
Politecnico di Torino

Computer Engineering LM-32
Academic Year 2024/2025

Graduation Session December 2025

Knowledge Graph-Guided and
LLM-Based Semantic

Communication for Challenging
Edge Networks

Supervisors:
Alessio Sacco
Guido Marchetto

Candidate:
Ten. Loris Bacaloni

Abstract

Traditional wireless communication systems, based on Shannon’s information theory,
are designed to ensure that every transmitted bit is received exactly as sent. This
bit-level accuracy is efficient when channels are stable and bandwidth is enough,
but it becomes inefficient in real environments where noise, fading, interference, or
low bandwidth can distort signals. In many modern applications, such as Internet
of Things (IoT) sensors, unmanned aerial vehicles (UAVs), or edge computing
nodes, what truly matters is the meaning of the message.

Semantic communication aligns perfectly with this shift in focus, which transi-
tions from bit accuracy to message preservation. Instead of sending every word or
symbol, the system seeks to transmit an encoded compact representation of the
underlying meaning, which can then be reconstructed at the receiver using shared
models of language and knowledge.

Our work proposes an end-to-end semantic communication framework for text
that integrates two complementary technologies. The first is the Knowledge Graph
(KG), a structured network that represents entities and the relationships between
them, capturing the essential semantic structure. The second component is a Large
Language Model (LLM), trained to understand and generate natural language
and capable of encoding and reconstructing the semantics of a message. KGs
offer structured semantic grounding while LLMs handle contextual encoding and
decoding, enabling efficient meaning transmission under bandwidth or noise limits.

At the transmitter, a natural-language processing pipeline, based on spaCy (a
widely used industrial NLP toolkit) and OpenIE (Open Information Extraction),
analyzes input sentences to extract their main entities, relations, and summary
statements. The result is a set of triples that form a Knowledge Graph repre-
sentation. A sequence-to-sequence (seq2seq) encoder, such as T5 or BART, then
performs semantic compression, transforming the text into a compact sequence of
tokens and their contextual embeddings.

This encoded representation is sent over a wireless channel affected by typical
physical-layer damages such as fading (signal weakening due to movement or
obstacles), multipath propagation (the signal taking multiple paths and arriving
at different times), additive white Gaussian noise (AWGN), and interference from
other devices. These defects can corrupt the transmitted sequence, challenging the
receiver to recover meaning despite distortion.

On the receiver side, a two-phase semantic decoder reconstructs the message.
First, the same LLM used at the transmitter tries to rebuild the original message
by predicting the most likely words from the received, possibly corrupted, tokens

or embeddings. Then, a BERT-based masked-language model refines the output,
validating and correcting uncertain words using contextual reasoning.

We evaluate our system on a sentiment analysis dataset (SST-2) across different
signal-to-noise ratio (SNR) levels, testing both the quality of semantic reconstruction
and its robustness to transmission errors. We also perform ablation studies to
assess the KG’s impact, transmission mode, and decoder configuration. The results
show that this KG-LLM hybrid framework reduces transmitted data size while
maintaining high semantic fidelity under channel deterioration. This shows that
transmitting meaning, rather than raw bits, can achieve a more efficient, resilient,
and context-aware communication process.

ii

Table of Contents

List of Tables vii

List of Figures viii

Glossary x

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Objectives and Contributions 3
1.3 Thesis Outline . 4

2 Related works 6
2.1 Early Deep Learning-Based Semantic Communication 6
2.2 LLM-Enabled Semantic Transmission 8
2.3 Knowledge Graph Integration . 10
2.4 Towards our proposed framework 13

3 Theoretical Background 15
3.1 Semantic Representations for Text Communication 15

3.1.1 Symbolic vs. Semantic Transmission 16
3.1.2 Semantic Representations for Textual Data 17
3.1.3 Hybrid Semantic Representations 18

3.2 Knowledge Graphs and Relation Extraction 20
3.2.1 Fundamentals of Knowledge Graphs 20
3.2.2 Open Information Extraction (OpenIE) 21
3.2.3 Dependency Parsing and Pattern-Based Extraction 22
3.2.4 Triples as Units of Semantic Compression 23

3.3 Transformer-Based Semantic Encoding 24
3.3.1 The Transformer Architecture 24
3.3.2 Sequence-to-Sequence Encoding for Text 27
3.3.3 Token-Based vs. Embedding-Based Semantic Representations 28

iv

3.3.4 Semantic Compression and Robustness 29
3.4 Wireless Channel Models for Semantic Communication 30

3.4.1 Intuitive View of Wireless Channels and Noise 30
3.4.2 Discrete and Continuous Encoded Signals 32
3.4.3 Impact on Token- and Embedding-Based Semantic Represen-

tations . 32
3.5 Semantic Decoding and Refinement 34

3.5.1 Semantic Decoder Based on T5 and BART 34
3.5.2 Masked Language Modelling with BERT 36

4 System Design and Architecture 39
4.1 Overview of the Proposed Framework 39

4.1.1 Mapping Between Theory and Implementation 40
4.1.2 Software Stack and Code Organization 41
4.1.3 Design Assumptions and Constraints 41
4.1.4 End-to-End KG-LLM Semantic Communication Algorithm . 42

4.2 Phase 1 – Semantic Preprocessing and Knowledge Extraction 42
4.2.1 Module Overview and I/O Contract 44
4.2.2 Entropy-Based Sentence Analysis 45
4.2.3 Hybrid Triple Extraction with OpenIE and spaCy 45
4.2.4 Triple Consolidation and Knowledge Graph Construction . . 46
4.2.5 Example Knowledge Graphs 47
4.2.6 Configurable Parameters and Design Choices 48

4.3 Phase 2 – LLM-Based Semantic Encoding 49
4.3.1 Encoder Architecture and Model Configuration 49
4.3.2 Encoding Pipeline and Token Merging 50
4.3.3 Embedding Extraction for Continuous Transmission 51
4.3.4 Configurable Parameters and Design Choices 51

4.4 Phase 3 – Semantic Decoding and Contextual Refinement 52
4.4.1 Module Overview and I/O Contract 52
4.4.2 Pre-processing and Error Masking 53
4.4.3 Initial LLM-Based Reconstruction 54
4.4.4 BERT-Based Refinement . 55
4.4.5 Configurable Parameters and Design Choices 55

5 Experimental Evaluation 57
5.1 Evaluation Goals and Research Questions 57
5.2 Experimental Setup . 58

5.2.1 Dataset . 58
5.2.2 Model and Pipeline Configurations 59
5.2.3 Wireless Channel Implementation 61

v

5.3 Evaluation Metrics . 62
5.3.1 Channel-Level Metrics . 63
5.3.2 Textual and Semantic Metrics 64
5.3.3 Compression and Bandwidth Metrics 65

5.4 Results and Analysis . 66
5.4.1 Semantic Quality vs SNR 66
5.4.2 Compression and Bandwidth Results 69

5.5 Discussion . 71

6 Conclusions 74

Bibliography 77

vi

List of Tables

3.1 Symbolic vs. semantic transmission in text communication. 17
3.2 Comparison between token-based and embedding-based semantic

representations. 29
3.3 Impact of wireless channel impairments on discrete vs. continuous

semantic representations. 33

vii

List of Figures

1.1 Classical Shannon-Weaver communication model [1], depicting the
linear transmission process from source to destination through a
noisy channel. 2

1.2 Three-layer communication framework proposed, illustrating the
transition from syntactic to semantic and pragmatic information
exchange. Source: [2] . 3

2.1 The system model for speech transmission. Source: [3] 7
2.2 GAN high-level architecture for image transmission using semantic

communication. Source: [4] . 7
2.3 LLM-SC, an innovative LLM-enabled semantic communication sys-

tem framework. Source: [5] . 8
2.4 A framework enabling LLM-based semantic communication in Edge-

based IoT system from [7]. 9
2.5 Overview of [9]: the structure of the proposed semantic communica-

tion system based on the knowledge graph. 10
2.6 LLM-driven pipeline for automatic knowledge graph construction

and semantic update. [10] . 11
2.7 Knowledge-enhanced receiver proposed by [11]. 12
2.8 The framework of KG-SemCom. [12] 13

3.1 Conceptual illustration of hybrid semantic representations for text. 19
3.2 Conceptual pipeline for knowledge graph construction from text. . . 24
3.3 High-level encoder-decoder transformer architecture for sequence-to-

sequence tasks. Source [26]. 25
3.4 Conceptual view of a transformer-based encoder-decoder model for

text. 26
3.5 Schematic view of the T5 encoder-decoder architecture. Source [30]. 27
3.6 High-level architecture of BART. Source [31]. 28
3.7 Example of a baseband signal (blue) corrupted by additive white

Gaussian noise (orange). Source: [34]. 31

viii

3.8 Simplified baseband chain for a noisy wireless channel. Source: [8]. . 34
3.9 Illustration of BERT in a masked language modelling setup. Source [35]. 36
3.10 Two-stage semantic decoding pipeline. 38

4.1 High-level block diagram of the proposed KG-LLM semantic com-
munication pipeline. 40

4.2 Sentence-level knowledge graphs produced by Phase 1 for a positive
(left) and a negative (right) sentiment-bearing sentence. 47

4.3 Sentence-level knowledge graphs produced by Phase 1 for a complex
sentence (left) and a comparative sentence (right). 48

5.1 BLEU score (%) vs SNR for token-based and embedding-based
transmission. 66

5.2 ROUGE-L score (%) vs SNR for token-based and embedding-based
transmission. 67

5.3 METEOR score (%) vs SNR for token-based and embedding-based
transmission. 67

5.4 BERTScore F1 (%) vs SNR for token-based and embedding-based
transmission. 67

5.5 Sentence-level cosine similarity (%) vs SNR for token-based and
embedding-based transmission. 68

5.6 Compression ratio of KG-LLM vs vanilla baselines on the SST-2
validation set (lower is better). 70

5.7 Estimated total bandwidth (KB) required by KG-LLM and vanilla
models in token-based and embedding-based transmission. 70

ix

Glossary

AMR
Abstract Meaning Representation

AWGN
Additive White Gaussian Noise

BART
Bidirectional and Auto-Regressive Transformer

BERT
Bidirectional Encoder Representations from Transformers

BERTScore
BERTScore similarity metric

BER
Bit Error Rate

BLEU
Bilingual Evaluation Understudy

DL
Deep Learning

FEC
Forward Error Correction

IoT
Internet of Things

x

KG
Knowledge Graph

LLM
Large Language Model

MLM
Masked Language Modelling

METEOR
Metric for Evaluation of Translation with Explicit Ordering

MSE
Mean Squared Error

NER
Named Entity Recognition

NLP
Natural Language Processing

OIE
Open Information Extraction

OWL
Web Ontology Language

POS
Part-of-Speech tagging

QAM
Quadrature Amplitude Modulation

QPSK
Quadrature Phase Shift Keying

RAG
Retrieval-Augmented Generation

xi

RDF
Resource Description Framework

ROUGE-L
ROUGE-L text similarity metric

SBERT
Sentence-BERT model

SER
Symbol Error Rate

SNR
Signal-to-Noise Ratio

SPO
Subject-Predicate-Object triple

SST-2
Stanford Sentiment Treebank v2 dataset

T5
Text-to-Text Transfer Transformer

TER
Token Error Rate

UAV
Unmanned Aerial Vehicle

xii

Chapter 1

Introduction

1.1 Background and Motivation

The exponential increase in connected devices and the diffusion of edge computing
have deeply transformed the communication landscape. Modern networks must
support a growing number of heterogeneous nodes, from IoT sensors to autonomous
aerial vehicles, that operate under strict constraints of bandwidth, latency, and
energy consumption.

In these contexts, the traditional approach to data transmission, grounded in
Shannon’s information theory, reveals intrinsic limitations. Its objective of ensuring
bit-level accuracy, guaranteeing that each bit received matches the transmitted one,
is efficient only in ideal conditions. When the wireless channel is affected by noise,
fading, or interference, the cost of preserving perfect fidelity becomes prohibitive and
misaligned with the true purpose of communication, the transmission of meaning.

This observation recalls the theoretical foundation established by Claude Shan-
non and Warren Weaver in their seminal work, The Mathematical Theory of
Communication [1]. Their model, as depicted in Figure 1.1, formalized the commu-
nication process as a linear chain composed of an information source, a transmitter
(or encoder), a channel affected by noise, a receiver (or decoder), and a destination.
At its core, Shannon’s formulation introduced a quantitative measure of information,
entropy, and defined the goal of communication as the accurate transmission of
symbols through a noisy medium. Weaver later articulated that communication
can be viewed at three distinct levels: the technical problem of symbol accuracy,
the semantic problem of meaning, and the effectiveness or pragmatic problem
concerning the influence of messages on behavior. However, the mathematical
theory itself deliberately addressed only the first level, focusing on the engineering
challenge of reproducing signals faithfully, while explicitly excluding semantics as
“irrelevant to the engineering problem.”

1

Introduction

Figure 1.1: Classical Shannon-Weaver communication model [1], depicting the
linear transmission process from source to destination through a noisy channel.

Decades later, Xin, Fan, and Letaief [2] revisited and expanded this perspective,
bridging Shannon’s conceptual intuition with the mathematical formalization of
meaning in communication systems. Their work establishes the foundations of
a semantic information theory and proposes a three-layer communication
framework (technical (syntactic), semantic, and pragmatic) that quantifies not
only signal accuracy, but also meaning preservation and task effectiveness.

At the technical level, the focus lies on the accurate transmission of symbols
through the channel, as originally formulated by Shannon. The semantic level
extends this notion by emphasizing the correct interpretation of meaning, ensuring
that the receiver reconstructs the same intent or message semantics as the sender.
Finally, the pragmatic level considers the effectiveness and usefulness of the
conveyed information for the specific task or decision-making process of the receiver.

This hierarchical view, illustrated in Figure 1.2, clarifies how semantic commu-
nication operates above the syntactic layer: successful transmission is no longer
defined by perfect bit matching, but by the preservation of shared meaning and
communicative intent between agents.

2

Introduction

Figure 1.2: Three-layer communication framework proposed, illustrating the tran-
sition from syntactic to semantic and pragmatic information exchange. Source: [2]

In this context, the convergence of semantic theory and artificial intelligence has
revitalized the study of communication, allowing machines to encode, interpret,
and reconstruct meaning rather than mere symbols. This evolution paves the way
toward intelligent, context-aware, and resource-efficient communication systems,
which will be further explored in the following sections.

1.2 Research Objectives and Contributions
Recent research demonstrates that semantic communication can be effectively
realized by leveraging advances in deep learning and natural language processing.
In particular, Large Language Models (LLMs), built on transformer architectures,
have shown remarkable abilities in understanding, compressing, and reconstruct-
ing natural language, capturing semantic dependencies that can be transmitted
compactly while retaining meaning. In parallel, Knowledge Graphs (KGs) provide
structured and interpretable representations of knowledge, grounding semantic
content through a network built of explicit entities and relations. Their integration
complements the contextual reasoning of LLMs with factual consistency, enabling
a hybrid model for meaning-centered communication.

Building upon these directions, this thesis aims to design, implement, and
evaluate a Knowledge Graph-guided and LLM-based semantic communication system
capable of transmitting meaning efficiently over noisy or bandwidth-limited wireless
channels. The proposed system operates through two transmission modes (token-
based and embedding-based) allowing a comparative analysis between discrete and
continuous representations under varying SNR conditions. Experimental evaluation
is performed on the SST-2 dataset, including ablation studies to assess the impact
of KG integration and decoder configurations.

3

Introduction

The main scientific and technical contributions of this work can be summarized
as follows:

• End-to-end modular pipeline: integrating semantic preprocessing, ab-
stractive LLM encoding, physical-layer wireless transmission, and semantic
decoding with refinement.

• Hybrid knowledge extraction mechanism: combining Stanford OpenIE
and spaCy dependency parsing to ensure robust triplet generation even from
unstructured text.

• Dual-mode transmission framework: supporting both token-based and
embedding-based communication, enabling controlled trade-offs between com-
pression and robustness.

• Comprehensive benchmarking: performed under realistic wireless con-
ditions (Rayleigh fading, AWGN), evaluated through both physical metrics
(compression ratio and bandwidth) and semantic metrics (BLEU, ROUGE,
METEOR, BERTScore, Sentence similarity).

Through these objectives and contributions, the thesis demonstrates that trans-
mitting meaning rather than bits leads to higher semantic fidelity and reduced
transmission overhead, paving the way toward resilient and context-aware commu-
nication in constrained edge-network scenarios.

1.3 Thesis Outline
The remainder of this work is organized as follows:

• Chapter 2 – Related Works: presents a review of existing semantic
communication research, from early neural approaches to LLM- and KG-based
systems, identifying current limitations and motivation for this study.

• Chapter 3 – Theoretical Background: introduces the theoretical founda-
tions of the thesis, covering semantic representations for text communication,
knowledge graphs and relation extraction, transformer-based sequence-to-
sequence models, and wireless channel models.

• Chapter 4 – System Design and Architecture: details the proposed
framework, describing each stage of the pipeline from knowledge extraction
and semantic encoding to decoding with contextual refinement.

4

Introduction

• Chapter 5 – Experimental Evaluation: discusses datasets, configurations,
and results across various SNR scenarios, highlighting the effects of KG
integration, transmission mode (token-based vs. embedding- based), and
different model configurations.

• Chapter 6 – Conclusions: summarizes the contributions and key takeaways
of the thesis, discusses current limitations, and outlines directions for future
research.

5

Chapter 2

Related works

Throughout the years, several directions have emerged in the development of
semantic communication systems, each contributing different perspectives and
solutions. The purpose of this chapter is to present a comprehensive overview of
these research trajectories, analyzing their evolution, methodologies, and main
findings. By reviewing these contributions, it becomes possible to highlight how
each approach addresses the key challenges of modern wireless environments.

This analysis is organized into the following sections:

• Early deep learning-based semantic communication;

• LLM-enabled semantic transmission;

• Knowledge Graph Integration;

• Towards our proposed framework.

2.1 Early Deep Learning-Based Semantic Com-
munication

Early research in semantic communication primarily explored the use of deep
learning encoders and decoders capable of retaining the meaning relevant to the
specific task. Han et al. [3] pioneered a semantic speech transmission model
that optimized both communication and comprehension processes through a deep
learning (DL) based transceiver, demonstrating strong resilience against channel
noise. Figure 2.1 illustrates their model.

6

Related works

Figure 2.1: The system model for speech transmission. Source: [3]

Lokumarambage et al. [4] extended these concepts to the visual domain by
designing an end-to-end semantic image transmission system, where convolutional
encoders represented high-level semantic features rather than pixel-level details and
a Generative Adversarial Networks (GAN) is used at the receiver as the transmission
task to reconstruct the realistic image. The overall architecture is illustrated in
Figure 2.2.

Figure 2.2: GAN high-level architecture for image transmission using semantic
communication. Source: [4]

These early efforts collectively established the foundations of semantic repre-
sentation learning as a cross-modal principle applicable to text, speech, and image
data.

7

Related works

2.2 LLM-Enabled Semantic Transmission
With the advent of transformer architectures, Large Language Models (LLMs) have
become central to semantic communication, especially for textual data. Their ability
to capture contextual dependencies and generate meaning-aware representations
makes them a natural fit for transmitting semantics rather than symbols over noisy
wireless channels.

Wang et al. [5] first demonstrate the integration of large language models directly
into the physical layer of semantic communication systems. In their work, the
authors proposed an LLM-enabled text transmission framework in which
both encoding and decoding are performed through prompt-based interactions
with a pre-trained generative model. Like depicted in Figure 2.3, his approach
effectively replaces conventional source and channel coding modules with a single
process capable of producing compressed semantic representations of sentences.
Their findings established the conceptual feasibility of leveraging LLMs as implicit
encoders and decoders, opening the path to hybrid architectures that combine
linguistic reasoning with structured semantic grounding.

Figure 2.3: LLM-SC, an innovative LLM-enabled semantic communication system
framework. Source: [5]

Building on this foundation, Chen et al. [6] further advanced the paradigm of
LLM-driven semantic communication by introducing a hybrid architecture that
combines structured knowledge representation and retrieval-augmented
generation (RAG). Unlike earlier purely neural systems, their framework encodes
messages as semantic triples (subject, predicate, and object) explicitly capturing
relational meaning within transmitted content. These structured representations
are then processed through an LLM-based generative model that reconstructs
messages at the receiver side while leveraging external knowledge retrieval for
contextual consistency. Moreover, by integrating retrieval mechanisms, the model
supports personalization and adaptive decoding based on user context, marking a

8

Related works

step toward general-purpose semantic communication systems.

Although these works primarily emphasize accuracy and interpretability, subse-
quent studies have begun to address the computational and deployment challenges
of LLMs in constrained environments. In this regard, Kalita [7] explored the
application of large language models in resource-constrained edge environments,
focusing on how semantic communication principles can enhance the efficiency of
IoT networks. The study proposed an edge-based semantic communication
architecture where lightweight LLMs are deployed at edge nodes to perform local
semantic encoding and interpretation, thereby reducing the volume of data that
must be transmitted to centralized servers. Figure 2.4 presents the proposed edge-
based semantic architecture, illustrating the interaction between local lightweight
LLM agents and the cloud-level semantic controller.

Figure 2.4: A framework enabling LLM-based semantic communication in Edge-
based IoT system from [7].

Finally, Salehi et al. [8] proposed an LLM-enabled end-to-end semantic
communication pipeline that fully integrates large language models into both the
transmission and reconstruction stages. Their framework models the communication
process as a continuous semantic transformation: the transmitter converts source
text into a latent semantic representation through an instruction-based LLM prompt,
which is then modulated and transmitted over a noisy channel. At the receiver
side, another LLM reconstructs the message and performs semantic validation
and refinement via post-decoding consistency checks, ensuring that the recovered
output aligns with the original intent rather than its literal form. These studies
collectively highlight the potential of LLMs to perform semantic-aware compression
and reconstruction.

9

Related works

2.3 Knowledge Graph Integration
Parallel to LLM advancements, Knowledge Graphs (KGs) have emerged as a crucial
component for improving context grounding and disambiguation. Jiang et al. [9] pro-
posed one of the earliest frameworks that explicitly integrates structured knowledge
into the semantic communication process. Their KG-based semantic communi-
cation system converts each sentence into a set of subject-predicate-object triplets,
which are then transmitted according to their relative semantic importance, by
assigning higher transmission priority and energy allocation to critical triplets under
adverse channel conditions. Furthermore, the receiver reconstructs the message
using KG reasoning, effectively compensating for missing or corrupted information.
Figure 2.5 illustrates this workflow, highlighting the semantic extraction module,
traditional communication architecture, and semantic restoration module.

Figure 2.5: Overview of [9]: the structure of the proposed semantic communication
system based on the knowledge graph.

Guo et al. [10] and Wang et al. [11] proposed complementary approaches toward
integrating structured knowledge into semantic communication systems.

Specifically, Guo et al. developed a large language model-driven knowledge
graph construction scheme designed for task-oriented semantic communication.
Their framework leverages the generative and contextual reasoning capabilities of
LLMs to automate the entire KG construction pipeline, from corpus collection and
entity extraction to relation identification and incremental updates. By contin-
uously refining entity–relation triples through dynamic learning, their approach
ensures high recall and adaptability across communication scenarios, effectively

10

Related works

aligning transmitted semantics with domain-specific knowledge structures. Fig-
ure 2.6 conceptually depicts this process, showing how an LLM-driven mechanism
automates KG generation and updates through iterative learning.

Figure 2.6: LLM-driven pipeline for automatic knowledge graph construction and
semantic update. [10]

11

Related works

In contrast, Wang et al. introduced a knowledge-enhanced semantic com-
munication receiver in which the decoding process is guided by factual triples
retrieved from an external knowledge base. As visualized in Figure 2.7, their model
performs semantic reasoning over these structured relations to infer missing or
corrupted contextual elements during message reconstruction.

Figure 2.7: Knowledge-enhanced receiver proposed by [11].

Taken together, these studies demonstrate that structured knowledge inte-
gration can substantially enhance semantic consistency, contextual understanding,
and robustness to distortion. This dual perspective directly motivates the hybrid
approach proposed in the present work, where Knowledge Graph reasoning and
LLM-based contextual encoding are jointly exploited within a unified end-to-end
framework.

Later, Liang et al. [12] further advanced the integration of knowledge graphs
into semantic communication by proposing the KG-SemCom framework, which
explicitly aligns KG entities with message tokens and encodes information through
a semantic fusion of contextual and knowledge-based representations. During
decoding, KG-SemCom leverages relational logic and entity attributes to infer
incomplete or distorted segments, effectively improving semantic recovery under
low-SNR or noisy environments. Figure 2.8 summarizes this fusion architecture,
illustrating how contextual embeddings and KG entities are combined into a unified
semantic representation.

12

Related works

Figure 2.8: The framework of KG-SemCom. [12]

Building on these foundations, in addition to what said before, Salehi et al. [8]
combined KG extraction with LLM-based encoding and decoding, achieving notable
data compression while preserving semantic similarity.

2.4 Towards our proposed framework
The framework proposed in this study couples KG-based semantic grounding
with LLM-driven encoding and decoding, establishing a coherent semantic layer
resilient to channel defects such as fading and noise. Unlike earlier symbolic
or token-only systems, it introduces a dual-mode architecture, token-based and
embedding-based, that enables nice degradation across SNR regimes. Additionally,
the model incorporates subword merging to mitigate semantic fragmentation and
compares multiple transformer architectures (T5 and BART) within the same
decoding pipeline.

A further innovation lies in the triplet extraction stage: the system first attempts
knowledge extraction using Stanford OpenIE, providing accurate semantic triples
directly from syntactic dependencies; if the OpenIE parser fails or yields incom-
plete results, a spaCy-based fallback module generates triples through predefined
linguistic patterns, ensuring robust coverage across heterogeneous text inputs.

Collectively, these innovations address three central challenges identified in prior
literature:

• Semantic drift during noisy transmission, mitigated through LLM-guided
reconstruction and BERT-based refinement;

13

Related works

• Robustness under Rayleigh fading, tested via the dual token- and
embedding-based transmission modes that ensure graceful degradation across
SNR regimes;

• Knowledge extraction reliability, strengthened by the hybrid combination
of OpenIE and spaCy triplet extraction pipeline, which ensures consistent
graph quality even when confronted with unstructured or syntactically irregular
input.

As a result, the proposed approach delivers a bandwidth-efficient and resilient
semantic communication architecture, explicitly designed for constrained wireless
environments where both meaning preservation and data compression are essential.

14

Chapter 3

Theoretical Background

While Chapter 1 motivates the shift from bit-level reliability to meaning preservation
in modern wireless systems, and Chapter 2 reviews existing semantic communication
architectures, this chapter introduces the theoretical foundations that underpin the
framework proposed in this thesis.

The goal is to formalize the main semantic representations and models used in
the subsequent system design and implementation. In particular, we focus on five
core elements:

1. semantic representations for textual data;

2. knowledge graphs and relation extraction;

3. transformer-based sequence-to-sequence (seq2seq) models;

4. wireless channel models relevant to semantic communication;

5. semantic decoding and contextual refinement.

Throughout the chapter, we distinguish between symbolic communication, where
success is defined by the accurate reconstruction of symbols, and semantic communi-
cation, where success is measured by the preservation of meaning, task performance,
or both [2, 13].

3.1 Semantic Representations for Text Commu-
nication

The central object considered in this thesis is a short text sequence, such as a
sentence from a sentiment analysis dataset. From the perspective of classical
information theory, this sequence is treated as a string of discrete symbols to be

15

Theoretical Background

transmitted as faithfully as possible over a noisy channel. In semantic commu-
nication, the same sequence is viewed as a carrier of meaning, which may admit
multiple equivalent textual realizations.

This section clarifies the distinction between symbolic and semantic transmission,
introduces semantic representations for textual data, and discusses hybrid repre-
sentations that combine symbolic, structured, and distributed views of meaning.

3.1.1 Symbolic vs. Semantic Transmission
In the classical Shannon model [1], a communication system is defined by an encoder
f and a decoder g operating on a message random variable S. The encoder maps
S into a channel input sequence X = f(S), which is transmitted through a noisy
channel producing an output Y . The decoder then outputs an estimate Ŝ = g(Y)
of the original message. The design objective is to minimize the probability of
symbol-level error:

min
f,g

P
è
Ŝ /= S

é
, (3.1)

or equivalently to maximize the reliable transmission rate under constraints on
bandwidth and power.

In this technical or syntactic view, two sentences are considered different as soon
as they differ in at least one symbol, regardless of whether they convey the same
meaning. For instance, the pair

“The movie was great.” vs. “I really enjoyed the film.”
would be regarded as a decoding error despite having nearly identical semantic
content.

Semantic communication reframes the problem by explicitly introducing a
random variable M representing the meaning, intent, or task-relevant information
associated with the observed sentence S [2]. The mapping

π : S →M

may represent, for example, a latent semantic representation, a set of logical
propositions, a point in an embedding space, or the label of a downstream task
(such as sentiment). At the receiver, the goal becomes the accurate reconstruction
of M̂ rather than the exact recovery of S.

A generic semantic distortion measure can then be defined as
dsem(M, M̂) = 1− σsem(M, M̂), (3.2)

where σsem(M, M̂) ∈ [0,1] denotes a semantic similarity score. In practice, σsem can
be derived from:

• embedding-based similarity between sentences (e.g., cosine similarity between
sentence embeddings);

16

Theoretical Background

Table 3.1: Symbolic vs. semantic transmission in text communication.

Symbolic transmission Semantic transmission

Primary object Sequence of symbols (char-
acters, tokens, bits)

Meaning, intent, or task-
relevant information

Encoder output Coded bitstream or modu-
lated symbols

Compact semantic repre-
sentation (e.g., triples, em-
beddings)

Success criterion Ŝ = S (bit- or symbol-level
accuracy)

M̂ ≈ M (semantic similar-
ity, task performance)

Typical metric BER, SER, mutual informa-
tion

Semantic similarity, task ac-
curacy, utility or reward

Example Exact reconstruction of a
sentence

Preserving sentiment or fac-
tual content despite para-
phrasing

• symbolic overlap between sets of propositions;

• downstream task performance (e.g., probability of preserving sentiment labels).

The semantic design objective can thus be formulated as:

min
f,g

E
è
dsem(M, M̂)

é
, (3.3)

subject to constraints on bandwidth, power, or latency [14]. Importantly, the
technical distortion dtech(S, Ŝ) and semantic distortion dsem(M, M̂) are related but
not equivalent: low bit error rate does not guarantee preserved meaning, and
conversely, two semantically equivalent sentences may differ substantially at symbol
level.

Table 3.1 summarizes the conceptual difference between symbolic and semantic
transmission, which will guide the design choices in the rest of the thesis.

In this thesis, we adopt an engineering-oriented definition of semantic com-
munication: a system is deemed successful if it achieves low semantic distortion
according to embedding-based similarity metrics and task-oriented performance,
even in the presence of symbol-level errors or paraphrasing.

3.1.2 Semantic Representations for Textual Data
To operationalize the notion of meaning, it is necessary to choose a concrete form
of semantic representation. For textual data, three complementary views are
particularly relevant: symbolic, distributed, and structured representations.

17

Theoretical Background

Symbolic representations. At the most basic level, a sentence is modeled as a
sequence of discrete tokens

s = (w1, w2, . . . , wn),
where wi may denote words, subwords, or characters from a finite vocabulary. This
representation is convenient for traditional source and channel coding, but it does
not directly capture semantic similarity: small perturbations in the token sequence
may correspond to drastic changes in meaning, and vice versa.

Distributed representations. Distributed representations embed words, or
phrases, or entire sentences into a continuous vector space [15, 16]. Given a sentence
s, a sentence encoder (e.g., a transformer-based model) produces an embedding

e(s) ∈ Rd,

such that geometrical proximity reflects semantic similarity. A common similarity
measure is the cosine similarity:

σemb(s, ŝ) = e(s)⊤e(ŝ)
∥e(s)∥2 ∥e(ŝ)∥2

. (3.4)

Distributed representations form the basis of many modern semantic metrics and
are particularly well aligned with deep neural models, including large language
models.

Structured representations. Structured representations explicitly capture
entities, relations, and events present in the sentence. Examples include logical
forms, Abstract Meaning Representations (AMR), and knowledge graphs [17]. In
the context of semantic communication, a common choice is to represent textual
content as a set of subject-predicate-object triples (s, p, o) and to aggregate these
triples into a graph G = (V , E).

Each representation exposes different aspects of meaning: symbolic sequences
are closest to the raw signal, distributed embeddings capture graded semantic
similarity, and structured forms offer interpretability and logical consistency. A
key design choice in semantic communication is how to combine these views into a
representation that is both compact and robust to channel impairments.

3.1.3 Hybrid Semantic Representations
Recent research in semantic communication and natural language understanding has
highlighted the benefits of hybrid representations that combine symbolic, structured,
and distributed components [18, 12]. Conceptually, such representations exploit:

• symbolic structure, to retain the discrete nature of language and enable align-
ment with classical coding and transmission schemes;

18

Theoretical Background

Symbolic layer
[The | movie | was | great]

Distributed layer (embedding space)

Structured layer (knowledge graph)

Movie Review Positive
described_by has_sentiment

neural encoding

KG extraction / reasoning

symbolic

distributed

structured

Figure 3.1: Conceptual illustration of hybrid semantic representations for text.

• structured knowledge, to represent explicit entities, relations, and constraints
that support reasoning and disambiguation;

• distributed embeddings, to capture contextual nuances and paraphrastic vari-
ability in a continuous space.

A generic hybrid representation of a sentence s can be expressed as a tuple

R(s) =
1
s, G(s), e(s)

2
,

where s is the symbolic sequence, G(s) is a graph (or set of triples) derived from
s, and e(s) is a distributed embedding. Depending on system constraints, only a
subset of these components may be explicitly transmitted, while the others can be
reconstructed, approximated, or retrieved at the receiver.

Figure 3.1 conceptually illustrates these complementary views: the same sentence
can be seen as a token sequence, as a point in an embedding space, and as a set of
nodes and edges in a graph. Semantic communication systems can select, combine,
or transform these layers to meet application-specific constraints on bandwidth,
latency, and reliability.

19

Theoretical Background

In the remainder of this chapter and in Chapter 4, these general ideas will be
instantiated using concrete tools for structured knowledge representation (knowl-
edge graphs), neural encoding (transformer-based language models), and wireless
transmission. Section 3.2 reviews knowledge graphs and relation extraction, Sec-
tion 3.3 introduces transformer-based seq2seq encoding, Section 3.4 discusses the
wireless channel models considered in this work, and Section 3.5 focuses on semantic
decoding and contextual refinement.

3.2 Knowledge Graphs and Relation Extraction
Knowledge Graphs (KGs) provide a structured representation of knowledge in
the form of entities and relations, typically organized as labeled graphs or sets of
triples [17]. When combined with relation extraction techniques, KGs offer a natural
way to convert unstructured text into machine-interpretable semantic structures. In
the context of semantic communication, they can act as an intermediate layer that
distills the core factual and relational content of a message before transmission.

3.2.1 Fundamentals of Knowledge Graphs
Informally, a knowledge graph is a labeled graph whose nodes represent entities (e.g.,
people, places, concepts) and whose edges represent semantic relations between
these entities (e.g., bornIn, locatedIn, hasSentiment). Formally, a KG can be defined
as a tuple

G = (V ,R, T), (3.5)

where V is a set of entities, R is a set of relation types, and T is a set of triples

T ⊆ V ×R× (V ∪ L), (3.6)

with L denoting a set of literal values (numbers, strings, dates, . . .). Each triple
(s, p, o) ∈ T can be interpreted as a directed, labeled edge from subject s to object
o with relation label p.

KGs can be instantiated using different concrete data models, such as RDF
(Resource Description Framework) graphs, property graphs, or hypergraphs, but
the basic idea of representing knowledge as interconnected entities and relations
remains the same [17]. In practice, KGs may also include:

• a schema or ontology that constrains which relations can connect which types
of entities;

• metadata such as provenance, temporal qualifiers, or confidences associated
with triples;

20

Theoretical Background

• logical axioms that allow inference of new triples from existing ones.

In semantic communication, KGs play two key roles. First, they provide an
interpretable representation of the message content that can be transmitted in
compressed form, for example by sending only the most important triples. Second,
they enable reasoning and consistency checks at the receiver, helping to compensate
for missing or corrupted information and to preserve the intended semantics even
in the presence of noisy transmission.

3.2.2 Open Information Extraction (OpenIE)
To build KGs from raw text, it is necessary to extract relational tuples directly from
natural-language sentences. Open Information Extraction (OpenIE) is a paradigm
designed for this purpose [19]. Unlike traditional relation extraction, which targets
a predefined set of relation types and requires annotated training data for each
relation, OpenIE aims to discover arbitrary relations in a domain-independent way.

Given an input corpus C consisting of sentences s ∈ C, an OpenIE system
produces a set of relational tuples

T =
Û
s∈C

OIE(s), (3.7)

where OIE(s) returns one or more triples (si, pi, oi) that capture relations expressed
in the sentence. Early systems such as TextRunner and its successors [20, 21]
relied on shallow syntactic features and lexical patterns, while later approaches
incorporate dependency parsing, semantic role labeling, or neural models.

A typical OpenIE pipeline includes the following steps:

1. Preprocessing: tokenization, POS tagging, NER, and (optionally) depen-
dency parsing;

2. Clause or argument identification: segmentation of the sentence into
clauses and detection of candidate argument spans;

3. Relation phrase detection: identification of verbal or nominal predicates
connecting arguments;

4. Tuple construction and scoring: assembly of triples (s, p, o) and assignment
of confidence scores.

For example, consider the sentence:

“The movie received highly positive reviews from critics.”

21

Theoretical Background

An OpenIE system might extract tuples such as

(movie, received, highly positive reviews), (reviews, from, critics).

These tuples can subsequently be normalized or canonicalized (e.g., mapping
received to hasReview and highly positive to a sentiment category). Modern OpenIE
systems, such as Stanford OpenIE [22], leverage dependency parses to obtain more
accurate argument boundaries and to handle complex constructions, including
nested clauses and prepositional phrases.

In the context of this thesis, OpenIE provides a scalable mechanism for extracting
SPO triples from arbitrary text, which are then used as building blocks for knowledge
graph construction and semantic summarization.

3.2.3 Dependency Parsing and Pattern-Based Extraction
While OpenIE systems aim to be domain-independent and largely self-supervised,
their performance in practice often relies on syntactic analysis and handcrafted
patterns that exploit the structure of dependency trees [22, 23].

A dependency parse represents a sentence as a directed tree

D = (V, A, ℓ), (3.8)

where V is the set of tokens, A ⊆ V × V is a set of directed arcs, and ℓ : A→ Ldep
assigns a dependency label (e.g., nsubj, dobj, amod, prep) to each arc. Dependency
parsing answers the question “who does what to whom”, which is central for relation
extraction.

Industrial-strength NLP libraries such as spaCy [24, 25] provide efficient imple-
mentations of POS tagging, NER, and dependency parsing, making it feasible to
run relation extraction pipelines over large corpora. Using dependency trees, one
can implement pattern-based extraction rules such as:

• verb-centered patterns that detect subject and object via nsubj and dobj
dependencies;

• copular constructions that link a subject to a predicate nominal via cop and
attr;

• prepositional relations that map structures like prep + pobj to binary rela-
tions.

For instance, the sentence

“The movie was directed by Christopher Nolan.”

22

Theoretical Background

may yield a dependency structure where movie is the subject, directed is the main
verb, and Christopher Nolan appears as the object of a prepositional phrase headed
by by. A simple pattern that looks for nsubj-verb-agent/by relations can then
extract the triple

(movie, directed_by, Christopher Nolan).
In many practical systems, OpenIE and pattern-based extraction are combined

in a hybrid approach: OpenIE provides broad coverage by proposing candidate
tuples, while dependency-based rules are used to refine or supplement these tuples in
cases where the OpenIE system fails, produces incomplete arguments, or mislabels
relations. This hybrid strategy improves robustness on noisy or syntactically
irregular text, which is particularly relevant for semantic communication over
real-world datasets.

3.2.4 Triples as Units of Semantic Compression
From the perspective of semantic communication, SPO triples extracted from a
sentence offer a compact and interpretable summary of its core meaning. Rather
than transmitting the entire surface form of a sentence, a system may choose to
transmit only a selected subset of triples, or a textual summary derived from them,
thereby achieving semantic compression.

Let s denote an input sentence and let T (s) be the set of triples extracted from
s through a combination of OpenIE and dependency-based patterns. A simple
notion of textual compression ratio based on length can be defined as

ρtext(s) = length(summary(s))
length(s) , 0 < ρtext(s) ≤ 1, (3.9)

where summary(s) is a textual reconstruction derived from the triples (e.g., by
linearizing the most salient SPO tuples). Alternatively, one may consider a triple
density measure

ρtriple(s) = |T (s)|
length(s) , (3.10)

which quantifies how many relational facts are extracted per token of input.
Not all triples contribute equally to the semantics of a sentence. In practice,

triples can be ranked or filtered according to:
• extraction confidence scores produced by the OIE system;

• entity types (e.g., named entities vs. generic noun phrases).
Figure 3.2 illustrates a conceptual pipeline in which an input sentence is trans-

formed into a set of SPO triples and then aggregated into a knowledge graph.
In subsequent chapters, such triples will serve as semantic anchors that can be
transmitted, stored, or used to summary the input sentence.

23

Theoretical Background

Input sentence
“The movie received positive reviews from critics.”

OIE + dependency parsing
(clause detection, argument identification, pattern matching)

Extracted SPO triples
(movie, received, positive reviews)

(reviews, from, critics)

Knowledge graph G
nodes: movie, reviews, critics

edges: received, from

Figure 3.2: Conceptual pipeline for knowledge graph construction from text.

3.3 Transformer-Based Semantic Encoding
Transformers have become the dominant architecture for natural language process-
ing, thanks to their ability to model long-range dependencies through self-attention
and to support highly parallelizable training [26]. In semantic communication,
transformer-based sequence-to-sequence (seq2seq) models provide a natural mecha-
nism for encoding text into compact semantic representations and reconstructing it
at the receiver.

3.3.1 The Transformer Architecture
The transformer architecture, introduced by Vaswani et al. in Attention Is All You
Need [26], replaces recurrent and convolutional structures with multi-head self-
attention and position-wise feed-forward networks. In its standard encoder-decoder
formulation for text, a transformer consists of:

• an encoder that maps an input token sequence (x1, . . . , xn) into a sequence of
contextual representations Henc ∈ Rn×d;

• a decoder that generates an output sequence (y1, . . . , ym) conditioned on Henc
and the previously generated tokens.

24

Theoretical Background

A high-level view of a transformer encoder–decoder architecture is shown in Fig-
ure 3.3.

Figure 3.3: High-level encoder-decoder transformer architecture for sequence-to-
sequence tasks. Source [26].

Each token xi is first mapped to a vector embedding using a learned embedding
matrix and combined with a positional encoding that injects information about
token order. The result is a sequence of d-dimensional vectors that is passed
through a stack of L identical encoder layers. Each encoder layer contains:

• a multi-head self-attention sub-layer, where each position in the sequence can
attend to all other positions and aggregate information from them;

• a position-wise feed-forward network applied independently to each position.

Residual connections and layer normalization are applied around each sub-
layer, which stabilizes training and allows the network to learn deep hierarchical

25

Theoretical Background

representations.
Intuitively, self-attention computes, for each token, a weighted mixture of

all other tokens in the sequence, where the weights express how relevant one
token is for another in the current context. Multi-head attention replicates this
mechanism several times in parallel, so that different heads can specialize on
different types of dependencies (e.g., syntactic relations, long-range semantic links,
or local collocations).

The decoder mirrors the encoder architecture but includes two attention mecha-
nisms. First, a masked self-attention layer allows each output position to attend
only to previous positions, enforcing an autoregressive generation order. Second,
an encoder-decoder attention layer lets the decoder attend over the encoder repre-
sentations Henc, so that each generated token can leverage information from the
entire input sentence.

Figure 3.4 provides a conceptual illustration of a transformer-based encoder-
decoder model used for semantic encoding and decoding.

[movie][The] [was] [great]

input tokens

Transformer encoder
(self-attention, FFN)

Henc ∈ Rn×d

Transformer decoder
(masked self-attention,

encoder-decoder attention)

encoder-decoder attention

[loved][I] [it]

output tokens

Figure 3.4: Conceptual view of a transformer-based encoder-decoder model for
text.

26

Theoretical Background

3.3.2 Sequence-to-Sequence Encoding for Text
Sequence-to-sequence learning formalizes tasks in which an input sequence is
mapped to an output sequence of (possibly) different length. Typical examples
include machine translation, abstractive summarization, and style transfer. Origi-
nally implemented with recurrent neural networks [27], seq2seq models are now
dominantly based on transformers due to their superior parallelization and perfor-
mance [26].

Given an input token sequence x = (x1, . . . , xn) and a target sequence y =
(y1, . . . , ym), a transformer-based seq2seq model first encodes x into Henc and then
autoregressively predicts each yj by attending to both the previously generated
tokens and the entire encoder representation. During training, the model is typically
optimized with a cross-entropy loss over a large corpus of input-output pairs, using
teacher forcing to stabilize learning.

In this work we focus on two widely used seq2seq transformers, T5 and BART
[28, 29]. T5 is an encoder-decoder model trained in a “text-to-text” framework,
where every task is cast as feeding text into the encoder and generating text from
the decoder. BART combines a transformer bidirectional encoder, like BERT, and
autoregressive decoder, like GPT, and is trained as a denoising autoencoder: the
input sentence is corrupted by noise (e.g., token masking, deletion, or shuffling)
and the model learns to reconstruct the original text. Figure 3.5 provides a
schematic view of the T5 encoder-decoder architecture, highlighting the symmetry
between encoder and decoder. On the other hand, figure 3.6 illustrates the BART
architecture, which combines a bidirectional encoder with an autoregressive decoder
and is pre-trained with a family of denoising objectives.

Figure 3.5: Schematic view of the T5 encoder-decoder architecture. Source [30].

27

Theoretical Background

Figure 3.6: High-level architecture of BART. Source [31].

Both models are particularly suited to semantic communication because they:

• can generate paraphrases and summaries that preserve meaning while short-
ening or rephrasing the original text;

• are robust to noisy or partially corrupted inputs thanks to their training
objectives.

In the proposed framework, we exploit these properties to implement a semantic
encoder that transforms raw sentences into compact semantic representations and
a semantic decoder that reconstructs meaning at the receiver.

3.3.3 Token-Based vs. Embedding-Based Semantic Repre-
sentations

Transformers naturally provide two complementary levels of representation that
are both relevant for semantic communication:

1. Token-based representation: the sequence of discrete output tokens y =
(y1, . . . , ym) produced by the decoder.

2. Embedding-based representation: the continuous hidden states Hdec ∈
Rm×d (or a subset thereof) associated with these tokens.

From a communication perspective, transmitting y corresponds to sending
discrete indices from a vocabulary V , which can be encoded into bitstreams using
standard source and channel coding techniques. In contrast, transmitting Hdec

28

Theoretical Background

Table 3.2: Comparison between token-based and embedding-based semantic
representations.

Token-based Embedding-based

Representation Discrete token IDs yj ∈ V Continuous vectors hj ∈
Rd

Encoding Standard source/channel
coding (bits, modulation)

Quantization or analog
mapping of real-valued
components

Granularity of errors Symbol-level (token sub-
stitutions, insertions, dele-
tions)

Perturbations in vector
space (additive noise, dis-
tortion)

Interpretability High (tokens map directly
to text)

Lower; requires a decoder
model to interpret

Robustness to small
perturbations

Typically low: any bit flip
can change a token

Often higher: small
changes may not alter
semantics

Storage / bandwidth Efficient for short se-
quences; cost grows with
m

Cost proportional to m×d
(can be large)

corresponds to sending real-valued vectors, which may require quantization or
analog modulation schemes, but can offer different robustness properties.

Table 3.2 summarizes the conceptual trade-offs between token-based and em-
bedding based representations.

In many practical semantic communication systems, it is possible to transmit
a compressed token sequence (e.g., an abstractive summary) or a compressed
embedding representation (e.g., by dimensionality reduction or selective projection).
The choice depends on the available bandwidth, the desired level of interpretability,
and the robustness requirements of the application.

3.3.4 Semantic Compression and Robustness
Natural language is highly redundant: many tokens contribute little to the core
semantics of a message. Transformer-based seq2seq models can exploit this redun-
dancy by generating shorter but semantically equivalent sequences (e.g., summaries)
or by encoding the meaning of a sentence into a fixed-size latent representation.
This leads to the notion of semantic compression.

Let n be the length of the original token sequence and m the length of the com-
pressed sequence produced by a semantic encoder. A simple token-level compression

29

Theoretical Background

ratio is
ρtok = m

n
, 0 < ρtok ≤ 1. (3.11)

Similarly, when working with embeddings, one may consider a dimensionality
reduction operator Φ : Rm×d → Rm×d′ with d′ < d, and define an embedding-level
compression ratio

ρemb = md′

nd
. (3.12)

The key requirement for semantic compression is that the semantic distortion
dsem(M, M̂) remains small despite reductions in sequence length or dimensionality.
Transformer-based models are well suited for this purpose: their contextualized
representations capture global sentence-level information, and their attention mech-
anisms can focus on semantically salient tokens, allowing less informative parts of
the input to be discarded or paraphrased.

Regarding robustness, semantic representations in embedding space exhibit a
form of continuity: small perturbations to Henc or Hdec (e.g., due to channel noise)
may lead to outputs that are still semantically close to the original, especially when
the decoder is trained to handle noisy or corrupted inputs. This contrasts with
purely symbolic representations, where even a single bit error can drastically alter
the decoded token sequence.

3.4 Wireless Channel Models for Semantic Com-
munication

Semantic communication systems ultimately operate over physical wireless channels,
which introduce attenuation, fading, and noise. To analyse the behaviour of the
proposed framework under realistic yet tractable conditions, this thesis adopts a
standard flat Rayleigh fading model with additive white Gaussian noise (AWGN). In
this section, we summarize the corresponding complex baseband representation and
discuss its implications for discrete (token-level) and continuous (embedding-level)
semantic representations.

3.4.1 Intuitive View of Wireless Channels and Noise
Before introducing formal models, it is useful to build an intuitive picture of what
happens to a signal travelling over a wireless channel.

Consider a simple baseband signal, for instance a sinusoid or a sequence of
rectangular pulses. At the transmitter, this waveform is clean and perfectly known.
During propagation, however, the signal encounters several effects:

30

Theoretical Background

Figure 3.7: Example of a baseband signal (blue) corrupted by additive white
Gaussian noise (orange). Source: [34].

• Multipath and fading: the signal reaches the receiver through multiple
paths (reflections on buildings, vehicles, walls, etc.). The different copies may
add constructively or destructively, causing the received amplitude to fluctuate
in time. When destructive interference dominates, deep fades occur and the
signal can almost disappear.

• Noise: every receiver front-end adds random fluctuations originating from
thermal noise and other sources. This noise is often well modeled as additive
white Gaussian noise (AWGN): it perturbs the waveform in an apparently
erratic way.

Figure 3.7 illustrates this effect on a simple waveform: the original clean signal
is shown together with a noisy version after passing through an AWGN channel
at moderate SNR. Even though the overall shape is still recognizable, individual
samples are visibly perturbed.

In the context of semantic communication, these physical-layer impairments
translate into distortions of whatever representation is being transmitted: discrete
symbols corresponding to tokens, or continuous-valued samples corresponding to
embedding components. The next subsections formalize this behaviour using the
standard flat Rayleigh fading plus AWGN model, which is widely adopted in
wireless communication theory [32, 33].

31

Theoretical Background

3.4.2 Discrete and Continuous Encoded Signals
In a flat fading channel, the received complex baseband symbol yk at discrete time
index k can be written as

yk = hxk + nk, (3.13)

where xk and yk denote the transmitted and received symbols, h ∈ C is a complex
fading coefficient capturing attenuation and phase rotation, and nk is complex
AWGN with zero mean and variance N0.

The baseband model in (3.13) is agnostic to the origin of the symbols xk: any
sequence of complex numbers can be mapped to the physical channel. In a semantic
communication framework based on transformers, two families of encoded signals
are of particular interest:

1. Discrete (token-level) signals. The output of the semantic encoder is a
sequence of discrete tokens, which can be mapped to a finite set of constellation
points (e.g., BPSK, QPSK, or QAM symbols). In this case, xk belongs to a
discrete constellation, and channel impairments manifest themselves as symbol
errors that may flip one token into another at the receiver.

2. Continuous (embedding-level) signals. The semantic encoder also pro-
duces continuous hidden representations, such as the rows of a hidden-state
matrix H ∈ Rm×d. These real-valued components can be mapped to channel
symbols by treating them as samples of a continuous-time waveform or by
serializing them into a stream of real or complex values. In this case, xk is
drawn from a continuous distribution, and channel impairments appear as
additive perturbations in a high-dimensional vector space.

In both settings, the channel corrupts the semantic representation, but the nature
of the corruption is different. For discrete constellations, errors are combinatorial
(substitutions between constellation points), and the resulting performance is
often summarized by bit error rate (BER) or symbol error rate. For continuous
embeddings, errors are geometric perturbations, and their impact on meaning
depends on the geometry of the embedding space and on the robustness of the
decoder.

3.4.3 Impact on Token- and Embedding-Based Semantic
Representations

The two types of encoded signals described above correspond directly to the token-
based and embedding-based semantic representations introduced in Section 3.3.3.
The flat Rayleigh fading model allows us to reason qualitatively about how fading
and noise affect each of them.

32

Theoretical Background

Table 3.3: Impact of wireless channel impairments on discrete vs. continuous
semantic representations.

Discrete (token-level) Continuous
(embedding-level)

Physical mapping Tokens → bits → constel-
lation symbols

Embedding components
→ real or complex samples

Channel corruption Bit and symbol errors; to-
ken substitutions and dele-
tions

Additive perturbations in
Rd or Cd

Sensitivity to deep
fades

High: a few errors may
strongly change a token

Moderate: small perturba-
tions may preserve seman-
tics

Error control Classical FEC and redun-
dancy in token sequences

Robustness from embed-
ding smoothness and de-
coder tolerance

Receiver processing Equalization, hard deci-
sions, bit-to-token map-
ping, LLM decoding

Equalization, reshaping,
LLM decoding from noisy
embeddings

Interpretability at re-
ceiver

Direct mapping from to-
kens to text

Requires a neural decoder
to interpret embeddings

In the token-based case, each transmitted symbol encodes a finite number
of bits that identify a token from a vocabulary. A single deep fade or a burst of
noise can cause several bit errors, flipping the decoded token into a different one.
From a semantic perspective, the impact of such errors can be very uneven: some
token substitutions are benign (e.g., minor function words), while others drastically
alter the meaning of the sentence (e.g., sentiment words or named entities). This
motivates the use of error detection and correction mechanisms, as well as semantic
refinement at the decoder to repair corrupted tokens.

In the embedding-based case, the transmitted object is a continuous vector
representation that encodes the meaning of the sentence in a distributed fashion.
Small perturbations of H due to fading and noise may still lead to similar outputs
at the decoder, thanks to the continuity of the transformer mapping and the
redundancy of the embedding space. Semantic distortion can then be related to
continuous metrics such as mean squared error (MSE) or cosine similarity between
original and corrupted embeddings, rather than to discrete bit errors.

Table 3.3 summarizes the main conceptual trade-offs between these two modes
of transmission over a fading channel.

Figure 3.8 illustrates a simplified wireless communication chain with flat fading

33

Theoretical Background

Figure 3.8: Simplified baseband chain for a noisy wireless channel. Source: [8].

and AWGN, highlighting the separation between the physical layer and the higher-
layer semantic processing.

3.5 Semantic Decoding and Refinement
The final stage of the proposed semantic communication framework is the recon-
struction of human-readable text at the receiver. In our design, semantic decoding
is performed in two steps, both based on transformer models:

1. an LLM-based semantic decoder (T5 or BART) that maps corrupted tokens
or embeddings produced by the wireless channel into an initial textual recon-
struction;

2. a refinement module based on a masked language model (BERT) that detects
and corrects local inconsistencies while preserving the global semantics [16].

This section describes how these two components work from a theoretical
standpoint and how they relate to the notion of semantic distortion introduced in
Section 3.1.1.

3.5.1 Semantic Decoder Based on T5 and BART
As discussed in Section 3.3, encoder-decoder transformers such as T5 and BART
implement a conditional sequence-to-sequence mapping: given an input sequence
or representation u, the model generates an output sentence y that is consistent
with it. This behaviour can be summarized as a conditional distribution

pθdec(y | u),

which is implemented through an encoder that processes u into contextual repre-
sentations and a decoder that autoregressively predicts the output tokens.

34

Theoretical Background

In the proposed framework, the input u is not the clean source sentence, but
a noisy representation z̃ produced by the wireless channel and by the semantic
encoder:

• in the token-based mode, z̃ is a sequence of tokens corrupted by bit and
symbol errors (Section 3.4.2);

• in the embedding-based mode, z̃ is a matrix of continuous embeddings that
has been perturbed by Rayleigh fading and AWGN in the baseband channel.

Token-based decoding. In token mode, the channel output is a sequence z̃ =
(z̃1, . . . , z̃m) where some positions may be unreliable (e.g., flagged by a corruption
mask derived from bit- or token-level checks). To make this information usable by
the semantic decoder, uncertain positions are replaced by special mask symbols,
while reliable tokens are kept as anchors. Let ỹ denote the resulting sequence of
anchors and masks.

A model such as BART or T5, pre-trained with denoising objectives [29, 28], is
then used as a conditional language model that reconstructs a clean sentence from
ỹ:

ŷ(0) ∼ pθdec

1
y | ỹ

2
. (3.14)

During generation, the decoder attends both to the unmasked tokens (which act as
semantic and syntactic anchors) and to the internal encoder states, and fills in the
masked positions so as to produce a fluent and coherent sentence. This matches
closely the way T5 and BART are originally trained: they receive corrupted inputs
(with spans deleted, permuted, or masked) and learn to reconstruct the original
text.

Embedding-based decoding. In embedding mode, the channel output is a
sequence of vectors z̃ ∈ Rm×d obtained by transmitting hidden states (e.g., Henc)
through the Rayleigh+AWGN channel described in Section 3.4. From a transformer
viewpoint, these embeddings play the role of encoder representations: they summa-
rize the meaning of the input sentence in a distributed way and are consumed by
the decoder through cross-attention.

Conceptually, the semantic decoder now operates directly on the continuous
representation:

ŷ(0) ∼ pθdec

1
y | z̃

2
, (3.15)

where z̃ replaces the clean encoder states that would be available in a standard
seq2seq setting. The effect of the wireless channel is thus analogous to injecting
noise into a latent layer of the model: if the embeddings are only mildly perturbed,
the decoder can still recover a sentence with similar semantics; if the perturbation
is too strong, the output drifts away from the intended meaning.

35

Theoretical Background

Figure 3.9: Illustration of BERT in a masked language modelling setup.
Source [35].

In both token and embedding mode, the semantic decoder produces an initial
reconstruction ŷ(0) that aims to be close in meaning to the original sentence, even
if the input representation has been corrupted by the physical channel.

3.5.2 Masked Language Modelling with BERT
The initial reconstruction ŷ(0) produced by the semantic decoder may contain
residual errors: wrong words, missing or repeated tokens, and local inconsistencies
that are hard to fix solely from the noisy representation z̃. To further improve the
quality of the received text, the framework adopts a second-stage refinement based
on BERT [16], a transformer encoder pre-trained with a masked language modelling
(MLM) objective. A graphical overview of BERT used in a masked language
modelling setup is shown in Figure 3.9, where one token is replaced by [MASK] and
the model is trained to recover the original tokens from their bidirectional context.

In MLM, the model receives a sentence in which a subset of tokens has been
replaced by a special [MASK] symbol, and it is trained to predict the masked tokens
from their left and right context. Formally, let w = (w1, . . . , wT) be a tokenized
sentence and M ⊆ {1, . . . , T} the set of masked positions. BERT is trained to
maximize

LMLM(θmlm) =
Ø
i∈M

log pθmlm

1
wi | w\M

2
, (3.16)

where w\M denotes the unmasked tokens. This objective forces the model to learn
rich bidirectional dependencies, making it well suited for local error correction.

36

Theoretical Background

Applied to the output ŷ(0) of the semantic decoder, BERT is used in two
conceptual steps:

1. Suspicious token detection. Identify positions likely to be erroneous or
unreliable. In practice, these can be derived from:

• the channel corruption mask (positions where tokens are known to have
been corrupted at the physical layer);

• simple heuristics over ŷ(0) (e.g., repeated words, unlikely subwords, low-
confidence tokens).

The resulting set of indices defines the mask set M.

2. Masked prediction. Replace tokens at positions i ∈M with [MASK], feed
the sequence into BERT, and read off, for each masked position, a distribution
over candidate replacements. The refined sentence ŷ(1) is obtained by selecting
the most plausible candidate at each masked position, while leaving the other
tokens unchanged.

Figure 3.10 summarizes the overall two-stage decoding pipeline.
The next chapter instantiates this decoding scheme with specific models (T5,

BART, BERT) and evaluates its behaviour under the Rayleigh fading and AWGN
conditions described in Section 3.4, using semantic metrics to quantify the effect of
refinement.

37

Theoretical Background

Channel output
(tokens or embeddings)

Preprocessing
(masking, error flags)

Semantic decoder
(T5 / BART)

BERT-based refinement
(masked LM)

Final reconstructed
sentence ŷ(1)

received tokens / embeddings

ỹ or z̃

ŷ(0)

ŷ(1)

Figure 3.10: Two-stage semantic decoding pipeline.

38

Chapter 4

System Design and
Architecture

4.1 Overview of the Proposed Framework
This chapter presents the concrete system design and implementation of the
proposed KG-LLM semantic communication framework. While Chapter 3 has
introduced the underlying concepts of semantic representations, knowledge graphs,
transformer-based sequence-to-sequence models, and wireless channel models, the
focus here is on how these components are instantiated and combined in an end-to-
end pipeline.

At a high level, the system transforms an input natural-language sentence
into a compact semantic representation that is transmitted over a noisy wireless
channel and then reconstructed at the receiver with minimal loss of meaning. The
architecture is organised into three main processing phases:

1. Semantic preprocessing and knowledge extraction (Phase 1), which
analyses the input sentence, extracts structured semantic triples, and builds a
sentence-level knowledge graph;

2. LLM-based semantic encoding and channel mapping (Phase 2), which
produces a compressed semantic representation using a transformer encoder-
decoder model and maps it either to discrete tokens or continuous embeddings
for transmission over the wireless channel;

3. Contextual decoding and semantic refinement (Phase 3), which re-
constructs the sentence at the receiver using an LLM-based decoder and a
BERT-based refinement stage for semantic consistency.

39

System Design and Architecture

Figure 4.1: High-level block diagram of the proposed KG-LLM semantic commu-
nication pipeline.

These three phases are implemented as modular software components that can
be configured, enabled, or bypassed independently. This modularity allows us
to investigate different design choices (e.g., with or without KG guidance, token-
based versus embedding-based transmission, or different LLM backends) while
keeping the overall pipeline unchanged. The individual modules expose well-defined
input/output interfaces so that they can be composed in a uniform end-to-end
workflow.

A high-level block diagram of the proposed architecture is shown in Fig. 4.1.
The diagram highlights the data flow between the semantic preprocessing block,
eith the role of the knowledge graph, the LLM-based encoder, the wireless channel,
and the semantic decoder.

4.1.1 Mapping Between Theory and Implementation
The design of the framework closely follows the theoretical components introduced
in Chapter 3. The semantic preprocessing and KG construction block (Phase 1)
operationalises the notions of entities, relations, and graph-based semantic repre-
sentations discussed in Section 3.2. In practice, this block combines entropy-based
sentence analysis with a hybrid extraction pipeline that leverages both OpenIE
and a spaCy-based NLP stack to populate a sentence-level knowledge graph.

The LLM-based encoding block (Phase 2) instantiates the transformer encoder-
decoder models described in Section 3.3. Depending on the configuration, the
encoder can operate either in a predominantly text-driven mode (using only the
original sentence) or in a KG-aware mode, where additional cues derived from the
knowledge graph are included in the input. The resulting compressed representation
is then mapped to either a sequence of discrete tokens or a sequence of continuous
embeddings, directly corresponding to the symbolic and embedding-based semantic
representations introduced in Section 3.1.

40

System Design and Architecture

The wireless channel simulation block corresponds to the fading and noise
models studied in Section 3.4. It injects Rayleigh fading, additive white Gaussian
noise, and, when configured, multipath effects into the transmitted semantic
representation. Finally, the semantic decoding and refinement block (Phase 3)
realises the contextual decoding strategies of Section 3.5, combining LLM-based
reconstruction and BERT-based masked language modelling into a single receiver-
side pipeline.

4.1.2 Software Stack and Code Organization
The framework is implemented in Python using a set of widely adopted libraries
for deep learning and natural language processing. Transformer-based models are
provided by the Hugging Face ecosystem, which is used both for encoder-decoder
LLMs (such as T5 or BART) and for the BERT-based refinement module. The
semantic preprocessing pipeline relies on spaCy for tokenisation, part-of-speech
tagging, dependency parsing, and named entity recognition, while OpenIE is used,
when available, to extract additional candidate triples from each sentence.

Knowledge graphs are internally represented using graph data structures (e.g.,
NetworkX) and can be exported to RDF or OWL formats through dedicated
libraries for serialisation when needed. The wireless channel is implemented as
a standalone module that supports different fading types, SNR configurations,
and transmission modes (token-based or embedding-based), but exposes a unified
interface to the rest of the pipeline.

From a code-organization perspective, each major block of the architecture is en-
capsulated in a separate module. The semantic preprocessing and KG construction
logic is grouped into the Phase 1 module; the LLM-based encoding and semantic
compression procedures are implemented in the Phase 2 module; the channel model
is encapsulated in a wireless_channel module; and the receiver-side semantic
decoding and refinement constitute the Phase 3 module. This structure mirrors
the block diagram in Fig. 4.1 and reflects the three-phase organisation outlined
above, facilitating both reuse and experimental ablations.

4.1.3 Design Assumptions and Constraints
The system design is guided by a set of assumptions that reflect the targeted
application scenarios and the practical limitations of the underlying models. First,
the framework focuses on short to medium-length sentences, as typically found in
sentiment analysis or intent classification datasets, rather than on long documents.
This choice is aligned with the computational cost of transformer architectures and
with the need to maintain low latency in wireless communication settings.

Second, the current implementation assumes English text and uses pretrained

41

System Design and Architecture

models that have been primarily trained on English corpora. Extending the
framework to multilingual scenarios would require appropriate multilingual LLMs
and potentially language-specific adaptations of the semantic preprocessing pipeline.

Third, the wireless channel module is designed to emulate bandwidth-limited
and noisy conditions using Rayleigh fading and AWGN models, with configurable
signal-to-noise ratios (SNRs) and transmission modes. Rather than modelling a
specific physical deployment, the channel is intended as a flexible abstraction that
allows us to stress-test the semantic pipeline under different levels of degradation.

Finally, the framework is built around pretrained LLMs and does not rely
on task-specific fine-tuning of large models, in order to keep the computational
requirements compatible with edge or resource-constrained deployments. Where
necessary, smaller variants of the base models can be selected, and the compression
strength can be adjusted through decoding parameters such as maximum length or
beam size. These assumptions and constraints will be revisited in the evaluation
and discussion chapters, where their impact on performance and generality is
analysed.

4.1.4 End-to-End KG-LLM Semantic Communication Al-
gorithm

To summarise the interactions between the different modules introduced above,
Algorithm 1 presents a high-level description of the end-to-end KG-LLM semantic
communication pipeline. The algorithm explicitly distinguishes between the three
main phases of the system: semantic analysis and knowledge graph construction
at the transmitter, LLM-based semantic compression and channel mapping, and
receiver-side reconstruction with contextual refinement.

This algorithmic view complements the block diagram in Fig. 4.1: while the
figure emphasises the structural decomposition of the system into functional blocks,
Algorithm 1 makes explicit the order of operations, the decision points (such as the
choice between token-based and embedding-based transmission), and the flow of
information between LLMs and knowledge graphs. The following sections provide
a detailed description of each phase of the pipeline, linking the conceptual steps in
Algorithm 1 to their concrete software implementation.

4.2 Phase 1 – Semantic Preprocessing and Knowl-
edge Extraction

Phase 1 implements the first stage of the KG-LLM semantic communication pipeline,
corresponding to the semantic analysis and knowledge graph construction block in
Fig. 4.1 and to the first phase of Algorithm 1. Its goal is to transform each raw

42

System Design and Architecture

Algorithm 1 KG-LLM End-to-End Semantic Communication
Require: Sentence S
Ensure: Reconstructed sentence Sout

Phase 1: Semantic Analysis and KG-based Summarisation
Compute entropy E(S)
if E(S) ≤ Hθ then ▷ low-entropy: run full KG pipeline

Try OpenIE on S to obtain triples TOIE
if OpenIE is not available or TOIE is empty then

Run spaCy-based pipeline on S to obtain triples TspaCy
T ← TspaCy

else
T ← TOIE

end if
Build a knowledge graph G(S) from T
Derive a KG-based condensed summary SKG from G(S)
Set semantic input Ssem ← SKG

else ▷ high-entropy: skip KG and summarisation
Set semantic input Ssem ← S

end if

Phase 2: LLM-Based Semantic Compression and Channel Mapping
Tokenize Ssem with the seq2seq LLM tokenizer
Obtain compressed representation R← LLM_encode(Ssem)
if transmission_mode = “token” then

Derive compact token sequence Z from R
Map Z to a channel payload and transmit it

else if transmission_mode = “embedding” then
Derive embedding sequence H from R
Map H to a channel payload and transmit it

end if

Phase 3: Receiver-Side Reconstruction and Semantic Refinement
Receive noisy payload at the receiver
if transmission_mode = “token” then

Reconstruct token sequence Ẑ and set S(0) ← LLM_decode(Ẑ)
else if transmission_mode = “embedding” then

Reconstruct embedding sequence Ĥ and set S(0) ← LLM_decode(Ĥ)
end if
Refine S(0) with a BERT-based masked LM to obtain S(1)

Set Sout ← S(1) and return Sout

43

System Design and Architecture

input sentence into an enriched representation that combines lexical information,
shallow statistics, and a structured view of the underlying entities and relations.
In addition to building a sentence-level knowledge graph, Phase 1 also derives
a compact, KG-driven textual summary of the input, which will be used as a
simplified semantic input for the encoder in Phase 2.

Given an input sentence S, Phase 1 first computes an entropy-based score that
characterises the lexical variability of the sentence and uses it to distinguish more
structured, information-dense sentences from simpler ones. It then applies a hybrid
relation extraction pipeline, combining Open Information Extraction (OpenIE) and
a spaCy-based dependency parser, to obtain candidate triples of the form (subject,
relation, object). These triples are merged and filtered and are finally used to build
a sentence-level knowledge graph G(S).

4.2.1 Module Overview and I/O Contract
From an implementation perspective, Phase 1 is encapsulated in a dedicated module
that exposes a simple input/output contract. The module receives a single natural-
language sentence S as input and returns a structured object ProcessedSentence,
which aggregates all the information needed by the subsequent phases.

At a high level, ProcessedSentence contains:

• the original sentence S and its tokenised form;

• the entropy score E(S) and a Boolean flag indicating whether the sentence is
classified as high- or low-entropy;

• the set of entities and candidate triples extracted by the hybrid OpenIE +
spaCy pipeline;

• a sentence-level knowledge graph G(S), represented as a directed labelled
graph;

• a KG-driven textual summary SKG, obtained by verbalising the consolidated
triples into a shorter, semantically focused sentence;

• optional summary statistics (e.g., number of nodes and edges, average degree,
number of triples retained).

This enriched representation is passed to Phase 2. When the sentence is processed
through the KG branch, the encoder does not receive the original sentence S alone,
but a simplified semantic input derived from SKG (possibly combined with S), so
that the LLM can focus on the most relevant entities and relations while operating
on a shorter and more structured text.

44

System Design and Architecture

4.2.2 Entropy-Based Sentence Analysis
The first operation performed in Phase 1 is an entropy-based analysis of the input
sentence. Given a sentence S with tokens {ti}, we compute a lexical entropy score
E(S) based on the empirical token distribution:

E(S) = −
Ø

i

p(ti) log2 p(ti), (4.1)

where p(ti) denotes the relative frequency of token ti within the sentence (or, when
available, within a reference corpus). This definition corresponds to the classical
Shannon entropy used in information theory [1].

The resulting entropy value is compared against a configurable threshold Hθ.
Sentences with E(S) > Hθ are labelled as high-entropy, whereas sentences with
E(S) ≤ Hθ are labelled as low-entropy. Intuitively, low-entropy sentences tend
to be shorter or more repetitive and are often easier to map to a small number
of clear semantic relations (for instance, simple statements or polarity-bearing
sentences), whereas high-entropy sentences may contain multiple clauses, modifiers,
or contrasting opinions.

This classification does not change the overall structure of the pipeline, but
controls whether the sentence is routed through the KG-based branch or treated
as purely text-based. Sentences classified as low-entropy are passed to the KG
extraction and summarisation steps described in Sections 4.2.3 and 4.2.4, whereas
high-entropy sentences bypass these operations and are forwarded to Phase 2 with
the original text as semantic input.

4.2.3 Hybrid Triple Extraction with OpenIE and spaCy
After the entropy-based analysis, sentences that are routed through the KG branch
are processed by a hybrid relation extraction pipeline to identify semantic triples.
The rationale is to combine the strengths of an off-the-shelf Open Information
Extraction (OpenIE) system [21] with those of a dependency-based extractor built
on top of spaCy [24], aiming for robustness across different sentence types.

First, if an OpenIE backend is available, it is applied to S to obtain a set
of candidate triples TOIE. These triples typically capture predicate-argument
structures in a relatively model-agnostic way and are particularly effective on
well-formed declarative sentences.

Second, the sentence is processed with a spaCy pipeline that performs tokenisa-
tion, part-of-speech tagging, dependency parsing, and named entity recognition.
A set of hand-crafted patterns over the dependency tree is then used to extract
additional triples TspaCy, for example by following ROOT verbs and their subjects and
objects, by inspecting copular constructions, and by taking into account negations,
adjectival modifiers, and prepositional links.

45

System Design and Architecture

The two sets of triples are then merged into a unified candidate set

T = TOIE ∪ TspaCy,

so that Phase 1 benefits both from the broad coverage of OpenIE and from the
syntactic precision of dependency-based patterns. When the OpenIE backend is not
available, the spaCy-based extractor alone provides a complete fallback, ensuring
that the overall pipeline remains functional.

4.2.4 Triple Consolidation and Knowledge Graph Construc-
tion

The merged set of triples T typically contains overlaps, paraphrases, and partially
redundant variants of the same underlying relation. Before constructing the final
knowledge graph, Phase 1 therefore applies a consolidation step that filters, groups,
and merges triples that convey similar semantic content.

At a high level, this process involves:

• discarding low-quality triples that do not satisfy basic semantic or syntactic
constraints (for instance, missing arguments or trivial predicates);

• normalising surface forms of entities and relations so that small lexical varia-
tions do not create separate nodes for the same concept;

• merging triples that are near-duplicates or that stand in an almost containment
relationship (e.g., a longer triple that only extends a shorter one with a minor
modifier).

The remaining triples are then used to construct a sentence-level knowledge
graph G(S). Each node in G(S) corresponds to an entity (or, more generally, to a
salient argument extracted from the sentence), and each directed edge encodes a
semantic relation between two entities, labelled with the canonicalised predicate.
The graph is implemented as an in-memory structure that can be eventually queried
by the subsequent phases and, when needed, can be serialised to an RDF or OWL
representation.

Besides building G(S), the consolidated triples are also verbalised into a compact
textual summary SKG. This summary preserves the core entities and relations
expressed in the original sentence while removing redundant details and surface-
level variation. In practice, SKG is constructed by linearly arranging the most
salient triples according to simple templates and connective patterns, yielding a
shorter and more structured sentence. The resulting graph and summary provide a
compact and explicit view of the semantic content of S, which is particularly useful
when the sentence is complex, includes multiple actors and events, or expresses
contrasting opinions.

46

System Design and Architecture

(a) Positive sentiment graph (b) Negative sentiment graph

Figure 4.2: Sentence-level knowledge graphs produced by Phase 1 for a positive
(left) and a negative (right) sentiment-bearing sentence.

4.2.5 Example Knowledge Graphs
To illustrate the behaviour of Phase 1 on different sentence types, we show four
representative examples of sentence-level knowledge graphs. Each graph is obtained
by running the full Phase 1 pipeline on a single sentence and visualising the resulting
entities and relations.

The first pair of examples focuses on polarity-bearing sentences, one expressing
a clearly positive opinion and one expressing a negative opinion. In both cases, the
knowledge graph highlights the main entities (for instance, the target of the opinion
and the opinion holder) together with the evaluative predicates that connect them.

In the positive example, the graph makes explicit the favourable relation be-
tween the subject and the target entity, often via predicates or adjectives such
as “love”, “enjoyable”, “recommend”, or similar. In the negative example, the
graph instead captures negative predicates and modifiers, such as “hate”, “boring”,
“disappointing”, or explicit negations. By comparing the two graphs side by side,
it is immediate to see how the same Phase 1 pipeline encodes opposite semantic
orientations using a similar structural pattern.

The second pair of examples targets more structurally complex sentences.
The first of these two is a syntactically rich sentence containing multiple clauses

or events. The corresponding graph shows several interconnected triples, making
the internal structure more transparent by exposing which entities participate in
which relations and how the different clauses are linked. The last example is built
from a comparative sentence in which two entities are explicitly contrasted (for
example, one item being described as better or worse than another). Here, the
graph encodes comparative relations as edges between the entities, with predicates

47

System Design and Architecture

that capture the direction of the preference or the dimension along which the
comparison is made.

(a) Complex sentence graph (b) Comparative sentence graph

Figure 4.3: Sentence-level knowledge graphs produced by Phase 1 for a complex
sentence (left) and a comparative sentence (right).

Taken together, these four examples show that the same Phase 1 pipeline can
handle diverse sentence structures and pragmatic functions, while always returning
a coherent graph-based representation that feeds into the LLM-based encoder.

4.2.6 Configurable Parameters and Design Choices
Phase 1 exposes a set of configurable parameters that make it possible to trade off
coverage, precision, and computational cost. The most relevant ones include:

• the entropy threshold Hθ that separates high- and low-entropy sentences,
which influences how sentences are processed;

• the relative reliance on OpenIE versus spaCy-based patterns, which can be
tuned depending on the availability and stability of the OpenIE backend;

• the criteria used to filter candidate triples (for instance, minimum confidence
or minimum length), which control the density of the resulting knowledge
graphs;

• the strength of the consolidation step, which determines how aggressively
near-duplicate or overlapping triples are merged.

48

System Design and Architecture

These parameters are fixed for the main set of experiments, but they can be
adjusted in ablation studies to assess the impact of semantic preprocessing on the
overall performance of the KG-LLM pipeline. In particular, the ability to disable
Phase 1 entirely (i.e., to skip KG extraction and operate in a purely text-based
mode) allows us to isolate the specific contribution of knowledge graphs to semantic
robustness under noisy wireless conditions.

4.3 Phase 2 – LLM-Based Semantic Encoding
Phase 2 implements the LLM-based encoding block in Fig. 4.1 and the second
phase of Algorithm 1. Its role is to compress the semantic content of the input
sentence into a shorter, context-rich representation that can be transmitted over
the wireless channel in either token-based or embedding-based form.

For each original sentence S, Phase 1 produces a structured object Processed-
Sentence that includes both the original text and, when the KG branch is used, a
condensed KG-driven summary SKG. Phase 2 operates on a semantic input Ssem
defined as follows:

• if the sentence has been processed through the KG branch, Ssem is derived
from the KG-based summary SKG (optionally combined with the original
sentence S);

• if the sentence has bypassed KG extraction (e.g., high-entropy cases), Ssem
coincides with the original sentence S.

In both cases, the encoder maps Ssem to a compressed semantic representation Senc
that is shorter than the original input but is designed to preserve the core meaning.

4.3.1 Encoder Architecture and Model Configuration
The encoder is implemented using transformer-based sequence-to-sequence models
from the Hugging Face ecosystem [36]. In particular, the current framework supports
the use of T5 [28] and BART [29] as encoder-decoder backbones. Both models
provide an encoder that maps an input token sequence to a sequence of contextual
embeddings, and a decoder that generates an output sequence conditioned on the
encoder states.

In the T5 configuration, the input Ssem can be optionally prefixed with a task
indicator such as “summarize:” to bias the model towards abstractive compression
rather than generic generation. BART, on the other hand, does not require explicit
task prefixes and is used directly in its sequence-to-sequence setting. The choice
between T5 and BART is treated as a configuration parameter of the system and
will be analysed in the evaluation chapter.

49

System Design and Architecture

Both models share a common interface in Phase 2: they take tokenised text as
input, perform an encoder forward pass, and then use a decoder with beam search
to generate a compressed text sequence. The same code path handles either model,
enabling fair comparisons between different architectures under identical channel
and decoding conditions.

4.3.2 Encoding Pipeline and Token Merging
The single-sentence encoding pipeline in Phase 2 follows a sequence of operations
that instantiates the high-level abstraction sketched in Algorithm 1:

1. Tokenisation and input embeddings. The semantic input Ssem is tokenised
with the appropriate tokenizer (T5 or BART), producing a sequence of subword
tokens of length n. These tokens are mapped to input embeddings and
positional encodings, forming the encoder input tensor Hinput ∈ R1×n×d.

2. Encoder forward pass. The encoder processes Hinput and returns a con-
textual representation for each input position. This representation is mainly
used for debugging and analysis, since the final compressed representation is
derived from the decoder outputs.

3. Decoder beam-search generation. The decoder generates a shorter se-
quence of tokens by running a beam-search procedure with configurable
parameters (e.g., number of beams, length penalty, minimum length ratio, and
an no_repeat_ngram_size constraint). This yields a sequence of generated
token IDs and the corresponding text, denoted by Senc.

4. Re-encoding of the generated text. The truncated generated text Senc
is tokenised again and passed through the encoder to obtain a contextual
representation Hgenerated ∈ R1×m×d that is aligned with the tokens actually
used for transmission.

5. Subword merge into whole words. Finally, a model-specific merge step
is applied to group subword tokens into whole-word units. For example, the
SentencePiece tokenizer used in T5 prefixes word-initial subwords with a
special boundary marker, while the BART tokenizer encodes word boundaries
through a dedicated leading-space flag. This produces a merged token sequence
that is more robust to isolated symbol corruption and better aligned with
human-interpretable words.

The outputs of this pipeline are collected in an EncodedSequence object, which
contains:

• the merged token sequence encoded_tokens, used as payload for token-based
transmission;

50

System Design and Architecture

• the contextual representation Hgenerated, used as payload for embedding-based
transmission;

• the generated text Senc, useful for baseline comparisons at the bit or character
level;

• metadata such as input and output lengths and compression ratios.

4.3.3 Embedding Extraction for Continuous Transmission
While encoded_tokens provides a natural discrete representation for token-based
transmission, the tensor Hgenerated ∈ R1×m×d offers a continuous embedding-based
representation of the compressed sentence. In Phase 2, this tensor is prepared for
the wireless channel module in a way that preserves the alignment between tokens
and embeddings.

In the simplest case, Hgenerated is kept as a three-dimensional array in which
the first dimension corresponds to the batch (here, a single sentence), the second
dimension indexes the generated tokens (m), and the third dimension indexes the
embedding channels (d). When embedding-based transmission is selected, the
channel module receives Hgenerated and internally reshapes or flattens it into a
one-dimensional stream of complex-valued symbols to be fed into the physical-layer
model.

From the perspective of Phase 2, the important property is that each token in
the compressed sentence is associated with a well-defined embedding vector that
captures its contextual meaning. The subsequent Phase 3 will exploit this structure
by feeding the received, possibly distorted embeddings directly into the decoder via
cross-attention, without the need for an intermediate nearest-neighbour projection
back to the vocabulary.

4.3.4 Configurable Parameters and Design Choices
Phase 2 exposes a number of hyperparameters that control the behaviour of the
LLM-based encoder and make it possible to trade off compression, fluency, and
robustness. The most relevant configuration options include:

• Model choice and size. The backbone can be set to T5 or BART, and,
within each family, smaller or larger variants can be selected depending on
the desired accuracy.

• Use of task prefixes. For T5, a task prefix such as “summarize:” can be
enabled or disabled via a configuration flag, allowing a direct comparison
between explicitly prompted summarisation and generic sequence generation.

51

System Design and Architecture

In fact, T5 is a multitask transformer, designed to handle a wide range of
NLP tasks, from summarization to translation[28]

• Decoding strategy. Beam search parameters such as the number of beams,
length penalty, minimum and maximum output length, and the n-gram
repetition constraint influence how concise or verbose the generated summaries
are.

• Merge strategy. The rules used to merge subword tokens into whole words
(e.g., markers considered, handling of punctuation) can be tuned to balance
compatibility with the tokenizer and robustness to single-token corruption.

These parameters are fixed for the main set of experiments but can be varied
in ablation studies to isolate the impact of different encoder configurations on
compression effectiveness and downstream semantic reconstruction. Together with
the Phase 1 configuration, they determine how much semantic content is passed
to the channel and in which form, shaping the overall behaviour of the KG-LLM
semantic communication pipeline.

4.4 Phase 3 – Semantic Decoding and Contextual
Refinement

Phase 3 implements the receiver-side semantic decoding and refinement block in
Fig. 4.1 and the third phase of Algorithm 1. Its role is to reconstruct a fluent
and semantically faithful sentence from the noisy representation produced by the
wireless channel, by combining three stages: a light pre-processing step to handle
repetitions and corruption markers, an initial LLM-based reconstruction, and
a BERT-based refinement procedure optionally guided by the knowledge graph
extracted in Phase 1.

Depending on the selected transmission mode, Phase 3 operates either on a
sequence of received tokens (token-based mode) or on a sequence of received
contextual embeddings (embedding-based mode). In both cases, the decoder aims
to recover a sentence that preserves the meaning of the original input, even when
individual tokens or embedding components have been corrupted by channel noise
or fading.

4.4.1 Module Overview and I/O Contract
From an implementation perspective, Phase 3 is encapsulated in a semantic_-
decoding module that exposes a unified interface for both transmission modes.
The module receives the following inputs:

52

System Design and Architecture

• in token-based mode, a sequence of received tokens together with a binary
corruption mask that indicates which positions are considered unreliable by
the channel model;

• in embedding-based mode, a tensor of received embeddings that mirrors
the shape of the encoder output used in Phase 2;

• the original token sequence, used only for debugging and for the computation
of accuracy metrics in the evaluation phase.

The main output of Phase 3 is a DecodingResult object that contains:

• the final reconstructed sentence Sout;

• the intermediate reconstruction S(0) obtained by the initial LLM-based decod-
ing;

• statistics on the refinement process, such as the number of tokens modified by
BERT and the distribution of confidence scores;

• token-level confidence estimates and counts of anchor, corrected, and unknown
tokens.

Phase 3 is organised internally into three steps: a pre-processing stage (Phase 0),
an initial reconstruction stage (Phase 1), and a BERT-based refinement stage
(Phase 2). This design mirrors the logical structure described in the system
specification, while providing a clean separation between channel-aware decoding
and semantic post-processing.

4.4.2 Pre-processing and Error Masking
The pre-processing step, referred to as Phase 0 in the implementation, prepares
the received sequence for semantic decoding by handling spurious repetitions and
explicit corruption markers inserted by the channel model.

In token-based mode, the input to this stage is a sequence of tokens and the
associated corruption mask. Phase 0 performs two main operations:

• Repetition detection and masking. Consecutive duplicate tokens (such
as “It’s It’s” or “very very”) are detected and treated as signs of possible
corruption or generation artefacts. The second occurrence in each repetition
is replaced by a special mask token, while the first occurrence is kept as an
anchor token.

53

System Design and Architecture

• Integration of channel corruption information. Positions marked as
unreliable by the corruption mask are also replaced by mask tokens, unless
they correspond to special placeholders introduced by the channel (e.g., generic
error or unknown markers) or to punctuation. This ensures that the subsequent
decoder explicitly sees gaps where the channel output is not trustworthy.

The result of Phase 0 is a cleaned token sequence in which reliable tokens act as
anchors and unreliable or suspicious positions are explicitly masked. This sequence
is then converted into a textual prompt to be fed to the LLM decoder in the next
stage. In embedding-based mode, the pre-processing step is lighter: repetitions
are optionally detected at the text level, but the core of the corruption is already
encoded in the distortion of the embedding tensor received from the channel, which
is passed directly to the decoder.

4.4.3 Initial LLM-Based Reconstruction
Phase 1 of the decoding process performs an initial reconstruction of the sentence
using the same seq2seq LLM backbone employed in Phase 2 (T5 or BART). The
objective is to exploit the model’s contextual understanding to fill in masked
positions and denoise the received representation before applying more targeted
refinements.

In token-based mode, the cleaned token sequence produced by Phase 0 is
converted into text, where anchor tokens appear as standard words and masked
positions are represented by the appropriate mask symbol for the chosen model.
This text is then fed to the decoder through the standard generation interface. The
decoder uses beam search with the same family of hyperparameters as in Phase 2
(number of beams, length penalty, and an n-gram repetition constraint) to generate
an initial reconstruction S(0) that attempts to restore a fluent sentence. When
no masks are present (for instance, in low-noise conditions), the implementation
can bypass the decoder and directly reuse the cleaned input to avoid unnecessary
changes.

In embedding-based mode, the decoder operates directly on the received em-
beddings. The tensor of received embeddings is wrapped into an encoder_outputs
structure and passed to the generation function as if it were the output of the
encoder. If the embedding dimensionality does not match the expected model
dimension, a lightweight linear projection layer is applied at runtime to align the
shapes. The decoder then runs beam search with cross-attention over the noisy
embeddings, producing the initial reconstruction S(0) without the need to map
embeddings back to discrete tokens before decoding.

In both modes, Phase 1 outputs the tokenised form of S(0) together with the
corresponding text. This representation already incorporates a significant amount

54

System Design and Architecture

of semantic denoising, but may still contain local inconsistencies or artifacts due to
strong channel noise or model uncertainty.

4.4.4 BERT-Based Refinement
The second decoding stage (Phase 2 in the implementation) refines the initial
reconstruction S(0) using a BERT-based masked language model [16]. While the
seq2seq decoder in Phase 1 operates at the sequence level and focuses on global
fluency, BERT is used here as a local expert that proposes corrections for specific
tokens that are likely to be erroneous.

The process starts by tokenising S(0) with the tokenizer associated with the
chosen BERT model, which uses a WordPiece vocabulary. A set of heuristics is
then applied to identify suspicious positions, including:

• tokens that originate from masked positions or explicit channel error markers;

• tokens that exhibit unusual repetition patterns or abnormal character se-
quences;

• tokens whose surrounding context strongly suggests an alternative choice (e.g.,
based on simple n-gram statistics or part-of-speech expectations).

For each suspicious position, the corresponding token is replaced by the BERT
[MASK] symbol, and the masked sequence is fed to the BERT encoder. The model
returns a probability distribution over the vocabulary for each masked position,
from which a small set of candidate replacements is selected (typically the top-k
tokens). A positional mapping between the original LLM tokens and the BERT
tokens is maintained so that corrections can be consistently projected back onto
the sentence produced in Phase 1.

By iterating this procedure over all suspicious positions, Phase 2 constructs a
refined sentence S(1), along with token-level confidence scores that quantify how
strongly BERT supports each proposed correction.

4.4.5 Configurable Parameters and Design Choices
Phase 3 exposes several configuration options that control the balance between
conservative and aggressive refinement. The most relevant parameters include:

• BERT model choice and size. Different BERT variants (base vs. large,
uncased vs. cased) can be selected depending on the desired trade-off between
accuracy and computational cost.

• Heuristics for suspicious token detection. The rules used to flag tokens as
suspicious (e.g., thresholds on repetition length, patterns of special characters,

55

System Design and Architecture

or proximity to channel error markers) can be tuned to adjust the sensitivity
of the refinement stage.

• Top-k candidates and confidence thresholds. The number of candidate
replacements considered for each masked position and the minimum confidence
required to apply a correction influence how many tokens are actually modified
by BERT.

• Enable/disable refinement stages. BERT refinement can be enabled or
disabled, allowing for ablation studies that isolate its contribution to overall
performance.

As in the previous phases, these parameters are fixed for the main experiments
presented in the evaluation chapter, but can be varied in controlled ablations to
better understand the impact of semantic decoding and contextual refinement on
robustness under different channel conditions.

56

Chapter 5

Experimental Evaluation

5.1 Evaluation Goals and Research Questions
The goal of this chapter is to experimentally assess whether the proposed KG-
LLM pipeline can improve transmission efficiency and semantic robustness with
respect to purely symbolic baselines, when messages are conveyed over a realistic
radio channel affected by fading and additive noise. The experiments aim to
quantitatively connect the “physical” layer (BER, SNR, modulation scheme) with
the semantic layer (quality of the reconstructed text) and with the compression
gain provided by the Knowledge Graph.

More specifically, we pursue four main objectives:

• Robustness to channel noise: evaluate how KG-LLM configurations behave
as the SNR varies on a Rayleigh + AWGN channel, and whether they can
maintain a more stable semantic quality than vanilla models.

• Compression gain: measure how much the KG-based preprocessing reduces
the amount of transmitted information (characters, tokens, and bandwidth)
compared to using the same T5 and BART architectures in a “vanilla” setting
without Phase 1.

• Token-mode vs embedding-mode: study, for a given SNR, the differences
between symbolic transmission based on token IDs and numerical transmission
based on embeddings, also taking into account int8 quantization (1 byte per
value) in the latter case.

• Role of the decoder architecture (T5 vs BART): compare the two
models both in terms of compression capability and of semantic quality after
decoding and BERT-based refinement.

57

Experimental Evaluation

Based on these objectives, we formulate the following research questions:

• RQ1 - Robustness: in the presence of a Rayleigh + AWGN channel, do KG-
LLM configurations (KG-T5, KG-BART) maintain higher semantic metrics
(BLEU, ROUGE-L, METEOR, BERTScore, sentence similarity) than their
vanilla counterparts (NoKG-T5, NoKG-BART) at the same SNR?

• RQ2 - Compression gain: by how much does KG-based preprocessing
reduce message length (in characters and tokens) and the effective bandwidth
in token-mode and embedding-mode compared to vanilla models?

• RQ3 - Transmission mode trade-off: how do token-mode and embedding-
mode compare, as the SNR varies, in terms of semantic quality and transmitted
bandwidth? Is there an SNR regime in which one of the two modes is clearly
preferable?

• RQ4 - Model comparison: for a given KG configuration and channel
condition, which architecture (T5 vs BART) offers the best trade-off between
compression capability and semantic reconstruction accuracy at the receiver?

5.2 Experimental Setup

5.2.1 Dataset
All experiments are conducted on the binary version of the Stanford Sentiment
Treebank (SST-2) dataset. In our setup we work on a fixed validation split containing
872 sentences, each annotated with a global positive/negative sentiment label.
Sentences are typically short, which makes this dataset well aligned with our
scenario for three main reasons: (i) short sentences make it easier to isolate the
impact of the channel and compression, without confounding factors due to very
long texts; (ii) sentiment analysis requires preserving crucial semantic cues (polarity,
intensity, negation); (iii) SST-2 is widely used in the NLP literature, which facilitates
a qualitative comparison with related work.

For each combination of model (KG-T5, KG-BART, NoKG-T5, NoKG-BART),
transmission mode (token-mode, embedding-mode), and SNR in the grid {2, 4, 6, 8,-
10} dB, we run the end-to-end pipeline on the full set of 872 sentences and compute:

• channel-level metrics (BER/TER or equivalent BER),

• textual and semantic metrics (BLEU, ROUGE-L, METEOR, BERTScore,
SBERT similarity),

• compression and bandwidth statistics (characters, tokens, KB).

58

Experimental Evaluation

This guarantees a fair, one-to-one comparison across all configurations and
directly links compression, channel robustness, and semantic quality on the same
underlying data distribution.

5.2.2 Model and Pipeline Configurations
The experiments involve three main components: the encoder-decoder LLM, the
refinement model, and the transmission pipeline.

Encoder-decoder LLMs. We consider two transformer-based encoder-decoder
architectures:

• T5: we use the HuggingFace t5-small checkpoint, with a standard encoder-
decoder architecture and hidden size 512. T5 is particularly suited to summa-
rization and text-to-text tasks, making it a natural choice for Phase 2 semantic
compression.

• BART: we use the facebook/bart-base checkpoint as a second encoder-
decoder model. BART combines a denoising autoencoder pretraining objective
with a Transformer encoder + decoder, and is often found to be strong
on reconstruction-oriented tasks, complementing T5’s more compressive be-
haviour.

Refinement model. For Phase 3 we employ a BERT Masked Language
Model, e.g. the bert-base-uncased checkpoint. The refinement module is used
to correct tokens that are suspected to be corrupted by the channel: suspicious
positions are masked and BERT proposes high-probability replacements, with the
option of leaving already reliable tokens unchanged.

Global pipeline configurations. We evaluate four main LLM configurations,
obtained by toggling KG-based preprocessing and varying the underlying encoder-
decoder:

• KG ON (KG-LLM): full pipeline with Phase 1 KG-based preprocessing
(extraction and semantic compression), Phase 2 encoder-decoder (T5 or BART),
and Phase 3 BERT refinement. In this mode, the channel input is a compressed,
semantically grounded sentence.

• KG OFF (vanilla): LLM-only baseline without Phase 1, where the same
encoder-decoder (T5 or BART) operates directly on the original sentence.
Phase 3 remains active so that we can fairly isolate the contribution of KG-
based preprocessing with respect to a purely LLM-based system.

59

Experimental Evaluation

We also vary the representation transmitted over the channel:

• Token-based transmission: the sequence of discrete tokens produced by
the decoder is transmitted over the channel as 24-bit units (16 data bits + 8
CRC bits).

• Embedding-based transmission: the continuous decoder representations
Hgenerated ∈ Rm×d (before the output projection layer) are quantized to int8
and transmitted as flat vectors; the output text is decoded at the receiver side
from the received embeddings (see also Section 5.2.3).

For each of the above settings we consider both a T5-based decoder and a
BART-based decoder, paired with the corresponding encoder (KG-T5, KG-BART,
NoKG-T5, NoKG-BART) in a symmetric way.

Decoding parameters are kept fixed across all conditions, for instance:

• beam search with num_beams = 4,

• a capped max_length to prevent overly verbose outputs,

• a length_penalty slightly below 1 to favour compact sequences,

• a no_repeat_ngram_size constraint to reduce spurious repetitions.

To reduce variance due to stochastic decoding and channel noise, each configura-
tion is evaluated over multiple random seeds and/or multiple independent runs for
each SNR value. Reported curves show averages across runs (and, where relevant,
exhibit relatively small variance).
Taken together, these components define a family of configurations that can be
organised along four evaluation axes, directly aligned with the research questions
in Section 5.1:

• KG-based preprocessing vs vanilla LLM (RQ2): we compare KG-LLM
(KG ON) against vanilla LLMs (KG OFF), always using the same underlying
encoder-decoder and refinement stack. This allows us to quantify the impact
of Phase 1 on character/token-level compression, effective bandwidth (in both
token-mode and embedding-mode), and semantic quality.

• Transmission mode: token vs embedding (RQ3): for each model
configuration (e.g., KG-T5, KG-BART, NoKG-T5, NoKG-BART) we evaluate
both token-mode and embedding-mode. For each SNR value we compare the
two modes in terms of semantic metrics and bandwidth, and identify SNR
regimes where one representation becomes preferable over the other.

60

Experimental Evaluation

• Decoder architecture: T5 vs BART (RQ4): we contrast T5-based
pipelines (KG-T5, NoKG-T5) with BART-based pipelines (KG-BART, NoKG-
BART) under identical channel and SNR conditions. This highlights the trade-
off between compression capability (where T5 tends to be more aggressive) and
semantic reconstruction quality (where BART often achieves slightly higher
scores), with and without KG-based preprocessing.

• SNR sweep and channel conditions (RQ1): all of the above configurations
are evaluated over a common SNR grid, using the same Rayleigh+AWGN
channel model, so that differences in performance can be attributed to the
semantic pipeline rather than to changes in physical-layer conditions.

5.2.3 Wireless Channel Implementation
The channel simulation follows the theoretical model introduced in the wireless
background chapter: a Rayleigh flat-fading channel with thermal Additive
White Gaussian Noise (AWGN) at the equivalent bandwidth. On top of this, a
simplified gNodeB/radio-stack abstraction can be superimposed to loosely mimic a
5G NR link.

Token-based transmission. In token-mode, the pipeline operates as follows:

• Token encoding: each token is mapped to a 16-bit ID. A CRC-8 is appended
for single-token error detection, yielding 24 bits per token (16 data bits + 8
redundancy bits).

• Modulation: bits are mapped to complex symbols according to a configurable
ModulationType. In the main end-to-end experiments we use QPSK; the
implementation also supports BPSK and 16-QAM for alternative scenarios.

• Channel: the modulated symbol stream traverses a Rayleigh fading channel,
optionally with multipath components, followed by AWGN. Fading coefficients
are generated per coherence interval and normalized so that the average channel
gain is unitary.

• Output and internal metrics: the receiver performs demodulation and bit-level
detection, reconstructs token IDs, and checks the CRC. The channel module
outputs:

– the recovered token sequence received_tokens,
– a boolean corruption_mask marking tokens declared as corrupted,
– the Bit Error Rate (BER),

61

Experimental Evaluation

– the Token Error Rate (TER),
– the overall overhead due to headers, CRC, and framing.

BER and TER are primarily used to verify that the simulation follows the
expected BER-SNR behaviour of a realistic channel; they are not the final
optimization target, but rather a realism constraint on top of which semantic
evaluation is performed.

Embedding-based transmission. In embedding-mode, the system transmits
continuous decoder representations:

• Transmitted vector: given the decoder output matrix Hgenerated ∈ Rm×d (with
m the sequence length and d the embedding dimension), we flatten it into a
one-dimensional vector, apply int8 quantization (1 byte per value) to obtain
a compact numerical representation, and map it to modulated symbols that
traverse the same Rayleigh+AWGN channel. At the receiver, we perform
fading equalization, dequantization, and reshape the vector back to the original
m× d tensor before decoding.

• Internal metrics:

– the global mean squared error (MSE) between transmitted and
received embeddings,

– the average cosine similarity between corresponding embedding vectors,
– an equivalent BER indicator derived from the observed embedding

distortion (formally defined in Section 5.3.1).

In all experiments, we use the same SNR grid {2, 4, 6, 8, 10} dB, the same QPSK
modulation scheme, and identical fading/multipath parameters across configura-
tions, so that differences in performance can be attributed to the semantic pipeline
rather than to changes in the underlying channel model.

5.3 Evaluation Metrics
This section introduces the metrics used to evaluate the proposed KG-LLM semantic
communication system. We distinguish between channel-level metrics, which
validate the physical-layer behaviour of the simulated link, and textual/semantic
metrics, which quantify the quality of the reconstructed messages. In addition, we
define compression and bandwidth metrics to capture the efficiency.

62

Experimental Evaluation

5.3.1 Channel-Level Metrics
Bit Error Rate (BER). The Bit Error Rate is defined as the ratio between the
number of incorrectly decoded bits and the total number of transmitted bits:

BER = Nbit, errors

Nbit, total
. (5.1)

In token-based transmission, we compute the BER by comparing, bit by bit, the
transmitted sequence with the received sequence after demodulation and detection,
before mapping bits back to token IDs. For each SNR value we record the observed
BER and verify that it decreases with SNR in a way that is consistent with the
theoretical Rayleigh+AWGN model presented in the wireless background chapter.

Token Error Rate (TER). The Token Error Rate is defined as the ratio between
the number of incorrectly decoded tokens and the total number of transmitted
tokens:

TER = Ntoken, errors

Ntoken, total
. (5.2)

A token is considered erroneous if its reconstructed ID does not match the original
ID (e.g., due to bit flips) or if the CRC-8 check fails. In the token-mode, TER is
tightly coupled to BER and depends on the framing format (24 bits per token: 16
data bits + 8 CRC bits). A single bit flip can lead to a corrupted token ID or CRC
failure, which may in turn result in an incorrect word or an [UNK] symbol at the
text level.

Equivalent BER for embedding-mode. In embedding-based transmission
there is no explicit notion of bits associated with discrete symbols. To obtain a
channel-level indicator that is loosely comparable to BER, we define an equivalent
BER by mapping the observed embedding distortion into a per-dimension error
probability. In practice we consider the global mean squared error (MSE) between
transmitted and received embeddings,

MSE = 1
md

mØ
i=1

dØ
j=1

1
h

(tx)
ij − h

(rx)
ij

22
, (5.3)

and/or the loss in average cosine similarity, and normalize these quantities over the
int8 quantization range to produce a scalar indicator that increases with distortion.
This equivalent BER is not a physically accurate bit error probability; it is used
exclusively as a qualitative proxy to visualise how distortion evolves with SNR in
embedding-mode versus token-mode, and it does not enter as a direct design or
optimization objective.

63

Experimental Evaluation

5.3.2 Textual and Semantic Metrics
To evaluate the textual and semantic quality of the reconstructed messages, we
employ five standard metrics, computed using established Python libraries.

BLEU. The Bilingual Evaluation Understudy (BLEU) score measures n-gram
overlap between a candidate sentence and a reference sentence, typically up to
4-grams. We use a sentence-level BLEU implementation with smoothing to avoid
zero scores on short sentences. BLEU penalizes missing and spurious n-grams,
making it a useful indicator of how much local lexical content is preserved after
compression and channel distortion.[37]

ROUGE-L. ROUGE-L is based on the Longest Common Subsequence (LCS)
between reference and candidate sentences. It computes a precision/recall-based
F-measure derived from the LCS length. In contrast to BLEU, ROUGE-L is
more sensitive to the preservation of the overall sentence structure and ordering of
information, which is particularly relevant when assessing whether the high-level
narrative of the message is maintained.[38]

METEOR. METEOR relies on word-level alignments that incorporate stemming
and synonym matching (typically via WordNet). It combines precision, recall,
and a fragmentation penalty into a single score. Because it explicitly accounts
for morphological variants and synonyms, METEOR is well suited to semantic
communication scenarios in which mild paraphrasing is acceptable as long as the
underlying meaning is retained.[39]

BERTScore F1. BERTScore computes similarity between candidate and refer-
ence sentences using contextual embeddings from a pretrained BERT-like model.
Each token in the candidate is matched to the most similar token in the reference
in embedding space, and the resulting precision and recall are combined into an F1
score. Compared to surface metrics such as BLEU and ROUGE, BERTScore is
more sensitive to semantic equivalence and robust to lexical variation, making it a
natural choice to assess meaning preservation.[40]

Sentence-BERT similarity. Finally, we use a Sentence-BERT (SBERT) model
to obtain a single embedding for each sentence and measure the cosine similarity
between the original and reconstructed sentences. The resulting value, often
reported as a percentage, captures the overall semantic proximity between the two
sentences regardless of their surface form. In the context of semantic communication,
this metric provides a direct indication of how close the reconstructed meaning is
to the original one.[41]

64

Experimental Evaluation

5.3.3 Compression and Bandwidth Metrics
In addition to semantic quality, we measure how aggressively the proposed pipeline
reduces the amount of information that needs to be transmitted over the channel.
We consider both character-level and token-level compression, as well as an estimate
of the effective bandwidth.

Character-level compression ratio. We define the character-level compression
ratio as

CRchar = Ltx, char

Lorig, char
, (5.4)

where Lorig, char is the total number of characters in the original sentences and
Ltx, char is the total number of characters in the compressed/summarized sentences
produced by Phase 1-2. We compute CRchar over the full set of 872 validation
sentences, and compare KG-LLM configurations against vanilla baselines.

Token compression ratio. Similarly, we define the token-level compression
ratio as

CRtoken = Ntx, token

Norig, token
, (5.5)

where Norig, token is the total number of tokens in the original sentences and Ntx, token
is the total number of tokens after Phase 1-2. Token counts are aggregated
over the validation set from the pipeline logs (e.g., total_input_tokens and
total_output_tokens recorded for T5 and BART), yielding global and average
compression statistics.

Estimated bandwidth. We also estimate the amount of radio resources required
to transmit the compressed representations.

• Token-mode: assuming 24 bits per token (16 data bits + 8 CRC bits) plus
a fixed header overhead per experiment, the total bandwidth in kilobytes is
approximated as

KBtoken = 24 ·Ntoken + overhead
8 · 1024 . (5.6)

The corresponding plots report the total KB required by T5 and BART, with
and without KG, over the full validation set.

• Embedding-mode: in embedding-based transmission we assume int8-quantized
decoder embeddings (see Section 5.2.3). If Hgenerated has size m × d, the
bandwidth per single transmission is

KBemb = m · d · 8
8 · 1024 = m · d

1024 . (5.7)

65

Experimental Evaluation

In the plots this quantity is multiplied by the number of sentences in the
validation set and by the five SNR values used in the sweep, but the cost per
message does not directly depend on the SNR; it is determined solely by the
sequence length and the embedding dimensionality.

5.4 Results and Analysis

This section presents the quantitative results obtained from the end-to-end experi-
ments. We first analyse how semantic quality varies with the SNR in token-based
and embedding-based transmission, then we discuss compression and bandwidth
figures derived from the full SST-2 validation set.

5.4.1 Semantic Quality vs SNR

Figures 5.1-5.5 report the evolution of BLEU, ROUGE-L, METEOR, BERTScoreF1
and SBERT sentence similarity as a function of the SNR for both token-based and
embedding-based transmission. For each metric, the left subfigure corresponds to
token-mode, while the right subfigure shows the same metric when transmitting
decoder embeddings.

(a) Token-based transmission. (b) Embedding-based transmission.

Figure 5.1: BLEU score (%) vs SNR for token-based and embedding-based
transmission.

66

Experimental Evaluation

(a) Token-based transmission. (b) Embedding-based transmission.

Figure 5.2: ROUGE-L score (%) vs SNR for token-based and embedding-based
transmission.

(a) Token-based transmission. (b) Embedding-based transmission.

Figure 5.3: METEOR score (%) vs SNR for token-based and embedding-based
transmission.

(a) Token-based transmission. (b) Embedding-based transmission.

Figure 5.4: BERTScore F1 (%) vs SNR for token-based and embedding-based
transmission.

67

Experimental Evaluation

(a) Token-based transmission. (b) Embedding-based transmission.

Figure 5.5: Sentence-level cosine similarity (%) vs SNR for token-based and
embedding-based transmission.

Across all metrics and configurations, semantic quality increases monotonically
with SNR. At 2 dB the scores are clearly degraded, while at 8-10 dB the curves
begin to saturate, indicating that residual channel errors become rare and that the
dominant source of variability is the decoder itself rather than the wireless link.

In the token-based plots (left column), KG-based preprocessing has a con-
sistently positive impact. For both T5 and BART, KG-LLM variants stay above
their NoKG counterparts over the entire SNR range and for all five metrics. The
gain is particularly visible at intermediate SNRs (4-6 dB), where the channel is still
moderately noisy: KG-BART achieves markedly higher BLEU, ROUGE-L, and
METEOR scores than NoKG-BART, and KG-T5 clearly outperforms NoKG-T5.
Sentence-level similarity and BERTScore F1 show the same trend, confirming that
the KG reduces the semantic damage produced by token errors in the channel.

Comparing T5 and BART in token-mode, BART achieves the highest semantic
scores when combined with the KG. KG-BART is the top-performing configuration
in almost all token-based plots, reflecting the strong reconstruction capabilities
of BART’s denoising pretraining. KG-T5 is more aggressive in compression (as
discussed in Section 5.3.3), but its semantic scores remain slightly below KG-BART
at a given SNR.

In the embedding-based plots (right column), the dependence on SNR is
more gradual. Because small perturbations in the embedding space do not always
translate into catastrophic word substitutions, the curves exhibit smoother slopes
and no sharp cliff at low SNR. For T5, the KG-LLM variant retains a clear advantage
over NoKG-T5 on contextual metrics such as BERTScore and sentence similarity
at all SNR values, and improves METEOR and ROUGE-L as well. BLEU is the
only metric where NoKG-T5 catches up or slightly overtakes KG-T5 at high SNR,
reflecting the fact that BLEU is more sensitive to exact n-gram matches than to
semantic equivalence.

For BART in embedding-mode the picture is more shaded. NoKG-BART often

68

Experimental Evaluation

achieves the highest scores among all configurations, particularly on BERTScore
and sentence similarity. This suggests that when rich continuous representations
are transmitted directly, BART can already exploit its internal semantic structure
without requiring an explicit KG-based summarization step; overly aggressive
compression may remove fine-grained details that would otherwise be preserved
in the embedding stream. Even in this regime, however, KG-BART remains
competitive and largely above T5-based pipelines at the same SNR.

Overall, the semantic curves show that: (i) KG-based preprocessing system-
atically improves robustness for T5 in both token- and embedding-mode; (ii) for
BART, KG provides a strong benefit in token-mode but a smaller (and sometimes
negative) effect in embedding-mode; and (iii) embedding-based transmission tends
to degrade more gracefully with SNR, while token-based transmission can achieve
slightly higher peak scores when the channel is sufficiently clean.

5.4.2 Compression and Bandwidth Results

We now turn to compression and bandwidth figures, obtained by aggregating
statistics over the full SST-2 validation set of 872 sentences. Character-level
and token-level compression ratios are reported in Figure 5.6, while Figure 5.7
summarises the estimated transmission bandwidth in token-based and embedding-
based modes.

At the character level, KG-LLM achieves substantial compression compared
to vanilla models. For T5, the compression ratio drops from approximately 0.81
(baseline) to 0.59 with KG-based preprocessing, corresponding to a reduction of
about 28% in the number of characters transmitted. For BART the effect is milder
but still noticeable, with the ratio going from 1.00 (no compression) to around 0.92,
i.e., roughly an 8% reduction.

The effect is even more pronounced at the token level. For T5, the token
compression ratio decreases from about 0.76 in the baseline to 0.40 with KG-LLM,
meaning that the number of tokens to be transmitted is almost halved (a reduction
of roughly 47%). For BART, the ratio drops from approximately 0.96 to 0.77,
corresponding to a token reduction close to 20%. These results confirm that Phase 1
significantly shortens the sequences seen by the encoder-decoder, especially for a
summarization-oriented model such as T5.

69

Experimental Evaluation

(a) Character-level compression ratio.

(b) Token-level compression ratio.

Figure 5.6: Compression ratio of KG-LLM vs vanilla baselines on the SST-2
validation set (lower is better).

(a) Token-based transmission bandwidth. (b) Embedding-based transmission bandwidth.

Figure 5.7: Estimated total bandwidth (KB) required by KG-LLM and vanilla
models in token-based and embedding-based transmission.

70

Experimental Evaluation

These compression gains translate into tangible bandwidth savings at the
physical layer. In token-mode (QPSK, 24 bits/token plus protocol overhead), the
total bandwidth over the validation set decreases from about 273.4 KB to 178.0 KB
for T5, and from roughly 281.1 KB to 230.4 KB for BART. This corresponds to a
bandwidth reduction of approximately one third for T5 and nearly one fifth for
BART.

In embedding-mode (int8 quantization, 1 byte per embedding value), the savings
are larger in absolute terms. For T5, KG-LLM reduces the total transmitted volume
from about 31.4 MB to 15.1 MB, i.e., slightly more than 50% fewer kilobytes. For
BART the reduction is from roughly 49.1 MB to 36.1 MB, yielding savings on the
order of 25-30%. Since these quantities scale linearly with the number of messages,
the impact on aggregate airtime and spectral efficiency becomes even more relevant
in large-scale deployments.

Taken together, the semantic curves and the compression/bandwidth plots
indicate that KG-based preprocessing can substantially reduce the amount of infor-
mation that must be carried by the wireless link while maintaining semantic quality,
especially for T5-based pipelines and for scenarios where token-based transmission
is used at moderate SNR values. These trends will be further interpreted in the
discussion section.

5.5 Discussion
This section revisits the research questions introduced in Section 5.1 in the light of
the results presented in Section 5.4, and discusses their implications for semantic
communication in bandwidth-constrained, low-SNR edge scenarios.

RQ1 - Robustness to channel noise
The semantic curves in Figures 5.1-5.5 show that all configurations benefit from
increasing SNR, but KG-LLM pipelines are consistently more robust than their
vanilla counterparts in several regimes. In token-based transmission, KG-T5 and
KG-BART dominate NoKG-T5 and NoKG-BART across the entire SNR sweep
for all five metrics, with the largest gaps appearing at intermediate SNR values (4-
6 dB). This suggests that KG-based preprocessing makes the transmitted sequences
intrinsically more redundant at the semantic level, so that occasional token errors
are less likely to flip the overall meaning of the message.

In embedding-based transmission the dependence on SNR is smoother and the
effect of the KG is more model-dependent. For T5, KG-LLM clearly improves
BERTScore and sentence similarity for all SNRs, while for BART the NoKG variant
can match or slightly outperform KG-BART on some metrics at high SNR. Overall,
the results support the view that KG-guided compression improves semantic

71

Experimental Evaluation

robustness in the most challenging regime (moderate SNR with non negligible
distortion), especially for models such as T5 that are trained for summarisation.

RQ2 - Compression gain
The compression and bandwidth plots in Figures 5.6-5.7 confirm that KG-based
preprocessing significantly reduces the amount of information that must be trans-
mitted.

At the character level, KG-T5 lowers the compression ratio from approximately
0.81 to 0.59, corresponding to a reduction of about 27.6% in the number of
characters. KG-BART still achieves a non-negligible improvement, from roughly
1.00 to 0.92 (about 8%). Token-level compression is even more pronounced: KG-T5
almost halves the number of tokens to be transmitted (ratio ≈ 0.40 vs 0.76, i.e. a
reduction around 47.4%), while KG-BART reduces tokens by about 19.7%.

These gains translate into concrete savings in radio resources. In token-based
transmission (QPSK, 24 bits/token + overhead) the total bandwidth over the
872-sentence validation set drops from 273.4 KB to 178.0 KB for T5, and from
281.1 KB to 230.4 KB for BART. In embedding-mode (int8 quantisation) KG-T5
reduces the transmitted volume from 31 396.5 KB to 15 121.5 KB (about 51.8%
fewer kilobytes), while KG-BART goes from 49 072.5 KB to 36 096.8 KB (roughly
a 25-30% reduction). Since these quantities scale linearly with the number of
messages, even moderate per-sentence savings can become substantial in large
deployments.

RQ3 - Token-mode vs embedding-mode
Comparing the left and right subfigures in Figures 5.1-5.5, two main patterns
emerge.

First, token-mode exhibits a sharper dependence on SNR: when the BER is high
(2 dB), a few bit flips are enough to corrupt entire tokens, leading to noticeable
drops in BLEU and ROUGE-L; as the SNR increases, TER quickly decreases and
semantic scores saturate. In this regime KG-BART is the strongest configuration,
especially at 6-10 dB.

Second, embedding-mode degrades more gracefully with SNR. Because small
perturbations in the embedding space do not necessarily change the most likely
decoded word, the curves are smoother and low-SNR performance is less catas-
trophic. At high SNR, token-mode can reach slightly higher peak scores, while
embedding-mode offers larger bandwidth savings thanks to int8 quantisation and
is less sensitive to discrete symbol errors.

The choice between token-based and embedding-based transmission is therefore
scenario-dependent. In links that routinely operate at moderate-to-high SNR,

72

Experimental Evaluation

token-mode with KG-BART or KG-T5 provides excellent semantic quality with
moderate compression. In harsher conditions, or when very aggressive quantisation
is needed, embedding-mode becomes attractive because it avoids hard symbol errors
and can still deliver acceptable semantic similarity while reducing the number of
bytes per message.

RQ4 - T5 vs BART
The comparison between T5 and BART highlights a clear division of roles. KG-
T5 is consistently the most compressive configuration: it produces the shortest
summaries and achieves the lowest character and token compression ratios, which
directly translate into the largest bandwidth reductions. This behaviour is aligned
with its pretraining on summarisation and other text-to-text tasks.

KG-BART, on the other hand, tends to be the most accurate decoder in terms of
semantic metrics, especially in token-mode. Its denoising autoencoder pretraining
allows it to reconstruct fluent, faithful sentences even when the input has been
affected by token errors or by the aggressive Phase 1 compression.

These observations suggest a potential future extension in which T5 and BART
are combined in a hybrid pipeline: a T5-based encoder performing strong semantic
compression, followed by a BART-based decoder (possibly with KG-aware prompts)
specialised in faithful reconstruction and refinement. Such a configuration could
exploit the best of both worlds, further pushing the trade-off between compression
and semantic robustness.

73

Chapter 6

Conclusions

This thesis set out to investigate whether a hybrid semantic communication archi-
tecture, combining knowledge graphs (KGs) and large language models (LLMs), can
transmit the meaning of short textual messages over noisy wireless channels more
efficiently and robustly than conventional symbol-based approaches. The central
goal was to move from bit-level reliability towards meaning-oriented performance,
in line with the needs of bandwidth-constrained edge and IoT scenarios.

Within this perspective, the KG-LLM framework combines symbolic and neural
components in a complementary way. KG-based preprocessing reduces redundancy
and exposes the core semantic structure of each message, highlighting the entities
and relations that carry most of the meaning. LLMs then exploit this condensed,
structured input to produce compact semantic representations and to reconstruct
fluent text at the receiver, relying on their contextualisation capabilities to restore
details that are not explicitly transmitted. End-to-end evaluation under noisy-
channel conditions, based on task-agnostic measures of semantic similarity, provides
a direct view of how well the reconstructed messages preserve the intended meaning.

The experimental results in Chapter 5 show that this cooperation between
KGs and LLMs translates into tangible gains. KG-aware configurations generally
preserve or improve semantic similarity compared to LLM-only baselines, especially
at low-to-medium SNR values, while at the same time reducing the amount of
information that needs to be sent. Token-based transmission proves highly efficient
and accurate when channel conditions are favourable, but degrades more abruptly
as SNR decreases, reflecting its sensitivity to symbol errors. Embedding-based
transmission, instead, offers a smoother degradation profile thanks to the continuous
nature of the representations, at the cost of different bandwidth and implementation
trade-offs. Across both modes, T5 tends to behave as a strong semantic compressor,
whereas BART often delivers slightly better reconstruction quality, particularly
when guided by KG-derived summaries. Overall, the empirical evidence supports
the viability of KG-LLM semantic communication as a candidate solution for

74

Conclusions

meaning-oriented, bandwidth-efficient transmission in noisy environments.
At the same time, this work represents only an initial step. The current

evaluation is limited to short English sentences from a single benchmark and to
relatively compact pretrained models, tested under a simplified channel setting.
Future research can build on these foundations by extending the framework to longer
texts, dialogues, multilingual traffic and more diverse tasks; and by integrating
the semantic pipeline into full network simulators or experimental testbeds to
assess end-to-end behaviour under realistic protocol stacks and multiuser operation.
Within these limitations, the thesis demonstrates that explicitly combining symbolic
knowledge and neural language models can significantly improve efficiency, resilience,
and semantic similarity in end-to-end communication, and points towards a broader
transition from bit-oriented wireless systems to architectures that explicitly optimise
for the preservation of meaning.

75

Bibliography

[1] C.E. Shannon and W. Weaver. The Mathematical Theory of Communication.
Urbana, IL: University of Illinois Press, 1949 (cit. on pp. 1, 2, 16, 45).

[2] G. Xin, P. Fan, and K.B. Letaief. «Semantic Communication: A Survey of Its
Theoretical Development». In: Entropy 26.2 (2024), p. 102. doi: 10.3390/
e26020102. url: https://www.mdpi.com/1099-4300/26/2/102 (cit. on
pp. 2, 3, 15, 16).

[3] T. Han, Q. Yang, Z. Shi, et al. Semantic-preserved Communication System for
Highly Efficient Speech Transmission. 2022. arXiv: 2205.12727 [eess.AS].
url: https://arxiv.org/abs/2205.12727 (cit. on pp. 6, 7).

[4] M. Lokumarambage, V. Gowrisetty, H. Rezaei, et al. «Wireless End-to-End
Image Transmission System using Semantic Communications». In: Proc. IEEE
International Conference on Communications. 2023. url: https://arxiv.
org/abs/2302.13721 (cit. on p. 7).

[5] Z. Wang, L. Zou, S. Wei, et al. «Large-Language-Model-Enabled Text Seman-
tic Communication Systems». In: Applied Sciences 15.13 (2025), p. 7227. doi:
10.3390/app15137227 (cit. on p. 8).

[6] M. Chen, Z. Sun, X. He, et al. «LLM-Based Semantic Communication: The
Way From Task-Originated to General». In: IEEE Wireless Communications
Letters 14.10 (2025), pp. 3029–3033. doi: 10.1109/LWC.2025.3583053 (cit.
on p. 8).

[7] A. Kalita. Large Language Models (LLMs) for Semantic Communication in
Edge-based IoT Networks. 2024. arXiv: 2407.20970 [cs.NI]. url: https:
//arxiv.org/abs/2407.20970 (cit. on p. 9).

[8] S. Salehi, M. Erol-Kantarci, and D. Niyato. LLM-Enabled Data Transmission
in End-to-End Semantic Communication. 2025. arXiv: 2504.07431 [cs.NI].
url: https://arxiv.org/abs/2504.07431 (cit. on pp. 9, 13, 34).

[9] S. Jiang, Y. Liu, Y. Zhang, et al. «Reliable Semantic Communication System
Enabled by Knowledge Graph». In: Entropy 24.6 (2022), p. 846. doi: 10.
3390/e24060846 (cit. on p. 10).

77

https://doi.org/10.3390/e26020102
https://doi.org/10.3390/e26020102
https://www.mdpi.com/1099-4300/26/2/102
https://arxiv.org/abs/2205.12727
https://arxiv.org/abs/2205.12727
https://arxiv.org/abs/2302.13721
https://arxiv.org/abs/2302.13721
https://doi.org/10.3390/app15137227
https://doi.org/10.1109/LWC.2025.3583053
https://arxiv.org/abs/2407.20970
https://arxiv.org/abs/2407.20970
https://arxiv.org/abs/2407.20970
https://arxiv.org/abs/2504.07431
https://arxiv.org/abs/2504.07431
https://doi.org/10.3390/e24060846
https://doi.org/10.3390/e24060846

BIBLIOGRAPHY

[10] C. Guo, J. Liu, W. Gao, et al. «A Large Language Model Driven Knowl-
edge Graph Construction Scheme for Semantic Communication». In: Applied
Sciences 15.8 (2025), p. 4575. doi: 10.3390/app15084575 (cit. on pp. 10,
11).

[11] B. Wang, R. Li, J. Zhu, et al. Knowledge Enhanced Semantic Communication
Receiver. 2023. arXiv: 2302.07727 [cs.CL]. url: https://arxiv.org/abs/
2302.07727 (cit. on pp. 10, 12).

[12] C. Liang, Y. Sun, D. Nyato, and M.A. Imran. «Knowledge Graph Fusion Based
Semantic Communication Framework». In: IEEE Transactions on Mobile
Computing 24.11 (2025), pp. 11416–11429. doi: 10.1109/TMC.2025.3583605
(cit. on pp. 12, 13, 18).

[13] O. Goldreich, B. Juba, and M. Sudan. «A Theory of Goal-Oriented Com-
munication». In: Journal of the ACM 59.2 (2012), 8:1–8:65. doi: 10.1145/
2160158.2160161 (cit. on p. 15).

[14] D. Wheeler and B. Natarajan. «Engineering Semantic Communication: A
Survey». In: IEEE Access 11 (2023), pp. 13965–13995. issn: 2169-3536. doi:
10.1109/access.2023.3243065. url: http://dx.doi.org/10.1109/
ACCESS.2023.3243065 (cit. on p. 17).

[15] T. Mikolov, I. Sutskever, K. Chen, et al. Distributed Representations of Words
and Phrases and their Compositionality. 2013. arXiv: 1310.4546 [cs.CL].
url: https://arxiv.org/abs/1310.4546 (cit. on p. 18).

[16] J. Devlin, M. Chang, K. Lee, and K. Toutanova. «BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding». In: 2019. arXiv:
1810.04805 [cs.CL]. url: https://arxiv.org/abs/1810.04805 (cit. on
pp. 18, 34, 36, 55).

[17] A. Hogan, E. Blomqvist, M. Cochez, C. D’Amato, et al. «Knowledge Graphs».
In: ACM Computing Surveys 54.4 (2021), pp. 1–37. doi: 10.1145/3447772
(cit. on pp. 18, 20).

[18] P. Schneider, T. Schopf, J. Vladika, et al. «A Decade of Knowledge Graphs
in Natural Language Processing: A Survey». In: Proceedings of the 2nd Con-
ference of the Asia-Pacific Chapter of the Association for Computational
Linguistics and the 12th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association for Computational Linguis-
tics, 2022, pp. 601–614. doi: 10.18653/v1/2022.aacl-main.46 (cit. on
p. 18).

[19] O. Etzioni, M. Banko, S. Soderland, and D.S. Weld. «Open information
extraction from the web». In: Commun. ACM 51.12 (Dec. 2008), pp. 68–74.
issn: 0001-0782. doi: 10.1145/1409360.1409378. url: https://doi.org/
10.1145/1409360.1409378 (cit. on p. 21).

78

https://doi.org/10.3390/app15084575
https://arxiv.org/abs/2302.07727
https://arxiv.org/abs/2302.07727
https://arxiv.org/abs/2302.07727
https://doi.org/10.1109/TMC.2025.3583605
https://doi.org/10.1145/2160158.2160161
https://doi.org/10.1145/2160158.2160161
https://doi.org/10.1109/access.2023.3243065
http://dx.doi.org/10.1109/ACCESS.2023.3243065
http://dx.doi.org/10.1109/ACCESS.2023.3243065
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3447772
https://doi.org/10.18653/v1/2022.aacl-main.46
https://doi.org/10.1145/1409360.1409378
https://doi.org/10.1145/1409360.1409378
https://doi.org/10.1145/1409360.1409378

BIBLIOGRAPHY

[20] A. Yates, M. Banko, M. Broadhead, et al. «TextRunner: Open Information
Extraction on the Web». In: Proceedings of Human Language Technologies:
The Annual Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL-HLT). Ed. by Bob Carpenter, Amanda
Stent, and Jason D. Williams. Rochester, New York, USA: Association for
Computational Linguistics, Apr. 2007, pp. 25–26. url: https://aclanthol
ogy.org/N07-4013/ (cit. on p. 21).

[21] O. Etzioni, A. Fader, J. Christensen, et al. «Open information extraction:
the second generation». In: Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence - Volume Volume One. IJCAI’11.
Barcelona, Catalonia, Spain: AAAI Press, 2011, pp. 3–10. isbn: 9781577355137
(cit. on pp. 21, 45).

[22] G. Angeli, M. J. J. Premkumar, and C. D. Manning. «Leveraging Linguistic
Structure for Open Domain Information Extraction». In: Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Ed. by Chengqing Zong and Michael Strube. Beijing,
China: Association for Computational Linguistics, July 2015, pp. 344–354.
doi: 10.3115/v1/P15-1034. url: https://aclanthology.org/P15-1034/
(cit. on p. 22).

[23] C. Niklaus, M. Cetto, A. Freitas, and S. Handschuh. «A Survey on Open
Information Extraction». In: Proceedings of the 27th International Conference
on Computational Linguistics. Ed. by Emily M. Bender, Leon Derczynski, and
Pierre Isabelle. Santa Fe, New Mexico, USA: Association for Computational
Linguistics, Aug. 2018, pp. 3866–3878. url: https://aclanthology.org/
C18-1326/ (cit. on p. 22).

[24] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd. «spaCy: Industrial-
strength Natural Language Processing in Python». In: (2020). doi: 10.5281/
zenodo.1212303 (cit. on pp. 22, 45).

[25] M. Honnibal and I. Montani. spaCy 101: Everything You Need to Know.
https://spacy.io/usage/spacy-101. Accessed: 2025-11-18. 2020 (cit. on
p. 22).

[26] A. Vaswani, N. Shazeer, N. Parmar, et al. «Attention Is All You Need».
In: Advances in Neural Information Processing Systems. Vol. 30. Curran
Associates, Inc., 2017. url: https://papers.nips.cc/paper/7181-attent
ion-is-all-you-need (cit. on pp. 24, 25, 27).

79

https://aclanthology.org/N07-4013/
https://aclanthology.org/N07-4013/
https://doi.org/10.3115/v1/P15-1034
https://aclanthology.org/P15-1034/
https://aclanthology.org/C18-1326/
https://aclanthology.org/C18-1326/
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://spacy.io/usage/spacy-101
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need

BIBLIOGRAPHY

[27] I. Sutskever, O. Vinyals, and Q. V. Le. «Sequence to Sequence Learning with
Neural Networks». In: Advances in Neural Information Processing Systems.
Vol. 27. Curran Associates, Inc., 2014. url: https://papers.nips.cc/
paper/5346-sequence-to-sequence-learning-with-neural-networks
(cit. on p. 27).

[28] C. Raffel, N. Shazeer, A. Roberts, et al. «Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer». In: Journal of Machine
Learning Research 21.140 (2020), pp. 1–67. url: https://jmlr.org/papers/
v21/20-074.html (cit. on pp. 27, 35, 49, 52).

[29] M. Lewis, Y. Liu, N. Goyal, et al. «BART: Denoising Sequence-to-Sequence
Pre-training for Natural Language Generation, Translation, and Comprehen-
sion». In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. 2020, pp. 7871–7880. doi: 10.18653/v1/2020.acl-
main.703. url: https://aclanthology.org/2020.acl-main.703 (cit. on
pp. 27, 35, 49).

[30] S.W. Tan, C. Lee, K. M. Lim, et al. «QARR-FSQA: Question-Answer Replace-
ment and Removal Pretraining Framework for Few-Shot Question Answering».
In: IEEE Access 12 (2024), pp. 159280–159295. doi: 10.1109/ACCESS.2024.
3487581 (cit. on p. 27).

[31] S. Swain. BART Model for Text Auto Completion in NLP. GeeksforGeeks.
Last accessed: 19 Nov. 2025. 2025. url: https://www.geeksforgeeks.org/
artificial-intelligence/bart-model-for-text-auto-completion-in-
nlp (cit. on p. 28).

[32] A. Goldsmith. Wireless Communications. Cambridge, UK: Cambridge Uni-
versity Press, 2005 (cit. on p. 31).

[33] D. Tse and P. Viswanath. Fundamentals of Wireless Communication. Cam-
bridge, UK: Cambridge University Press, 2005 (cit. on p. 31).

[34] Add white Gaussian noise to signal. MathWorks Documentation, awgn func-
tion. Accessed: 2025. url: https://www.mathworks.com/help/comm/ref/
awgn.html (cit. on p. 31).

[35] Turing. How the BERT NLP Optimization Model Works. Turing Blog. 2025.
url: https://www.turing.com/kb/how-bert-nlp-optimization-model-
works (cit. on p. 36).

[36] T. Wolf, L. Debut, V. Sanh, et al. «Transformers: State-of-the-Art Natural
Language Processing». In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations. Online:
Association for Computational Linguistics, Oct. 2020, pp. 38–45. doi: 10.
18653/v1/2020.emnlp-demos.6. url: https://aclanthology.org/2020.
emnlp-demos.6/ (cit. on p. 49).

80

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://doi.org/10.1109/ACCESS.2024.3487581
https://doi.org/10.1109/ACCESS.2024.3487581
https://www.geeksforgeeks.org/artificial-intelligence/bart-model-for-text-auto-completion-in-nlp
https://www.geeksforgeeks.org/artificial-intelligence/bart-model-for-text-auto-completion-in-nlp
https://www.geeksforgeeks.org/artificial-intelligence/bart-model-for-text-auto-completion-in-nlp
https://www.mathworks.com/help/comm/ref/awgn.html
https://www.mathworks.com/help/comm/ref/awgn.html
https://www.turing.com/kb/how-bert-nlp-optimization-model-works
https://www.turing.com/kb/how-bert-nlp-optimization-model-works
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/

BIBLIOGRAPHY

[37] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. «BLEU: a
Method for Automatic Evaluation of Machine Translation». In: Proceedings
of the 40th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics. 2002, pp. 311–318. doi: 10.3115/
1073083.1073135 (cit. on p. 64).

[38] Chin-Yew Lin. «ROUGE: A Package for Automatic Evaluation of Summaries».
In: Text Summarization Branches Out. Barcelona, Spain: Association for
Computational Linguistics, July 2004, pp. 74–81. url: https://aclantholo
gy.org/W04-1013 (cit. on p. 64).

[39] Satanjeev Banerjee and Alon Lavie. «METEOR: An Automatic Metric for
MT Evaluation with Improved Correlation with Human Judgments». In:
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Mea-
sures for Machine Translation and/or Summarization. Ann Arbor, Michigan:
Association for Computational Linguistics, 2005, pp. 65–72. url: https:
//aclanthology.org/W05-0909 (cit. on p. 64).

[40] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav
Artzi. «BERTScore: Evaluating Text Generation with BERT». In: CoRR
abs/1904.09675 (2019). arXiv: 1904.09675. url: http://arxiv.org/abs/
1904.09675 (cit. on p. 64).

[41] Nils Reimers and Iryna Gurevych. «Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks». In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong, China: Association for Computational Linguistics, 2019, pp. 3980–3990.
doi: 10.18653/v1/D19-1410. url: https://doi.org/10.18653/v1/D19-
1410 (cit. on p. 64).

81

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

	List of Tables
	List of Figures
	Glossary
	Introduction
	Background and Motivation
	Research Objectives and Contributions
	Thesis Outline

	Related works
	Early Deep Learning-Based Semantic Communication
	LLM-Enabled Semantic Transmission
	Knowledge Graph Integration
	Towards our proposed framework

	Theoretical Background
	Semantic Representations for Text Communication
	Symbolic vs. Semantic Transmission
	Semantic Representations for Textual Data
	Hybrid Semantic Representations

	Knowledge Graphs and Relation Extraction
	Fundamentals of Knowledge Graphs
	Open Information Extraction (OpenIE)
	Dependency Parsing and Pattern-Based Extraction
	Triples as Units of Semantic Compression

	Transformer-Based Semantic Encoding
	The Transformer Architecture
	Sequence-to-Sequence Encoding for Text
	Token-Based vs. Embedding-Based Semantic Representations
	Semantic Compression and Robustness

	Wireless Channel Models for Semantic Communication
	Intuitive View of Wireless Channels and Noise
	Discrete and Continuous Encoded Signals
	Impact on Token- and Embedding-Based Semantic Representations

	Semantic Decoding and Refinement
	Semantic Decoder Based on T5 and BART
	Masked Language Modelling with BERT

	System Design and Architecture
	Overview of the Proposed Framework
	Mapping Between Theory and Implementation
	Software Stack and Code Organization
	Design Assumptions and Constraints
	End-to-End KG-LLM Semantic Communication Algorithm

	Phase 1 – Semantic Preprocessing and Knowledge Extraction
	Module Overview and I/O Contract
	Entropy-Based Sentence Analysis
	Hybrid Triple Extraction with OpenIE and spaCy
	Triple Consolidation and Knowledge Graph Construction
	Example Knowledge Graphs
	Configurable Parameters and Design Choices

	Phase 2 – LLM-Based Semantic Encoding
	Encoder Architecture and Model Configuration
	Encoding Pipeline and Token Merging
	Embedding Extraction for Continuous Transmission
	Configurable Parameters and Design Choices

	Phase 3 – Semantic Decoding and Contextual Refinement
	Module Overview and I/O Contract
	Pre-processing and Error Masking
	Initial LLM-Based Reconstruction
	BERT-Based Refinement
	Configurable Parameters and Design Choices

	Experimental Evaluation
	Evaluation Goals and Research Questions
	Experimental Setup
	Dataset
	Model and Pipeline Configurations
	Wireless Channel Implementation

	Evaluation Metrics
	Channel-Level Metrics
	Textual and Semantic Metrics
	Compression and Bandwidth Metrics

	Results and Analysis
	Semantic Quality vs SNR
	Compression and Bandwidth Results

	Discussion

	Conclusions
	Bibliography

