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1. Introduction

1.1 The Paradigm Shift in Wellness and the Challenge of Personalisation

The relentless evolution of technology and medical science has represented a historic
milestone, significantly raising global average life expectancy. However, contemporary
awareness has evolved beyond the mere numerical measurement of years, shifting the focus
to enhancing their quality. The concept of '""healthy longevity" places emphasis on targeted
nutrition and a balanced lifestyle, recognising these elements as the fundamental pillars for

maintaining optimal well-being over time.

This awareness, when considered in conjunction with the substantial and frequently
unorganised volume of information available online, has resulted in a distinct necessity: the
development of digital tools that can assist users in a proactive and customised approach to
managing their well-being [1]. Despite the saturation of the health app market, the majority of
these applications are confined to basic data tracking functions, such as monitoring food
intake or sleep duration. The critical challenge, which remains unresolved, lies in converting
this raw data into actionable, sophisticated, and truly personalised advice, a gap this thesis

seeks to bridge.

1.2 Project Objective: The utilisation of a Rule Engine in the context of

Lifestyle Consulting

The primary objective of this project was to address this lacuna by designing and
implementing an intelligent system capable of providing high-level, multi-faceted wellness
recommendations. The initial phase was dedicated to the essential task of knowledge
codification: translating a vast array of nutritional and behavioural guidelines into a

manageable, dynamic, and readily updatable format.

This requirement resulted in the implementation of a Rule-Based Engine developed in
Python. The fundamental innovation resides in the system's decoupled architecture. In
contrast to rigid, hard-coded approaches, the decision-making logic of the system is kept
external: the rules are modelled using a high-level Python GUI, which allows experts to

translate their instructions into a standardised, persistent logical structure in JSON files. This



separation of the algorithmic core from the knowledge base ensures intrinsic modularity and
transparency, allowing recommendations to be rapidly updated without requiring any

changes to the engine's core code.

1.3 System Evolution and Integration

The system has rapidly evolved its capabilities, moving beyond mere nutritional analysis to
become a fully-fledged lifestyle advisor. The successful incorporation of the Sleep, Activity
and Mood Recommendations modules was a pivotal step, augmenting the system's
analytical capabilities to encompass intricate patterns, correlating diet, circadian rhythm, and

sleep efficiency [2]. This extension validated the flexibility of the core Rules Engine design.

The ultimate effectiveness of this recommendation engine is intrinsically linked to its ability
to integrate into the user's digital ecosystem. The project advanced significantly with the
pivotal transition to an accessible backend service. Following an initial phase in which input
data was managed via files extracted from third-party systems (e.g., FatSecret), the entire
architecture was reengineered for robust, real-time interaction. Currently, data is pulled
directly from Firebase, which serves as the central authoritative repository for user logs.
Communication with the final frontend application—developed in parallel by another
graduate student—is ensured through a set of dedicated RESTful APIs, positioning our
engine as a central computational service that provides timely and consistent data flow to the

mobile environment.

1.4 Bridging the gap with explainable knowledge-driven approaches

Contemporary digital health applications increasingly rely on opaque, data-driven models
that prioritize predictive performance but often lack interpretability and clinical traceability
[3]. This thesis positions itself at the intersection between explainable Al and practical digital
health by proposing a knowledge-driven framework that encodes expert rules in a
maintainable and auditable format. Unlike black-box recommenders, the presented solution
prioritizes clinical safety, transparency and maintainability, thereby enabling rapid updates to
clinical guidelines and immediate traceability of every generated recommendation [4]. This
characteristic is particularly relevant in medical and lifestyle domains where accountability

and user trust are essential.



2. Analysis and Design of the Recommendation System

2.1 State of the Art of Nutritional and Lifestyle Recommender

The current State of the Art is dominated by Nutritional Recommendation Systems (NRS).
An NRS is formally defined as a software tool designed to guide users in selecting food
items, recipes, or dietary plans that align not only with their stated preferences but also with
their specific nutritional constraints and health goals. Functioning at the intersection of
Information and Communication Technology (ICT), Artificial Intelligence (AI) and clinical
science, these systems aim to bridge the gap between simple data logging and true
personalised intervention. The ongoing evolution of NRS is driven by the need to address the
inherent complexity of dietary planning, where personal preference must yield to

non-negotiable health requirements (e.g. allergies and chronic diseases).
2.1.1 Classification of NRS Methodologies and Challenges

The development landscape of NRS can be broken down according to the primary
methodology used to generate advice. The choice of methodology critically impacts the

system’s accuracy, scalability, and transparency [5]. See Table 1.1.
Knowledge-Based System

These systems leverage an explicit and formalised knowledge base (rules, ontologies,
established nutritional guidelines) to generate recommendations. They do not rely primarily
on the collective behavior of other users or historical rating data, making them the preferred

choice for clinical accuracy.
There are two subtypes:

o Rule-Based Systems: They use IF-THEN rules defined by experts (e.g., “IF sodium
intake exceeds X for 5 consecutive days, THEN recommend reducing salt”). The user
always knows why a suggestion was made, which is crucial for building trust in health
applications.

o In-Depth: RBS are highly deterministic and auditable. This makes them

exceptionally strong for enforcing hard constraints (e.g., allergies, severe



chronic diseases). The user always knows why a suggestion was made, which
guarantees high explainability and builds trust in health applications.

o Limitations: They suffer from low adaptivity as they require manual updates
whenever clinical guidelines change, and they typically do not excel at
discovering new or novel food items for the user.

O

e Ontology-Based Systems: These utilise a formal conceptual model (an ontology) to
represent the complex relationships between foods, nutrients, health conditions, and
goals. This structure enables powerful semantic reasoning, allowing the system to
deduce non-obvious relationships in the data.

o In-Depth: Ontologies enable powerful semantic reasoning. They can infer
non-obvious relationships (e.g., linking a high glycemic index food to diabetes
risk) and are structurally designed for complex safety checks.

o Limitations: They require extensive ontology engineering (a labor-intensive

process) making knowledge scalability potentially low-to-medium.
Collaborative Filtering (CF)

They generate recommendations based on similarities between user preferences (user-based)
or similarities between items (item-based). While effective, they are less common for pure
health recommendations because the advice is driven by taste satisfaction rather than clinical
necessity. Furthermore, CF systems struggle with the Cold Start Problem (difficulty

recommending to new users or new items).

e In-Depth: CF systems are highly adaptive and scale very well with data volume,
making them performant in terms of prediction.

e Limitations: They exhibit low explainability due to reliance on opaque latent
factors. More critically in the health domain, CF may recommend unsafe items if
similar users enjoyed them, thus offering low clinical safety. They also require large

datasets of users/ratings, leading to the notorious Cold Start Problem for new users.
Content-Based System

They recommend items (recipes or foods) that are structurally similar to those the user has

consumed previously or that match their profile (age, BMI, goals). They compare the



characteristics of a recipe (ingredients, calories, macronutrients) with the user's desired
nutritional profile. For example, if the user often eats protein-rich foods, they will be

recommended other protein-rich recipes.

e In-Depth: Explainability is medium as it relates to feature-level explainability (e.g.,
"We recommend this because it has similar protein content to your favorites"). CBS
adapts well to specific user profiles and is highly scalable with content automation.

e Limitations: The system's effectiveness largely depends on the correctness of the

feature profile defined for the food items.
Hybrid System

The dominant trend in the current State of the Art is the adoption of Hybrid Systems. These
approaches combine two or more methodologies (often Knowledge-Based for constraints and
ML/CF for preference matching) to mitigate the limitations of a single method. This strategic
combination ensures both the clinical safety (guaranteed by rules) and the user acceptance
(guaranteed by preference learning), achieving a superior balance between efficacy and user

experience.

e In-Depth: This approach offers high clinical safety because the Rules-Based layer is
used as safety guardrails. The ML component is delegated to tasks related to
preference learning (e.g., taste prediction), ensuring high adaptivity. The combination
achieves a superior balance between efficacy and user experience.

e Architecture: Hybrid systems often separate tasks, with the KBS enforcing
constraints and the ML layer prioritizing options that respect those constraints. The
explainability is generally medium-to-high, depending on the transparency of the ML
component used. This complexity is scalable because tasks can be delegated to the

ML layer, while the safety rules remain manageable.

This thesis explicitly falls within the Knowledge-Based Systems category, adopting a

rule-based architecture.



Approach Explainability Adaptivity Scalability Data Clinical safety
(knowledge) | requirement
s
Rule-Based High — explicit | Low — Medium — Low —can [High —
Systems rules and manual update | manageable operate with | deterministic,
provenance required but grows limited auditable
linearly with historical decisions
rules data
Ontology-Base | High — Medium — Low—Medium | Low—Mediu | High — formal
d Systems semantic can infer via — needs m semantics
reasoning ontology ontology support safety
engineering checks
Content-Based | Medium — Medium — High — Medium Medium —
feature-level adapts to scalable with depends on
explainability content profile | automation feature
correctness
Collaborative | Low — latent High — learns | High — scales | High — Low—Medium
Filtering (CF) [ factors opaque from user well with data | needs many | — may
behavior users/ratings | recommend

unsafe items




Hybrid (Rule + | Medium—High High — ML High — can High High — rules
ML) — rules + ML layer increases | delegate tasks act as safety
explainability adaptivity to ML guardrails
layers
Table 1.1

2.1.2 Customization and context dimension

The effectiveness and modernity of a Nutritional Recommendation System (NRS) is
measured not only by the algorithmic methodology employed, but also by the depth and
breadth of its personalisation capabilities. Recent research in recommender systems shows
that true personalization emerges from the intersection of data-driven learning, contextual

awareness, and domain-specific constraints [6].

From General Recommender Systems to Health-Oriented Adaptations

Traditional recommender systems were initially designed for domains such as e-commerce,
music, or movies (e.g., Amazon, Spotify, Netflix). In these contexts, the primary goal is
preference optimization ( predicting what a user will like based on behavioral history or the
preferences of similar users). Success metrics typically include accuracy, precision, and

user satisfaction.
When these paradigms are adapted to health and well-being, several paradigm shifts occur:

e Safety and ethics override preference. In wellness domains, recommendations must
ensure clinical safety (e.g., avoiding allergens or excess sodium), even if they conflict
with user taste or popularity trends.

e Explainability becomes essential. In contrast to opaque collaborative filtering used
in entertainment systems, health-oriented systems must provide traceable rationales,

ensuring user trust and clinical auditability [7].




e Data sparsity and multimodality. Health data integrate multiple heterogeneous
sources (sleep, nutrition, physical activity, biomarkers), often collected intermittently.
This requires hybrid reasoning rather than pure statistical learning [8].

e Outcome-oriented personalization. Unlike entertainment RS, which optimize for
engagement, health systems aim to improve measurable outcomes such as body

composition, glycemic control, or sleep regularity.

This transition marks the evolution from preference-driven personalization to goal- and
safety-driven personalization, redefining how customization and context are interpreted in

wellness systems.
Personalized Nutrition

Advanced systems transcend traditional calorie-counting approaches. Personalized nutrition
now entails a multi-dimensional understanding of user physiology and lifestyle, achieved

through:

e Macronutrient and Micronutrient Balance: Beyond calorie tracking,
recommendations focus on nutrient quality and proportionality relative to
physiological goals (e.g., muscle hypertrophy, endurance optimization) [9].

e Dynamic Adaptation: Temporal models adjust recommendations in real time based
on behavior, such as training sessions, sleep quality, or recovery metrics.

e Feedback Loops: Continuous learning enables systems to refine suggestions using

user input or biometric data, forming adaptive feedback mechanisms.

Rule-based personalization leverages explicit logical conditions (IF-THEN structures),

ensuring predictable and auditable decisions aligned with medical guidelines.
Holistic integration (Lifestyle)

Well-being is a multi-dimensional concept; diet cannot be treated in isolation. Contemporary
systems evolve toward Lifestyle Recommendation Systems (LRS) that integrate

complementary behavioral dimensions:

e Sleep and Recovery: Systems incorporating sleep data can adjust caloric and

macronutrient targets based on circadian regularity and recovery status.
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e Physical Activity: Integration with wearables (e.g., Google Fit, Apple Health, or
Health Connect) enables dynamic energy recalibration.

e Stress and Mood: Experimental models incorporate emotional or hormonal
indicators to detect stress-induced eating patterns, aiming to balance physiological

and psychological wellness [10].

This holistic paradigm establishes a bidirectional relationship between nutrition and lifestyle,

making recommendations more adaptive, sustainable, and personalized.
Contextualization

For recommendations to be effective, they must be contextually actionable in the user's

daily environment. Contextualisation operates on several interconnected levels:

e Behavioral Patterns: Systems analyze temporal trends (e.g., habitual snacking,
recurring late dinners) to address long-term habits rather than isolated behaviors.

e Temporal Context: Time-aware algorithms adjust meal suggestions based on
circadian rhythms or work schedules.

e Preference-Aware Constraints: Even within rule-based systems, personalization
considers taste adherence and feasibility, offering nutritionally equivalent but

culturally acceptable alternatives.

Contextualization bridges data interpretation and behavioral translation, ensuring that

clinically sound advice remains practical and engaging in real life.

Summary: From Personalized to Precision Wellness

In summary, the evolution of recommender systems within health and wellness domains

represents a progression from:

1. Preference-based filtering — toward goal-oriented reasoning
2. Static personalization — toward contextual and adaptive modeling

3. Single-domain focus (food) — toward multi-domain lifestyle orchestration

The present thesis adopts this modern perspective, implementing a knowledge-based,
rule-driven architecture designed for high explainability, clinical safety, and contextual

adaptability.
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This structure enables the integration of user data (nutrition, activity, sleep), laying the

foundation for a Precision Wellness Recommendation Engine.
2.1.3 Structure and Deployment

The state of the art is strongly oriented towards integration and mobile access:

e Microservices/API Architecture: Most NRSs are implemented as backend services
with dedicated APIs to enable access from mobile applications, wearables, or
healthcare platforms.

e Platforms (Mobile First): Mobile applications are the most common platform for
user interaction (approximately 28% of nutritional recommendation systems are
mobile, according to some systematic reviews) [11].

e Usability and Explainability: There is a growing focus on User Experience (UX)
and Explainability (XAI), which is essential in healthcare. Rule-based systems excel
in this regard, as the recommendation is intrinsically linked to the rule that generated

it.

2.2 System requirements

The design phase of a recommender system is crucial for ensuring that the final product

aligns with the project goals and external integration needs.

In this section, the requirements for the nutritional and lifestyle recommendation engine are
formally divided into functional requirements (what the system must do) and non-functional

requirements (how the system must work).

2.2.1 Functional Requirements

Functional requirements define the system's specific actions and elaboration capacities. Since
the project consists of three main modules (a rules engine, a knowledge manager and an API

service), the functional requirements reflect this modularity.
RF-01: User Data Acquisition from Firebase

The system must establish a secure communication channel for accessing user data. This

requirement is divided into two distinct security levels:
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e C(lient-to-API security: Access to API endpoints (e.g. /nutrition and /sleep) must
always be protected. The client (i.e. the mobile application) must send a valid
Firebase ID token. The API must then validate this token using the
firebase admin.auth module to authenticate and authorise the request.

e API-to-database security: After client authentication, the backend must use Firebase's
internal service credentials to establish a secure, persistent connection to the database,

retrieving nutrition and sleep data for the requested user.
RF-02: Time Log Analysis

The engine must be able to process raw data received from Firebase, focusing specifically on
analysing long-term patterns. This is achieved by aggregating and normalising information
over a defined time window (typically the previous seven days' logs) to analyse weekly

patterns.

This goes beyond simple summation and includes calculating aggregate metrics such as daily
averages, consumption frequency counts (e.g. 'fried foods consumed three times in a week')
and consistency assessment (e.g. sleep regularity). This pre-processing phase is essential in

order to provide the context variables necessary for executing complex rules.
RF-03: Rule-Based Engine Execution

The Rule-Based Engine must systematically scan the analysed log (RF-02) using the
externally defined knowledge base (RF-04). Its main function is to identify all deviations
(violations) from the codified nutritional and lifestyle guidelines. The engine must handle
both simple rule logic, such as direct comparisons with thresholds, and complex rule logic,
which may require dynamic calculations or correlations between multiple parameters.
Efficient execution is required to contribute to compliance with the non-functional

requirement of low latency (RNF-01).
RF-04: User Management of the Knowledge Base

A dedicated Python GUI interface is required to enable non-technical users (e.g. expert
nutritionists) to interact with the system. The aim is to enable users to enter, modify,

categorise and save logical rules in a standardised format (JSON). This is a crucial

13



requirement for maintainability (RNF-04), ensuring that clinical guidelines can be updated

quickly without altering the Python source code of the analysis engine.
RF-05: Recommendation Generation and Prioritization

Based on the violations detected (RF-03) by the rule engine, the system must generate a set of
clear textual recommendations regarding nutrition and sleep. The generated message must be
personalized by inserting calculated dynamic values (e.g. placeholder) to make the
recommendation specific. Ideally, the system should also assign a priority to each
recommendation before sending it to the front end, even implicitly through order or

categorisation, to optimise user action.
RF-06: Exposure of the API Service for the Frontend

The backend, which is implemented in FastAPI, must expose one or more RESTful API
endpoints that can accept requests from the mobile application. After authentication (RF-01)
is complete, the API must call the entire analysis process (RF-02 to RF-05) and return the
complete package of recommendations in JSON format to the client. This ensures that the

analysis engine is treated as a scalable, real-time service.
1.2.2 Non-Functional Requirements

Non-functional requirements are essential for the success of the system, particularly with

regard to performance and architectural integration.
RNF-01: Performance (Service Latency)

Due to the integration with the mobile application and the requirement to deliver a responsive
user experience, the entire recommendation processing procedure (from retrieving data from

Firebase to the API response) must be carried out with minimal latency.

This performance is guaranteed in part by the use of FastAPI, which is renowned for its speed

of execution, and by the computational efficiency of the Python Rules Engine.
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RNF-02: Data Security and Protection

As a system that handles sensitive health data, access to data on Firebase and interaction with

APIs (RF-06) must be strictly controlled.

e Channel security: All API communications must be via HTTPS (a secure protocol).

e (lient authentication: Interacting with the APIs (RF-06) requires providing a valid
Firebase ID token with each request. The backend must validate this token for
authentication purposes.

e Database Authorisation: Access to user-specific Firebase data is regulated by internal
service credentials, ensuring the API can only access necessary data and respecting

the principle of least privilege.
RNF-03: Engine Reliability and Robustness

The system must be able to operate reliably, even when faced with imperfect input data or

connectivity issues.

e Data error tolerance: The Rule-Based Engine must tolerate non-ideal inputs (e.g.
missing fields, anomalous values and incomplete sleep logs) without crashing.
Pre-processing functions must include default values (e.g. get('value', 0)) to prevent
runtime errors.

e C(entralized Service Error Handling: To explicitly meet the reliability requirement, a
custom exception system has been implemented at the API level. In the event of a
connection interruption or failure (or internal logical errors) to Firebase, the API does
not simply crash with a 500 Internal Server Error, but rather captures the Python
exception and translates it into a standardised format.

e Shared Error Protocol: The error response is encapsulated in a JSON object that
includes a unique error code (e.g. 'ERR DB 001’ for a database connection error).
Implementing a global exception handler ensures these codes and informational
messages are returned to the front end. Standardising the error protocol in this way is
essential to enable the mobile application to immediately identify the cause of the
problem (e.g. lack of data versus database unavailable) and communicate it

appropriately to the user.
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RNF-04: Maintainability and Upgradeability

The design must facilitate the system's ongoing evolution and maintenance by developers and

administrators:

e [ogic/data separation: The clear distinction between the Python execution logic and
the JSON knowledge base (RF-04) is fundamental to this requirement.

o Modular Extensibility: The architecture should allow new rule categories (e.g.
Physical Activity) to be added simply by creating a new JSON file and a new Python
pre-processing module. This should not require any changes to the main API other
than the addition of a new endpoint. This ensures a high degree of loose coupling

between components.
RNF-05: Knowledge Base Usability

The effectiveness of the rule-based system should not be compromised by the complexity of

managing rules:

e Intuitive interface: The Python GUI should offer a straightforward interface for
entering and editing rules. It should use high-level terminology (such as aggregate
metric names) that is understandable to domain experts (nutritionists), not just
programmers.

e Error prevention: The interface must integrate immediate syntactic validation
mechanisms (e.g. JSONDecodeError on save) to prevent malformed rules being

inserted that could compromise the entire system in production.

2.3 System architecture

The nutritional and lifestyle recommendation system was built using a decoupled
microservices architecture — a modern approach chosen to ensure adherence to the
non-functional requirements of scalability, maintainability (RNF-04) and integration with the
external mobile application. Designed according to the asynchronous client-server model, the
architecture positions the recommendation engine as an exclusively API-accessible

computational backend service.
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2.3.1 General Architectural Diagram

The logical architecture is developed across three interconnected levels that clearly define the

data flow and separation of responsibilities (See Image 2.3):
Presentation level

This level consists of the mobile application, which was developed externally and acts as a

client, and the GUIs that were developed in the first part of the project:

e Mobile Application (end user): Acts as the main client, recording nutrition, sleep,
mood and activity data on Firebase and displaying the final recommendations. While
this component is outside the scope of this thesis, it is the ultimate goal of the API
service.

e Python Graphical User Interfaces (Internal Development Tools): These GUIs were
developed with Tkinter for the initial prototyping and management phases and
represent the presentation layer for the administrator/developer.

o Rule Management GUI: Used by experts for entering, modifying and
maintaining the JSON Knowledge Base.
o Analysis and Debugging GUI: Used for local testing, parsing test files

(FatSecret) and visualising internal results and activated rules.
Service level

This is the computational core of the project and is implemented as a Python service

application:

e RESTful API Layer (FastAPI): The service exposes endpoints via a high-performance
API framework.
o Orchestration and security: It manages authentication through Firebase token
validation (RF-01) and orchestrates data flow.
o Endpoint modularity: The main endpoints (/nutrition, /sleep, /activity and
/mood) are decoupled and call their respective analysis modules.
e Rules Engine (Python): This computational module is written entirely in Python and
implemented in separate modules (recommendation_food.py,

recommendation_sleep.py, reccomendation_sport.py and reccomandation_mood.py).
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The API calls it to perform the process in three sequential steps (as detailed in
Chapter 3.3.1).

e Data Acquisition: Retrieves the weekly log from Firebase using internal service
credentials.

e Analysis: Performs pre-processing on the data and compares it with dynamically
loaded rules.

o Generation: Returns a structured, customised list of recommendations in JSON

format.
Data level
This layer manages all forms of information persistence:

e User data (Firebase Firestore): The Firebase Firestore database stores dynamic user
data such as meals, sleep, weight, mood, and activity. This choice ensures high
availability and ease of synchronisation with the mobile environment, supporting
requirement RNF-01.

e Knowledge Base (JSON files): The operating logic (if-then rules) is stored in JSON
files rather than in the Python code. This implementation choice decouples business
logic from execution logic, facilitating the maintainability and updating of the

knowledge base via the dedicated GUI.
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2.3.2 Choice of Technologies

The selection of technologies for the NRS was strategic, driven by the need to meet the

functional requirements (RF) for high-level analysis while strictly adhering to the

Image 2.3

non-functional requirements (RNF) for performance, security, and maintainability. The core

principle was to favor open-source solutions that support an agile, service-oriented

architecture.

Development Language: Python

Python was chosen as the core language for the entire backend and analysis logic. Its

widespread adoption in data science and scientific computing meant that robust libraries for

data manipulation and mathematical analysis were available, which are essential for the

pre-processing phase (RF-02).
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e Rule Engine Suitability: Python's dynamic nature and clear syntax make it particularly
well-suited to implementing the Rule-Based Engine (RF-03). Specifically, it
facilitates the safe evaluation of conditional strings (the condition field in the JSON
rules), which is critical for executing complex rule logic with high flexibility and

maintainability (RNF-04).
API Framework: FastAPI

FastAPI was used to construct the API layer, defining the interface between the Python
backend and the frontend mobile application. This choice was deliberate over alternatives like

Flask or Django due to specific performance and integration needs:

e Performance: FastAPI provides exceptional speed, leveraging Python's asynchronous
capabilities. This was non-negotiable for meeting the strict latency requirement
(RNF-01), ensuring a near-instantaneous response after querying Firebase.

e Automatic Validation: The framework leverages Python and the Pydantic library for
the automatic validation of input and output data. This functionality guarantees a
rigid data contract with the frontend partner, drastically reducing the risk of runtime
errors and ensuring data integrity upon request (RF-06).

e Automatic Documentation: FastAPI automatically generates interactive API
documentation (Swagger/OpenAPI). This feature was crucial for facilitating rapid
integration, allowing the external thesis partner to immediately understand the
structure, endpoints, and required JSON schema without manual documentation

updates.
Database and Authentication: Firebase

Google Firebase was integrated as the primary data platform, leveraging its dual capabilities

for data storage and security management:

e Data Acquisition: Firebase Firestore provides a flexible NoSQL structure ideal for
storing the frequently updated, yet non-relational, food and sleep logs. The
FirestoreManager class handles the efficient connection and querying required for the

analysis time window (RF-02).
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e Security: Firebase is central to the security architecture. It manages user
authentication, allowing the API service to validate the client's ID Token using the
firebase admin.auth module. Furthermore, internal service account keys are used for
secure, server-side data retrieval (RF-01), creating a protected communication tunnel

between the API and the data itself.
Knowledge Storage: JSON and Modular Structure

The design of the Knowledge Storage was predicated on its ability to be easily managed and
updated.

e Decoupling: The operating rules are encoded entirely in JSON format. This
decouples the business logic (the JSON file) from the programmatic logic (the
Python engine). The RulesEngine reads and interprets these JSON files dynamically
at runtime, allowing rules to be updated without restarting or recompiling the core
API service.

e JSON is a human-readable format, which is a prerequisite for its modification via

the high-level GUI.
Management User Interface (GUI): Tkinter

To support the prototyping phase and meet the usability requirements (RNF-05), two
dedicated GUIs were developed using Tkinter, Python's standard GUI library.

e Analysis GUI: This GUI was vital for Validation and Debugging (RF-07). It
integrates the matplotlib library to provide graphical summaries (e.g., macronutrient
distribution) alongside the textual recommendations. This visual debugging tool was
crucial for verifying the logical correctness of the rules before the final API
integration.

e Rule Management GUI: This tool ensures Knowledge Base Usability (RNF-05). It
utilizes Tkinter components to allow direct editing and saving of JSON rule files,
integrated with a mandatory syntax validation check to prevent the deployment of

corrupted rules.
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3. Nutritional Recommendation Form (Core of the Project)

3.1 Data Input: The Food Log

The quality and reliability of the recommendations generated by the system are contingent
upon the consistency and completeness of the input data provided by the user. This chapter
delineates the evolution of the Data Pipeline, a process that has transformed the system from

a static file-based analyser to a dynamic service integrated with a cloud database.
3.1.1 Data Extraction and Initial Integration with FatSecret

In the project's preliminary phase, the priority was the validation of the Rules Engine through
a set of standardised, precise and detailed data .For the purpose of this study, it was decided
that the most suitable method of data collection would be through the utilisation of food logs

that had been exported from the FatSecret platform.

This decision was executed through the establishment of an ad-hoc parsing module, which
was integrated within the parse_fatsecret report function. The following aspects of the

module fall under its remit:

1. Reading and Interpretation: The .csv files exported from FatSecret were then
opened.

2. Structural Recognition: Use regular expressions to recognize and separate entries by
date, meal, and food, since FatSecret's CSV format is standardized.

3. Normalization: Extract nutritional values (calories, macronutrients, and

micronutrients) and normalize them into a consistent data structure ready for analysis.

The preliminary integration with FatSecret, while effective for prototyping and functional
validation of the rules engine, exhibited two primary limitations: it was a manual process
(requiring file uploads via the GUI) and did not permit integration with a real-time frontend

application.
3.1.2 Evolution: Data Acquisition from Firebase

The transition to a service-oriented architecture and integration with the mobile application

necessitated the adoption of a cloud database for real-time data management. The decision
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was taken to designate Firebase as the repository for this information, thus establishing it as

the definitive source of truth.

This evolution entailed the reengineering of the acquisition module, with file parsing being

replaced by a direct database query mechanism.
A. Data Centralization and Authentication

It has been established that all user data, including that pertaining to nutrition and sleep, is
recorded by the front-end application and stored directly in Firebase. The delegation of access
management to the FirestoreManager module is pivotal in ensuring the authentication process

1s conducted via Firebase service credentials.
B. Data Retrieval and Time Window

The analysis modules have been updated to now invoke specific methods that retrieve data
from Firebase. The retrieval process is parameterised to operate within a specific time period
(seven days by default). This approach ensures that the analysis focuses on weekly patterns,

in line with the system's objectives.
C. Architectural Advantages

The adoption of Firebase resolved the issue of manual labour (RF-01) and satisfied the
non-functional requirements of scalability and security (RNF-02), thereby enabling the API
service (FastAPI) to establish a connection asynchronously, retrieve data, and initiate analysis

with minimal latency (RNF-01).

This transition from static files to a cloud database signifies a pivotal step in the project,

thereby transforming a prototype into a contemporary, integrable backend service.

3.2 The Knowledge Model: Structure and Taxonomy of Rules

The Recommendation Engine is classified as a Knowledge-Based System. The effectiveness
of this approach is contingent not on statistical learning, but rather on the validity and

accuracy of the rule base that encapsulates nutritional knowledge and lifestyle guidelines.
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The modelling of knowledge was achieved through the implementation of a hierarchical
dictionary of logical rules, which was maintained externally to the execution code in order to

ensure maintainability and transparency.
3.2.1 Rule Types: Defining Simple and Complex Logic

In order to address the different complexities of nutritional and sleep guidelines, the
knowledge base has been split into two distinct types of rules, as specified by the “fype” field
within the JSON structure.

A. "Simple" rules

The objective of a simple rule is to evaluate a specific metric in relation to a constant
threshold value. These measures are considered optimal for addressing fundamental

nutritional standards and safety recommendations.

Logic: The condition of the rule is typically based on a standard comparison operator (<, >, =,
<=, >=). Example Usage: It is imperative to ascertain whether the total daily calorie intake or

the number of nights with less than 6 hours of sleep exceeds the recommended maximum.
B. "Complex" rules

The system's most sophisticated diagnostic core is constituted by complex rules that permit
dynamic calculations and combined analyses of multiple metrics or variables dependent on

the user's context.

Logic: The condition is a complex Boolean expression that can combine several aggregate
metrics (e.g. saturated fat plus fried foods) and can include dynamic variables based on the

user's weight (e.g. protein requirement in grams per kilogram of body weight).

The following example illustrates the application of the rule. This rule functions to ascertain
whether the aggregate sum of specific saturated fats and fried foods exceeds a designated
weekly threshold. The calculation involves the summation of specific saturated fats

(weekly counts.get('specific_saturated fats', 0)) and fried foods

(weekly counts.get('fried foods', 0)). Secondly, This type of rule is indicative of the

complexity of a truly holistic nutritional assessment.
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3.2.2 JSON Schema and Logical Category Mapping

To ensure that the Knowledge Base was maintainable and that recommendations could be
grouped consistently for the user, a rigorous JSON Schema and a taxonomy of logical

categories were defined.

Each rule, regardless of its type (simple or complex), adheres to the following atomic

structure:

e name: Unique and descriptive identifier.
e group: Logical category to group the tips (e.g. "Macronutrients", "Hydration", "Sleep
Hygiene").
e cnabled: Flag for quick activation/deactivation of the rule.
e type: Indicates simple or complex.
o if simple
m metric: The variable in the context to evaluate
m operator: The logical operator to apply (<, >)
m threshold: The value to be considered
o if complex
m condition: The logical Python expression that the engine will evaluate,
pre (e.g. 2000 <= avg_calories > 2500).
e message: The text of the tip, with dynamic placeholders (e.g. You have consumed
{total sat fried items} times).
e message params: (Optional) Contains Python expressions to calculate values to inject

into the message placeholders at run time (e.g. total sat fried items).

The group field is essential for mapping the Knowledge Model. It facilitates the organisation
of rules into coherent sets, enabling both the maintenance of these rules via the GUI and the

orderly presentation of results to the end user.

This knowledge architecture ensures the extensibility of the system (by means of the addition
of new JSON files or rules) and its transparency, as each recommendation can be uniquely

traced back to the specific rule violated.
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3.3 The Weekly Execution and Analysis Algorithm (Rules Engine)

The intellectual core of the project is constituted by the Rules Engine, a system developed in
Python that models the decision-making process of a nutritionist or lifestyle expert. In
contradistinction to machine learning-based systems, which necessitate voluminous labelled
datasets and proffer minimal explainability, the Rule-Based Engine ensures transparency and
clinical accuracy, as it is predicated on recognised nutritional guidelines and health

parameters.
3.3.1 Algorithm Phases: Prep-Processing, Run-time and Message Generation

The analysis and recommendation algorithm operates in a cycle of three main phases, which

are executed every time the API service receives a request:
Phase 1: Prep-Processing e Data Aggregation

The present phase constitutes a preparatory step for the raw data received from Firebase (or,

in the testing phase, from the FatSecret parser) so that it is ready for logical evaluation:

1. Retrieval and Time Window: The data is retrieved from the database (or parsed
from a CSV file) and filtered to include only the desired analysis time frame (by
default, 7 days).

2. Aggregate Metrics Calculation: The objective of this process is to calculate the
essential metrics that serve as variables for the rule conditions.

o Nutrition: The programme performs calculations to determine daily
macronutrient averages (avg_macronutrients), weekly serving counts for
specific food groups (weekly counts), and the average total calories.

o Sleep: Calculation of the average sleep hours, average bedtime and wakeup
hour, days with late bedtime, days with early wakeup, days with insufficient
sleep and days with poor quality sleep.

3. User Context Definition: User-specific variables, such as weight in kilograms
(user_weight), are loaded, and are essential for complex rules that require parametric

calculations (e.g. protein requirement calculated as user weight multiplied by X).
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Phase 2: Rule Engine Runtime

This is the execution phase where the Knowledge Base logic is applied to the aggregated

data:

Context Injection: The Rules Engine creates an execution context that contains all
aggregate metrics and user variables.

Iterative Evaluation: The engine iterates through the entire list of enabled JSON
rules (“enabled”: true). For each rule, the expression contained in the “condition” field
is subject to dynamic evaluation within the execution context.

Evaluation Mechanism: The evaluation process is facilitated by a Python string
execution mechanism (e.g. the eval() function), which allows for the flexibility
required by complex rules (e.g. the condition

"weekly counts.get('specific_saturated fat', 0) + weekly counts.get('fried food', 0)).
Results Collection: In the event of a condition being evaluated as True, the rule is

considered to have been violated and the rule object is queued for message generation.

Phase 3: Message Generation and Finalization

The final step is to transform the violated rule into a custom recommendation and structure

the output for the API.

I.

Dynamic Parameter Calculation: For rules containing the message params field,
the engine performs the calculations specified in this dictionary.

Placeholder Population: The engine uses the values calculated and context metrics
to replace placeholders ({parameter name}) in the rule's message field. This ensures
that the recommendation is numeric and contextualized (e.g., "You consumed food... 3
times this week").

Output Structure: The final list of all generated messages is structured in a JSON
format, ready to be returned to the API layer, including the message and the group it

belongs to.

3.3.2 Implementation and Conditional Logic in Python

The Python implementation is the key element that ensures the efficiency and power of the

Rules Engine.
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Dynamic Condition Execution

The capacity to implement intricate regulations without necessitating code recompilation is

facilitated by the eval() function or analogous processes.

The benefit of this system is that it allows administrators to modify logical conditions via the
GUI and load them immediately without intervention on the backend code (in accordance

with the RNF-04 Maintainability requirement).

Execution Context: The script establishes a secure namespace, which is defined as a
dictionary, and contains all the necessary variables (weekly counts, avg macronutrients,
user_weight). The execution of code is dynamic within this specific scope, thereby mitigating

potential security concerns associated with the use of the eval() function.
Modularity of the Analysis

The algorithm is structured into separate modules for nutrition (recommendation food.py)
and sleep (recommendation_sleep.py). This modularity is achieved by reusing the
RulesEngine class and differentiating the inputs (the rules' JSON files and the specific

aggregate metrics):

e recommendation food.py: Focuses on processing the food log and using the
weekly counts and avg_macronutrients metrics.
e recommendation_sleep.py: Focuses on processing sleep data and using specific

metrics such as regularity and duration.

The system's modular design facilitates future extensions, such as the incorporation of the
Physical Activity Recommendation Module, which necessitates only new prep-processing

and a revised set of JSON rules.

3.4 Rules Management GUI Development and Functionality

In order to guarantee that the Knowledge Model (Chapter 3.2) can be maintained and updated
by non-technical personnel, such as nutritionists or future system administrators, a dedicated

graphical user interface (GUI) was developed. This standalone application, implemented in
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the gui_rules.py file, serves as the single point of access for securely editing the JSON files

containing the rules.

3.4.1 High Level Input Interface (Tkinter)

The rules management GUI was built using the Tkinter library, the standard Python toolkit.

This choice prioritized the simplicity and independence of the administration tool:

e Module Navigation: The GUI enables the user to select the rule set to be edited (e.g.
Nutrition, Sleep). This is of crucial importance since the rules are physically separated
into different JSON files, thereby supporting the system's modularity.

e Rule List: The screen displays a clear list of rule names and their status, allowing for
rapid identification and editing access.

e Integrated Editor: The interface provides a dedicated text editor that loads the raw
JSON content of the selected rule. Although the input does not conform entirely to the
"text box-like" paradigm, particularly in more complex fields such as condition (a
string of Python code), the widget-based interface provides a controlled environment
that mitigates the need for manual intervention in editing JSON files, thereby offering
a heightened level of abstraction. The objective is to facilitate the incorporation of
predefined logical structures, with the capacity to modify solely the critical
parameters.

e Basic functionality: The tool incorporates essential features, including the capacity to
expeditiously enable or disable rules (by modifying the "enabled" field to true or

false) and to introduce new rules by duplicating existing ones.

3.4.2 Atomic Validation and Rescue Mechanisms

The maintainability and reliability requirements (RNF-03 and RNF-04) are satisfied by
mechanisms that protect the Knowledge Base from destructive errors. Since a syntax error in
a JSON file has the potential to result in the failure of the entire Rules Engine in production.

Therefore, the GUI implements a precautionary save logic:

e JSON Syntax Validation (Pre-Save Check): When the user presses the save button,
the algorithm attempts to execute the json.loads(json_text) function on the text in the
editor. In the event of failure (i.e. if the error code is 'json.JSONDecodeError'), a clear

error message is displayed (messagebox.showerror in gui_rules.py) and the save to
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disk operation is aborted. This is an essential process as it prevents invalid data from
being written, which would cause the Rules Engine to crash at runtime.

e Atomic and Coherent Rescue: Only after passing JSON validation is the file
overwritten to disk (save function in gui_rules.py). This process is made as "atomic"
as possible, where the data is written and the Rules Engine on the backend can reload
the file with the new ruleset. Using the Tkinter toolkit, separate from the API
environment, ensures that any GUI crashes or freezes have no impact on the stability

of the active API service.

These syntax error prevention mechanisms make the GUI a fundamental component for the

operational management of the Knowledge Model.
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4. Extension of the Recommendation System (Lifestyle and

Wellbeing Modules)

The initial nutritional recommendation system was strategically designed to be extensible,
enabling the integration of lifestyle analysis and advice, with an initial focus on sleep. This
extension maximizes the utilization of the Rules Engine's modularity (RNF-04), creating a

second, parallel analysis pipeline to the nutritional module.

Integrating sleep is a critical clinical decision because inadequate rest is strongly linked to
poorer food choices, metabolic dysregulation, and reduced motivational capacity, meaning

that isolated nutritional recommendations are often ineffective.

4.1 Implementation of the Sleep Module

4.1.1 Sleep Data Integration

The successful integration of the Sleep module required extending the algorithm's
prep-processing stage to define and manage a new distinct data pipeline,validating the

flexibility of the core architecture.
A. Unified Data Source (Firebase)

Unlike the initial nutrition phase, which relied on external, static logs (e.g., FatSecret), sleep

data was integrated directly into the project's real-time service architecture.

e Database: Sleep data (e.g., sleep hours) is recorded by the frontend application and
saved to the same Firebase Firestore instance used for nutritional data. This
maintains Firebase as the single source of truth for all user lifestyle data, simplifying
the architecture and supporting the security model.

e Acquisition Module: The file reccomandation_sleep.py implements the core
acquisition logic. The function analyze sleep from firebase invokes the
FirestoreManager object using internal service credentials (RF-01) to securely retrieve
raw data. Access is consistently filtered by user id and restricted to a rolling

seven-day time window to effectively analyze weekly circadian patterns.
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B. Specific Analysis Metrics

The algorithm executes a tailored prep-processing step on the raw sleep data to generate the
high-level metrics required for rule evaluation in the execution context. This moves the

system beyond simple duration logging to actionable insights:

e Quantitative Duration: Calculates the average number of hours of actual sleep per
week.

e Circadian Regularity/Consistency: Analyzes the variation in bedtime and wake-up
time, which is a key metric for evaluating the health of the user's circadian rhythm.

e Deficiency Frequency: Counts the number of days on which sleep was below a

critical threshold (e.g., 7 hours).

These processed metrics are then robustly injected into the execution context of the Rules

Engine, in a similar mechanism used for nutritional variables.
4.1.2 Logic of Additional Rules for Sleep

The cognitive extension of the system is materialized by the new JSON ruleset for sleep,
which expands the Knowledge Model. This set of rules demonstrates the applicability of the

complex rule type to non-nutritional data.
A. New Logical Categories

To maintain organization and transparency, two new primary categories (groups) were

introduced to the taxonomy:

1. Sleep Hygiene: Rules focused on behavioural and environmental factors (e.g.,
timing of meals before sleep, consistency of schedule).
2. Sleep Duration and Quality: Rules based on quantitative metrics (total hours) and

consistency over the seven-day period.
B. Examples of "Complex" Sleep Rules

Sleep recommendations often rely on analyzing consistency and frequency over time,

necessitating the use of complex rules to combine multiple metrics. See Table 4.1.
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Category Example of Conditional Typical Personalized Message
Logic (Internal) Generated

Duration IF the average sleep duration "Your average sleep duration is only
is $< 7% hours AND this {X} hours. Try to get at least 7-8
insufficient duration occurred hours of rest per night."

MORE THAN 3 times in the
last 7 days.

Hygiene IF the average difference "Your sleep pattern is highly
between bedtimes is $> 90$ inconsistent, with an average
minutes (high inconsistency). difference of {Y} hours between

nights. Try to maintain a fixed
schedule to improve circadian
health."

Table 4.1

The execution of the Sleep module is entirely decoupled at the logic level (using separate

JSON files and analysis code reccomandation_sleep.py) but unified at the service level, with

the API exposing a dedicated endpoint (/sleep in api_service.py) that specifically triggers this

analysis and returns the structured recommendations.

4.2 Implementation of the Mood Module

The Mood module represents the expansion of the system into the domain of subjective
psychological well-being. This allows for the analysis of emotional patterns in relation to
objective behaviors (sleep and activity), leveraging the flexibility of the Rules Engine to

analyze complex intensity data.
4.2.1 Rationale for Mood Tracking and Data Metrics

e Rationale: Tracking mood is essential for holistic counselling, as emotional states

directly affect adherence to routines, sleep quality and motivation levels. Mood
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analysis enables targeted recommendations for psychological stability, a prerequisite
for long-term behavioural change.

e Data Metrics: The data is recorded by the frontend application and saved on
Firebase. The input consists of ten discrete values (on a scale of 1 to 5) that indicate
the intensity of specific moods during the reference period (7 days).

o Derived Metrics (Prep-Processing): The prep-processing phase calculates the
following aggregate metrics, which are essential for evaluating rules and identifying
patterns of stress or vigilance:

o Emotional Balance: avg positive_mood and avg negative_mood, calculated
as the normalized average of positive and negative metrics.

o Alertness and Attention: avg_attentive (average attention intensity).

o Frequency of Critical States: nervous_high days, hostile high days, and
their percentages (hostile high percentage, nervous_high percentage). These
metrics quantify the incidence of potentially dysfunctional emotional states

during the week of analysis.

4.3 Implementation of the Physical Activity Module

The Physical Activity module completes the holistic approach by providing essential data for
optimising consistency, frequency and recovery. All data is acquired in real time via Firebase

from the front-end application.
4.3.1 Integration and Metrics from Activity Trackers

e Data Source: The raw data is taken from Firebase and includes basic quantitative
metrics such as: steps (total steps), calories_burned (calories burned), biking distance
(distance cycled), and walking distance (distance walked).

e Derived Metrics (Prep-Processing): The analysis engine aggregates this data on a
weekly basis to calculate the metrics required for the rules:

o Total Volume: Calculation of Total Caloric Expenditure (sum of calories
burned), Total Steps, and Total Distance (sum of walking and biking distance).

o Consistency and Frequency: Determination of the number of days of
significant activity (e.g., days when steps exceed a threshold) and assessment

of weekly consistency.
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5. System Integration and API Services

The project's architectural journey involved two main phases: initial validation and service
deployment. The first phase saw the implementation of the Recommendation GUI (used for
internal testing), which was essential for debugging the core logic. The second phase
involved transitioning the validated Rule-Based Engine from a standalone prototype to a
robust, real-time backend service via the RESTful API layer (used for external deployment).
This two-step process ensured that the core intelligence was proven correct before being

exposed to the external mobile application.

5.1 The Recommendation GUI (Analysis and Output GUI)

Before developing and deploying the API backend, an initial Python GUI was implemented
using the Tkinter library and Matplotlib. This application was vital, serving as the internal

validation and debugging environment for the core logic.

e Technical Validation: It enabled to test the effectiveness of the Rules Engine locally
using test logs (CSV files initially parsed from FatSecret), thereby completely
bypassing the Firebase/API integration until the core logic was proven sound.

e Debugging and Transparency: It served as the primary debugging tool, capable of
displaying both the final recommendation and the granular data that generated it,

which was essential for verifying the correctness of the JSON rules..

5.1.1 Loading the Log and Viewing the Analysis Results

The GUI was designed to provide a comprehensive, all-in-one analysis environment capable

of managing the entire algorithm execution pipeline within a local context
A. Loading the Log (Initial Testing Phase)

The interface includes an 'Upload File' function that invokes the dedicated parsing module,
allowing developers to select local CSV files and start the analysis immediately. Crucially,
the interface requires the user to specify context variables, such as body weight, which are
essential parameters for correctly executing the complex rules that calculate personalized

protein requirements.
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B. Data Visualization and Aggregations

Once the data has been uploaded and preprocessing is complete, the GUI visualizes the

aggregated metrics before the rules are executed:

e Numeric Summary: A dedicated section displays key aggregated results of the
analysis (e.g., Average Daily Calories, Average Grams of Protein).

e Graphical Representation (Matplotlib): The GUI uses the Matplotlib library to
generate and display dynamic charts. Typical charts include Weekly Macronutrient
Balance (pie/bar charts) and Weekly Distribution (line charts) showing the trend of
calories or specific micronutrients day by day. This visual output was essential for
external validation and for identifying anomalies in the input data before the Rules

Engine was executed.

5.1.2 Presentation of Nutritional Advice

The final result of the Rules Engine execution is presented in a dedicated section,

emphasizing structure and transparency.

e Categorical Structure of Output: Recommendations are logically organized using
the categories (group) defined in the JSON files. For instance, sodium
recommendations are categorized under ""Micronutrients," separated from protein
balance recommendations ('"Macronutrients and Balance''). This structure prepares
the data for an organized display in the application.

e Engine Transparency and Debugging: This GUI satisfies the Explainability (XAI)
requirement through a built-in debugging mechanism not present in the final mobile

application:

5.2 API Development for External Service

The final phase involved converting the Rules Engine into a network-accessible service. This
was achieved by developing a RESTful API interface using the FastAPI microframework,

which ensured high performance and automatic documentation.

These APIs act as the essential authenticated bridge between the front-end mobile application

and the back-end analytics logic.
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The decision to expose the analytic engine as a RESTful microservice was driven by three
key considerations: interoperability, operational simplicity, and the ability to evolve

independently.

REST over HTTPS is widely supported by mobile clients and serverless platforms,
facilitating rapid integration with partner mobile applications and third-party services without
the need for client-side libraries. Microservice boundaries enable the analytics engine to scale
independently and be deployed using container orchestration tools or serverless functions to

match production load profiles.

5.2.1 Designing API Endpoints

The design of the API endpoints adheres to the principle of separation of responsibilities
(for the nutrition and sleep modules) and facilitates efficient, secure communication. See

Table 5.2.

Endpoint Metho Description and Features
d
Inutrition POST The primary endpoint for nutritional analysis. It requires the

authenticated user ID and starts the entire pipeline: data fetch
from Firebase, running reccomendation_food.py (Rules
Engine), and returning recommendations.

Isleep POST Endpoint dedicated to analyzing sleep data. It invokes
reccomandation_sleep.py and returns lifestyle
recommendations.

/health GET Health Check. Used for deployment and monitoring, verifying
service health and real-time connectivity to the Firebase
database (RNF-03).
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/mood

POST

Endpoint dedicated to analyzing mood data. It invokes
reccomandation_mood.py and returns lifestyle
recommendations

lactivity

POST

Endpoint dedicated to analyzing activity data. It invokes
reccomandation_sport.py and returns lifestyle
recommendations

Icategories

GET

Provides a list of available logical categories (group). This
allows the frontend to understand the backend's taxonomy for
proper display and filtering.

Table 5.2

The choice of the POST method for the analysis endpoints is used to include user metadata

and authentication tokens securely within the request body, even when data is retrieved from

the database.

5.2.2 Communication and Data Exchange Protocols

Communication between the frontend (mobile application) and the backend API is

standardized to ensure robustness and security.

e Transport Protocol and Architecture: The system uses the standard HTTP/S

protocol with a RESTful architecture. The use of FastAPI ensures correct handling

of HTTP status codes (e.g., 200 OK, 400 Bad Request), which is critical for the

frontend's error handling mechanisms.

e Data Exchange Format: JSON: JSON is the sole format used for data exchange.

The Input (Request Body) includes a JSON object with the user ID and

authentication token. The Output (Response Body) returns a JSON object containing

the list of generated recommendations, where each item is a structured object

including the message text and its associated category (group).

e Authentication and Security (RNF-02): Every API request requires authentication.

The API verifies the client by validating the Firebase ID Token sent in the request

header using the Firebase SDK. Furthermore, the implementation includes a dedicated
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system of customized exceptions that standardizes error responses. In the event of a
service failure (e.g., Firebase connection failure), the API returns a structured JSON
error response, including a shared error code (e.g., ERR_ DB _001), enabling the
frontend to display specific and actionable feedback rather than a generic service

crash.

5.2.3 Integration with the Other Thesis Student's Mobile Application
Integration with the mobile application (developed in parallel by another candidate) was the
ultimate validation of the system's design. The decoupled API approach allowed the two
development streams to work independently, converging efficiently through key integration

points:

1. Defined API Contract: The API documentation served as the formal contract
between the frontend and backend. Both parties agreed precisely on the endpoint
names, the required JSON schema for requests and responses, and the complete list of
structured error codes.

2. Closed-Loop Data Flow: The integration established a clear, closed-loop workflow:
The mobile app writes data -> The mobile app authenticates and calls the API -> The
API reads data from Firebase -> The Rules Engine executes -> The API returns the

recommendations.

This integration demonstrated the viability of the microservices design, successfully
positioning the Rules Engine as a scalable, secure, central service ready for use in a

production environment.
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6. Results, Evaluation and Discussion

This chapter presents the system's operational results, evaluates the effectiveness of the
implemented solution and considers how well the functional (RF) and non-functional (RNF)

requirements have been met.

6.1 System Demonstration and Operational Validation

The backend system that was implemented was tested in an end-to-end configuration to
verify its ability to execute the full analytical pipeline, from retrieving data through the API

to generating personalized recommendations.

This process confirmed the consistency and interoperability of all modules, ensuring that the

engine fulfils all functional and integration requirements.
6.1.1 Use Case 1 — Nutritional Analysis and Complex Rules

This first scenario validates the execution of the core analytical logic (RF-03) and the

dynamic generation of recommendations (RF-05).

Scenario:
A user weighing 70 kg records a weekly average protein intake of 65 g and consumes foods

rich in saturated fats (e.g., fried foods) four times in seven days.
Process and Output:

e The system evaluates the protein-to-body-weight ratio, triggering a rule when intake
falls below 1 g/kg.
e [t simultaneously activates a complex rule combining two weekly counters (saturated

fats and fried foods) to assess excessive frequency.

Generated Recommendations:
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e Macronutrients and Balance:

“Your average daily protein intake of 65 g is below the optimal target of 70-84 g.

Increase your intake of lean sources.”

e Foods to Limit:

“You consumed foods high in saturated fat or fried foods four times this week. Limit

to a maximum of twice to improve cardiovascular health.”

Validation:

These results confirm that:

The engine correctly evaluates both simple (threshold-based) and complex
(aggregated) conditions.
The recommendation text dynamically integrates user-specific variables (e.g., weight

and weekly counts), achieving true personalization.

6.2 System Evaluation

The system was evaluated through quantitative and qualitative analyses to verify compliance

with the non-functional requirements (RNF).

6.2.1 Validation of the Knowledge Base

The transparency and reliability of the Rule-Based Engine (RNF-03) were ensured through a

two-step validation process supported by the dedicated GUIs.

1.

Syntactic Validation (RF-04): The Rule Management GUI automatically checks
JSON syntax before saving, preventing malformed rules (e.g., missing commas or
brackets) from being stored. This guarantees that the engine always operates with a
valid, readable Knowledge Base.

Logical and Clinical Verification (RF-07): Using the Analysis GUI, test logs were
intentionally crafted to trigger specific rules. The threshold to verify the accuracy of
the rules is specified in the rule output message. This immediate feedback confirmed
that all simple and complex rules behaved consistently with their clinical intent and

logical design.
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Requirement Description Verification evidence
RF-01 Secure data acquisition from Token validation tested; FirestoreManager
Firebase logs and authenticated calls
RF-02 Weekly aggregation and Preprocessing unit tests; example
time-window analysis aggregated outputs in GUI
RF-03 Dynamic Rule Engine execution Triggered rules in Use Case 1; debug
output with violated condition
RF-04 Knowledge base management via GUI save validation and atomic update
GUI mechanism implemented
RF-05 Recommendation generation with Message params evaluated and populated
dynamic placeholders in sample recommendations
RF-06 Exposed REST API endpoints FastAPI auto-docs and integration with
(/mutrition, /sleep, /categories) mobile client
RNF-01 Target latency <3 s Measured average ~ 2 s for /nutrition
endpoint
RNF-02 Data security & HTTPS HTTPS enforced; Firebase authentication

validated
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RNF-03 Robustness and error handling Centralized exception handler and

structured error codes (ERR ...)

RNF-04 Maintainability (decoupling code and | JSON rules loaded dynamically; modular
knowledge) rule files per domain
RNF-05 Knowledge-base usability GUI syntax checks and rescue

mechanisms implemented

Table 6.2.2

6.3 Discussion and Critical Analysis

The implemented solution successfully achieved its design goals, proving that a Rule-Based
and modular architecture can deliver personalized and explainable lifestyle

recommendations with low computational cost.
6.3.1 Strengths and Achievements

e Explainability (XAI): The rule-based approach inherently guarantees transparency:
each recommendation can be traced back to the exact logical condition that produced
it. This satisfies both clinical accountability and user trust requirements.

e Maintainability and Modularity: The separation between the Python engine and the
JSON Knowledge Base, managed through the GUI, enables rapid updates without
code changes. The addition of the Sleep module validated the system’s extensibility
and confirmed the robustness of its modular design (RNF-04).

o Effective Hybridization: While primarily rule-based, the system already incorporates
a hybrid logic by combining nutritional and sleep data, forming the foundation for a
comprehensive Lifestyle Recommendation System rather than a simple Nutritional

Recommender.
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6.4 Summary

In conclusion, the project delivers a fully functional, secure, and transparent backend

service for personalized wellness recommendations.

It demonstrates that Knowledge-Based Systems, when properly modularized and coupled
with cloud integration, remain a powerful paradigm for clinical-grade personalization,

offering reliability, explainability, and low latency that purely data-driven systems often lack.

The work establishes a robust foundation for future hybrid systems, where expert-defined
rules and adaptive learning can coexist to achieve both trustworthiness and continuous

personalization.
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7. Conclusions and Future Developments

7.1 General Conclusion

This thesis presents the design and implementation of a Knowledge-Based engine for
generating personalised nutritional and lifestyle recommendations. This represents an
evolution from traditional data-tracking applications towards intelligent, explainable wellness

systems.

The system developed in this study shows that knowledge-driven approaches combined with
modular software architecture and cloud integration can effectively convert raw behavioural

data into actionable, clinically meaningful insights.

By formalising expert knowledge into a transparent and maintainable rule structure, the
project was able to achieve a high level of personalisation without sacrificing interpretability,

which is a common limitation of purely data-driven models.

From a methodological standpoint, the project’s success lies in the decoupling of logic and

knowledge:

o The Python-based Rules Engine ensures efficient execution and computational
transparency.

e The JSON Knowledge Base, editable through an intuitive GUI, allows domain
experts to modify rules dynamically, bridging the gap between technical
implementation and clinical expertise.

o The FastAPI backend and Firebase integration enable real-time interaction with
external applications, transforming the prototype into a production-ready,

service-oriented architecture.

The system’s modular extension to lifestyle data, particularly through the integration of

sleep analysis, demonstrates the scalability and generality of the proposed framework. This
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confirms that the same logic can be applied to additional domains, positioning the system as a

foundation for broader lifestyle intelligence applications.

7.2 Limitations

Despite its achievements, several limitations remain, offering opportunities for further

refinement:

e Manual Knowledge Expansion: The rule base currently relies on expert-defined

logic, which can be labor-intensive to scale. Automating knowledge extraction or
supporting semi-automatic rule suggestions could enhance long-term sustainability.
Absence of Adaptive Feedback Mechanisms: The system currently operates in a
prescriptive mode, it issues recommendations but does not adapt based on user
compliance or outcomes. Future iterations could implement learning mechanisms that

adjust rule weights or thresholds according to behavioral trends.

7.3 Future Developments

Building upon the current architecture, several promising directions can be pursued:

1.

Hybridization with Machine Learning Models: Introducing a hybrid Al layer on
top of the Rule Engine (for example, a recommendation ranking model or a
reinforcement learning agent) could allow the system to adapt dynamically while
keeping the rule-based layer as a clinical safeguard.

User Feedback Loop and Behavioral Adaptation: Incorporating a mechanism to
collect feedback from users on the usefulness and adoption of recommendations could
enable an adaptive cycle of personalization, improving engagement and accuracy over
time.

Ontology-Based Knowledge Representation: Migrating the rule base to an
ontology-driven model would enhance interoperability, semantic reasoning, and
automated rule generation, facilitating scalability to multiple health domains.
Deployment and Evaluation in Real User Studies: The next phase should involve
deploying the system to real users within a controlled study, assessing not only

technical performance but also behavioral impact, user adherence, and satisfaction.
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7.4 Final Remarks

In conclusion, this thesis demonstrates that Rule-Based Systems remain a cornerstone of
explainable Al in the wellness domain, particularly when safety, interpretability, and

personalization are non-negotiable requirements.

The proposed architecture bridges the gap between expert-driven reasoning and cloud-scale
implementation, offering a solid foundation for next-generation wellness platforms that

combine scientific rigor with real-world usability.

Ultimately, the project contributes to a paradigm shift, from static tracking applications
toward proactive, personalized, and interpretable digital health companions, capable of

evolving alongside their users and learning from their daily habits.
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9. Appendix

9.1 nutrient rules.json

"name": "Grassi Saturi e Alimenti Fritti",

"group": {
"it": "Alimenti da Limitare",

"en": "Foods to Limit"

by
"enabled":

"type": "complex",

"condition": " (weekly counts.get ('grassi saturi specifici', 0) +

weekly counts.get ('alimenti fritti', 0)) > 2",

"message": {

"it": "Hai consumato alimenti ricchi di grassi saturi o fritti
{total sat fried items} volta/e questa settimana. L'assunzione dovrebbe
essere limitata a massimo 2 volte a settimana.",

"en": "You have consumed foods high in saturated fats or fried foods
{total sat fried items} time(s) this week. Intake should be limited to a

maximum of 2 times per week."

b
"message params'": {
"total sat fried items": "lambda weekly counts:

weekly counts.get ('grassi saturi specifici', 0) +
weekly counts.get ('alimenti fritti', 0)"

b

wn

"reference":

s

"name": "Apporto Proteico Basso",

"group": {

"it": "Macronutrienti e Bilancio",




"en": "Macronutrients and Balance"

b

"enabled":

"type": "complex",

"condition": "avg macronutrients.get ('protein', 0) < user weight * 0.8",

"message": {

"it": "Il tuo apporto proteico medio giornaliero e di
{avg daily protein}g, inferiore all'obiettivo di
{min protein target}-{max protein target}g (basato su un peso di
{user weight}kg). Considera di aumentare le fonti proteiche, privilegiando
quelle vegetali (legumi, tofu, tempeh) e animali magre (pesce, pollame, uova,
latticini magri) .",

"en": "Your average daily protein intake is {avg daily protein}g, below
the target of {min protein target}-{max protein target}g (based on a weight
of {user weight}kg). Consider increasing protein sources, prioritizing
plant-based (legumes, tofu, tempeh) and lean animal sources (fish, poultry,
eggs, low-fat dairy) ."

by
"message params": {

"avg daily protein": "lambda avg macronutrients:
avg macronutrients.get ('protein', 0)",

"min protein target": "lambda user weight: user weight * 0.8",

"max protein target": "lambda user weight: user weight * 1.2",
"user weight": "lambda user weight: user weight"

by

wn

"reference":

"name": "Apporto Proteico Alto",
"group":
"it": "Macronutrienti e Bilancio",
"en": "Macronutrients and Balance"
}I

"enabled":

"type": "complex",




"condition": "avg macronutrients.get ('protein', 0) > user weight * 1.2",

"message": {

"it": "Il tuo apporto proteico medio giornaliero e di
{avg daily protein}g, superiore all'obiettivo di
{min protein target}-{max protein target}g (basato su un peso di

{user weight}kg). Valuta di bilanciare le fonti proteiche e di consultare un

professionista se hai dubbi.",

"en": "Your average daily protein intake is {avg daily protein}g, above
the target of {min protein target}-{max protein target}g (based on a weight
of {user weight}kg). Consider balancing protein sources and consulting a
porofessional if you have concerns."

}y
"message params": {

"avg daily protein": "lambda avg macronutrients:
avg macronutrients.get ('protein', 0)",

"min protein target": "lambda user weight: user weight * 0.8",
"max protein target": "lambda user weight: user weight * 1.2",
"user weight": "lambda user weight: user weight"

by

wn

"reference":

"Percentuale Carboidrati Bassa'",

"Macronutrienti e Bilancio",

"Macronutrients and Balance"

by
"enabled":
"type": "complex",

"condition": " (avg macronutrients.get ('carbs', 0)
(avg macronutrients.get ('kcal') or 1)) * 100 < 45",

"message": {

"it": "L'apporto calorico dai carboidrati e del {perc carbs}5%. E
inferiore al range consigliato del 45-60%. Aumenta il consumo di carboidrati
complessi come cereali integrali, frutta e verdura.",




"en" .
is below the recommended range of 45-60%.
carbohydrates such as whole grains, fruits, and vegetables."

"The portion of calories from carbohydrates is {perc carbs}%. It
Increase the intake of complex

by
"message params": {

"perc carbs": "lambda avg macronutrients:
(avg macronutrients.get ('carbs', 0) * 4 / (avg macronutrients.get ('kcal') or

1)) * 100"
y

wn

"reference":

"name": "Percentuale Carboidrati Alta",
"group":

"it": "Macronutrienti e Bilancio",
"en": "Macronutrients and Balance"
}I
"enabled":
"type": "complex",

"condition": " (avg macronutrients.get ('carbs', 0) * 4 /
(avg_macronutrients.get ('kcal') or 1)) * 100 > 60",

"message": {

"it": "L'apporto calorico dai carboidrati e del {perc carbs}5%. E
superiore al range consigliato del 45-60%. Cerca di bilanciare, privilegiando
le fonti integrali e limitando gli zuccheri semplici.",

"The portion of calories from carbohydrates is {perc carbs}%. It

"en" :
prioritizing whole

is above the recommended range of 45-60%. Try to balance,
sources and limiting simple sugars."

by
"message params": {

"perc carbs": "lambda avg macronutrients:
(avg macronutrients.get ('carbs', 0) * 4 / (avg macronutrients.get('kcal') or

1)) * 100"
y

wn

"reference":




"name": "Percentuale Grassi Bassa'",
"group":

"it": "Macronutrienti e Bilancio",

"en": "Macronutrients and Balance"

b
"enabled":

"type": "complex",

"condition": " (avg macronutrients.get ('fat', 0) *

(avg macronutrients.get('kcal') or 1)) * 100 < 20",

"message": {

"it": "L'apporto calorico dai grassi e del {perc fat}s%. E inferiore al
range consigliato del 20-35%. Assicurati di includere fonti di grassi sani
come olio EVO, frutta secca, avocado.",

"en": "The portion of calories from fats is {perc fat}%. It is below
the recommended range of 20-35%. Make sure to include healthy fats such as
EVO o0il, nuts and seeds, and avocado."

by

"message params": {

"perc fat": "lambda avg macronutrients: (avg macronutrients.get ('fat',
0) * 9 / (avg macronutrients.get('kcal') or 1)) * 100"

ty

wn

"reference":

o

"Percentuale Grassi Alta",

"Macronutrienti e Bilancio",
"Macronutrients and Balance"
}I
"enabled":

"type": "complex",




"condition": " (avg macronutrients.get('fat', 0) * 9 /
(avg macronutrients.get ('kcal') or 1)) * 100 > 35",

"message": {

"it": "L'apporto calorico dai grassi e del {perc fat}s%. E superiore al

range consigliato del 20-35%. Cerca di bilanciare l'assunzione di grassi,

privilegiando quelli insaturi.",

"en": "The portion of calories from fats is {perc fat}s. It is above
the recommended range of 20-35%. Try to balance the consumption of fats,

prioritizing unsaturated fats."

b

"message params": {

"perc fat": "lambda avg macronutrients: (avg macronutrients.get ('fat',

0) * 9 / (avg macronutrients.get('kcal') or 1)) * 100"

by

wn

"reference":

b

"name": "Grassi Saturi Elevati",

"group

"it": "Macronutrienti e Bilancio",

"

"en": "Macronutrients and Balance

by
"enabled":
"type": "complex",

"condition": " (avg macronutrients.get ('sat fat', 0)

(avg macronutrients.get ('kcal') or 1)) * 100 > 10",

"message": {

"it": "L'apporto calorico dai grassi saturi e del {perc sat fat}s%.
Riduci il consumo di alimenti ricchi di grassi

L'obiettivo &€ meno del 10%.
(presenti in olio EVO, frutta secca,

saturi e aumenta i grassi insaturi
"

avocado, pesce azzurro) .",

"The portion of calories from saturated fats is {perc sat fat}s.
Reduce the consumption of saturated fats and increase
and oily fish)."

"en" :
The goal is below 10%.
unsaturated fats (present in EVO oil, nuts and seeds,

by

"message params": {




"perc sat fat": "lambda avg macronutrients:
(avg macronutrients.get ('sat fat', 0) * 9 / (avg macronutrients.get ('kcal')

or 1)) * 100"

y

wn

"reference":

"Grassi Insaturi Elevati",

"Macronutrienti e Bilancio",

"Macronutrients and Balance"

}y
"enabled":
"type": "complex",

"condition": " (avg macronutrients.get('fat', 0) * 9 /
(avg macronutrients.get ('kcal') or 1)) * 100 > 10",

"message": {

"it": "L'apporto calorico dai grassi insaturi e del {perc fat}s.
L'obiettivo € meno del 10%.",

"en": "The portion of calories from unsaturated fats is {perc fat}%.
The goal is below 10%."

ty

"message params": {

"perc fat": "lambda avg macronutrients: (avg macronutrients.get ('fat'
0) * 9 / (avg macronutrients.get('kcal') or 1)) * 100"

b

nwn

"reference":




"Consumo di Frutta e Verdura',

"Consumo di Frutta e Verdura",
"Fruit and Vegetable Intake"
by
"type": "simple",

"enabled":

"metric": "avg fruit veg portions",

"operator": "<,
"threshold": 5,
"message": {

"it": "In media hai consumato solo {metric value} porzioni di frutta e
verdura al giorno. L'obiettivo e almeno 5 porzioni. Aumenta la varieta e la
quantita per un maggior apporto di vitamine e fibre.",

"en": "On average, you consumed only {metric value} portions of fruits
and vegetables per day. The goal is at least 5 portions. Increase variety and

quantity for better vitamin and fiber intake."

y

"reference": ""

"Frequenza Legumi",

"Consumo di Legumi",
"Legumes Intake"
by
"type": "simple",
"enabled":
"metric": "legumi",
"operator": "<,
"threshold": 2,

"message": {




"it": "Hai consumato legumi solo {metric value} volta/e questa
settimana. L'obiettivo € 2-3 volte a settimana per un buon apporto di
proteine vegetali e fibre.",

"You have consumed legumes only {metric value} time(s) this week.
2-3 times a week for a good intake of plant-based proteins and

"Frequenza Pesce",

"Consumo di Pesce",
"Fish Intake"
by
"type": "simple",
"enabled":
"metric": "pesce",
"operator": "<",
"threshold": 2,

"message": {

"it": "Hal mangiato pesce solo {metric value} volta/e questa settimana.
Si consiglia almeno 2 volte a settimana, includendo pesce azzurro ricco di
omega-3.",

"en": "You have eaten fish only {metric value} time(s) this week. It is
recommended at least 2 times a week, including oily fish rich in omega-3."

by
"reference": ""

s

"name": "Frequenza Carne Rossa Elevata",
"group":
"it": "Consumo di Carne Rossa'",

"en": "Red Meat Intake"




}I

"type": "simple",

"enabled":

"metric": "carne rossa'",

"operator": ">",

"threshold": 2,

"message": {

"it": "Hai consumato carne rossa {metric value} volta/e questa

settimana. E consigliabile non superare 1-2 volte a settimana per ridurre i

rischi per la salute.",

"en": "You have consumed red meat {metric value} time(s) this week. It
is recommended not to exceed 1-2 times a week to reduce the risk of health."

by

wn

"reference":

"Rapporto Carne Bianca vs Rossa",

"Rapporto Carne Bianca vs Rossa",
"White vs Red Meat Ratio"
by
"type": "complex",
"enabled":
"condition": "weekly counts.get('carne bianca', 0) <
weekly counts.get ('carne rossa', 0) and (weekly counts.get ('carne rossa', 0)

+ weekly counts.get ('carne bianca', 0)) > 0",

"message": {

"it": "Stai mangiando piu carne rossa ({carne rossa}) che carne bianca
({carne bianca}). Cerca di favorire il consumo di carne bianca come pollo e
tacchino.",

"en": "You are eating more red meat ({carne rossa}) than white meat
({carne bianca}). Try to favor the consumption of white meat such as chicken
and turkey."

y




wn

"reference":

"name": "Consumo Uova Basso",
"group":
"it": "Consumo di Uova",
"en": "Egg Intake"
bo
"type": "simple",
"enabled":
"metric": "uova",
"operator": "<,
"threshold": 2,
"message": {

"it": "Hal consumato uova solo {metric value} volta/e. L'obiettivo e
volte a settimana per un buon apporto di proteine complete.",

"en": "You have consumed eggs only {metric value} time(s). The goal is
times a week for a good intake of complete proteins."

by

wn

"reference":

"Consumo Uova Alto",

"Consumo di Uova'",
"Egg Intake"
b
"type": "simple",
"enabled":
"metric": "uova",

"operator": ">",




"threshold": 4,
"message": {

"it": "Hai consumato uova {metric value} volta/e. Si consiglia di non
superare 4 volte a settimana per mantenere un equilibrio alimentare.",

"en": "You have consumed eggs {metric value} time(s). It is recommended
to exceed 4 times a week to maintain a balanced diet."

y

"reference": ""

"Consumo Latticini Insufficiente",

"Consumo di Latticini",
"Dairy Intake"
}y
"type": "simple",
"enabled":
"metric": "avg latticini per day",
"operator": "<",
"threshold": 1,
"message": {
"it": "In media hai consumato solo {metric value} porzione/i di

latticini al giorno. L'obiettivo e 1-2 porzioni al giorno per 1l'apporto di
calcio.",

"en": "On average, you consumed only {metric value} portion(s) of dairy
products per day. The goal is 1-2 portions per day for good calcium intake."

ty

"reference": ""

s

"name": "Olio Extravergine d'Oliva Quotidiano",

"group" . {




"Olio Extravergine di Oliva",
"Extra Virgin Olive Oil"

}s

"type": "simple",

"enabled":

"metric": "olio evo",

"operator": "<,

"threshold dynamic": "num days",

"message": {

"it": "Hal consumato olio EVO solo {metric value} volta/e su {num days}
Assicurati di utilizzarlo quotidianamente come principale fonte di
preferibilmente a crudo.",

"en": "You have used EVO oil only {metric value} time(s) over

{num days} days. Make sure to use it daily as the main source of fats,

preferably raw."

b

"reference": ""

"Frutta Secca e Semi",

"Frutta Secca e Semi",
"Nuts and Seeds"
}y
"type": "simple",
"enabled":
"metric": "frutta secca",
"operator": "<",
"threshold dynamic": "num days * 0.5",

"message": {

"it": "Hai consumato frutta secca e semi {metric value} volta/e. Cerca
di includerli almeno a giorni alterni per i grassi sani e le fibre.",




"en": "You have consumed nuts and seeds {metric value} time(s). Try to
include them at least every other day for healthy fats and fiber."

ty

"reference": ""

"Cereali Mancanti",

"Consumo di Cereali',
"Cereal Intake"

by

"type": "complex",

"enabled":

"condition": " (weekly counts.get ('num days', 0) -
weekly counts.get ('days with cereals present', 0)) > 2",

"message": {
"it": "I cereali sono mancati in {missing cereal days} giorni questa

settimana. I cereali dovrebbero essere presenti quotidianamente nei pasti
principali.",

"en": "Cereals are missing in {missing cereal days} days this week.
Cereals should be present daily in the main dishes."

ty

"reference": ""

"Cereali Raffinati Prevalenti",

"Consumo di Cereali",
"Cereal Intake"

by

"type": "complex",

"enabled":




"condition": "weekly counts.get('days with refined cereals prevalent',6 O0)
> (weekly counts.get ('num days', 0) / 2)",

"message": {
"it": "Hail consumato cereali raffinati prevalentemente in
{days with refined cereals prevalent} giorni su {num days}. Cerca di
preferire i cereali integrali per un maggiore apporto di fibre.",
"en": "You have consumed refined cereals prevalently in
{days with refined cereals prevalent} days over {num days}. Try to prefer
whole grains for a better intake of fiber."
}y

wn

"reference":

"name": "Consumo di Bevande Zuccherate",
"group":
"it": "Alimenti da Limitare",
"en": "Foods to Limit"
}I
"enabled":
"metric": "bevande zuccherate",
"source": "weekly counts",
"operator": ">",
"threshold": 1,

"message" : {

"it": "Hal consumato bevande zuccherate {metric value} volta/e questa
settimana. E consigliato limitare il consumo a massimo {threshold} volta a
settimana.",

"en": "You have consumed sugary drinks {metric value} time(s) this
It is recommended to limit consumption to a maximum of {threshold}
a week."

"reference": ""

s




"name": "Consumo di Salumi",
"group":
"it": "Alimenti da Limitare",
"en": "Foods to Limit"
by
"enabled":
"metric": "salumi",
"source": "weekly counts",
"operator": ">",
"threshold": 2,
"message": {

"it": "Hai consumato salumi {metric value} volta/e questa settimana. E
consigliato limitare il consumo al massimo {threshold} volte a settimana.",

"en": "You have consumed cold cuts {metric value} time(s) this week. It
is recommended to limit consumption to a maximum of {threshold} times a
week."

ty

"reference": ""

"Consumo di Dolci e Snack Dolci",

"Alimenti da Limitare",
"Foods to Limit"

by

"enabled":

"type": "complex",

"condition": "lambda weekly counts: (weekly counts.get('dolci', 0) +
weekly counts.get ('snack dolci', 0)) > 3",

"message": {

"it": "Hai consumato dolci e snack dolci {total sweet snacks} volta/e
questa settimana. Si consiglia di moderare il consumo se superiore a
{threshold} volte a settimana.",




"en": "You have consumed sweets and sweet snacks {total sweet snacks}
time (s) this week. It is recommended to moderate consumption if more than
{threshold} times a week."

by

"message params": {

"total sweet snacks": "lambda weekly counts: weekly counts.get ('dolci'
0) + weekly counts.get ('snack dolci', 0)",

"threshold": 3
I

wn

"reference":

"name": "Alimenti Ultra-Processati",
"group":
"it": "Alimenti da Limitare",
"en": "Foods to Limit"
}I
"enabled":
"metric": "ultra processati",
"source": "weekly counts",
"operator": ">",
"threshold expression": "num days * 0.5",

"message": {

"it": "Hai consumato alimenti ultra-processati {metric value} volta/e
questa settimana. E fortemente consigliato ridurre drasticamente il loro
consumo in quanto spesso ricchi di zuccheri, grassi e sale.",

"en": "You have consumed ultra-processed foods {metric value} time (s)
this week. It is strongly recommended to drastically reduce their consumption
as they are often high in sugars, fats, and salt."

by
"message params": {
"threshold calculated": "lambda num days: num days * 0.5"

ty




"reference": ""

"name": "Consumo di Alcool",
"group":
"it": "Alimenti da Limitare",
"en": "Foods to Limit"
}s
"enabled":
"metric": "alcool",
"source": "weekly counts",
"operator": ">",
"threshold": O,
"message": {
"it": "Hal consumato alcool {metric value} volta/e questa settimana.
Per una salute ottimale, si raccomanda di limitare al massimo il consumo di
bevande alcoliche, idealmente evitando 1'assunzione regolare.",
"en": "You have consumed alcohol {metric value} time(s) this week. For
a healthy diet, it is recommended to limit the consumption of alcoholic

beverages, ideally avoiding regular consumption."

b

"reference": ""

"name": "Idratazione Insufficiente",
"group":

"it": "Idratazione",

"en": "Hydration"
}I

"enabled":

"metric": "bicchieri acqua",

"source": "weekly counts",




"operator": "<",

"threshold expression": "num days * 8",

"message": {

"it": "Hai bevuto {metric value} bicchieri d'acqua questa settimana.
L'obiettivo e almeno {target glasses} bicchieri ({glasses per day} al
giorno) . Aumenta l'idratazione per migliorare il benessere generale.",

"en": "You have drunk {metric value} cups of water this week. The goal

is at least {target glasses} cups ({glasses per day} per day). Increase the
hydration for a better overall health."

Yo

"message params": {
"target glasses": "lambda num days: num days * 8",
"glasses per day": 8

by

wn

"reference":

"Ore di sonno insufficienti",

"Stile di wvita",
"Lifestyle"
by
"type": "simple",
"enabled":
"metric": "avg sleep hours",
"operator": "<",
"threshold": 7,

"message": {




"In media dormi solo {metric value} ore per notte. L'obiettivo e
migliorare il recupero fisico e mentale.",

"On average, you sleep only {metric value} hours per night. The
hours to improve physical and mental recovery."

wn

"reference":

"name": "Andare a letto tardi",
"group":
"ig": "Stile di vita",
"en": "Lifestyle"
bo
"enabled":
"type": "complex",
"condition": "(sum(l for d in sleep data.values() if
d.get ('bedtime hour', 22) >= 23.0 or d.get('bedtime hour',6 22) < 5.0) /

len(sleep data)) > 0.3",

"message": {

"it": "Sei andato a letto tardi in {late days} su {total days} giorni
({late percentage}$). Cerca di coricarti prima delle 23:00 almeno il 70%
delle notti per migliorare la qualita del sonno e il recupero.",

"en": "You went to bed late on {late days} out of {total days} days
({late percentage}%). Try to go to bed before 11:00 PM at least 70% of the
nights to improve sleep quality and recovery."

b
"message params'": {

"late days": "lambda sleep data: sum(l for d in sleep data.values() if
d.get ('bedtime hour', 22) >= 23.0 or d.get('bedtime hour', 22) < 5.0)",

"total days": "lambda sleep data: len(sleep data)",
"late percentage": "lambda sleep data: round((sum(l for d in
sleep data.values() if d.get ('bedtime hour', 22) >= 23.0 or
d.get ('bedtime hour', 22) < 5.0) / len(sleep data)) * 100, 1)"
by

wn

"reference":




"Svegliarsi tardi",

"Stile di vita",
"Lifestyle"
by
"type": "simple",
"enabled":
"metric": "avg wakeup hour",
"operator": ">",
"threshold": 8,

"message": {

"it": "In media ti svegli alle {metric value}:00. Cerca di svegliarti
prima delle 8:00 per allinearti meglio con i ritmi circadiani.",

"en": "On average, you wake up at {metric value}:00. Try to wake up
before 8:00 AM to better align with your circadian rhythms."

y

wn

"reference":

"Caffeina serale",

"Stile di wvita",
"Lifestyle"
I
"type": "simple",
"enabled":
"metric": "caffeine after hour",
"operator": ">",

"threshold": 16,




"message": {

"it": "Hai consumato caffeina alle {caffeine after hour}:00. Evita
caffeina nelle 6-10 ore prima di coricarti per non disturbare il sonno.",

"en": "You consumed caffeine at {caffeine after hour}:00. Avoid
caffeine 6-10 hours before bedtime to avoid disturbing sleep."

b

"reference": ""

"Alcol serale",

"Stile di vita",
"en": "Lifestyle"
bo
"type": "simple",

"enabled":

"metric": "alcohol evening",

"Operator": ||>H’
"threshold": O,
"message": {

"it": "Hai consumato alcol in serata. Ridurne 1'assunzione puo
migliorare la produzione di melatonina e la qualita del sonno.",

"en": "You consumed alcohol in the evening. Reducing its intake can
improve melatonin production and sleep quality."

by

wn

"reference":




"Steps giornalieri bassi",

"Stile di vita",
"Lifestyle"
by
"type": "Simple",
"enabled":
"metric": "avg steps",
"operator": "<,
"threshold": 5000,
"message": {

"it": "La tua media giornaliera di passi & inferiore a 5.000. L'OMS
raccomanda almeno 10.000 passi al giorno. Prova ad aumentare gradualmente
l'attivita fisica quotidiana.",

"en": "Your daily average steps are less than 5,000. The WHO
recommends at least 10,000 steps per day. Try to gradually increase your
daily physical activity."

y

"reference": ""

"Steps giornalieri

"Stile di wvita",
"Lifestyle"

b

"type": "complex",

"enabled":

"condition": "5000 <= avg steps < 10000",

"message": {
"it": "La tua media giornaliera di passi & tra 5.000 e 10.000. Buon
inizio! Cerca di raggiungere 1'obiettivo di 10.000 passi al giorno per
benefici ottimali sulla salute.",




"en": "Your daily average steps are between 5,000 and 10,000. Good
Try to reach the goal of 10,000 steps per day for optimal health
benefits."
by

wn

"reference":

"Giorni sedentari",

"Stile di wvita",
"Lifestyle"

}y

"type": "complex",

"enabled":

"condition": "lambda activity data: sum(l for day in
activity data.values() if day.get('steps', 0) < 1000) >=

"message": {

"it": "Hai avuto almeno 3 giorni con meno di 1.000 passi. Questo
indica un comportamento sedentario. Anche una breve camminata puo fare la
differenza per la tua salute.",

"en": "You had at least 3 days with less than 1,000 steps. This
indicates sedentary behavior. Even a short walk can make a difference to your
health."

}y

wn

"reference":

"Calorie bruciate basse",

"Stile di wvita",

"Lifestyle"

"simple",




"enabled":

"metric": "avg burned calories",

"Operator": ||<H’

"threshold": 1500,

"message": {

"it": "I1 tuo consumo calorico medio giornaliero € inferiore a 1.500

kcal, indicando un livello di attivita molto basso. Considera di aumentare
l'attivita fisica.",

"en": "Your average daily calorie burn is less than 1,500 kcal,

indicating a very low activity level. Consider increasing physical activity."

b

"reference": ""

"name": "Calorie bruciate medie",
"group":
"it": "Stile di vita",
"en": "Lifestyle"
bo
"type": "complex",

"enabled":

"condition": "1500 <= avg burned calories < 2500",

"message": {
"it": "Il tuo consumo calorico e moderato (1.500-2.500 kcal/giorno) .
Per aumentare il dispendio energetico, prova ad aggiungere attivita piu

intense.",

"en": "Your calorie burn is moderate (1,500-2,500 kcal/day). To
increase energy expenditure, try adding more intense activities."

by

wn

"reference":

b

"name": "Biking activity",




"Stile di wvita",
"Lifestyle"
by
"type": "simple",
"enabled":
"metric": "avg biking distance",
"operator": ">",
"threshold": O,
"message": {
"it": "Ottimo! Stai includendo il ciclismo nella tua routine. I1
ciclismo € un'eccellente attivita cardiovascolare a basso impatto sulle

articolazioni.",

"en": "Great! You're including cycling in your routine. Cycling is an
excellent cardiovascular activity with low impact on joints."

by

"reference": ""

"name": "Biking distance media',
"group":
"ig": "Stile di vita",
"en": "Lifestyle"
b
"type": "complex",

"enabled":

"condition": "0 < avg biking distance < 3000",

"message": {

"it": "Le tue sessioni di ciclismo sono brevi (< 3 km in media al
giorno) . Prova ad aumentare gradualmente la distanza per migliorare la
resistenza cardiovascolare.",

"en": "Your cycling sessions are short (< 3 km average per day). Try
to gradually increase the distance to improve cardiovascular endurance."




I

"reference": ""

"name": "Biking distance media',
"group":

"ig": "Stile di vita",

"en": "Lifestyle"
I
"type": "complex",
"enabled":
"condition": "3000 <= avg biking distance < 5000",
"message": {

"it": "Buona distanza media di ciclismo (3-5 km al giorno). Mantieni
questa routine o aumenta gradualmente per ulteriori benefici

cardiovascolari.",

"en": "Good average cycling distance (3-5 km per day). Maintain this
routine or gradually increase for further cardiovascular benefits."

by

wn

"reference":

"Biking distance ottima",

"Stile di wvita",
"Lifestyle"

by

"type": "simple",

"enabled":

"metric": "avg biking distance",

"operator": ">=",




"threshold": 5000,
"message": {
"it": "Eccellente! Le tue sessioni di ciclismo superano i 5 km in

media al giorno. Continua cosi per mantenere un'ottima forma
cardiovascolare.",

"en": "Excellent! Your cycling sessions exceed 5 km average per day.

Keep it up to maintain excellent cardiovascular fitness."

y

"reference": ""

"Walking activity",

"Stile di wvita",
"Lifestyle"

by

"type": "simple",

"enabled":

"metric": "avg walking distance",

"operator": ">",
"threshold": O,
"message": {
"it": "Bene! Stai includendo sessioni di camminata strutturate. La
camminata e un'attivita accessibile e benefica per la salute

cardiovascolare.",

"en": "Good! You're including structured walking sessions. Walking is
an accessible and beneficial activity for cardiovascular health."

y

"reference": ""

o

"name": "Walking distance bassa",

"group" . {




"Stile di wvita",
"Lifestyle"
}s
"type": "complex",
"enabled":
"condition": "0 < avg walking distance < 2000",
"message": {

"it": "Le tue sessioni di camminata sono brevi (< 2 km in media) .
Prova ad aumentare gradualmente la durata delle tue passeggiate a 30-40

"

minuti (circa 3-4 km).",

"en": "Your walking sessions are short (< 2 km average). Try to
gradually increase the duration of your walks to 30-40 minutes (about 3-4
km) . "

by

wn

"reference":

"Walking distance media",

"Stile di wvita",
"Lifestyle"

by

"type": "complex",

"enabled":

"condition": "2000 <= avg walking distance < 4000",

"message": {

"it": "Buona distanza media di camminata (2-4 km al giorno). Questa e
buona base per la salute cardiovascolare. Continua cosi!",

"en": "Good average walking distance (2-4 km per day). This is a good
foundation for cardiovascular health. Keep it up!"

o

"reference": ""

s




"Walking distance ottima",

"Stile di wvita",
"Lifestyle"

I

"type": "Simple",

"enabled":

"metric": "avg walking distance",

"operator": ">=",

"threshold": 4000,

"message": {

"it": "Eccellente! Cammini oltre 4 km in media al giorno. Questo
contribuisce significativamente alla tua salute cardiovascolare e al
benessere generale.",

"en": "Excellent! You walk over 4 km on average per day. This
contributes significantly to your cardiovascular health and overall
well-being."

by

wn

"reference":

"Varieta di attivita",

"Stile di wvita",
"Lifestyle"

by

"type": "complex",

"enabled":

"condition": "avg biking distance > 0 and avg walking distance > 0",

"message": {




"it": "Ottimo! Vari la tua routine con diverse attivita (ciclismo e
camminata) . La varieta aiuta a prevenire la monotonia e coinvolge diversi
gruppi muscolari.",

"en": "Excellent! You vary your routine with different activities
(cycling and walking). Variety helps prevent monotony and engages different

muscle groups."

y

"reference": ""

"Nessuna attivita strutturata",

"Stile di vita",
"en": "Lifestyle"
}y
"type": "complex",

"enabled":

"condition": "avg biking distance == 0 and avg walking distance == 0",

"message": {

"it": "Non sono state rilevate sessioni di esercizio strutturato
(camminata o ciclismo). Considera di aggiungere almeno 150 minuti di attivita
moderata alla settimana.",

"en": "No structured exercise sessions (walking or cycling) were

detected. Consider adding at least 150 minutes of moderate activity per
week."

o

"reference": ""

"name": "Basso Umore Positivo Medio",




"Umore",
"Mood"
by
"type": "simple",
"enabled":
"metric": "avg positive mood",
"operator": "<",
"threshold": 2.5,
"message": {

"it": "Il tuo umore positivo medio e {metric value}/4. Cerca attivita
aumentino le sensazioni di determinazione e ispirazione.",

"en": "Your average positive mood score is {metricivalue}/4. Seek
activities that boost feelings of determination and inspiration."

by

wn

"reference":

s

"name": "Alto Umore Negativo Medio",
"group": {
"it": "Umore",
"en": "Mood"
by
"type": "simple",
"enabled":
"metric": "avg negative mood",
"operator": ">",
"threshold": 2.0,

"message": {

"it": "Il tuo umore negativo medio € {metric value}/4. Un punteggio
costante sopra 2.0 per 'spaventato', 'nervoso', 'turbato', 'ostile' o




'vergognoso' suggerisce un alto livello di stress. Consulta un professionista
se persiste.",

"en": "Your average negative mood score is {metricivalue}/4. A

consistent score above 2.0 for 'scared', 'nervous', 'upset', 'hostile', or
'ashamed' suggests high stress. Consult a professional if this persists."”

b

nwn

"reference":

"name": "Tendenza all'Ostilita (Aggressivita)",
"group": {
"it": "Umore",
"en": "Mood"
by
"enabled":
"type": "complex",

"condition": " (sum(l for d in mood data.values() if d.get('ans 8',
.0) / len(mood data)) > 0.3",

"message": {

"it": "Hai riportato un alto senso di 'ostilita' ({ans_8 high days} su
{total days} giorni, ovvero {ans 8 high percentage}%). Questo pud indicare
stress e fatica. Prova tecniche di rilassamento per 20 minuti al giorno.",

"en": "You reported a high sense of 'hostility' ({ans 8 high days} out

of {total days} days, or {ans 8 high percentage}%). This may indicate stress
and fatigue. Try relaxation techniques for 20 minutes daily."

b

"message params'": {

"ans 8 high days": "lambda mood data: sum(l for d in mood data.values ()
if d.get('ans 8', 1) >= 3.0)",

"total days": "lambda mood data: len(mood data)",

"ans 8 high percentage": "lambda mood data: round((sum(l for d in
mood data.values () if d.get('ans 8', 1) >= 3.0) / len (mood data)) * 100, 1)"

ty

"reference":

o




"Bassa Concentrazione",

"Umore",
"Mood"
by
"type": "simple",
"enabled":
"metric": "avg attento",
"operator": "<",
"threshold": 2.5,
"message": {
"it": "Il tuo punteggio medio per 'attento' (concentrato) e

{metric value}/4. Una scarsa attenzione puo essere collegata a un sonno di
bassa qualita o a stress cronico.",

"en": "Your average score for 'attento' (attentive/focused) is
{metric value}/4. Low attention may be linked to poor sleep quality or

chronic stress."

by

wn

"reference":

"Alta Ansia (Nervosismo)",

"Umore",
"Mood"
by
"type": "complex",
"enabled":

"condition": " (sum(l for d in mood data.values/()
.0) / len(mood data)) > 0.5",

"message": {




"message params": {

"ans 6 _high days":

s 6

"total days": "lam

"ans 6 high percentage":

wn

"reference":
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