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Abstract

Automatic code comment generation is the task of producing concise natural-
language summaries that describe the functionality, behavior, and intent of a given
piece of source code. Such summaries support program comprehension, maintenance,
and overall software quality.

As modern software systems grow in scale and complexity, automatic comment
generation has become increasingly relevant in software engineering, where fast-
paced development cycles and large codebases often lead to incomplete, outdated,
or missing documentation. Transformer-based language models such as CodeBERT
have achieved strong results by leveraging large-scale pretraining on code–text pairs,
yet standard supervised fine-tuning typically emphasizes token-level patterns and
may fail to capture deeper semantic properties of program behavior. This limitation
frequently results in comments that are fluent but semantically shallow, offering
limited insight into the logic and intent of the underlying code.

This thesis investigates whether contrastive representation learning can enhance
the semantic quality of generated comments by reshaping the encoder’s internal
embedding space prior to generative fine-tuning. Two complementary contrastive
strategies are explored. The first, code–code alignment, learns functional similarity
between semantically equivalent Python snippets, promoting stable and intention-
aware representations. The second, code–diff alignment, models fine-grained changes
across consecutive code revisions extracted from version-control histories, aiming to
capture the semantics of software evolution.

Both encoders are subsequently integrated into encoder–decoder (ED) architec-
tures and fine-tuned for comment generation on the Python subset of the CodeXGLUE
benchmark. A multi-phase training regime with staged unfreezing and continuation
rounds is adopted to ensure stable optimization under limited computational resources.
The experimental evaluation—spanning ROUGE-L, SacreBLEU, METEOR, and
BERTScore—reveals that the baseline CodeBERT model remains strongest overall,
while the contrastively trained code–code encoder achieves competitive performance
and produces semantically coherent summaries. The diff-aware encoder, although
conceptually promising, shows reduced generative fluency due to noise and partial
context in commit-level data.

Despite mixed quantitative outcomes, the study demonstrates that contrastive
objectives effectively structure code representations and can enrich encoder semantics
in ways that extend beyond lexical patterns. The results highlight both the potential
and the current limitations of applying contrastive and change-aware pretraining to
code generation tasks, suggesting that larger, cleaner corpora and hybrid training
objectives may be necessary to fully leverage these signals. Overall, this work
contributes a reproducible methodological framework, a detailed empirical analysis,
and a set of insights that inform future research on semantically grounded code
understanding and automatic software documentation.
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Chapter 1

Introduction

1.1 Context and Motivation

In modern software engineering, source code summarization plays a crucial role in
bridging the gap between formal code representations and human comprehension.
Developers are constantly required to understand, maintain, and modify extensive and
often unfamiliar codebases, sometimes written by others years earlier. The ability to
quickly grasp the intent and behavior of a function or module is essential for effective
debugging, feature development, and collaboration within teams. Concise summaries
and descriptive comments can significantly improve code readability and serve as
a cognitive bridge between implementation details and the developer’s conceptual
model of the system.

However, as software systems grow in scale and complexity, producing and
maintaining high-quality documentation has become increasingly difficult and time-
consuming. Teams working under strict deadlines frequently prioritize functionality
and delivery over documentation quality, leading to missing, incomplete, or outdated
comments. This absence of consistent, reliable documentation can slow down software
evolution, increase the risk of introducing bugs, and ultimately raise maintenance
costs over a system’s lifecycle.

Code summarization refers to the task of generating natural-language descriptions
that convey the functionality, purpose, and logic of a piece of source code. High-
quality summaries can enhance program comprehension, reduce maintenance costs,
and mitigate human error during software evolution [1]. Despite its recognized
importance, many real-world repositories still lack meaningful or up-to-date comments.
Developers either skip writing them due to time constraints or rely on automatically
generated docstrings that merely replicate identifiers and parameter names, providing
little real insight into program behavior. Manual commenting remains an expensive
and error-prone process [2], which explains the growing need for automatic solutions.

In recent years, the software engineering community has devoted increasing
attention to automatic code summarization, an interdisciplinary area that intersects
software maintenance, machine learning, and natural language processing (NLP). The
goal is not merely to produce syntactically correct sentences but to generate coherent,
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Introduction

semantically faithful explanations that help developers understand what a piece of
code does and why it was implemented that way [3]. To reach that level of semantic
faithfulness, models must learn to capture the behavior of code as transformations
of data—how inputs are read, processed, and returned. This broader notion of
data-level semantics extends summarization beyond textual translation toward the
actual dynamics of computation.

1.2 Problem Definition and Challenges

Despite remarkable progress, automatic code summarization remains a challenging
research problem. Unlike natural language text, source code is highly structured and
governed by strict syntactic and semantic rules. It expresses precise computational
logic but omits much of the human reasoning behind it. A successful model must
therefore go beyond surface patterns and capture the underlying semantics of code.

Several major challenges persist in this domain:

• Semantic alignment: Mapping code to natural language requires connecting
low-level syntactic constructs (loops, function calls, variable assignments) to
high-level intentions (filter elements, normalize data, update configuration).
This alignment is complex and often ambiguous.

• Data-driven semantics: Most summarization systems describe what a func-
tion appears to do syntactically, but few account for how it manipulates data.
Capturing the semantics of data-intensive operations—what variables change,
how states evolve, or how results are derived—is essential for meaningful
documentation.

• Data scarcity and imbalance: Large, high-quality code–comment datasets
are scarce. While open-source repositories provide abundant code, the associ-
ated comments are often noisy, incomplete, or stylistically inconsistent, making
supervised learning difficult.

• Contextual dependence: Many snippets depend on external information such
as class hierarchies, imported modules, or project-specific naming conventions
that are not explicitly contained in the snippet itself, leading to incomplete
representations of program semantics.

• Generalization: Models trained on one language, domain, or repository may
fail to generalize to others due to differences in syntax, style, or programming
paradigms.

• Evaluation difficulty: Traditional metrics such as BLEU, METEOR, or
ROUGE assess lexical similarity rather than semantic faithfulness, and therefore
do not always reflect whether the generated summary truly conveys the intended
meaning of the code.
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These issues highlight a broader limitation of purely supervised text generation:
models often learn superficial token correlations instead of true semantic understand-
ing. Addressing these challenges requires learning mechanisms able to represent not
only syntactic structure but also the effect of code execution on data. Representing
differences between code fragments—the code diff —offers a way to approximate
these behavioral effects. A diff can describe the addition, deletion, or modification of
statements as well as the changes they induce on variables and control flow. Figure 1.1
illustrates how code diffs expose meaningful behavioral changes between revisions,
making them valuable for learning representations that capture fine-grained semantic
evolution. By learning from diffs, a model gains exposure to semantic variations: it
sees how small textual edits can translate into major behavioral shifts or, conversely,
how different implementations can yield equivalent outcomes. This perspective opens
the door to modeling code semantics through its observable data transformations
rather than its static form.

def foo(int a, int b):
     int c = a + b 
     return c

def foo(int a, int b):
     int c = a - b 
     return c

Semantic change

Figure 1.1: Example of a code diff highlighting behavioral changes between two
function revisions. Learning from diffs helps the model capture fine-grained semantic
evolution beyond superficial syntax.

1.3 The Role of Artificial Intelligence

The rapid advancement of deep learning and transformer-based architectures has
profoundly reshaped the field of code intelligence. Large language models (LLMs)
now demonstrate an unprecedented ability to process, understand, and generate both
source code and natural language, narrowing the gap between programming and
linguistic reasoning. This convergence has enabled models to capture complex code
semantics and generate human-readable outputs with remarkable fluency.

The key innovation underlying this progress lies in the transformer architec-
ture [4], which introduced self-attention as a mechanism for modeling long-range
dependencies. Leveraging this design, large-scale pre-trained models such as Code-
BERT [5], CodeT5 [6], and PLBART [7] have become central components of modern
code-understanding pipelines. Pre-trained on massive corpora of code–text pairs
from repositories like GitHub, these models learn to encode both syntactic structure
and semantic intent across multiple programming languages [8, 9]. They serve as
general-purpose encoders that can be fine-tuned for downstream tasks such as code
search, classification, or summarization.

However, while pretraining yields powerful general representations, downstream
fine-tuning is crucial for task-specific specialization. Conventional supervised fine-
tuning aligns code directly with its paired comment, but this approach often overfits
to stylistic patterns in the dataset, producing grammatically fluent yet semantically
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shallow summaries [10]. Moreover, such models tend to imitate lexical tokens
without capturing the deeper logic of computation. To overcome this limitation,
recent studies have explored contrastive learning [11, 12, 13], a self-supervised
paradigm that structures the embedding space around semantic similarity. By pulling
related examples closer and pushing unrelated ones apart, contrastive objectives
teach the encoder to recognize functional equivalence across syntactically different
programs. When applied to code, they promote embeddings that represent intent
and behavior, not just textual co-occurrence. This strategy has already shown success
in code retrieval, clone detection, and defect prediction, and it has recently begun
to influence generative settings such as automatic documentation and comment
generation. Figure 1.2 provides a conceptual illustration of the contrastive learning
objective used during encoder pretraining, showing how positive and negative pairs
shape the semantic structure of the embedding space.

Embedding Space

A

N

P

Learning

N

A

P

Figure 1.2: Illustration of the contrastive learning objective. Positive code pairs
are pulled closer in the embedding space, while negative pairs are pushed apart,
promoting semantic structuring of representations.

At the same time, modeling the dynamics of code evolution through code diffs
introduces complementary information that contrastive learning alone cannot capture.
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While contrastive objectives shape a global semantic geometry, diff-based training
exposes the model to local transformations that directly reflect how data flow and
program state change between versions. Combining the two allows the encoder
to develop a richer representation of behavior: contrastive signals enforce global
semantic alignment, whereas diff signals encode fine-grained data-centric semantics.
Together, they move the task from mere textual translation toward an integrated
understanding of code as a system that transforms data.

1.4 Objectives and Contributions

The present work investigates how these two paradigms—contrastive learning and
diff-based semantic modeling—can be combined to improve automatic code com-
ment generation. The study builds upon CodeBERT as a pre-trained foundation and
introduces a fine-tuning pipeline in which the encoder is first enhanced through se-
mantically structured contrastive objectives and then adapted to comment generation
within an encoder–decoder (ED) framework. The goal is to produce summaries that
are both linguistically coherent and semantically faithful to the data transformations
performed by the code.

Three encoder variants are explored:

1. A Base Encoder, fine-tuned directly on standard code–comment pairs using
a supervised objective;

2. A Code–Code Encoder, trained on semantically equivalent code snippets
as positive samples to reinforce structural and functional awareness through
contrastive learning;

3. A Code–Diff Encoder, trained on pairs of code edits extracted from version-
control systems to model the semantics of incremental code changes and their
effects on data.

The encoder variants are subsequently integrated into encoder–decoder archi-
tectures that generate comments conditioned on the learned representations. Com-
parative evaluation assesses how the inclusion of contrastive and diff-based training
influences both lexical and semantic quality metrics. Quantitative results (ROUGE-
L, SacreBLEU, METEOR, BERTScore) are complemented by qualitative analyses
highlighting differences in comment completeness and behavioral accuracy.

Beyond empirical evaluation, the study contributes a broader perspective on how
learning paradigms developed for natural-language understanding can be adapted to
software artifacts. By uniting contrastive learning with data-centric representations
derived from code diffs, the work aims to shift automatic summarization toward
models that describe what code does—its impact on data and state—rather than
merely what it looks like. This orientation toward behavior-aware documentation
represents a step forward in the pursuit of semantically grounded code intelligence.
To provide a clearer visual summary of the proposed approach, the overall training
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and fine-tuning pipeline is illustrated in Figure 1.3. The diagram highlights the two-
stage contrastive pretraining strategy and its integration into the encoder–decoder
architecture for comment generation.

Code-code
contrastive training Code-code encoder

Code-diff 
contrastive training Code-diff encoder

Encoder-decoder
models Comment generation

Figure 1.3: High-level overview of the proposed pipeline. Contrastive pretraining
produces two specialized encoders (code–code and code–diff), which are subsequently
integrated into encoder–decoder architectures for downstream comment generation.
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Chapter 2

Related Works

Research in automatic code summarization builds upon decades of progress in
the broader field of source code understanding and representation learning. The
intersection of software engineering and natural language processing has gradually
evolved from syntactic analysis toward deep semantic modeling, enabling machines to
reason about the meaning and intent of code. The study of this evolution highlights
how advances in representation, pretraining objectives, and contrastive methods have
shaped current approaches to code–text alignment and comment generation.

2.1 Code Representation Learning

Machine learning models designed to process source code must transform it into
numerical vectors while preserving its syntactic structure and semantic intent. Early
approaches relied on hand-crafted features extracted from Abstract Syntax Trees
(ASTs), Control Flow Graphs (CFGs), or Program Dependence Graphs (PDGs) to
encode the structural hierarchy of code elements [14, 15]. Although these symbolic
representations captured some syntactic regularities, they required manual feature
engineering and lacked the ability to generalize across programming languages and
styles.

The emergence of deep learning shifted this paradigm by enabling data-driven
feature extraction. Early neural approaches modeled source code as token sequences
and employed recurrent neural networks (RNNs) and long short-term memory (LSTM)
architectures to capture local dependencies [16]. These methods improved code
summarization and classification by learning distributed code embeddings. However,
because code differs from natural language in its hierarchical and compositional
structure, sequential encoders often struggled to capture non-local relationships such
as variable scoping, function dependencies, or nested control logic.

To address these limitations, researchers proposed structure-aware representations
that explicitly leverage the hierarchical nature of code. For instance, tree-based and
graph-based encoders, such as TreeLSTMs and Graph Neural Networks (GNNs),
were used to propagate information across AST nodes and program graphs [17, 18].
These models improved semantic understanding by preserving relationships between
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tokens beyond linear order. Nevertheless, they remained limited by scalability and
training complexity, especially when dealing with real-world repositories containing
millions of lines of code.

2.2 Transformer Models for Code Understanding

The introduction of the transformer architecture [4] marked a turning point in
representation learning for both text and code. Its self-attention mechanism allowed
models to efficiently capture long-range dependencies without relying on recurrence,
leading to remarkable improvements in translation, summarization, and language
understanding. These advances naturally extended to source code modeling, where
the transformer’s ability to handle variable-length sequences and contextualize tokens
across arbitrary spans proved especially advantageous.

Pioneering models such as CodeBERT [5], GraphCodeBERT [13], and CodeT5 [6]
adapted large-scale language pretraining strategies to the domain of programming
languages. These models were trained on massive corpora of code–text pairs from
datasets like CodeSearchNet [19], jointly learning to represent both code and natural
language descriptions through masked language modeling and text–code alignment
objectives. By pretraining on multimodal data (code and comments), such models
internalized cross-domain relationships that could later be transferred to downstream
tasks.

A simplified representation of the transformer architecture used in most modern
code models is shown in Figure 2.1.
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Input Output
(shifted right)

Input Embedding Output Embedding

Encoder Decoder

Softmax
Output

Output
Probabilities

Feed Forward

Self Attention

Feed Forward

Self Attention

Figure 2.1: Simplified view of the transformer architecture, based on stacked
self-attention and feed-forward layers. This design forms the backbone of most recent
code understanding and generation models.

Transformer-based encoders provided a unified backbone for numerous applica-
tions, including code search, clone detection, defect prediction, and code summa-
rization. Later extensions such as PLBART [7], CodeT5+ [20], and UniXCoder [9]
further generalized the pretraining paradigm by combining encoder–decoder objectives
and cross-modal learning strategies. These models demonstrated improved robust-
ness and generalization across programming languages and repositories, cementing
transformers as the de facto architecture for code understanding and generation.

2.3 Contrastive and Retrieval-Based Learning

Although supervised fine-tuning on code–comment pairs has proven effective, it
often suffers from data noise and limited semantic coverage. To overcome these
limitations, researchers have increasingly turned to contrastive learning—a self-
supervised paradigm that aligns representations through relative similarity rather
than explicit labels. In this framework, the model learns to bring semantically related
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samples closer together in the embedding space while pushing unrelated samples
apart [11].

Contrastive learning has shown exceptional promise for software engineering tasks.
For instance, CodeContrast [21] introduced contrastive objectives for cross-language
code representation, while CLSE [12] demonstrated that contrastive encoders can
outperform purely supervised baselines on retrieval and classification. These methods
not only produce embeddings that are more discriminative but also mitigate overfitting
by learning from implicit relational information present in large unlabeled datasets.

In the context of code–text alignment, contrastive learning enhances the encoder’s
ability to distinguish between correct and incorrect comment–code associations. This
property makes it particularly relevant to automatic comment generation, where
semantic precision matters as much as linguistic fluency. Related paradigms such as
retrieval-augmented generation (RAG) [22] further extend this idea by combining
pretrained encoders with retrieval mechanisms, enabling models to ground their
output in real examples rather than relying solely on parametric memory.

2.4 Automatic Comment Generation

Automatic comment generation, also referred to as code summarization, aims to pro-
duce concise natural-language descriptions that capture the intent and functionality
of a given code snippet. Early approaches framed this task as a sequence-to-sequence
problem, training neural encoder–decoder models with attention mechanisms to
translate code into human-readable text [16, 2]. These methods demonstrated that
deep learning could automatically extract functional meaning from code, though
their generalization remained limited by data availability and domain variability.

The transformer revolution significantly advanced comment generation by enabling
large-scale pretraining and transfer learning. Models such as PLBART [7] and
CodeT5 [6] achieved state-of-the-art results by jointly optimizing for both code
understanding and generation objectives. More recently, CodeT5+ [20] extended this
approach to multi-task settings, unifying summarization, translation, and refinement
within a single framework. Surveys such as Zhang et al. (2024) [3] provide a detailed
overview of the evolution of this field, including benchmark datasets, evaluation
metrics, and architectural trends.

To contextualize the models surveyed in the literature, Figure 2.2 provides a
concise depiction of the encoder–decoder paradigm commonly used for code summa-
rization.

Encoder
(Code)

Input
(code snippet)

Decoder
(Text)

Output
(docstring)LabelLatent representation

Figure 2.2: Typical encoder–decoder framework for code summarization. The
encoder maps source code into a latent representation, while the decoder generates a
natural-language summary conditioned on the encoded semantics.
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Despite substantial progress, comment generation remains far from solved. Models
frequently produce fluent but semantically inaccurate comments, failing to capture
fine-grained program intent or logic-level nuances [23]. These issues are aggravated by
the inherent ambiguity of natural language and the limited reliability of lexical metrics
such as BLEU or ROUGE, which often overlook semantic adequacy. To address these
gaps, recent studies have begun to integrate contrastive pretraining, retrieval-based
reasoning, and semantic similarity scoring into the training pipeline [24, 22]. Such
hybrid approaches aim to ensure that generated comments are not only grammatically
correct but also faithfully aligned with the underlying code behavior.

Overall, the evolution of code representation and comment generation models
reflects a broader shift from syntactic to semantic modeling, from supervised to self-
supervised learning, and from isolated tasks to integrated multimodal frameworks.
Yet, ensuring the faithfulness, generalizability, and interpretability of generated
comments remains an open research challenge. Addressing these gaps provides the
foundation and motivation for the present study, which investigates how contrastive
fine-tuning can enhance semantic alignment between code and text representations.
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Chapter 3

Methodology

3.1 Conceptual Framework and Objectives

The development of an automatic system for code comment generation requires
bridging two fundamentally different representational domains: the formal, determin-
istic structure of source code and the flexible, context-sensitive structure of natural
language. The methodological design adopted in this work is guided by the intuition
that meaningful comment generation is only possible if the model acquires, in stages,
a progressively refined internal understanding of program semantics. Before a system
can describe code, it must first learn to represent it, and before representation it
must learn to distinguish meaningful relationships among code fragments.

The proposed pipeline therefore follows a hierarchical paradigm composed of two
macro-phases:

1. Representation learning through contrastive pretraining, designed
to teach an encoder how to structure the embedding space around semantic
relationships.

2. Generative fine-tuning through encoder–decoder training, where the
pretrained encoder is integrated into a sequence-to-sequence model that learns
to transform code into natural-language docstrings.

This sequence reflects a progression that mirrors a human developer’s learning
process. First, the encoder is trained to measure similarity between different fragments
of code. Next, it observes how code transforms over time through version-control
diffs, learning to recognize semantic changes. Finally, the encoder serves as the
semantic backbone of a generative model that produces explanations conditioned on
those learned representations.

Two complementary hypotheses motivate this methodology. First, that contrastive
learning, by maximizing agreement between semantically similar code fragments,
yields embeddings that better encode program-level intent than purely token-based
pretraining. Second, that modeling the temporal evolution of code across commits
further enriches this representation by exposing the encoder to explicit behavioral

12



Methodology

variations. These ideas lead to the construction of two specialized encoders—one
trained on function-level semantic equivalence (code–code) and one trained on commit-
level revisions (code–diff )—later evaluated within a unified comment-generation
framework.

3.2 Contrastive Representation Learning

Contrastive learning provides a self-supervised way to enforce a geometric notion
of semantic similarity. Given an anchor example a, a positive example p conveying
similar semantics, and a negative example n drawn from a different context, the
encoder is trained to minimize the distance between a and p while maximizing
the distance between a and n. The objective is expressed through the standard
margin-based contrastive loss:

Lctr = max
!
0, d(a, p) − d(a, n) + m

"
, (3.1)

where d(·) is the cosine distance and m is a fixed margin enforcing the required
separation.

Positive
code p

Negative 
code n

Anchor
code a

Shared Encoder 
(CodeBERT-based)

h_a h_p h_nd(a,p)

d(a,n)

Figure 3.1: Contrastive triplet mechanism used during encoder pretraining. The
encoder learns to map semantically related functions close together while pushing
unrelated ones apart.

Figure 3.1 illustrates the core training dynamic: the anchor and positive examples
are encouraged to form a compact cluster, while the negative example is repelled. Over
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many iterations, this shapes an embedding space that reflects functional semantics
rather than surface similarity.

3.2.1 Stage 1: Function-Level Code–Code Encoder

The first encoder is pretrained on the Nan-Do/code-search-net-python dataset, com-
prising Python function definitions paired with docstrings. Positive examples are
selected through docstring similarity and lexical overlap, while negatives are drawn
from unrelated samples in the same batch. Through this process, the encoder learns
to recognize function-level equivalence even in the presence of syntactic variability.

This stage provides a foundation of structural and semantic understanding.
Because many functions achieve similar goals through different control structures or
naming conventions, contrastive learning encourages the encoder to abstract away
from superficial patterns and focus instead on underlying behavior.

3.2.2 Stage 2: Commit-Level Code–Diff Encoder

The second encoder expands this notion of semantic understanding by modeling how
code changes. It is initialized from the pretrained code–code model and further trained
on the python-state-changes dataset, which contains pairs of functions (vold, vnew)
extracted from consecutive commits.

Unlike static function equivalence, commit-level training exposes the encoder
to directional changes: bug fixes, refactorings, feature additions, and other forms
of program evolution. The contrastive loss of Equation 3.1 is reused, but now the
distance d(vold, vnew) serves as a proxy for semantic modification across versions.

def foo(int a, int b):
     int c = a + b 
     return c

def foo(int a, int b):
     int c = a - b 
     return c

Encoder Encoder

encode old version encode new version

h_old embedding h_new embedding

h_old h_new

semantic delta
d(h_old, h_new)

Figure 3.2: Commit-level semantic modeling. By comparing old and new function
versions, the encoder learns representations that reflect the magnitude and nature of
code changes.

Figure 3.2 illustrates this process: modifications in the abstract syntax, control
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flow, or data handling result in corresponding displacement within the embedding
space. The design mirrors transfer learning principles: the diff-aware encoder inherits
structural understanding from Stage 1 and focuses its capacity on modeling semantic
evolution.

3.3 Generative Fine-Tuning and Progressive Optimiza-
tion

Once pretrained, each encoder is integrated into an encoder–decoder (ED) architecture
for docstring generation. The decoder is initialized from microsoft/codebert-base
in all configurations, ensuring comparable linguistic fluency across model variants.

Training minimizes the cross-entropy loss:

Lgen = −
TØ

t=1
log Pθ(yt | y<t, x), (3.2)

where x is the input code snippet and yt the t-th target token. Equation 3.2
encourages the decoder to generate fluent natural-language descriptions grounded in
the encoder’s semantic representation.

3.3.1 Multistage Training Regime

Training follows a progressive schedule inspired by curriculum learning and stability
optimization:

• Phase 1: Fine-tuning — moderate learning rates (2 × 10−5 to 3 × 10−5)
bring the model into the generative regime.

• Phase 2: Continuation/Polishing — lower learning rates (2 × 10−6 to 3 ×
10−6) refine the alignment between encoder semantics and language generation.

• Selective Unfreezing — Stage A freezes the encoder and trains only the
decoder; Stage B unfreezes the top two encoder layers to allow controlled
co-adaptation.

This schedule mitigates catastrophic forgetting and preserves the structure learned
during contrastive pretraining.
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Phase 1 
Initial fine-tuning

Phase 2 
Continuation - polishing

Stage A
Decoder only

Stage B
Top encoder layers +

decoder

freeze encoder

unfreeze top layers

reduce LR

Figure 3.3: Progressive training schedule: initial full-model fine-tuning, low-learning-
rate continuation phases, and selective encoder unfreezing (Stage A → Stage B).

3.3.2 Inference Strategy

Inference uses beam search with 4–6 beams, early stopping, a repetition penalty
between 1.05 and 1.10, and a length penalty of 1.15 to balance conciseness and
completeness. These settings reduce repetitive phrasing and encourage descriptive
summaries consistent with the CodeXGLUE dataset.
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Raw Python function
def foo(...): ...

CodeXGLUE code-to-text
dataset

Preprocessing
Encoder

(Base, Code-code,
Code-diff)

Decoder
(CodeBERT-based)

Generated
comment/docstring

Figure 3.4: End-to-end encoder–decoder pipeline for code comment generation.
The encoder provides a semantic representation that conditions the decoder’s natural
language output.

3.4 Implementation Details and Practical Limitations

All experiments were implemented in PyTorch using the Hugging Face Transformers
and Datasets libraries, ensuring reproducibility and standardized model management.
Training employed AdamW during the main fine-tuning phases and Adafactor during
memory-constrained continuation stages, striking a balance between stability and
GPU feasibility. To accommodate the limited hardware (a single 8 GB GPU),
several memory-saving strategies were applied: mixed-precision computation (FP16),
gradient checkpointing, and PyTorch’s expandable CUDA segments to mitigate
fragmentation.

Input code sequences were truncated at 256 tokens and corresponding target
docstrings at 64 tokens, reflecting a compromise between representational coverage
and GPU limits. Effective batch sizes ranged from 1 to 8, with gradient accumulation
up to 16 steps to simulate larger batches. Depending on the model variant and
available VRAM, each training phase spanned one to three epochs. In practice,
training curves indicated continued improvement even at the final epoch, suggesting
that full convergence was not reached under the available compute budget.

These constraints shape both the methodology and the interpretation of results.
Sequential pretraining introduces dependencies across stages, meaning that weak-
nesses or noise in the code–code encoder propagate into the diff-aware encoder.
Limited batch diversity may reduce the stability of contrastive optimization, and
the reduced number of epochs restricts the decoder’s ability to fully adapt to the
embedding space provided by the pretrained encoder. Moreover, classical lexical
metrics such as BLEU, ROUGE, and METEOR tend to underrepresent semantic
adequacy, penalizing paraphrastic or stylistically diverse outputs that are nonetheless
faithful to the intent of the code.

Despite these limitations, the overall pipeline remains coherent, reproducible,
and structurally well-motivated. By integrating representational learning (con-
trastive stages), temporal semantics (commit-level deltas), and generative fine-tuning
(encoder–decoder training), the methodology offers a unified framework for examining
how different forms of pretraining influence downstream comment generation. The
practical experience gained from training under realistic constraints further highlights
the challenges and trade-offs inherent in medium-scale software-language modeling.

17



Chapter 4

Experiments

4.1 Overview

This chapter presents an extensive empirical assessment of the proposed models for
automatic code comment generation. The experiments were designed to examine
whether contrastive pretraining at the function level and change-aware pretraining
at the commit level can improve downstream generation quality when compared
with a baseline encoder–decoder initialized directly from microsoft/codebert-base.
Three variants were therefore evaluated under identical fine-tuning and decoding con-
ditions: ED-Base, ED-Code-Code, and ED-Code-Diff. The analysis integrates
quantitative benchmarks with qualitative inspection of generated outputs, providing
a comprehensive view of model behavior.

The central aim of this evaluation is twofold. First, to measure whether con-
trastively aligned embeddings contribute to more semantically faithful summaries
of code. Second, to assess whether introducing temporal information from version
control commits—capturing how code changes—produces richer or more contextually
grounded documentation. The experiments also reveal the challenges of scaling such
architectures under realistic computational constraints, highlighting the delicate
balance between representational power, data quality, and training stability.
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Contrastive Pretraining (Stage 1-2)

Code-Code Encoder Code-Diff Encodersequential 
initialization

Encoder-Decoder Fine-Tuning

CodeBERT
encoder +
decoder

Evaluation

Contrastive
encoder +

CodeBERT
decoder

Diff encoder +
CodeBERT

decoder

Figure 4.1: Summary of the three evaluated encoder–decoder models and their
training dependencies.

4.2 Experimental Setup

Datasets

The learning pipeline developed in this work relies on three distinct datasets, each
supporting a different stage of the methodology: (1) contrastive function-level pre-
training, (2) contrastive diff-level pretraining, and (3) supervised encoder–decoder
training for comment generation. Although all datasets contain Python code, they
differ substantially in structure, supervision signals, and data quality. A clear
understanding of these differences is essential for interpreting the empirical results.

CodeSearchNet Python: Function-Level Supervision

The Nan-Do/code-search-net-python corpus is a curated subset of the original Code-
SearchNet dataset, containing Python function definitions paired with their corre-
sponding docstrings. Each instance includes a complete, syntactically valid function
body and a human-written summary, forming well-aligned supervision for learning
semantic equivalence between code snippets.

Figure 4.2 shows a representative entry from this dataset.
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Figure 4.2: Example entry from the CodeSearchNet Python dataset. Each sample
consists of a full function definition and its corresponding docstring, enabling clean
function-level contrastive supervision.

CodeSearchNet is particularly suitable for contrastive learning because different
functions can implement similar behavior using diverse programming styles. Its
primary limitation lies in stylistic variability: docstrings may differ in verbosity and
quality, though they typically remain semantically meaningful.

Python State Changes: Diff-Level Supervision

The python-state-changes dataset provides fine-grained evolution traces of Python
programs extracted from consecutive Git commits. Each entry contains three fields:

• start: the program state before the edit,

• code: the code fragment representing the edit applied in the commit,

• end: the program state after the edit.

Figure 4.3 illustrates this format, where updates range from arithmetic changes
to structural modifications.
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Figure 4.3: Representative entry from the Python State Changes dataset. Each
sample includes the pre-edit state (start), the applied edit fragment (code), and
the resulting post-edit state (end).

The dataset offers realistic supervision for modeling code evolution, but it also
contains noise: many examples include formatting changes, snippet extractions, or
partial edits without full syntactic closure. This heterogeneity contributes to the
difficulty encountered by the diff-aware encoder during downstream generation.

CodeXGLUE Code-to-Text: Supervised Generative Fine-Tuning

The Python subset of the CodeXGLUE code-to-text benchmark provides high-quality
pairs of Python functions and human-written summaries. It is used both for super-
vised fine-tuning and for all evaluation splits, ensuring comparability with previous
work.

Figure 4.4 shows a typical sample.

Figure 4.4: Example entry from the CodeXGLUE Python code-to-text dataset,
consisting of a Python function and its associated docstring.

Compared to the two contrastive datasets, CodeXGLUE is:
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• larger,

• cleaner,

• more stylistically consistent,

• and explicitly designed for summarization.

For these reasons, it serves as the authoritative benchmark for evaluating the
models developed in this thesis.

Comparative Overview

A concise comparison highlights the complementary roles of the three datasets:

• CodeSearchNet — clean, static, function-level supervision suitable for learning
semantic equivalence.

• Python State Changes — noisy, dynamic, commit-level supervision capturing
actual code evolution.

• CodeXGLUE — high-quality, summarization-oriented data for supervised fine-
tuning and evaluation.

Together, these datasets support a multi-stage learning curriculum aligned with
the methodological structure of the thesis.

Training Environment and Resources

All experiments were implemented in PyTorch using the Hugging Face Transformers
and Datasets libraries. Training was executed on a single 8 GB NVIDIA GPU.
Given this limitation, a sequence of memory-aware strategies—gradient checkpointing,
mixed-precision computation (FP16), and gradient accumulation—was adopted to
emulate larger effective batch sizes. Each fine-tuning run employed roughly 50 000
training instances and 2 000 validation examples drawn from the Python subset of the
CodeXGLUE code-to-text dataset. For final evaluation, all metrics were computed on
the 13 901-sample official test split to ensure comparability with prior literature.

The learning procedure was structured into successive stages: an initial fine-tuning
phase of up to three epochs, followed by targeted continuation and polishing phases
with lower learning rates. All runs used beam search decoding with four beams, a
length penalty of 1.15, repetition penalty 1.05, and early stopping, yielding balanced
summaries that avoided verbosity or redundancy.

Model Variants

The following encoder–decoder configurations were tested:

• ED-Base – Both encoder and decoder initialized from microsoft/codebert-base,
representing the baseline.
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• ED-Code-Code – Encoder initialized from the contrastively trained function-level
encoder; decoder identical to baseline.

• ED-Code-Diff – Encoder initialized from the sequentially pretrained diff-aware
model, which itself derives from the code–code encoder and is specialized for
semantic changes between code versions.

All three models share identical decoding architectures, allowing direct attribution
of performance differences to encoder representations rather than to language-model
capacity.

ED-Base
Encoder: CodeBERT
Decoder: CodeBERT

ED-Code-Diff
Encoder: Code-Diff model

Decoder: CodeBERT

ED-Code-Code
Encoder: Code-Code model

Decoder: CodeBERT

Figure 4.5: Block comparison of the three encoder–decoder configurations evalu-
ated. All models share the same decoder; differences arise exclusively from encoder
initialization strategies.

Evaluation Metrics

Model outputs were assessed using standard automatic metrics commonly employed
in code summarization research:

• ROUGE-L – Measures the longest common subsequence between generated and
reference texts, emphasizing structural overlap.

• SacreBLEU – Computes n-gram precision with brevity penalty; standardized
via the sacreBLEU library to ensure reproducibility.

• METEOR – Combines precision, recall, and synonym matching at the word
level, offering sensitivity to paraphrases.
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• BERTScore – Estimates semantic similarity using contextual embeddings from
a pretrained transformer, capturing meaning beyond surface tokens.

• Average Length – Reports the mean number of generated tokens, monitoring
conciseness and verbosity.

Although automatic metrics remain imperfect proxies for semantic fidelity, they
offer complementary insights into syntactic accuracy, content recall, and expressive
fluency.

4.3 Quantitative Results

Table 4.1: Automatic evaluation metrics on the test split (n = 13 901).

Model ROUGE-L SacreBLEU METEOR BERTScore F1 Avg. Len.

ED (Base Encoder) 0.2136 3.1401 0.1872 0.8440 26.5
ED (Code–Code Encoder) 0.1928 2.7762 0.1765 0.8402 25.6
ED (Diff–Code Encoder) 0.1568 1.8514 0.1380 0.8254 21.0

The results in Table 4.1 reveal a nuanced picture. Contrary to the initial expectation,
the baseline model marginally surpasses the contrastively pretrained variants across
all metrics. While the ED-Code-Code model exhibits competitive performance and
produces slightly shorter but coherent outputs, the ED-Code-Diff model clearly
trails behind, reflecting the difficulty of transferring change-aware embeddings to the
generative task.

These differences must be interpreted in light of dataset scale and pretraining
coverage. The base encoder benefits from massive multilingual corpora, whereas the
contrastive encoders—although semantically structured—were exposed to narrower
and noisier data during pretraining. As a result, their representational geometry
emphasizes structural and behavioral alignment rather than the broader linguistic
fluency that automatic metrics tend to reward.

4.4 Qualitative Analysis

Quantitative measures, though informative, conceal subtleties of model behavior. A
qualitative inspection of generated summaries further highlights the differences in
fluency, semantic grounding, and lexical coherence across the three model variants.
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Table 4.2: Representative qualitative samples from the test split.

Example 1
Code snippet:
def cleanup_database_hook(self):
Reference: Clean up database hook after it was used.
ED-Base: Clean the database connection after use.
ED-Code-Code: Clean up database after used.
ED-Code-Diff: Return a list of the database.

Example 2
Code snippet:
def next_retry_datetime(self):
Reference: Get datetime of the next retry if the task instance fails.
ED-Base: Return the datetime of the next retry if task fails.
ED-Code-Code: Get datetime of retry if task instance fails.
ED-Code-Diff: Set the task of the datetime.

The ED-Base model yields grammatically consistent yet sometimes generic
descriptions, demonstrating strong linguistic priors but limited structural grounding.
The ED-Code-Code model often matches or exceeds the baseline in semantic
accuracy, indicating effective transfer of functional information from contrastive
learning. By contrast, the ED-Code-Diff summaries are frequently shorter and
semantically incomplete, reflecting representational drift introduced by diff-level
pretraining.

4.5 Extended Discussion

Contrastive Learning in Generative Contexts

Contrastive encoders excel at discriminative and retrieval tasks, where relative
distances define semantic similarity. In generative settings, however, the mapping
from embeddings to sentences is mediated by the decoder, which must adapt to the
structure of the embedding space. If fine-tuning capacity is limited, the decoder
may fail to exploit the encoder’s geometry fully, reducing the apparent benefits of
contrastive pretraining.

Limitations of Diff-Aware Representations

Commit-level diffs often reflect a mixture of semantic and non-semantic edits. Refac-
torings, formatting changes, and partial code snippets introduce noise that weakens
the supervision signal. Such instability compromises the ability of the diff-aware
encoder to serve as a reliable basis for text generation, even though it may still be
useful for tasks such as change classification or commit message generation.
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Metric Sensitivity and Semantic Fidelity

Surface-level metrics like BLEU or ROUGE emphasize token overlap rather than
conceptual correctness. Thus, even semantically aligned summaries may score lower
if they paraphrase or reorder content. BERTScore mitigates this to an extent but
remains influenced by decoder fluency. Future evaluations could incorporate human
assessment or task-based comprehension tests.

4.6 Limitations and Future Directions

The evaluation must be interpreted considering several constraints: limited GPU
memory, noisy contrastive datasets, and reliance on automatic metrics. Furthermore,
code summarization benefits from high-quality paired data, which remains scarce.
Future work may explore larger pretraining corpora, multi-language encoders, or
reinforcement learning with human feedback. Hybrid approaches combining diff-
aware learning with syntactic information from ASTs or data-flow graphs may also
enhance semantic grounding.

4.7 Summary

The experimental results illustrate the complexity of bridging structured code rep-
resentations with natural-language summarization. The baseline model achieves
the highest automatic scores, reflecting its extensive pretraining. The contrastively
trained code–code encoder remains competitive and improves semantic grounding,
though its advantages do not fully translate under the current fine-tuning constraints.
The diff-aware encoder underperforms in generation but offers insights into modeling
code evolution, suggesting alternative downstream applications.

Overall, the experiments validate the methodological design while highlighting
limitations of contrastive–generative integration under realistic training conditions.
These findings inform the broader discussion presented in the final chapters, pointing
toward future refinements in representation learning for code intelligence.
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Chapter 5

Discussion and Future Works

5.1 Summary of Contributions

This research explored the intersection between contrastive representation learning
and neural text generation for source-code understanding. Its central goal was to
determine whether pretraining encoders through semantically structured objectives
could improve downstream comment generation when integrated into encoder–decoder
architectures. To this end, two forms of contrastive pretraining were investigated: a
function-level approach capturing semantic equivalence between code fragments, and
a commit-level approach modeling the evolution of code through version-control diffs.

The proposed framework introduced several methodological innovations:

• A sequential pretraining pipeline in which a code–code encoder serves as the
foundation for a diff-aware encoder, promoting transfer of syntactic and structural
knowledge.

• The integration of these pretrained encoders into encoder–decoder models for
docstring generation, establishing a link between discriminative and generative
learning paradigms.

• A progressive fine-tuning regime involving staged unfreezing and multi-phase
continuation, designed to balance convergence speed with representational stability
under hardware constraints.

• A systematic evaluation across quantitative metrics (ROUGE-L, SacreBLEU,
METEOR, BERTScore) and qualitative inspection, providing an empirical basis
for assessing contrastive influence on generative performance.

Together, these elements constitute a coherent methodological contribution that
bridges the traditionally separate domains of contrastive representation learning and
code summarization. Beyond its immediate outcomes, the project demonstrates
how controlled pretraining pipelines can be implemented and analyzed under realis-
tic computational limits, offering a reproducible experimental template for future
research.

27



Discussion and Future Works

5.2 Interpretation of Results

The empirical evidence reveals a nuanced balance between theoretical promise
and practical outcome. The baseline encoder–decoder initialized entirely from
microsoft/codebert-base attained the highest overall scores across all automatic
metrics, with ROUGE-L = 0.2136, SacreBLEU = 3.1401, METEOR = 0.1872, and
BERTScore F1 = 0.8440. The code–code variant followed closely with slightly lower
but comparable values, while the diff-aware model lagged behind substantially.

These findings suggest that the benefits of contrastive alignment, though con-
ceptually sound, did not fully translate into measurable improvements in generative
quality under the experimental conditions. Several interrelated factors help explain
this outcome.

First, the data scale and domain coverage of CodeBERT’s original pretraining
far exceed those of the contrastive datasets used in this work. The contrastive stages,
while semantically focused, exposed the encoder to fewer and more homogeneous
examples, narrowing its lexical and syntactic repertoire. During fine-tuning, this
limitation manifested as slightly reduced linguistic fluency, which metrics like BLEU
and ROUGE heavily penalize.

Second, the nature of the supervision signal differs between the two paradigms.
Contrastive learning enforces relative geometry in the embedding space, rewarding
correct proximity relations rather than explicit reconstruction of text. Generative
decoding, by contrast, demands token-level precision. The transformation from
structured similarity to free-form generation may therefore require intermediate
adaptation that was not explicitly modeled here.

Third, the diff-aware stage introduced additional complexity. Commit-level
pairs from open repositories are inherently noisy: they contain formatting changes,
partial edits, or auxiliary updates with no clear semantic correspondence. As a result,
the encoder learned relational patterns that do not consistently map to meaningful
linguistic cues, producing unstable generation behavior. Nonetheless, this limitation
underscores a broader insight — that modeling change in code may serve purposes
beyond comment generation, such as defect prediction or commit-message synthesis.

5.3 Methodological Reflections

From a methodological standpoint, the project illustrates both the potential and
the fragility of transfer learning within software-language modeling. The sequential
structure — function-level pretraining followed by diff-level specialization — proved
effective for knowledge reuse, but also propagated upstream imperfections. This
dependency highlights the importance of robust foundation models and of main-
taining a clear conceptual separation between transferable syntax-level features and
task-specific semantics.

The fine-tuning regimen, built around progressive unfreezing and learning-rate
decay, proved valuable in stabilizing optimization on constrained hardware. Stage
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A (decoder-only) allowed the language model to adapt without disrupting previ-
ously learned embeddings, while Stage B (partial unfreezing) enabled subtle en-
coder–decoder co-adaptation. Although this approach did not yield superior quan-
titative metrics, it produced smoother convergence curves and reduced overfitting,
validating the practicality of staged adaptation for medium-scale training.

The evaluation also underscores the limitations of current automatic metrics
in reflecting true semantic adequacy. Generated comments often captured the correct
intent in paraphrastic form, yet received low BLEU or ROUGE scores due to lexical
divergence. Future evaluations should include human judgment or task-oriented
assessments, such as developer comprehension tests, to more faithfully measure
usefulness.

5.4 Lessons Learned

Several broader lessons emerge from this investigation:

• Data quality outweighs objective sophistication. Clean, well-aligned ex-
amples of code and natural language remain the decisive factor in downstream
performance. Even advanced learning objectives cannot compensate for noisy
supervision.

• Representation transfer is not linear. Features optimized for similarity may
not directly benefit generative tasks; additional alignment layers or adapters could
facilitate smoother transition between embedding and decoding spaces.

• Evaluation must match purpose. For a human-facing task like code summariza-
tion, fluency and clarity matter as much as lexical overlap. A hybrid evaluation
combining automatic and qualitative measures provides the most informative
picture.

• Incremental experimentation is essential. Conducting the study in pro-
gressive stages — from base models to contrastive variants, from full to mini
fine-tuning — enabled consistent debugging, reproducibility, and interpretability
of results.

These insights inform not only the interpretation of this work but also broader
research in code intelligence. They demonstrate the importance of viewing represen-
tation learning and generation as interdependent components of a larger semantic
modeling ecosystem.

5.5 Future Directions

The work opens multiple avenues for further investigation. First, the most im-
mediate extension involves scaling contrastive pretraining to larger and more
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diverse repositories. Datasets covering multiple programming languages, richer docu-
mentation, and aligned commit metadata would provide stronger semantic signals.
Self-supervised mining of functionally equivalent snippets through unit-test behavior
or symbolic execution could reduce manual curation costs.

A second direction concerns the integration of structural information. Aug-
menting the encoder with abstract syntax trees (ASTs), control-flow graphs, or
data-dependency representations could improve sensitivity to program semantics
beyond surface tokens. Graph-based contrastive objectives, in which subtrees or code
paths act as positive pairs, might better capture hierarchical relationships.

Third, future research should explore multitask and multi-objective training.
Rather than treating diff modeling and summarization as sequential phases, they could
be optimized jointly. A shared encoder could learn to serve both change detection
and description generation, encouraging richer cross-task representations. Techniques
such as adapter fusion or soft parameter sharing can enable such hybridization
without excessive memory cost.

Fourth, human-in-the-loop learning represents a promising paradigm. Devel-
opers could rate or edit generated comments during routine development, providing
implicit feedback for reinforcement or contrastive tuning. This iterative loop would
align model behavior more closely with practical expectations and domain-specific
conventions.

Finally, evaluation methodologies require rethinking. Automatic metrics
remain useful but should be complemented by semantic similarity measures derived
from large language models, as well as by human assessments of correctness, coverage,
and readability. Establishing shared benchmarks that reflect real-world developer
usage would strengthen comparability across studies.

5.6 Concluding Remarks

Despite its mixed quantitative results, this work makes a tangible contribution to
the understanding of how semantic pretraining interacts with code generation. It
demonstrates that function-level contrastive learning can yield meaningful structural
representations and that modeling code evolution, while challenging, introduces a
valuable new perspective on temporal semantics in software. The study also exempli-
fies the process of designing, training, and evaluating complex neural architectures
within realistic computational and temporal constraints — an experience increasingly
common in applied research.

In a broader sense, the research illustrates the delicate interplay between language,
logic, and learning. Code is both a linguistic and a formal object: it requires models
to reason about syntax, semantics, and intent simultaneously. Bridging this gap
between representation and expression remains one of the central challenges of
machine learning for software engineering. The methods, experiments, and reflections
presented here contribute a small but coherent step toward that long-term objective.
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Chapter 6

Conclusions

6.1 Closing Overview

The work presented in this thesis set out to explore whether contrastive represen-
tation learning can enhance the capacity of neural models to generate meaningful
natural-language summaries of source code. Grounded on the CodeBERT architecture,
the study designed and implemented a two-stage pretraining framework in which
encoders were first trained to learn semantically structured embeddings of code and
then integrated into encoder–decoder architectures for comment generation. Two
complementary forms of contrastive supervision were examined: the function-level
approach (code–code) and the commit-level or code–diff approach. Together,
they embody two distinct views of software semantics — one static, centered on
equivalence, and one dynamic, centered on change.

6.2 Summary of Findings

Empirical evaluation across standard benchmarks yields a nuanced picture. The base-
line encoder–decoder derived directly from microsoft/codebert-base achieved the
strongest overall scores in ROUGE-L, SacreBLEU, METEOR, and BERTScore, ben-
efiting from its broad linguistic prior and large-scale pretraining. The function-level
contrastive model (ED-Code-Code) performed competitively, producing coherent
and faithful docstrings that frequently captured intent even when lexical overlap
was low. Its results confirm that semantic alignment between functionally similar
snippets enhances representational robustness and supports better content selection
during generation. In contrast, the commit-level contrastive model (ED-Code-Diff)
underperformed, generating shorter and less consistent sentences. This outcome
reflects the intrinsic noise and partial context of commit-level data, where differences
may not correspond to clear semantic transformations.

Taken together, the findings indicate that contrastive pretraining offers clear
structural benefits at the representation level but that these benefits do not automat-
ically translate into improvements in token-level generation metrics. The alignment
between embedding geometry and linguistic fluency remains a challenging bridge to
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cross, particularly under limited data and compute regimes.

6.3 Scientific and Practical Implications

Beyond numeric scores, the project contributes to a deeper understanding of how
neural representations of code can be shaped through intermediate objectives. It
shows that contrastive learning can successfully organize code embeddings according
to functional semantics and that such organization can be transferred, at least
partially, to downstream tasks. From a methodological perspective, the research
demonstrates the viability of sequential pretraining pipelines — where knowledge is
first consolidated at the function level and then specialized for higher-order relations

— even when executed on modest hardware through progressive unfreezing and
gradient checkpointing.

From a practical standpoint, the work highlights the challenges of applying
machine-learning models to real software artifacts. Code repositories are heteroge-
neous, comments are inconsistent, and commit histories often encode incidental rather
than semantic changes. Effective automation of documentation therefore requires
not only better architectures but also cleaner and more context-aware data collection
strategies. In this sense, the results invite a reconsideration of data engineering as a
core component of model design for software intelligence.

6.4 Limitations

Several limitations frame the interpretation of these results. The experiments were
conducted on a single-language corpus (Python) and under tight computational con-
straints, which limited hyper-parameter exploration and full convergence. Evaluation
relied primarily on automatic metrics that emphasize lexical overlap rather than
semantic adequacy. Moreover, the diff-level pretraining data, drawn from raw commit
histories, contained substantial noise that likely hindered the model’s ability to learn
consistent relational semantics. These constraints do not undermine the validity of
the findings but delineate the boundaries within which they should be generalized.

6.5 Future Perspectives

The research opens multiple avenues for continuation. Future studies could scale
contrastive pretraining to larger and cleaner corpora, possibly integrating signals
from execution traces or unit-test outcomes to anchor semantics more firmly in
program behavior. Combining structural encodings — such as abstract syntax trees
or data-flow graphs — with textual embeddings could yield hybrid representations
that better capture code logic. Joint multitask frameworks in which contrastive
and generative objectives are optimized simultaneously may bridge the current gap
between representation learning and language generation. Finally, incorporating
human feedback — for example through developer ratings or in-IDE interactive
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correction — could guide models toward more pragmatic, readable, and contextually
relevant documentation.

6.6 Final Remarks

In conclusion, this thesis contributes both methodologically and empirically to the
growing field of neural software understanding. It demonstrates that the principles
of contrastive learning, long established in vision and natural-language processing,
can be meaningfully applied to source code representation. It also reveals the limits
of this transfer when confronted with the complexity and noisiness of real software
evolution. While the quantitative advantages of contrastive pretraining for comment
generation remain modest under current constraints, the conceptual integration of
representational and generative learning represents a significant step forward. The
findings underscore a broader message: meaningful progress in code intelligence
will emerge not from ever-larger models alone but from the principled design of
objectives, datasets, and evaluation strategies that reflect the multifaceted nature of
programming itself.
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