A AL Politecnico
\‘.ii:ii&lﬂﬁ? e di Torino
‘\‘\\\ 135'9“‘0"

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Computer Engineering

Tesi di Laurea Magistrale

Health Wellbeing:
un’applicazione per il benessere

Relatore Candidato
Prof. MAURIZIO MORISIO CoSIMO EMANUELE DESANTIS

DICEMBRE 2025

Sommario

L’uso di tecnologia indossabile come gli smartwatch ha recentemente reso possibile
al grande pubblico di monitorare autonomamente e in maniera dettagliata il
proprio benessere psicofisico.

Questo progetto mira a evolvere e migliorare I’applicazione "Health Wellbeing",
che si propone come un metodo per tracciare la qualita della vita dell’utente e
per ricevere consigli personalizzati, analizzando i suoi dati suddivisi in quattro
ambiti fondamentali: attivita fisica, sonno, alimentazione e umore.
L’intervento ha incluso una riprogettazione completa dal punto di vista delle
interfacce grafiche e dell’esperienza utente (UI/UX), ma anche dal punto di vista
del codice, adoperando un’architettura MVVM.

In conclusione, il nuovo client risulta notevolmente migliorato, in particolare sotto
'aspetto UI/UX, dove 'intervento e stato piu incisivo. Inoltre, il valore percepito
dell’applicazione e stato significativamente aumentato grazie all’integrazione di
un sistema di consigli (Recommender) sviluppato esternamente, che ha migliorato
di gran lunga la qualita delle valutazioni sullo stile di vita dell’utente.

Si trascina dal passato, invece, alcune delle precedenti limitazioni, prima fra
tutte la dipendenza da servizi esterni per 'acquisizione dei dati biometrici.

Indice

[Elenco delle figure]

Untroduzionel

1 Progettazione della UI/UX]|
Il.l :‘S(!ll&!i![s: [1!‘]“2;2:3!1!2'
(1.2 Onboarding]
M3 Home
(1.4 Schermata specifica di un ambito| L.
[Schermata Metrical
1.6 IDS| . . . e
M7 Tessond o
(1.8 Settings|

2 Scelte Implementative)|

2.1 Scelta

delle Tecnologie|

2.1.1 Flutterl.

[2.2.2 Dependency Injection|.

[2.2.3 Struttura del progetto

[3B_Backend

[3.2 Organizzazione del modello nel database NoSQL|.

[3.3 Problema delle query dipendenti da piu campi|

4 Frontend

M1.1

I11

13
14
17
23
24
26

28
28
28
29
29
29
32
33

35
35
38
40

4.1.3 3 - HealthServicel 43
4.1.4 4 - FitbitServicel. 43
[4.1.5 5 - SynchronizationService|o 44
4.1.6 6 - FoodServicel 44
4.1.7 7 - MoodServicefo 44
4.1.8 8- LessonServicel 44
4.1.9 9 - RecommenderServicel 45
4.1.10 Servizi Restantil L. 45

[4.2 Repository|. 45
[4.2.1 HealthRepository| 46

[1 - Metodi per ottenere i dati sanitari 46

2 - Metodi di sincronizzazionel 48

4.3 ViewModell 49
[4.3.1 Calcolo dei punteggi per i vari ambiti] 50

[Algoritmi per il Calcolo dei Punteggi di Benesserel 50
[Punteggio dell’ Attivita Fisica (Activity Score)| ... 50

[Punteggio Umore (Mood Score)|. 52

[Punteggio Sonno (Sleep Score) 52

O VAT 53
[4.4.1 Notifica giornalieral 55

B Sicurezzal 57
[5.1 Regole di Sicurezza] o7
[5.2 Sicurezza Lato Client (Bearer Token)| 58
6 Conclusione e Piani Futuri 60
6.1 Conclusiond 60
6.1.1 Criticita e Limitazioni Attualil 60

6.2 Piani Futurio 61
[Bibliografial 63

II

Elenco delle figure

In

Logo stilizzato dell’applicazione, che riprende il concetto del

quadrifoglio.fo oo 6
(1.2 Logo con icone per rappresentare i quattro ambiti chiave di salute |
e benessere) 6
(1.3 Palette cromatiche per la Dark Mode e la Light Mode.| 7
(1.4 Light Mode Palettel 7
(.o Dark Mode Palettel o000 7
[2.1 Architettura MVVM semplificata in Flutter [33]. Immagine trat- |
ta dalla documentazione ufficiale di Flutter (https://docs.
flutter.dev). © Google LLC, distribuita con licenza Creative |
Commons Attribution 4.0 International (CC BY 4.0).[. 32
[3.1 Diagramma Entita-Relazione (ER)| 39
[4.1 Esempio di notifica giornaliera.| 56

II1

https://docs.flutter.dev
https://docs.flutter.dev

Introduzione

Il mercato globale del benessere ¢ cresciuto del 12,8% nel 2017/2018, trasforman-
dolo in un’industria da 4,2 trilioni di dollari [22]. Nel 2023, si stima invece che
abbia raggiunto 6,3 trilioni di dollari [21], dimostrando che tuttora ¢ un settore
in forte crescita.

Un trend report del 2019 di globalwebindex afferma che nell’era digitale i con-
sumatori cercano di sfruttare al massimo le informazioni sulla loro salute e
benessere per migliorarli [22].

Per farlo tendono ad acquisire strumenti utili ad auto analizzare la loro situazione
psicofisica e poter cosl gestire in maniera autonoma la loro salute.

Questi strumenti, nella maggior parte dei casi si rivelano essere tecnologia in-
dossabile come lo smart watch. Lo smart watch ¢ attualmente la tecnologia
primaria in questo ambito in quanto si prevede che piu della meta degli utenti
adulti di tecnologia indossabile ne utilizzera uno [22].

A tal proposito, uno studio proveniente dal College of Nursing (Yonsei University)
ha dimostrato che i risultati, in termini di salute, per utenti non malati sono
migliori per chi utilizza applicazioni mobile (e di conseguenza anche smartwatch)
rispetto a chi non li utilizza [24].

Questo progetto, quindi, ha l’obiettivo di sviluppare un’applicazione mobile
(disponibile per iOS e Android) per il benessere, che mira a migliorare lo stato
psicofisico dell’utente attraverso il tracciamento e il monitoraggio di dati. Tra i
dati analizzati vi sono dati biometrici, forniti da uno smartwatch, e dati inseriti
manualmente dall’utente, come cibo consumato, umore, peso ecc.
L’applicazione fornira all’'utente gli strumenti per valutare autonomamente la
propria salute psicofisica, presentando uno storico e delle valutazioni dei dati
personali.

Per la realizzazione del prototipo dell’applicazione, ho optato per una combina-
zione di tecnologie: il framework Flutter, che permette di realizzare interfacce
grafiche fluide multi piattaforma, e Firebase, una piattaforma di Google che
offre “out of the box” tutti i servizi essenziali, dall’autenticazione al database,
accelerando cosi il processo di sviluppo |14, §].

1

Introduzione

Obiettivi

L’obiettivo specifico di questo progetto consiste nel contribuire all’evoluzione
e al miglioramento della precedente versione dell’applicazione, concentrandosi
principalmente su tre aspetti distinti:

« Front-end: Riprogettazione dell'interfaccia utente (UI) per ottenere una
user experience (UX) superiore, rendendo ’applicazione pit moderna,
accattivante, accessibile e intuitiva.

o Back-end: Riprogettazione dello schema del database per ottimizzare la
sincronizzazione dei dati dell’'utente. Questa modifica e stata necessaria per
supportare la funzionalita dei consigli, ossia I'integrazione di un applicativo
esterno, il cui sviluppo non e oggetto di questa tesi, in grado di fornire
consigli personalizzati sulla base dei dati dell’utente.

o Architettura generale: Riscrittura del codice per garantire scalabilita e
longevita, rendendolo pit modulare e manutenibile.

Logica Applicazione

La logica dell’applicazione consiste nell’ottenere dati riguardanti 'utente e utiliz-
zarli come input per fare delle valutazioni sullo stato di salute. La lista completa
dei dati significativi dell'utente é:

« Sonno

— Durata del sonno (specificamente numero di minuti per fase di sonno)
— Orario di sonno (l'ora esatta in cui 'utente va a dormire)
o Attivita Fisica
— Numero di passi
— Calorie bruciate e distanza percorsa nelle varie attivita fisiche eseguite
— Frequenza respiratoria
— Forza della presa
— Forza fisica (push-up, squat, abs)
— Frequenza cardiaca
— Saturazione dell’ossigeno (SpO2)

— Frequenza cardiaca a riposo

Introduzione

— Variabilita della Frequenza Cardiaca (HRV)
o Alimentazione e Idratazione

— Log di cibi e bevande (es. acqua, caffe, alcool)
» Benessere Psicofisico

— Risultati dei quiz sull’'umore
o Dati Generali

— Peso

— Altezza

— Eta

— Lunghezza del girovita

— Sesso

— Equilibrio del corpo (secondi in equilibrio sulla gamba destra, gamba
sinistra o nella posizione tandem)

I dati possono essere classificati in:

e dato di input: dipendente in modo diretto dalle scelte di vita dell'utente
(es. numero di passi, cibo ecc..)

« dato di output: non manipolabile direttamente dall’utente (es. frequenza
cardiaca, calorie bruciate, frequenza respiratoria ecc..)

I dati possono essere caratterizzati ulteriormente in:

« manuali: forniti dall’'utente inserendo manualmente i dati da schermate
predisposte dall’applicazione

e misurati: misurazioni biometriche fornite da fonti esterne come gli smart-
watch

Le valutazioni possono essere di due tipi:

« interne all’applicazione: generate utilizzando formule matematiche ben
precise direttamente all’interno del client.

« esterne all’applicazione: vengono generati consigli personalizzati da un
server esterno sfruttando i dati sincronizzati sul database.

Capitolo 1

Progettazione della UI/UX

Una delle priorita di questa tesi consiste nella riprogettazione della UI/UX della
precedente versione per cercare di renderla paragonabile a quella delle soluzioni
presenti sul mercato, tra cui Fitbit, Mi Fitness, Garmin Connect ecc. Per tale
scopo mi sono affidato alle dieci euristiche di usabilita di Jakob Nielsen, che,
nonostante risalgano al 1994, sono tutt’oggi tra quelle piu utilizzate nel campo
del design [28]. Seguendo contemporaneamente tutte le euristiche di Nielsen ho
avuto modo di verificare l'usabilita dell’interfaccia che stavo progettando.

Gli aspetti migliorabili che ho riscontrato nella vecchia versione sono diversi:

Usabilita

e Gerarchia: 1'utilizzo di un componente mobile nativo come la ‘bottom
navigation bar’ e corretto, tuttavia le due sezioni “Home” e “Health Measu-
res” contengono informazioni appartenenti alla stessa sfera, possono quindi
essere raggruppati in un’unica sezione. Stessa cosa accade per “Profile” e
“Personal Informations”: in entrambi i casi si tratta di informazioni riguar-
danti 'utente. Questo viola 'euristica di usabilita di Nielsen “Consistency
and Standards”.

e Spostamento della selezione del periodo di visualizzazione dei dati
dalla schermata principale alle singole schermate delle metriche: per evitare
di sovraccaricare le schermate principali delle metriche ho deciso, prendendo
spunto dalle altre applicazioni sul mercato, di spostare la selezione della
data/settimana/mese direttamente dentro la schermata della singola metrica,
lasciando cosi, nelle schermate delle metriche, solo i dati relativi alla giornata
odierna. Inoltre nella schermata “Home” non ci si aspetterebbe di cambiare

4

Progettazione della UL/UX

il periodo di visualizzazione dei dati dell’applicazione, violando anche qui
I’euristica di Nielsen “Consistency and Standards”.

Accessibilita

» Modificare la palette di colori per renderla piu accessibile creando una
light mode e una dark mode. La versione precedente si basa su una scala
di blu per le superfici, cosa abbastanza atipica per un’applicazione mobile,
particolarmente se non viene proposta un’alternativa. Negare all’utente la
scelta tra dark e light mode va contro i principi moderni di accessibilita.

o Migliorare il contrasto tra alcuni elementi e lo sfondo: ad esempio i
pulsanti grigi (come le frecce per selezionare la data) oltre a non avere
contrasto sufficiente con lo sfondo, non sembrano essere cliccabili, ma
disabilitati.

A partire da queste valutazioni in mente mi sono approcciato al redesign

dell’applicazione, partendo dall’elemento piu distintivo, il logo.
Il logo e l'’elemento piu distintivo dell’identita del brand, e cio che ti rende
riconoscibile agli occhi del consumatore, fornendoti unicita nel mercato [4]. Ho
scelto di creare una versione stilizzata del quadrifoglio, un elemento che
si presta bene nell’ambito del benessere. Inoltre presenta quattro foglie, tante
quanto sono i quattro ambiti chiave di salute e benessere integrati nel progetto:
attivita fisica, cibo, sonno e umore. La stilizzazione del logo ¢ stata necessaria per
renderlo coerente con lo stile flat adottato in seguito per il design dell’interfaccia
grafica.

Per rappresentare i quattro ambiti del benessere (attivita fisica, cibo, sonno e
umore), sono state inserite icone specifiche che riflettono lo stile flat del logo,
garantendo coerenza visiva in tutta 'applicazione. Queste icone sono visibili
nella Figura [1.2]

Il flat design si basa su un approccio minimalista costituito da elementi bidi-
mensionali, colori luminosi e accesi in stile pastello e I’abolizione (quasi totale)
di tutti gli effetti, bagliori, ombre e sfumature che sono tipici di altri stili come il
Neumorphism [18]. Per quanto riguarda la palette, ho utilizzato come colore
primario il verde del quadrifoglio e come colore secondario un blu violaceo.
La loro relazione cromatica si colloca tra il complementare e ’analogo, scelta che
mi ha permesso di evitare impatti visivi eccessivi. Per le superfici, nella Light
Mode mi sono affidato a un semplice grigio molto chiaro, con le relative card
bianche. Nella Dark Mode, invece, ho optato per un nero profondo (per favorire

5)

Progettazione della UI/UX

Figura 1.1. Logo stilizzato dell’applicazione, che riprende il concetto
del quadrifoglio.

Figura 1.2. Logo con icone per rappresentare i quattro ambiti chiave
di salute e benessere.

gli schermi AMOLED) con card grigie. Le palette cromatiche per entrambe le
modalita sono illustrate nella Figura [I.3]

1.1 Software Utilizzato

Per la progettazione del prototipo ho utilizzato il software Figma. Figma
& un ottimo supporto per creare prototipi di interfacce Ul perché mette a
disposizione diversi strumenti utili, tra cui i Componenti, che offrono la possibilita
di riutilizzare gli stessi elementi di design mantenendo un’armonia visiva costante

6

Progettazione della UL/UX

Figura 1.3. Palette cromatiche per la Dark Mode e la Light Mode.

Accen DC Accent #698ADC
Gray Accent #8C8C8C
Red Alert #DE3535
Info Alert #6CB8FD
Box Color #FFFFFF Box Color #202020
Figura 1.4. Light Mode Palette Figura 1.5. Dark Mode Palette

e velocizzando I'apporto di modifiche globali [7]. Inoltre, permette di definire il
Flow dell’applicazione rendendo al contempo i pulsanti cliccabili e permettendo
di ottenere fin da questa fase preliminare un prototipo semi-funzionante per
testare 1'usabilita dell’applicazione.

In definitiva, prototipare una UI/UX puo richiedere diversi cicli di modifiche;
utilizzare uno strumento come Figma permette di risparmiare tempo e risorse
che, altrimenti, sarebbero andati persi prototipando e validando direttamente in
fase di scrittura del codice.

Inoltre, Figma aiuta lo sviluppatore a tradurre il design in codice attraverso la
possibilita di ispezionare gli elementi, estraendo tutte le informazioni necessarie.
Lo stesso utilizzo dei Componenti in Figma suggerisce il bisogno di creare un
componente, che nello specifico caso di Flutter coincide con un widget, anche
nel codice.

1.2 Onboarding

Le prime schermate che ho progettato sono state quelle relative alla fase di
onboarding dell'utente. L’onboarding coincide con il primo punto di contatto

7

Progettazione della UL/UX

tra 'utente e il prodotto e, essendo noto che la maggior parte delle applicazioni
vengono eliminate dopo il loro primo impiego (precisamente oltre 1'80%), diventa
una fase delicata da gestire. Essa ha il compito di introdurre 'utente all’applica-
zione e spiegare nel modo piu chiaro possibile quello che fa. E quindi importante
far percepire il valore dell’applicazione proprio in questa fase [29]. Il processo di
onboarding e stato suddiviso in piu schermate per rendere il flusso piu semplice
da seguire. Il flusso inizia con una pagina di benvenuto che consente all’utente
di navigare verso le pagine di login o registrazione. Dopo la registrazione, 1'u-
tente viene reindirizzato a una pagina animata che spiega brevemente in cosa
consistono i quattro ambiti chiave della salute e del benessere. Segue una serie
di schermate per I'inserimento di informazioni riguardanti I'utente:

Nickname

Data di nascita

Altezza

Obiettivi giornalieri (passi, calorie bruciate, ore di sonno, orario di sonno)

Dopo aver inserito queste informazioni, viene offerta la possibilita di fare il login
a servizi esterni di benessere come Fitbit. Come capiremo meglio in futuro,
questo passaggio ci permettera di ottenere alcuni dati biometrici che altrimenti
sarebbero mancanti, informando 'utente fin da subito della sua importanza.
Una volta completato 'onboarding, I'utente ha definito le informazioni cruciali
e puo accedere all’applicazione vera e propria. Attraverso una pagina finale
che indica il completamento dell’onboarding, viene reindirizzato alla schermata
principale, denominata Home. La gerarchia delle schermate & gestita da una
barra di navigazione inferiore che include le seguenti voci:

¢ Home

e Tips

o Lessons

Progettazione della UL/UX

Crea Account Accedi

Email 2 Email

(5 Accedicon Google (5 Accedicon Google
Ho gia un account

Cominciamo _ _

Il tuo account

=

Emanuele Desantis

@ Sei sicuro di voler
continuare?

Disconnetti

Annulla

Progettazione della UL/UX

Attivita fisica Sonno
Registra i tuoi movimenti e il dispendio Monitora la durata e la qualita del tuo riposo
energetico durante la giornata per capire il ogni notte, inclusi i cicli del sonno. Scopri
tuo livello di attivita. Questa app ti aiuta a come le tue abitudini influenzano il
visualizzare i tuoi sforzi e ti motiva a restare recupero e migliora le tue notti per svegliarti
dinamico. riposato.

Alimentazione

Annota cio che mangi e bevi per avere una
visione chiara della tua nutrizione e del tuo
rapporto con il cibo. L'app ti supporta nella
comprensione delle tue scelte alimentari e
nel prendere decisioni piu sane.

Qual ¢ il tuo sesso?

S emanuele

umore |

Esprimi quotidianamente emozioni e
sentimenti per riconoscere i tuoi schemi
emotivi. Collega il tuo umore ad altre attivita
e abitudini per una maggiore
consapevolezza del tuo benessere mentale

Femmina

Progettazione della UL/UX

Data di nascita

£ 10/11/2000

La tua altezza Obiettivi giornalieri

Calorie Bruciate
Durata del sonno

Orario di sonno

Continua

Calorie Bruciate Durata del sonno

800

calorie

0

minuti

11

Progettazione della UL/UX

Orario di sonno

Obiettivi giornalieri Servizi esterni

Per ottenere piu dati dal tuo smartwatch e
migliorare I'esperienza generale, & necessario
effettuare il login al servizio di monitoraggio

dell'attivita che utilizzi

Screenshot 1.2.1: Visualizzazione completa della sequenza di Onboarding.

12

Progettazione della UL/UX

1.3 Home

La schermata Home fornisce 1’accesso alle funzionalita pitt importanti e include:

o AppBar: Sulla parte sinistra viene mostrato il nome dell’applicazione e la
data odierna, mentre sulla destra un pulsante per accedere alle impostazioni.

o Assessment Widget: Un elemento grafico con le tipiche quattro foglie del
logo cliccabili, ognuna delle quali mostra un’icona che rappresenta uno dei
quattro ambiti del benessere. Cliccando su una specifica foglia e possibile
accedere alla schermata delle metriche relative a quell’ambito.

Inoltre su ogni foglia vi & una "pillola" che mostra un punteggio in centesimi.

Questo punteggio, come vedremo, é calcolato tramite formule matematiche.

Health being Health Wellbeing &

12 novembre 2025

i S m
Home Consigli Lezioni
Schermata Home in modalita Schermata Home in modalita
scura (Dark Mode). chiara (Light Mode).

Screenshot 1.3.1: Schermate Home in modalita scura e chiara.

13

Progettazione della UL/UX

1.4 Schermata specifica di un ambito

Schermata accessibile cliccando su una delle foglie della “Home”. Composta da:

e Appbar: composta dal nome dello specifico ambito e da un pulsante per
tornare alla schermata precedente.

e Griglie di card: Due griglie, distinte, una per gli input e una per gli
output relativi all’Tambito, contenenti una card per ciascuna misurazione o
log appartenenti a quella categoria. Le card variano in base al tipo di dato:

— Misurazione biometrica multivalore: La card mostra un grafico
giornaliero suddiviso in quattro fasce orarie, con una barra verticale che
rappresenta il valore del dato per ogni fascia.

— Misurazione manuale: Un testo che indica se 'utente ha inserito o
meno il log per la giornata odierna.

— Misurazione biometrica singola: La card mostra il valore odierno
con la relativa unita di misura.

Per la progettazione di questa schermata mi sono ispirato alle applicazioni
“Fithit~ e "Mi Fitness’, che presentano entrambe un cruscotto nella parte alta
della pagina principale e una lista di cards, per le misurazioni biometriche,
subito sotto. A differenza delle due applicazioni prese come esempio, per evitare
uno scroll verticale eccessivo e per strutturare in modo gerarchico i vari dati,
ho optato per questa soluzione a due livelli (il passaggio dalla home a questa
schermata) che sfrutta il logo per guidare graficamente I'utente.

14

Progettazione della UL/UX

¢« Metriche di attivita fisica < cMetrichedi attivita<hsica

cardiaca

¥ Metriche di input I I I I l l l I

B Passi

<« Metriche del sonno
¥ Metriche di input

Durata del Orario di sonno
sonno

00:48
6 ore 52 min 08:51

Variabilita della Frequenza
l frequenza respiratoria
o o 5
cardiaca

T Metriche di output T Metriche di output

) Frequenza Saturazione
Punteggio @ cardiaca a dell'ossigeno
riposo

Punteggio @

63.00 96.40

Calorie Bruciate Frequenza
cardiaca

| l I I l l l l gp Eauilibrio del o o

corpo muscolare

Variabilita della Frequenza
frequenza respiratoria
cardiaca

28.38 18.60 @ Forza della

presa
®
A

Frequenza Saturaziors N
cardiaca a dell'ossigelic

Metriche attivita fisica. Continuazione metriche Metriche del sonno.
attivita fisica.

15

Progettazione della UL/UX

¢« Metriche alimentari <« Metriche dell'umore
4 Metriche diinput T Metriche di output

Tq Alimentazione

®

Hai inserito i tuoi
dati oggi

Punteggio @

@ Umore
®

T Metriche di output Hai inserito i tuoi
dati oggi

@ Peso o Circonferenza

della vita

Hai inserito i tuoi
dati oggi

Metriche alimentari. Metriche dell’'umore.

Screenshot 1.4.1: Metriche dei quattro ambiti

16

Progettazione della UL/UX

1.5 Schermata Metrica

Cliccando su una card in particolare, si accede alla schermata specifica della
metrica. Ogni pagina di questo tipo ha un pulsante nella barra superiore per
tornare alla schermata precedente soddisfando cosi la terza euristica di Nielsen
[28] (User control and freedom). Sotto la barra superiore si trova un cruscotto
che consente di selezionare la granularita del periodo da visualizzare: giorno,
settimana e mese. Per tutti e tre i periodi & possibile scorrere avanti e indietro nel
tempo usando due frecce. Nel caso della granularita "giorno', € inoltre possibile
cliccare sull’etichetta tra le due frecce per selezionare una data direttamente da
un calendario a comparsa. Infine, abbiamo la dashboard che puo presentare i
dati in due diverse modalita:

« Grafico a barre o lineare (talvolta a scorrimento orizzontale): Utilizzato
per misure multivalore.

o Misurazione singola: Visualizzata solo per alcune misure a valore singolo
con granularita "giorno".

Il grafico a barre o lineare visualizza un valore per giorno quando si seleziona
"settimana' e "mese', e un valore ogni tre ore per la granularita "giorno'. Inoltre,
se i valori della metrica possono essere aggregati, appena sopra la dashboard
viene indicato il totale o la media dei valori per il periodo selezionato.

Nel caso di metriche manuali, ¢ possibile inserire i valori tramite degli input
field e salvare cliccando sul tasto "Salva' posto in alto a destra.

17

Progettazione della UL/UX

% Modifica Cibo

30 ottobre 2025

< Umore ©)

Q_ Cerca categoria alimentare < 11 novembre 2025

. , ”
Cibi Bevande Come ti senti oggi”

__ AN
® Cereali Raffinati (&) @ l

& Frutta secca e semi @ 2/10 Determinato

o |
f Legumi ()

3/10 Attento
o |
@ Latticini &)

) 4/10 lIspirato
¥ Latte (Origine Animale) ‘ . |

@ Latte (Vegano) () 5/10 Allerta

o l

6/10 Spaventato

7/10 Nervoso

® |

8/10 Turbato

Registrazione del cibo e quantita. Valutazione dell’'umore su scala 1-10.

18

Progettazione della UL/UX

Peso Q)

Equilibrio del corpo

01 novembre 2025

Giorno Settimana Mese

11 novembre 2025

Gamba sinistra

/

Inserimento del peso corporeo (kg) Schermata per I'inserimento dei dati
tramite tastierino numerico. relativi all’equilibrio corporeo.

19

Progettazione della UL/UX

Forza muscolare

01 novembre 2025

Push up

numero di push ups

Inserimento del numero di ripetizioni per
uno degli esercizi di forza (Push up).

Screenshot 1.5.1: Esempi di schermate per 'input dei dati di metriche
manuali

20

Progettazione della UL/UX

Passi

& Variabilita della frequenza car...

Giorno Settimana Mese Giorno Settimana

< 22 set - 28 set 2025 maggio 2025

Media: 35.07

Totale: 55,006

Lun Ma Mer Gio Ven 1 4) 1 1 1 22 2 2
Variabilita della Frequenza Cardiaca Visualizzazione dei passi totali tracciati
(HRV) media settimanale. mensilmente.

21

Progettazione della UL/UX

Durata del sonno Orario di sonno

Giorno Settimana Giorno Settimana
31 ottobre 2025 29 set - 05 ott 2025

Totale: 8 ore 32 min Media:01:02 - 10:17

Sveglio (16%)

- 1 ore 23 min

Leggero (60%)
REM (24%) ‘

- 2 ore 02 min

Profondo (16%)

- 1 ore 23 min

Goal @ Effettivo

Vista giornaliera della durata del sonno e Grafico settimanale che confronta
la suddivisione nelle varie fasi. obiettivo e orario effettivo del sonno.

22

Progettazione della UL/UX

& Variabilita della frequenza car...

Giorno Settimana Mese

01 novembre 2025

29.52 -

Vista giornaliera della Variabilita della
Frequenza Cardiaca (HRV) in ms.

Screenshot 1.5.2: Esempi di visualizzione dei dati di singole metriche

1.6 Tips

Questa schermata mostra semplicemente i consigli personalizzati forniti dal server
del Recommender. Vengono suddivisi in due sezioni, Sonno e Cibo, che sono
commutabili grazie a una scheda di navigazione (tab) posta in alto. Ciascun
consiglio € presentato in un blocco visivamente distinto e strutturato in due
componenti principali: la prima evidenzia ’azione (o abitudine) dell’utente

23

Progettazione della UL/UX

considerata errata,

evitarla in futuro.

Consigli

Attivita

Stile di vita

mentre la seconda fornisce la raccomandazione specifica per

Consigli

Sonno

Stile di vita

Hai consumato caffeina alle 17:00
@ EVita caffeina nelle 6-10 ore prima di
coricarti per non disturbare il sonno.
Hai consumato alcol in serata
Ridurne I'assunzione pus migliorare la

© Pproduzione di melatonina e la qualita del
sonno.

Consigli

Alimentazio.

Consumo di Frutta e Verdura

consumato solo 1.00 porzioni
ra al giorno

L'obiettivo & almeno 5 porzioni. Aumenta
@ |la varieta e la quantita per un maggior
apporto di vitamine e fibre.

Consumo di Legumi

Consigli

Umore

Il tuo umore positivo medio & 1.00/4

° Cerca attivita che aumentino le sensazioni
di determinazione e ispirazione.
Il tuo umore negativo medio & 2.20/4

Un punteggio costante sopra 2.0 per
‘spaventato’, ‘nervoso', ‘turbato’, ‘ostile’ o
© 'vergognoso' suggerisce un alto livello di

stress. Consulta un professionista se
persiste.

@ Considera di sggiungere almeno 150

minuti di attivita moderata alla settimana. Hai consumato legumi solo 0.00 volta/e

questa settimana

L'obiettivo & 2-3 volte a settimana per un
buon apporto di proteine vegetali e fibre.

Hai riportato un alto senso di ‘ostilita’ (1.00
su1giorni, ovvero 100.00%)

Questo pus indicare stress e fatica. Prova
@ tecniche di rilassamento per 20 minuti al
Consumo di Pesce giorno.

Hai mangiato pesce solo 0.00 volta/e
questa settimana

Si consiglia almeno 2 volte a settimana,
© includendo pesce azzurro ricco di
omega-3.

@

Consigli Consigli sull’'umore.

sull’alimentazione.

Consigli sull’attivita Consigli sul sonno.

fisica.

Screenshot 1.6.1: Schermate relative ai consigli nei quattro ambiti

1.7 Lessons

La schermata Lessons ¢ stata ereditata dalla vecchia versione, pur restando
soggetta ad un completo redesign. Il suo compito ¢ mostrare, categorizzate per
argomento, una serie di pillole (piccoli contenuti informativi) e permettere di
mettersi alla prova con dei quiz. Da questa schermata e possibile visualizzare la
lista di tutti gli argomenti disponibili nella piattaforma attraverso delle cards
che indicano il nome della lezione, il numero di pillole per quella lezione e un
tasto start per iniziare. Cliccando sul tasto “Start” viene visualizzata una nuova
schermata, da cui e possibile tornare indietro con un tasto presente nella topbar,
che mostra il contenuto della pillola nella parte centrale e due tasti di navigazione
"Next” e “Back” posti in fondo alla pagina. Una timeline numerata indica invece
la pillola corrente. Arrivati all’ultima pillola in sostituzione al tasto “Back”
compare il tasto “Finish” che, una volta cliccato, fa apparire un popup che
comunica il completamento della lezione e da cui ¢ anche possibile decidere se
tentare o meno il quiz. Inoltre nell’appbar, nel caso in cui 'utente abbia in

24

Progettazione della UL/UX

passato completato il quiz relativo alla lezione, vi € un tasto "Retry Quiz” per
ritentarlo velocemente, evitando di ripercorrere tutte le pillole.

Lezioni

Nelalale}

6 lezioni

Inizia D>

Nutrizione

5 lezioni

Inizia D>

Schermata principale.

Quiz: Sonno

®

Come dovrebbe essere I'ambiente
della camera da letto per un sonno
ottimale ?

Fredda e poco accogliente
Dotato di dispositivi elettronici
llluminato

Confortevole e rilassante

Schermata del quiz.

<«

o 00

Il letto deve essere utilizzato solo per
riposo e sonno, quindi non per
studiare, mangiare o lavorare in modo
intelligente, per evitare di associare
I'attivazione del lavoro con un luogo

oo 0

Mantieni un ritmo regolare il piu
possibile, quindi cerca di andare a letto
e svegliarti allo stesso tempo.
Mantenere questa buona abitudine
aiuta a stabilizzare il ritmo circadiano di
sonno/veglia e migliora la qualita del dedicato al riposo
sonno.

Avanti Indietro Completa

Pagina della lezione
sul sonno.

Pagina dell’ultima
pillola informativa.

Quiz: Sonno

®

Come dovrebbe essere |'ambiente
della camera da letto per un sonno
ottimale ?

Fredda e poco accogliente
Dotato di dispositivi elettronici
llluminato

Confortevole e rilassante

Esempio di risposta
sbagliata.

25

Lezione completata

Hai finit

Non ora Fai il quiz

Completamento della
lezione.

Quiz completato

Il tuo punteggio

50%

Il tuo punteggio migliore: 100%

Riprova

Completato

Completamento del quiz.

Progettazione della UL/UX

Screenshot 1.7.1: Schermate relative alla lezione sul sonno

1.8 Settings

La schermata “Settings’, accessibile da un “icon button” presente nell’app bar
della “home”, contiene tutte le informazioni riguardanti I'utente e gli strumenti
per gestirle. Questa schermata presenta diverse voci cliccabili divise per categoria:

¢ Personal Information:
— Username
— Height
— Gender
— Birthday

Daily Goals:

— Steps
— Calories
— Sleep Duration

— Sleep Time

External services:

— fithit: attualmente 'unica voce presente, se cliccato, permette di fare il
login in fitbit.

Other:

— Language: permette di cambiare la lingua dell’applicazione

Account:

— Logout: permette di fare il logout

— Delete Account: permette di eliminare I'account

Tutte le voci della sezione “Personal Information” e “Daily Goals” se cliccate
permettono di modificare il valore da una schermata costruita ad-hoc per quel
tipo di informazione. Ho evitato di inserire una schermata transitoria “Profile”,
tipicamente presente nella maggior parte delle applicazioni, perché avrebbe
mostrato informazioni ridondanti accessibili direttamente da “Settings”.

26

Progettazione della UL/UX

« Impostazioni <« Impostazioni

Informazioni personz .
. Passi

Nome utente emanuele
Calorie

Altezza 180 cm
Durata del sonno

Maschio

Orario di sonno

Data di nascita 10/11/2000
Servizi esterni

fitbit

Passi
Calorie
Durata del sonno I, Lingua ltaliano >

Orario di sonno

(& Disconnetti

ervizi esterni
- fitbit

Health Wellbeing v0.8.5 (build 1)

Screenshot 1.8.1: Schermata delle impostazioni

27

Capitolo 2

Scelte Implementative

2.1 Scelta delle Tecnologie

La necessita di questo progetto e sicuramente quella di creare un’applicazione
nativa per offrire buone performance e, soprattutto, facilitare la comunicazione tra
quest’ultima e alcuni servizi eseguiti localmente sul dispositivo (come vedremo
sard di vitale importanza la comunicazione con Health Connect di Google).
Quindi ho da subito scartato l'idea di creare una Web Application che, al
contrario, non permetterebbe di accedere facilmente alle risorse software del
dispositivo. Allo stesso tempo vi ¢ la necessita di ottenere un prodotto che sia
supportato sia dal sistema iOS che Android.

2.1.1 Flutter

Flutter: & un framework open-source supportato da Google che, con una sin-
gola codebase, permette di costruire applicazioni multi-piattaforma compilate
nativamente [14]. Cosi come la vecchia versione, ho sviluppato I’applicazione
utilizzando questo framework, che si presta bene per lo sviluppo contemporaneo
della versione Android e iOS, permette un’elevata personalizzazione dei widget
grafici e beneficia di un continuo supporto della community. La decisione ¢ stata
inoltre influenzata dalle elevate performance rispetto a quelle offerte da altre
soluzioni, dovute alla presenza di un motore di rendering grafico 2D, chiamato
Skia, che comunica direttamente con la GPU del dispositivo per disegnare i pixel
sullo schermo. Per questo motivo, ho evitato 1'uso di soluzioni simili a React
Native in cui vi € un ‘ponte’ che permette al codice non nativo di comunicare
con le API e i componenti nativi della piattaforma utilizzata [27].

28

Scelte Implementative

2.1.2 Firebase

Firebase: & un insieme di servizi per lo sviluppo del back-end tra cui Cloud
Firestore, un database noSQL reattivo, Authentication, un servizio che gestisce
in modo sicuro le autenticazioni degli utenti, e Cloud Storage, un servizio per
I'archiviazione di file [8]. Anche in questo caso ho deciso di ereditare una
tecnologia utilizzata dalla versione precedente: questi servizi velocizzano il
processo di creazione e gestione del backend, permettendo, durante la creazione
del prototipo, di concentrarsi sugli aspetti fondamentali del progetto (come la
logica dell’applicazione e la user experience) e posticipare compiti ripetitivi.

2.2 Scelte progettuali del Frontend

2.2.1 Architettura

Un principio di design molto importante in ambito di sviluppo di applicazioni
mobile ¢ il SoC (Separation-of-concerns). Questo principio afferma che, per
rendere il prodotto testabile, manutenibile e scalabile, bisogna dividerlo in pia
unitd, ognuna dedicata a svolgere un ruolo specifico [6]. Questo si traduce
nell'implementare le funzionalita seguendo un preciso pattern architetturale che
rispetti il principio appena descritto.

Il primo passo e stato quindi scegliere il pattern software architetturale per la
creazione del frontend. Considerando 1'utilizzo di Flutter ho ridotto le opzioni
disponibili a due:

o utilizzare il pattern consigliato da Google (principale supporter del fra-
mework) per questo framework, ossia. MVVM (Model-View-ViewModel)
[33].

o utilizzare BLoC (Business Logic Component), molto famoso nella community
di Flutter data la sua capacita di gestire applicazioni complesse:

I1 BLoC & un’architettura in cui lo stato viene gestito tramite stream (sequenza
asincrona di dati). La modalita di funzionamento pué essere descritta in 3 fasi
distinte:

1. L’interfaccia invia eventi, come il click su un pulsante da parte dell'utente,
al BLoC tramite metodi specifici.

2. Il BLoC basandosi sulla logica di business elabora gli eventi per ottenere un
nuovo stato.

3. Infine, il nuovo stato viene inviato alla UI che si aggiorna automaticamente.

29

Scelte Implementative

Lo stato, come gia detto prima, viene gestito sotto forma di stream a cui la Ul
si sottoscrive. In questo modo l'interfaccia riconosce subito i cambiamenti e puo
aggiornarsi di conseguenza [25].

Nonostante BLoC sia molto valido e supportato, ho deciso di adoperare
il pattern consigliato da Google. L’approvazione di Google garantisce che il
design pattern permetta la costruzione di applicazioni robuste, migliorando la
manutenzione e velocizzando il flusso di sviluppo [33]. Questo avviene grazie
alla separazione della logica dell’applicazione in tre strati:

e Model: rappresenta i dati e la logica di business dell’applicazione. Ha il
compito di ottenere e processare dati provenienti da un repository o API.

e View: Coincide con la Ul dell’applicazione. Ha il compito di mostrare
I'interfaccia e ascoltare gli aggiornamenti degli stati messi a disposizione
dal ViewModel. Quando I'utente compie un’azione, I’evento viene inviato al
ViewModel chiamando un metodo definito dallo stesso.

e ViewModel: ¢ un ponte tra "View e "Model". Offre una serie di metodi
per consentire alla View di operare sul Model e allo stesso tempo fornisce
proprieta osservabili, a cui la View puo essere sottoscritta, che riflettono
i dati del Model. Ha anche il compito di trasformare i data model in un
formato che faciliti la loro visualizzazione nella Ul.

Questa divisione dei ruoli rende I’applicazione maggiormente manutenibile,
testabile e scalabile [33].

Per permettere a “View ” di ascoltare gli aggiornamenti degli stati del “ViewModel”
si utilizza il “data binding”, ossia un tecnica generale per sincronizzare i dati
tra un producer e un consumer in maniera automatica e reattiva [26]. Nel mio
caso per gestire gli stati ho utilizzato il pacchetto “provider”. Questo pacchetto
fornisce un modo per utilizzare in maniera pit semplice e controllata la classe
“InheritedWidget *, una classe nativa di Flutter che permette di propagare le
informazioni nell’albero dei widget [5].

I componenti messi a disposizione dal pacchetto che ho utilizzato maggiormente
sono:

o la classe Provider<T>: permette di rendere disponibile ai figli discendenti
un valore T contenuto in esso. Per accedere al valore T, si fa uso di un
suo particolare metodo: Provider.of<T> (BuildContext context,
{bool listen = true}). Per quanto riguarda l’istanziazione degli
oggetti, invece, ho fatto uso, per comodita e per migliorare la leggibilita del
codice, di un MultiProvider che incapsula pit Provider<T> al suo interno
[5]-

30

Scelte Implementative

e laclasse ChangeNotifierProvider<T extends ChangeNotifier?>:
e concettualmente simile a Provider, ma in questo caso T & un ChangeNo-
tifier. La classe ChangeNotifier fa parte del core di Flutter. Esso notifica
ai suoi "listeners" quando si verificano cambiamenti relativi agli stati al
suo interno. Ogni qualvolta nella classe ChangeNotifier viene chiamato il
metodo ‘notifyListeners()’ viene inviata una notifica agli ascoltatori. In
definitiva, questo € un modo facile e pronto per implementare il pattern
Observer [5].

e la classe Consumer<T>: ottiene la classe Provider<T> dai suoi antenati
e la passa al builder. All’interno del builder non fa altro che richiamare
il metodo Provider.of<T>. Il vantaggio dell’'uso di questa classe sta nel
fatto che i rebuild non influenzano i widget antenati, ma sono circoscritti al
widget costruito dal builder, in questo modo ¢ possibile evitare ricostruzioni
inutili. Nel mio caso T si e sempre trattato di un oggetto ChangeNotifier
[5]-

Sfruttando gli strumenti offerti dal pacchetto, per implementare il pattern
MVVM ho potuto:

o Creare i "ViewModel” attraverso classi che estendono ChangeNotifier: in
questo modo possono notificare i ‘’subscribers”, ossia i widgets.

o Istanziare i “ViewModel” in dei “’ChangeNotifierProvider” posti nel punto
dell” albero dei widget in cui diventano necessari per i widget sottostanti.

o All'interno della “View”, ottenere l'istanza del ViewModel di interesse e
sottoscriversi ai cambiamenti dei suoi stati creando un “’Consumer”.

La ‘View’ e il ‘ViewModel’ compongono il “UI Layer”, al contrario il ‘Model’
fa parte del “Data layer”, ossia lo strato che si occupa di gestire la logica e i
dati di business [33]. Questo layer ¢ formato a sua volta da “’Repositories” e
“Services”:

* Repository: sono le classi che si occupano di ottenere i dati grezzi dai servizi
per poi trasformarli in ‘domain model’, ossia in dati utili all’ applicazione e
formattati in modo che possano essere consumati dai ViewModel [33].

e Service: sono le classi che compongono il livello piti basso della nostra
architettura. Hanno il compito di incapsulare la logica di caricamento dei
dati da fonti diverse (ex. REST Endpoint o API native del dispositivo) [33].

31

Scelte Implementative

Ul state domain models APl models

ul Iayer\[] Data layer ~|,
Repository A Service 1 }
View ViewModel
Repository B Service 2]

User action triggers command method calls polls data

Figura 2.1. Architettura MVVM semplificata in Flutter [33]. Immagine trat-
ta dalla documentazione ufficiale di Flutter (https://docs.flutter.dev).
© Google LLC, distribuita con licenza Creative Commons Attribution 4.0
International (CC BY 4.0).

2.2.2 Dependency Injection

Talvolta gli oggetti dipendono da altri oggetti che ne forniscono le funzionalita
necessarie per raggiungere i propri scopi. Piuttosto che creare gli oggetti necessari
all’interno della classe stessa, questo pattern suggerisce di iniettarli dall’esterno.

Per ridurre ’accoppiamento tra le classi, possiamo semplicemente fare riferi-
mento alle dipendenze tramite interfacce, cosi facendo, in futuro, potremo fornire
implementazioni differenti in base alle necessita. A questo punto, per fornire le
implementazioni (ossia le istanze delle classi necessarie) di queste interfacce, ci
viene in aiuto un framework di dependency injection.

Applicando questi principi otteniamo diversi vantaggi:

o Accoppiamento debole tra le classi: aumentando, di conseguenza, la
flessibilita del codice.

« Aumento della testabilita: grazie alla possibilita di fornire implementa-
zioni diverse delle classi.

* Riduzione della riscrittura del codice: grazie al fatto che gli oggetti
sono piu generici.

o Migliore gestione delle risorse: utilizzando un injector e possibile tenere
traccia piu facilmente di tutti gli oggetti creati, gestendoli tutti nella stessa
posizione all’interno del codice.

Nel mio caso, per la gestione delle dipendenze, ho utilizzato il pacchetto
get_it. get_it non e esattamente un dependency injector, ma un Service
Locator |15]. Nel Service Locator Pattern vi ¢ un registro centrale a cui gli
oggetti possono richiedere le dipendenze di cui hanno bisogno; non vengono
quindi iniettate direttamente dall’esterno come nel caso precedente.

32

https://docs.flutter.dev

Scelte Implementative

Entrambi, Service Locator Pattern e Dependency Injection Pattern, imple-
mentano il principio IoC (Inversion of Control) in cui il controllo non & gestito
dagli oggetti stessi, ma da un’entita esterna.

Ho ritenuto I'utilizzo di un Service Locator sufficiente e necessario per la
gestione dei vari oggetti della mia applicazione. Ho, di conseguenza, evitato
I'utilizzo di librerie di dependency injection perché questo pattern si basa sulla
‘riflessione’, ossia la capacita di un programma di interrogarsi a runtime per
scoprire, ad esempio, quali classi e metodi contiene. Flutter non supporta out-
of-the-box la riflessione, in modo da preservare le performance e per via delle
restrizioni sulla dimensione dell’applicazione [32].

2.2.3 Struttura del progetto

Dopo aver deciso di adottare il pattern MVVM e aver selezionato gli strumenti
necessari per implementarlo, ho focalizzato ’attenzione sulla struttura generale
del progetto. Per mantenere il codice organizzato ho creato delle directory
apposite avendo come obiettivo una chiara separazione delle responsabilita.

Ho quindi organizzato la struttura del progetto come segue:

« dtos/: contiene i Data Transfer Object. 1 DTO sono oggetti il cui scopo
e trasferire dati tra il nostro sistema e quelli esterni, ma anche tra servizi
e repositories. I servizi, una volta ricevuti i dati grezzi in formato JSON
dalle fonti esterne, li convertono in DTO, per ripulire le informazioni non
necessarie e per renderle piu appetibili dai repositories, e viceversa.

« exceptions/: contiene le classi di eccezioni personalizzate. L'uso di ecce-
zioni specifiche per 'applicazione ha migliorato la fase di debug del codice,
grazie alle informazioni contenute intrinsecamente in esse.

« mappers/: questa cartella contiene le classi che si occupano della mappa-
tura dei dati. Sono di cruciale importanza per poter convertire in maniera
dichiarativa e veloce i dati dal formato DTO a Model e viceversa.

« models/: in questo caso con “models” mi riferisco ai domain models, ossia
degli oggetti che rappresentano i concetti del nostro dominio di business.
Essi contengono dati e comportamenti utili ai livelli piu alti della nostra
applicazione.

» repositories/: contiene i repositories, ossia classi il cui scopo ¢ quello di
fornire un’astrazione per ’accesso ai dati ai view models. Il loro compito
principale e quello di gestire i dati, occupandosi in particolare di trasformare
i dati grezzi in domain models e viceversa.

33

Scelte Implementative

services/: contiene i servizi. Il loro compito & semplicemente quello di
incapsulare la logica di accesso ai dati appartenenti a fonti esterne.

theme/: ¢ la cartella che si occupa di contenere il codice dedicato alla
gestione della parte estetica dell’applicazione. Qui sono definiti tutti gli
elementi (stili, colori, font ecc...) che compongono il design system del
progetto.

util/: contiene logica generica che puo essere utilizzata in piu punti del
progetto. Esempi di queste logiche sono i formattatori di date, validatori
ecc.

viewmodels/: dove sono salvati tutti i viewmodels dell’applicazione.

screens/: questa cartella contiene tutti i widget che definiscono le pagine
complete dell’applicazione (es. HomeScreen.dart).

widgets/: contiene widget grafici utilizzati dagli screens; spesso sono
modulari e quindi riutilizzati piu volte all’interno di una schermata o in piu
schermate.

34

Capitolo 3

Backend

Come affermato in precedenza, trattandosi di un prototipo, ho deciso di velociz-
zare la costruzione del backend affidandomi ad un servizio esterno in cloud che
offre la maggior parte delle funzionalita necessarie nel mio caso, ossia Firebase.
In particolare, questo prodotto mi ha permesso di avere a disposizione, fin da
subito, un sistema di autenticazione, un database e uno storage di file, tutti
funzionanti e gia accessibili in rete [8]. In questo modo ho evitato di dover
gestire autonomamente un server e ho potuto concentrarmi sull’implementazione
dell’applicazione mobile.

Un lato negativo di questa scelta ¢ ’obbligo di spostare la complessita sul
client, dato che il servizio di Firebase per scrivere codice arbitrario, e quindi logica
di business, chiamato Cloud Functions, ¢ a pagamento. Tuttavia, non avendo
per ora logica particolarmente complessa e trattandosi, come gia affermato in
precedenza, di un prototipo, ho deciso di accettare comunque questo limite.

3.1 Schema del Database

Tralasciando le tecnologie fornite da Firebase, la cui implementazione e funzio-
namento esulano dagli scopi di questa tesi, mi concentrero sulla progettazione
dello schema del database e sul suo legame con il client.

Rifacendomi alla precedente applicazione e considerando le funzionalita e le
informazioni necessarie per animare il mio prototipo Ul/UX, ho potuto cogliere
le entita fondamentali e definire i loro attributi.

Il database fornito da Firebase, Firestore Database, ¢ di tipo NoSQL e si
basa su documenti, record caratterizzati da un id univoco che memorizzano i
dati in coppie chiave-valore. Questa architettura, da un lato, facilita lo sviluppo
perché offre flessibilita, grazie alla sua natura schema-less, ma dall’altro limita,

35

Backend

come vedremo successivamente, le performance nelle operazioni di ricerca dei
dati [10].
Le entita fondamentali, divise per categoria, che ho individuato sono:

« Entita principale
— User: composto da tutte le informazioni utili riguardanti un utente.
o Gestione dei contenuti statici

— Lesson: composto da un titolo e da tutte le pillole informative relative
a quell’argomento.

— Quiz: insieme di domande, ognuna accompagnata da quattro possibili
risposte, di cui una corretta.

— Food: nome del cibo con relativa unita di misura.
e Log e misurazioni

— Measure: una misurazione biometrica di un certo tipo, relativa a uno
specifico utente in un dato giorno.

— Quiz Score: punteggio migliore per uno specifico quiz svolto da uno
user.

— Food Log: log di un cibo specifico nella relativa unita di misura
effettuato da uno specifico user in un dato giorno.

— Mood: log contenente le risposte al quiz del mood, date da uno specifico
user in un dato giorno.

— Body Balance, Body Strength, Grip Strength, Weight, Waist
Circumference: log relativi alle misurazioni fisiche dell’utente.

Come si puo notare, la categoria “Log e misurazioni” (in particolare 1’entita
Measure) contiene dati che necessitano di essere aggregati per utente, tipo e
giorno; questo mi ha portato a manipolare lo schema del database per migliorare
le performance e adattarlo alle esigenze dell’applicazione mobile.

Complessivamente, la struttura del database é rimasta invariata rispetto
alla versione precedente. La differenza sostanziale risiede nel salvataggio delle
misurazioni (Measure): in precedenza venivano archiviate in file JSON nello
storage di Firebase. Per migliorare 'interoperabilita con applicazioni esterne e
la velocita di ricerca, ho creato una collezione dedicata nel database, sfruttando
le funzionalita di query di Firestore.

Un’altra differenza é la presenza di Food, che consente di aggiungere dina-
micamente nuovi cibi all’interno dell’applicazione. Cio evita la duplicazione
di informazioni (es. categoria e unita di misura del cibo) e riduce lo spazio di
archiviazione.

36

Backend

Attributi specifici delle entita
Entita principale
o User:

— birth_date (timestamp): data di nascita
— gender (boolean): vero = maschio, falso = femmina
— height (number): altezza in centimetri

— is_onboarding_complete (boolean): indica se la fase di on-
boarding ¢ completata

— nickname (string)
— steps_goal (number): obiettivo giornaliero di passi
— time_sleeping_goal (number): minuti di sonno giornalieri
— calories_goal (number): calorie bruciate giornaliere
— bedtime_goal (map<string, number>): orario di coricarsi (ora
e minuti)
Gestione dei contenuti statici
e Lesson:
— banner_url (string): URL dell'immagine banner (file nello sto-
rage di Firebase)
— pills (array<string>): elenco delle pillole informative
— quizId (number): ID del quiz associato

— title (string): titolo della lezione
e Quiz:

— questions: array di oggetti con i campi:
x questionText (string): testo della domanda
x possibleAnswers (array<string>): risposte possibili

* correctAnswer (string): risposta corretta
» Food:

— measure_type (string): unita di misura predefinita

— name (string): nome del cibo

37

Backend

Log e misurazioni
+ Measure [}

— measurement_date (timestamp): data di misurazione
— type (string): tipodimisura (es. SpO2, TOTAL CALORIES BURNED)
—user_id (string): ID dell’'utente

— value (number): valore della misurazione
e Quiz Score:

— score (number): punteggio espresso in frazione
e Food Log:

— date (timestamp): data del log
— logs (array): oggetti con:
* food_id (string)

* quantity (number)

Traducendo in termini di modello E-R, tralasciando le entita relative alla
gestione dei contenuti statici e astraendo anche le entita di tipo log otteniamo:

3.1

3.2 Organizzazione del modello nel database
NoSQL

Per I'implementazione e stato necessario adattare il modello E-R alle caratteri-
stiche dei database NoSQL a documenti. A differenza dei database relazionali,
quelli non relazionali non supportano operazioni di join, rendendo indispensabile
una progettazione che privilegi l'efficienza delle letture.

ITra le misure vi sono anche documenti relativi alle attivita fisiche svolte. Questi
adottano una struttura diversa che rispecchia, come vedremo in futuro, una classe definita da
un pacchetto dart, chiamato “health”, che ho impiegato lato front-end:

— workoutActivityType: tipo di allenamento
— totalEnergyBurned: energia totale bruciata durante I'allenamento
— totalEnergyBurnedUnit: unita di misura delle calorie bruciate

— totalDistance: distanza totale dell’allenamento

totalDistanceUnit: unita di misura della distanza totale

38

Backend

Utente
+ID_Utente : int {PK}

+birth_date : timestamp

+gender : boolean

+height : number
+is_onboarding_complete : boolean
+nickname : string

+steps _goal : number
+time_sleeping_goal : number
+calories_goal : number
+bedtime_goal : hour

1
eqgistra riferita a
N| N

TipoMetrica
TempoGiorno +ID_Tipo_Metrica : int {PK}
+Data : date {PK} +Nome : string
+Unita_Misura : string
1 +Categoria Base : enum {Log/Misurazione}

definisce tipo

Metrica

+ID_Metrica : int {PK}

+ID_Utente : int {FK}
+Data : date {FK}
+ID_Tipo_Metrica : int {FK}

/N

Log

MisurazioneBiologica

+Dettagli_Log : json +Dettagli_Misurazione : json

Struttura va

riabile Struttura variabile

Figura 3.1.

Diagramma Entita-Relazione (ER)

Le relazioni uno-a-molti e molti-a-molti sono gestite tramite riferimenti o dati

ridondanti, per ottimizzare le

query.

Gestione della sincronizzazione dei dati

Essendo che le misurazioni provengono da due fonti diverse nel client e che i
log hanno strutture molto differenti, i dati dell’'utente vengono organizzati come

segue:

sync_data (Collezione
| - {userId} (Document
| - body_balance_da
| - body_strength_d
|- fitbit _data (Co
| - food_data (Coll
|- grip_strength_d
| - health_package_.
| - mood_data (Coll
|- quiz_scores (Co
| - waist_circumfer
|- weight_data (Co
|- fitbitLastSyncD

)

o)

ta (Collezione)
ata (Collezione)
llezione)

ezione)

ata (Collezione)
data (Collezione)
ezione)

llezione)
ence_data (Collezione)
llezione)

ate: String (es. "2025-10-10T16:32:26..

39

.")

Backend

\- healthLastSyncDate: String (es. "2025-10-16T09:38:34...")

In questo modo, tutti i log sono salvati in sottocollezioni specifiche per ogni
utente, mentre le misurazioni si trovano nelle sottocollezioni delle fonti (Health
Connect/Apple HealthKit o Fitbit). 1 due timestamp finali tracciano listante
dell’ultima sincronizzazione, centralizzando ’accesso a un solo documento per
utente.

3.3 Problema delle query dipendenti da piu
campi

Per la gestione delle query in Firestore vengono creati automaticamente indici
su singoli campi, consentendo ricerche basate su un solo attributo.

Il problema emerge quando le query coinvolgono piu campi. In questi casi ¢
necessario usare indici compositi, creati su combinazioni specifiche di campi
[11].

Nel mio caso questa possibilita e stata essenziale per effettuare query sulla col-
lezione Measure che filtrassero per periodo di tempo, utente e tipo di misurazione
simultaneamente.

Poiché la creazione di indici composti non e¢ automatica, ogni nuova collezione
che ne richiede I'uso necessita di configurazione manuale nella console di Firebase.
Tuttavia, nel mio caso — in cui viene creata una collezione per utente alla
registrazione — questa soluzione non e praticabile.

Per risolvere il problema, ho creato una collezione dedicata per Measure, e
per mantenere 1’organizzazione logica originale ho impostato gli indici compositi
con ambito “Gruppo di raccolte” invece che “Raccolta”. Questo approccio
consente di creare indici validi per tutte le collezioni con lo stesso ID, indipenden-
temente dal percorso, unificando logicamente le raccolte e permettendo ricerche
globali pur preservando la gerarchia originale.

40

Capitolo 4

Frontend

Dopo aver definito lo schema del database, possiamo passare alla struttura
del front-end a partire dai servizi. Una cosa importante da sottolineare e che,
nonostante sia partito a discutere del back-end, la sua progettazione é il risultato
di un processo che si e svolto in contemporanea con ’applicazione client. Questo
perché e stato necessario apportare delle modifiche all’'uno e all’altro in corso
d’opera, per soddisfare bisogni reciproci come ’aggiunta a posteriori di nuovi
campi in delle collezioni specifiche per supportare nuove funzionalita.

Come detto in precedenza, i servizi incapsulano la logica di accesso ai dati
forniti da fonti esterne. A questo punto e naturale chiedersi quali siano queste
fonti.

Sicuramente una di queste e la nostra applicazione Firebase, che abbiamo
costruito ad-hoc per archiviare i dati strutturati e non strutturati che il client
consuma e manipola. Ma ripensando allo scopo originale dell’applicazione, ci
si accorge che buona parte dei dati essenziali sono costituiti dalle misurazioni
biometriche fornite dallo smartwatch.

Serviva quindi un modo per accedere in modo unificato a queste misurazioni,
considerando che i produttori di smartwatch sono vari, e ognuno di essi offre
applicazioni diverse e quindi sistemi diversi per gestirle.

La soluzione perfetta a questo problema sembrava essere il pacchetto per
Flutter chiamato health. Questa libreria funge da supporto per scrivere e
leggere dati sanitari e di fitness da e verso le due principali piattaforme attuali,
ossia. Apple HealthKit e Health Connect. Sostanzialmente, il pacchetto fa
da tramite tra la nostra applicazione Flutter e le API native delle due piattaforme
appena citate, facilitando di gran lunga l’accesso ai dati di nostro interesse [1].

Entrando nello specifico, Apple HealthKit (presente in iOS) e Health Connect
(presente in Android) sono due “centralizzatori” di dati sanitari e di fitness,
permettendo alle varie applicazioni di condividere questi tipi di dati in maniera

41

Frontend

sicura.

Il rovescio della medaglia sta nel fatto che, i produttori di terze parti di smart-
watch sono svariati, cosl come svariate sono le relative applicazioni di gestione.
Di conseguenza, non possiamo avere la certezza che tutti i produttori abbiano
sviluppato un’applicazione che si integri con Apple HealthKit e Health Connect,
e che fornisca loro tutte le informazioni per noi importanti. Per questo motivo
e stato necessario accogliere I'idea di affidarsi direttamente, completamente o
in parte, alle API dei produttori, presupponendo che la maggior parte di essi le
mettano a disposizione pubblicamente.

Considerando il gran numero di produttori presenti nel mercato, e difficile
pensare di poter creare un supporto per ognuno di essi con il tempo avendo a
disposizione. Percio, ho scelto di integrare solo uno di questi servizi esterni, ossia
Fitbit di Google, nella speranza che in futuro tutti i produttori supportino i
due aggregatori al massimo delle loro capacita.

La stessa Google non scrive tutti i dati ricevuti da Fitbit nel suo aggregatore
Health Connect. In particolare, non mette a disposizione quattro misurazioni
per noi di vitale importanza: SpOs (saturazione dell’ossigeno), HRV (varia-
bilita della frequenza cardiaca), Resting HR (frequenza cardiaca a riposo) e
Breathing Rate (frequenza respiratoria).

Considerato quest’ultimo problema, complessivamente avremo tre fonti di
dati diverse: la nostra applicazione Firebase, Apple HealthKit/Health
Connect (pacchetto health) e Fitbit API.

4.1 Servizi

L’architettura del sistema, a questo livello, e costituita da un numero di servizi
pari al numero di concetti appartenenti al nostro dominio.

Caratteristiche comuni a tutti i servizi e la loro funzione di conversione di
dati grezzi, provenienti dall’esterno, in DTO e viceversa, e 'impiego di blocchi
try—-catch per la gestione dell’errore. In particolare in caso di fallimento viene
lanciata, ai livelli piu alti, un’eccezione personalizzata o non, che ne descrive, in
ogni caso, la motivazione.

4.1.1 1 - AuthService

Questo servizio si occupa principalmente di interagire con il sistema di auten-
ticazione di Firebase. Fornisce metodi per accedere e registrarsi (con email e
password oppure utilizzando Google), e per eseguire il logout. Inoltre ha anche
il compito di inizializzare nella collezione users_data il documento relativo
all'utente, appena prima dell’inizio della fase di onboarding.

42

Frontend

Le dipendenze sono un’istanza di FirebaseAuth, FirebaseFirestore
(per inizializzare i dati dell’'utente in fase di registrazione) e GoogleSignIn
(per gestire il login con Google).

4.1.2 2 - UserService

Dedicato a creare, ottenere e modificare i dati riguardanti I'utente loggato in
quel momento. Cosa importante da notare e che il metodo che si occupa di
fornire le informazioni dell’utente restituisce uno stream, permettendo cosi di
ottenere aggiornamenti in tempo reale nella nostra applicazione.
L’unica dipendenza che troviamo in questo caso ¢ un’istanza di FirebaseFirestore.

4.1.3 3 - HealthService

Questo servizio & dedicato all’interazione con le API di salute native dei
dispositivi (Health Connect e Apple HealthKit). Ci permette di acquisire
facilmente i cosiddetti HealthDataPoint, ossia una classe fornita dalla libreria,
le cui istanze corrispondono all’'unita di dato di HealthKit o Health Connect.
Questi dati, sono gli stessi che verranno restituiti ai livelli superiori, avendo
ritenuto non necessario creare una classe personalizzata.

La libreria offre anche funzioni di aggregazione, ma queste si limitano ad
aggregare i dati utilizzando unicamente 'operatore di somma. Questo mi ha
portato, come vedremo nella sezione dedicata ai repository, a implementarle
autonomamente.

Le sue dipendenze sono un’istanza di Health, una classe messa a dispo-
sizione dalla libreria health, di cui abbiamo gia discusso, e un’istanza di
ServiceStatusProvider, una classe da me creata che fornisce informazioni
sul sistema operativo attualmente in uso e un booleano per capire se 'utente ¢ log-
gato in Fitbit o meno. In questo caso, ci interessa conoscere I’OS del dispositivo
perché la libreria health fornisce due interfacce diverse per i dati sulla variabi-
lita cardiaca, HealthDataType.HEART_RATE_VARIABILITY_RMSSD per
Android e HealthDataType.HEART_RATE_VARIABILITY_SDNN per iOS
1]

4.1.4 4 - FitbitService

Si occupa di gestire le chiamate alle API di Fitbit. Per supportare questa
funzionalita mi sono affidato ad un’altra libreria, Fitbitter che gestisce automa-
ticamente il flusso di autenticazione OAuth2 e fornisce dei metodi semplici
per richiedere i dati [2].

43

Frontend

Questo servizio offre quindi metodi per autorizzare Fitbit, rimuovere ’au-
torizzazione, gestire le credenziali e per richiedere dati relativi alla variabilita
cardiaca, SpOs, frequenza respiratoria e battito cardiaco a riposo, ossia i dati di
cui abbiamo bisogno e che attualmente non vengono forniti dall’applicazione di
Fitbit ai due aggregatori di dati di salute.

4.1.5 5 - SynchronizationService

Servizio dedicato alla gestione della sincronizzazione delle misurazioni bio-
metriche di Fitbit e Health Connect/Apple HealthKit con il database di Firebase.
Fornisce due metodi per accedere al timestamp dell’ultima volta in cui e stata
effettuata la sincronizzazione (uno per Fitbit e uno per i due aggregatori) e
ulteriori due metodi per salvare effettivamente i nuovi dati nelle due sottocolle-
zioni distinte, health_package_data e fitbit_data. Per il salvataggio di
questi dati ho creato un’istanza di WriteBatch offerta dalla libreria di Firebase,
un oggetto che permette di eseguire scritture multiple in maniera atomica
incapsulando tutte le modifiche temporanee prima di eseguire il commit; in
questo modo evitiamo scritture incomplete o non coerenti [9]. In queste opera-
zioni di scrittura rientra anche quella per aggiornare il timestamp dell’ultima
sincronizzazione effettuata.

4.1.6 6 - FoodService

Dedicato alla gestione del cibo. Offre un metodo per ottenere la lista di tutti i

cibi disponibili e, corrispettivamente, un metodo per salvare i log dei cibi nella

giornata odierna e un altro per ottenere quelli relativi a una data specifica.
Dipende unicamente dall’istanza di FirebaseFirestore.

4.1.7 7 - MoodService

Dedicato alla gestione dei log sull'umore.

Dipende solo dall’istanza di FirebaseFirestore e fornisce un metodo per
ottenere il log di uno specifico giorno e un altro per salvare un log nella giornata
odierna.

4.1.8 8 - LessonService

Questo servizio gestisce 'accesso a lezioni e quiz. Anche in questo caso, dipende
unicamente da un’istanza di FirebaseFirestore.

In particolare, offre un metodo per ottenere una lista di tutte le lezioni
disponibili nel database di Firestore, con associati i quiz. Offre inoltre altri

44

Frontend

due metodi: uno per salvare il punteggio migliore raggiunto dall’'utente per uno
specifico quiz e uno per ottenerlo.

4.1.9 9 - RecommenderService

Un servizio che comunica con il server del “Recommender”, il quale fornisce i
consigli da visualizzare nella schermata “Tips”.

Offre due metodi per ottenere i consigli dell'utente autenticato, relativi al
sonno e all’alimentazione. Una sua dipendenza importante ¢ un’istanza del
client HTTP fornito dal pacchetto “Dio”. Ho scelto questa soluzione perché
permette di definire degli interceptor, ossia dei middleware che permettono di
intercettare e modificare le richieste (in entrata) e le risposte (in uscita) [16].

Questo strumento ha semplificato notevolmente il processo di inclusione in
ogni richiesta dell’header di autenticazione (contenente il bearer Token di
Firebase) richiesto dal destinatario.

4.1.10 Servizi Restanti

I servizi restanti, BodyBalanceService, BodyStrengthService,
GripStrengthService,WaistCircumferenceServiceeWeightService
offrono tutti le stesse funzionalita ma per strutture dati diverse. Ognuno di essi
implementa due metodi, uno per salvare i log e ’altro per ottenerli in base a un
periodo di tempo specifico. Per evitare duplicazione del codice, ho optato per la
creazione di una classe astratta, ManualInputMeasureService che, con

la condizione di ricevere una struttura dati serializzabile in JSON, implementa

le due funzioni citate sopra. Successivamente ho creato le classi concrete facendo

in modo che estendessero quella astratta.

4.2 Repository

Passando al livello superiore, abbiamo i repository. I repository sono quelle
classi che hanno il compito di fornire ai ViewModel 'accesso ai domain model.
Nel mio caso avendo un backend privo di logica di business, ho sfruttato questo
livello architetturale per gestire ulteriormente i dati, in particolare per
aggregarli, ma anche per implementare funzioni come la sincronizzazione.

Questo sposta la complessita nel client, che deve gestire tutta la logica
internamente, causando notevoli rallentamenti dell’applicazione, soprattutto in
fase di startup per via della sincronizzazione. Come discusso in precedenza, ¢ un
rischio che ho accettato ripensando ai fini del progetto.

45

Frontend

Inoltre, considerando che il nostro sistema ¢ relativamente semplice, limitan-
dosi spesso a eseguire operazioni CRUD, e che I’architettura dello schema del
database e suddiviso rispettando i concetti di dominio di cui abbiamo bisogno
nella nostra applicazione client, il livello repository si rivela spesso superfluo,
riducendosi a convertire DTO in domain model e viceversa, e a chiamare i metodi
dei servizi. Nonostante cio, ho deciso di lasciare intatta questa struttura da un
lato per inserire la logica aggiuntiva di cui ho bisogno, dall’altro per facilitare
sviluppi futuri.

Tutti i repository dipendono da uno o piu servizi, per ’accesso ai dati, e da
istanze di classi Mapper, per convertire DTO in Domain Model e viceversa.

4.2.1 HealthRepository

Il repository che trattero in maniera piu approfondita ¢ quello relativo alle
misurazioni biometriche e ai dati sanitari, perché ¢ I'unico, in questo livello
architetturale, che contiene logica complessa. Tutti gli altri repository, come
affermato poco fa, si limitano a fare da strato intermedio tra ViewModel e
servizi, non avendo 1'esigenza di processare particolarmente i dati.

’HealthRepository ha il compito di unificare 1’accesso ai dati sanita-
ri, che provengono sia dal dispositivo stesso (Health Connect/Apple HealthKit),
attraverso la libreria health, sia dal sistema esterno di Fitbit. Piu precisamente,
vedremo che a questi due si aggiungera come terza fonte Firebase, per via di
alcuni limiti imposti da Google che riguardano le API di Fitbit.

Questa classe complessivamente offre:

e Metodi per richiedere tutte le misurazioni biometriche utili all’applicazione
in un certo periodo di tempo e, qualora il tipo di dato lo supporti (es. passi,
battito cardiaco), aggregati in intervalli suddivisi in base a un numero
arbitrario di ore.

e Due funzioni per avviare, rispettivamente, la sincronizzazione dei dati
provenienti da Google Health/Apple HealthKit e quelli provenienti dal
sistema di Fitbit.

1 - Metodi per ottenere i dati sanitari

Questi metodi richiedono come parametri:
e startDate: inizio dell’intervallo richiesto

e endDate: fine dell’intervallo richiesto

46

Frontend

e aggregationIntervalHours: numero di ore da cui sono costituiti gli
intervalli richiesti

Possiamo suddividere il loro funzionamento in tre fasi:

1. Acquisizione dei dati dai servizi: nel caso in cui il dato ¢ ottenibile da
FitbitService e 'utente ha effettuato il login in Fitbit, viene prefe-
rito come fonte dei dati. L’output di questa fase consiste in istanze di
HealthDataPoint oppure istanze di FirebaseMeasurementDTO.

2. Aggregazione dei dati: questa fase viene gestita tramite i metodi offerti
da una classe di utilita creata appositamente, HealthDataAggregator.

Questa classe offre metodi per aggregare diversi tipi di dati tra cui, HealthDataPoint,
classe definita dalla libreria health, FirebaseMeasurementDTO, classe

creata ad-hoc e tipi specifici di HealthDataPoint, ossia quelli riguardanti

le varie fasi del sonno e WORKOUT che, avendo una struttura pit complessa

da aggregare, vengono gestiti singolarmente.

Il cuore della logica di queste funzioni e la stessa e puo essere suddivisa in
varie fasi:

o Inizializzazione: se il vettore dei dati in ingresso non ¢ vuoto viene
inizializzata la lista, chiamata aggregatedResults, che conterra i
dati aggregati. In caso contrario la funzione restituisce il valore null.

» Iterazione sugli intervalli di tempo: viene avviato un ciclo while
con indice inizializzato a startTime che si conclude una volta rag-
giunto endTime. Ad ogni iterazione I'indice viene incrementato della
durata dell’intervallo ricevuto come parametro.

» Filtraggio dei dati di input: la lista ricevuta come parametro viene
filtrata eliminando tutti i punti non appartenenti all’intervallo relativo
all’iterazione corrente.

o Aggregazione: i punti vengono aggregati in base al valore del parame-
tro AggregateType, un enum che puo assumere due valori:

— AggregateType.total: Se il tipo di aggregazione ¢ total, la
funzione somma i valori numerici di tutti i punti presenti nell’inter-
vallo, utilizzando il metodo fold per una somma efficiente.

— AggregateType.avg: Se il tipo ¢ avg, la funzione calcola la
media dei valori.

Se non ci sono punti nell’intervallo, viene assegnato il valore del para-

metro opzionale defaultValueForEmptyIntervals, che se non
fornito e 0.0.

47

Frontend

e Inserimento del risultato: una volta calcolato il valore aggregato,
viene creato un nuovo oggetto HealthAggregatedData, una classe
di supporto, che contiene il nome del tipo di dato, 'ora di inizio del-
I'intervallo e il valore calcolato. Questo oggetto viene poi aggiunto alla
lista aggregatedResults. Fatto cio, I'indice viene aggiornato e il
ciclo viene ripetuto se la condizione non ¢ ancora soddisfatta.

3. Conversione finale dei dati: gli HealthAggregatedData vengono
convertiti, a seconda del tipo di dato, in una semplice lista di double oppure
in una lista di HealthData (classe formata solo da due attributi, value e
dateOfMonitoring) o SleepData (classe formata da quattro double
contenente il numero di minuti, uno per ogni fase del sonno). In particolare,
HealthData e SleepData si riferiscono a metriche giornaliere.

Ottimizzazione delle chiamate In merito alla prima fase, viene da chiedersi
cosa sia la classe FirebaseMeasurementDTO e perché non vengano semplice-
mente richiamati i metodi di FitbitService, che, diversamente, restituiscono
istanze di classi che estendono FitbitData.

La classe FirebaseMeasurementDTO rappresenta la struttura grezza delle
misurazioni presenti nel database di Firebase grazie alla sincronizzazione. La
scelta dietro 1'utilizzo di HealthService, per ottenere indirettamente i dati
di Fitbit, e giustificata dalla necessita di un’ottimizzazione dovuta ai limiti
imposti dalle API di Fitbit. Nello specifico, la limitazione riguarda il numero
massimo di richieste effettuabili da un utente in un’ora, che e fissato a 150
[23]. Inoltre, di queste richieste fanno parte anche quelle dedicate alla conferma
della validita del token, che sono utilizzate frequentemente dall’applicazione, sia
direttamente, che indirettamente attraverso la libreria fitbitter. E’ stato
quindi necessario adottare una serie di contromisure per aggirare questo problema;
una tra queste consiste proprio nell’acquisire i dati provenienti originariamente
da Fitbit sfruttando la sincronizzazione su Firebase.

2 - Metodi di sincronizzazione

In merito alla sincronizzazione, vengono messi a disposizione due metodi per ge-
stire i dati di salute da due fonti diverse, FitbitService e HealthService.
Possiamo suddividere la logica di syncFitbitData () in cinque fasi:

1. Verifica dell’autenticazione: se non vi ¢ nessun login a Fitbit, la funzione
ritorna senza fare altre operazioni. Se invece vi ¢ un login a Fitbit ma
nessun utente e loggato nella nostra applicazione, attraverso Firebase, viene
lanciata un’eccezione.

48

Frontend

2. Controllo della frequenza di sincronizzazione: questa fase fa parte
di quelle soluzioni che ho adottato per aggirare il problema delle 150 chia-
mate massime orarie alle API di Fitbit. Sostanzialmente viene richiesto a
SynchronizationService il timestamp dell'ultima volta in cui ¢ stata
effettuata la sincronizzazione dei dati da Fitbhit: se non & passata almeno
un’ora da quest’ultima la funzione si ferma.

3. Calcolo dell’intervallo di tempo: viene creata una data di inizio,
startDate, e una data di fine, endDate. Quella d’inizio ¢ imposta-
ta all’'ultima data di sincronizzazione, a patto che non siano trascorsi piu
di 29 giorni. Diversamente viene impostata a 29 giorni prima della data
odierna, compreso il caso in cui I'utente si ¢ appena registrato.

Questo limite & causato ancora una volta dalle API di Fitbit, che per un
vasto numero di metriche, impone come limite massimo di intervallo 30
giorni [13]. Per quanto riguarda endDate, quest’ultimo viene sempre
impostato alla data odierna.

4. Recupero dei dati da FitbitService: utilizzando le chiamate specifi-
che, messe a disposizione dal servizio FitbitService, vengono recuperate
le quattro metriche di nostro interesse:

Variabilita della frequenza cardiaca (HRV)

SpOs (saturazione di ossigeno nel sangue)

Frequenza respiratoria

Frequenza cardiaca a riposo

5. Salvataggio dei dati su Firebase: Dopo aver recuperato tutti i dati, la
funzione li passa al metodo di SynchronizationService, che si occupa
del salvataggio sul database di Firestore per I'utente corrente.

Invece, per quanto riguarda il metodo syncHealthData (), il funziona-
mento ¢ simile a quello appena visto, se non per il fatto che la fonte dei da-
ti € HealthService e che, non avendo il limite delle API di Fitbit,
startDate viene impostato sempre al timestamp dell’ultima sincronizzazione
(se disponibile).

4.3 ViewModel

I ViewModel, come anticipato, si occupano di gestire la logica dell’interfaccia
utente, esponendo alla View degli stati da osservare e dei metodi.

49

Frontend

Interessante, in questo caso, € il modo in cui ho gestito lo stato attuale del
ViewModel nei vari metodi che definisce. Questo stato suggerisce alla View cosa
visualizzare in quel preciso momento, variando spesso fra: una schermata di
caricamento, di errore o con i dati disponibili.

Per farlo ho creato degli enum appositi: un esempio é FitbitViewState formato
da cinque stati: initial, loading, authorized, unauthorized, error. Inizialmente
lo stato é impostato su initial, ogni qualvolta vengano richiesti nuovi dati ai
repository, lo stato viene aggiornato a loading. Nel caso in cui si riceva un errore
dal repository si passa allo stato error, nel quale € opzionalmente possibile fornire
pit informazioni creando nel ViewModel una variabile String _ errorMessage.
Sfruttando un enum evitiamo tutte quelle problematiche legate a stati impos-
sibili, che invece sarebbero presenti se, ad esempio, dedicassimo una variabile
distinta per stato. Inoltre, questo approccio rende il codice piu leggibile e quindi
maggiormente manutenibile.

4.3.1 Calcolo dei punteggi per i vari ambiti

Un ViewModel di grande interesse ¢ quello dedicato al calcolo dei punteggi per
ogni ambito del benessere psicofisico.

Per quanto riguarda I'ambito “Cibo”, non ho ritenuto possibile calcolarne uno, a
causa della mancanza di informazioni sulla quantita di calorie o macronutrienti
per le singole categorie di cibo.

Una possibile soluzione era quella di considerare nel punteggio delle medie di
quei valori per categoria. Tuttavia, a posteriori ho concluso che non sarebbero
significative, per via dell’alta variabilita nutrizionale tra cibi diversi appartenenti
alla stessa categoria. Di conseguenza, ¢ stato necessario escludere I’ambito "Cibo"
dal calcolo del punteggio.

Algoritmi per il Calcolo dei Punteggi di Benessere

Il ViewModel HealthScoresViewModel ¢ responsabile di calcolare i punteggi
per l'attivita fisica, 'umore e il sonno.

Punteggio dell’Attivita Fisica (Activity Score)

I1 punteggio dell’attivita fisica (Activity Score) ¢ un punteggio composito, che
consiste in tre componenti principali: passi, frequenza cardiaca a riposo (RHR)
ed allenamenti (Workouts). Ogni metrica ha un peso specifico da prendere in
considerazione per il punteggio complessivo.

50

Frontend

Formula Composita Il punteggio finale e calcolato come media ponderata
dei tre sotto-punteggi:

Activity Score = (Scorepassi-0.35)+ (Scoregyr - 0.30) + (Scoreworkout - 0.35) (4.1)

Tabella 4.1. Ponderazione delle metriche nel Punteggio di Attivita

Metrica Peso
Scorepagsi 35%
Scorerur 30%

Scoreworkout 3%

Sotto-Punteggi

1. Punteggio Passi (Scorep,ssi): Misura il raggiungimento dell’obiettivo

giornaliero di passi (Targetp,;). Normalizzato e troncato a 100 se I'obiettivo
e superato.

SCOrepass = min (1, Png“) -100 (4.2)
TargetPassi

. Punteggio Frequenza Cardiaca a Riposo (Scoregrur): E’ stato utiliz-

zato un modello di distribuzione di Cauchy-Lorentz (a campana) per

assegnare un punteggio ottimale di 100 ad un RHR ideale (fissato a 60 bpm)

e penalizzare per le deviazioni.

1

2
|RHRMedia—60|)
I G

(4.3)

Scoregyr = 100 -

Il punteggio decade in maniera proporzionale rispetto ad un fattore 10 nel
denominatore man mano che ci si allontana dal valore ideale.

. Punteggio Allenamento (Scoreworkout): Combina il raggiungimento
degli obiettivi di distanza percorsa e calorie bruciate durante gli allenamenti.

(4.4)

ScoreDistanza + ScoreEnergia>

SCoreworkout = Min (100, 5

Dove:

DistanzaTotale> 100

ScoreDistanza = min < " t
argelpistanza

o1

Frontend

lori ruciate
Caloriepyciat > 100

SCOTCEnergia = Min ()T "
argelcalorie

Punteggio Umore (Mood Score)

I punteggio dell'umore (Mood Score) & calcolato a partire dalle risposte fornite
dall’'utente a un questionario di 10 domande, ciascuna con risposta su una scala
da 0 a 4. Il punteggio massimo possibile ¢ 40.

Algoritmo di Normalizzazione L’algoritmo inverte il punteggio per le do-
mande in cui un valore inferiore indica un benessere maggiore, e successivamente
normalizza il punteggio complessivo su una scala 0-100.

1. Domande 1 a 5 (Punteggio Diretto): Vengono sommate direttamente.

5
Sommapys = Z Risposta,
i=1

2. Domande 6 a 10 (Punteggio Invertito): Il punteggio viene invertito
sottraendo il valore della risposta al massimo possibile (Massimo = 4).
10

Sommay,, = » (4 — Risposta,)
i=6

3. Punteggio Giornaliero: Il punteggio finale dell'umore viene normalizzato.

Sommapg ;(—) Sommayy,y, .1 00)

ScoreGiornaliero = round (

Punteggio Sonno (Sleep Score)

11 punteggio del sonno (Sleep Score) & una media ponderata tra la durata del
sonno e la sua qualita, misurata in base alla percentuale di fasi REM e Profondo.

Formula Composita

Scoresonno = (Scorepurata - 0.5) + (Scorequaita - 0.5) (4.5)
52

Frontend

Sotto-Punteggi

1. Punteggio Durata (Scorepyrata): Questo punteggio viene calcolato in
base al raggiungimento dell’obiettivo di sonno in minuti, che 'utente ha
definito. o

M1HUt1T0tali> 100

Scorepyrata = Min ()T
argetMinuti

2. Punteggio Qualita (Scorequaiita): Questo punteggio e la media dei
punteggi ottenuti per le fasi REM e Profonda.

SCOT€Profondo + SCOTEREM
2

Scorequalita =

Metodologia per le Fasi di Sonno (Scorepa,se) Per ogni fase di sonno
(Profondo e REM), il punteggio viene assegnato in base alla percentuale di tempo
trascorso in quella fase rispetto al totale del sonno, applicando un meccanismo
di penalita:

o Il punteggio ¢ 100 se la percentuale della fase rientra nell’intervallo ideale.
Secondo studi medici & ormai chiaro che la qualita del sonno in un adulto e
fortemente correlata alle ore passate durante le fasi ristorative. In particolare
si raccomandano percentuali sul totale del sonno di: Sonno REM: 20%-25%
Sonno Profondo: 13%-23% [3].

e Se la percentuale si discosta dall’intervallo ideale, viene applicata una
penalita proporzionale alla deviazione.

1 - 1 ideale
Scorepase = max (0, 100 — <|Va OrCattuate — Valorideate| 100))

Valore;geale

Dove Valorejgeae € I'estremo dell’intervallo ideale piu vicino al Valoreaiuate. 11
risultato finale e la media dei punteggi giornalieri.

4.4 View

Le viste, in Flutter, sono rappresentate dai widget, i quali, nell’architettura
MVVM, dovrebbero visualizzare i dati di business solo se forniti dai rispettivi
ViewModel.

Per poter osservare i dati che ci interessano dal ViewModel all’interno del
widget, possiamo sfruttare le classi del pacchetto “provider” (es. Consumer)

53

Frontend

oppure alcune classi disponibili nativamente in Flutter (StreamBuilder,
FutureBuilder).

Dovendo fare richiesta dei dati a un database remoto, ci si ritrova spesso a
dover gestire oggetti di tipo:

e Future: Rappresenta un’azione asincrona il cui risultato non ¢ immediata-
mente disponibile.

e Stream: Rappresenta una sequenza di dati asincrona, consentendo di
ottenere aggiornamenti in tempo reale del dato T.

Nel mio approccio, dal punto di vista dell’interfaccia, ho gestito gli St ream
tramite il widget StreamBuilder, che definisce ’aspetto che deve assumere
l'interfaccia grafica per ogni stato del flusso asincrono (riconducibili a WAITING,
ERROR, HAS_DATA) e la ricostruisce in modo reattivo ogni qualvolta vi & un
aggiornamento.

Per i Future invece, ho alternato 'utilizzo di due metodi:

o L’utilizzo del widget FutureBuilder, che ha un comportamento concet-
tualmente simile a StreamBuilder.

o Lachiamata al metodo che restituisce il Future direttamente nell’initState
del widget:

@override
void initState () {
super.initState();
//richiedo il riferimento all’istanza del ViewModel
//che mi interessa
viewModel = Provider.of (
context,
listen: false);
WidgetsBinding.instance.addPostFrameCallback ((_) {
//aggiorno una variabile di stato esposta dal ViewModel
//per ottenere il dato di interesse
onboardingViewModel.obtainMyFutureMethod() ;
b) i

In questo semplice esempio, il metodo obtainMyFutureMethod definito
nel genericvViewModel, ¢ incaricato di gestire manualmente alcune variabili
definite nel ViewModel stesso. Tra queste, la variabile che ospitera il risultato
del Future (inizialmente null) ed eventuali variabili di stato per gestire le

o4

Frontend

fasi di caricamento dell’interfaccia (es. una variabile booleana isLoading).
Queste variabili possono essere “osservate” nei widget utilizzando Consumer,
con l'accortezza di fornire il ViewModel T attraverso il metodo Provider.of
impostando il parametro 1isten a true, per attivare la ricostruzione reattiva.

4.4.1 Notifica giornaliera

Una delle azioni fondamentali per sfruttare appieno le funzionalita dell’applica-
zione, e I'inserimento giornaliero dei log da parte dell'utente. Questa necessita
dovrebbe invogliare 'utente a compiere abitudinalmente tutte le azioni necessarie
per registrare questi dati, compreso lo svolgimento di alcuni esercizi.

Uno studio dimostra che ¢ attraverso la trasformazione dei comportamenti
salutari in abitudini che si puo ottenere uno stile di vita sano [19].

Per ricordare all'utente l'inserimento dei log giornalieri (circonferenza della
vita, peso, cibo ecc.) ho configurato un processo in background che invia una
notifica push locale ogni giorno intorno alle ore 14:00. Questa notifica mostra
all’'utente un messaggio che gli ricorda per quali metriche non ha ancora inviato
il suo log nella giornata corrente.

Per implementare questa funzionalita, ho utilizzato il pacchetto workmanager,
che funge da wrapper Flutter attorno alle API native di background processing
di Android (WorkManager) e iOS/macOS (Background Tasks) |17].

Il funzionamento € molto semplice e si distingue in due passaggi:

1. Siistanzia un oggetto di tipo Workmanager e lo si inizializza passandogli co-
me parametro una funzione di entry point chiamata callbackDispatcher,
che e definita al di fuori del main dell’applicazione. Questa funzione si
occupa di eseguire la logica del task, che nel nostro caso consiste nel recu-
perare lo stato delle metriche mancanti e, se necessario, inviare la notifica
locale all'utente.

2. Sull’oggetto Workmanager viene chiamata una funzione chiamata
registerPeriodTask che si occupa di schedulare il task con una cadenza
a nostro piacere. In particolare ho impostato i seguenti parametri:

o frequency: const Duration (hours: 24), //il task verra
eseguito ogni 24 ore

e initialDelay: nextl4oclockDelay (), //il task appena crea-
to verra eseguito con un delay iniziale pari al tempo che intercorre tra
I'istante attuale e le 14:00

55

Frontend

o Health Wellbeing

Ricordati di registrare i tuoi dati

Non hai ancora inserito i log per: Alimentazione,
Umore, Circonferenza della vita, Peso, Equilibrio
del corpo, Forza muscolare, Forza della presa

Figura 4.1. Esempio di notifica giornaliera.

56

Capitolo 5

Sicurezza

La sicurezza e un fattore importantissimo in qualsiasi applicazione.

Cosl come avviene nelle applicazioni web, costituite nella loro forma piu
semplice da un client e un server, sappiamo per certo che non basta implementare
funzioni di validazione lato client per impedire all'utente di inserire valori non
consentiti prima di inviarli al server. Questo perché, la richiesta, potrebbe
essere manipolata aggirando la nostra applicazione client. Per questo motivo,
la validazione dei dati, viene affidata in maniera particolare al back-end, prima
che essi vengano processati e salvati. A supporto dell’approccio proposto vi e
uno dei principi di sicurezza del’OWASP (Requisito V3.1) nell’ASVS [30], che
afferma la non affidabilita di ogni tipo di dato generato dal client.

Avendo a disposizione un piano gratuito di Firebase, vi sono dei limiti nella
definizione di questi vincoli, per questo motivo lascio questo importantissi-
mo requisito strutturale da implementare nei piani futuri, prima del rilascio
dell’applicazione ufficiale.

5.1 Regole di Sicurezza

Quello che possiamo fare, pero, e sfruttare quantomeno le Firebase Security
Rules, per definire 'autorizzazione di lettura e scrittura dei vari utenti. Questo
strumento permette anche di definire forme base di validazione dei dati in entrata,
non paragonabili a quelle offerte da un backend completo [12].

Per quanto riguarda ’autenticazione invece, mi sono affidato completamente
al solido Firebase Authentication, che fornisce un sistema sicuro e gestito da
Google. Non mi soffermero quindi su questo punto.

Le regole di Firebase definite sono: 5.1

57

Sicurezza

Analisi delle Regole Come ¢ possibile notare dalle regole sopra, questo
strumento sfrutta 'oggetto request .auth per identificare 'utente.

e Ho fatto in modo che i dati relativi a un utente possano essere letti e
scritti solo da quell’'utente, escludendo I'admin, attraverso la condizione
request.auth != null (autenticazione necessaria) && request.auth.uid
== userId (I'id dell’'utente autenticato deve coincidere con userId, che

¢ l'id del documentoE[).

o Invece, i dati generici dell’applicazione (food_items, lessons equizzes)
possono essere letti da chiunque ma scritti solo da un admin.

o Tutti i documenti restanti, invece, possono essere letti e scritti solo dagli
admin.

Regola fitbit_data Interessante ¢ la regola relativa alla sottocollezione
fitbit_data: oltre ad essere una sottocollezione ¢ contemporaneamente, come
affermato in passato, un gruppo di raccolta per supportare query complesse.
Non inserendo questa regola, gli utenti non potrebbero eseguire queste query,
perché dovrebbero avere accesso anche ai documenti degli altri utenti, possibilita
che abbiamo per ovvie ragioni negato. La regola si basa sul verificare che il
valore del campo user_id dei documenti, che fanno parte di quel gruppo di
raccolta, coincida con quello dell’'utente autenticato.

5.2 Sicurezza Lato Client (Bearer Token)

Un’altra forma di supporto alla sicurezza, presente questa volta nel client Flutter,
¢ l'inclusione, nelle richieste indirizzate al server dedicato alle Recommendation,
del bearer token Firebase dell’'utente autenticato. In questo modo, il server
in questione puo fornire una risposta valida solo agli utenti autorizzati.

!Durante la progettazione dello schema del database ho fatto si che, per semplicita e per
evitare dati ridondanti, gli id dei documenti appartenenti a un utente coincidessero con 1’id
dell’'utente stesso.

58

42

43

Sicurezza

rules_version = "2';
service cloud.firestore {
match /databases/{database}/documents {
match /users_data/{userId} {
// Accesso privato: Solo 1l’utente con uid corrispondente puo’
leggere/scrivere
allow read, write: if request.auth != null && request.auth.uid
== userld;
}
match /sync_data/{userId} {
// Accesso privato per i dati di sincronizzazione

allow read, write: if request.auth != null && request.auth.uid
== userld;
match /{document=x*x} {
allow read, write: if request.auth != null && request.auth.
uid == userId;

}
match /{path=«+«*}/fitbit_data/{docId} {
// Regola per i1 gruppi di raccolta (collection groups)

allow read: if request.auth != null &&
resource.data.user_id == request.auth.uid;

allow write: if request.auth != null &¢&
request.resource.data.user_id == request.auth.uid &&
resource.data.user_id == request.auth.uid;

}
match /food_items/{itemId} {
// Dati generici: Lettura a tutti gli utenti, Scrittura solo

admin

allow read: if request.auth != null;

allow write: if request.auth != null && request.auth.token.
admin == true;

}
match /lessons/{lessonId} {
// Dati generici: Lettura a tutti gli utenti, Scrittura solo

admin

allow read: if request.auth != null;

allow write: if request.auth != null && request.auth.token.
admin == true;

}
match /quizzes/{quizId} {
// Dati generici: Lettura a tutti gli utenti, Scrittura solo

admin

allow read: if request.auth != null;

allow write: if request.auth != null && request.auth.token.
admin == true;

}
match /{document=xx} ({
// Regola di default: Accesso solo admin per tutti gli altri

documenti 50
allow read, write: if request.auth != null && request.auth.
token.admin == true;

Listing 5.1. Regole di Sicurezza Firebase Firestore

Capitolo 6

Conclusione e Piani Futuri

6.1 Conclusione

La tesi ha conseguito gli obiettivi prefissati, contribuendo all’evoluzione posi-
tiva della precedente applicazione per il benessere, offrendo interfacce piu
accessibili e user flow piu intuitivi a quelle che erano le funzionalita prin-
cipali dell’applicazione, utilizzando le euristiche di Jakob Nielsen e ispirandosi
all’estetica dei prodotti piu validi presenti sul mercato.

L’applicazione & stata riscritta da zero adottando il pattern MVVM e la
Dependency Injection per garantire uno sviluppo e un mantenimento futuro
piu agevole.

Inoltre sono state apportate modifiche alla metodologia di salvataggio dei dati
biometrici degli utenti, supportando al meglio la loro elaborazione da parte di
applicazioni esterne, come il Recommender.

6.1.1 Criticita e Limitazioni Attuali

Dal punto di vista della sicurezza pero, nonostante siano state definite delle
regole di sicurezza nel back-end, al fine di evitare accessi non autorizzati ai dati
sensibili degli utenti, sono necessari ulteriori sviluppi. Queste mancanze dal
punto di vista della sicurezza, seppur sorvolate consapevolmente in questa fase di
al grande pubblico. Di questo discutero piu approfonditamente nella sezione
dedicata ai piani futuri.

Altre limitazioni attuali sono invece dovute alla dipendenza da dispositivi
(es. smartwatch) e servizi (es. Fitbit) esterni per I'acquisizione dei dati
biometrici, la risorsa su cui si basa l'intera logica dell’applicazione. Il non totale
controllo di questa risorsa ha portato criticita su tre fronti diversi:

60

Conclusione e Piani Futuri

e Performance e ottimizzazione: come visto nel caso di Fitbit, il processo
di sincronizzazione € poco efficiente perché i dati non vengono recuperati
direttamente dal dispositivo, ma sono richiesti ad un server privato, la cui
latenza non e sotto il nostro controllo.

o Complessita del codice e manutenibilita: il codice diventa enorme-
mente complesso man mano che le diverse implementazioni vengono inserite
nel progetto, anche dal punto di vista della sincronizzazione dei dati. Ad
esempio la gestione delle limitazioni di frequenza (rate limits) imposte dalle
API Fitbit, ha reso il codice enormemente pitt complesso.

e Dipendenza da aziende terze: idealmente bisognerebbe sviluppare un’in-
terfaccia per ciascuna azienda, generando alti rischi futuri. Infatti, non e
purtroppo garantito che ciascuna di esse fornisca delle API pubbliche, che
siano gratuite e che lo faccia anche in futuro. In pit, da un momento all’altro,
nelle API di terze parti potrebbe esserci un breaking change (modifica non
retrocompatibile) che causerebbe un costo di manutenzione imprevedibile
e non trascurabile a lungo termine, considerando fra I’altro che le aziende
produttrici in questione sono molteplici.

Dal mio punto di vista, la soluzione ¢ rendere ’acquisizione di questi
dati indipendente da infrastrutture esterne. Una possibilita ¢ creare dei
supporti software su modelli mirati di smartwatch esistenti in commercio, oppure,
in un’ottica di massima indipendenza, producendo uno smartwatch ad-hoc.
Potremmo evitare soluzioni costose come quelle gia citate, se la maggior parte
dei produttori di smartwatch supportasse pienamente gli aggregatori Health
Connect/Apple Health.

6.2 Piani Futuri

Per quanto riguarda il futuro, il progetto necessita di una evoluzione per
permettere la distribuzione al grande pubblico.
Tra le necessita vi sono:

1. La creazione e I'impiego di un server back-end che si sostituisca
alla complessita presente nel client, aumentando contemporaneamente la
sicurezza e la consistenza dell’applicazione. Potrebbe essere, inoltre, una
soluzione a diversi problemi o limitazioni incontrati in fase di sviluppo:

o La gia citata mancanza di validazione dei dati lato server. Risolvi-
bile sfruttando la piena liberta offerta da questa soluzione nella scrittura

61

Conclusione e Piani Futuri

della logica di business, rispetto a quella ristretta messa a disposizione
dalla versione gratuita di Firebase.

» Sincronizzazione fragile dei dati biometrici dell’utente: la possi-
bilita di effettuare la sincronizzazione in questo livello, piuttosto che
delegarla al client, permetterebbe di avere totale controllo sulla gestione
dei timestamp. Diversamente, affidarsi all’orologio dell’OS del dispo-
sitivo utente, potrebbe potenzialmente causare inconsistenza dei dati.
Per esempio, potrebbe banalmente capitare nel caso in cui il sistema
operativo del client abbia impostato un orario errato o che quest’ultimo
sia stato manomesso da un malintenzionato.

« Autenticazione ai servizi esterni (attualmente solo Fitbit) com-
pletamente gestita dal client. Questa condizione comporta la presen-
za in chiaro, nei binari dell’applicazione, della chiave segreta di accesso
a Fitbit. Si rende necessario quindi un server intermediario che gestisca
lo scambio dei token del protocollo OAuth con il servizio in questione.
Considero questa modifica essenziale prima che il software entri nella
fase di produzione.

2. Definizione di una solida catena di CI/CD (Continuous Integration
e Continuous Deployment) per automatizzare, semplificare e accelerare
il ciclo di sviluppo del software. A tal proposito, potrebbe essere utile
impiegare uno strumento come Github Actions [20] che, in seguito alla
configurazione di un file yaml, permette di eseguire qualsiasi operazione
in maniera automatica, come test, build e deploy, sulle varie piattaforme.
Importante da citare, nel particolare caso di Flutter, ¢ Shorebird, uno
strumento che, fra le altre cose, oltre a configurare automaticamente la
pipeline analizzando il progetto, permette di effettuare correzioni istantanee
direttamente sui dispositivi degli utenti via OTA (over-the-air), superando
i limiti imposti dalla fase di revisione dei vari store [31].

62

Bibliografia

Cachet.dk. health. Wrapper per HealthKit su iOS e Health Connect su
Android. Consente la lettura e scrittura di dati sanitari come passi, peso,
pressione sanguigna e altro. Licenza MIT. 2025. URL: https://pub.
dev/packages/healthl

Giacomo Cappon. fitbitter. Pacchetto Flutter per interagire con le API di
Fitbit. Supporta piattaforme Android, iOS, Linux, macOS, web e Windows.
Licenza BSD-3-Clause. 2025. URL: https://pub.dev/packages/
fitbitter.

Mary A. Carskadon e William C. Dement. “Monitoring and Staging Human
Sleep”. In: Principles and Practice of Sleep Medicine. A cura di Meir H.
Kryger, Thomas Roth e William C. Dement. 6th. Elsevier, 2017, pp. 15-26.

Casa Walden. Brand Identity: l'importanza del branding e del logo. Compito
del logo e quello di rappresentare immediatamente e in modo distintivo
I’azienda, ispirando fiducia e distinzione rispetto alla concorrenza: in altri
termini, il logo e portatore degli elementi di identita — unicita — ricono-
scibilita del brand. 2023. URL: https://casawalden.com/brand-
identity-limportanza-del-branding-e—-del-logo/ (visitato
il giorno 24/10/2025).

dash-overflow.net. Provider package. Pacchetto ufficiale per la gestione dello
stato in Flutter. Fornisce Provider, ChangeNotifierProvider, MultiProvider,
Consumer e strumenti per implementare facilmente il pattern MVVM
e il pattern Observer. 2025. URL: https : //pub . dev/packages/
provider (visitato il giorno 24/10/2025).

Edsger W. Dijkstra. “On the Role of Scientific Thought”. In: Selected
Writings on Computing: A Personal Perspective. 1l principio di Separation
of Concerns (SoC) sottolinea la necessita di suddividere un sistema in parti
distinte e indipendenti per migliorarne la comprensione, la manutenibilita
e la scalabilita. Springer, 1982, pp. 60-66.

63

https://pub.dev/packages/health
https://pub.dev/packages/health
https://pub.dev/packages/fitbitter
https://pub.dev/packages/fitbitter
https://casawalden.com/brand-identity-limportanza-del-branding-e-del-logo/
https://casawalden.com/brand-identity-limportanza-del-branding-e-del-logo/
https://pub.dev/packages/provider
https://pub.dev/packages/provider

BIBLIOGRAFIA

Figma. Guide to components in Figma. Documentazione ufficiale che descri-
ve i componenti come elementi riutilizzabili per garantire coerenza visiva e
facilita di aggiornamento globale. Figma Inc. 2025. URL: https://help.
figma.com/hc/en—-us/articles/360038662654-Guide—to—
components—in-Figmal (visitato il giorno 24/10/2025).

Firebase. Firebase - Build and run successful apps. 2025. URL: https :
//firebase.google.com/ (visitato il giorno 23/10/2025).

Google Firebase. WriteBatch | Firebase SDKs for Android. Documenta-
zione ufficiale di Firebase per la classe WriteBatch, utilizzata per ese-
guire operazioni di scrittura atomiche su Firestore. 2025. URL: https :
/ / firebase . google . com/docs /reference /android/ com/
google/firebase/firestore/WriteBatchl

Firebase Docs. Cloud Firestore Documentation. Documentazione ufficiale
di Cloud Firestore che descrive la struttura NoSQL, le collections, i do-
cumenti, i campi, le subcollections e le performance. 2025. URL: https:
/ / firebase . google . com/docs / firestore| (visitato il giorno
24/10/2025).

Firebase Docs. Querying Data in Cloud Firestore. Descrive 1'uso degli
indici singoli e compositi in Firestore per ottimizzare le query. 2025. URL:
https:// firebase . google.com/docs/ firestore/ query —
data/queries?hl=it#compound_and_queries (visitato il giorno
24/10/2025).

Firebase Documentation. Firebase Security Rules. Definizione delle auto-
rizzazioni di lettura e scrittura per utenti e admin. 2025. URL: https://
firebase.google.com/docs/rules (visitato il giorno 24/10/2025).

Fitbit. Web API Reference. Documentazione ufficiale delle API Web di
Fitbit, con indicazioni sui limiti di intervallo per il recupero dei dati. 2023.
URL: https://dev.fitbit.com/build/reference/web-api
(visitato il giorno 24/10/2025).

Flutter. Flutter - Build apps for any screen. 2025. URL: https : / /
flutter.dev/| (visitato il giorno 23/10/2025).

Flutter Devs. get it: Service Locator for Flutter. Pacchetto Flutter che
implementa il Service Locator Pattern per gestire le dipendenze e favorire
I’Inversion of Control. 2025. URL: https://pub.dev/packages/get_
it/ (visitato il giorno 24/10/2025).

flutter.cn. dio | Dart package. 2025. URL: https://pub.dev/packages/
diol (visitato il giorno 24/10/2025).

64

https://help.figma.com/hc/en-us/articles/360038662654-Guide-to-components-in-Figma
https://help.figma.com/hc/en-us/articles/360038662654-Guide-to-components-in-Figma
https://help.figma.com/hc/en-us/articles/360038662654-Guide-to-components-in-Figma
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/docs/reference/android/com/google/firebase/firestore/WriteBatch
https://firebase.google.com/docs/reference/android/com/google/firebase/firestore/WriteBatch
https://firebase.google.com/docs/reference/android/com/google/firebase/firestore/WriteBatch
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore/query-data/queries?hl=it#compound_and_queries
https://firebase.google.com/docs/firestore/query-data/queries?hl=it#compound_and_queries
https://firebase.google.com/docs/rules
https://firebase.google.com/docs/rules
https://dev.fitbit.com/build/reference/web-api
https://flutter.dev/
https://flutter.dev/
https://pub.dev/packages/get_it
https://pub.dev/packages/get_it
https://pub.dev/packages/dio
https://pub.dev/packages/dio

BIBLIOGRAFIA

[21]

[22]

[23]

[24]

fluttercommunity.dev. workmanager | Flutter package. Ver. 0.9.043. 2025.
URL: https://pub.dev/packages/workmanager.

Alessandro Frangioni. Linee Guida per Un Buon Flat Design. Set. 2014.
URL: https://medium.com/provami/linee—-guida—-per—un-
buon-flat-design-5a692c9b65ff (visitato il giorno 23/10/2025).

Benjamin Gardner, P. Lally e J. Wardle. “Making Health Habitual: The
Psychology of “Habit-Formation” and General Practice”. In: British Journal
of General Practice 62.605 (dic. 2012), pp. 664—666. DOI: 10 . 3399 /
bjgpl2x659466.

Inc. GitHub. GitHub Actions Documentation. Documentazione ufficiale di
GitHub Actions, per la configurazione di workflow automatizzati. 2025.
URL: https://docs.github.com/en/actions (visitato il giorno
24/10/2025).

Global Wellness Institute. 2024 Global Wellness Economy Monitor. Re-

search Report. Global Wellness Institute, 2024. URL: https://globalwellnessinstit

org/industry—research/2024-global-wellness—economy -+
monitor/.

GWI. Health € Wellbeing Report: Lifestyles, Fitness € Health Brands. 2019.
URL: https://www.gwi.com/reports/health—-and-wellbeing
(visitato il giorno 23/10,/2025).

JohnFitbit. API limits for huge data requirements. Discussione ufficiale
nella community di Fitbit riguardante i limiti delle API per grandi volumi di
dati. 2024. URL: https://community.fitbit.com/t5/Web—-API-
Development /API-1limits—- for—-huge—data—-requirements/
td-p/5598375#:~:text=The%$20rate%201imit%$201is%20150),
prer%20hours2C%20not%20pers20client.

Mikyung Lee et al. “Mobile App-Based Health Promotion Programs: A
Systematic Review of the Literature”. In: International Journal of En-
vironmental Research and Public Health 15.12 (dic. 2018), p. 2838. DOI:
10.3390/1jerphl15122838L URL: https://www.ncbi.nlm.nihl\
gov/pmc/articles/PMC6313530/.

LogRocket. State management in Flutter using the BLoC design pattern.
Descrive il flusso in tre fasi dell’architettura BLoC: invio di eventi dalla UI,
elaborazione nel BLoC e aggiornamento dello stato nella Ul tramite stream.
2025. URL: https://blog.logrocket.com/state-management -+
flutter-bloc-pattern/ (visitato il giorno 24/10/2025).

65

https://pub.dev/packages/workmanager
https://medium.com/provami/linee-guida-per-un-buon-flat-design-5a692c9b65ff
https://medium.com/provami/linee-guida-per-un-buon-flat-design-5a692c9b65ff
https://doi.org/10.3399/bjgp12x659466
https://doi.org/10.3399/bjgp12x659466
https://docs.github.com/en/actions
https://globalwellnessinstitute.org/industry-research/2024-global-wellness-economy-monitor/
https://globalwellnessinstitute.org/industry-research/2024-global-wellness-economy-monitor/
https://globalwellnessinstitute.org/industry-research/2024-global-wellness-economy-monitor/
https://www.gwi.com/reports/health-and-wellbeing
https://community.fitbit.com/t5/Web-API-Development/API-limits-for-huge-data-requirements/td-p/5598375#:~:text=The%20rate%20limit%20is%20150,per%20hour%2C%20not%20per%20client
https://community.fitbit.com/t5/Web-API-Development/API-limits-for-huge-data-requirements/td-p/5598375#:~:text=The%20rate%20limit%20is%20150,per%20hour%2C%20not%20per%20client
https://community.fitbit.com/t5/Web-API-Development/API-limits-for-huge-data-requirements/td-p/5598375#:~:text=The%20rate%20limit%20is%20150,per%20hour%2C%20not%20per%20client
https://community.fitbit.com/t5/Web-API-Development/API-limits-for-huge-data-requirements/td-p/5598375#:~:text=The%20rate%20limit%20is%20150,per%20hour%2C%20not%20per%20client
https://doi.org/10.3390/ijerph15122838
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313530/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313530/
https://blog.logrocket.com/state-management-flutter-bloc-pattern/
https://blog.logrocket.com/state-management-flutter-bloc-pattern/

BIBLIOGRAFIA

[26]

[30]

[31]

[32]

Microsoft. Data binding e MV VM. Descrive come il data binding consenta
di sincronizzare automaticamente i dati tra il ViewModel e la View, miglio-
rando la separazione delle preoccupazioni e la manutenibilita del codice.
2023. URL: https://learn.microsoft.com/it—-it /windows/
uwp/data-binding/data-binding-and-mvvm (visitato il giorno
24/10/2025).

Gleb Morgachev. Why does React Native have performance issues? Analisi
delle problematiche del “bridge” in React Native: il layer di comunicazione
tra JS e moduli nativi puo introdurre latenza e colli di bottiglia. Product
Science Al. 2022. URL: https://medium.com/product—-science-
ai/why—-does—react —native—have-performance—-issues -
22494d3447ca (visitato il giorno 24/10/2025).

Jakob Nielsen. 10 Usability Heuristics for User Interface Design. Nielsen
Norman Group. 1994. URL: https://www.nngroup.com/articles/
ten-usability-heuristics/| (visitato il giorno 24/10/2025).

Ninja Marketing. Utili consigli per sviluppare la strategia di onboarding mo-
bile. Articolo che descrive 'importanza dell’onboarding mobile e segnala che
oltre I'80% delle applicazioni viene eliminata dopo il primo impiego. Ninja
Marketing. 2017. URL: https://www.ninja.it/utili-consigli-—
per—-sviluppare-strategia—-onboarding-mobile/| (visitato il
giorno 24,/10/2025).

OWASP Foundation. OWASP Application Security Verification Standard
(ASVS) 4.0.3. V5.1 Input Validation. 2019. URL: https : //owasp .
org/www-project —application-security-verification-+
standard/| (visitato il giorno 24/10/2025).

Inc. Shorebird. Shorebird Documentation. Documentazione ufficiale di Sho-
rebird, strumento per distribuzione OTA e gestione pipeline Flutter. 2025.
URL: https://docs.shorebird.dev/ (visitato il giorno 24/10/2025).

Nidhi Sorathiya e Ashok Sisara. Fxploring the Capabilities of Flutter Re-
flectable. Descrive come il pacchetto Flutter Reflectable consenta 1'uso della
riflessione in tempo di esecuzione attraverso la generazione di codice, supe-
rando le limitazioni di performance e dimensione tipiche delle applicazioni
mobili. 2025. URL: https://www.dhiwise.com/post/exploring-
the-capabilities-of-flutter-reflectable| (visitato il giorno
24/10/2025).

Muhammad Sufiyan. MVVM: Officially Recommended by Google for Flut-
ter Development. Articolo che discute ’adozione ufficiale dell’architettu-
ra MVVM da parte di Google per lo sviluppo di applicazioni Flutter,

66

https://learn.microsoft.com/it-it/windows/uwp/data-binding/data-binding-and-mvvm
https://learn.microsoft.com/it-it/windows/uwp/data-binding/data-binding-and-mvvm
https://medium.com/product-science-ai/why-does-react-native-have-performance-issues-22494d3447ca
https://medium.com/product-science-ai/why-does-react-native-have-performance-issues-22494d3447ca
https://medium.com/product-science-ai/why-does-react-native-have-performance-issues-22494d3447ca
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.ninja.it/utili-consigli-per-sviluppare-strategia-onboarding-mobile/
https://www.ninja.it/utili-consigli-per-sviluppare-strategia-onboarding-mobile/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://docs.shorebird.dev/
https://www.dhiwise.com/post/exploring-the-capabilities-of-flutter-reflectable
https://www.dhiwise.com/post/exploring-the-capabilities-of-flutter-reflectable

BIBLIOGRAFIA

evidenziandone i vantaggi in termini di manutenibilita e separazione del-
le responsabilita. 2024. URL: https://medium.com/@ksufi7350/
mvvm—officially—-recommended-by—-google—-for—-flutter—
development-bal7£899d320 (visitato il giorno 24/10/2025).

67

https://medium.com/@ksufi7350/mvvm-officially-recommended-by-google-for-flutter-development-ba17f899d320
https://medium.com/@ksufi7350/mvvm-officially-recommended-by-google-for-flutter-development-ba17f899d320
https://medium.com/@ksufi7350/mvvm-officially-recommended-by-google-for-flutter-development-ba17f899d320

	Elenco delle figure
	Introduzione
	Progettazione della UI/UX
	Software Utilizzato
	Onboarding
	Home
	Schermata specifica di un ambito
	Schermata Metrica
	Tips
	Lessons
	Settings

	Scelte Implementative
	Scelta delle Tecnologie
	Flutter
	Firebase

	Scelte progettuali del Frontend
	Architettura
	Dependency Injection
	Struttura del progetto

	Backend
	Schema del Database
	Organizzazione del modello nel database NoSQL
	Problema delle query dipendenti da più campi

	Frontend
	Servizi
	1 - AuthService
	2 - UserService
	3 - HealthService
	4 - FitbitService
	5 - SynchronizationService
	6 - FoodService
	7 - MoodService
	8 - LessonService
	9 - RecommenderService
	Servizi Restanti

	Repository
	HealthRepository
	1 - Metodi per ottenere i dati sanitari
	2 - Metodi di sincronizzazione

	ViewModel
	Calcolo dei punteggi per i vari ambiti
	Algoritmi per il Calcolo dei Punteggi di Benessere
	Punteggio dell'Attività Fisica (Activity Score)
	Punteggio Umore (Mood Score)
	Punteggio Sonno (Sleep Score)

	View
	Notifica giornaliera

	Sicurezza
	Regole di Sicurezza
	Sicurezza Lato Client (Bearer Token)

	Conclusione e Piani Futuri
	Conclusione
	Criticità e Limitazioni Attuali

	Piani Futuri

	Bibliografia

