
Politecnico di Torino

Masters’s Degree
in Computer Engineering

Masters’s Degree Thesis

Development and Implementation of a Hybrid Rule Engine for
Nutritional and Lifestyle Recommendations

Supervisors Candidate

prof. Maurizio Morisio Angelo Bisignano

DECEMBER 2025

1. Introduction.. 3
1.1 The Paradigm Shift in Wellness and the Challenge of Personalisation................. 3
1.2 Project Objective: The utilisation of a Rule Engine in the context of Lifestyle
Consulting.. 3
1.3 System Evolution and Integration...4
1.4 Bridging the gap with explainable knowledge-driven approaches..........................4

2. Analysis and Design of the Recommendation System...5
2.1 State of the Art of Nutritional and Lifestyle Recommender.................................... 5
2.2 System requirements... 12
2.3 System architecture..16

3. Nutritional Recommendation Form (Core of the Project)... 22
3.1 Data Input: The Food Log.. 22
3.2 The Knowledge Model: Structure and Taxonomy of Rules.................................. 23
3.3 The Weekly Execution and Analysis Algorithm (Rules Engine)........................... 26
3.4 Rules Management GUI Development and Functionality.................................... 28

4. Extension of the Recommendation System (Lifestyle and Wellbeing Modules)...........31
4.1 Implementation of the Sleep Module..31
4.2 Implementation of the Mood Module.. 33
4.3 Implementation of the Physical Activity Module... 34

5. System Integration and API Services... 36
5.1 The Recommendation GUI (Analysis and Output GUI)..36
5.2 API Development for External Service... 37

6. Results, Evaluation and Discussion.. 41
6.1 System Demonstration and Operational Validation..41
6.2 System Evaluation..43
6.3 Discussion and Critical Analysis...46
6.4 Summary.. 46

7. Conclusions and Future Developments.. 47
7.1 General Conclusion..47
7.2 Limitations.. 48
7.3 Future Developments... 48
7.4 Final Remarks.. 49

8. Bibliography... 50
9. Appendix...52

9.1 nutrient_rules.json.. 52
9.2 general_rules.json.. 59
9.3 sleep_rules.json... 70
9.4 activity_rules.json... 74
9.5 mood_rules.json... 83

2

1. Introduction

1.1 The Paradigm Shift in Wellness and the Challenge of Personalisation

The relentless evolution of technology and medical science has represented a historic

milestone, significantly raising global average life expectancy. However, contemporary

awareness has evolved beyond the mere numerical measurement of years, shifting the focus

to enhancing their quality. The concept of "healthy longevity" places emphasis on targeted

nutrition and a balanced lifestyle, recognising these elements as the fundamental pillars for

maintaining optimal well-being over time.

This awareness, when considered in conjunction with the substantial and frequently

unorganised volume of information available online, has resulted in a distinct necessity: the

development of digital tools that can assist users in a proactive and customised approach to

managing their well-being [1]. Despite the saturation of the health app market, the majority of

these applications are confined to basic data tracking functions, such as monitoring food

intake or sleep duration. The critical challenge, which remains unresolved, lies in converting

this raw data into actionable, sophisticated, and truly personalised advice, a gap this thesis

seeks to bridge.

1.2 Project Objective: The utilisation of a Rule Engine in the context of

Lifestyle Consulting

The primary objective of this project was to address this lacuna by designing and

implementing an intelligent system capable of providing high-level, multi-faceted wellness

recommendations. The initial phase was dedicated to the essential task of knowledge

codification: translating a vast array of nutritional and behavioural guidelines into a

manageable, dynamic, and readily updatable format.

This requirement resulted in the implementation of a Rule-Based Engine developed in

Python. The fundamental innovation resides in the system's decoupled architecture. In

contrast to rigid, hard-coded approaches, the decision-making logic of the system is kept

external: the rules are modelled using a high-level Python GUI, which allows experts to

translate their instructions into a standardised, persistent logical structure in JSON files. This

3

separation of the algorithmic core from the knowledge base ensures intrinsic modularity and

transparency, allowing recommendations to be rapidly updated without requiring any

changes to the engine's core code.

1.3 System Evolution and Integration

The system has rapidly evolved its capabilities, moving beyond mere nutritional analysis to

become a fully-fledged lifestyle advisor. The successful incorporation of the Sleep, Activity

and Mood Recommendations modules was a pivotal step, augmenting the system's

analytical capabilities to encompass intricate patterns, correlating diet, circadian rhythm, and

sleep efficiency [2]. This extension validated the flexibility of the core Rules Engine design.

The ultimate effectiveness of this recommendation engine is intrinsically linked to its ability

to integrate into the user's digital ecosystem. The project advanced significantly with the

pivotal transition to an accessible backend service. Following an initial phase in which input

data was managed via files extracted from third-party systems (e.g., FatSecret), the entire

architecture was reengineered for robust, real-time interaction. Currently, data is pulled

directly from Firebase, which serves as the central authoritative repository for user logs.

Communication with the final frontend application—developed in parallel by another

graduate student—is ensured through a set of dedicated RESTful APIs, positioning our

engine as a central computational service that provides timely and consistent data flow to the

mobile environment.

1.4 Bridging the gap with explainable knowledge-driven approaches

Contemporary digital health applications increasingly rely on opaque, data-driven models

that prioritize predictive performance but often lack interpretability and clinical traceability

[3]. This thesis positions itself at the intersection between explainable AI and practical digital

health by proposing a knowledge-driven framework that encodes expert rules in a

maintainable and auditable format. Unlike black-box recommenders, the presented solution

prioritizes clinical safety, transparency and maintainability, thereby enabling rapid updates to

clinical guidelines and immediate traceability of every generated recommendation [4]. This

characteristic is particularly relevant in medical and lifestyle domains where accountability

and user trust are essential.

4

2. Analysis and Design of the Recommendation System

2.1 State of the Art of Nutritional and Lifestyle Recommender

The current State of the Art is dominated by Nutritional Recommendation Systems (NRS).

An NRS is formally defined as a software tool designed to guide users in selecting food

items, recipes, or dietary plans that align not only with their stated preferences but also with

their specific nutritional constraints and health goals. Functioning at the intersection of

Information and Communication Technology (ICT), Artificial Intelligence (AI) and clinical

science, these systems aim to bridge the gap between simple data logging and true

personalised intervention. The ongoing evolution of NRS is driven by the need to address the

inherent complexity of dietary planning, where personal preference must yield to

non-negotiable health requirements (e.g. allergies and chronic diseases).

2.1.1 Classification of NRS Methodologies and Challenges

The development landscape of NRS can be broken down according to the primary

methodology used to generate advice. The choice of methodology critically impacts the

system’s accuracy, scalability, and transparency [5]. See Table 1.1.

Knowledge-Based System

These systems leverage an explicit and formalised knowledge base (rules, ontologies,

established nutritional guidelines) to generate recommendations. They do not rely primarily

on the collective behavior of other users or historical rating data, making them the preferred

choice for clinical accuracy.

There are two subtypes:

●​ Rule-Based Systems: They use IF-THEN rules defined by experts (e.g., “IF sodium

intake exceeds X for 5 consecutive days, THEN recommend reducing salt”). The user

always knows why a suggestion was made, which is crucial for building trust in health

applications.

○​ In-Depth: RBS are highly deterministic and auditable. This makes them

exceptionally strong for enforcing hard constraints (e.g., allergies, severe

5

chronic diseases). The user always knows why a suggestion was made, which

guarantees high explainability and builds trust in health applications.

○​ Limitations: They suffer from low adaptivity as they require manual updates

whenever clinical guidelines change, and they typically do not excel at

discovering new or novel food items for the user.

○​

●​ Ontology-Based Systems: These utilise a formal conceptual model (an ontology) to

represent the complex relationships between foods, nutrients, health conditions, and

goals. This structure enables powerful semantic reasoning, allowing the system to

deduce non-obvious relationships in the data.

○​ In-Depth: Ontologies enable powerful semantic reasoning. They can infer

non-obvious relationships (e.g., linking a high glycemic index food to diabetes

risk) and are structurally designed for complex safety checks.

○​ Limitations: They require extensive ontology engineering (a labor-intensive

process) making knowledge scalability potentially low-to-medium.

Collaborative Filtering (CF)

They generate recommendations based on similarities between user preferences (user-based)

or similarities between items (item-based). While effective, they are less common for pure

health recommendations because the advice is driven by taste satisfaction rather than clinical

necessity. Furthermore, CF systems struggle with the Cold Start Problem (difficulty

recommending to new users or new items).

●​ In-Depth: CF systems are highly adaptive and scale very well with data volume,

making them performant in terms of prediction.

●​ Limitations: They exhibit low explainability due to reliance on opaque latent

factors. More critically in the health domain, CF may recommend unsafe items if

similar users enjoyed them, thus offering low clinical safety. They also require large

datasets of users/ratings, leading to the notorious Cold Start Problem for new users.

Content-Based System

They recommend items (recipes or foods) that are structurally similar to those the user has

consumed previously or that match their profile (age, BMI, goals). They compare the

6

characteristics of a recipe (ingredients, calories, macronutrients) with the user's desired

nutritional profile. For example, if the user often eats protein-rich foods, they will be

recommended other protein-rich recipes.

●​ In-Depth: Explainability is medium as it relates to feature-level explainability (e.g.,

"We recommend this because it has similar protein content to your favorites"). CBS

adapts well to specific user profiles and is highly scalable with content automation.

●​ Limitations: The system's effectiveness largely depends on the correctness of the

feature profile defined for the food items.

Hybrid System

The dominant trend in the current State of the Art is the adoption of Hybrid Systems. These

approaches combine two or more methodologies (often Knowledge-Based for constraints and

ML/CF for preference matching) to mitigate the limitations of a single method. This strategic

combination ensures both the clinical safety (guaranteed by rules) and the user acceptance

(guaranteed by preference learning), achieving a superior balance between efficacy and user

experience.

●​ In-Depth: This approach offers high clinical safety because the Rules-Based layer is

used as safety guardrails. The ML component is delegated to tasks related to

preference learning (e.g., taste prediction), ensuring high adaptivity. The combination

achieves a superior balance between efficacy and user experience.

●​ Architecture: Hybrid systems often separate tasks, with the KBS enforcing

constraints and the ML layer prioritizing options that respect those constraints. The

explainability is generally medium-to-high, depending on the transparency of the ML

component used. This complexity is scalable because tasks can be delegated to the

ML layer, while the safety rules remain manageable.

This thesis explicitly falls within the Knowledge-Based Systems category, adopting a

rule-based architecture.

7

Approach Explainability Adaptivity Scalability

(knowledge)

Data

requirement

s

Clinical safety

Rule-Based

Systems

High — explicit

rules and

provenance

Low —

manual update

required

Medium —

manageable

but grows

linearly with

rules

Low — can

operate with

limited

historical

data

High —

deterministic,

auditable

decisions

Ontology-Base

d Systems

High —

semantic

reasoning

Medium —

can infer via

ontology

Low–Medium

— needs

ontology

engineering

Low–Mediu

m

High — formal

semantics

support safety

checks

Content-Based Medium —

feature-level

explainability

Medium —

adapts to

content profile

High —

scalable with

automation

Medium Medium —

depends on

feature

correctness

Collaborative

Filtering (CF)

Low — latent

factors opaque

High — learns

from user

behavior

High — scales

well with data

High —

needs many

users/ratings

Low–Medium

— may

recommend

unsafe items

8

Hybrid (Rule +

ML)

Medium–High

— rules + ML

explainability

layers

High — ML

layer increases

adaptivity

High — can

delegate tasks

to ML

High High — rules

act as safety

guardrails

Table 1.1

2.1.2 Customization and context dimension

The effectiveness and modernity of a Nutritional Recommendation System (NRS) is

measured not only by the algorithmic methodology employed, but also by the depth and

breadth of its personalisation capabilities. Recent research in recommender systems shows

that true personalization emerges from the intersection of data-driven learning, contextual

awareness, and domain-specific constraints [6].

From General Recommender Systems to Health-Oriented Adaptations

Traditional recommender systems were initially designed for domains such as e-commerce,

music, or movies (e.g., Amazon, Spotify, Netflix). In these contexts, the primary goal is

preference optimization (predicting what a user will like based on behavioral history or the

preferences of similar users). Success metrics typically include accuracy, precision, and

user satisfaction.

When these paradigms are adapted to health and well-being, several paradigm shifts occur:

●​ Safety and ethics override preference. In wellness domains, recommendations must

ensure clinical safety (e.g., avoiding allergens or excess sodium), even if they conflict

with user taste or popularity trends.

●​ Explainability becomes essential. In contrast to opaque collaborative filtering used

in entertainment systems, health-oriented systems must provide traceable rationales,

ensuring user trust and clinical auditability [7].

9

●​ Data sparsity and multimodality. Health data integrate multiple heterogeneous

sources (sleep, nutrition, physical activity, biomarkers), often collected intermittently.

This requires hybrid reasoning rather than pure statistical learning [8].

●​ Outcome-oriented personalization. Unlike entertainment RS, which optimize for

engagement, health systems aim to improve measurable outcomes such as body

composition, glycemic control, or sleep regularity.

This transition marks the evolution from preference-driven personalization to goal- and

safety-driven personalization, redefining how customization and context are interpreted in

wellness systems.

Personalized Nutrition

Advanced systems transcend traditional calorie-counting approaches. Personalized nutrition

now entails a multi-dimensional understanding of user physiology and lifestyle, achieved

through:

●​ Macronutrient and Micronutrient Balance: Beyond calorie tracking,

recommendations focus on nutrient quality and proportionality relative to

physiological goals (e.g., muscle hypertrophy, endurance optimization) [9].

●​ Dynamic Adaptation: Temporal models adjust recommendations in real time based

on behavior, such as training sessions, sleep quality, or recovery metrics.

●​ Feedback Loops: Continuous learning enables systems to refine suggestions using

user input or biometric data, forming adaptive feedback mechanisms.

Rule-based personalization leverages explicit logical conditions (IF-THEN structures),

ensuring predictable and auditable decisions aligned with medical guidelines.

Holistic integration (Lifestyle)

Well-being is a multi-dimensional concept; diet cannot be treated in isolation. Contemporary

systems evolve toward Lifestyle Recommendation Systems (LRS) that integrate

complementary behavioral dimensions:

●​ Sleep and Recovery: Systems incorporating sleep data can adjust caloric and

macronutrient targets based on circadian regularity and recovery status.

10

●​ Physical Activity: Integration with wearables (e.g., Google Fit, Apple Health, or

Health Connect) enables dynamic energy recalibration.

●​ Stress and Mood: Experimental models incorporate emotional or hormonal

indicators to detect stress-induced eating patterns, aiming to balance physiological

and psychological wellness [10].

This holistic paradigm establishes a bidirectional relationship between nutrition and lifestyle,

making recommendations more adaptive, sustainable, and personalized.

Contextualization

For recommendations to be effective, they must be contextually actionable in the user's

daily environment. Contextualisation operates on several interconnected levels:

●​ Behavioral Patterns: Systems analyze temporal trends (e.g., habitual snacking,

recurring late dinners) to address long-term habits rather than isolated behaviors.

●​ Temporal Context: Time-aware algorithms adjust meal suggestions based on

circadian rhythms or work schedules.

●​ Preference-Aware Constraints: Even within rule-based systems, personalization

considers taste adherence and feasibility, offering nutritionally equivalent but

culturally acceptable alternatives.

Contextualization bridges data interpretation and behavioral translation, ensuring that

clinically sound advice remains practical and engaging in real life.

Summary: From Personalized to Precision Wellness

In summary, the evolution of recommender systems within health and wellness domains

represents a progression from:

1.​ Preference-based filtering → toward goal-oriented reasoning

2.​ Static personalization → toward contextual and adaptive modeling

3.​ Single-domain focus (food) → toward multi-domain lifestyle orchestration

The present thesis adopts this modern perspective, implementing a knowledge-based,

rule-driven architecture designed for high explainability, clinical safety, and contextual

adaptability.

11

This structure enables the integration of user data (nutrition, activity, sleep), laying the

foundation for a Precision Wellness Recommendation Engine.

2.1.3 Structure and Deployment

The state of the art is strongly oriented towards integration and mobile access:

●​ Microservices/API Architecture: Most NRSs are implemented as backend services

with dedicated APIs to enable access from mobile applications, wearables, or

healthcare platforms.

●​ Platforms (Mobile First): Mobile applications are the most common platform for

user interaction (approximately 28% of nutritional recommendation systems are

mobile, according to some systematic reviews) [11].

●​ Usability and Explainability: There is a growing focus on User Experience (UX)

and Explainability (XAI), which is essential in healthcare. Rule-based systems excel

in this regard, as the recommendation is intrinsically linked to the rule that generated

it.

2.2 System requirements

The design phase of a recommender system is crucial for ensuring that the final product

aligns with the project goals and external integration needs.

In this section, the requirements for the nutritional and lifestyle recommendation engine are

formally divided into functional requirements (what the system must do) and non-functional

requirements (how the system must work).

2.2.1 Functional Requirements

Functional requirements define the system's specific actions and elaboration capacities. Since

the project consists of three main modules (a rules engine, a knowledge manager and an API

service), the functional requirements reflect this modularity.

RF-01: User Data Acquisition from Firebase

The system must establish a secure communication channel for accessing user data. This

requirement is divided into two distinct security levels:

12

●​ Client-to-API security: Access to API endpoints (e.g. /nutrition and /sleep) must

always be protected. The client (i.e. the mobile application) must send a valid

Firebase ID token. The API must then validate this token using the

firebase_admin.auth module to authenticate and authorise the request.

●​ API-to-database security: After client authentication, the backend must use Firebase's

internal service credentials to establish a secure, persistent connection to the database,

retrieving nutrition and sleep data for the requested user.

RF-02: Time Log Analysis

The engine must be able to process raw data received from Firebase, focusing specifically on

analysing long-term patterns. This is achieved by aggregating and normalising information

over a defined time window (typically the previous seven days' logs) to analyse weekly

patterns.

This goes beyond simple summation and includes calculating aggregate metrics such as daily

averages, consumption frequency counts (e.g. 'fried foods consumed three times in a week')

and consistency assessment (e.g. sleep regularity). This pre-processing phase is essential in

order to provide the context variables necessary for executing complex rules.

RF-03: Rule-Based Engine Execution

The Rule-Based Engine must systematically scan the analysed log (RF-02) using the

externally defined knowledge base (RF-04). Its main function is to identify all deviations

(violations) from the codified nutritional and lifestyle guidelines. The engine must handle

both simple rule logic, such as direct comparisons with thresholds, and complex rule logic,

which may require dynamic calculations or correlations between multiple parameters.

Efficient execution is required to contribute to compliance with the non-functional

requirement of low latency (RNF-01).

RF-04: User Management of the Knowledge Base

A dedicated Python GUI interface is required to enable non-technical users (e.g. expert

nutritionists) to interact with the system. The aim is to enable users to enter, modify,

categorise and save logical rules in a standardised format (JSON). This is a crucial

13

requirement for maintainability (RNF-04), ensuring that clinical guidelines can be updated

quickly without altering the Python source code of the analysis engine.

RF-05: Recommendation Generation and Prioritization

Based on the violations detected (RF-03) by the rule engine, the system must generate a set of

clear textual recommendations regarding nutrition and sleep. The generated message must be

personalized by inserting calculated dynamic values (e.g. placeholder) to make the

recommendation specific. Ideally, the system should also assign a priority to each

recommendation before sending it to the front end, even implicitly through order or

categorisation, to optimise user action.

RF-06: Exposure of the API Service for the Frontend

The backend, which is implemented in FastAPI, must expose one or more RESTful API

endpoints that can accept requests from the mobile application. After authentication (RF-01)

is complete, the API must call the entire analysis process (RF-02 to RF-05) and return the

complete package of recommendations in JSON format to the client. This ensures that the

analysis engine is treated as a scalable, real-time service.

1.2.2 Non-Functional Requirements

Non-functional requirements are essential for the success of the system, particularly with

regard to performance and architectural integration.

RNF-01: Performance (Service Latency)

Due to the integration with the mobile application and the requirement to deliver a responsive

user experience, the entire recommendation processing procedure (from retrieving data from

Firebase to the API response) must be carried out with minimal latency.

This performance is guaranteed in part by the use of FastAPI, which is renowned for its speed

of execution, and by the computational efficiency of the Python Rules Engine.

14

RNF-02: Data Security and Protection

As a system that handles sensitive health data, access to data on Firebase and interaction with

APIs (RF-06) must be strictly controlled.

●​ Channel security: All API communications must be via HTTPS (a secure protocol).

●​ Client authentication: Interacting with the APIs (RF-06) requires providing a valid

Firebase ID token with each request. The backend must validate this token for

authentication purposes.

●​ Database Authorisation: Access to user-specific Firebase data is regulated by internal

service credentials, ensuring the API can only access necessary data and respecting

the principle of least privilege.

RNF-03: Engine Reliability and Robustness

The system must be able to operate reliably, even when faced with imperfect input data or

connectivity issues.

●​ Data error tolerance: The Rule-Based Engine must tolerate non-ideal inputs (e.g.

missing fields, anomalous values and incomplete sleep logs) without crashing.

Pre-processing functions must include default values (e.g. get('value', 0)) to prevent

runtime errors.

●​ Centralized Service Error Handling: To explicitly meet the reliability requirement, a

custom exception system has been implemented at the API level. In the event of a

connection interruption or failure (or internal logical errors) to Firebase, the API does

not simply crash with a 500 Internal Server Error, but rather captures the Python

exception and translates it into a standardised format.

●​ Shared Error Protocol: The error response is encapsulated in a JSON object that

includes a unique error code (e.g. 'ERR_DB_001' for a database connection error).

Implementing a global exception handler ensures these codes and informational

messages are returned to the front end. Standardising the error protocol in this way is

essential to enable the mobile application to immediately identify the cause of the

problem (e.g. lack of data versus database unavailable) and communicate it

appropriately to the user.

15

RNF-04: Maintainability and Upgradeability

The design must facilitate the system's ongoing evolution and maintenance by developers and

administrators:

●​ Logic/data separation: The clear distinction between the Python execution logic and

the JSON knowledge base (RF-04) is fundamental to this requirement.

●​ Modular Extensibility: The architecture should allow new rule categories (e.g.

Physical Activity) to be added simply by creating a new JSON file and a new Python

pre-processing module. This should not require any changes to the main API other

than the addition of a new endpoint. This ensures a high degree of loose coupling

between components.

RNF-05: Knowledge Base Usability

The effectiveness of the rule-based system should not be compromised by the complexity of

managing rules:

●​ Intuitive interface: The Python GUI should offer a straightforward interface for

entering and editing rules. It should use high-level terminology (such as aggregate

metric names) that is understandable to domain experts (nutritionists), not just

programmers.

●​ Error prevention: The interface must integrate immediate syntactic validation

mechanisms (e.g. JSONDecodeError on save) to prevent malformed rules being

inserted that could compromise the entire system in production.

2.3 System architecture

The nutritional and lifestyle recommendation system was built using a decoupled

microservices architecture — a modern approach chosen to ensure adherence to the

non-functional requirements of scalability, maintainability (RNF-04) and integration with the

external mobile application. Designed according to the asynchronous client-server model, the

architecture positions the recommendation engine as an exclusively API-accessible

computational backend service.

16

2.3.1 General Architectural Diagram

The logical architecture is developed across three interconnected levels that clearly define the

data flow and separation of responsibilities (See Image 2.3):

Presentation level

This level consists of the mobile application, which was developed externally and acts as a

client, and the GUIs that were developed in the first part of the project:

●​ Mobile Application (end user): Acts as the main client, recording nutrition, sleep,

mood and activity data on Firebase and displaying the final recommendations. While

this component is outside the scope of this thesis, it is the ultimate goal of the API

service.

●​ Python Graphical User Interfaces (Internal Development Tools): These GUIs were

developed with Tkinter for the initial prototyping and management phases and

represent the presentation layer for the administrator/developer.

○​ Rule Management GUI: Used by experts for entering, modifying and

maintaining the JSON Knowledge Base.

○​ Analysis and Debugging GUI: Used for local testing, parsing test files

(FatSecret) and visualising internal results and activated rules.

Service level

This is the computational core of the project and is implemented as a Python service

application:

●​ RESTful API Layer (FastAPI): The service exposes endpoints via a high-performance

API framework.

○​ Orchestration and security: It manages authentication through Firebase token

validation (RF-01) and orchestrates data flow.

○​ Endpoint modularity: The main endpoints (/nutrition, /sleep, /activity and

/mood) are decoupled and call their respective analysis modules.

●​ Rules Engine (Python): This computational module is written entirely in Python and

implemented in separate modules (recommendation_food.py,

recommendation_sleep.py, reccomendation_sport.py and reccomandation_mood.py).

17

The API calls it to perform the process in three sequential steps (as detailed in

Chapter 3.3.1).

●​ Data Acquisition: Retrieves the weekly log from Firebase using internal service

credentials.

●​ Analysis: Performs pre-processing on the data and compares it with dynamically

loaded rules.

●​ Generation: Returns a structured, customised list of recommendations in JSON

format.

Data level

This layer manages all forms of information persistence:

●​ User data (Firebase Firestore): The Firebase Firestore database stores dynamic user

data such as meals, sleep, weight, mood, and activity. This choice ensures high

availability and ease of synchronisation with the mobile environment, supporting

requirement RNF-01.

●​ Knowledge Base (JSON files): The operating logic (if-then rules) is stored in JSON

files rather than in the Python code. This implementation choice decouples business

logic from execution logic, facilitating the maintainability and updating of the

knowledge base via the dedicated GUI.

18

Image 2.3

2.3.2 Choice of Technologies

The selection of technologies for the NRS was strategic, driven by the need to meet the

functional requirements (RF) for high-level analysis while strictly adhering to the

non-functional requirements (RNF) for performance, security, and maintainability. The core

principle was to favor open-source solutions that support an agile, service-oriented

architecture.

Development Language: Python

Python was chosen as the core language for the entire backend and analysis logic. Its

widespread adoption in data science and scientific computing meant that robust libraries for

data manipulation and mathematical analysis were available, which are essential for the

pre-processing phase (RF-02).

19

●​ Rule Engine Suitability: Python's dynamic nature and clear syntax make it particularly

well-suited to implementing the Rule-Based Engine (RF-03). Specifically, it

facilitates the safe evaluation of conditional strings (the condition field in the JSON

rules), which is critical for executing complex rule logic with high flexibility and

maintainability (RNF-04).

API Framework: FastAPI

FastAPI was used to construct the API layer, defining the interface between the Python

backend and the frontend mobile application. This choice was deliberate over alternatives like

Flask or Django due to specific performance and integration needs:

●​ Performance: FastAPI provides exceptional speed, leveraging Python's asynchronous

capabilities. This was non-negotiable for meeting the strict latency requirement

(RNF-01), ensuring a near-instantaneous response after querying Firebase.

●​ Automatic Validation: The framework leverages Python and the Pydantic library for

the automatic validation of input and output data. This functionality guarantees a

rigid data contract with the frontend partner, drastically reducing the risk of runtime

errors and ensuring data integrity upon request (RF-06).

●​ Automatic Documentation: FastAPI automatically generates interactive API

documentation (Swagger/OpenAPI). This feature was crucial for facilitating rapid

integration, allowing the external thesis partner to immediately understand the

structure, endpoints, and required JSON schema without manual documentation

updates.

Database and Authentication: Firebase

Google Firebase was integrated as the primary data platform, leveraging its dual capabilities

for data storage and security management:

●​ Data Acquisition: Firebase Firestore provides a flexible NoSQL structure ideal for

storing the frequently updated, yet non-relational, food and sleep logs. The

FirestoreManager class handles the efficient connection and querying required for the

analysis time window (RF-02).

20

●​ Security: Firebase is central to the security architecture. It manages user

authentication, allowing the API service to validate the client's ID Token using the

firebase_admin.auth module. Furthermore, internal service account keys are used for

secure, server-side data retrieval (RF-01), creating a protected communication tunnel

between the API and the data itself.

Knowledge Storage: JSON and Modular Structure

The design of the Knowledge Storage was predicated on its ability to be easily managed and

updated.

●​ Decoupling: The operating rules are encoded entirely in JSON format. This

decouples the business logic (the JSON file) from the programmatic logic (the

Python engine). The RulesEngine reads and interprets these JSON files dynamically

at runtime, allowing rules to be updated without restarting or recompiling the core

API service.

●​ JSON is a human-readable format, which is a prerequisite for its modification via

the high-level GUI.

Management User Interface (GUI): Tkinter

To support the prototyping phase and meet the usability requirements (RNF-05), two

dedicated GUIs were developed using Tkinter, Python's standard GUI library.

●​ Analysis GUI: This GUI was vital for Validation and Debugging (RF-07). It

integrates the matplotlib library to provide graphical summaries (e.g., macronutrient

distribution) alongside the textual recommendations. This visual debugging tool was

crucial for verifying the logical correctness of the rules before the final API

integration.

●​ Rule Management GUI: This tool ensures Knowledge Base Usability (RNF-05). It

utilizes Tkinter components to allow direct editing and saving of JSON rule files,

integrated with a mandatory syntax validation check to prevent the deployment of

corrupted rules.

21

22

3. Nutritional Recommendation Form (Core of the Project)

3.1 Data Input: The Food Log

The quality and reliability of the recommendations generated by the system are contingent

upon the consistency and completeness of the input data provided by the user. This chapter

delineates the evolution of the Data Pipeline, a process that has transformed the system from

a static file-based analyser to a dynamic service integrated with a cloud database.

3.1.1 Data Extraction and Initial Integration with FatSecret

In the project's preliminary phase, the priority was the validation of the Rules Engine through

a set of standardised, precise and detailed data .For the purpose of this study, it was decided

that the most suitable method of data collection would be through the utilisation of food logs

that had been exported from the FatSecret platform.

This decision was executed through the establishment of an ad-hoc parsing module, which

was integrated within the parse_fatsecret_report function. The following aspects of the

module fall under its remit:

1.​ Reading and Interpretation: The .csv files exported from FatSecret were then

opened.

2.​ Structural Recognition: Use regular expressions to recognize and separate entries by

date, meal, and food, since FatSecret's CSV format is standardized.

3.​ Normalization: Extract nutritional values (calories, macronutrients, and

micronutrients) and normalize them into a consistent data structure ready for analysis.

The preliminary integration with FatSecret, while effective for prototyping and functional

validation of the rules engine, exhibited two primary limitations: it was a manual process

(requiring file uploads via the GUI) and did not permit integration with a real-time frontend

application.

3.1.2 Evolution: Data Acquisition from Firebase

The transition to a service-oriented architecture and integration with the mobile application

necessitated the adoption of a cloud database for real-time data management. The decision

23

was taken to designate Firebase as the repository for this information, thus establishing it as

the definitive source of truth.

This evolution entailed the reengineering of the acquisition module, with file parsing being

replaced by a direct database query mechanism.

A. Data Centralization and Authentication

It has been established that all user data, including that pertaining to nutrition and sleep, is

recorded by the front-end application and stored directly in Firebase. The delegation of access

management to the FirestoreManager module is pivotal in ensuring the authentication process

is conducted via Firebase service credentials.

B. Data Retrieval and Time Window

The analysis modules have been updated to now invoke specific methods that retrieve data

from Firebase. The retrieval process is parameterised to operate within a specific time period

(seven days by default). This approach ensures that the analysis focuses on weekly patterns,

in line with the system's objectives.

C. Architectural Advantages

The adoption of Firebase resolved the issue of manual labour (RF-01) and satisfied the

non-functional requirements of scalability and security (RNF-02), thereby enabling the API

service (FastAPI) to establish a connection asynchronously, retrieve data, and initiate analysis

with minimal latency (RNF-01).

This transition from static files to a cloud database signifies a pivotal step in the project,

thereby transforming a prototype into a contemporary, integrable backend service.

3.2 The Knowledge Model: Structure and Taxonomy of Rules

The Recommendation Engine is classified as a Knowledge-Based System. The effectiveness

of this approach is contingent not on statistical learning, but rather on the validity and

accuracy of the rule base that encapsulates nutritional knowledge and lifestyle guidelines.

24

The modelling of knowledge was achieved through the implementation of a hierarchical

dictionary of logical rules, which was maintained externally to the execution code in order to

ensure maintainability and transparency.

3.2.1 Rule Types: Defining Simple and Complex Logic

In order to address the different complexities of nutritional and sleep guidelines, the

knowledge base has been split into two distinct types of rules, as specified by the “type” field

within the JSON structure.

A. "Simple" rules

The objective of a simple rule is to evaluate a specific metric in relation to a constant

threshold value. These measures are considered optimal for addressing fundamental

nutritional standards and safety recommendations.

Logic: The condition of the rule is typically based on a standard comparison operator (<, >, =,

<=, >=). Example Usage: It is imperative to ascertain whether the total daily calorie intake or

the number of nights with less than 6 hours of sleep exceeds the recommended maximum.

B. "Complex" rules

The system's most sophisticated diagnostic core is constituted by complex rules that permit

dynamic calculations and combined analyses of multiple metrics or variables dependent on

the user's context.

Logic: The condition is a complex Boolean expression that can combine several aggregate

metrics (e.g. saturated fat plus fried foods) and can include dynamic variables based on the

user's weight (e.g. protein requirement in grams per kilogram of body weight).

The following example illustrates the application of the rule. This rule functions to ascertain

whether the aggregate sum of specific saturated fats and fried foods exceeds a designated

weekly threshold. The calculation involves the summation of specific saturated fats

(weekly_counts.get('specific_saturated_fats', 0)) and fried foods

(weekly_counts.get('fried_foods', 0)). Secondly, This type of rule is indicative of the

complexity of a truly holistic nutritional assessment.

25

3.2.2 JSON Schema and Logical Category Mapping

To ensure that the Knowledge Base was maintainable and that recommendations could be

grouped consistently for the user, a rigorous JSON Schema and a taxonomy of logical

categories were defined.

Each rule, regardless of its type (simple or complex), adheres to the following atomic

structure:

●​ name: Unique and descriptive identifier.

●​ group: Logical category to group the tips (e.g. "Macronutrients", "Hydration", "Sleep

Hygiene").

●​ enabled: Flag for quick activation/deactivation of the rule.

●​ type: Indicates simple or complex.

○​ if simple

■​ metric: The variable in the context to evaluate

■​ operator: The logical operator to apply (<, >)

■​ threshold: The value to be considered

○​ if complex

■​ condition: The logical Python expression that the engine will evaluate,

pre (e.g. 2000 <= avg_calories > 2500).

●​ message: The text of the tip, with dynamic placeholders (e.g. You have consumed

{total_sat_fried_items} times).

●​ message_params: (Optional) Contains Python expressions to calculate values ​​to inject

into the message placeholders at run time (e.g. total_sat_fried_items).

The group field is essential for mapping the Knowledge Model. It facilitates the organisation

of rules into coherent sets, enabling both the maintenance of these rules via the GUI and the

orderly presentation of results to the end user.

This knowledge architecture ensures the extensibility of the system (by means of the addition

of new JSON files or rules) and its transparency, as each recommendation can be uniquely

traced back to the specific rule violated.

26

3.3 The Weekly Execution and Analysis Algorithm (Rules Engine)

The intellectual core of the project is constituted by the Rules Engine, a system developed in

Python that models the decision-making process of a nutritionist or lifestyle expert. In

contradistinction to machine learning-based systems, which necessitate voluminous labelled

datasets and proffer minimal explainability, the Rule-Based Engine ensures transparency and

clinical accuracy, as it is predicated on recognised nutritional guidelines and health

parameters.

3.3.1 Algorithm Phases: Prep-Processing, Run-time and Message Generation

The analysis and recommendation algorithm operates in a cycle of three main phases, which

are executed every time the API service receives a request:

Phase 1: Prep-Processing e Data Aggregation

The present phase constitutes a preparatory step for the raw data received from Firebase (or,

in the testing phase, from the FatSecret parser) so that it is ready for logical evaluation:

1.​ Retrieval and Time Window: The data is retrieved from the database (or parsed

from a CSV file) and filtered to include only the desired analysis time frame (by

default, 7 days).

2.​ Aggregate Metrics Calculation: The objective of this process is to calculate the

essential metrics that serve as variables for the rule conditions.

○​ Nutrition: The programme performs calculations to determine daily

macronutrient averages (avg_macronutrients), weekly serving counts for

specific food groups (weekly_counts), and the average total calories.

○​ Sleep: Calculation of the average sleep hours, average bedtime and wakeup

hour, days with late bedtime, days with early wakeup, days with insufficient

sleep and days with poor quality sleep.

3.​ User Context Definition: User-specific variables, such as weight in kilograms

(user_weight), are loaded, and are essential for complex rules that require parametric

calculations (e.g. protein requirement calculated as user_weight multiplied by X).

27

Phase 2: Rule Engine Runtime

This is the execution phase where the Knowledge Base logic is applied to the aggregated

data:

1.​ Context Injection: The Rules Engine creates an execution context that contains all

aggregate metrics and user variables.

2.​ Iterative Evaluation: The engine iterates through the entire list of enabled JSON

rules (“enabled”: true). For each rule, the expression contained in the “condition” field

is subject to dynamic evaluation within the execution context.

3.​ Evaluation Mechanism: The evaluation process is facilitated by a Python string

execution mechanism (e.g. the eval() function), which allows for the flexibility

required by complex rules (e.g. the condition

"weekly_counts.get('specific_saturated_fat', 0) + weekly_counts.get('fried_food', 0)).

4.​ Results Collection: In the event of a condition being evaluated as True, the rule is

considered to have been violated and the rule object is queued for message generation.

Phase 3: Message Generation and Finalization

The final step is to transform the violated rule into a custom recommendation and structure

the output for the API.

1.​ Dynamic Parameter Calculation: For rules containing the message_params field,

the engine performs the calculations specified in this dictionary.

2.​ Placeholder Population: The engine uses the values ​​calculated and context metrics

to replace placeholders ({parameter_name}) in the rule's message field. This ensures

that the recommendation is numeric and contextualized (e.g., "You consumed food... 3

times this week").

3.​ Output Structure: The final list of all generated messages is structured in a JSON

format, ready to be returned to the API layer, including the message and the group it

belongs to.

3.3.2 Implementation and Conditional Logic in Python

The Python implementation is the key element that ensures the efficiency and power of the

Rules Engine.

28

Dynamic Condition Execution

The capacity to implement intricate regulations without necessitating code recompilation is

facilitated by the eval() function or analogous processes.

The benefit of this system is that it allows administrators to modify logical conditions via the

GUI and load them immediately without intervention on the backend code (in accordance

with the RNF-04 Maintainability requirement).

Execution Context: The script establishes a secure namespace, which is defined as a

dictionary, and contains all the necessary variables (weekly_counts, avg_macronutrients,

user_weight). The execution of code is dynamic within this specific scope, thereby mitigating

potential security concerns associated with the use of the eval() function.

Modularity of the Analysis

The algorithm is structured into separate modules for nutrition (recommendation_food.py)

and sleep (recommendation_sleep.py). This modularity is achieved by reusing the

RulesEngine class and differentiating the inputs (the rules' JSON files and the specific

aggregate metrics):

●​ recommendation_food.py: Focuses on processing the food log and using the

weekly_counts and avg_macronutrients metrics.

●​ recommendation_sleep.py: Focuses on processing sleep data and using specific

metrics such as regularity and duration.

The system's modular design facilitates future extensions, such as the incorporation of the

Physical Activity Recommendation Module, which necessitates only new prep-processing

and a revised set of JSON rules.

3.4 Rules Management GUI Development and Functionality

In order to guarantee that the Knowledge Model (Chapter 3.2) can be maintained and updated

by non-technical personnel, such as nutritionists or future system administrators, a dedicated

graphical user interface (GUI) was developed. This standalone application, implemented in

29

the gui_rules.py file, serves as the single point of access for securely editing the JSON files

containing the rules.

3.4.1 High Level Input Interface (Tkinter)

The rules management GUI was built using the Tkinter library, the standard Python toolkit.

This choice prioritized the simplicity and independence of the administration tool:

●​ Module Navigation: The GUI enables the user to select the rule set to be edited (e.g.

Nutrition, Sleep). This is of crucial importance since the rules are physically separated

into different JSON files, thereby supporting the system's modularity.

●​ Rule List: The screen displays a clear list of rule names and their status, allowing for

rapid identification and editing access.

●​ Integrated Editor: The interface provides a dedicated text editor that loads the raw

JSON content of the selected rule. Although the input does not conform entirely to the

"text box-like" paradigm, particularly in more complex fields such as condition (a

string of Python code), the widget-based interface provides a controlled environment

that mitigates the need for manual intervention in editing JSON files, thereby offering

a heightened level of abstraction. The objective is to facilitate the incorporation of

predefined logical structures, with the capacity to modify solely the critical

parameters.

●​ Basic functionality: The tool incorporates essential features, including the capacity to

expeditiously enable or disable rules (by modifying the "enabled" field to true or

false) and to introduce new rules by duplicating existing ones.

3.4.2 Atomic Validation and Rescue Mechanisms

The maintainability and reliability requirements (RNF-03 and RNF-04) are satisfied by

mechanisms that protect the Knowledge Base from destructive errors. Since a syntax error in

a JSON file has the potential to result in the failure of the entire Rules Engine in production.

Therefore, the GUI implements a precautionary save logic:

●​ JSON Syntax Validation (Pre-Save Check): When the user presses the save button,

the algorithm attempts to execute the json.loads(json_text) function on the text in the

editor. In the event of failure (i.e. if the error code is 'json.JSONDecodeError'), a clear

error message is displayed (messagebox.showerror in gui_rules.py) and the save to

30

disk operation is aborted. This is an essential process as it prevents invalid data from

being written, which would cause the Rules Engine to crash at runtime.

●​ Atomic and Coherent Rescue: Only after passing JSON validation is the file

overwritten to disk (save function in gui_rules.py). This process is made as "atomic"

as possible, where the data is written and the Rules Engine on the backend can reload

the file with the new ruleset. Using the Tkinter toolkit, separate from the API

environment, ensures that any GUI crashes or freezes have no impact on the stability

of the active API service.

These syntax error prevention mechanisms make the GUI a fundamental component for the

operational management of the Knowledge Model.

31

4. Extension of the Recommendation System (Lifestyle and

Wellbeing Modules)

The initial nutritional recommendation system was strategically designed to be extensible,

enabling the integration of lifestyle analysis and advice, with an initial focus on sleep. This

extension maximizes the utilization of the Rules Engine's modularity (RNF-04), creating a

second, parallel analysis pipeline to the nutritional module.

Integrating sleep is a critical clinical decision because inadequate rest is strongly linked to

poorer food choices, metabolic dysregulation, and reduced motivational capacity, meaning

that isolated nutritional recommendations are often ineffective.

4.1 Implementation of the Sleep Module

4.1.1 Sleep Data Integration

The successful integration of the Sleep module required extending the algorithm's

prep-processing stage to define and manage a new distinct data pipeline,validating the

flexibility of the core architecture.

A. Unified Data Source (Firebase)

Unlike the initial nutrition phase, which relied on external, static logs (e.g., FatSecret), sleep

data was integrated directly into the project's real-time service architecture.

●​ Database: Sleep data (e.g., sleep hours) is recorded by the frontend application and

saved to the same Firebase Firestore instance used for nutritional data. This

maintains Firebase as the single source of truth for all user lifestyle data, simplifying

the architecture and supporting the security model.

●​ Acquisition Module: The file reccomandation_sleep.py implements the core

acquisition logic. The function analyze_sleep_from_firebase invokes the

FirestoreManager object using internal service credentials (RF-01) to securely retrieve

raw data. Access is consistently filtered by user_id and restricted to a rolling

seven-day time window to effectively analyze weekly circadian patterns.

32

B. Specific Analysis Metrics

The algorithm executes a tailored prep-processing step on the raw sleep data to generate the

high-level metrics required for rule evaluation in the execution context. This moves the

system beyond simple duration logging to actionable insights:

●​ Quantitative Duration: Calculates the average number of hours of actual sleep per

week.

●​ Circadian Regularity/Consistency: Analyzes the variation in bedtime and wake-up

time, which is a key metric for evaluating the health of the user's circadian rhythm.

●​ Deficiency Frequency: Counts the number of days on which sleep was below a

critical threshold (e.g., 7 hours).

These processed metrics are then robustly injected into the execution context of the Rules

Engine, in a similar mechanism used for nutritional variables.

4.1.2 Logic of Additional Rules for Sleep

The cognitive extension of the system is materialized by the new JSON ruleset for sleep,

which expands the Knowledge Model. This set of rules demonstrates the applicability of the

complex rule type to non-nutritional data.

A. New Logical Categories

To maintain organization and transparency, two new primary categories (groups) were

introduced to the taxonomy:

1.​ Sleep Hygiene: Rules focused on behavioural and environmental factors (e.g.,

timing of meals before sleep, consistency of schedule).

2.​ Sleep Duration and Quality: Rules based on quantitative metrics (total hours) and

consistency over the seven-day period.

B. Examples of "Complex" Sleep Rules

Sleep recommendations often rely on analyzing consistency and frequency over time,

necessitating the use of complex rules to combine multiple metrics. See Table 4.1.

33

Category Example of Conditional
Logic (Internal)

Typical Personalized Message
Generated

Duration IF the average sleep duration
is < 7 hours AND this
insufficient duration occurred
MORE THAN 3 times in the
last 7 days.

"Your average sleep duration is only
{X} hours. Try to get at least 7-8
hours of rest per night."

Hygiene IF the average difference
between bedtimes is > 90
minutes (high inconsistency).

"Your sleep pattern is highly
inconsistent, with an average
difference of {Y} hours between
nights. Try to maintain a fixed
schedule to improve circadian
health."

Table 4.1

The execution of the Sleep module is entirely decoupled at the logic level (using separate

JSON files and analysis code reccomandation_sleep.py) but unified at the service level, with

the API exposing a dedicated endpoint (/sleep in api_service.py) that specifically triggers this

analysis and returns the structured recommendations.

4.2 Implementation of the Mood Module

The Mood module represents the expansion of the system into the domain of subjective

psychological well-being. This allows for the analysis of emotional patterns in relation to

objective behaviors (sleep and activity), leveraging the flexibility of the Rules Engine to

analyze complex intensity data.

4.2.1 Rationale for Mood Tracking and Data Metrics

●​ Rationale: Tracking mood is essential for holistic counselling, as emotional states

directly affect adherence to routines, sleep quality and motivation levels. Mood

34

analysis enables targeted recommendations for psychological stability, a prerequisite

for long-term behavioural change.

●​ Data Metrics: The data is recorded by the frontend application and saved on

Firebase. The input consists of ten discrete values (on a scale of 1 to 5) that indicate

the intensity of specific moods during the reference period (7 days).

●​ Derived Metrics (Prep-Processing): The prep-processing phase calculates the

following aggregate metrics, which are essential for evaluating rules and identifying

patterns of stress or vigilance:

○​ Emotional Balance: avg_positive_mood and avg_negative_mood, calculated

as the normalized average of positive and negative metrics.

○​ Alertness and Attention: avg_attentive (average attention intensity).

○​ Frequency of Critical States: nervous_high_days, hostile_high_days, and

their percentages (hostile_high_percentage, nervous_high_percentage). These

metrics quantify the incidence of potentially dysfunctional emotional states

during the week of analysis.

4.3 Implementation of the Physical Activity Module

The Physical Activity module completes the holistic approach by providing essential data for

optimising consistency, frequency and recovery. All data is acquired in real time via Firebase

from the front-end application.

4.3.1 Integration and Metrics from Activity Trackers

●​ Data Source: The raw data is taken from Firebase and includes basic quantitative

metrics such as: steps (total steps), calories_burned (calories burned), biking_distance

(distance cycled), and walking_distance (distance walked).

●​ Derived Metrics (Prep-Processing): The analysis engine aggregates this data on a

weekly basis to calculate the metrics required for the rules:

○​ Total Volume: Calculation of Total Caloric Expenditure (sum of calories

burned), Total Steps, and Total Distance (sum of walking and biking distance).

○​ Consistency and Frequency: Determination of the number of days of

significant activity (e.g., days when steps exceed a threshold) and assessment

of weekly consistency.

35

36

5. System Integration and API Services

The project's architectural journey involved two main phases: initial validation and service

deployment. The first phase saw the implementation of the Recommendation GUI (used for

internal testing), which was essential for debugging the core logic. The second phase

involved transitioning the validated Rule-Based Engine from a standalone prototype to a

robust, real-time backend service via the RESTful API layer (used for external deployment).

This two-step process ensured that the core intelligence was proven correct before being

exposed to the external mobile application.

5.1 The Recommendation GUI (Analysis and Output GUI)

Before developing and deploying the API backend, an initial Python GUI was implemented

using the Tkinter library and Matplotlib. This application was vital, serving as the internal

validation and debugging environment for the core logic.

●​ Technical Validation: It enabled to test the effectiveness of the Rules Engine locally

using test logs (CSV files initially parsed from FatSecret), thereby completely

bypassing the Firebase/API integration until the core logic was proven sound.

●​ Debugging and Transparency: It served as the primary debugging tool, capable of

displaying both the final recommendation and the granular data that generated it,

which was essential for verifying the correctness of the JSON rules..

5.1.1 Loading the Log and Viewing the Analysis Results

The GUI was designed to provide a comprehensive, all-in-one analysis environment capable

of managing the entire algorithm execution pipeline within a local context

A. Loading the Log (Initial Testing Phase)

The interface includes an 'Upload File' function that invokes the dedicated parsing module,

allowing developers to select local CSV files and start the analysis immediately. Crucially,

the interface requires the user to specify context variables, such as body weight, which are

essential parameters for correctly executing the complex rules that calculate personalized

protein requirements.

37

B. Data Visualization and Aggregations

Once the data has been uploaded and preprocessing is complete, the GUI visualizes the

aggregated metrics before the rules are executed:

●​ Numeric Summary: A dedicated section displays key aggregated results of the

analysis (e.g., Average Daily Calories, Average Grams of Protein).

●​ Graphical Representation (Matplotlib): The GUI uses the Matplotlib library to

generate and display dynamic charts. Typical charts include Weekly Macronutrient

Balance (pie/bar charts) and Weekly Distribution (line charts) showing the trend of

calories or specific micronutrients day by day. This visual output was essential for

external validation and for identifying anomalies in the input data before the Rules

Engine was executed.

5.1.2 Presentation of Nutritional Advice

The final result of the Rules Engine execution is presented in a dedicated section,

emphasizing structure and transparency.

●​ Categorical Structure of Output: Recommendations are logically organized using

the categories (group) defined in the JSON files. For instance, sodium

recommendations are categorized under "Micronutrients," separated from protein

balance recommendations ("Macronutrients and Balance"). This structure prepares

the data for an organized display in the application.

●​ Engine Transparency and Debugging: This GUI satisfies the Explainability (XAI)

requirement through a built-in debugging mechanism not present in the final mobile

application:

5.2 API Development for External Service

The final phase involved converting the Rules Engine into a network-accessible service. This

was achieved by developing a RESTful API interface using the FastAPI microframework,

which ensured high performance and automatic documentation.

These APIs act as the essential authenticated bridge between the front-end mobile application

and the back-end analytics logic.

38

The decision to expose the analytic engine as a RESTful microservice was driven by three

key considerations: interoperability, operational simplicity, and the ability to evolve

independently.

REST over HTTPS is widely supported by mobile clients and serverless platforms,

facilitating rapid integration with partner mobile applications and third-party services without

the need for client-side libraries. Microservice boundaries enable the analytics engine to scale

independently and be deployed using container orchestration tools or serverless functions to

match production load profiles.

5.2.1 Designing API Endpoints

The design of the API endpoints adheres to the principle of separation of responsibilities

(for the nutrition and sleep modules) and facilitates efficient, secure communication. See

Table 5.2.

Endpoint Metho
d

Description and Features

/nutrition POST The primary endpoint for nutritional analysis. It requires the
authenticated user ID and starts the entire pipeline: data fetch
from Firebase, running reccomendation_food.py (Rules
Engine), and returning recommendations.

/sleep POST Endpoint dedicated to analyzing sleep data. It invokes
reccomandation_sleep.py and returns lifestyle
recommendations.

/health GET Health Check. Used for deployment and monitoring, verifying
service health and real-time connectivity to the Firebase
database (RNF-03).

39

/mood POST Endpoint dedicated to analyzing mood data. It invokes
reccomandation_mood.py and returns lifestyle
recommendations

/activity POST Endpoint dedicated to analyzing activity data. It invokes
reccomandation_sport.py and returns lifestyle
recommendations

/categories GET Provides a list of available logical categories (group). This
allows the frontend to understand the backend's taxonomy for
proper display and filtering.

Table 5.2

The choice of the POST method for the analysis endpoints is used to include user metadata

and authentication tokens securely within the request body, even when data is retrieved from

the database.

5.2.2 Communication and Data Exchange Protocols

Communication between the frontend (mobile application) and the backend API is

standardized to ensure robustness and security.

●​ Transport Protocol and Architecture: The system uses the standard HTTP/S

protocol with a RESTful architecture. The use of FastAPI ensures correct handling

of HTTP status codes (e.g., 200 OK, 400 Bad Request), which is critical for the

frontend's error handling mechanisms.

●​ Data Exchange Format: JSON: JSON is the sole format used for data exchange.

The Input (Request Body) includes a JSON object with the user ID and

authentication token. The Output (Response Body) returns a JSON object containing

the list of generated recommendations, where each item is a structured object

including the message text and its associated category (group).

●​ Authentication and Security (RNF-02): Every API request requires authentication.

The API verifies the client by validating the Firebase ID Token sent in the request

header using the Firebase SDK. Furthermore, the implementation includes a dedicated

40

system of customized exceptions that standardizes error responses. In the event of a

service failure (e.g., Firebase connection failure), the API returns a structured JSON

error response, including a shared error code (e.g., ERR_DB_001), enabling the

frontend to display specific and actionable feedback rather than a generic service

crash.

5.2.3 Integration with the Other Thesis Student's Mobile Application
Integration with the mobile application (developed in parallel by another candidate) was the

ultimate validation of the system's design. The decoupled API approach allowed the two

development streams to work independently, converging efficiently through key integration

points:

1.​ Defined API Contract: The API documentation served as the formal contract

between the frontend and backend. Both parties agreed precisely on the endpoint

names, the required JSON schema for requests and responses, and the complete list of

structured error codes.

2.​ Closed-Loop Data Flow: The integration established a clear, closed-loop workflow:

The mobile app writes data -> The mobile app authenticates and calls the API -> The

API reads data from Firebase -> The Rules Engine executes -> The API returns the

recommendations.

This integration demonstrated the viability of the microservices design, successfully

positioning the Rules Engine as a scalable, secure, central service ready for use in a

production environment.

41

6. Results, Evaluation and Discussion

This chapter presents the system's operational results, evaluates the effectiveness of the

implemented solution and considers how well the functional (RF) and non-functional (RNF)

requirements have been met.

6.1 System Demonstration and Operational Validation

The backend system that was implemented was tested in an end-to-end configuration to

verify its ability to execute the full analytical pipeline, from retrieving data through the API

to generating personalized recommendations.

This process confirmed the consistency and interoperability of all modules, ensuring that the

engine fulfils all functional and integration requirements.

6.1.1 Use Case 1 – Nutritional Analysis and Complex Rules

This first scenario validates the execution of the core analytical logic (RF-03) and the

dynamic generation of recommendations (RF-05).

Scenario:​

 A user weighing 70 kg records a weekly average protein intake of 65 g and consumes foods

rich in saturated fats (e.g., fried foods) four times in seven days.

Process and Output:

●​ The system evaluates the protein-to-body-weight ratio, triggering a rule when intake

falls below 1 g/kg.

●​ It simultaneously activates a complex rule combining two weekly counters (saturated

fats and fried foods) to assess excessive frequency.

Generated Recommendations:

42

●​ Macronutrients and Balance:​

 “Your average daily protein intake of 65 g is below the optimal target of 70–84 g.

Increase your intake of lean sources.”

●​ Foods to Limit:​

 “You consumed foods high in saturated fat or fried foods four times this week. Limit

to a maximum of twice to improve cardiovascular health.”

Validation:​

 These results confirm that:

●​ The engine correctly evaluates both simple (threshold-based) and complex

(aggregated) conditions.

●​ The recommendation text dynamically integrates user-specific variables (e.g., weight

and weekly counts), achieving true personalization.

6.2 System Evaluation

The system was evaluated through quantitative and qualitative analyses to verify compliance

with the non-functional requirements (RNF).

6.2.1 Validation of the Knowledge Base

The transparency and reliability of the Rule-Based Engine (RNF-03) were ensured through a

two-step validation process supported by the dedicated GUIs.

1.​ Syntactic Validation (RF-04): The Rule Management GUI automatically checks

JSON syntax before saving, preventing malformed rules (e.g., missing commas or

brackets) from being stored. This guarantees that the engine always operates with a

valid, readable Knowledge Base.

2.​ Logical and Clinical Verification (RF-07): Using the Analysis GUI, test logs were

intentionally crafted to trigger specific rules. The threshold to verify the accuracy of

the rules is specified in the rule output message. This immediate feedback confirmed

that all simple and complex rules behaved consistently with their clinical intent and

logical design.

43

Requirement Description Verification evidence

RF-01 Secure data acquisition from

Firebase

Token validation tested; FirestoreManager

logs and authenticated calls

RF-02 Weekly aggregation and

time-window analysis

Preprocessing unit tests; example

aggregated outputs in GUI

RF-03 Dynamic Rule Engine execution Triggered rules in Use Case 1; debug

output with violated condition

RF-04 Knowledge base management via

GUI

GUI save validation and atomic update

mechanism implemented

RF-05 Recommendation generation with

dynamic placeholders

Message_params evaluated and populated

in sample recommendations

RF-06 Exposed REST API endpoints

(/nutrition, /sleep, /categories)

FastAPI auto-docs and integration with

mobile client

RNF-01 Target latency < 3 s Measured average ≈ 2 s for /nutrition

endpoint

RNF-02 Data security & HTTPS HTTPS enforced; Firebase authentication

validated

44

RNF-03 Robustness and error handling Centralized exception handler and

structured error codes (ERR_...)

RNF-04 Maintainability (decoupling code and

knowledge)

JSON rules loaded dynamically; modular

rule files per domain

RNF-05 Knowledge-base usability GUI syntax checks and rescue

mechanisms implemented

Table 6.2.2

6.3 Discussion and Critical Analysis

The implemented solution successfully achieved its design goals, proving that a Rule-Based

and modular architecture can deliver personalized and explainable lifestyle

recommendations with low computational cost.

6.3.1 Strengths and Achievements

●​ Explainability (XAI): The rule-based approach inherently guarantees transparency:

each recommendation can be traced back to the exact logical condition that produced

it. This satisfies both clinical accountability and user trust requirements.

●​ Maintainability and Modularity: The separation between the Python engine and the

JSON Knowledge Base, managed through the GUI, enables rapid updates without

code changes. The addition of the Sleep module validated the system’s extensibility

and confirmed the robustness of its modular design (RNF-04).

●​ Effective Hybridization: While primarily rule-based, the system already incorporates

a hybrid logic by combining nutritional and sleep data, forming the foundation for a

comprehensive Lifestyle Recommendation System rather than a simple Nutritional

Recommender.

45

6.4 Summary

In conclusion, the project delivers a fully functional, secure, and transparent backend

service for personalized wellness recommendations.

It demonstrates that Knowledge-Based Systems, when properly modularized and coupled

with cloud integration, remain a powerful paradigm for clinical-grade personalization,

offering reliability, explainability, and low latency that purely data-driven systems often lack.

The work establishes a robust foundation for future hybrid systems, where expert-defined

rules and adaptive learning can coexist to achieve both trustworthiness and continuous

personalization.

46

7. Conclusions and Future Developments

7.1 General Conclusion

This thesis presents the design and implementation of a Knowledge-Based engine for

generating personalised nutritional and lifestyle recommendations. This represents an

evolution from traditional data-tracking applications towards intelligent, explainable wellness

systems.

The system developed in this study shows that knowledge-driven approaches combined with

modular software architecture and cloud integration can effectively convert raw behavioural

data into actionable, clinically meaningful insights.

By formalising expert knowledge into a transparent and maintainable rule structure, the

project was able to achieve a high level of personalisation without sacrificing interpretability,

which is a common limitation of purely data-driven models.

From a methodological standpoint, the project’s success lies in the decoupling of logic and

knowledge:

●​ The Python-based Rules Engine ensures efficient execution and computational

transparency.

●​ The JSON Knowledge Base, editable through an intuitive GUI, allows domain

experts to modify rules dynamically, bridging the gap between technical

implementation and clinical expertise.

●​ The FastAPI backend and Firebase integration enable real-time interaction with

external applications, transforming the prototype into a production-ready,

service-oriented architecture.

The system’s modular extension to lifestyle data, particularly through the integration of

sleep analysis, demonstrates the scalability and generality of the proposed framework. This

47

confirms that the same logic can be applied to additional domains, positioning the system as a

foundation for broader lifestyle intelligence applications.

7.2 Limitations

Despite its achievements, several limitations remain, offering opportunities for further

refinement:

●​ Manual Knowledge Expansion: The rule base currently relies on expert-defined

logic, which can be labor-intensive to scale. Automating knowledge extraction or

supporting semi-automatic rule suggestions could enhance long-term sustainability.

●​ Absence of Adaptive Feedback Mechanisms: The system currently operates in a

prescriptive mode, it issues recommendations but does not adapt based on user

compliance or outcomes. Future iterations could implement learning mechanisms that

adjust rule weights or thresholds according to behavioral trends.

7.3 Future Developments

Building upon the current architecture, several promising directions can be pursued:

1.​ Hybridization with Machine Learning Models: Introducing a hybrid AI layer on

top of the Rule Engine (for example, a recommendation ranking model or a

reinforcement learning agent) could allow the system to adapt dynamically while

keeping the rule-based layer as a clinical safeguard.

2.​ User Feedback Loop and Behavioral Adaptation: Incorporating a mechanism to

collect feedback from users on the usefulness and adoption of recommendations could

enable an adaptive cycle of personalization, improving engagement and accuracy over

time.

3.​ Ontology-Based Knowledge Representation: Migrating the rule base to an

ontology-driven model would enhance interoperability, semantic reasoning, and

automated rule generation, facilitating scalability to multiple health domains.

4.​ Deployment and Evaluation in Real User Studies: The next phase should involve

deploying the system to real users within a controlled study, assessing not only

technical performance but also behavioral impact, user adherence, and satisfaction.

48

7.4 Final Remarks

In conclusion, this thesis demonstrates that Rule-Based Systems remain a cornerstone of

explainable AI in the wellness domain, particularly when safety, interpretability, and

personalization are non-negotiable requirements.

The proposed architecture bridges the gap between expert-driven reasoning and cloud-scale

implementation, offering a solid foundation for next-generation wellness platforms that

combine scientific rigor with real-world usability.

Ultimately, the project contributes to a paradigm shift, from static tracking applications

toward proactive, personalized, and interpretable digital health companions, capable of

evolving alongside their users and learning from their daily habits.

49

8. Bibliography

[1] Carreiro S, Newcomb M, Leach R, Ostrowski S, Boudreaux ED, Amante D. Current

reporting of usability and impact of mHealth interventions for substance use disorder: A

systematic review. Drug Alcohol Depend. 2020 Oct 1;215:108201. doi:

10.1016/j.drugalcdep.2020.108201. Epub 2020 Aug 2. PMID: 32777691; PMCID:

PMC7502517.

[2] Michie, Susan & van Stralen, Maartje & West, Robert. (2011). The Behaviour Change

Wheel: a new method for characterising and designing behaviour change interventions.

Implementation science : IS. 6. 42. 10.1186/1748-5908-6-42.

[3] Hulsen, T. (2023). Explainable Artificial Intelligence (XAI): Concepts and Challenges in

Healthcare. AI, 4(3), 652-666. https://doi.org/10.3390/ai4030034

[4] Sittig DF, Singh H. A new sociotechnical model for studying health information

technology in complex adaptive healthcare systems. Qual Saf Health Care. 2010 Oct;19

Suppl 3(Suppl 3):i68-74. doi: 10.1136/qshc.2010.042085. PMID: 20959322; PMCID:

PMC3120130.

[5] Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling

and User-Adapted Interaction, 12(4), 331-370.Burke, Robin. (2002). Hybrid Recommender

Systems: Survey and Experiments. User Modeling and User-Adapted Interaction. 12.

10.1023/A:1021240730564.

[6] Ricci, Francesco & Rokach, Lior & Shapira, Bracha. (2010). Recommender Systems

Handbook. 10.1007/978-0-387-85820-3_1.

[7] Tintarev, Nava & Masthoff, Judith. (2015). Explaining Recommendations: Design and

Evaluation. 10.1007/978-1-4899-7637-6_10.

[8] Felfernig, Alexander & Burke, Robin. (2008). Constraint-based recommender systems:

Technologies and research issues. ACM International Conference Proceeding Series. 3.

10.1145/1409540.1409544.

50

[9] Ordovas JM, Ferguson LR, Tai ES, Mathers JC. Personalised nutrition and health. BMJ.

2018 Jun 13;361:bmj.k2173. doi: 10.1136/bmj.k2173. PMID: 29898881; PMCID:

PMC6081996.

[10] Tkalčič, Marko & Burnik, Urban & Odic, Ante & Kosir, Andrej & Tasic, Jurij. (2013).

Emotion-Aware Recommender Systems – A Framework and a Case Study.

10.1007/978-3-642-37169-1_14.

[11] Abhari S, Safdari R, Azadbakht L, Lankarani KB, Niakan Kalhori SR, Honarvar B,

Abhari K, Ayyoubzadeh SM, Karbasi Z, Zakerabasali S, Jalilpiran Y. A Systematic Review of

Nutrition Recommendation Systems: With Focus on Technical Aspects. J Biomed Phys Eng.

2019 Dec 1;9(6):591-602. doi: 10.31661/jbpe.v0i0.1248. PMID: 32039089; PMCID:

PMC6943843.

51

9. Appendix

9.1 nutrient_rules.json

[

 {

 "name": "Grassi Saturi e Alimenti Fritti",

 "group": {

 "it": "Alimenti da Limitare",

 "en": "Foods to Limit"

 },

 "enabled": true,

 "type": "complex",

 "condition": "(weekly_counts.get('grassi_saturi_specifici', 0) +
weekly_counts.get('alimenti_fritti', 0)) > 2",

 "message": {

 "it": "Hai consumato alimenti ricchi di grassi saturi o fritti
{total_sat_fried_items} volta/e questa settimana. L'assunzione dovrebbe
essere limitata a massimo 2 volte a settimana.",

 "en": "You have consumed foods high in saturated fats or fried foods
{total_sat_fried_items} time(s) this week. Intake should be limited to a
maximum of 2 times per week."

 },

 "message_params": {

 "total_sat_fried_items": "lambda weekly_counts:
weekly_counts.get('grassi_saturi_specifici', 0) +
weekly_counts.get('alimenti_fritti', 0)"

 },

 "reference": ""

 },

 {

 "name": "Apporto Proteico Basso",

 "group": {

 "it": "Macronutrienti e Bilancio",

52

 "en": "Macronutrients and Balance"

 },

 "enabled": true,

 "type": "complex",

 "condition": "avg_macronutrients.get('protein', 0) < user_weight * 0.8",

 "message": {

 "it": "Il tuo apporto proteico medio giornaliero è di
{avg_daily_protein}g, inferiore all'obiettivo di
{min_protein_target}-{max_protein_target}g (basato su un peso di
{user_weight}kg). Considera di aumentare le fonti proteiche, privilegiando
quelle vegetali (legumi, tofu, tempeh) e animali magre (pesce, pollame, uova,
latticini magri).",

 "en": "Your average daily protein intake is {avg_daily_protein}g, below
the target of {min_protein_target}-{max_protein_target}g (based on a weight
of {user_weight}kg). Consider increasing protein sources, prioritizing
plant-based (legumes, tofu, tempeh) and lean animal sources (fish, poultry,
eggs, low-fat dairy)."

 },

 "message_params": {

 "avg_daily_protein": "lambda avg_macronutrients:
avg_macronutrients.get('protein', 0)",

 "min_protein_target": "lambda user_weight: user_weight * 0.8",

 "max_protein_target": "lambda user_weight: user_weight * 1.2",

 "user_weight": "lambda user_weight: user_weight"

 },

 "reference": ""

 },

 {

 "name": "Apporto Proteico Alto",

 "group": {

 "it": "Macronutrienti e Bilancio",

 "en": "Macronutrients and Balance"

 },

 "enabled": true,

 "type": "complex",

53

 "condition": "avg_macronutrients.get('protein', 0) > user_weight * 1.2",

 "message": {

 "it": "Il tuo apporto proteico medio giornaliero è di
{avg_daily_protein}g, superiore all'obiettivo di
{min_protein_target}-{max_protein_target}g (basato su un peso di
{user_weight}kg). Valuta di bilanciare le fonti proteiche e di consultare un
professionista se hai dubbi.",

 "en": "Your average daily protein intake is {avg_daily_protein}g, above
the target of {min_protein_target}-{max_protein_target}g (based on a weight
of {user_weight}kg). Consider balancing protein sources and consulting a
professional if you have concerns."

 },

 "message_params": {

 "avg_daily_protein": "lambda avg_macronutrients:
avg_macronutrients.get('protein', 0)",

 "min_protein_target": "lambda user_weight: user_weight * 0.8",

 "max_protein_target": "lambda user_weight: user_weight * 1.2",

 "user_weight": "lambda user_weight: user_weight"

 },

 "reference": ""

 },

 {

 "name": "Percentuale Carboidrati Bassa",

 "group": {

 "it": "Macronutrienti e Bilancio",

 "en": "Macronutrients and Balance"

 },

 "enabled": true,

 "type": "complex",

 "condition": "(avg_macronutrients.get('carbs', 0) * 4 /
(avg_macronutrients.get('kcal') or 1)) * 100 < 45",

 "message": {

 "it": "L'apporto calorico dai carboidrati è del {perc_carbs}%. È
inferiore al range consigliato del 45-60%. Aumenta il consumo di carboidrati
complessi come cereali integrali, frutta e verdura.",

54

 "en": "The portion of calories from carbohydrates is {perc_carbs}%. It
is below the recommended range of 45-60%. Increase the intake of complex
carbohydrates such as whole grains, fruits, and vegetables."

 },

 "message_params": {

 "perc_carbs": "lambda avg_macronutrients:
(avg_macronutrients.get('carbs', 0) * 4 / (avg_macronutrients.get('kcal') or
1)) * 100"

 },

 "reference": ""

 },

 {

 "name": "Percentuale Carboidrati Alta",

 "group": {

 "it": "Macronutrienti e Bilancio",

 "en": "Macronutrients and Balance"

 },

 "enabled": true,

 "type": "complex",

 "condition": "(avg_macronutrients.get('carbs', 0) * 4 /
(avg_macronutrients.get('kcal') or 1)) * 100 > 60",

 "message": {

 "it": "L'apporto calorico dai carboidrati è del {perc_carbs}%. È
superiore al range consigliato del 45-60%. Cerca di bilanciare, privilegiando
le fonti integrali e limitando gli zuccheri semplici.",

 "en": "The portion of calories from carbohydrates is {perc_carbs}%. It
is above the recommended range of 45-60%. Try to balance, prioritizing whole
sources and limiting simple sugars."

 },

 "message_params": {

 "perc_carbs": "lambda avg_macronutrients:
(avg_macronutrients.get('carbs', 0) * 4 / (avg_macronutrients.get('kcal') or
1)) * 100"

 },

 "reference": ""

55

 },

 {

 "name": "Percentuale Grassi Bassa",

 "group": {

 "it": "Macronutrienti e Bilancio",

 "en": "Macronutrients and Balance"

 },

 "enabled": true,

 "type": "complex",

 "condition": "(avg_macronutrients.get('fat', 0) * 9 /
(avg_macronutrients.get('kcal') or 1)) * 100 < 20",

 "message": {

 "it": "L'apporto calorico dai grassi è del {perc_fat}%. È inferiore al
range consigliato del 20-35%. Assicurati di includere fonti di grassi sani
come olio EVO, frutta secca, avocado.",

 "en": "The portion of calories from fats is {perc_fat}%. It is below
the recommended range of 20-35%. Make sure to include healthy fats such as
EVO oil, nuts and seeds, and avocado."

 },

 "message_params": {

 "perc_fat": "lambda avg_macronutrients: (avg_macronutrients.get('fat',
0) * 9 / (avg_macronutrients.get('kcal') or 1)) * 100"

 },

 "reference": ""

 },

 {

 "name": "Percentuale Grassi Alta",

 "group": {

 "it": "Macronutrienti e Bilancio",

 "en": "Macronutrients and Balance"

 },

 "enabled": true,

 "type": "complex",

56

 "condition": "(avg_macronutrients.get('fat', 0) * 9 /
(avg_macronutrients.get('kcal') or 1)) * 100 > 35",

 "message": {

 "it": "L'apporto calorico dai grassi è del {perc_fat}%. È superiore al
range consigliato del 20-35%. Cerca di bilanciare l'assunzione di grassi,
privilegiando quelli insaturi.",

 "en": "The portion of calories from fats is {perc_fat}%. It is above
the recommended range of 20-35%. Try to balance the consumption of fats,
prioritizing unsaturated fats."

 },

 "message_params": {

 "perc_fat": "lambda avg_macronutrients: (avg_macronutrients.get('fat',
0) * 9 / (avg_macronutrients.get('kcal') or 1)) * 100"

 },

 "reference": ""

 },

 {

 "name": "Grassi Saturi Elevati",

 "group": {

 "it": "Macronutrienti e Bilancio",

 "en": "Macronutrients and Balance"

 },

 "enabled": true,

 "type": "complex",

 "condition": "(avg_macronutrients.get('sat_fat', 0) * 9 /
(avg_macronutrients.get('kcal') or 1)) * 100 > 10",

 "message": {

 "it": "L'apporto calorico dai grassi saturi è del {perc_sat_fat}%.
L'obiettivo è meno del 10%. Riduci il consumo di alimenti ricchi di grassi
saturi e aumenta i grassi insaturi (presenti in olio EVO, frutta secca,
avocado, pesce azzurro).",

 "en": "The portion of calories from saturated fats is {perc_sat_fat}%.
The goal is below 10%. Reduce the consumption of saturated fats and increase
unsaturated fats (present in EVO oil, nuts and seeds, and oily fish)."

 },

 "message_params": {

57

 "perc_sat_fat": "lambda avg_macronutrients:
(avg_macronutrients.get('sat_fat', 0) * 9 / (avg_macronutrients.get('kcal')
or 1)) * 100"

 },

 "reference": ""

 },

 {

 "name": "Grassi Insaturi Elevati",

 "group": {

 "it": "Macronutrienti e Bilancio",

 "en": "Macronutrients and Balance"

 },

 "enabled": true,

 "type": "complex",

 "condition": "(avg_macronutrients.get('fat', 0) * 9 /
(avg_macronutrients.get('kcal') or 1)) * 100 > 10",

 "message": {

 "it": "L'apporto calorico dai grassi insaturi è del {perc_fat}%.
L'obiettivo è meno del 10%.",

 "en": "The portion of calories from unsaturated fats is {perc_fat}%.
The goal is below 10%."

 },

 "message_params": {

 "perc_fat": "lambda avg_macronutrients: (avg_macronutrients.get('fat',
0) * 9 / (avg_macronutrients.get('kcal') or 1)) * 100"

 },

 "reference": ""

 }

]

9.2 general_rules.json

[

 {

58

 "name": "Consumo di Frutta e Verdura",

 "group": {

 "it": "Consumo di Frutta e Verdura",

 "en": "Fruit and Vegetable Intake"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_fruit_veg_portions",

 "operator": "<",

 "threshold": 5,

 "message": {

 "it": "In media hai consumato solo {metric_value} porzioni di frutta e
verdura al giorno. L'obiettivo è almeno 5 porzioni. Aumenta la varietà e la
quantità per un maggior apporto di vitamine e fibre.",

 "en": "On average, you consumed only {metric_value} portions of fruits
and vegetables per day. The goal is at least 5 portions. Increase variety and
quantity for better vitamin and fiber intake."

 },

 "reference": ""

 },

 {

 "name": "Frequenza Legumi",

 "group": {

 "it": "Consumo di Legumi",

 "en": "Legumes Intake"

 },

 "type": "simple",

 "enabled": true,

 "metric": "legumi",

 "operator": "<",

 "threshold": 2,

 "message": {

59

 "it": "Hai consumato legumi solo {metric_value} volta/e questa
settimana. L'obiettivo è 2-3 volte a settimana per un buon apporto di
proteine vegetali e fibre.",

 "en": "You have consumed legumes only {metric_value} time(s) this week.
The goal is 2-3 times a week for a good intake of plant-based proteins and
fiber."

 }

 },

 {

 "name": "Frequenza Pesce",

 "group": {

 "it": "Consumo di Pesce",

 "en": "Fish Intake"

 },

 "type": "simple",

 "enabled": true,

 "metric": "pesce",

 "operator": "<",

 "threshold": 2,

 "message": {

 "it": "Hai mangiato pesce solo {metric_value} volta/e questa settimana.
Si consiglia almeno 2 volte a settimana, includendo pesce azzurro ricco di
omega-3.",

 "en": "You have eaten fish only {metric_value} time(s) this week. It is
recommended at least 2 times a week, including oily fish rich in omega-3."

 },

 "reference": ""

 },

 {

 "name": "Frequenza Carne Rossa Elevata",

 "group": {

 "it": "Consumo di Carne Rossa",

 "en": "Red Meat Intake"

60

 },

 "type": "simple",

 "enabled": true,

 "metric": "carne_rossa",

 "operator": ">",

 "threshold": 2,

 "message": {

 "it": "Hai consumato carne rossa {metric_value} volta/e questa
settimana. È consigliabile non superare 1-2 volte a settimana per ridurre i
rischi per la salute.",

 "en": "You have consumed red meat {metric_value} time(s) this week. It
is recommended not to exceed 1-2 times a week to reduce the risk of health."

 },

 "reference": ""

 },

 {

 "name": "Rapporto Carne Bianca vs Rossa",

 "group": {

 "it": "Rapporto Carne Bianca vs Rossa",

 "en": "White vs Red Meat Ratio"

 },

 "type": "complex",

 "enabled": true,

 "condition": "weekly_counts.get('carne_bianca', 0) <
weekly_counts.get('carne_rossa', 0) and (weekly_counts.get('carne_rossa', 0)
+ weekly_counts.get('carne_bianca', 0)) > 0",

 "message": {

 "it": "Stai mangiando più carne rossa ({carne_rossa}) che carne bianca
({carne_bianca}). Cerca di favorire il consumo di carne bianca come pollo e
tacchino.",

 "en": "You are eating more red meat ({carne_rossa}) than white meat
({carne_bianca}). Try to favor the consumption of white meat such as chicken
and turkey."

 },

61

 "reference": ""

 },

 {

 "name": "Consumo Uova Basso",

 "group": {

 "it": "Consumo di Uova",

 "en": "Egg Intake"

 },

 "type": "simple",

 "enabled": true,

 "metric": "uova",

 "operator": "<",

 "threshold": 2,

 "message": {

 "it": "Hai consumato uova solo {metric_value} volta/e. L'obiettivo è
2-4 volte a settimana per un buon apporto di proteine complete.",

 "en": "You have consumed eggs only {metric_value} time(s). The goal is
2-4 times a week for a good intake of complete proteins."

 },

 "reference": ""

 },

 {

 "name": "Consumo Uova Alto",

 "group": {

 "it": "Consumo di Uova",

 "en": "Egg Intake"

 },

 "type": "simple",

 "enabled": true,

 "metric": "uova",

 "operator": ">",

62

 "threshold": 4,

 "message": {

 "it": "Hai consumato uova {metric_value} volta/e. Si consiglia di non
superare 4 volte a settimana per mantenere un equilibrio alimentare.",

 "en": "You have consumed eggs {metric_value} time(s). It is recommended
not to exceed 4 times a week to maintain a balanced diet."

 },

 "reference": ""

 },

 {

 "name": "Consumo Latticini Insufficiente",

 "group": {

 "it": "Consumo di Latticini",

 "en": "Dairy Intake"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_latticini_per_day",

 "operator": "<",

 "threshold": 1,

 "message": {

 "it": "In media hai consumato solo {metric_value} porzione/i di
latticini al giorno. L'obiettivo è 1-2 porzioni al giorno per l'apporto di
calcio.",

 "en": "On average, you consumed only {metric_value} portion(s) of dairy
products per day. The goal is 1-2 portions per day for good calcium intake."

 },

 "reference": ""

 },

 {

 "name": "Olio Extravergine d'Oliva Quotidiano",

 "group": {

63

 "it": "Olio Extravergine di Oliva",

 "en": "Extra Virgin Olive Oil"

 },

 "type": "simple",

 "enabled": true,

 "metric": "olio_evo",

 "operator": "<",

 "threshold_dynamic": "num_days",

 "message": {

 "it": "Hai consumato olio EVO solo {metric_value} volta/e su {num_days}
giorni. Assicurati di utilizzarlo quotidianamente come principale fonte di
grassi, preferibilmente a crudo.",

 "en": "You have used EVO oil only {metric_value} time(s) over
{num_days} days. Make sure to use it daily as the main source of fats,
preferably raw."

 },

 "reference": ""

 },

 {

 "name": "Frutta Secca e Semi",

 "group": {

 "it": "Frutta Secca e Semi",

 "en": "Nuts and Seeds"

 },

 "type": "simple",

 "enabled": true,

 "metric": "frutta_secca",

 "operator": "<",

 "threshold_dynamic": "num_days * 0.5",

 "message": {

 "it": "Hai consumato frutta secca e semi {metric_value} volta/e. Cerca
di includerli almeno a giorni alterni per i grassi sani e le fibre.",

64

 "en": "You have consumed nuts and seeds {metric_value} time(s). Try to
include them at least every other day for healthy fats and fiber."

 },

 "reference": ""

 },

 {

 "name": "Cereali Mancanti",

 "group": {

 "it": "Consumo di Cereali",

 "en": "Cereal Intake"

 },

 "type": "complex",

 "enabled": true,

 "condition": "(weekly_counts.get('num_days', 0) -
weekly_counts.get('days_with_cereals_present', 0)) > 2",

 "message": {

 "it": "I cereali sono mancati in {missing_cereal_days} giorni questa
settimana. I cereali dovrebbero essere presenti quotidianamente nei pasti
principali.",

 "en": "Cereals are missing in {missing_cereal_days} days this week.
Cereals should be present daily in the main dishes."

 },

 "reference": ""

 },

 {

 "name": "Cereali Raffinati Prevalenti",

 "group": {

 "it": "Consumo di Cereali",

 "en": "Cereal Intake"

 },

 "type": "complex",

 "enabled": true,

65

 "condition": "weekly_counts.get('days_with_refined_cereals_prevalent', 0)
> (weekly_counts.get('num_days', 0) / 2)",

 "message": {

 "it": "Hai consumato cereali raffinati prevalentemente in
{days_with_refined_cereals_prevalent} giorni su {num_days}. Cerca di
preferire i cereali integrali per un maggiore apporto di fibre.",

 "en": "You have consumed refined cereals prevalently in
{days_with_refined_cereals_prevalent} days over {num_days}. Try to prefer
whole grains for a better intake of fiber."

 },

 "reference": ""

 },

 {

 "name": "Consumo di Bevande Zuccherate",

 "group": {

 "it": "Alimenti da Limitare",

 "en": "Foods to Limit"

 },

 "enabled": true,

 "metric": "bevande_zuccherate",

 "source": "weekly_counts",

 "operator": ">",

 "threshold": 1,

 "message":{

 "it": "Hai consumato bevande zuccherate {metric_value} volta/e questa
settimana. È consigliato limitare il consumo a massimo {threshold} volta a
settimana.",

 "en": "You have consumed sugary drinks {metric_value} time(s) this
week. It is recommended to limit consumption to a maximum of {threshold}
times a week."

 },

 "reference": ""

 },

 {

66

 "name": "Consumo di Salumi",

 "group": {

 "it": "Alimenti da Limitare",

 "en": "Foods to Limit"

 },

 "enabled": true,

 "metric": "salumi",

 "source": "weekly_counts",

 "operator": ">",

 "threshold": 2,

 "message": {

 "it": "Hai consumato salumi {metric_value} volta/e questa settimana. È
consigliato limitare il consumo al massimo {threshold} volte a settimana.",

 "en": "You have consumed cold cuts {metric_value} time(s) this week. It
is recommended to limit consumption to a maximum of {threshold} times a
week."

 },

 "reference": ""

 },

 {

 "name": "Consumo di Dolci e Snack Dolci",

 "group": {

 "it": "Alimenti da Limitare",

 "en": "Foods to Limit"

 },

 "enabled": true,

 "type": "complex",

 "condition": "lambda weekly_counts: (weekly_counts.get('dolci', 0) +
weekly_counts.get('snack_dolci', 0)) > 3",

 "message": {

 "it": "Hai consumato dolci e snack dolci {total_sweet_snacks} volta/e
questa settimana. Si consiglia di moderare il consumo se superiore a
{threshold} volte a settimana.",

67

 "en": "You have consumed sweets and sweet snacks {total_sweet_snacks}
time(s) this week. It is recommended to moderate consumption if more than
{threshold} times a week."

 },

 "message_params": {

 "total_sweet_snacks": "lambda weekly_counts: weekly_counts.get('dolci',
0) + weekly_counts.get('snack_dolci', 0)",

 "threshold": 3

 },

 "reference": ""

 },

 {

 "name": "Alimenti Ultra-Processati",

 "group": {

 "it": "Alimenti da Limitare",

 "en": "Foods to Limit"

 },

 "enabled": true,

 "metric": "ultra_processati",

 "source": "weekly_counts",

 "operator": ">",

 "threshold_expression": "num_days * 0.5",

 "message": {

 "it": "Hai consumato alimenti ultra-processati {metric_value} volta/e
questa settimana. È fortemente consigliato ridurre drasticamente il loro
consumo in quanto spesso ricchi di zuccheri, grassi e sale.",

 "en": "You have consumed ultra-processed foods {metric_value} time(s)
this week. It is strongly recommended to drastically reduce their consumption
as they are often high in sugars, fats, and salt."

 },

 "message_params": {

 "threshold_calculated": "lambda num_days: num_days * 0.5"

 },

68

 "reference": ""

 },

 {

 "name": "Consumo di Alcool",

 "group": {

 "it": "Alimenti da Limitare",

 "en": "Foods to Limit"

 },

 "enabled": true,

 "metric": "alcool",

 "source": "weekly_counts",

 "operator": ">",

 "threshold": 0,

 "message": {

 "it": "Hai consumato alcool {metric_value} volta/e questa settimana.
Per una salute ottimale, si raccomanda di limitare al massimo il consumo di
bevande alcoliche, idealmente evitando l'assunzione regolare.",

 "en": "You have consumed alcohol {metric_value} time(s) this week. For
a healthy diet, it is recommended to limit the consumption of alcoholic
beverages, ideally avoiding regular consumption."

 },

 "reference": ""

 },

 {

 "name": "Idratazione Insufficiente",

 "group": {

 "it": "Idratazione",

 "en": "Hydration"

 },

 "enabled": true,

 "metric": "bicchieri_acqua",

 "source": "weekly_counts",

69

 "operator": "<",

 "threshold_expression": "num_days * 8",

 "message": {

 "it": "Hai bevuto {metric_value} bicchieri d'acqua questa settimana.
L'obiettivo è almeno {target_glasses} bicchieri ({glasses_per_day} al
giorno). Aumenta l'idratazione per migliorare il benessere generale.",

 "en": "You have drunk {metric_value} cups of water this week. The goal
is at least {target_glasses} cups ({glasses_per_day} per day). Increase the
hydration for a better overall health."

 },

 "message_params": {

 "target_glasses": "lambda num_days: num_days * 8",

 "glasses_per_day": 8

 },

 "reference": ""

 }

]

9.3 sleep_rules.json

[

 {

 "name": "Ore di sonno insufficienti",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_sleep_hours",

 "operator": "<",

 "threshold": 7,

 "message": {

70

 "it": "In media dormi solo {metric_value} ore per notte. L'obiettivo è
7-9 ore per migliorare il recupero fisico e mentale.",

 "en": "On average, you sleep only {metric_value} hours per night. The
goal is 7-9 hours to improve physical and mental recovery."

 },

 "reference": ""

 },

 {

 "name": "Andare a letto tardi",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "enabled": true,

 "type": "complex",

 "condition": "(sum(1 for d in sleep_data.values() if
d.get('bedtime_hour', 22) >= 23.0 or d.get('bedtime_hour', 22) < 5.0) /
len(sleep_data)) > 0.3",

 "message": {

 "it": "Sei andato a letto tardi in {late_days} su {total_days} giorni
({late_percentage}%). Cerca di coricarti prima delle 23:00 almeno il 70%
delle notti per migliorare la qualità del sonno e il recupero.",

 "en": "You went to bed late on {late_days} out of {total_days} days
({late_percentage}%). Try to go to bed before 11:00 PM at least 70% of the
nights to improve sleep quality and recovery."

 },

 "message_params": {

 "late_days": "lambda sleep_data: sum(1 for d in sleep_data.values() if
d.get('bedtime_hour', 22) >= 23.0 or d.get('bedtime_hour', 22) < 5.0)",

 "total_days": "lambda sleep_data: len(sleep_data)",

 "late_percentage": "lambda sleep_data: round((sum(1 for d in
sleep_data.values() if d.get('bedtime_hour', 22) >= 23.0 or
d.get('bedtime_hour', 22) < 5.0) / len(sleep_data)) * 100, 1)"

 },

 "reference": ""

71

 },

 {

 "name": "Svegliarsi tardi",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_wakeup_hour",

 "operator": ">",

 "threshold": 8,

 "message": {

 "it": "In media ti svegli alle {metric_value}:00. Cerca di svegliarti
prima delle 8:00 per allinearti meglio con i ritmi circadiani.",

 "en": "On average, you wake up at {metric_value}:00. Try to wake up
before 8:00 AM to better align with your circadian rhythms."

 },

 "reference": ""

 },

 {

 "name": "Caffeina serale",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "simple",

 "enabled": true,

 "metric": "caffeine_after_hour",

 "operator": ">",

 "threshold": 16,

72

 "message": {

 "it": "Hai consumato caffeina alle {caffeine_after_hour}:00. Evita
caffeina nelle 6-10 ore prima di coricarti per non disturbare il sonno.",

 "en": "You consumed caffeine at {caffeine_after_hour}:00. Avoid
caffeine 6-10 hours before bedtime to avoid disturbing sleep."

 },

 "reference": ""

 },

 {

 "name": "Alcol serale",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "simple",

 "enabled": true,

 "metric": "alcohol_evening",

 "operator": ">",

 "threshold": 0,

 "message": {

 "it": "Hai consumato alcol in serata. Ridurne l'assunzione può
migliorare la produzione di melatonina e la qualità del sonno.",

 "en": "You consumed alcohol in the evening. Reducing its intake can
improve melatonin production and sleep quality."

 },

 "reference": ""

 }

]

9.4 activity_rules.json

[

 {

73

 "name": "Steps giornalieri bassi",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_steps",

 "operator": "<",

 "threshold": 5000,

 "message": {

 "it": "La tua media giornaliera di passi è inferiore a 5.000. L'OMS
raccomanda almeno 10.000 passi al giorno. Prova ad aumentare gradualmente
l'attività fisica quotidiana.",

 "en": "Your daily average steps are less than 5,000. The WHO
recommends at least 10,000 steps per day. Try to gradually increase your
daily physical activity."

 },

 "reference": ""

 },

 {

 "name": "Steps giornalieri medi",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "complex",

 "enabled": true,

 "condition": "5000 <= avg_steps < 10000",

 "message": {

 "it": "La tua media giornaliera di passi è tra 5.000 e 10.000. Buon
inizio! Cerca di raggiungere l'obiettivo di 10.000 passi al giorno per
benefici ottimali sulla salute.",

74

 "en": "Your daily average steps are between 5,000 and 10,000. Good
start! Try to reach the goal of 10,000 steps per day for optimal health
benefits."

 },

 "reference": ""

 },

 {

 "name": "Giorni sedentari",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "complex",

 "enabled": true,

 "condition": "lambda activity_data: sum(1 for day in
activity_data.values() if day.get('steps', 0) < 1000) >= 3",

 "message": {

 "it": "Hai avuto almeno 3 giorni con meno di 1.000 passi. Questo
indica un comportamento sedentario. Anche una breve camminata può fare la
differenza per la tua salute.",

 "en": "You had at least 3 days with less than 1,000 steps. This
indicates sedentary behavior. Even a short walk can make a difference to your
health."

 },

 "reference": ""

 },

 {

 "name": "Calorie bruciate basse",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "simple",

75

 "enabled": true,

 "metric": "avg_burned_calories",

 "operator": "<",

 "threshold": 1500,

 "message": {

 "it": "Il tuo consumo calorico medio giornaliero è inferiore a 1.500
kcal, indicando un livello di attività molto basso. Considera di aumentare
l'attività fisica.",

 "en": "Your average daily calorie burn is less than 1,500 kcal,
indicating a very low activity level. Consider increasing physical activity."

 },

 "reference": ""

 },

 {

 "name": "Calorie bruciate medie",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "complex",

 "enabled": true,

 "condition": "1500 <= avg_burned_calories < 2500",

 "message": {

 "it": "Il tuo consumo calorico è moderato (1.500-2.500 kcal/giorno).
Per aumentare il dispendio energetico, prova ad aggiungere attività più
intense.",

 "en": "Your calorie burn is moderate (1,500-2,500 kcal/day). To
increase energy expenditure, try adding more intense activities."

 },

 "reference": ""

 },

 {

 "name": "Biking activity",

76

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_biking_distance",

 "operator": ">",

 "threshold": 0,

 "message": {

 "it": "Ottimo! Stai includendo il ciclismo nella tua routine. Il
ciclismo è un'eccellente attività cardiovascolare a basso impatto sulle
articolazioni.",

 "en": "Great! You're including cycling in your routine. Cycling is an
excellent cardiovascular activity with low impact on joints."

 },

 "reference": ""

 },

 {

 "name": "Biking distance media",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "complex",

 "enabled": true,

 "condition": "0 < avg_biking_distance < 3000",

 "message": {

 "it": "Le tue sessioni di ciclismo sono brevi (< 3 km in media al
giorno). Prova ad aumentare gradualmente la distanza per migliorare la
resistenza cardiovascolare.",

 "en": "Your cycling sessions are short (< 3 km average per day). Try
to gradually increase the distance to improve cardiovascular endurance."

77

 },

 "reference": ""

 },

 {

 "name": "Biking distance media",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "complex",

 "enabled": true,

 "condition": "3000 <= avg_biking_distance < 5000",

 "message": {

 "it": "Buona distanza media di ciclismo (3-5 km al giorno). Mantieni
questa routine o aumenta gradualmente per ulteriori benefici
cardiovascolari.",

 "en": "Good average cycling distance (3-5 km per day). Maintain this
routine or gradually increase for further cardiovascular benefits."

 },

 "reference": ""

 },

 {

 "name": "Biking distance ottima",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_biking_distance",

 "operator": ">=",

78

 "threshold": 5000,

 "message": {

 "it": "Eccellente! Le tue sessioni di ciclismo superano i 5 km in
media al giorno. Continua così per mantenere un'ottima forma
cardiovascolare.",

 "en": "Excellent! Your cycling sessions exceed 5 km average per day.
Keep it up to maintain excellent cardiovascular fitness."

 },

 "reference": ""

 },

 {

 "name": "Walking activity",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_walking_distance",

 "operator": ">",

 "threshold": 0,

 "message": {

 "it": "Bene! Stai includendo sessioni di camminata strutturate. La
camminata è un'attività accessibile e benefica per la salute
cardiovascolare.",

 "en": "Good! You're including structured walking sessions. Walking is
an accessible and beneficial activity for cardiovascular health."

 },

 "reference": ""

 },

 {

 "name": "Walking distance bassa",

 "group": {

79

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "complex",

 "enabled": true,

 "condition": "0 < avg_walking_distance < 2000",

 "message": {

 "it": "Le tue sessioni di camminata sono brevi (< 2 km in media).
Prova ad aumentare gradualmente la durata delle tue passeggiate a 30-40
minuti (circa 3-4 km).",

 "en": "Your walking sessions are short (< 2 km average). Try to
gradually increase the duration of your walks to 30-40 minutes (about 3-4
km)."

 },

 "reference": ""

 },

 {

 "name": "Walking distance media",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "complex",

 "enabled": true,

 "condition": "2000 <= avg_walking_distance < 4000",

 "message": {

 "it": "Buona distanza media di camminata (2-4 km al giorno). Questa è
una buona base per la salute cardiovascolare. Continua così!",

 "en": "Good average walking distance (2-4 km per day). This is a good
foundation for cardiovascular health. Keep it up!"

 },

 "reference": ""

 },

80

 {

 "name": "Walking distance ottima",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_walking_distance",

 "operator": ">=",

 "threshold": 4000,

 "message": {

 "it": "Eccellente! Cammini oltre 4 km in media al giorno. Questo
contribuisce significativamente alla tua salute cardiovascolare e al
benessere generale.",

 "en": "Excellent! You walk over 4 km on average per day. This
contributes significantly to your cardiovascular health and overall
well-being."

 },

 "reference": ""

 },

 {

 "name": "Varietà di attività",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "complex",

 "enabled": true,

 "condition": "avg_biking_distance > 0 and avg_walking_distance > 0",

 "message": {

81

 "it": "Ottimo! Vari la tua routine con diverse attività (ciclismo e
camminata). La varietà aiuta a prevenire la monotonia e coinvolge diversi
gruppi muscolari.",

 "en": "Excellent! You vary your routine with different activities
(cycling and walking). Variety helps prevent monotony and engages different
muscle groups."

 },

 "reference": ""

 },

 {

 "name": "Nessuna attività strutturata",

 "group": {

 "it": "Stile di vita",

 "en": "Lifestyle"

 },

 "type": "complex",

 "enabled": true,

 "condition": "avg_biking_distance == 0 and avg_walking_distance == 0",

 "message": {

 "it": "Non sono state rilevate sessioni di esercizio strutturato
(camminata o ciclismo). Considera di aggiungere almeno 150 minuti di attività
moderata alla settimana.",

 "en": "No structured exercise sessions (walking or cycling) were
detected. Consider adding at least 150 minutes of moderate activity per
week."

 },

 "reference": ""

 }

]

9.5 mood_rules.json

[

 {

 "name": "Basso Umore Positivo Medio",

82

 "group": {

 "it": "Umore",

 "en": "Mood"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_positive_mood",

 "operator": "<",

 "threshold": 2.5,

 "message": {

 "it": "Il tuo umore positivo medio è {metric_value}/4. Cerca attività
che aumentino le sensazioni di determinazione e ispirazione.",

 "en": "Your average positive mood score is {metric_value}/4. Seek
activities that boost feelings of determination and inspiration."

 },

 "reference": ""

 },

 {

 "name": "Alto Umore Negativo Medio",

 "group": {

 "it": "Umore",

 "en": "Mood"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_negative_mood",

 "operator": ">",

 "threshold": 2.0,

 "message": {

 "it": "Il tuo umore negativo medio è {metric_value}/4. Un punteggio
costante sopra 2.0 per 'spaventato', 'nervoso', 'turbato', 'ostile' o

83

'vergognoso' suggerisce un alto livello di stress. Consulta un professionista
se persiste.",

 "en": "Your average negative mood score is {metric_value}/4. A
consistent score above 2.0 for 'scared', 'nervous', 'upset', 'hostile', or
'ashamed' suggests high stress. Consult a professional if this persists."

 },

 "reference": ""

 },

 {

 "name": "Tendenza all'Ostilità (Aggressività)",

 "group": {

 "it": "Umore",

 "en": "Mood"

 },

 "enabled": true,

 "type": "complex",

 "condition": "(sum(1 for d in mood_data.values() if d.get('ans_8', 1) >=
3.0) / len(mood_data)) > 0.3",

 "message": {

 "it": "Hai riportato un alto senso di 'ostilità' ({ans_8_high_days} su
{total_days} giorni, ovvero {ans_8_high_percentage}%). Questo può indicare
stress e fatica. Prova tecniche di rilassamento per 20 minuti al giorno.",

 "en": "You reported a high sense of 'hostility' ({ans_8_high_days} out
of {total_days} days, or {ans_8_high_percentage}%). This may indicate stress
and fatigue. Try relaxation techniques for 20 minutes daily."

 },

 "message_params": {

 "ans_8_high_days": "lambda mood_data: sum(1 for d in mood_data.values()
if d.get('ans_8', 1) >= 3.0)",

 "total_days": "lambda mood_data: len(mood_data)",

 "ans_8_high_percentage": "lambda mood_data: round((sum(1 for d in
mood_data.values() if d.get('ans_8', 1) >= 3.0) / len(mood_data)) * 100, 1)"

 },

 "reference": ""

 },

84

 {

 "name": "Bassa Concentrazione",

 "group": {

 "it": "Umore",

 "en": "Mood"

 },

 "type": "simple",

 "enabled": true,

 "metric": "avg_attento",

 "operator": "<",

 "threshold": 2.5,

 "message": {

 "it": "Il tuo punteggio medio per 'attento' (concentrato) è
{metric_value}/4. Una scarsa attenzione può essere collegata a un sonno di
bassa qualità o a stress cronico.",

 "en": "Your average score for 'attento' (attentive/focused) is
{metric_value}/4. Low attention may be linked to poor sleep quality or
chronic stress."

 },

 "reference": ""

 },

 {

 "name": "Alta Ansia (Nervosismo)",

 "group": {

 "it": "Umore",

 "en": "Mood"

 },

 "type": "complex",

 "enabled": true,

 "condition": "(sum(1 for d in mood_data.values() if d.get('ans_6', 1) >=
3.0) / len(mood_data)) > 0.5",

 "message": {

85

 "it": "Hai riportato alti livelli di 'nervosismo' in oltre la metà dei
giorni ({ans_6_high_percentage}%). Il nervosismo cronico può avere un forte
impatto sulla salute fisica.",

 "en": "You reported high levels of 'nervousness' in over half of the
days ({ans_6_high_percentage}%). Chronic nervousness can strongly impact
physical health."

 },

 "message_params": {

 "ans_6_high_days": "lambda mood_data: sum(1 for d in mood_data.values()
if d.get('ans_6', 1) >= 3.0)",

 "total_days": "lambda mood_data: len(mood_data)",

 "ans_6_high_percentage": "lambda mood_data: round((sum(1 for d in
mood_data.values() if d.get('ans_6', 1) >= 3.0) / len(mood_data)) * 100, 1)"

 },

 "reference": ""

 }

]

86

	Politecnico di Torino
	
	Masters’s Degree
	in Computer Engineering
	 (1)
	 (2)
	 (3)
	Masters’s Degree Thesis
	 (4)
	Development and Implementation of a Hybrid Rule Engine for Nutritional and Lifestyle Recommendations
	 (5)
	 (6)
	 (7)
	Immagine che contiene testo, grafica vettoriale

Descrizione generata automaticamente
	 (8)
	 (9)
	 (10)
	
	 (11)
	
	Supervisors Candidate
	prof. Maurizio Morisio Angelo Bisignano
	 (1)
	1. Introduction
	1.1 The Paradigm Shift in Wellness and the Challenge of Personalisation
	1.2 Project Objective: The utilisation of a Rule Engine in the context of Lifestyle Consulting
	1.3 System Evolution and Integration
	1.4 Bridging the gap with explainable knowledge-driven approaches

	2. Analysis and Design of the Recommendation System
	2.1 State of the Art of Nutritional and Lifestyle Recommender
	2.1.1 Classification of NRS Methodologies and Challenges
	Knowledge-Based System
	Collaborative Filtering (CF)
	Content-Based System
	Hybrid System

	2.1.2 Customization and context dimension
	From General Recommender Systems to Health-Oriented Adaptations
	Personalized Nutrition
	Holistic integration (Lifestyle)
	Contextualization
	Summary: From Personalized to Precision Wellness

	2.1.3 Structure and Deployment

	2.2 System requirements
	2.2.1 Functional Requirements
	RF-01: User Data Acquisition from Firebase
	RF-02: Time Log Analysis
	RF-03: Rule-Based Engine Execution
	RF-04: User Management of the Knowledge Base
	RF-05: Recommendation Generation and Prioritization
	RF-06: Exposure of the API Service for the Frontend

	1.2.2 Non-Functional Requirements
	RNF-01: Performance (Service Latency)
	RNF-02: Data Security and Protection
	RNF-03: Engine Reliability and Robustness
	RNF-04: Maintainability and Upgradeability
	RNF-05: Knowledge Base Usability

	2.3 System architecture
	2.3.1 General Architectural Diagram
	Presentation level
	Service level
	Data level

	2.3.2 Choice of Technologies
	Development Language: Python
	API Framework: FastAPI
	Database and Authentication: Firebase
	Knowledge Storage: JSON and Modular Structure
	Management User Interface (GUI): Tkinter

	3. Nutritional Recommendation Form (Core of the Project)
	3.1 Data Input: The Food Log
	3.1.1 Data Extraction and Initial Integration with FatSecret
	3.1.2 Evolution: Data Acquisition from Firebase
	A. Data Centralization and Authentication
	B. Data Retrieval and Time Window
	C. Architectural Advantages

	3.2 The Knowledge Model: Structure and Taxonomy of Rules
	3.2.1 Rule Types: Defining Simple and Complex Logic
	A. "Simple" rules
	B. "Complex" rules

	3.2.2 JSON Schema and Logical Category Mapping

	3.3 The Weekly Execution and Analysis Algorithm (Rules Engine)
	3.3.1 Algorithm Phases: Prep-Processing, Run-time and Message Generation
	Phase 1: Prep-Processing e Data Aggregation
	Phase 2: Rule Engine Runtime
	Phase 3: Message Generation and Finalization

	3.3.2 Implementation and Conditional Logic in Python
	Dynamic Condition Execution

	3.4 Rules Management GUI Development and Functionality
	3.4.1 High Level Input Interface (Tkinter)
	3.4.2 Atomic Validation and Rescue Mechanisms

	4. Extension of the Recommendation System (Lifestyle and Wellbeing Modules)
	4.1 Implementation of the Sleep Module
	4.1.1 Sleep Data Integration
	A. Unified Data Source (Firebase)
	B. Specific Analysis Metrics

	4.1.2 Logic of Additional Rules for Sleep
	A. New Logical Categories
	B. Examples of "Complex" Sleep Rules

	4.2 Implementation of the Mood Module
	4.2.1 Rationale for Mood Tracking and Data Metrics

	4.3 Implementation of the Physical Activity Module
	4.3.1 Integration and Metrics from Activity Trackers

	5. System Integration and API Services
	5.1 The Recommendation GUI (Analysis and Output GUI)
	5.1.1 Loading the Log and Viewing the Analysis Results
	A. Loading the Log (Initial Testing Phase)
	B. Data Visualization and Aggregations

	5.1.2 Presentation of Nutritional Advice

	5.2 API Development for External Service
	5.2.1 Designing API Endpoints
	5.2.2 Communication and Data Exchange Protocols
	5.2.3 Integration with the Other Thesis Student's Mobile Application

	6. Results, Evaluation and Discussion
	6.1 System Demonstration and Operational Validation
	6.1.1 Use Case 1 – Nutritional Analysis and Complex Rules

	6.2 System Evaluation
	6.2.1 Validation of the Knowledge Base

	6.3 Discussion and Critical Analysis
	6.3.1 Strengths and Achievements

	6.4 Summary

	7. Conclusions and Future Developments
	7.1 General Conclusion
	7.2 Limitations
	7.3 Future Developments
	7.4 Final Remarks

	8. Bibliography
	9. Appendix
	9.1 nutrient_rules.json
	9.2 general_rules.json
	9.3 sleep_rules.json
	9.4 activity_rules.json
	9.5 mood_rules.json

