V&A% Politecnico
T s di Torino
\\\ 1859 s#

e

POLITECNICO DI TORINO

College of Computer Engineering, Cinema and
Mechatronics

Master’s Degree in Computer Engineering

Master’s Degree Thesis

AETHER

Advanced Engine for Three-dimensional High-resolution Emission
Rendering

Supervisors
Prof. Bartolomeo MONTRUCCHIO
Dr. Antonio Costantino MARCEDDU

Candidate
Dennis GOBBI

DECEMBER 2025

Abstract

This thesis presents the development of a modeling software called AETHER, de-
signed to visualize the dynamics of the coma of a comet using the Godot Game
Engine. When comets, mainly composed of ice and dust, are close enough to the
Sun, they sublimate, creating two distinct phenomena: the coma (a cloud of gas and
dust surrounding the nucleus) and the tail. Both of these phenomena are affected
by solar gravity, radiation pressure, and solar wind.

The modeling tool aims to reproduce a numerical model of the phenomena
occurring in the inner coma over a given period, compared to telescopic images, as
well as their temporal evolution, with particular attention to the visual accuracy.
The Godot Engine, an open source 2D and 3D game engine, has been chosen for
the development because, compared to other alternatives, it is open source, lighter,
and easier to use.

Key aspects of the implementation include the definition of the geometrical con-
ditions of the apparition, the physical parameters of a comet’s nucleus (orientation
of the spin axis, rotation period) along with its emission regions, from which jets
of dust are emitted, and the modeling of the emitted dust particles based on their
physical parameters (size and density) and the forces to which they are subjected
(emission velocity, solar gravity, and radiation pressure).

Several tests have been conducted by comparing the results of AETHER with
telescopic images of a comet. The results show that the Godot Engine can be used
to build a robust and physically accurate tool, without sacrificing performance and
realism.

Being open source, under license GPL-3.0, this project aims to contribute to
the growing field of scientific modeling.

Future works include expansion of the mathematical /physical model to also take
into account precession of the spin axis and the dynamic motion of the comet along
the orbit.

II

Contents

List of Figures VI
Acronyms VIII
1 Introduction 1
1.1 WhatisaComet 1
1.2 Description of the Modeling Approach 2

1.3 Defining the Problem 3

2 Basic Concepts 4
2.1 Notions/Terms 4
2.1.1 Equatorial, Orbital, and Ecliptic Planes 4

2.1.2 Spin Axis and Comet Orientation 4

2.1.3 Sun Position 6

2.2 Orbit and Kepler Laws L. 6
2.2.1 Kepler’s Laws of Planetary Motion 6

2.2.2 Orbital Elements 0. 7

2.3 Dust Particle Position o 000 8
2.3.1 Dust Particle Acceleration 9

2.3.2 Equatorial and Orbital System 10

2.4 Representing Orientation: Euler Angles and Quaternions 11
24.1 Euler Angles. 11

2.4.2 Quaternions 11

2.4.3 Fundamental 3D Graphics Concepts 12

3 Godot 14
3.1 Overview e 14
3.2 Architecture and Node System 14

3.2.1 Node Categories. 14
3.2.2 Transform2D and Transform3D 15
3.2.3 Rotations in 3D Spaceo 16
3.2.4 Scene Composition and Instancing 16
3.2.5 Signals and Communication 17
3.2.6 Execution Lifecycle o000 17
3.2.7 Advantages of the Node System 17
3.3 Scripting with GDSecripto 18
3.4 Rendering and Performance 18
3.5 Physics Engine oo 19
3.6 Editor and Tooling 19
3.6.1 Scene Editing L 19
3.6.2 Scripting Environment00 19
3.6.3 Debugging and Profiling 20
3.6.4 Shader 20
3.6.5 Project Configuration and Exporting 20
3.6.6 Version Control Compatibility 20
3.6.7 Live Editing and Hot Reloading 21
3.7 Limitations 21
3.8 Conclusion 21
AETHER 22
4.1 Architecture 22
4.1.1 Code Structure 22
4.1.2 User Interactions L. 23
4.2 Developer Manual 23
4.2.1 Inter-Module Communication 23
4.2.2 Comet module 25
4.2.3 Emitter module 000 27
4.2.4 JPL Horizons Import Module 32
4.2.5 Camera Module oL 34
4.2.6 Save-Load System 37
4.2.7 Optimizations 38
4.3 User Manual 41
4.3.1 Installationo 41
4.3.2 User Interfaceso 42

5 Experiments

51 (/2025
5.1.1
5.1.2

52 (/2022 N2 (Pan-STARRS)

53 C/2013

A6 (Lemmon) . .
&th October 2025 .
11th October 2025

R1 (Lovejoy) . . .

5.4 67P/Churyumov-Gerasimenko L.

6 Conclusion

6.1 Conclusion

6.2 Future
6.2.1
6.2.2
6.2.3
6.2.4

Bibliography

Updates

GPU Particle Simulation with Compute Shaders

Ephemeris-Driven Dynamic Simulation

Modeling Rotational Precession

UI Visual Redesign

47
47
47
47
48
49
49

ol
51
51
51
51
52
52

53

List of Figures

1.1

2.1

2.2

2.3

24

2.5

3.1

3.2

3.3

3.4

3.5

Position of the Kuiper Belt and the Oort cloud with regard to the
Solar System.

Image Credit: https://www.esa.int/ESA_Multimedia/Images/
2014/12/Kuiper_Belt_and_QOort_Cloud_in_context

Equatorial (celestial equator) and Ecliptic planes (in blue).
Image Credit: http://hyperphysics.phy-astr.gsu.edu/

Sun-Target-Observer angle between the Sun, a generic target, and
the Earth (Observer).Sun-Target-Observer.

The colored areas are swept in the same time and are of the same
area, illustrating how the body moves faster while closer to the Sun.
Image Credit: http://hyperphysics.phy-astr.gsu.edu/

The orbital period T is proportional to half of the major axis (a).
Image Credit: https://www.sciencefacts.net/

Schematic representation of the orbital elements of an elliptical orbit.
Image Credit: https://en.wikipedia.org/wiki/Orbital_elements

An example of a scene (the battlefield) containing multiple instances
of the same Battleship scene. The red circle represents the Node3D
node, which is usually used as a root node for a 3D scene. Adding
another battleship is as easy as dragging the scene into the battlefield
ONE. . v v e e e

All of the top-level nodes available in Godot. Each of these (base)
nodes has many children available with additional features. We can
also see that each node derives/extends the basic node Node.

Some of the signals available for the Button node, one of the most
common UI/Control nodes. We can see that some of the signals are
inherited from its parent nodes (Control > Canvasltem > Node) . .

Overview of the editor. In green, we can see various decks/tabs that
can be used to access and manipulate different parts of the editor.
Image Credit: https://docs.godotengine.org/

Example of the built-in visual profiler in Godot. Other profiling
tabs can be used, such as "Profiler" or "Video RAM", to assess the
performance of the application better.

VI

15

17

https://www.esa.int/ESA_Multimedia/Images/2014/12/Kuiper_Belt_and_Oort_Cloud_in_context
https://www.esa.int/ESA_Multimedia/Images/2014/12/Kuiper_Belt_and_Oort_Cloud_in_context
http://hyperphysics.phy-astr.gsu.edu/
http://hyperphysics.phy-astr.gsu.edu/
https://www.sciencefacts.net/
https://en.wikipedia.org/wiki/Orbital_elements
https://docs.godotengine.org/

3.6

4.1

4.2

4.3
4.4

4.5

5.1

5.2

9.3
5.4

9.5

Export tab inside the Godot Editor. Can be accessed through Project>Export

in the Editor. New export templates can be easily added with the
Add button. 21

Folder hierarchy of the project within the Godot editor. Additional
autogenerated folders and files are also present. 23

Diagram illustrating the Observer Pattern: the subject (signal emit-
ter) notifies multiple observers (signal listeners) about events, en-
abling decoupled communication. 25

Dot product to determine whether a zone is lit or not. 41

The Settings tab, where it is possible to import ephemeris data from
NASA JPL Horizons service and configure the input needed to com-
pute the scale of the model. 42

Model tab, where it’s possible define the physical properties needed
to start the modeling. L. 44

Observations and simulations of comet C/2025 A6 (Lemmon) on 8
October 2025. 48

Observations and simulations of comet C/2025 A6 (Lemmon) on
October 11,2025, 48

Observations and simulations of comet C/2022 N2 on August 15, 2024. 49

Observations and simulations of comet C/2013 R1 (Lovejoy) on 03
December 2023.o 50

Observations and simulations of comet 67P /Churyumov-Gerasimenko
on January 11, 2022.o o 50

VII

Acronyms

Symbols

2D Two-Dimensional 12-14, 16, 19
3D Three-Dimensional 11-16, 19, 21, 23, 25, 28, 34, 35, 51

A

AETHER Advanced Engine for Three-dimensional High-resolution Emission Ren-
dering 3, 12, 21-23, 32, 37, 39, 40, 47-49

API Application Program Interface 32, 33

AU Astronomical Unit 1, 43, 44, 47-50

C

CCD Charge-Coupled Device 43
CPU Central Processing Unit 20, 39, 51
CSV Comma Separated Values 43

D

DEC Declination 45, 46
F

FOV Field of View 43
G

GLSL OpenGL Shading Language 20

GPGPU General Purpose Graphical Processing Unit 12
GPU Graphical Processing Unit 12, 18, 20, 39, 51

GUI Graphical User Interface 42

H

HDR High Dynamic Range 18
HTTP Hypertext Transfer Protocol 32

I

IDE Integrated Development Environment 19
J

VIII

JPEG Joint Photographic Experts Group 22
JPL Jet Propulsion Laboratory 32, 33, 42, 51
JSON JavaScript Object Notation 33

N

NASA National Aeronautics and Space Administration 32, 42
0]

OpenGL Open Graphics Library 18

P

PA Position Angle 4-6, 44
PNG Portable Network Graphics 22

R

RA Right Ascension 45, 46
RAM Random Access Memory 20

S
STO Sun-Target-Observer 4, 6, 33, 44
U

UI User Interface 15, 17, 19, 23, 34, 36-38, 52
URL Uniform Resource Locator 32

\%

VCS Version Control System 20

IX

Chapter 1

Introduction

1.1 What is a Comet

Comets are small celestial bodies composed primarily of ice, dust, and rocky ma-
terial. When a comet approaches the Sun, it begins to warm and release gases in a
process known as outgassing. This activity results in the formation of a large, grav-
itationally unbound coma, a diffuse spherical envelope of gas and dust surrounding
the nucleus of the comet, and, often, one or more tails composed of dust and ionized
gas. The coma can reach sizes up to 15 times the diameter of Earth, while the tail
may extend even beyond one Astronomical Unit (AU) (1 AU =~ 149.597.870.700
meters).

Comets tend to have highly elliptical orbits and have a wide range of orbital
periods, ranging from several years to potentially millions of years. Short-period
comets originate in the Kuiper belt (or its associated scattered disk), which lies
beyond Neptune’s orbit, while those with a more extended period often originate in
the Oort cloud, a spherical cloud of icy bodies extending from outside the Kuiper
Belt to halfway to the nearest star (a-Centauri). Interstellar comets also originate
outside our Solar System and pass through it on hyperbolic trajectories.

Figure 1.1: Position of the Kuiper Belt and the Oort cloud with regard to the Solar System.
Image Credit: https : / / www.esa.int / ESA_Multimedia / Images / 2014 / 12 /
Kuiper_Belt_and_Oort_Cloud_in_context

https://www.esa.int/ESA_Multimedia/Images/2014/12/Kuiper_Belt_and_Oort_Cloud_in_context
https://www.esa.int/ESA_Multimedia/Images/2014/12/Kuiper_Belt_and_Oort_Cloud_in_context

Introduction

1.2 Description of the Modeling Approach

The modeling process is essential as it allows one to estimate the properties of the
nucleus of a comet and the dust emissions from the analysis of the coma morphology.
However, the modeling does not perform a direct derivation of the parameters
describing the nucleus, the active regions, and the dust from the images. On the
contrary, the different variables on which the model is based, which are not precisely
identifiable a priori, are estimated by means of a series of trial-and-error simulations
of the dust jets, after an initial input of plausible hypotheses obtained on the basis
of the knowledge of the processes involved, together with a good understanding of
ground-based observations and the processing techniques applied to the images.

Although in modeling there is always a certain degree of uncertainty, in this
approach the estimates are not arbitrary, but based on a direct comparison between
the model and the observations:

1. The entered parameters are always within a plausibility range and are subject
to the modeling to invariable physical laws (e.g., the geometric conditions of
observation, solar gravity, and radiation pressure).

2. Furthermore, one major strength of the model lies in the fact that these
variables are closely interrelated, and a small estimation error of one or more of
them has profound implications on the resulting model, as it would determine
outputs that are inconsistent with what is shown by the ground-based images.

3. Lastly, the models are usually not drawn based on a single image, but de-
rived from multiple sessions, and the results of the modeling are compared
with images taken on several different dates, to verify that the parameters
entered are accurate and consistent with the changes in the comet apparition
occurring over time.

Some intrinsic limits are recognized on the modeling application of the inner coma
structures and their extrapolation to the morphology characterization of the comet.
For example, the model is not designed to describe the tail since it considers only
the discrete dust emissions, which are only partially responsible for the formation
of the coma (and of the tail) compared to an isotropic release of dust from the
nuclear surface illuminated by the Sun. This methodology allows for the detailed
analysis of the collimated structures in the inner coma; however, it does not allow
for establishing their contribution to the total dust emissions.

Furthermore, the model assumes a spherical nucleus, whereas a complex three-
dimensional topography of the nucleus may often itself be responsible for the de-
velopment of peculiar coma morphologies, depending on the locations of the active
sources.

Finally, it is recognized that some approaches, mainly based on a statistical
probability, may provide multiple hypothetical solutions that do not necessarily
find confirmation in a direct comparison with the observations.

2

Introduction

1.3 Defining the Problem

The study of comets is a key area in astronomy and astrophysics, as these celestial
bodies let us understand more of our Solar System. In particular, simulating the
dynamics of dust and ice particles emitted by a comet over a certain period is crucial
for understanding the physical and chemical processes regarding the composition
of the nucleus of the comet and the interaction between the latter and the Sun.

Since these simulations rely heavily on precise physical models, the underlying
software must be mathematically accurate and reliable. To our knowledge, there
are only a few computer programs aimed at modeling cometary coma to estimate
the main parameters of the nucleus [1]-[3].

However, these programs are generally proprietary and not available to the
public. In addition, they often have some limitations, e.g., they were written in
old programming languages and/or the numerical models are constrained to a two-
dimensional space, meaning the dust particle trajectories lack depth and spatial
realism.

These limitations highlighted the need for a new, modern software solution built
with up-to-date technologies and a more intuitive, user-friendly interface. The
goal was to create a tool capable of accurately simulating a fully three-dimensional
environment, while remaining efficient enough to run on standard hardware without
excessive computational resources.

In collaboration with a group of amateur astronomers working jointly with pro-
fessional astronomers of the Osservatorio Astrofisico di Asiago, this thesis work
presents the design and development of a new simulation tool, called Advanced
Engine for Three-dimensional High-resolution Emission Rendering (AETHER),
intended to provide a more accurate, stable, and flexible environment for modeling
cometary particle dynamics.

The following is a brief description of the thesis content:

e Chapter 2 illustrates the basic concepts needed to understand the following
chapters.

e Chapter 3 offers a brief overview of the Godot Game Engine, which was used
to develop the software.

e Chapter 4 reports the architecture and manual of the software, both from the
user and developer perspectives.

e Chapter 5 contains experiments conducted on the software.

e Chapter 6 draws the conclusion and some hints about the future work.

Chapter 2

Basic Concepts

In this chapter, we will introduce the fundamental concepts in physics and astro-
physics necessary to understand the following chapters.

2.1 Notions/Terms

2.1.1 Equatorial, Orbital, and Ecliptic Planes

In astronomy, defining the reference planes used to describe positions, orientations,
and motions of celestial bodies is essential. Understanding the relationship between
these planes is crucial for interpreting angular parameters such as the Position Angle
(PA) or Sun-Target-Observer (STO).

e Equatorial Plane: is the plane perpendicular to the rotation axis of a ce-
lestial body. For Earth, it is aligned with its equator and is mainly used
to describe the position of astronomical objects in the celestial coordinate
systems (Right Ascension and Declination)

e Orbital Plane: is the plane in which a celestial object orbits another body.
It is defined in relation to a reference plane (e.g., the Ecliptic plane) by two
parameters: inclination and longitude of the ascending node.

e Ecliptic Plane: is the Earth’s orbital plane around the Sun.

As shown in Figure 2.1, the intersection between the equatorial and ecliptic planes
defines the two equinoxes and the two solstices.

2.1.2 Spin Axis and Comet Orientation

Each celestial body in the universe, including planets, stars, comets, and even whole
galaxies, rotates (or spins, in scientific jargon) around an imaginary line called the
axis. The orientation of this axis plays a pivotal role in a wide range of physical
phenomena, such as seasonal cycles on planets, the behavior of magnetic fields, or,
in our case, the emission of material from a rotating body.

4

Basic Concepts

North
I celestial
' pole

Autumnal
equinox

| South
, celestial
| pole

Figure 2.1: Equatorial (celestial equator) and Ecliptic planes (in blue).
Image Credit: http://hyperphysics.phy-astr.gsu.edu/

In the case of comets, the spin axis heavily influences the pattern and direction of
dust and gas emissions. As the comet rotates, different surface regions are exposed
to solar radiation at different time intervals, which in turn affasects the sublimation
of ices and the formation of jets. Due to this reason, accurately modeling the
orientation of the spin axis (and thus the comet) is crucial for correctly simulating
trajectories of particles emitted from a comet surface.

The orientation of the spin axis of a comet in space is conventionally defined by
the equatorial coordinates o and 0 to which the positive (north) pole is directed.
However, in our reference frame, it is intended to reproduce the nucleus and coma as
seen by an Earth-based Observer (or a telescope image). The spin axis orientation
is defined by two angles [4]:

e Inclination: Ranges from —90° to +90° and defines the angle between the
spin axis and the sky plane as seen by the Observer. It indicates the tilt of
the spin axis with respect to the Observer’s line of sight.

e Position Angle (PA): Ranges from 0° to 360° and defines the orientation
of the projection of the spin axis onto the sky plane. It is measured counter-
clockwise from the celestial north toward the east.

These two angles can be computed from the equatorial coordinates of the pole
by appropriate formulas.

http://hyperphysics.phy-astr.gsu.edu/

Basic Concepts

2.1.3 Sun Position

In addition to the comet spin axis orientation, the position of the Sun with respect
to the comet also plays a pivotal role in simulating and affecting the emission of
the dust particles from the comet surface and their trajectories in space. This
is because jets are emitted only when emission regions are not isolated, which is
determined by the solar position and orientation described by two key parameters:

e Sun-Target-Observer (STO) Angle: Ranges from 0° to 180° and it is
the phase angle between the Sun, the comet (target), and the Observer (the
Earth in our case), where 0° corresponds to a position of the Sun behind the
Observer, 90° to a position lying on the sky plane and 180° to a position on
the opposite side of the Observer, illuminating the hidden hemisphere of the
comet nucleus.

e PA: Ranges from 0° to 360°, and just like the comet spin axis, PA, the Sun
PA defines the direction of the Sun projected onto the sky plane as seen from
Earth. It is measured counter-clockwise from the celestial north toward the
east.

/
/

/

SKy plane

(ort/hogonal to the Observer’s)
/

Ho;i\zum\al plane laying
on the 0-T~I.Ln\e
S

~_

0 \\\\

Observer
(Earth)

Figure 2.2: STO angle between the Sun, a generic target, and the Earth (Observer).

2.2 Orbit and Kepler Laws

The principles of orbital mechanics govern the motion of celestial bodies, including
comets, around the Sun. These were first formulated empirically by Johannes
Kepler in the early 17th century and later given a theoretical foundation through
Newton’s laws of motion and gravitation. Kepler’s laws remain central to the
understanding and modeling of orbital dynamics.

2.2.1 Kepler’s Laws of Planetary Motion

Kepler’s three laws describe the trajectories and velocity variations of orbiting

bodies:

Basic Concepts

e First Law: The orbit of a planet is an ellipse with the Sun at one of the
two foci, with the perihelion being the point where the planet is closest to
the Sun, while the aphelion is the point where the planet is furthest.

e Second Law: A line joining the orbiting body and the Sun sweeps out equal
areas during equal time intervals. This makes the orbiting body move faster
when it is closer to the Sun.

Figure 2.3: The colored areas are swept in the same time and are of the same area, illustrating
how the body moves faster while closer to the Sun.
Image Credit: http://hyperphysics.phy-astr.gsu.edu/

e Third Law: The square of the orbital period T is proportional to the cube
of the semi-major axis a:
T? x a®
This law links the orbital duration with the size of the orbit, making it useful
to compare orbits of different bodies.

&

Minor axis

Major axis (2a)

Orbital period (T)
£ Seioncafacks

Figure 2.4: The orbital period T is proportional to half of the major axis (a).
Image Credit: https://www.sciencefacts.net/

2.2.2 Orbital Elements

For a complete description of an orbit, several parameters are required beyond
those provided by Kepler’s laws (note: each angle described below is measured

7

http://hyperphysics.phy-astr.gsu.edu/
https://www.sciencefacts.net/

Basic Concepts

counter-clockwise):

Semi-Major Axis (a): Defines the size of the orbit as half the longest
diameter of the ellipse.

Eccentricity (e): Describes the shape of the orbit. e = 0 corresponds to
a circular orbit, while values approaching 1 indicate increasingly elongated
ellipses.

Inclination (i): The angle between the orbital plane and a chosen reference
plane, typically the ecliptic.

Longitude of the Ascending Node (2): The angle from a fixed reference
direction (e.g., the vernal equinox) to the point where the orbit passes upward
through the reference plane (ascending node).

Argument of Periapsis (w): The angle from the ascending node to the
perihelion, measured in the orbital plane.

True Anomaly (v): The angle between the direction of perihelion and the
current position of the body, as seen from the focus of the ellipse (i.e., the
Sun).

Celestial body

True anomaly

oG

Longitude of ascending node

Argument of pefiapsis

fY)

Reference
direction

Plan,
€ Of reference
Inclination

§3

Ascending node

Figure 2.5: Schematic representation of the orbital elements of an elliptical orbit.
Image Credit: https://en.wikipedia.org/wiki/Orbital_elements

2.3

Dust Particle Position

For a correct simulation of cometary activity, it is essential to model the particle
acceleration precisely. As illustrated by Jean-Baptiste Vincent in [2|, the particle
position at a given time ¢ can be defined as follows:

1
l’(t) = xg + U()@t — ECLOtQ (21)
y(t) = 1Yo + Uo7yt (22)
2(t) = 2o + vot (2.3)

8

https://en.wikipedia.org/wiki/Orbital_elements

Basic Concepts

Here, ¢, yo, and zo represent the particle starting position (i.e., the origin) along
the X, Y, and Z axis; vy 4, voy, and vg . represent instead the starting velocity along
the X, Y, and Z axis; finally, a represents the particle acceleration.

We can see that the orbital position of a particle is accelerated by the Sun only
along the X axis, which is aligned with the Sun-comet direction. In contrast, on
the Y and Z axes, the position is linear with regard to the velocity and time.

2.3.1 Dust Particle Acceleration

The dust particles are accelerated by gas drag from sublimating ice on the nucleus
surface or from discrete active sources up to a height of approximately 10-20 times
the nuclear radius, when drag vanishes. The particles are then exposed to the solar
gravity and radiation pressure forces Fya, and Fi,q. The two forces act in the same
direction, but in the opposite sense, so that the net force is a central force that
varies as 1/r%, implying that the trajectory of the dust particles will be a Keplerian
orbit around the Sun with an effective gravitation reduced by the factor (1 — f):

Ftotal = Fgrav (1 - ﬁ) (24)

where the [parameter is the ratio between the radiation force and the gravitational
force:

6 _ Frad (25)

grav

=

The dynamics of the dust particles emitted from the comet surface are thus
influenced not only by their initial emission velocity, but are mainly determined by
the [coefficient, which in turn is strongly related to the dust properties, i.e., size
and density.

In our modeling, we reproduce the motion of the particles in a reference frame
associated with the comet nucleus. The nucleus orbits the Sun with an acceleration
due to the Sun’s gravitational force. The same acceleration is imparted to the dust
particles separated from the nucleus. Since our models are drawn in a reference
frame that moves along with the comet nucleus, it is not necessary to consider
the gravitational acceleration given to the particles by the Sun when computing
their motion relative to the comet nucleus. Hence, once the initial velocity value
is defined, we only compute the acceleration given to the particles by the radiation
pressure, which acts as a force in the Sun-comet direction.

Let Lg be the luminosity of the Sun and r the distance between the Sun and
the comet. The radiation flux created by the Sun at a distance r will be:

L
°= 4dr?

9

Basic Concepts

We assume the dust particles are little spheres with a radius R = d/2 (where
d is the particle diameter in m). The amount of radiation energy falling on a dust
particle per unit of time will be:

AS d2 L@R2
E =&-T <Z) == 47"2 (27)

The momentum given to a dust particle per unit of time due to this energy will
be:

Ap 1\ A (1+a)LoR?
At (1+a) (E) At 4w 28)

where ¢ is the speed of light (m/s) and « is the albedo (reflection coefficient,
dimensionless) of the particle. According to the law of conservation of momentum,
the change per unit of time is equal to the force acting on the particle:

_Ap

F==t_
At

ma (2.9)

where m is the mass of the dust particle and a is the acceleration given to it. If
the density of the cometary dust is p, then the mass of a particle is:

4
m = §7TR3p (2.10)

and the resulting acceleration is:

- = .= Y 2.11
16 wRper? (2.11)

a =

1 Ap 3 (1+a)le
m At

2.3.2 Equatorial and Orbital System

As the equations above are initially formulated in the orbital frame, they are not
directly applicable in the equatorial coordinate system, which is more convenient
for computation and input data handling.

For this reason, all particle positions and velocities were initially computed in the
equatorial frame. The resulting vectors were then transformed into the orbital frame
using a coordinate transformation using the orbital basis matrix. This approach
ensures consistency with the physical orientation of the comet orbit.

10

Basic Concepts

2.4 Representing Orientation: FEuler Angles and
Quaternions

To precisely describe the orientation of a celestial body like a comet, we must define
its rotation in a Three-Dimensional (3D) space. While several mathematical tools
exist for this, Euler angles and quaternions are the most common, each with distinct
advantages and disadvantages.

2.4.1 FEuler Angles

Euler angles represent a 3D orientation as a sequence of three elemental rotations
around the axes of a coordinate system. A common convention is yaw, pitch, and
roll, corresponding to rotations around the Z, Y, and X axes.

The primary characteristic of Euler angles is that the final orientation criti-
cally depends on the sequence in which the rotations are applied. A rotation of
a degrees around the X-axis followed by [degrees around the Y-axis results in
a different final orientation than performing the Y-axis rotation before the X-axis
one. This sequence-dependence is a fundamental aspect of 3D rotations, which are
not commutative.

While intuitive, Euler angles suffer from a critical flaw known as gimbal lock.
This occurs when a rotation aligns two of the three axes, causing the system to
lose one degree of rotational freedom. This can lead to unpredictable behavior and
numerical instability in simulations.

2.4.2 Quaternions

Quaternions provide a more robust and computationally stable method for repre-
senting 3D rotations, effectively avoiding the issues inherent in Euler angles. They
are a mathematical extension of complex numbers, composed of four components:
one scalar (real) part and three vector (imaginary) parts. A quaternion q is ex-
pressed as:

g=w+zxi+yj+ zk (2.12)

where w, x, y, and z are real numbers.

We use unit quaternions to represent orientations, where the magnitude is one.
The key intuition is that a quaternion encodes a rotation not as a sequence of turns,
but as a single rotation around a specific axis in space. The vector part (z,y, 2)
defines this axis of rotation, while the scalar part (w) is related to the magnitude
of the rotation angle around that axis.

The advantages of using quaternions are significant:

e Avoidance of Gimbal Lock: Because a quaternion represents an orien-
tation as a single axis-angle rotation rather than sequential rotations, it is
immune to gimbal lock.

11

Basic Concepts

e Computational Efficiency: Composing rotations (i.e., applying one after
another) is computationally faster and more numerically stable with quater-
nions than with matrix multiplication derived from Euler angles.

e Smooth Interpolation: Quaternions excel at interpolating between two
orientations, a process known as "slerp" (spherical linear interpolation). This
produces smooth and natural-looking rotations, which are crucial for anima-
tions and continuous simulations.

Due to their reliability and efficiency, quaternions are the preferred method for
handling 3D rotations in computationally intensive fields like computer graphics,
robotics, and astrophysics. In AETHER, both Euler angles and quaternions are
used to handle rotations.

2.4.3 Fundamental 3D Graphics Concepts

To understand how a simulation tool like AETHER visualizes celestial bodies and
their dynamics, it is essential to grasp the basic components of 3D graphics. These
concepts form the building blocks for creating and rendering any three-dimensional
scene.

e Mesh, Vertices, Edges, and Faces: At its core, a 3D model is a polygonal
mesh, which is a collection of points in 3D space called vertices. When two
vertices are connected, they form an edge. Three or more edges that form a
closed loop create a face or polygon. The arrangement and density of these
vertices, edges, and faces define the shape and surface of a 3D object.

e Materials and Textures: A mesh on its own is just a colorless wireframe.
To give it a realistic appearance, we apply materials and textures. A ma-
terial defines the physical properties of a surface, such as its color, shininess,
and transparency. A texture, on the other hand, is a Two-Dimensional (2D)
image that is wrapped around the 3D model to add surface detail, such as
patterns, bumps, or intricate designs. While a texture is an image, a material
determines how that texture interacts with light.

e Shaders: Small programs that run on the Graphical Processing Unit (GPU)
and determine the final appearance of a pixel. They take the geometry, ma-
terials, textures, and lighting information from the mesh as input to calculate
the color, brightness, and other visual properties of each pixel on the surface
of an object. There are different types of shaders, such as vertex shaders
that manipulate the position of vertices, fragment (or pixel) shaders that
compute the color of individual pixels, and compute shaders to perform
General Purpose Graphical Processing Unit (GPGPU) programming.

e Lighting: A crucial element that brings a 3D scene to life. It involves placing
virtual light sources in the scene that illuminate the objects. The way light
interacts with the materials of the objects, creating highlights and shadows,
adds depth, realism, and mood to the final image.

12

Basic Concepts

e Camera: In a 3D environment, the camera is the virtual viewpoint from
which the scene is rendered. It determines the perspective, field of view, and
what part of the 3D world is visible to the Observer. The final 2D image is
a snapshot of the 3D scene taken from the position and orientation of the
camera.

13

Chapter 3

Godot

This chapter outlines the main features and structure of the Godot Engine, the
platform on which the software is built. It also explains its relevance to the devel-
opment of the project.

3.1 Overview

Godot is an open-source game engine developed for 2D and 3D interactive ap-
plications. Distributed under the MIT License, it has gained traction due to its
lightweight framework, ease of use, and growing developer community. Initially
developed by Juan Linietsky and Ariel Manzur, Godot supports deployment across
various platforms, including Windows, Linux, macOS, Android, iOS, and HTMLS5.

While its primary purpose is game development, Godot is increasingly used in
domains such as education, engineering, and scientific visualization, owing to its
scripting capabilities, real-time rendering, and cross-platform functionality.

3.2 Architecture and Node System

Central to Godot’s architecture is its hierarchical scene-tree system, where all
content is organized as a tree of nodes. Every component, be it visual, physical,
auditory, or script-based, is a node, enabling modular construction and composition.

A scene in Godot is a structured collection of nodes. Scenes can be embedded
as nodes within other scenes, promoting reuse and encapsulation. For example,
a "Spaceship" scene (as illustrated in Figure 3.1) containing mesh, collision, and
animation nodes can be instanced multiple times with ease within a larger "Bat-
tlefield" scene.

3.2.1 Node Categories

All nodes derive from the base class Node and fall into three main categories:

14

Godot

O Battlefield

O Battleship

O Battleship2

O Battleship3

Figure 3.1: An example of a scene (the battlefield) containing multiple instances of the same
Battleship scene. The red circle represents the Node3D node, which is usually used as a root node
for a 3D scene. Adding another battleship is as easy as dragging the scene into the battlefield
one.

e 3D Nodes (Node3D): For 3D applications. These nodes operate in 3D space
and include types such as Sprite2D, AnimatedSprite2D, Area2D, CollisionShape?2D,
and Camera?2D.

e 3D Nodes (Node3D): Used for 3D content. These nodes support 3D spatial
transformations and include MeshInstance3D, Light3D, Camera3D, Area3D,
and RigidBody3D.

e User Interface (UI) Nodes (Control): Designed for user interfaces. These
nodes render in screen space and include Button, Label, Panel, TextEdit,
and Container. Ulnodes support layout management and anchoring.

O Node

Figure 3.2: All of the top-level nodes available in Godot. Each of these (base) nodes has many
children available with additional features. We can also see that each node derives/extends the
basic node Node.

3.2.2 Transform2D and Transform3D

Godot provides dedicated classes for handling spatial transformations:

15

Godot

e Transform2D: Used by Node2D objects, it represents position, rotation, and
scale in 2D space. It consists of a 2x2 Basis matrix encoding rotation and
scale, and a Vector?2 origin for translation. Typical operations include trans-
lating, rotating, scaling, and combining transforms.

e Transform3D: Used by Node3D objects, it represents 3D transformations.
As mentioned earlier, it includes a 3x3 Basis matrix for rotation and scale,
and a Vector3 origin for translation. It supports chaining, inversion, and
conversion to other representations like quaternions or Euler angles.

3.2.3 Rotations in 3D Space

Godot provides a comprehensive system for handling rotations in 3D space, which
is crucial for simulations and visualizations. The Node3D class, the base for all 3D
objects, inherently supports multiple representations for orientation. Rotations are
managed through the transform property, which is a Transform3D object contain-
ing a Basis and an origin. The Basis is a 3x3 matrix that represents rotation,
scale, and shear, while the origin is a Vector3 for translation.

Godot offers direct support for:

e Euler Angles: These are exposed in the inspector of the editor as the "rota-
tion" property for user-friendliness, allowing for intuitive adjustments along
the X, Y, and Z axes. However, they are generally not recommended for
representing complex rotations due to issues like gimbal lock.

e Quaternions: For more robust and stable rotations, Godot provides the
Quaternion data type. Quaternions are well-suited for interpolating between
orientations and avoiding the pitfalls of Euler angles. They can be created
from and converted to other rotation representations.

e Basis Vectors: The Basis itself, composed of three orthogonal vectors, de-
fines the local coordinate system of the node. Manipulating the basis directly
allows for precise control over the orientation of the object.

3.2.4 Scene Composition and Instancing

Scenes can be saved independently and instanced within other scenes. This system
supports:

e Encapsulation of logic and data.

e Reuse across multiple contexts.

e Runtime instancing and manipulation.
Godot provides two inheritance models:

e Class inheritance: Script or node inherits from another class.

e Scene inheritance: A new scene extends an existing one.

16

Godot

3.2.5 Signals and Communication

Inter-node communication is handled via signals (Figure 3.3), an event system
that enables decoupled interaction. A node emits a signal that other nodes can
connect to and handle independently.

For instance, a Button can emit a pressed() signal that triggers a function in
another node, such as opening a menu.

Figure 3.3: Some of the signals available for the Button node, one of the most common UI/Control
nodes. We can see that some of the signals are inherited from its parent nodes (Control >
Canvasltem > Node).

3.2.6 Execution Lifecycle

Godot’s execution model is structured around callback functions:

_ready(): Triggered when the node enters the scene tree.
e _process(delta): Called every frame (non-physics).

e _physics_process(delta): Called at a fixed timestep, usually at a rate of
60 frames per second. Useful to handle physics behavior.

e _input(event): Handles input events.
These functions are defined in scripts to control runtime behavior.

3.2.7 Advantages of the Node System

The node architecture offers:

17

Godot

Clarity: Clear hierarchy and single-responsibility nodes.

Reusability: Scenes and nodes can be reused across projects.

Modularity: Complex systems built from simpler components.

Flexibility: Runtime creation and modification of nodes.

3.3 Scripting with GDScript

Godot’s primary scripting language is GDScript, a high-level, dynamically typed
language with Python-like syntax. It is optimized for engine integration and rapid
development.

Additional language support includes:

e C+# (via Mono).
e C++ (via GDNative or custom modules).

e Python, Rust, and others (via community bindings).

3.4 Rendering and Performance

Godot 4 provides three rendering backends aimed at different hardware and per-
formance requirements. The renderer can be chosen when creating a project or
changed later in the project settings.

e Forward+ — The default for desktop platforms. This most advanced ren-
derer uses Vulkan, Direct3D 12, or Metal through the RenderingDevice back-
end. It uses clustered forward rendering to manage dynamic lights efficiently
and supports features like real-time global illumination, screen-space reflec-
tions, volumetric fog, subsurface scattering, and High Dynamic Range (HDR).
It is designed for modern GPUs.

e Mobile — Used by default on mobile devices but also works on desktop. Like
Forward+, it uses Vulkan, Direct3D 12, or Metal via the RenderingDevice
backend, but has fewer features. It is faster for simple scenes and better
suited to lower-power hardware.

e Compatibility (Open Graphics Library (OpenGL) Compatibility) — The
fallback for low-end desktop, mobile, and web platforms. This renderer uses
OpenGL and has the fewest features. It is the default on web builds and
works well on older or restricted systems where maximum portability is more
important than visual quality.

18

Godot

3.5 Physics Engine

Godot integrates both 2D and 3D physics engines, with support for:
e Rigid and kinematic bodies.
e Collision detection (shapes and areas).
e Raycasting and overlap checks.

Deterministic stepping is available for simulations requiring reproducibility.

3.6 Editor and Tooling

The Godot editor is a cross-platform, self-contained development environment im-
plemented using the engine. It provides an integrated interface for scene construc-
tion, scripting, animation, debugging, and project deployment/export.

3.6.1 Scene Editing

The editor includes dedicated views for 2D, 3D, and UI composition. Nodes can be
created, arranged, and grouped hierarchically via a visual interface. Transforma-
tions such as translation, rotation, and scaling can also be manipulated directly in
the scene viewport. Each workspace includes tools appropriate to its dimensional
context, with overlays for collision shapes, anchors, and other runtime markers,/-
gizmos.

Figure 3.4: Overview of the editor. In green, we can see various decks/tabs that can be used to
access and manipulate different parts of the editor.
Image Credit: https://docs.godotengine.org/

3.6.2 Scripting Environment

Godot provides an integrated code editor with support for GDScript. Features
include syntax highlighting, autocompletion, inline error feedback, and access to in-
engine documentation. Navigation tools such as symbol lookup and go-to-definition
are also supported. Besides the integrated code editor, plugins are also available
for many Integrated Development Environment (IDE)s and text editors, such as
JetBrains IDEs and Visual Studio Code.

19

https://docs.godotengine.org/

Godot

3.6.3 Debugging and Profiling

The engine includes runtime debugging tools that are accessible during execution.
Functionality includes:

Breakpoint-based debugging with call stack and variable inspection.

e Live scene tree inspection and property editing.

Object memory usage and reference tracking.

Frame profiler for Central Processing Unit (CPU) and GPU performance
analysis.

Figure 3.5: Example of the built-in visual profiler in Godot. Other profiling tabs can be used,
such as "Profiler" or "Video Random Access Memory (RAM)", to assess the performance of the
application better.

3.6.4 Shader

A visual shader editor is included to create vertex and fragment shaders via a node-
based interface. It is intended for users without shader programming experience,
though raw shader code can be written when needed. The shader language is based
on OpenGL Shading Language (GLSL), with some engine-specific extensions.

3.6.5 Project Configuration and Exporting

The editor provides interfaces for setting up input maps, rendering parameters, lan-
guage localization, and platform-specific behavior. Using configurable templates,
the applications can be exported to desktop, mobile, and web platforms.

3.6.6 Version Control Compatibility

Godot projects are composed of plain-text files, including scenes (.tscn), scripts
(.gd, .cs), and project metadata. This format facilitates use with version control
systems such as Git. The editor does not include built-in Version Control System
(VCS) tools, though third-party plugins exist for basic Git integration, such as
built-in Visual Studio Code’s.

20

Godot

‘Windows (Runnable)

Figure 3.6: Export tab inside the Godot Editor. Can be accessed through Project>>Export in the
Editor. New export templates can be easily added with the Add button.

3.6.7 Live Editing and Hot Reloading

During execution, the editor supports live property editing and scene updates.
Scripts and resources can be modified and reloaded at runtime, reducing iteration
times during testing and development.

Godot’s tooling emphasizes accessibility, self-containment, and rapid iteration.
While its main focus is game development, the flexibility of the editor supports a
wider use in simulation, education, and custom tool development.

3.7 Limitations

Notable constraints include:

e Lower performance than Unity or Unreal Engine for high-end 3D workloads.

e Limited ecosystem for non-game plugins and scientific tooling.

3.8 Conclusion

Godot provides a versatile platform for building interactive applications, including
tools for scientific visualization. Its scripting flexibility, real-time rendering, and
modular architecture make it a strong candidate for developing educational and
research-focused software. In this project, Godot forms the core of the AETHER
modeling environment, enabling real-time simulation of cometary dust emissions
with improved flexibility and fidelity over prior approaches.

21

Chapter 4

AETHER

This chapter presents the design and implementation of AETHER (Advanced
Engine for Three-dimensional High-resolution Emission Rendering).

The following sections describe the overall architecture of the application, the
main software components, and the user interface. Particular attention is given
to the rationale behind architectural choices, algorithm implementations, and the
optimizations implemented to ensure acceptable performance during execution.

Alternative solutions and design approaches are discussed and compared with
the final implementation for core components and algorithms. Benchmarks and
technical evaluations are included to illustrate the efficiency of the adopted meth-
ods.

4.1 Architecture

4.1.1 Code Structure

As shown in Figure 4.1, the project follows a clear folder hierarchy to separate assets,
gameplay scenes, scripts, and shaders. This organization supports maintainability,
reusability, and ease of navigation during development:

e asset: Stores texture files and graphical elements used for the user interface
in both Portable Network Graphics (PNG) and Joint Photographic Experts
Group (JPEG) format.

e scenes: Includes all Godot scene files (. tscn) that define levels, user interface
layouts, and reusable scene components.

e scripts: Stores the GDScript (.gd) and other supported language scripts
that define the behavior and logic of the application.

e shaders: Contains custom shader programs for the comet.

22

AETHER

.gitattributes

.gitignore
icon.svg

£ icon.svg.mport
project.godot
README.md

Figure 4.1: Folder hierarchy of the project within the Godot editor. Additional autogenerated
folders and files are also present.

4.1.2 User Interactions

The user interface predominantly comprises buttons and sliders, the main tools for
performing actions and inputting parameter values. Specifically:

e Buttons: Provide direct control over core functions such as starting, pausing,
and stopping simulations; creating and managing configurations; opening file
dialogs for saving and loading configurations; saving simulation output; and
other key actions.

e Sliders: Sliders allow users to input numerical values or adjust simulation
parameters dynamically. They enable fine-grained control over different pa-
rameters.

e File Picker: Integrated, platform-agnostic, file picker dialogs facilitate sav-
ing, loading input files, and saving output data, supporting smooth workflow
management.

e Mouse Controls: In addition to the Ul elements, mouse input is used for
3D navigation. Users can rotate, pan, and zoom the simulation view, allowing
detailed exploration of the emission regions.

4.2 Developer Manual

4.2.1 Inter-Module Communication

The architecture of AETHER promotes modularity and maintainability by ensur-
ing that different components remain as loosely coupled as possible. This design
principle allows individual modules to be developed, tested, and modified indepen-
dently without causing ripple effects throughout the codebase.

23

AETHER

Signals

To achieve this, communication between modules primarily relies on using signals,
a messaging system provided by the Godot Engine. Signals enable one module to
emit events that other modules can listen for and respond to, without requiring
direct references or tight dependencies between them.

Godot’s signals are an implementation of the well-known Observer Pattern
(Figure 4.2), where objects (observers) subscribe to and react upon events emitted
by other objects (subjects), promoting a clean separation of concerns and loose
coupling.

Godot provides many built-in signals for its nodes, such as button_pressed
for Button nodes, allowing interaction with standard engine components. More-
over, signals can be connected programmatically or through the Godot editor’s
interface, where developers can visually link signals from one node to methods in
another, thereby simplifying event-driven programming without the need for man-
ual connection code.

For example, a module can define and emit a signal like this:

simulation.gd
signal simulation_started

func start_simulation():
emit_signal("simulation_started")

Another module can connect to this signal and react accordingly:

ur.g9d
ready 1s called when a Node is added to the
Scene Tree
func _ready():
var sim = get_node("/root/Simulation")
sim.connect("simulation_started", self,
"_on_simulation_started")

this method ©s called when the
simulation_started signal s emitted

func _on_simulation_started():
print("Simulation has started!")

Groups

In addition to signals, the application utilizes Godot’s SceneTree.call_group
method to broadcast method calls to all nodes belonging to a specific group.

Groups in Godot are named collections of nodes that allow the engine to treat
multiple nodes as a single entity for messaging purposes. Nodes can be dynami-
cally added to or removed from groups, enabling flexible communication without
maintaining explicit references to each node.

24

AETHER

[update() A
@
notify_observers() update()
Subject Observer
Subject

Changed
update()
Observer

Figure 4.2: Diagram illustrating the Observer Pattern: the subject (signal emitter) notifies mul-
tiple observers (signal listeners) about events, enabling decoupled communication.

h

For example, to use groups:

comet.gd

Adding mode to group

func create_emitter():
creating an emitter
emitter.add_to_group("emitter")

func update_emitter (params):
get_tree().call_group("emitter","update_emitter",params)

Each node in the emitter group should implement the update_emitter method:

emitter.gd
func update_emitter(params) :
Update the emitter based on params

Conclusion
This combination of signal-based and group-based communication results in:

e Decoupled modules: Modules do not need to know internal details about
each other, only the signals they emit or listen to, or the groups to which
nodes belong.

e Improved scalability: New features or components can be integrated by
connecting to existing signals, creating new ones, or adding nodes to appro-
priate groups, minimizing changes to existing code.

e Enhanced testability: Modules can be tested in isolation by simulating
signals or group calls without requiring the entire system to be active.

4.2.2 Comet module

One of the most important modules, the comet_mesh.gd script defines the Comet
class, which extends MeshInstance3D, a node used to display 3D geometry, and
acts as the core controller for simulating the geometry, orientation, and rotation of
the comet, and particle emission.

25

AETHER

_ready()

At initialization, the _ready () function creates axis indicators aligned to the mesh
of the comet, sets the initial rotation, and updates other components:

func _ready() -> void:

var _xX_axis := axis_scene.instantiate() as AxisArrow
add_child(_x_axis)

_x_axis.set_axis_type(AxisArrow.AXIS_TYPE.X)
_x_axis.set_height (mesh.height)

starting_rotation = rotation
update_comet_orientation()

__process()

The simulation advances in the _process () loop when the animation state is active,
calling the tick() function to spawn particles and rotate the comet:

func _process(_delta: float) -> void:
match animation_state:
ANIMATION_STATE.STARTED, ANIMATION_STATE.RESUMED:

for _i in speed_sim:
tick(step_counter)
n_steps -=1
step_counter += 1

total_sim_time += _delta

Simulation

The tick() method is responsible for iterating emitters and applying rotation:

func tick(n_iteration: int) -> void:

for emitter: Emitter in get_tree().get_nodes_in_group("emitter"):
emitter.tick_optimized(n_iteration)
animation_slider.tick()

rotate_object_local(Vector3.UP, deg_to_rad(angle_per_step))

For faster computations, instant_simulation() spawns all particles at once:

func instant_simulation() -> void:
simulation_setup()
for emitter: Emitter in get_tree().get_nodes_in_group("emitter"):
emitter.instant_simulation(n_steps, angle_per_step)
animation_slider.instant_simulation()

26

AETHER

Before running a simulation, simulation_setup() aligns the comet to the Sun,
normalizes the transform, stores orbital transformation data, and calculates the
total number of steps:

func simulation_setup() -> void:
Util.equatorial _rotation = quaternion
look_at (Util.sun_direction_vector, Vector3.UP)
transform.basis = transform.basis.orthonormalized()
n_steps = int(num_rotation * frequency * 60 / jet_rate)
angle_per_step = 1.0 / (frequency * 60.0 / jet_rate) * 360.0

The animation control functions animation_started(), animation_paused(),
and animation_stopped() manage playback, pausing, and cleanup.

Comet Position

The spatial orientation of the comet is handled by point_y_axis_toward(), which
aligns the local Y-axis of the comet toward a given target vector:

func point_y_axis_toward(target_position: Vector3) -> void:
var direction := (target_position - global_transform.origin)
var target_quat := Quaternion(Vector3.UP, direction.normalized())
quaternion = target_quat

Finally, update_comet_orientation() computes the correct orientation from
astronomical parameters (direction, inclination) and applies it by orienting the Y-
axis of the comet toward the direction vector:

func update_comet_orientation() -> void:
var azimuth_rad := deg_to_rad(Util.comet_direction)
var inclination_rad := deg_to_rad(-Util.comet_inclination - 90)
var x := sin(inclination_rad) * sin(azimuth_rad)
var y := cos(inclination_rad)
var z := sin(inclination_rad) * cos(azimuth_rad)
var direction := Vector3(x, y, z).normalized()
point_y_axis_toward(global_transform.origin + direction)

4.2.3 Emitter module

Another key module is the Emitter, which manages the behavior of a single jet
of particles originating from the surface of the comet. It controls the properties
of the jets, such as emission speed and diffusion, calculates particle trajectories
under solar radiation pressure, and handles the efficient rendering of thousands of
particles using a MultiMeshInstance3D.

27

AETHER

_ready()

Upon entering the scene tree, the _ready() function initializes the core compo-
nents of the emitter. It sets up the material properties for the particles and pre-
pares the MultiMeshInstance3D for efficient rendering via the init_multimesh()
method. It converts the user-defined latitude and longitude into a 3D direction vec-
tor, computing the initial emission normal of the jets. It also computes the particle
acceleration based on physical properties as described in the Equation 2.11.

func _ready() -> void:

var lat_rad :
var lon_rad :

deg_to_rad(latitude)
deg_to_rad(longitude)

initial_norm = Vector3(
cos(lat_rad) * cos(lon_rad) * 5,
sin(lat_rad) * 5,
cos(lat_rad) * sin(lon_rad) * 5
) .normalized()
norm = initial_norm

init_multimesh(mm_emitter)
add_child(mm_emitter)

update_acceleration()

__process()

In the _process() loop, it simply performs a check each frame to check if the
emitter is lit so that it can change its color accordingly.

func _process(_delta: float) -> void:
is_lit = is_lit_math()
var material = particle_mesh.get_surface_override_material(0)
if is_1lit:
material.albedo_color = color
else:
material.albedo_color = color.darkened(0.5)

Illumination and Activity

Particle emission is conditional on whether the jet is illuminated by the Sun. Based
on the underlying premise that the comet nucleus is a perfect sphere, the problem of
determining illumination is greatly simplified, as there is no complex self-shadowing
from surface topography to consider. Therefore, the is_lit_math() function can
perform this check efficiently by calculating the dot product between the Sun’s

28

AETHER

direction vector and the current global normal of the jets. A positive result indicates
that the angle between these two vectors is less than 90 degrees, meaning the emitter
is on the sun-facing hemisphere and can actively release particles.

func is_lit_math() -> bool:
var comet_basis: Basis = get_parent().global_transform.basis
var global_space: Vector3 = (comet_basis * norm).normalized()
global_space = global_space.rotated(
Vector3.LEFT,
deg_to_rad(Util.sun_direction + 90))

var result: float = (Util.sun_direction_vector).dot(global_space)
result = (-Util.sun_direction_vector) .dot(norm)

is_1lit result > 0

return is_lit

Simulation Modes

The emitter supports two primary simulation modes: a step-by-step, real-time
mode and a pre-calculated, instantaneous mode.

The real-time simulation is driven by the tick_optimized() function, which is
called for each step of the simulation. It first updates the positions of all existing
particles by calling _accelerate_particle() and then spawns a new particle with
_spawn_particle() if the emitter is currently illuminated.

func tick_optimized(_n_iteration: int) -> void:
moving each particle
for i in range(O0,
mm_emitter.multimesh.visible_instance_count, Util.n_points + 1):

_accelerate_particle(i)
_generate_diffusion_particles(i)

if is_lit_math():
var last_id := mm_emitter.multimesh.visible_instance_count + 1
if last_id < mm_emitter.multimesh.instance_count:
mm_emitter.multimesh.visible_instance_count =
last_id + Util.n_points

_spawn_particle(last_id)
update_norm()

For rapid visualization of the entire coma, the instant_simulation() function
computes the final positions of all particles emitted over a given number of steps. It
iterates through each potential step, checks for illumination, and calculates the final
transform for each spawned particle. The resulting data is aggregated into a buffer

29

AETHER

and sent to the MultiMesh simultaneously, providing a significant performance
boost.

func instant_simulation(_n_steps: int, _angle_per_step: float) -> void:

var particle_transforms: Array[Transform3D] = []
var mm_buffer: PackedFloat32Array = PackedFloat32Array()

for i in range(_n_steps):

if not is_lit_math2(i, _angle_per_step, _normal):
continue

var ith_transform := _accelerate_particle2(_n_steps - i, _normal)
particle_transforms.append(ith_transform)

if diffusion <= 0:
_append_data_to_mm_buffer (mm_buffer, ith_transform, color)

mm_emitter.multimesh.set_buffer (mm_buffer)

Particle Physics and Trajectory

The core of the particle trajectory simulation resides in the acceleration calculation
and its application over time. The update_acceleration() function computes the
acceleration imparted by solar radiation pressure using a standard physics formula
that incorporates the Sun’s luminosity, the distance of the comet from the Sun, and
properties of the particle itself (albedo, diameter, and density).

func update_acceleration() -> void:
Ls / 4PI * c *(AU*xsun_comet_distance) "2
var eps: float = Util.SUN_LUMINOSITY /
((4 * PI) =
Util.LIGHT_SPEED *
pow(Util.AU * Util.sun_comet_distance, 2))

var P: float = eps * (1 + Util.albedo)
P *x 3/ (4% d/2 * p)
var _a: float = P *x 3.0 /
(4.0 *
((Util.particle_diameter / 1000.0) / 2.0) *
(Util.particle_density * 1000.0))

self.a = _a

This acceleration is then used in the _accelerate_particle() function, which
calculates a displacement of the particle at each time step. The displacement is

30

AETHER

determined by the initial velocity of the particle and the effect of solar pressure
over its time alive, correctly oriented within a basis aligned to the Sun’s position.

The calculation is performed within a specific coordinate system or Basis
aligned with the Sun to simplify the physics. On this basis, the Sun’s radiation
pressure acts consistently along a single axis (the negative X-axis). The function
first calculates the displacement due to the initial velocity of the particle (V * t). It
then calculates the displacement from solar pressure using the standard kinematic
equation 1/2 - a - t?, applying it along the predefined sun-facing axis. This local
displacement vector is then transformed back into the global coordinate space and
added to the initial spawn position of the particle to determine its final transform
for the current frame.

func _accelerate_particle(i: int) -> void:

--- 1. Get Particle-Specific Data ---

var _normal_dir_as_color := mm_emitter.multimesh.
get_instance_custom_data(i) as Color

var _normal_dir := Vector3(

_normal_dir_as_color.r,
_normal_dir_as_color.g,
_normal_dir_as_color.b)
var new_basis := Util.orbital_basis
var time_passed: float = time_alive[i] * Util.jet_rate * 60.0
time_alive[i] += 1
--- 2. Calculate initial vel and accel in global space
var global_initial_velocity: Vector3 = _normal_dir * speed
var sun_accel_magnitude: float = 0.5 * a * (time_passed *x 2)
--- 3. Change of Basis ---
var local_velocity := global_initial_velocity * new_basis
--- 4. Calculate offset in the new space ---
var local_offset := Vector3(local_velocity * time_passed)
local_offset.x -= sun_accel_magnitude
--- 5. Convert local offset to global
var global_offset := local_offset * new_basis.transposed()
--- 6. Calculate Final Global Position ---
var final_global_pos := initial_poss[i] + global_offset
var scaled_final_pos := final_global_pos / (Util.scale)
update total space travelled by the particle
total_space[i] += (scaled_final_pos - global_pos[i]).length()
global_pos[i] = scaled_final_pos
--- 7. Create the Final Transform and Set it ---
var final_global_transf := Transform3D(new_basis, scaled_final_pos)
mm_emitter.multimesh.set_instance_transform(i, final_global_transf)

To add visual realism, a cloud of secondary particles is generated by the method
_generate_diffusion_particles() around the primary path of the particle. This
function calculates a "point cloud radius" based on the total distance the primary
particle has traveled and the user-defined diffusion factor. It then spawns several

31

AETHER

secondary particles at random positions within this radius, creating the character-
istic fanned-out appearance of a cometary jet.

func _generate_diffusion_particles(i: int) -> void:
if Util.n_points <= O:
return # no diffusion particles to generate
var center_particle := mm_emitter.multimesh.get_instance_transform(i)
var pc_radius := total_space[i] * (diffusion / 100) * randf ()

for j in range(l, Util.n_points + 1):
var new_pos := Util.generate_gaussian_vector(0, 1, pc_radius)
mm_emitter.multimesh.set_instance_transform(i + j,
Transform3D(Basis() ,center_particle.origin + new_pos))

4.2.4 JPL Horizons Import Module

To facilitate the setup of realistic simulation scenarios, AETHER integrates a
module to directly query and import ephemeris data from the National Aeronau-
tics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) Horizons
system. The JPL Horizons online service provides precise ephemerides for solar
system objects.

API Interaction and Data Retrieval

The import process is managed by the jpl_tab.gd module, which provides a dedi-
cated user interface for querying the Horizons Application Program Interface (API).
The user can specify the target celestial body by name (e.g., "C/2013 R1"), a date
range for the ephemeris data, and the desired time step between data points.

When a search is initiated, the module constructs and sends an Hypertext Trans-
fer Protocol (HTTP) request to the JPL Horizons Web API. The request Uniform
Resource Locator (URL) is built with several key-value parameters that define the
query, including the object identifier (COMMAND), the start and stop times, the step
size, and the specific physical quantities to be returned (e.g., astrometric position,
distances, angular separations).

func _on_search_btn_pressed()

var params := {
"format": "json",
"COMMAND": "’%s’" % query,

"OBJ_DATA": "NO",

"MAKE_EPHEM": "YES",

"EPHEM_TYPE": "OBSERVER",

"CENTER": "’500@399’", # Geocentric
"STEP_SIZE": "’%sh’" % int(step_size),
"ANG_FORMAT": "DEG",

"QUANTITIES": "’%s’" % quantities

32

AETHER

}
#[...]
var error := http_request.request(url)

Data Parsing and Processing

The JPL Horizons API returns a JavaScript Object Notation (JSON) object con-
taining the requested ephemeris data within a single, multi-line string. This raw
text block requires parsing to extract the meaningful values. The parse_ephemeris()
function is responsible for this task.

First, the function isolates the main data table by locating the start ($$SOE)
and end ($$EOE) markers within the text block. It then uses a regular expression to
find and extract key orbital elements that appear before the main table, specifically
the longitude of the ascending node (OM), the argument of perihelion (W), and the
inclination (IN).

A second, more complex regular expression is then applied to iterate through
each line of the ephemeris table. This pattern is designed to capture the distinct
columns of data for each time step, such as the date, time, right ascension, decli-
nation, STO angle, and various distances.

func parse_ephemeris():

var data_start_marker := "$$SOE"
var data_end_marker := "$$EOE"
[...]

Isolate the ephemeris body
var eph_body := data.substr(...)

Regex to find orbital elements like OM, W, IN
var om_result := om_w_in_regex.search(data)

[...]

Regex to parse each line of the ephemeris table
for line in eph_lines:

var result := jpl_regex.search(line)
if result == null:

continue
var entry := {

"date": result.get_string(1l),

"time": result.get_string(2),
"right_ascension": result.get_string(3),
"declination": result.get_string(4),
"sun_pa": result.get_string(5b),

... and so on for all other columns

33

AETHER

Display and Integration

Once parsed, the extracted data is organized into a structured format. The orbital
elements (OM, W, IN) are displayed in their respective fields in the UI. The time-
series ephemeris data is then used to populate a table.

The populate_container() function dynamically creates Ul elements (Label
and HBoxContainer nodes) for each row of data and adds them to a scrollable
list. The user can then reference this imported data to set the parameters in the
"Comet" and "Simulation" tabs.

4.2.5 Camera Module

The camera module provides two distinct camera modes for navigating and in-
specting the 3D simulation environment: a target-focused RotatingCamera and a
FreeRoamCamera. A CameraManager handles the seamless transition between them.

RotatingCamera

The RotatingCamera is designed to orbit a central target, which in this case is
the comet nucleus. This camera is ideal for observing the overall structure of the
coma and the behavior of particle jets from a consistent focal point. It supports
two projection modes: perspective and orthographic, allowing the user to switch
between a realistic 3D view and a projection that preserves parallel lines, which
can be useful for analytical purposes.

Controls

e Rotation: Holding the right mouse button and dragging the mouse rotates
the view of the camera around the target. The sensitivity of this rotation can
be adjusted.

e Zoom: The mouse wheel is used to zoom in and out, changing the distance of
the camera from the target. The zoom level is constrained within a minimum
and maximum range.

e Reset View: Pressing the "R" key resets the camera to its initial distance
and orientation.

e Toggle Projection: The "P" key switches between perspective and ortho-
graphic projection modes.

Implementation

The position of the camera is calculated based on the yaw and pitch angles, which
are updated in response to mouse input. The final position is determined by
placing the camera at a specified distance from the target along its viewing axis.

34

AETHER

The look_at () function ensures the camera is always pointing towards the target.
When switching to orthographic mode, the size property of the camera is adjusted
to match the visible area of the perspective view.

rotating_camera.gd

Update the camera’s position and orientation based on the
current state
func _update_camera_transform() -> void:
if _target_node:
_target_position = _target_node.position

Calculate camera position based on yaw, pitch, and distance

var new_transform := Transform3D.IDENTITY
new_transform = new_transform.rotated(Vector3.UP, _yaw) #
Apply yaw

new_transform = new_transform.rotated(new_transform.basis.x,
_pitch) # Apply pitch

Position the camera ’distance’ units away
position = _target_position + new_transform.basis.z * distance

Make the camera look at the target
look_at(_target_position, Vector3.UP)

FreeRoamCamera

The FreeRoamCamera offers a first-person-style navigation, allowing the user to
move freely throughout the 3D space without being tethered to a specific target.
This mode is beneficial for close-up inspection of particle trajectories and for ex-
ploring the simulation from any desired angle of view.

Controls

e Movement: Standard WASD keys are used for forward, left, backward, and
right movement. "E" and "Q" control movement up and down, respectively.

e Rotation: Holding the right mouse button captures the cursor and allows
the user to look around by moving the mouse.

e Speed Control: The mouse wheel adjusts the maximum movement speed.
Holding "Shift" temporarily increases speed, while "Alt" decreases it.

e Reset View: Pressing the "R" key returns the camera to its default starting
position and rotation.

35

AETHER

Implementation

The physics-based movement of the camera uses an acceleration and deceleration
model to provide a smoother feeling of motion. A velocity vector is updated based
on user input, which is then applied to the position of the camera in the _process
loop. Mouse input is used to adjust the rotation of the camera on its local axes,
with pitch being clamped to prevent the camera from flipping upside down.

free_roam_camera.gd

Updates camera movement based on keyboard input
func _update_movement(delta: float) -> void:
Computes desired direction from key states
_direction = Vector3(
(_d as float) - (_a as float),
(_e as float) - (_q as float),
(_s as float) - (_w as float)

Computes the change in velocity
var offset := _direction.normalized() * _acceleration *
_vel _multiplier * delta \
+ _velocity.normalized() * _deceleration *
_vel_multiplier * delta

... (speed modifiers and veloctty clamping)

translate(_velocity * delta * speed_multi)

CameraManager

The CameraManager is a simple but crucial component that manages which camera
is currently active. It references both the RotatingCamera and FreeRoamCamera
instances.

Implementation

A single function, change_camera(), handles the logic for switching between the
two camera modes. When called, it checks which camera is currently active, turns
it off by setting its enabled property to false, and activates the other camera by
setting its enabled property to true. It also updates the current property of each
camera to inform the engine which view of the camera should be rendered. This
ensures that only one camera is processing input and rendering to the viewport
at any time. Additionally, it updates a Ul label to inform the user of the current
camera mode.

camera_manager.gd

36

AETHER

Switch between a rotating camera and a free Toam camera.
func change_camera() -> void:
if _fr_camera.current:
sets the current camera to the rotating camera
_rot_camera.current = true
_fr_camera.current = false
disable input for the free roam camera and enable the
rotating camera
_rot_camera.enabled = true
_fr_camera.enabled = false
... (update UI label)
else:
sets the current camera to the free roam camera
_fr_camera.current = true
_rot_camera.current = false
disable input for the rotating camera and enable the
free roam camera
_fr_camera.enabled = true
_rot_camera.enabled = false
Util.current_camera_label.text = "Free_Roam Camera"

4.2.6 Save-Load System

To facilitate the reuse of complex simulation setups, AETHER includes a sys-
tem for saving and loading all relevant parameters to a configuration file. The
architecture is designed to be both centralized and modular, ensuring that individ-
ual components manage their own data while a single entity handles the core file
operations.

Architecture

The system is built around a singleton component named SaveManager, globally
accessible throughout the application. The primary role of the manager is to hold
an instance of Godot’s ConfigFile object, which is an in-memory representation
of the configuration file. The SaveManager exposes simple methods to read this
object from or write it to the disk.

Save Process

When the user initiates a save operation, a signal is emitted to all relevant Ul
modules, instructing them to persist their current state. Each module implements
a save_data() function, which is responsible for gathering the values from its
respective input fields (e.g., text boxes, sliders) and writing them to the ConfigFile
instance within the SaveManager. Data is organized into sections (e.g., "[comet]|",
"[simulation|") for clarity and ease of understanding.

37

AETHER

Example: Saving data from a UI panel
func save_data() -> void:

SaveManager.config.set_value("comet", "radius",
float ($Control/EditRadius.text))

SaveManager.config.set_value("particle", "albedo",
float ($Control/EditAlbedo.text))

... and so on for all other parameters

Once all modules have written their data, the SaveManager serializes the entire
ConfigFile object into a human-readable, INI-style format and saves it to the
specified file path.

Load Process

The loading process is the reverse. First, the user selects a configuration file, which
the SaveManager loads and parses into its internal ConfigFile object. Subse-
quently, a signal is broadcast to the Ul modules, triggering their load_data()
functions. Each module is then responsible for querying the SaveManager for the
values it needs and using them to populate its own UI elements.

Example: Loading data into a UI panel
func load_data() -> void:
var radius = SaveManager.config.get_value("comet", "radius",
0)
$Control/EditRadius.set_value(float(radius))

var albedo = SaveManager.config.get_value("particle",
"albedo", 0)
$Control/EditAlbedo.set_value(float(albedo))

This separation of concerns ensures that the SaveManager remains independent
of the details of individual Ul components. Its role is limited to brokering config-
uration data, while each module maintains full responsibility for managing its own
state.

4.2.7 Optimizations

The following section presents the performance optimizations introduced in the
system.

MultiMesh Batching

Rendering Approach Using individual nodes for each particle results in exces-
sive draw calls and significant per-node overhead. The MultiMeshInstance3D class
addresses this by allowing a single node to represent many instances, all rendered
in a single draw call. Each instance can store its own transform, color, and cus-
tom per-instance data, enabling independent positioning, orientation, and visual
properties for each particle without the overhead of separate nodes.

38

AETHER

In AETHER, each emitter is associated with its own MultiMeshInstance3D,
which manages all particles emitted from that source. This approach ensures that
even emitters producing tens of thousands of particles can be rendered efficiently
while maintaining per-particle control.

Additionally, the particle representation was changed from a full spherical mesh
to a simpler point mesh, drastically reducing geometry complexity and improv-
ing rendering performance while remaining visually sufficient for dust and coma
particles.

Implementation

The MultiMesh is allocated once with a fixed maximum instance count based on the
number of particles needed. Active particles increase the visible_instance_count,
avoiding dynamic memory allocation during the simulation. Each emission normal
of the particle and other parameters are encoded in the custom_data of the in-
stance, while color variations are passed via the instance color.

Particle updates are performed differently depending on the simulation mode.
In the instantaneous mode, all particle transforms are precomputed and stored in
a contiguous PackedFloat32Array, which is then uploaded to the GPU in a single
call. In real-time mode, only the transforms of newly spawned or moved particles
are updated each frame.

The corresponding code for updating particle transforms is as follows:

Real-time simulation (_accelerate_particle in emitter.gd)

Update the transform of the i-th active particle

mm_emitter.multimesh.set_instance_transform(i,
instance_local_transform)

Instantaneous simulation (instant_simulation in emitter.gd)

Loop through all steps to compute particle transforms

_append_data_to_mm_buffer (mm_buffer, ith_transform, color)

After all transforms are computed, upload the entire buffer at
once

mm_emitter.multimesh.set_buffer (mm_buffer)

Editor-based and Parameter Tweaks

Rationale Some expensive features do not visually affect the dust-like particles
and thus can be turned off to reduce work for both GPU and CPU. By tweaking
certain parameters through both the editor and the code, the execution time of
the simulation, both instant and not, significantly improved. The following tweaks
were performed:

Tweaks
39

AETHER

e Shadows and GI. Disable shadow casting and receiving for particle mate-
rials; render them unshaded.

e Static typing in GDScript. By default, GDScript is dynamically typed,
meaning a variable can change its type at runtime. However, Godot also
supports static typing, which enforces type consistency, reduces the likelihood
of runtime errors, and allows the engine to apply additional optimizations
during execution.

e Material Mode. Use a single material for all the particles.

Emitter Illumination

In AETHER, the illumination of an emitter is determined to decide whether it should
spawn particles. Two approaches are implemented: a raycasting-based method
(is_lit) and an analytic dot-product method (is_lit_math).

The raycasting method checks for occlusions between the emitter and the light
source, handling arbitrary geometries but at a higher computational cost:

Raycasting approach

var space_state := get_world_3d().direct_space_state

var query :=
PhysicsRayQueryParameters3D.create(light_source.global_position,
global_position)

query.collide_with_areas = true

query.exclude = [$Particle/ParticleArea.get_rid()]

var result := space_state.intersect_ray(query)

is_1it = result.is_empty()

The dot-product method assumes a spherical emitter surface and computes
illumination using the normal of the emitter and the direction of the Sun. It is
~ 1.5x faster (~ 20ps vs ~ 30ps) and more accurate for spherical geometries, but
it does not work if the comet surface is not spherical:

Dot-product approach
func is_lit_math() -> bool:
var comet_basis: Basis = get_parent().global_transform.basis
var global_space_normal: Vector3 = (comet_basis *
norm) .normalized()
global_space_normal =
global_space_normal.rotated(Vector3.LEFT,
deg_to_rad(Util.sun_direction + 90))
var result: float = (-Util.sun_direction_vector).dot (norm)
return result > 0

In practice, is_lit_math is used for efficiency on the rough spherical surface
of the comet, allowing the simulation to determine which emitters are illuminated
quickly. This trade-off prioritizes performance and accuracy for spherical objects,
while sacrificing generality for complex non-spherical geometries.

40

AETHER

light

norma

Figure 4.3: Illustration of how the dot product determines if a point on a sphere is illuminated.
The surface normal at the point (represented by the blue vector) is compared with the light
direction (represented by the yellow vector). The cosine of the angle between them, as indicated
by their dot product, represents the intensity of illumination: positive values correspond to lit
regions, while zero or negative values correspond to shadowed areas.

4.3 User Manual

4.3.1 Installation

To install the application, download the latest .exe build from the GitHub reposi-
tory of the project.! For legacy or older systems, it is strongly suggested to use the
legacy build (GL version) available in the releases section.

Compiling from Scratch

To build the application yourself, it is recommended to compile Godot Engine
4.4 from source with the double-precision flag enabled. Alternatively, you may use
the stable 4.4 release build, which might cause some accuracy issues.

1. Compile the Godot Engine 4.4 and export templates from source with the
double-precision flag enabled, or download the stable release if preferred (with
"built-in" export templates).

2. Clone the project repository:

git clone https://github.com/GDennis01/Project-Aether

3. Open Godot and import the cloned repository as a new project.

4. Build your custom version using the Godot editor’s export menu.

Note: Detailed compilation instructions for Godot, including how to enable custom
flags, are available in the official documentation.?

"https://github.com/GDennis01/Project-Aether/releases

Zhttps : / / docs.godotengine.org / en / 4.4 / contributing / development / compiling /
index.html

41

https://github.com/GDennis01/Project-Aether/releases
https://docs.godotengine.org/en/4.4/contributing/development/compiling/index.html
https://docs.godotengine.org/en/4.4/contributing/development/compiling/index.html

AETHER

4.3.2 User Interfaces

The Graphical User Interface (GUI) of the application is organized into two primary
tabs: Settings and Model.

Settings Tab

The Settings tab, shown in Figure 4.4, is responsible for fetching ephemeris data
from NASA JPL Horizons service and for configuring the parameters required to
compute the scale of the model.

The tab is divided into two main panels. The left panel is dedicated to parameter
input, while the right panel displays the retrieved ephemeris data.

Settings Model Help

CometName: i /2013
CI2012R] Date Right Ascension (Deg) Declination (Deg) Delta (AU) Sun PA (Deg) Sun Distance R(AU) STO (Deg)

. 2025-Nov-07 277.96740 -64.36950 287392520233846 29413 2827307741837 17597
sl X 25-Nov- 277.96956 -64.36877 287398487185133 29416 2827326206313 17592
27791172 -64.36804 287404451744504 29419 2827344670730 17587

End Date: X 2 27797389 -64.36732 28.7410413909949 294.23 28.27363135088 17582
277.97606 6436659 287416373679456 29426 2827381599388 17578

Step Size (h): i 277.97823 -64.36586 28.7422331051010 29429 2827400063629 17573
277.98040 6436513 28.7428286022596 29433 2827418527812 17568
277.98257 -64.36441 287434238592193 29436 2827436991936 17563
277.98474 -64.36368 28.7440188757780 29439 2827455456001 17558
277.98692 6436295 287446136517334 29443 2827473920007 17553
277.98910 6436223 287452081868828 29446 2827492383955 17548
TP (D) oM (Q) 277.99128 -64.36150 287458024810235 29449 28.27510847844 17543
277.99346 -64.36078 287463965339522 29453 2827529311674 17538
277.99564 -64.36005 28.7469903454658 29456 2827547775446 17533
27799782 -64.35933 287475839153606 29459 2827566239159 17529
278.00001 -64.35860 287481772434330 29463 2827584702813 17524
27800220 -64.35788 2874870329478 294.66 282760316409 17519
Table Settings i x 278.00439 6435716 28.7493631732937 294.69 28.27621629946 17514
Astrometric RA & DEC 278.00658 -64.35643 287499557746734 29473 2827640093424 17509
Observer range (delta) 278.00877 -64.35571 287505481334131 29476 2827658556844 17504
Sub-Sun position angle (SN.ang) . 27801097 -64.35499 287511402493079 29480 28.27677020205 17499
Heliocentric range (r) . 27801316 6435427 287517321221524 29483 28.27695483507 17494
Sun-Target-Observer ~PHASE angle (STO) 27801536 6435355 287523237517415 29486 28.27713946750 1.7489
Orbit plane angle (PAng) 27801756 -64.35282 287529151378692 294.90 2827732409935 17484
True anomaly angle (Tru Anom) g 27801976 -6435210 287535062803299 294.93 2827750873061 17479
Sky motion angle (Sky mot PA) 278.0219 6435138 287540071789173 294.96 2827769336129 17474
27802417 -64.35066 287546878334252 295.00 2827787799138 17469
27802637 6434994 287552782436470 295.03 2827806262088 17465
27802858 28.7558684093759 295.06 2827824724980 17460
Delta (AU) : 28.739252 27803079 28.7564583304048 29510 28.27843187813 17455
27803300 28.7570480065266 29513 2827861650587 17450

2025-Nov-08 27803522 287576374375337 29517 2827880113302 17445
Image resolution (arcsec/pixel): i 0.252 2025-Nov-08 278.03743 28.7582266232186 295.20 2827898575959 17440
2025-Nov-08 27803965 287588155633732 29523 2827917038558 17435
2025-Nov-08 27804186 28.7594042577896 29527 2827935501097 17430
FOV (Arcsec/Km): 2025-Nov-08 278.04408 - 28.7509927062593__295.30 2827953963578 17425

Orbital Elements i
EC(e) QR (AU)

W (w) IN (i)

[N NN NN

X Load CCD Image

CCD image size (pixels) i 1200

Image resolution (Km/Pixel):

EXPORT CSV

Figure 4.4: The Settings tab, where it is possible to import ephemeris data from NASA JPL
Horizons service and configure the input needed to compute the scale of the model.

The configuration panel on the left is further organized into four distinct sec-
tions:

JPL Horizons Query This section is used to request ephemeris data by speci-
fying the following parameters:

e Comet Name: The comet name for which the ephemeris data are desired.
The search button sends a query to the NASA JPL Horizons service.

e Start/End Date: Starting and (optional) ending date of the ephemeris data

e Step Size: Time increment, in hours, for the requested ephemeris data.

Loading the data from the Horizons service also sets up automatically some ge-
ometry data (e.g., sun distance and position, distance of the comet from Earth),

42

AETHER

as well as data needed to run the model, in the Model tab (or override them if
already present), so this section is crucial for the whole software! Manual input is
still possible in the event of automatic import failure.

Orbital Elements Once the data has been successfully retrieved, this section
displays the comet’s key orbital elements (Section 2.2.2):

e EC (e): Eccentricity of the orbit.

QR (q): Perihelion distance in AU.

TP (T): Time of perihelion passage.

OM (Q): Longitude of the ascending node

W (w): Argument of perihelion.

IN (i): Inclination.

Before importing, users can also customize which ephemeris parameters are
displayed in the main table on the right; the parameters needed for the model are
uploaded regardless.

Telescope Properties This section allows for the configuration of the reference
telescope image, which determines the scale of the model:

e Delta (AU): The distance between the observer (the telescope) and the
comet in Astronomical Units.

e Charge-Coupled Device (CCD) image size (pixels): The dimensions,
in pixels, of the telescopic image. A square image is assumed (width equals
height).

e Image resolution (arcsec/pixel): The angular resolution of the telescope
image.

e Image resolution (km/pixel): The physical scale at the distance of the
comet, calculated from the above parameters.

e Field of View (FOV) (arcseconds and Km): The field of view of the

telescope image and of the main window, in both arcseconds and kilometers.

This final section provides an option to load a telescope image to be placed as a
layer below the model, allowing for direct comparison.

Right panel This panel displays the retrieved ephemeris data and allows down-
loading the data in a Comma Separated Values (CSV) file format.

43

AETHER

Model Tab

The Model tab, shown in Figure 4.5, is dedicated to defining the physical properties
of the comet nucleus, of the emitted dust, and the dust jets, as well as controlling
the model execution.

The tab is further divided into several distinct sections.

Nucleus Model

:—mp 3 3

sun

Distancer (AU) 2827307741 sT0 (")

Subsolar Latitude Sun PA ()

Nucleus and Spin Axis i

Radius Rotation Period (h)
0.47
o L]
3
Dec ()
° . 2025-Nov-07 00:00

Spin Axis PA () 82.81 ez |z exts
2R S e

Spin Axis Inclination () 3 44

Save Image
Dust

Dustdensity (g/cm®) 0.8 Dust Diameter (mm) o Change Date /Hour i

Ko« »
Albedo 0.04

Beta 049 Accel. (m/s?) CCD Image

Model transparency i
Dust Jets
Modeling Parameters
ID Speed (m/s) Lat.(") Long.(?) Diffus. Color Toggle Remove

o -54.0 X Number Nucleus rotations
Integration step (min)

N. particles emitted per step

1 X
2 4 X X
3 X

Run Model

24
2025-Nov-07 00:00 1050524 Km SIM INST

—

arcsec @D Km Save Image

L2

Figure 4.5: Model tab, where it’s possible define the physical properties needed to start the
modeling.

Sun This section displays key information about the Sun’s position relative to
the comet.

e Distance r (AU): The heliocentric distance of the comet.
e STO (°): The Sun-Target-Observer angle.

e Subsolar Latitude: The latitude of the point of maximum insolation on
the nucleus. This field is automatically computed based on different orbital
elements.

e Sun PA (°): The position angle of the Sun.

Nucleus and Spin Axis This section defines the physical characteristics and
orientation of the comet’s nucleus.

e Radius: The radius of the nucleus. This parameter is used for visualization
purposes only and does not influence the dust dynamics model.

e Rotation Period (h): The time for one full rotation of the nucleus.

e Spin Axis Orientation: Defines the orientation of the nucleus spin axis.

44

AETHER

— Right Ascension (RA) and Declination (DEC) (°): The RA and
DEC of the spin axis pole. These input values are estimated by the
user and define the direction in which it is spinning (by convention,
counterclockwise).

— PA and Inclination (°): Define the direction of the spin axis and its
inclination onto the sky plane. They are computed automatically from
the Spin Axis RA and DEC coordinates, or can be entered manually.

— Important Distinction: The RA and DEC values for the spin axis
must not be confused with the ephemeris data in the Settings tab.

* Spin Axis RA/DEC (Model Tab): A pair of coordinates defin-
ing the orientation of the comet’s pole.

* Ephemeris RA/DEC (Settings Tab): Define the position of
the comet in the sky as seen from the observer.

e)\, [3: Ecliptical coordinates of the pole. They are computed automatically
based on estimated RA and DEC of the pole.

e ¢, 1. Orbital coordinates of the pole. They are computed automatically based
on A and £.

Dust Defines the properties of the dust particles.

e Dust Density (g/cm®): The bulk density of the dust emissions.
e Dust Diameter (mm): The size of the dust grains.
e Albedo: The reflectivity of the dust.

e Beta: A calculated, read-only value representing the ratio of solar radiation
pressure force to solar gravity for the selected dust properties.

e Accel. (m/s®): The resulting acceleration of the dust particles due to solar
radiation pressure. It is a read-only field.

Dust jets A table to manage active emission regions (jets) on the nucleus surface.
Each jet is defined by its ID, Speed, location (latitude and longitude), diffusion
factor, and color. Each jet can be toggled on/off and removed. A new jet can be
added using the "Add new jet" button.

Change Date Once the ephemeris data has been imported, it is possible to switch
to the previous or next date, or to the first or last date. This alters the orientation
of the spin axis and the extent of isolation of the nuclear model in response to the
changing geometric conditions.

Telescope Image Once a telescope image of the comet has been selected in the
Settings tab, it is shown in a layer below the model; it is possible here to toggle it
on/off and to regulate the transparency of the model to compare it to the telescopic
image better.

45

AETHER

Modeling Parameters Defines the parameters of the modeling (number of nu-
cleus rotations, integration step, and number of particles emitted each step).

Running the model Once all the parameters have been configured, it is possible
to run the model by pressing, in the bottom-right part of the tab, the INST button
for instant modeling or the SIM button for automated step-by-step modeling. It
is also possible to save the image of the modeling.

Nucleus model A dedicated 3D view in the upper-right of the tab shows a
close-up of the nucleus, its orientation, the spin axis (green arrow, Y axis), and the
direction to the Sun (yellow). It is possible to toggle each axis on or off, to display
the grid pattern on the model, and to show the current date if the ephemeris data
has been imported. This view also allows for saving an image of the nucleus model.

Model Viewport A dedicated viewport of the model of a size of 900x900 pixels.
Here is where the modeling is displayed. It is possible to toggle the display of the
grid showing RA/DEC coordinates and the date on or off. It is also possible to
view the scale of the modeling in either arcseconds or kilometers.

Miscellaneous features

Help panel A dedicated help panel is available, providing a quick reference for
navigating the Model Viewport. The primary controls are:

e Right-click and drag: Rotate the camera around the comet.
e R key: Reset the camera to the default Earth-based perspective.
e Mouse Wheel Up: Zoom in.

e Mouse Wheel Down: Zoom out.

Tooltips Most input fields are accompanied by an info button to enhance usabil-
ity. Hovering the cursor over this button reveals a tooltip that provides a brief
description of the parameter or its function.

Load and Save Configuration The interface includes buttons that allow users
to save their current session settings to a configuration file. This file can be reloaded
at a later time, allowing users to restore a previous modeling session easily.

46

Chapter 5

Experiments

In this chapter, a series of experiments performed with AETHER is presented.
Each section is dedicated to a specific comet.

5.1 C/2025 A6 (Lemmon)

C/2025 A6 (Lemmon) is a recently discovered comet (as of the time of writing),
first spotted in January 2025 by the Mount Lemmon Survey in Arizona. The comet
follows a long, elliptical orbit that brings it close to the Sun approximately every
17300 years.

The comet reached its closest point to the Sun (perihelion) on November 8, 2025,
at a distance of about 0.53 AU, and made its closest approach to Earth a few weeks
earlier, on October 21, 2025, at roughly 0.60 AU. The nucleus of Lemmon has
been modeled with five active emission regions: four located along the 0° meridian
and one at 90°, with latitudes ranging from —40° to +60°.

The experiments on Lemmon were carried out on two different dates: October
8 and October 11, 2025.

5.1.1 8th October 2025

On this date, the comet was located at a distance of ~0.82 AU from Earth and
~0.88 AU from the Sun. The experiment was conducted using an image taken
with the Savonarola 0.4m telescope (Stazione Astronomica di Sozzago, Italy) IAU-
MPC A12 (Figure 5.1). The overlay comparison shows that AETHER successfully
reproduces the overall structure of the comet’s coma observed on this date.

5.1.2 11th October 2025

At this time, the comet had moved closer to both Earth and the Sun, with distances
of ~ 0.74 AU and =0.83 AU, respectively. The experiment was based on an image
taken with the Schmidt 67/92 telescope (Asiago Mount Ekar, Italy) INAF-OAPd
(Figure 5.2). The overlay comparison confirms that AETHER continues to model
the coma structure with high accuracy.

47

Experiments

(a) Telescopic image of comet (b) Simulation generated by (c¢) Overlay comparison between
C/2025 A6 (Lemmon) captured by =~ AETHER for the same date. model and observation.
Federico Manzini on October 8,

2025.

Figure 5.1: Observations and simulations of comet C/2025 A6 (Lemmon) on 8 October 2025.

(a) Telescopic image of comet (b) Simulation generated by (c¢) Overlay comparison between
C/2025 A6 (Lemmon) captured by =~ AETHER for the same date. model and observation.
Federico Manzini on October 11,

2025.

Figure 5.2: Observations and simulations of comet C/2025 A6 (Lemmon) on October 11, 2025.

5.2 (/2022 N2 (Pan-STARRS)

C/2022 N2 (Pan-STARRS) is a comet discovered by the Pan-STARRS 2 tele-
scope located at the Haleakala observatory on July 4, 2022. The comet has a nearly
hyperbolic trajectory, suggesting it may have originated from the Oort cloud or be-
yond. The nucleus of C/2022 N2 has been modeled with two active emission
regions: both located at the 0° meridian with latitudes at -40° and 40° respectively.

The experiment on the Pan-STARRS was carried out on August 15, 2024, at
a heliocentric distance of about 3.9 AU, using an image taken with the Copernico
1.82m telescope (Asiago Mount Ekar, Italy) INAF-OAPd (Figure 5.3).

Again, AETHER shows promising results in matching the coma structure of
the comet.

48

Experiments

(a) Telescopic image of comet (b) Simulation generated by (c¢) Overlay comparison between
C/2022 N2 (Pan-STARRS) AETHER for the same date. model and observation.
captured by the Asiago

Astrophysics Observatory on

August 15, 2024.

Figure 5.3: Observations and simulations of comet C/2022 N2 on August 15, 2024.

5.3 C/2013 R1 (Lovejoy)

C/2013 R1 (Lovejoy) is a long-period comet discovered on September 7, 2013,
by Australian astronomer Terry Lovejoy using a 0.2 meter Schmidt—Cassegrain
telescope. It became one of the most visible comets from the Northern Hemisphere
in late 2013, reaching naked-eye visibility in November of that year. Its orbit has a
period of approximately 7°000 years, with a perihelion distance of 0.81 AU, which
it reached on December 22, 2013 [5].

The nucleus of Lovejoy has been modeled with four active emission regions, all
located close to the 0° meridian except one slightly shifted eastward. These regions
are distributed across a wide range of latitudes: one in the southern hemisphere
at —62°, another near the equator at —10°, a third in the northern mid-latitudes at
+30°, and a fourth at +10° latitude and +3° longitude.

The experiment on the Lovejoy comet was carried out on December 3, 2023,
at a heliocentric distance of 0.89 AU, using an observational image obtained by
Federico Manzini (Figure 5.4).

5.4 67P/Churyumov-Gerasimenko

67P /Churyumov—Gerasimenko is a short-period comet with an orbital period
of approximately 6.45 years. It was discovered in 1969 by Klim Churyumov and
Svetlana Gerasimenko from the Kiev University Astronomical Observatory during a
photographic survey of comet 32P /Comas Sola. The comet gained scientific interest
as the primary target of the ESA Rosetta mission. [6]

The nucleus of 67P /Churyumov—Gerasimenko has been modeled with four
active emission regions derived from the observed jet morphology. These regions
are located at latitudes and longitudes of (-52°, 0°), (—68°, 45°), and (40°, 90°),
covering both hemispheres and spanning a wide longitudinal range.

49

Experiments

(a) Telescopic image of comet (b) Simulation generated by (c¢) Overlay comparison between
C/2013 R1 (Lovejoy) captured by AETHER for the same date. model and observation.
Federico Manzini on December 3,

2023.

Figure 5.4: Observations and simulations of comet C/2013 R1 (Lovejoy) on 03 December 2023.

The experiment on the 67P comet was carried out on January 11, 2022 at
a heliocentric distance of ~ 1.48 AU, using an observational image obtained by
Virginio Oldani (Figure 5.5).

77sKm

(a) Telescopic image of comet (b) Simulation generated by (c¢) Overlay comparison between
67P /Churyumov-Gerasimenko AETHER for the same date. model and observation.
captured by Virginio Oldani on

January 11, 2022.

Figure 5.5: Observations and simulations of comet 67P/Churyumov-Gerasimenko on January 11,
2022.

50

Chapter 6

Conclusion

6.1 Conclusion

While the system successfully models dust particle dynamics in a 3D environment,
the experimental phase highlighted specific limitations in the current implementa-
tion.

Notably, the algorithm for computing the model scale requires refinement to en-
sure mathematical consistency with real-world dimensions. Furthermore, the ren-
dering pipeline currently produces a greenish hue in the particle model; this artifact
lowers the contrast and makes direct visual comparison with grayscale telescopic
images less efficient. Addressing these flaws is a priority for future development.

6.2 Future Updates

6.2.1 GPU Particle Simulation with Compute Shaders

The current CPU-based particle simulation is a performance bottleneck for high
particle counts. A key future update is to migrate the physics calculations to a
compute shader. Offloading the particle update loop to the GPU would allow for
massively parallel processing. This would involve storing particle data (position,
velocity, etc.) in GPU buffers and using a compute shader to update their states
each frame, dramatically increasing the scale and density of the simulated coma.

6.2.2 Ephemeris-Driven Dynamic Simulation

Currently, the application uses imported JPL Horizons data to set the initial con-
ditions for a simulation at a single point in time. A key future enhancement is to
allow the simulation to run across the entire imported date range.

This would involve stepping through each ephemeris entry, automatically updat-
ing the orbital parameters of the comet, such as its distance from the sun, position,
and orientation, at each time step. This feature will enable the modeling of the

51

Conclusion

dust environment over extended periods, showing how the coma and tail evolve as
the comet travels along its orbit and providing a more dynamic and scientifically
accurate simulation.

6.2.3 Modeling Rotational Precession

The current model assumes the comet rotates about a fixed axis. Implementing
rotational precession would be a significant enhancement. For a non-spherical
nucleus subject to torques from asymmetric outgassing, the spin axis will not remain
fixed in space but will precess over time.

This motion is critical for accurately modeling the long-term illumination condi-
tions on the surface of the comet. By simulating precession, the model will account
for the evolving orientation of active emission regions relative to the Sun.

6.2.4 UI Visual Redesign

The current UI is built with a focus on functionality, utilizing Godot’s default Ul
components. A future update will involve a complete visual redesign to create a
more polished and professional interface. This would include the development of
a custom theme with a proper color palette and fonts appropriate for a scientific
tool. Additionally, custom icons would be designed to replace standard buttons,
improving visual clarity and providing a better user experience.

52

Bibliography

1]

2l

3]

4]

5]

(6]

F. Manzini, V. Oldani, R. Behrend, P. Ochner, O. Baransky, and D. Starkey,
«Comet C/2013 X1 (PanSTARRS): Spin axis and rotation period», Planetary
and Space Science, vol. 129, 2016.

J.-B. Vincent, «From observations and measurements to realistic modeling of
cometary nuclei», Ph.D. dissertation, Technische Universitdt Braunschweig,
2010. [Online]. Available: https://www . mps . mpg . de/phd/theses/from-
observations-and-measurements-to-realistic-modeling-of-cometary-
nuclei.pdf.

J.-B. Vincent, H. Bohnhardt, and L. M. Lara, «A numerical model of cometary
dust coma structures», Astronomy € Astrophysics, vol. 512, A60, Apr. 2010,
Planets and planetary systems. DOI: 10.1051/0004-6361/200913418.

A. L. Lesage and G. Wiedemann, «Determination of the position angle of
stellar spin axes», Astronomy & Astrophysics, vol. 563, A86, 2014. DOI: 10.
1051/0004-6361/201322964.

G. W. Kronk, C/2013 R1 (Lovejoy), Gary W. Kronk’s Cometography, Archived
from the original on 10 November 2013., 2013. [Online|. Available: https :
//web .archive . org/web/20131110072605/http: //cometography . com/
lcomets/2013r1.html.

International Astronomical Union, Klim ivanovich churyumov, International
Astronomical Union.

53

https://www.mps.mpg.de/phd/theses/from-observations-and-measurements-to-realistic-modeling-of-cometary-nuclei.pdf
https://www.mps.mpg.de/phd/theses/from-observations-and-measurements-to-realistic-modeling-of-cometary-nuclei.pdf
https://www.mps.mpg.de/phd/theses/from-observations-and-measurements-to-realistic-modeling-of-cometary-nuclei.pdf
https://doi.org/10.1051/0004-6361/200913418
https://doi.org/10.1051/0004-6361/201322964
https://doi.org/10.1051/0004-6361/201322964
https://web.archive.org/web/20131110072605/http://cometography.com/lcomets/2013r1.html
https://web.archive.org/web/20131110072605/http://cometography.com/lcomets/2013r1.html
https://web.archive.org/web/20131110072605/http://cometography.com/lcomets/2013r1.html

	List of Figures
	Acronyms
	Introduction
	What is a Comet
	Description of the Modeling Approach
	Defining the Problem

	Basic Concepts
	Notions/Terms
	Equatorial, Orbital, and Ecliptic Planes
	Spin Axis and Comet Orientation
	Sun Position

	Orbit and Kepler Laws
	Kepler's Laws of Planetary Motion
	Orbital Elements

	Dust Particle Position
	Dust Particle Acceleration
	Equatorial and Orbital System

	Representing Orientation: Euler Angles and Quaternions
	Euler Angles
	Quaternions
	Fundamental 3D Graphics Concepts

	Godot
	Overview
	Architecture and Node System
	Node Categories
	Transform2D and Transform3D
	Rotations in 3D Space
	Scene Composition and Instancing
	Signals and Communication
	Execution Lifecycle
	Advantages of the Node System

	Scripting with GDScript
	Rendering and Performance
	Physics Engine
	Editor and Tooling
	Scene Editing
	Scripting Environment
	Debugging and Profiling
	Shader
	Project Configuration and Exporting
	Version Control Compatibility
	Live Editing and Hot Reloading

	Limitations
	Conclusion

	AETHER
	Architecture
	Code Structure
	User Interactions

	Developer Manual
	Inter-Module Communication
	Comet module
	Emitter module
	JPL Horizons Import Module
	Camera Module
	Save-Load System
	Optimizations

	User Manual
	Installation
	User Interfaces

	Experiments
	C/2025 A6 (Lemmon)
	8th October 2025
	11th October 2025

	C/2022 N2 (Pan-STARRS)
	C/2013 R1 (Lovejoy)
	67P/Churyumov-Gerasimenko

	Conclusion
	Conclusion
	Future Updates
	GPU Particle Simulation with Compute Shaders
	Ephemeris-Driven Dynamic Simulation
	Modeling Rotational Precession
	UI Visual Redesign

	Bibliography

