperparameters: the prediction horizon (T )
and the number of sampled trajectories (K). These parameters were
selected because they directly affect both the computational load and the
statistical properties of the controller. A longer prediction horizon increases
accuracy but also amplifies numerical accumulation errors, whereas a larger
number of samples improves convergence at the cost of higher computational
effort.

N samples H=11 H=17 H=20 H=25 H=35
100
1000
2000
3000
10000
50000

The cost function used in these tests remained unchanged across all
configurations, since the MPPI controller is highly dependent on task-specific
tuning. The same structure and weights defined in Section 3.2 were employed
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for all runs, ensuring that any observed differences originated solely from the
numerical precision or configuration parameters. The reference trajectory
consisted of a smooth circular path centered at the origin, with a radius of
2 m and altitude of 1 m, generated through D F to guarantee continuity of
position, velocity, and attitude. This trajectory provided a repeatable and
moderately dynamic scenario, suitable for evaluating both tracking accuracy
and numerical stability.

For each configuration, the controller was executed ten times to account
for the stochastic nature of the sampling process. At every iteration, the
computation time required to generate a single control command was recorded,
and the mean value across all iterations and repetitions was computed. This
approach allowed a robust estimation of the average per-cycle computational
time, independent of transient system effects.

Two performance indicators were analyzed:

• Tracking Error (RMSE) — representing the root mean square devia-
tion between the reference and actual drone position;

• Computation Time per Control Step — representing the mean
execution time required for one full MPPI optimization cycle.

Preliminary tuning experiments had established that, with T = 20 and
K = 2000, the cost function achieved a steady tracking error below 10 cm.
This threshold was therefore adopted as a practical benchmark: all tested
configurations maintaining an average tracking error below this limit were
considered acceptable from a control-performance standpoint. By comparing
the achieved precision and execution times under FP16 and FP32, it was
possible to evaluate how much computational efficiency could be gained
without exceeding this accuracy threshold.

The experimental results revealed that the reduced precision format (FP16)
did not introduce any noticeable instability or oscillations in the control re-
sponse. The system maintained consistent behavior across all tested horizons,
and the overall tracking accuracy remained comparable to that obtained
with FP32. However, the average computation time per iteration decreased
significantly, highlighting the potential of low-precision arithmetic for real-
time embedded implementation. This finding indicates that, at least for the
tested configuration and trajectory, the FP16 precision provides an excellent
trade-off between numerical reliability and computational performance.
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In conclusion, these tests confirm that lowering numerical precision can
be an effective strategy to enhance computational efficiency in sampling-
based predictive controllers, provided that the precision remains sufficient
to capture the key dynamics of the system. The insights gained from
this analysis will directly inform the future FPGA implementation, where
arithmetic precision can be explicitly tailored to balance resource utilization
and control performance.
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Experiments and Results

4.1 Experimental Setup
This chapter presents the experimental validation of the proposed MPPI
controller through three complementary test campaigns, each designed to
address a specific aspect of our research question: Can reduced numerical pre-
cision improve computational efficiency for real-time MPPI control without
compromising tracking accuracy? The validation strategy progresses system-
atically from controlled simulation to physical deployment, culminating in
targeted numerical analysis on embedded hardware.

4.1.1 Overview of Test Environments
Our experimental methodology employed three distinct environments, each
serving a specific validation purpose while contributing to the overall research
objective.

Environment 1: Real-Time Simulation with Gazebo and TeleKyb3.
Initial testing took place entirely in simulation using the TeleKyb3 frame-
work integrated with Gazebo. The MPPI controller operated within a
physics engine that replicates the aerodynamic behavior of our mkquad5
quadrotor with sufficient fidelity for control development. We executed all
standard TeleKyb3 components (UAVAtt attitude control, ROTORCRAFT
motor allocation, and state estimation modules) in real time using the same
pocolibs middleware employed on the physical platform. The simulation
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host was a workstation running Ubuntu 24.04 with genom3 communication
infrastructure.

This environment served multiple critical purposes beyond basic algorithm
validation. First, it provided a safe development space where aggressive
control policies could be tested without risk of hardware damage. Second, it
established a controlled baseline with known dynamics and minimal measure-
ment noise, allowing us to isolate algorithmic behavior from environmental
confounds. Third, the deterministic nature of simulation enabled reproducible
experiments where parameter variations could be studied systematically.

Environment 2: Real-World Flight Tests with mkquad5. After
confirming stable behavior in simulation, we transitioned to flight tests using
the actual mkquad5 platform. The drone carries an NVIDIA Jetson
Orin Nano (16 GB) that executes the identical control stack validated
in simulation, preserving software consistency between environments. We
connected remotely via SSH for system monitoring and parameter adjustment,
while a VICON motion capture system provided state feedback at 100 Hz
with sub-millimeter accuracy.

The physical experiments served to validate sim-to-real transfer and as-
sess robustness to unmodeled dynamics. Real flight introduces numerous
effects absent from simulation: blade flapping dynamics, aerodynamic cou-
pling between rotors, motor response delays, communication latency, and
environmental disturbances. We conducted experiments including hovering,
waypoint navigation, and continuous circular trajectories, with each scenario
repeated multiple times to assess consistency.

Environment 3: MuJoCo-Based Numerical Precision Analysis.
While Gazebo cannot run on the on the Jetson Orin hardware and we want
to evaluate the impact of the numerical precision of the mppi, We consider a
custom simulation using the MuJoCo physics engine implemented entirely
in Python with JAX for automatic differentiation and CUDA acceleration.

This lightweight environment can run on the Jetson Orin hardware to
replicate actual computational constraints. Unlike Gazebo, the MuJoCo–JAX
implementation gave us explicit control over numerical precision throughout
the entire computation pipeline, enabling rigorous comparison of float32
versus float16 effects on both computational performance and control
quality.
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Critically, this environment addresses a gap in previous MPPI literature:
while prior work demonstrated GPU acceleration using standard FP32 arith-
metic [18, 22], no studies have systematically characterized how aggressively
precision can be reduced before control performance degrades.

Summary of Experimental Strategy. Our three test environments
were:

1. Gazebo simulation: Validates complete control architecture under
real-time constraints with known dynamics

2. Indoor flight tests: Demonstrates robustness and confirms sim-to-real
transfer on physical hardware

3. MuJoCo simulations: Provides quantitative data on precision-performance
trade-offs for embedded systems

This multi-environment strategy ensures that our conclusions rest on
converging evidence rather than single source validation .

4.2 MPPI Performance Evaluation
We structured the performance evaluation to progressively increase dynamic
complexity, beginning with equilibrium conditions (hovering) and advanc-
ing toward demanding trajectory tracking tasks with obstacle avoidance.
Throughout all experiments, we focused on four key metrics: position track-
ing error, attitude consistency, control signal smoothness, and numerical
stability.

4.2.1 Simulation-Based Validation (Gazebo)
The Gazebo experiments served as our primary vehicle for controller char-
acterization under controlled conditions. This environment replicates the
real system’s feedback loops and dynamics with sufficient fidelity to reveal
potential instabilities or tuning issues before committing to physical flights.

Hovering Performance

Hovering serves as the canonical benchmark for multirotor control since it
reveals how well the system maintains equilibrium despite sensor noise and

44



Experiments and Results

stochastic sampling effects inherent to MPPI. The drone was commanded
to hold a fixed position at (0, 0, 1) m for 60 seconds while we monitored
position error, attitude stability, and control signal characteristics.

Figure 4.1: Position tracking during simulated hovering. After a short
transient phase with a maximum overshoot of approximately 3 cm, the
system stabilizes with residual oscillations below 1 cm, demonstrating an
effective balance between the exploratory sampling and the exploitation of
low-cost trajectories inherent to MPPI.

Figure 4.1 demonstrates rapid convergence to the target position with
settling time below 2 seconds. The observed overshoot (approximately 3
cm) reflects MPPI’s characteristic exploration behavior. The controller
inherently trades slight transient aggression for faster convergence. Once
settled, position error remains below 3cm throughout the remainder of the
test, with no observable drift or sustained oscillations.

This stability is particularly noteworthy given that MPPI continuously
resamples control inputs rather than converging to a fixed policy. The absence
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of high-frequency oscillations confirms that our temperature parameter λ
successfully balances exploration and exploitation, and that the stochastic
sampling process does not introduce control noise.

Figure 4.2: Attitude evolution during hovering. Roll and pitch track
reference commands with precision better than 0.5°, while yaw exhibits
bounded variations around 0.1 rad (5.7°), consistent with weak coupling to
position control during hovering.

Attitude evolution (Figure 4.2) confirms smooth, coordinated orientation
control. Roll and pitch track reference values precisely (better than 0.5°
RMS), demonstrating effective coordination between our high-level MPPI
policy and the underlying UAVAtt attitude stabilization layer. Yaw shows
slightly larger fluctuations (approximately 0.1 rad) but remains stable and
bounded, which is expected since yaw is weakly coupled to position control
during hovering.

Figures 4.3 and 4.4 present control inputs and corresponding body torques.
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Figure 4.3: Control inputs gener-
ated by MPPI during hovering.

Figure 4.4: Body torques computed
by the UAVAtt controller, confirming
consistent actuation without satura-
tion or discontinuities.

Both signals remain continuous and well-behaved, confirming absence of
numerical instabilities. Thrust stabilizes near the nominal gravity compensa-
tion value ( 12.7 N for our 1.3 kg platform), while angular rate commands
stay well within actuator limits (peak values < 0.5 rad/s).

Trajectory Tracking Performance

Having established baseline performance during hovering, we evaluated
dynamic flight capabilities through progressively complex trajectory-tracking
scenarios.

Continuous Linear Trajectory. The first dynamic test employed con-
secutive point to point trajectories forming a continuous spatial path with
multiple linear segments. While geometrically C0 continuous, the veloc-
ity profile includes C1 discontinuities at connection points where direction
changes abruptly, challenging predictive controllers to adapt across velocity
discontinuities.

Figure 4.5 demonstrates excellent tracking with average position error
below 2 cm. Importantly, the controller handles velocity discontinuities at
segment junctions without overshoot, indicating that MPPI’s predictive hori-
zon successfully anticipates direction changes. Attitude evolution (Figure 4.6)
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Figure 4.5: Position tracking dur-
ing continuous trajectory following.

Figure 4.6: Attitude evolution dur-
ing trajectory tracking.

exhibits well coordinated dynamics, with peak angles reaching approximately
8° during aggressive segments.

Figure 4.7: Position tracking with
obstacle present. The vehicle exe-
cutes a smooth lateral deviation ( 0.4
m) to maintain safe clearance.

Figure 4.8: Attitude response dur-
ing obstacle avoidance. Peaks (up to
12°) corresponding to lateral devia-
tion.

Continuous Trajectory with Obstacle Avoidance. To evaluate con-
straint handling, we introduced a static spherical obstacle (0.3 m radius)
along the reference trajectory, forcing lateral deviation while maintaining
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forward progress. The obstacle was penalized through an exponential barrier
term in the cost function.

Figure 4.7 shows successful avoidance with smooth lateral deviation ( 0.4
m) and maximum error below 5 cm. Attitude evolution (Figure 4.8) exhibits
transient peaks consistent with avoidance motion, with angles remaining
within safe operating limits.

Figure 4.9: Visualization of obstacle avoidance in Gazebo. Overlaid frames
illustrate smooth deviation trajectory and subsequent return to nominal
path.

Importantly, this avoidance behavior emerged purely from cost function
structure without separate planning modules or safety filters, demonstrating
a key advantage of sampling-based methods.

Circular Trajectory Tracking. The final dynamic scenario involved
continuous circular motion (2 m radius, 1 m altitude, 0.5 m/s tangential
velocity), selected to evaluate long term numerical stability and coupled
dynamics. The drone completed three full revolutions.
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Figure 4.10: Position tracking
along circular trajectory. The exe-
cuted path follows the reference.

Figure 4.11: Attitude evolution
during circular motion. Roll and
pitch follow the reference, while yaw
remains stable within 0.2 rad.

Figure 4.12: Visualization of circular trajectory execution in Gazebo.
Uniformly spaced frames confirm constant velocity maintenance throughout
motion.
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After brief initial transient, the drone settles into steady tracking with
radial error below 3 cm (Figure 4.10). Crucially, no systematic drift or error
accumulation appears over three revolutions. Attitude behavior (Figure 4.11)
exhibits clear periodic structure with roll and pitch oscillating at revolution
frequency (±10°), while yaw shows bounded variations within 0.2 rad.

Circular Trajectory with Obstacle Avoidance. As final simulation
validation, we combined continuous circular motion with repeated obstacle
avoidance. The obstacle was positioned such that the drone encounters it
twice per revolution, forcing repeated avoidance maneuvers.

Figure 4.13: Position tracking dur-
ing circular motion with obstacle
avoidance. The drone executes devi-
ations ( 15 cm lateral, 5 cm vertical)
maintaining safe clearance.

Figure 4.14: Attitude response dur-
ing repeated avoidance. Roll and
pitch show transient peaks (15°).

The drone successfully executes repeated avoidance (Figure 4.13) with
consistent behavior across encounters. Attitude evolution (Figure 4.14)
reveals transient peaks superimposed on periodic oscillations, demonstrating
robust coordination.

Summary of Simulation Results. The Gazebo experiments establish:

1. Baseline stability: MPPI maintains smooth control across static and
dynamic scenarios with position errors below 5 cm

51



Experiments and Results

Figure 4.15: Visualization of repeated obstacle avoidance during circular
tracking, showing consistent avoidance behavior across multiple encounters.

2. Constraint handling: Obstacle avoidance emerges naturally from cost
function structure

3. Long-term consistency: Extended tests show no error accumulation
or numerical drift

4. Numerical conditioning: Control signals remain smooth, suggesting
good numerical conditioning

4.2.2 Real-World Flight Experiments
Following successful simulation validation, we transitioned to physical flight
tests using the mkquad5 platform with Jetson Orin Nano. All flights occurred
indoors with VICON motion capture providing state estimates at 1000 Hz.

Hovering Performance

We commanded the drone to maintain fixed position at approximately (-0.027,
0, 1.05) m, with each test lasting 20 seconds followed by controlled landing.
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Figure 4.16: Position tracking during physical hovering and landing. Hor-
izontal coordinates show oscillations within ±5 mm during hovering. Z
coordinate follows correctly the hovering point during the hovering phase,
followed by controlled landing sequence (t > 15s).

Figure 4.16 shows excellent horizontal stability (±5 mm) for the hovering
position. The controlled landing phase (t > 15s) demonstrates smooth descent
without abrupt drops, confirming stable terminal behavior. Importantly,
despite altitude drift, horizontal positioning remains stable, demonstrating
that MPPI successfully decouples slow thrust model mismatch from faster
position control dynamics.

Attitude behavior (Figure 4.17) shows coordinated control with roll and
pitch oscillating (±0.05 rad) during hovering, coupled to position corrections.
During landing, both angles converge smoothly toward zero. Yaw exhibits
gradual drift ( 0.025 rad) but remains bounded, consistent with lower priority
in the control objective.
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Figure 4.17: Attitude evolution during physical hovering and landing. Roll
and pitch exhibit periodic oscillations (±0.05 rad) during hovering. During
landing (t > 15s), attitudes converge smoothly toward zero.

Comparing with simulation, real platform maintains horizontal accuracy
(±5 mm) comparable to Gazebo during hovering, confirming successful
sim-to-real transfer for core control objectives.

Continuous Trajectory Tracking

We evaluated dynamic tracking using connected linear segments over 25
seconds including takeoff, tracking, and landing phases.

During active tracking (Figure 4.18), horizontal coordinates demonstrate
good adherence with typical errors below 10 cm. Initial segments show
higher error ( 10-12 cm) reflecting adaptation period, but quality improves
significantly once adapted (errors < 5 cm). Z coordinate maintains excellent
altitude tracking with deviations below 5 cm.
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Figure 4.18: Position tracking
during physical trajectory following
through takeoff (t < 5s), tracking (5s
< t < 18s), and landing (t > 18s)
phases. Tracking error during active
phase remains below 10 cm.

Figure 4.19: Attitude evolution
during physical trajectory tracking.
Roll and pitch exhibit periodic mod-
ulation with amplitudes up to ±0.1
rad, corresponding to acceleration de-
mands. Yaw shows gradual drift (up
to -0.6 rad) but remains stable.

Attitude behavior (Figure 4.19) shows coordinated dynamics with roll and
pitch oscillating up to ±0.1 rad. Yaw exhibits larger drift ( 0.6 rad) than
hovering, which is expected during dynamic flight where horizontal tracking
demands priority.

Real-world tracking error (5-10 cm during steady segments) is approxi-
mately 2-3× larger than Gazebo ( 2 cm), aligning with expected simu-to-real
gap. Crucially, the controller maintains stability throughout without param-
eter retuning.

Trajectory Tracking with Obstacle Avoidance

As final validation, we tested collision avoidance during during tracking
test. A physical obstacle (two stacked cardboard cubes, 60 cm sides) was
positioned at (0, 0, 0.0) m, the center of the lower box was in (0, 0, 0.31) m
position, while upper box had center in (0, 0, 0.91) m. The drone navigated
from (-1.5, 0, 0) to (1.5, 0, 1) m, with reference passing directly through the
obstacle.

Figure 4.20 clearly demonstrates successful avoidance. X coordinate shows
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Figure 4.20: Position tracking dur-
ing obstacle avoidance. Lateral devia-
tion in X (peak 0.7 m at t ≈ 20s) and
delayed Y progression demonstrate
active avoidance, while Z maintains
stable altitude tracking.

Figure 4.21: Attitude evolution
during real-world obstacle avoidance.
Roll exhibits pronounced oscillations
(peak 0.1 rad) during lateral devi-
ation. Yaw drift ( 0.25 rad) stays
within acceptable bounds.

significant lateral deviation (peak 0.7 m) precisely when encountering the
obstacle, while Y shows delayed progression during avoidance phase. Altitude
tracking remains excellent (<10 cm deviation) throughout maneuver.

Attitude behavior (Figure 4.21) reflects dynamic demands with pronounced
roll activity (±0.1 rad) during lateral deviation. The oscillatory nature
indicates continuous replanning rather than open-loop execution.

Real-world avoidance behavior is qualitatively similar to simulation but
quantitatively more conservative (0.7 m vs 0.4 m clearance), appropriately
accounting for real-world uncertainties.

These experiments validate complete MPPI control architecture under
most demanding real-world scenario: dynamic motion with real-time con-
straint satisfaction.
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Figure 4.22: Multi-exposure photograph showing overlaid drone positions
during avoidance maneuver. Point A marks start, structure B represents
target point, and frame sequence illustrates lateral deviation trajectory.
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4.3 Numerical Precision Analysis on Embed-
ded Hardware

Having validated MPPI functionality through Gazebo simulations and real-
world flights, we now address the central thesis question:
what impact does numerical precision have on computational efficiency and
control quality when implementing MPPI on embedded hardware?
This section presents systematic investigation comparing float32 and float16
arithmetic across broad controller configuration spectrum, conducted using
MuJoCo simulation running directly on Jetson Orin platform.

Unlike previous experiments evaluating overall system behavior, these
precision-focused tests isolate specific effects of arithmetic resolution on both
computational performance (execution time) and control quality (tracking
accuracy), directly informing future FPGA implementations where precision
can be customized at hardware level.

4.3.1 Experimental Methodology

We designed controlled test campaign isolating precision effects from con-
founding factors while maintaining realistic control conditions. All exper-
iments used identical trajectory references, cost function parameters, and
initial conditions. The variables that changed during the test were controller
hyperparameters (prediction horizon H, sample count K).

Test Environment and Hardware Configuration. Experiments em-
ployed custom MuJoCo-based simulation implemented entirely in Python
using JAX for automatic differentiation and CUDA acceleration. This
lightweight environment runs directly on Jetson Orin Nano (16 GB), repli-
cating embedded deployment constraints. Unlike Gazebo, JAX allows config-
uring all operations (state propagation, cost evaluation, weight computation,
control updates) to consistently use either float32 or float16 throughout
entire pipeline.

Quadrotor dynamics correspond to Section 2.2 formulation, with modified
input representation (Section 3.2). While not strictly real-time due to Python
overhead, we implemented temporal synchronization maintaining update
frequencies comparable to physical system (target 100 Hz).
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Controller Configuration Space. We systematically varied two key
MPPI hyperparameters directly influencing both computational load and
control quality:

• Prediction horizon H ∈ {11, 17, 20, 25, 35} time steps (0.11–0.35 s
lookahead). Longer horizons improve anticipatory behavior but increase
integration error accumulation and computational cost

• Number of samples K ∈ {100, 1000, 2000, 3000, 10000, 50000} rollouts
per control cycle. More samples improve statistical quality but scale
computation time linearly

This produced 30 distinct configurations (5× 6 grid). Each configuration
was tested with both float32 and float16 (60 experimental conditions to-
tal). Each condition involved 10 repetitions accounting for stochastic MPPI
sampling variation, yielding 600 total experimental runs.

Cost Function and Reference Trajectory. Cost function remained
identical across tests, using Equation (3.4) structure with weights tuned
during Gazebo validation. Reference trajectory consisted of circular path
identical to previous experiments (2 m radius, 1 m altitude, 0.5 m/s tangential
velocity), generated through D F.

Performance Metrics. We evaluated each configuration using two com-
plementary metrics capturing speed-accuracy tradeoff:

1. Computation Time per Control Cycle: Mean execution time from
state input to control output, recorded using CUDA events for precise
GPU kernel execution measurement, excluding Python overhead to
isolate core computational cost

2. Tracking Error (RMSE): Root mean squared deviation between
reference and actual position:

RMSE =

öõõõô 1
N

NØ
i=1
∥pi − pref,i∥2

Preliminary tuning established that with H = 20 and K = 2000, the
controller achieves steady tracking error below 3 cm in simulation. Based on
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sim-to-real comparison showing 50% degradation, we established practical
acceptance threshold of 10 cm RMSE. Configurations maintaining error
below this limit are considered satisfactory, making computation time the
primary selection criterion among acceptable configurations.

4.3.2 Quantitative Configuration Summary
Tables 4.1–4.4 present complete quantitative performance summary across
entire controller configuration space, providing exact numerical values for all
30 tested configurations under both precision formats.

Table 4.1: Tracking error (RMSE in cm) for MPPI configurations using
float32 precision. Tuned configuration (H=20, K=2000, bold) achieves
optimal performance at 2.03 cm.

N samples H=11 H=17 H=20 H=25 H=35
100 8.56 3.02 2.71 3.63 8.05
1000 6.68 3.05 1.90 2.21 5.03
2000 6.78 2.81 2.03 2.10 4.20
3000 6.36 2.87 2.01 1.94 4.09
10000 6.44 2.80 1.79 2.01 3.71
50000 6.11 2.76 1.69 1.89 3.68

Table 4.2: Tracking error (RMSE in cm) for MPPI configurations using
float16 precision. Tuned configuration (H=20, K=2000, bold) achieves 1.77
cm.

N samples H=11 H=17 H=20 H=25 H=35
100 8.84 3.54 2.71 3.11 8.49
1000 6.59 2.70 2.05 2.67 4.56
2000 6.67 2.96 1.77 2.19 3.93
3000 6.18 2.82 1.98 2.06 4.28
10000 6.21 2.79 1.77 1.81 3.93
50000 6.27 2.69 1.73 1.90 3.52

While these tables provide precise numerical data essential for repro-
ducibility, patterns and trends emerging from 60 data points are more readily
comprehensible through graphical visualizations. Following sections present
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Table 4.3: Computation time per control cycle (ms) for MPPI configurations
using float32 precision. Tuned configuration (H=20, K=2000, bold) requires
10.97 ms, enabling control frequencies up to 91 Hz.

N samples H=11 H=17 H=20 H=25 H=35
100 6.66 7.31 7.91 8.72 10.36
1000 7.11 8.58 9.42 10.50 13.16
2000 8.30 10.17 10.97 12.76 16.56
3000 9.41 11.64 13.06 15.35 20.00
10000 18.10 24.73 27.79 32.76 38.03
50000 43.50 52.91 53.67 59.65 73.82

Table 4.4: Computation time per control cycle (ms) for MPPI configurations
using float16 precision. Tuned configuration (H=20, K=2000, bold) requires
only 10.20 ms, 7% faster than float32.

N samples H=11 H=17 H=20 H=25 H=35
100 6.46 7.16 7.45 8.36 9.76
1000 6.94 8.20 9.04 10.31 12.59
2000 8.05 9.08 10.20 11.62 14.85
3000 9.25 10.80 11.65 13.84 17.70
10000 14.74 20.25 23.01 26.87 34.42
50000 37.31 43.52 48.43 52.46 61.04

this data as heatmaps, scatter plots, and bar charts, revealing complementary
insights into precision and performance tradeoffs.

4.3.3 Horizon Sensitivity Analysis
Before examining global performance, we analyze how prediction horizon in-
fluences tracking accuracy. A critical factor interacting subtly with numerical
precision.

Figures 4.23 and 4.24 reveal critical insight: numerical precision is not the
primary MPPI performance bottleneck. Rather, alignment between prediction
horizon and cost function tuning dominates tracking accuracy. Both figures
show identical patterns:

1. Valley at H=20: All curves exhibit sharp local minimum at H=20,
precisely the horizon used during cost function tuning in Gazebo
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Figure 4.23: RMSE vs prediction
horizon for float32. All curves show
minimum at H=20 (tuned configu-
ration), with degradation for both
shorter and longer horizons.

Figure 4.24: RMSE vs prediction
horizon for float16. Pattern nearly
identical to float32, confirming cost
function tuning dominates precision
effects.

2. Asymmetric degradation: Short horizons (H=11) show worst degra-
dation (∼8-10 cm RMSE, +400% vs H=20), while long horizons (H=35)
show moderate degradation (∼4-5 cm, +150%)

3. More samples cannot compensate: Increasing K from 2000 to 50000
provides minimal RMSE improvement when H deviates from tuned value,
demonstrating that horizon misalignment is structural, not statistical

4. Precision equivalence: Float16 and float32 curves are virtually indis-
tinguishable, with differences typically below 0.5 cm

This behavior emerges because cost function tuning with H=20 estab-
lished specific weights balancing immediate vs future costs under 2-second
lookahead assumption. Changing horizon breaks this balance: H=11 pro-
vides insufficient lookahead for anticipating trajectory curvature; H=35
accumulates integration errors and may induce overly cautious behavior.

These findings have important FPGA design implications: hardware
implementations should prioritize flexible horizon configuration over
brute and force sample scaling, since former enables task-specific tuning
while latter offers diminishing returns beyond K ≈ 2000.
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4.3.4 Computational Performance Results
We now examine computational performance across entire configuration
space, revealing how numerical precision affects execution time and real-time
control feasibility.

Figure 4.25: Computation time
heatmap (ms) for float32. Times
scale approximately linearly with K
and sublinearly with H, ranging from
∼7 ms to ∼74 ms.

Figure 4.26: Computation time
heatmap (ms) for float16. Scaling
patterns identical to float32 but with
consistently lower values—most cells
show 7-17% reduction.

Figures 4.25 and 4.26 provide panoramic performance view. Key patterns:

1. Consistent float16 advantage: Comparing cell by cell, float16 pro-
duces systematically lower execution times across all 30 configurations.
Universal advantage confirming precision reduction provides real com-
putational benefits

2. Linear scaling with K: Times increase approximately linearly along
columns, confirming trajectory propagation dominates computational
cost and GPU parallelization effectively distributes load

3. Sublinear scaling with H: Times grow less than proportionally along
rows (H=11 to H=35: 3.2× increase yields typical 1.5-2× time growth),
likely reflecting better GPU utilization

4. Load-dependent speedup: Float16 speedup increases with computa-
tional load. Small configurations show modest gains (3-5%) while heavy
configurations reach 17% reduction
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Figure 4.27: Relative time difference (%) between float16 and float32.
Negative bars indicate float16 faster.

Figure 4.27 quantifies speedups directly, confirming:

• 100% success: All 30 bars negative. float16 never fails providing
computational benefit

• Scaling behaviour: Increasing the number of samples generally leads
to larger speedups when using float16, but the trend is not strictly
monotonic within each horizon.

• Practical average: For reasonable configurations (K=1000-10000,
H=17-25), speedup averages 8-13%

The tuned configuration (H = 20, K = 2000) achieves 10.20 ms with
float16 vs 10.97 ms with float32 (98 Hz vs 91 Hz maximum frequencies).
While a 7% gain may seem modest, it enables comfortable operation above
the 50 Hz stability threshold for quadrotor control while maintaining timing
margins. For aggressive configurations (K ≥ 5000) needed in complex
scenarios, float16 becomes essential for maintaining real-time feasibility.

4.3.5 Tracking Accuracy Results
Having established computational advantages, we examine whether these
gains sacrifice control quality.

Figures 4.28 and 4.29 reveal surprising result: reducing numerical precision
does not degrade control quality. Heatmaps show virtually identical patterns:
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Figure 4.28: Tracking error
heatmap (RMSE in cm) for float32.
Error ranges from ∼1.7 cm (optimal:
H = 20, K ≥ 10000) to ∼8.6 cm
(poor: H = 11, K = 100). Optimal
region clusters around tuned configu-
ration.

Figure 4.29: Tracking error
heatmap (RMSE in cm) for float16.
Spatial pattern nearly identical to
float32, with differences typically
<0.5 cm—well within experimental
noise.

1. Same performance topology: Both maps show an optimal region
centered on H = 20 with K ≥ 2000, worst error in the upper-left corner
(H = 11, small K), and moderate degradation in the lower-right corner
(H = 35, large K).

2. Minimal value-by-value differences: Comparing corresponding cells,
RMSE differences typically 0.2-0.5 cm, with some cells showing float16
slightly better (e.g., tuned configuration: 1.77 cm vs 2.03 cm)

3. Threshold maintained: Both precisions maintain RMSE < 5 cm in
well-tuned region (H = 17–25, K ≥ 2000) and both exceed 6 cm in
poorly-tuned region (H = 11).

4. Convergence pattern: Along each column, error decreases rapidly
with increasing K until ∼2000-3000, then stabilizes with diminishing
returns—pattern identical for both precisions

Figure 4.30 quantifies differences directly:

• Zero-centered distribution: Bars scattered above and below zero
without systematic pattern
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Figure 4.30: Relative RMSE difference (%) between float16 and float32.
Bars oscillate around zero (typical range: ±2%), indicating accuracy equiva-
lence without systematic bias.

• Narrow range: Most bars fall within ±3%, with extreme cases reaching
±5%

• No instability: Absence of large positive bars confirms robust numerical
stability

This counterintuitive result emerges from MPPI properties:

1. Stochastic regularization: The MPPI algorithm inherently relies on
sampling trajectories with stochastic perturbations. The rounding errors
introduced by the float16 arithmetic (approximately 10−4 relative) are
therefore minor compared to deliberate sampling noise and are effectively
absorbed within the stochastic process itself.

2. Weighted averaging: The control command in MPPI is computed
as a weighted average across all perturbed trajectories. This procedure
naturally mitigates the effect of individual numerical inaccuracies: even
if some trajectories experience float16 integration drift, their impact is
diluted when aggregated over thousands of samples.

3. Receding horizon: The Receding horizon formulation continuously
reinitializes the prediction horizon at each control step, which prevents
long-term accumulation of numerical errors.
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4. Sufficient dynamic range: The numerical values typically involved in
MPPI—such as states, control inputs, and cost terms comfortably fall
within the representable range of float16 (±6.5×104). With appropriate
cost normalization, this ensures that neither overflow nor underflow
occurs during computation.

4.3.6 Pareto Trade-off Analysis

Having examined time and accuracy separately, we synthesize through scatter
plots revealing precision-performance tradeoff.

Figure 4.31: Scatter
H=11: Short horizon
produces poor accuracy
regardless of precision or
samples.

Figure 4.32: Scatter
H=20: Tuned configura-
tion shows float16 domi-
nance—nearly all orange
points left/below blue
points.

Figure 4.33: Scatter
H=35: Float16 speedup
maximum here ( 17%)
but accuracy degraded
for both precisions.

Scatter plots (Figures 4.31–4.35) provide richest tradeoff view, revealing
how precision interacts with architectural choices:

H=11 (Figure 4.31): Short horizon produces worst accuracy (∼6-9 cm)
across all sampling configurations. Even with K=50000, RMSE remains
above 6 cm. No amount of samples compensates for structurally inadequate
horizon. Float16 provides modest speed gains (3-14%) but advantage is
academic given unacceptable control quality.

H=20 (Figure 4.32): Most important scatter plot showing tuned config-
uration. Observations:
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Figure 4.34: Scatter H=17: Good
accuracy ( 3 cm) with moderate
float16 speed advantage and compa-
rable accuracy.

Figure 4.35: Scatter H=25: Accu-
racy degradation (2-4 cm) vs H=20,
with less pronounced float16 advan-
tage.

• Pareto dominance: Orange float16 points form evident lower-left
envelope. Nearly every float16 configuration is both faster and more
accurate or equivalent to float32 counterpart

• Tight clustering: Configurations with K ≥ 2000 cluster in lower-left
corner (time <15 ms, RMSE <2.5 cm)

• Diminishing returns: Distance between K=2000 and K=50000 points
smal: 7 ms additional cost for only 0.5 cm RMSE improvement

H=17 and H=25 (Figures 4.34, 4.35): Adjacent horizons show inter-
esting transitions. H=17 maintains good accuracy ( 2.5-3.5 cm) with float16
speed advantage (8-12%). H=25 shows accuracy degradation (2-4 cm) with
greater spread, suggesting that as we move from tuned horizon, other factors
(integration errors, model approximation) begin dominating precision effects.

H=35 (Figure 4.33): Long horizon produces maximum computational
explosion (times up to 75 ms float32, 61 ms float16) and largest relative
speedup ( 17%). However, accuracy degrades (3.5-8.5 cm) with high variance.
This graphically illustrates why extreme computational loads don’t always
improve performance. Cost is high but benefits degrade.

Across all horizons, consistent themes emerge: (1) float32 points are con-
sistently shifted rightward (slower) compared to their float16 counterparts,
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(2) the best trade-off occurs at H = 20, where tuning, precision, and com-
putational cost align optimally, and (3) no single global pattern emerges
across horizons—each H value defines a distinct performance landscape, re-
inforcing that architectural choices dominate precision effects. Overall, these
observations demonstrate that float16 not only provides measurable
computational advantages but also preserves, and in some cases
slightly improves, control accuracy, making it the preferred precision
format for real-time MPPI on embedded hardware.

4.3.7 Discussion and Implications for FPGA Design
Experimental results establish several key conclusions with direct implications
for future hardware implementations of MPPI control.

Key Experimental Findings.

1. Float16 provides consistent speedup (7-17%) without compromis-
ing control quality. Across all 30 tested configurations, reduced precision
delivered measurable computational advantages while maintaining track-
ing accuracy within ±2% of float32

2. Architectural tuning dominates precision effects. Prediction
horizon choice (H=20 vs H=11) creates 400% accuracy differences, while
precision choice (float32 vs float16) produces <3% variations, clarifying
design priorities

FPGA Implementation Guidelines. Based on these results, we formu-
late specific recommendations for future FPGA designs:

1. Adopt 16-bit arithmetic as baseline. Data conclusively demon-
strates 16-bit precision maintains full control quality while preserving
stability margins. FPGAs should implement 16-bit datapaths for tra-
jectory propagation, cost evaluation, and weight computation, enabling
doubled throughput vs 32-bit designs for given silicon area

2. Prioritize horizon configurability over extreme sample scaling.
Since H-tuning alignment dominates performance, FPGA architectures
should support easily adjustable horizon lengths (ideally 10-40 steps)
through hardware parametrization. Conversely, designing for K>10000
offers limited utility given observed saturation
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3. Explore mixed precision. While results show uniform float16-float32
equivalence, some operations might benefit from higher precision. Can-
didates for 32-bit arithmetic: (a) weight normalization (where underflow
could concentrate weights on few trajectories), (b) cost accumulation
(where summing thousands of terms might amplify errors), (c) state
integration (where error accumulation over H steps might degrade pre-
dictions). Mixed strategy could allocate 32-bit datapaths only for these
sensitive components

4. Consider even lower precisions for cost evaluation. Since float16
introduces no observable degradation, room exists exploring 8-bit integer
or fixed-point formats for cost function terms, potentially reducing
resources further since cost evaluation scales with K and thus dominates
area in parallel implementation. As written in the previuos section, this
is not possible using JAX, beacuse the less numerical precision that can
be adopted in JAX is FP16
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Chapter 5

Conclusion and Future
Work

5.1 Summary of Contributions
The work presented in this thesis focused on the design and evaluation of a
Model Predictive Path Integral (MPPI) controller for quadrotors, with par-
ticular attention to how numerical precision influences real-time performance.
Although MPPI has been widely explored in the recent literature, especially
in simulation, several practical questions remained open when moving toward
embedded deployment. In particular, we wanted to understand whether
reduced numerical precision could be used safely on a real aerial platform,
how this choice interacts with key controller parameters, and whether these
observations could help inform future hardware implementations such as
FPGA-based architectures. The thesis addressed these questions through
a combination of simulation studies, real experiments, and a large set of
numerical tests.

Contribution 1: Hardware-Aware MPPI Implementation. A first
major contribution is the complete implementation of an MPPI controller
inside the TeleKyb3 framework. This required adapting the standard MPPI
formulation so that its outputs were compatible with the existing control
chain. In TeleKyb3, the low-level UAVAtt module expects desired angular
velocities, not body torques, so the system dynamics had to be reformulated
accordingly. Although this adjustment is conceptually straightforward, it
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has important consequences: it avoids inserting extra transformation blocks
(which would add latency or numerical inconsistencies) and keeps the entire
control pipeline coherent. With this adaptation, the controller was able
to run at almost 100 Hz on the Jetson Orin platform while maintaining
compatibility with TeleKyb3’s modular structure.

Contribution 2: Multi-Stage Experimental Validation. The second
contribution concerns the experimental methodology. Instead of relying solely
on simulation, we followed a staged approach. We first tested the controller
in Gazebo, using the full TeleKyb3 stack, which allowed us to verify stability
and tuning under controlled conditions. After that, we moved to indoor
experiments with the mkquad5 platform, using a VICON motion capture
system. The transition from simulation to real hardware was smoother
than expected: hovering, trajectory tracking, and obstacle avoidance worked
reliably without retuning parameters. The increase in tracking error observed
in real flights (typically between 5 and 10 cm, compared to about 2 cm in
simulation) was in line with typical sim-to-real differences and confirmed
that the controller could deal with unmodeled effects such as aerodynamic
disturbances or actuation delays. Finally, to isolate the role of numerical
precision, we ran a set of dedicated tests using MuJoCo and JAX directly on
the Jetson hardware. This allowed us to evaluate precision effects without
introducing the additional delays present in the real system.

Contribution 3: Precision–Performance Analysis. A central part of
the thesis is the systematic analysis of how numerical precision influences
MPPI performance. We considered 30 different controller configurations
obtained by varying the prediction horizon (from 11 to 35 time steps) and
the number of samples (from 100 to 50000), and we repeated each test under
both float32 and float16 arithmetic. Each configuration was executed
multiple times to average out the inherent randomness of MPPI.

Several trends emerged clearly. First, the use of float16 consistently re-
duced computation time, with speedups ranging from about 7% for moderate
workloads to more than 15% for the most demanding settings. Interestingly,
this reduction in precision did not worsen tracking performance: the differ-
ence in RMSE between float16 and float32 was typically within a few
percent and often smaller than the run-to-run variability of the algorithm
itself.
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Another important observation is that controller design has a much
stronger impact on performance than numerical precision. For example,
using a prediction horizon that was not aligned with the cost tuning could
increase tracking error by several hundred percent, whereas switching be-
tween float32 and float16 produced comparatively minor changes. We
also found that increasing the number of samples beyond roughly 2000–3000
provided very limited gains compared to the increase in computation time,
an insight that is particularly relevant when designing hardware-oriented
implementations.

Lastly, the advantage of float16 became more pronounced for increasingly
large workloads. This suggests that the benefits observed on embedded GPUs
could be even greater on FPGA platforms, where control of data paths and
memory bandwidth is more explicit.

Contribution 4: Guidelines for FPGA Implementation. Based on
the experimental results, the thesis also proposes several practical recom-
mendations for future hardware implementations of MPPI:

1. Use 16-bit arithmetic as the default format. The experiments
show that float16 is sufficient for reliable MPPI control and offers
clear computational gains. On FPGA hardware, where resource usage
is critical, 16-bit datapaths would be a natural starting point.

2. Provide flexibility in the prediction horizon. Since the horizon
plays a central role in achieving good performance, FPGA architectures
should make it easy to adjust this parameter rather than fixing it at
synthesis time.

3. Consider a mixed-precision approach. While 16-bit arithmetic
works well overall, certain operations, such as weight normalization or
cost accumulation, may benefit from higher precision to avoid overflow
or underflow. Using 32-bit precision only where necessary could provide
a balanced solution.

4. Explore sub-16-bit representations for specific components.
Since the cost evaluation stage did not appear sensitive to precision in
our tests, fixed-point or 8-bit formats might be viable in some cases,
potentially reducing hardware resources further.
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These observations complement existing FPGA-based work on MPPI,
which mainly focuses on parallelization, by highlighting how precision choices
affect performance and where hardware optimizations are likely to be most
effective.

Summary. To summarise, the thesis provides four main contributions:
the implementation of a real-time MPPI controller tailored to an embedded
platform; a set of simulation and real-world experiments validating the ap-
proach; a systematic study of how numerical precision affects computation
time and control quality; and a set of practical guidelines for future hard-
ware implementations. Overall, the results indicate that reduced numerical
precision can be used effectively in sampling-based predictive control with-
out compromising accuracy, and that this choice can significantly improve
computation efficiency on embedded systems. These findings contribute to
bridging the gap between advanced control algorithms and their deployment
on resource-constrained hardware.

Beyond its technical contributions, this work supports the broader devel-
opment of efficient and reliable autonomous aerial systems. By improving
computational efficiency without degrading control performance, the thesis
contributes to the advancement of innovative and resource-aware robotic tech-
nologies, directly aligning with the United Nations Sustainable Development
Goal 9 (Industry, Innovation and Infrastructure).

5.2 Limitations
While the proposed MPPI controller demonstrated reliable real-time perfor-
mance in simulation and in physical experiments, several aspects of this work
should be interpreted with caution. Some limitations arise from practical
constraints encountered during the experimental campaign, while others
reflect intrinsic trade-offs of the methodology.

Hyperparameter Sensitivity. One of the clearest findings is that con-
troller performance is highly sensitive to the choice of prediction horizon. As
shown in Chapter 4, deviations from the tuned configuration (H = 20) led
to substantial degradation in tracking accuracy, whereas switching between
float32 and float16 produced only marginal differences. This highlights
that MPPI requires careful task-specific tuning before deployment. In this
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thesis, the tuning process was performed manually and iteratively, which can
be time-consuming and does not guarantee global optimality. Furthermore,
a controller tuned for one trajectory may not generalize to other maneuvers
without additional adjustment.

Simplified Dynamics in the Precision Study. The numerical precision
experiments relied on a custom MuJoCo-based model running directly on
the Jetson Orin. While this environment provided fine-grained control over
arithmetic formats, it omitted several nonlinear effects. These simplifications
mean that the strong numerical stability observed with float16 reflects the
behavior of an idealized model. Physical experiments did reveal additional
dynamics—such as gradual altitude drift—that were absent from the sim-
plified simulation. It remains possible that reduced precision may interact
differently with these unmodeled effects.

Structured Indoor Testing. All real-world experiments were conducted
indoors under VICON motion capture. This setup removes the uncertainties
associated with outdoor flight nd provides state estimates with sub-millimeter
accuracy. While appropriate for initial validation, the results therefore
reflect performance in a structured environment with high-quality feedback.
Additional work is required to determine how the controller behaves outdoors
or under degraded sensing conditions.

Restricted Exploration of Low-Precision Formats. Because JAX does
not natively support sub-float16 formats, this thesis could only explore half-
precision arithmetic as the lowest available option. Since float16 produced
no degradation in control performance, it is plausible that certain operations
could operate reliably at even lower precision. However, evaluating 8-bit
or fixed-point representations would require custom kernels or hardware
prototypes, which were beyond the scope of this work.

Lack of Hardware-in-the-Loop Validation. Although Chapter 4 pro-
posed guidelines for FPGA implementation, these recommendations were
derived entirely from software-based experiments. No FPGA prototype was
tested. Real hardware introduces constraints that are difficult to anticipate
fully in simulation, including memory bandwidth limits, routing overhead,
and timing closure. Thus, the reported benefits of reduced precision should
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be considered indicative rather than definitive until validated on an actual
FPGA.

Single Trajectory Type in Precision Experiments. The numerical
precision study used a circular trajectory as the sole reference. While this
trajectory is representative of smooth motion, it does not encompass high-
jerk maneuvers or abrupt transitions that may stress the controller more
aggressively. Whether reduced precision remains robust across such scenarios
remains an open question.

5.3 Future Work
The findings of this thesis suggest several promising directions for future
research. Some extend the current work to more realistic scenarios, while
others explore how reduced-precision numerical strategies can be pushed
further or adapted to different hardware platforms.

Automated and Adaptive Tuning. Given the strong dependence on hy-
perparameter choices, future work should explore automated tuning methods
such as Bayesian optimization or gradient-free search. Another possibility is
online adaptation, where the controller adjusts its parameters in real time
based on observed performance. Adaptive horizon selection, for instance,
could improve responsiveness during aggressive maneuvers and stability
during steady flight.

Higher-Fidelity Simulation Models. To bridge the remaining gap be-
tween numerical studies and real-world performance, future work should
incorporate more detailed dynamic models that include rotor lag, motor
dynamics, aerodynamic drag, and voltage-dependent thrust. These models
would provide a more reliable testbed for evaluating precision effects before
conducting physical experiments.

Exploration of Sub-16-Bit Arithmetic. Since float16 performed reli-
ably, the next logical step is to investigate whether certain stages of the MPPI
pipeline can operate at 8-bit or fixed-point precision. This would require
analyzing the dynamic ranges of all variables and designing appropriate
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scaling strategies. Ultimately, such evaluations may need to be performed
on actual hardware.

Mixed-Precision Architectures. Another promising direction is to as-
sign different precisions to different components of the algorithm. Trajectory
propagation and cost evaluation—where most computation occurs—might
run at low precision, while weight computation or control averaging could
use higher precision to avoid numerical issues. This staged approach could
yield better performance-per-resource than uniform float16.

Direct FPGA Implementation and Benchmarking. A key step for-
ward is implementing MPPI on an FPGA and directly measuring latency,
throughput, and resource utilization. Such experiments would clarify how
many rollouts can be processed in parallel, how precision choices impact clock
frequency, and whether the controller can sustain update rates beyond 100 Hz.
This would also verify whether the precision-related speedups observed on
GPU transfer to reconfigurable hardware.

Multi-Agent and Cooperative Control. Extending MPPI to multi-
robot systems is another interesting direction. Reduced-precision compu-
tation could be especially beneficial in decentralized control architectures,
where each agent must operate within strict timing constraints.

Closing Remarks. Taken together, these extensions point toward a
broader research agenda aimed at making sampling-based predictive control
practical for real-time aerial robotics. The central insight of this thesis—that
numerical precision can be strategically reduced without compromising con-
trol quality—provides a strong foundation for both software-based improve-
ments and hardware-accelerated implementations.
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