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Abstract

The growing complexity and heterogeneity of modern network traffic pose a signif-
icant challenge to anomaly detection in cybersecurity. Traditional models often
fail to generalize across datasets with differing distributions and feature spaces,
resulting in limited robustness when applied to unseen environments. This thesis
proposes a unified framework for network anomaly detection that leverages multiple
datasets to build a generalizable classification model.

The proposed approach utilizes AutoEncoders (AEs) to transform multiple
datasets into a common feature space, thereby enabling their integration. We
train an independent AE on each dataset to learn a compact, latent representation
of its specific traffic patterns (both normal and anomalous). Once trained, only
the encoder portion of each AE is retained to map the data into its latent space.
This process generates meaningful and comparable features across all datasets,
neutralizing inconsistencies like different scaling or feature definitions. These
encoded representations are then merged into a single, unified dataset.

Finally, this combined dataset is used to train a Multi-Layer Perceptron (MLP)
classifier to distinguish between benign and malicious traffic.

The approach was evaluated using three benchmark datasets — CIC-IDS2017,
BoT-IoT, and UNSW-NB15 — each representing distinct network conditions and
types of attacks. Experimental results demonstrate high detection performance,
achieving F1-scores of 96.1% on CIC-IDS2017, 99.9% on BoT-IoT, and 90.5% on
UNSW-NB15, with an overall cross-dataset F1-score of 99.5%. These outcomes
confirm the strong generalization capability of the proposed method and its ro-
bustness across heterogeneous data sources. Finally, the SHAP (SHapley Additive
exPlanations) framework was employed to interpret the model’s predictions, offer-
ing insights into the most influential features and providing transparency in the
decision-making process. Additionally, SHAP values were explored as a feature
selection strategy to assess whether model performance could be improved.

Overall, the results confirm that the unified representation provides a reliable and
effective strategy for network anomaly detection in heterogeneous environments.
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Chapter 1

Introduction

The rapid growth and increasing complexity of modern computer networks have
made them a critical component of both personal and enterprise infrastructures.
Alongside these advancements, the sophistication and frequency of cyber threats
have increased significantly, posing serious risks to the integrity, confidentiality,
and availability of networked systems.

In this context, anomaly detection (AD) has emerged as a fundamental approach
for identifying unexpected or malicious behavior within complex datasets. AD
techniques aim to detect patterns that deviate from normal behavior, providing
a flexible and data-driven alternative to traditional rule-based or signature-based
security methods. By learning from observed data, these methods can identify
previously unseen threats, making them particularly suitable for dynamic and
evolving network environments.

A specific application of AD is network anomaly detection (NAD), which focuses
on identifying unusual patterns in network traffic. NAD provides a way to moni-
tor and detect potential threats in networks, complementing traditional security
mechanisms. The increasing volume and diversity of network data, combined
with constantly evolving threats, make it essential to develop methods capable of
capturing abnormal behaviors effectively and efficiently.

1.1 NAD
Network Anomaly Detection (NAD) is a specialized area of anomaly detection that
focuses on identifying unusual patterns or behaviors within network traffic. Its
primary goal is to distinguish between normal and potentially harmful activities,
providing a data-driven approach to safeguarding networked systems.

Unlike traditional security mechanisms, which often rely on predefined rules or
known attack signatures, NAD methods can adapt to evolving network behaviors.
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This capability is particularly important in modern networks, where traffic patterns
are increasingly complex and dynamic. By learning from historical network data,
NAD techniques can identify previously unseen threats, such as novel intrusion
types, emerging malware campaigns, or unusual communication patterns between
devices.

The study of NAD encompasses a variety of data types and sources, including
packet-level information, flow statistics, and system logs. Each type of data presents
unique challenges in terms of volume, dimensionality, and variability, motivating
the development of specialized detection methods capable of handling diverse
network environments. Modern networks, such as enterprise infrastructures, cloud
systems, and IoT ecosystems, produce heterogeneous traffic that further increases
the difficulty of detecting anomalies reliably.

Several approaches exist for detecting anomalies in networks. Classical statistical
methods focus on deviations from expected distributions of traffic features, while
machine learning techniques aim to learn patterns directly from the data. Both
approaches offer complementary advantages: statistical methods are often simple
and interpretable, whereas machine learning models can capture complex, non-linear
patterns and generalize better to unseen situations.

Overall, NAD provides a critical layer of defense, complementing conventional
security tools and enabling proactive monitoring of networks. Its importance contin-
ues to grow as network infrastructures expand and cyber threats become increasingly
sophisticated, highlighting the need for robust and adaptive detection techniques
that can operate effectively in diverse and dynamic network environments.

1.2 Challenges for NAD
Despite the significant progress achieved in recent years, the development of
effective Network Anomaly Detection systems still faces numerous challenges.
These difficulties arise from both the intrinsic complexity of modern networks and
the limitations of current analytical techniques.

A first major challenge lies in the high variability of network traffic. Normal
network behavior is not static — it evolves over time depending on user activity,
applications, and infrastructure changes. As a result, defining what constitutes
“normal” behavior becomes difficult, and models trained on past data may rapidly
become outdated. This phenomenon, known as concept drift, often leads to a
degradation of detection performance in real-world deployments.

Another crucial aspect is the imbalance between normal and anomalous samples.
In network environments, malicious events are relatively rare compared to the large
volume of legitimate traffic. This imbalance can bias learning algorithms toward
normal behavior, making it difficult to detect subtle or novel attacks. Furthermore,
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anomalies themselves are highly diverse — ranging from scanning attempts to data
exfiltration — and cannot always be easily generalized.

The scarcity of labeled data represents another major obstacle. Annotating
network traffic requires significant domain expertise and time, especially in large-
scale environments. As a consequence, supervised learning approaches are often
impractical, driving the adoption of unsupervised or semi-supervised techniques
that can operate with limited supervision.

Scalability is also a key concern. Network traffic generates massive amounts of
data in real time, and the Network anomaly detection systems must process and
analyze this information efficiently without introducing significant delays. Ensuring
both high detection accuracy and computational efficiency is a difficult trade-off,
especially when models are deployed in high-throughput or resource-constrained
environments.

Finally, interpretability and adaptability remain open issues. While complex
machine learning models, such as deep neural networks, have demonstrated strong
detection performance, their decision processes are often opaque. This lack of trans-
parency can hinder trust and prevent network administrators from understanding
or validating alerts. Moreover, adapting these models to new network conditions or
attack types without complete retraining remains a significant research challenge.

1.3 Limitations of the current approaches
Although numerous methods have been proposed to address the challenges of
Network Anomaly Detection, existing approaches still exhibit significant limitations
that hinder their practical effectiveness and generalization capabilities.

Traditional signature-based systems, such as intrusion detection systems (IDS),
rely on predefined patterns of known attacks. While effective against previously
observed threats, they fail to identify novel or evolving attacks that do not match
existing signatures. This lack of adaptability has made signature-based methods
increasingly inadequate in modern, rapidly changing network environments.

To overcome these limitations, the research community has extensively explored
machine learning–based techniques, which aim to automatically learn patterns of
normal and abnormal behavior from data. However, despite their promise, these
methods also suffer from several drawbacks. Many models are highly dataset-
dependent, meaning that their performance significantly degrades when applied
to data from a different network or environment. This issue highlights a lack of
generalization and transferability, which prevents most models from being deployed
effectively in real-world, heterogeneous contexts.

Another limitation concerns the requirement for labeled data. Supervised
learning methods can achieve high accuracy when sufficient labeled samples are
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available, but this is rarely the case in network security. Manual labeling of
network traffic is both costly and error-prone, leading to incomplete or inconsistent
ground truth. As a result, unsupervised and semi-supervised methods have gained
popularity, yet these approaches often produce a high number of false positives,
reducing their reliability in operational settings.

Furthermore, many existing Network anomaly detection systems struggle with
scalability and computational efficiency. Deep learning–based solutions, while
powerful, require substantial computational resources for both training and inference.
This makes them difficult to deploy in real-time monitoring systems or on edge
devices with limited processing capabilities. Balancing detection accuracy with
processing latency remains an ongoing challenge.

Finally, model interpretability is still a major concern. The black-box nature
of many machine learning models makes it difficult for analysts to understand
why a particular event was flagged as anomalous. This lack of transparency
complicates the validation process and undermines trust in automated detection
systems, particularly in security-critical applications.

These limitations collectively underline the need for more robust, adaptive,
and generalizable approaches capable of handling diverse datasets and evolving
network behaviors — an aspect that motivates the exploration of multi-dataset
and meta-learning techniques.

1.4 Multi-Dataset Techniques
The limitations observed in current Network Anomaly Detection systems have
highlighted a fundamental issue: most approaches are designed, trained, and
evaluated using a single dataset. While this setup simplifies experimentation and
benchmarking, it often results in models that perform well only within the specific
conditions of that dataset, failing to generalize to different network environments or
traffic characteristics. This lack of generalization remains one of the most significant
obstacles to deploying network anomaly detection systems effectively in real-world
scenarios.

To address this limitation, recent research has started to explore multi-dataset
techniques, which aim to leverage data from multiple sources or domains to build
more robust and adaptable detection models. The core idea is that exposure to
heterogeneous network data — collected under varying conditions, topologies, and
attack scenarios — enables models to learn representations that are less sensitive
to the peculiarities of a single environment. As a result, these approaches seek
to enhance the transferability and reliability of anomaly detection systems across
diverse network contexts.

Multi-dataset strategies can be interpreted from two complementary perspectives.
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The first focuses on joint or unified training, where datasets from different domains
are combined or aligned to provide a richer and more diverse training base. This
may involve harmonizing features, normalizing traffic statistics, or adopting shared
representations that make different datasets comparable. The second perspective
emphasizes transfer and adaptation, where a model trained on one dataset is
adjusted to operate effectively on another. This can be achieved through fine-
tuning, domain adaptation, or meta-learning techniques that promote knowledge
reuse and adaptability.

Despite their promise, multi-dataset methods introduce new challenges. Dif-
ferences in data collection procedures, feature definitions, and labeling standards
often hinder integration. Moreover, managing the trade-off between generalization
and overfitting becomes increasingly complex as the diversity of the training data
grows. Still, the benefits of this paradigm are substantial: by embracing variability
instead of avoiding it, multi-dataset approaches represent a meaningful step toward
more resilient, scalable, and generalizable anomaly detection systems capable of
operating effectively in real-world, heterogeneous network environments.

1.5 Goal
The main goal of this thesis is to develop a unified approach for network anomaly
detection that can perform effectively across multiple datasets. Traditional detection
systems are usually trained and tested on a single dataset, which reduces their
generalization ability and limits their use in real-world network environments.

This work addresses this issue by studying how combining heterogeneous datasets
and applying consistent preprocessing and feature representation can improve the
robustness of machine learning models. In addition, explainable AI techniques,
in particular SHAP, are employed to support feature selection and provide trans-
parency in the model’s decision-making.

The specific objectives of the thesis are:

1. Analyze the main challenges and limitations of current anomaly detection
methods when applied to different datasets.

2. Create a unified dataset by merging multiple publicly available sources to
enable a more general evaluation.

3. Design a detection framework capable of maintaining consistent performance
across datasets.

4. Evaluate the proposed approach and discuss its effectiveness and possible
improvements.
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5. Use explainable AI techniques (SHAP) to interpret the most relevant features
and support feature selection.

The final goal is to contribute to the development of more general and adaptable
anomaly detection models that can be reliably applied across diverse network
environments and employ explainable AI techniques to provide insight into their
decision-making.

1.6 Thesis Structure
The thesis is organized into five chapters:

• Chapter 1 – Introduction
Provides background on anomaly detection and network anomaly detection,
introduces the main challenges in Network Anomaly Detection systems, and
defines the goals of the study.

• Chapter 2 – Related Works
Reviews previous research on anomaly detection and network anomaly de-
tection, focusing on key methodologies, datasets, and evaluation strategies.
Special attention is given to multi-dataset approaches and existing research
gaps.

• Chapter 3 – System Overview
Describes the design of the proposed detection framework, including data
preprocessing, dataset unification, latent space representation, and the classifi-
cation model.

• Chapter 4 – Evaluations and Results
Presents the datasets used in the study, describes the experiments conducted to
evaluate the proposed system, analyzes performance across multiple datasets,
assesses the model’s generalization capability, and discusses feature importance
and feature selection using SHAP to interpret the classifier’s decisions.

• Chapter 5 – Conclusions and Future Work
Summarizes the main findings, discusses the contributions of the study, and
outlines potential directions for future research.
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Chapter 2

Related Works

Network Anomaly Detection has become increasingly critical due to the growing
volume, diversity, and complexity of modern network traffic. While many ap-
proaches have been proposed, achieving robust and generalizable detection across
heterogeneous datasets remains a key challenge.

2.1 Deep Learning Approaches for Anomaly De-
tection

Anomaly detection (AD) methods aim to identify patterns in data that deviate
from normal behavior. Deep learning approaches have been widely adopted in
this context due to their ability to capture complex, non-linear relationships in
high-dimensional data. Several works have focused on improving feature learning,
handling imbalanced datasets, and leveraging latent representations to enhance
detection performance.

Jing et al. (2021) [1] propose a multiset feature learning approach for highly
imbalanced data classification. Their method combines multiple feature sets to
better capture the variability of normal and anomalous instances, demonstrating
improved performance on benchmark datasets. Although this work does not specif-
ically target network traffic, it provides useful insights into handling imbalanced
datasets, a common issue in network anomaly detection.

Sakurada and Yairi [2] introduce an autoencoder-based approach for unsuper-
vised anomaly detection. The model learns to reconstruct normal data and flags
instances with high reconstruction error as anomalies. This foundational work
highlights the effectiveness of autoencoders in learning compact representations of
normal behavior, which later inspired several NAD models.

An and Cho (2015) [3] extend this idea by employing variational autoencoders
(VAE) for anomaly detection. By modeling the probabilistic distribution of the data
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in the latent space, VAEs provide a principled way to estimate the likelihood of new
instances, enabling the detection of previously unseen anomalies. This methodology
has influenced subsequent network-focused models that rely on probabilistic latent
representations.

Overall, these deep learning-based AD approaches provide the methodological
foundation for detecting abnormal patterns in complex datasets and motivate the
application of similar techniques in the network anomaly detection domain.

2.2 Deep Learning for Network Anomaly Detec-
tion

Network Anomaly Detection (NAD) focuses on identifying abnormal patterns
specifically within network traffic. Deep learning methods have become increasingly
popular in this area due to their ability to model complex temporal and spatial
relationships in network data. These approaches often leverage autoencoders,
recurrent neural networks, or generative models to capture normal network behavior
and detect deviations.

Fu et al. (2023) [4] propose GANAD, a GAN-based method for network anomaly
detection. By training a generative adversarial network to model normal traffic
patterns, anomalies are identified as instances that the generator fails to reproduce
accurately. While this approach demonstrates strong detection performance, it also
highlights challenges related to training stability and computational cost, especially
in large-scale network environments.

Sharma et al. (2024) [5] provide a holistic review of unsupervised learning
methods for NAD, evaluating the performance of various deep learning techniques
across multiple network datasets. Their analysis emphasizes the trade-offs between
detection accuracy, computational complexity, and interpretability, and underscores
the need for methods that can generalize beyond a single dataset.

Abdelkhalek and Mashaly (2023) [6] address the class imbalance problem in
network intrusion detection systems by combining deep learning models with data
resampling techniques. They show that applying oversampling and undersampling
strategies alongside architectures such as LSTM or CNN improves the detection
of rare attack classes, a challenge particularly relevant when integrating multiple
datasets. This study highlights how differences in data distribution affect model per-
formance, emphasizing the importance of handling class imbalance in generalizable
NAD systems.

These studies demonstrate the versatility of deep learning for network anomaly
detection and highlight recurring challenges, including imbalanced data, dataset
dependence, and computational constraints. Such insights provide a foundation
for exploring multi-dataset approaches aimed at improving generalization across
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diverse network environments.

2.3 Multi-Dataset Approaches in NAD
While many network anomaly detection models perform well on a single dataset,
their effectiveness often decreases when applied to other network environments.
Multi-dataset approaches aim to improve generalization by leveraging heterogeneous
datasets, standardizing features, and applying transfer or representation learning
techniques.

FaaC (Feature as a Count) (Magán-Carrión et al., 2024) [7] proposes a method
for unifying multiple network datasets by transforming network traffic features
into count-based representations. This approach facilitates the combination of
datasets with different structures and scales, enabling models to learn patterns
that generalize beyond a single data source.

NetFlow-based datasets (Sarhan et al., 2020) [8] provide a standardized repre-
sentation of network traffic by aggregating packet-level information into flow-based
features such as duration, byte counts, and packet statistics. This structure enables
the integration of heterogeneous datasets by offering a consistent feature space
and labeling scheme, facilitating the development of models capable of generalizing
across multiple network environments.

Learn-IDS (Wang et al., 2024) [9] introduces a framework that bridges gaps
between datasets using representation learning and transfer learning. By adapting
models trained on one dataset to operate effectively on another, Learn-IDS improves
detection accuracy and robustness in multi-dataset scenarios, demonstrating the
benefits of knowledge transfer for generalization.

Meta (Wali et al., 2024) [10] proposes a unified, multimodal dataset for network
intrusion detection systems. By combining multiple network datasets into a single
framework with standardized features and labels, Meta enables the development
and evaluation of models that are inherently more robust to dataset heterogeneity
and better suited for real-world deployment.

These studies collectively highlight the importance of addressing dataset hetero-
geneity, feature standardization, and knowledge transfer to improve the generaliza-
tion of NAD models. They provide a framework for developing more robust and
adaptable detection systems capable of performing reliably across diverse network
environments.

9



Chapter 3

System Overview

3.1 Proposed Solution

The proposed solution to address the challenge of building a generalizable classifi-
cation model is to employ multiple datasets in order to make the model as generic
as possible. Each dataset represents different types of network traffic, providing a
diverse foundation that enhances the model’s capacity to generalize across varying
traffic patterns. The final objective is a binary classification task, distinguishing
between benign and malicious traffic.

Three distinct datasets were selected — CIC-IDS2017, BoT-IoT, and UNSW-
NB15 — with the goal of unifying them into a single combined dataset to train the
classification model. Details on the datasets, including features and statistics, are
presented in Chapter 4.

Initially, the unification strategy consisted of selecting a fixed number of features
and aligning the datasets accordingly. Datasets with fewer features than the
chosen reference were padded with a constant value to match the reference feature
set. However, this approach introduced a major drawback: the padding values
effectively acted as dataset-specific identifiers, allowing the model to infer from
which dataset a record originated and bias its predictions toward the corresponding
class distribution.

To overcome this issue, a two-step solution is adopted. In the first step, each
dataset is mapped into a latent space using an autoencoder, generating a smaller
and standardized representation that preserves the original data distribution while
removing dataset-specific identifiers. In the second step, an MLP model is trained
for binary classification, using as input the unified dataset obtained by combining
the transformed representations. The feed-forward architecture was chosen for
its simplicity, efficiency, ability to model complex patterns in tabular data, and
its widespread use in binary classification tasks. This approach offers several
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advantages: it mitigates dataset-specific biases, reduces the risk of overfitting to
any single dataset, and enables the model to effectively leverage diverse datasets
with heterogeneous feature sets.

In addition, explainable AI techniques, such as SHAP, are employed to analyze
the influence of individual features on the model’s predictions and to provide insight
into the decision-making process(see Section 4.3.3)

In summary, the proposed solution relies on autoencoders to unify heterogeneous
datasets into a shared latent space, followed by an MLP classifier trained to perform
robust binary classification.

The overall structure of the proposed approach is illustrated in Figure 3.1, which
summarizes the main phases of the implemented solution.

Figure 3.1: Overall architecture of the proposed solution.

This solution is described in detail in the following section, where the adopted
system architecture is presented.

3.2 Architecture
In this section, the system architecture supporting the proposed solution is pre-
sented.

Below is a list of the main modules:

1. Data Pre-Processing

2. Latent Space and Autoencoders

3. MLP Classification

4. Model Training

11
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The following subsections provide a detailed explanation of each module.

3.2.1 Data Pre-Processing
As the first module in the pipeline, Data Pre-Processing is responsible for producing
a clean and accurate representation of the data. This step is fundamental in
any machine learning workflow, since the quality of the data directly affects
the performance of the trained model. Preprocessing ensures that the datasets
are consistent, comparable, and free from noise and inconsistencies that could
compromise the results or reduce the reliability of the classification task. In a
typical machine learning pipeline, Data Pre-Processing may include the following
steps:

• Data cleaning - this step ensures the dataset is accurate and reliable by
addressing issues such as missing values, noisy data, and duplicates.

• Data Transformation - this step converts the data into a format suit-
able for analysis and model training. Common techniques include scaling,
normalization, standardization, and feature engineering.

• Data Reduction - this step reduces the number of features while preserving
the essential information.Typical techniques include feature selection, dimen-
sionality reduction methods such as Principal Component Analysis (PCA),
and sampling.

• Data Augmentation - this step generates synthetic data to enhance the
dataset, increasing its size and diversity. It is commonly applied in domains
such as image and text processing, but can be conceptually used for any type
of data to improve model robustness.

• Data Encoding - this step converts categorical or non-numerical variables
into numerical representations that can be processed by machine learning
models. Common techniques include one-hot encoding, label encoding, and
binary encoding.

• Data Integration - this step combines data from multiple sources into a
single unified dataset, ensuring consistency and reducing redundancy. Typical
techniques include schema matching, to align heterogeneous structures, and
data fusion, to resolve conflicts among overlapping records.

The preprocessed data is now ready for further transformation and model training.
The details on the specific preprocessing steps applied in the proposed solution are
described in Section 4.1.
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3.2.2 Latent Space and Autoencoders
A latent space is a lower-dimensional representation of the original data in which the
essential structure and relationships among features are preserved, while redundant
or dataset-specific variations are minimized. Mapping datasets into a common
latent space allows heterogeneous datasets with different feature sets to be aligned,
standardized, and ultimately unified into a single dataset suitable for machine
learning. Latent space representations have several key applications, including:

• Dimensionality Reduction - It compresses high-dimensional data into a
lower-dimensional space while retaining the most relevant features, improving
computational efficiency and facilitating model training.

• Data Alignment and Integration - It enables the alignment of hetero-
geneous datasets into a common space, allowing their unification without
introducing dataset-specific biases.

• Feature Extraction for Generalization - It extracts the most meaningful
representations from the data, helping models learn general patterns and
enhancing their ability to generalize to new, unseen data.

Latent space representations can be obtained using various techniques. Traditional
dimensionality reduction methods, such as Principal Component Analysis (PCA) or
Linear Discriminant Analysis (LDA), reduce dimensionality while retaining the most
relevant information. More advanced approaches rely on representation learning
with neural networks, such as autoencoders, which can capture complex, non-linear
structures in the data. In the proposed solution, autoencoders were chosen among
these approaches to obtain a compact and informative latent representation.

Autoencoders

Autoencoders are a type of neural network designed to learn efficient, compact
representations of data in an unsupervised manner. They consist of two main
components: an encoder, which maps the input data into a lower-dimensional
latent space, and a decoder, which reconstructs the original data from this latent
representation. The network is trained to minimize the reconstruction error between
the input and the output, thereby forcing the model to capture the most relevant
features and underlying structure of the data. Formally, given an input vector
x ∈ Rn, the encoder function fθ(x) maps x to a latent vector z ∈ Rm, where m < n,
and the decoder function gϕ(z) reconstructs x̂ such that the reconstruction loss
L(x, x̂) is minimized. Common choices for the loss function include mean squared
error (MSE) for continuous data and cross-entropy loss for binary or categorical
data. Autoencoders have several important properties that make them suitable for
latent space representation in machine learning pipelines:
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1. Dimensionality Reduction - By forcing the input data through a bottleneck
layer, autoencoders learn a compressed representation that preserves essential
information while discarding redundant or noisy features.

2. Non-linear Feature Extraction - Unlike linear methods such as Principal
Component Analysis (PCA), autoencoders can model complex, non-linear
relationships in the data, making them more expressive for high-dimensional
and heterogeneous datasets.

3. Data Integration and Standardization - When multiple datasets with
different feature sets are mapped into the same latent space, inconsistencies
are reduced, and the resulting representations can be effectively combined for
downstream tasks.

There exist several variants of autoencoders, each designed to address specific
challenges:

• Variational Autoencoders (VAEs) - Introduce a probabilistic approach
to modeling the latent space, allowing for generative modeling and smoother
interpolations between points in the latent space.

• Denoising Autoencoders (DAEs) - Trained to reconstruct the original
input from a corrupted version, enhancing robustness and generalization.

• Sparse Autoencoders - Impose sparsity constraints on the latent represen-
tation to encourage the network to learn more meaningful features.

In summary, autoencoders offer an effective way to obtain compact and meaningful
representations of data, providing a solid basis for further processing and machine
learning tasks. Figure 3.2 illustrates the architecture of an autoencoder, highlighting
the encoder and decoder components and showing the transformation of input data
into a latent representation and its subsequent reconstruction.
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Figure 3.2: An image of a variational autoencoder

The following paragraph presents the specific implementation used in the pro-
posed solution.

Implementation

As mentioned in the previous section, this part illustrates the specific implementa-
tion of the autoencoder adopted in the proposed solution. The goal is to map each
dataset into a lower-dimensional latent space through its corresponding encoder,
ensuring a common feature dimensionality that enables their subsequent unifica-
tion. To this end, a separate autoencoder was trained for each dataset, and only
the encoder part was retained for transforming the data into the desired latent
representation. The autoencoder features a feed-forward architecture for both
encoder and decoder. The encoder consists of multiple fully connected layers, each
followed by batch normalization and LeakyReLU activation functions, progressively
compressing the input features into a latent space of fixed dimensionality. The
decoder mirrors this design, gradually expanding the latent representation back to
the original input dimension.

Model architecture In the proposed solution, the encoder consists of three
layers arranged as follows:

1. Layer 1 (128 features) – expands the input to a higher dimensionality,
allowing the network to capture complex, non-linear interactions among fea-
tures.

2. Layer 2 (64 features) – gradually compresses the representation, preserving
essential information while reducing dimensionality.
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3. Layer 3 (N features) – maps the data to the fixed-size latent space, producing
a standardized representation suitable for unifying multiple datasets.

Note: N represents the dimension of the latent space, which can be chosen based on
the results obtained during experimentation.

LeakyReLU activation functions in the hidden layers introduce non-linearity
and allow the network to capture complex feature interactions, while avoiding the
vanishing gradient problem common in standard ReLU activations.

This design ensures that the latent representation captures the essential structure
of the data while maintaining the capability of accurate reconstruction.

3.2.3 MLP Classification
After obtaining the latent representations of the datasets through the encoders,
the next step in the pipeline is the training of a classification model. The objective
is to learn a mapping from the unified latent feature space to the target classes,
enabling the detection and classification of different types of network traffic. Several
machine learning models can be employed for this task, including decision trees,
support vector machines, logistic regression, and neural networks. Among the
latter, Multi-Layer Perceptrons (MLPs) are particularly suitable for tabular data
and effective in binary classification tasks. Therefore, an MLP was chosen for the
proposed solution, balancing simplicity, efficiency, and the ability to model complex
patterns in the data.

Multi-Layer Perceptrons (MLP)

A Multi-Layer Perceptron (MLP) is one of the most fundamental and widely
used neural network architectures in supervised learning. It consists of a series
of fully connected layers that transform input data through a combination of
linear operations and non-linear activation functions. Despite its relative simplicity
compared to more advanced architectures, the MLP remains highly effective for a
broad range of classification and regression tasks.

An MLP is organized into three main components:
• Input layer – receives the data and defines the dimensionality of the problem.

Each unit corresponds to one feature of the input vector.

• Hidden layers – one or more intermediate layers that progressively transform
the input representation, enabling the model to learn hierarchical and abstract
features.

• Output layer – produces the final prediction. Its structure and activation
function depend on the task (e.g., softmax for multi-class classification, sigmoid
for binary classification, or linear activation for regression).
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The MLP is trained using supervised learning: the model parameters are iteratively
updated to minimize a loss function, with gradients computed via backpropagation
and parameters updated by an optimizer. A separate validation set is employed to
monitor performance and guide training decisions such as learning rate adjustments
and early stopping.

Figure 3.3 illustrates the architecture of the MLP model used for the solution.

Figure 3.3: An image of the MLP model

The main advantages of using MLPs are:

• Versatility – MLPs can be applied to a wide range of problems, including
both classification and regression tasks.

• Non-linearity – the use of activation functions allows them to model complex,
non-linear relationships in the data.

• Parallel computation – training computations can be efficiently accelerated
using GPUs.

Limitations include the potential for overfitting the training data if proper regu-
larization techniques are not applied, and the high computational cost associated
with increasing the number of layers. In the following paragraph, the specific
implementation used in the proposed solution is illustrated.

17



System Overview

Implementation

The MLP classifier is implemented as a single model applied to the unified latent
space, unlike the autoencoders where a separate model was trained for each dataset.
This design provides a consistent mapping from latent features to target classes.
The architecture consists of multiple fully connected layers with normalization and
non-linear activations, and includes regularization mechanism such as weight decay.
The final output layer applies a sigmoid activation to produce a probability score
for binary classification.

Model architecture The architecture of the MLP can be summarized as follows:

• Input layer – receives as input the latent features obtained from the unified
dataset.

• Hidden layers – multiple fully connected layers, each followed by normal-
ization (LayerNorm) and ReLU activation function, allowing the model to
capture complex non-linear relationships in the data.

• Regularization – weight decay is employed to mitigate the risk of overfitting,
improving the generalization ability of the network.

• Output layer – The final layer produces a single raw output (often referred
to as a logit), which is then passed through a sigmoid activation to obtain a
probability score for binary classification.

The number of neurons per layer and the total number of layers constitute hyper-
parameters that are selected during experimentation. The specific values used in
the proposed solution are detailed in Chapter 4.

3.2.4 Model Training
Model training is the process through which a machine learning model learns
patterns and relationships from data in order to make accurate predictions on
unseen inputs. During training, the model iteratively adjusts its parameters, such
as weights and biases, to minimize a loss function that quantifies the error between
predictions and expected outputs. This process represents the actual "learning"
phase in machine learning, where the model’s knowledge is encoded in the optimized
parameter values.

The training workflow typically involves running the model with training data,
measuring its performance through a loss function, updating parameters using
optimization algorithms, and validating its performance on a separate validation set
to monitor generalization. In addition, "hyperparameters", which define structural
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aspects of the model and influence learning dynamics, may need to be tuned to
achieve optimal performance.

Different machine learning models are typically trained according to one of
several learning paradigms, each defining a distinct approach to how knowledge is
acquired and applied. ML models are typically categorized as belonging to one of
two distinct machine learning paradigms:

• Supervised learning - is used when a model is trained to predict the “correct”
output for an input. It applies to tasks that require some degree of accuracy
relative to some external “ground truth,” such as classification or regression.

• Unsupervised learning - is used when a model is trained to discern intrinsic
patterns and correlations in data. Unlike supervised learning, unsupervised
learning doesn’t assume the existence of any external ground truth against
which its outputs should be compared.

Hybrid approaches also exist, such as self-supervised or semi-supervised learning,
which combine elements of these paradigms.

In the proposed solution, both supervised and unsupervised paradigms are
employed: autoencoders are trained in an unsupervised fashion to learn latent
representations of each dataset, while the MLP classifier is trained in a supervised
manner to perform binary classification on the unified latent space. The training
strategies for both the autoencoder and the MLP follow a common workflow, as
summarized below. Specific details for each model are described later in this part.

General Training Strategy Both models share a common training workflow.
In particular:

• a separate validation set is used to monitor performance and guide learning
decisions;

• early stopping is applied to avoid overfitting and unnecessary computation;

• a learning rate scheduler (ReduceLROnPlateau) is employed to adapt the
learning rate dynamically;

• at each epoch, the model achieving the lowest validation loss is saved as the
best version;

• training history, including losses and learning rate values, is recorded for
subsequent analysis.
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Autoencoder Training

The autoencoder was trained with a self-supervised objective where the input data
also served as the target, with the goal of minimizing reconstruction error and
using the encoder to transform each dataset.

• Loss function - Mean Squared Error (MSE)

LMSE = 1
N

NØ
i=1

(xi − x̂i)2 (3.1)

(where xi is the input and x̂i is the reconstructed output)

• Optimizer - Adam

• Scheduler parameters - learning rate reduced by factor 0.5 after 3 epochs
without validation loss improvement

Once training was completed, the encoder from the best-performing model was
used to project the datasets into the latent space.

MLP Training

The MLP was trained in a supervised fashion on the unified latent representations
for binary classification.

• Loss function – Binary Cross Entropy with Logits (BCEWithLogitsLoss):

LBCE = − 1
N

NØ
i=1

5
yi log

1
σ(zi)

2
+ (1 − yi) log

1
1 − σ(zi)

26
(3.2)

where yi ∈ {0,1} is the true label, zi is the predicted logit, and σ is the sigmoid
function. Class weighting was applied to mitigate imbalance.

• Optimizer – AdamW with weight decay = 0.0001.

• Scheduler parameters – learning rate reduced by a factor of 0.5 after 3
epochs without validation loss improvement.

After training, the best-performing MLP was loaded from disk and employed for
final classification. In the next chapter are illustrated the details of datasets,the
experimentation performed, and the final results.
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Chapter 4

Evaluations and Results

4.1 Datasets
As mentioned earlier, three different datasets were selected for the proposed solution:
CIC-IDS2017, BoT-IoT and UNSW-NB15. The idea behind this choice is to rely
on a diverse set of network traffic data, so that the machine learning model can
be trained to generalize better. For this reason, the chosen datasets all belong
to the network traffic domain and include a wide range of attack types, making
them suitable for evaluating the robustness of the proposed approach. Each
dataset is described below, together with the data preparation steps and the latent
rappresentations obtained in this solution.

4.1.1 CIC-IDS2017
Introduction

The CIC-IDS2017 dataset was created by the Canadian Institute for Cybersecurity
and is one of the most widely used benchmarks for intrusion detection research.
It contains realistic network traffic collected over a period of five days, simulating
both normal user behavior and a wide range of modern cyberattacks. The traffic
was generated in a controlled environment that included typical activities such
as web browsing, email, file transfer, and streaming, along with attack scenarios
such as brute force, denial of service (DoS), distributed denial of service (DDoS),
infiltration, botnet, and web-based attacks.

The dataset includes raw network flows in pcap format as well as structured
flow-based features extracted using the CICFlowMeter tool. In total, it provides
more than 80 statistical features per flow, covering information about packet-
level characteristics, time-based features, and content-based attributes. These
characteristics make the CIC-IDS2017 dataset particularly suitable for evaluating
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anomaly detection systems, as it reflects heterogeneous attack strategies and diverse
benign traffic patterns in a realistic setting.

For this solution, the full CIC-IDS2017 dataset is employed in its original form,
encompassing all 78 features and all recorded flows before any preprocessing is
applied, as summarized in Table 4.1.

Table 4.1: Parameters of dataset CIC-IDS-2017

Parameters original
number of features 78 (+1 Label)
number of instances 2830743
number of normals 2273097
number of attacks 557646

As shown in Table 4.2, normal traffic represents approximately 80% of the
dataset, while attack traffic accounts for the remaining 20%.

Table 4.2 shows the distribution of the dataset by attack type, with the number
of instances for each category.

Table 4.2: CIC-IDS-2017 Traffic Instances

Traffic Instances
BENIGN 2273097
DoS Hulk 231073
PortScan 158930

DDoS 128027
DoS GoldenEye 10293

FTP-Patator 7938
SSH-Patator 5897
DoS slowloris 5796

DoS Slowhttptest 5499
Bot 1966

Web Attack & Brute Force 1507
Web Attack & XSS 652

Infiltration 36
Web Attack & Sql Injection 21

Heartbleed 11

A detailed description of any preprocessing applied, including feature selection
or cleaning operations, is presented in the following section.
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Data Preparation

The CIC-IDS2017 dataset was prepared through a sequence of cleaning and transfor-
mation steps aimed at ensuring consistency and reliability. All CSV files provided
by the authors were first loaded and concatenated into a single dataset. To improve
data quality, missing values, infinite values, duplicate records, and constant features
(i.e., columns with only a single unique value) were removed.

The original multi-class labeling was then simplified into a binary format,
distinguishing between benign traffic (label 0) and attack traffic (label 1). Since the
dataset includes both numerical and categorical features, the categorical attributes
were converted into numerical form using label encoding, making them suitable for
model training.

After these preprocessing steps, the dataset retained 71 features and 2,520,798
instances, with 2,095,057 benign and 425,741 attack flows. This slight reduction
compared to the original dataset (Table 4.1) is mainly due to removal of duplicates,
constant features, and incomplete records.

The dataset was split into training (70%), validation (15%), and test (15%)
sets. The split was stratified to preserve the proportion of benign and attack flows,
ensuring a balanced representation across subsets.

Before training the autoencoder, all features were scaled to the [0,1] range using
Min-Max normalization. The scaling parameters were computed exclusively on the
training set and then applied to the validation and test sets to avoid information
leakage. After normalization, the dataset was ready for latent representation
learning.

Latent Representation

Once the CIC-IDS2017 dataset was preprocessed and normalized, the autoencoder
was trained to learn a compact latent representation of the input flows. Several
latent dimensions were tested, as described in the Hyperparameters Section, and the
configuration with a latent dimension of 32 provided the best overall performance.

Figure 4.1 shows the training and validation loss across the epochs for this
configuration. Both curves decrease steadily to very low values and remain close to
each other, indicating stable convergence without signs of overfitting. This confirms
that the autoencoder successfully captures the underlying structure of the dataset
while preserving good generalization ability and providing a meaningful compressed
representation.
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Figure 4.1: Training and validation loss per epoch for autoencoder training on
CIC-IDS2017 dataset (latent dimension = 32).

The latent encoding of CIC-IDS2017 completes the preparation of this dataset
and allows its integration with other datasets in a unified latent space

4.1.2 BoT-IoT
Introduction

The BoT-IoT dataset was created by the University of New South Wales (UNSW)
and is widely used in research on IoT network intrusion detection. It contains real-
istic network traffic generated from an Internet of Things (IoT) testbed, capturing
both normal device communications and a variety of cyberattacks. The dataset
includes activities such as sensor data transmission, device-to-device communica-
tion, and standard network protocols, along with attack scenarios including denial
of service (DoS), distributed denial of service (DDoS), reconnaissance, and data
exfiltration.

The dataset provides structured flow-based features extracted from network
traffic, covering packet-level, time-based, and statistical attributes. These fea-
tures make BoT-IoT suitable for evaluating anomaly detection models in IoT
environments, as it reflects heterogeneous device behaviors and diverse attack
patterns.

For this solution, a reduced version corresponding to 5% of the full dataset,
publicly available on the BoT-IoT website, is employed. This subset provides
representative samples of both normal and attack traffic while significantly reducing
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computational requirements for training and evaluation. Table 4.3 summarizes the
general parameters of this dataset before any preprocessing step applied.

Table 4.3: Parameters of dataset BoT-IoT

Parameters original
number of features 45 (+1 Label)
number of instances 3668522
number of normals 477
number of attacks 3668045

As shown in Table 4.3, normal traffic represents only a very small fraction of
the dataset, while attack traffic constitutes the vast majority of flows. This highly
imbalanced distribution highlights the challenging nature of anomaly detection in
the BoT-IoT dataset.

Table 4.4 shows the distribution of the dataset by attack type with the number
of instances for each category.

Table 4.4: BoT-IoT Traffic Instances

Traffic Instances
Normal 477
DDoS 1926624
DoS 1650260

Reconnaissance 91082
Theft 79

A detailed description of any preprocessing applied, including feature selection
or cleaning operations, is presented in the following section.

Data Preparation

A 5% subset of the BoT-IoT dataset was used for this study. The selected CSV files
were loaded and concatenated into a single dataset. Columns containing redundant,
constant, or non-informative values were removed, and missing or infinite values
were handled. Duplicate records were also eliminated to improve data quality.

For the target label, the existing attack field was used, already in numerical
format (attack = 1, normal = 0). Features were separated from the target label,
and any categorical attributes were encoded numerically using label encoding.
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After these preprocessing steps, the dataset contains 44 features with only 2
lost features (’category’ and ’subcategory’), while the total number of instances
remains unchanged.

The dataset was split into training (70%), validation (15%), and test (15%)
sets, using a stratified approach to preserve the ratio of normal and attack flows
in each subset. Due to the highly imbalanced nature of BoT-IoT, the training set
was further downsampled: the majority class (attacks) was randomly reduced to
three times the size of the minority class (normal traffic) without replacement, and
the resulting subset was shuffled. This created a more balanced dataset for model
training while maintaining sufficient examples of attacks.

Before training the autoencoder, all features were scaled to the [0,1] range using
Min-Max normalization. The scaling parameters were computed exclusively on the
training set and then applied to the validation and test sets to avoid information
leakage. After normalization, the dataset was ready for latent representation
learning.

Latent Representation

Once the BoT-IoT dataset (5% subset) was preprocessed, encoded, and down-
sampled, the autoencoder was trained to learn a compact latent representation
of the input flows. Several latent dimensions were tested, as described in the
Hyperparameters Section, and the configuration with a latent dimension of 32
provided the best overall performance.

Figure 4.2 shows the training and validation loss across the epochs for this
configuration. Both curves decrease steadily and remain closely aligned, indicating
stable convergence without overfitting. Although the losses start at higher values
due to the characteristics and imbalance of the BoT-IoT dataset, the gradual
reduction demonstrates that the autoencoder effectively captures the underlying
structure of the dataset, providing a meaningful latent representation suitable for
integration with other datasets.
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Figure 4.2: Training and validation loss per epoch for autoencoder training on
BoT-IoT dataset (latent dimension = 32).

The latent encoding of BoT-IoT completes the preparation of this dataset and
allows its integration with other datasets in a unified latent space.

4.1.3 UNSW-NB15
Introduction

The UNSW-NB15 dataset was developed by the Australian Centre for Cyber
Security (ACCS) at the University of New South Wales (UNSW) and is one
of the most widely used benchmarks for evaluating network intrusion detection
systems. It contains realistic network traffic generated in a controlled cyber range
environment, simulating both normal user activity and various modern attack
scenarios. The captured traffic includes categories such as exploits, denial of service
(DoS), reconnaissance, backdoors, and fuzzers, representing a diverse range of
contemporary threats.

The dataset consists of flow-based records that include both continuous and
categorical attributes describing the characteristics of network connections. These
features cover aspects such as packet statistics, protocol behavior, and time-based
measures. Owing to its realistic traffic composition and comprehensive labeling,
UNSW-NB15 provides a robust foundation for training and evaluating anomaly
detection models in general-purpose network environments.

For this solution, the full UNSW-NB15 dataset is employed in its original form,
encompassing all 49 features and all recorded flows before any preprocessing is
applied, as summarized in Table 4.5.
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Table 4.5: Parameters of dataset UNSW-NB15

Parameters original
number of features 48 (+1 Label)
number of instances 2540047
number of normals 2218764
number of attacks 321283

As shown in Table 4.5, normal traffic constitutes the majority of the dataset,
while attack traffic represents a minor proportion of the total records. Although
the imbalance is less pronounced compared to BoT-IoT, it still presents challenges
for anomaly detection due to the relatively limited number of attack samples.

Table 4.6 shows the distribution of the dataset by attack type with the number
of instances for each category.

Table 4.6: UNSW-NB15 Traffic Instances

Traffic Instances
BENIGN 2218764
Generic 215481
Exploits 44525
Fuzzers 24246

DoS 16353
Reconnaissance 13987

Analysis 2677
Backdoor 1795
Shellcode 1511
Backdoors 534

Worms 174

A detailed description of any preprocessing applied, including feature selection
or cleaning operations, is presented in the following section.

Data Preparation

The UNSW-NB15 dataset was preprocessed to ensure consistency, remove noise,
and prepare it for model training. All CSV files were first loaded and concatenated
into a single dataset. Columns with constant values, missing entries, or infinite
values were removed, and duplicate records were discarded. The attack_cat column
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was dropped, while the Label column was kept as the target, where 0 indicates
normal traffic and 1 indicates attack traffic.

Features were separated from the target label, and categorical attributes were
encoded numerically using label encoding, allowing all features to be used in the
autoencoder training.

After these preprocessing steps, the dataset retained 48 features and 1,022,132
instances, with 1,008,919 benign and 13,212 attack flows. This slight reduction
compared to the original dataset (Table 4.5) is mainly due to removal of duplicates,
constant features, and incomplete records.

The dataset was then split into training (70%), validation (15%), and test (15%)
sets using stratified sampling to preserve the proportion of benign and attack flows.
No downsampling was applied, as the UNSW-NB15 dataset is already dominated
by normal traffic, in contrast to BoT-IoT.

Before training the autoencoder, all features were normalized to the [0,1] range
using Min-Max scaling. Scaling parameters were computed exclusively on the
training set and applied to the validation and test sets to avoid information leakage.
After normalization, the dataset was ready for latent representation learning.

Latent Representation

Once the UNSW-NB15 dataset was preprocessed and normalized, the autoencoder
was trained to learn a compact latent representation of the input flows. Several
latent dimensions were tested, as described in the Hyperparameters Section, and the
configuration with a latent dimension of 32 provided the best overall performance.

Figure 4.3 shows the training and validation loss across the epochs. Both curves
steadily decrease to very low values and remain close to each other, indicating
stable convergence without overfitting. This confirms that the autoencoder effec-
tively captures the underlying structure of the dataset and produces a meaningful
compressed representation.
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Figure 4.3: Training and validation loss per epoch for autoencoder training on
UNSW-NB15 dataset (latent dimension = 32).

The latent encoding of UNSW-NB15 completes the preparation of this dataset
and allows its integration with other datasets in a unified latent space.

4.1.4 Unification
After the preprocessing and latent representation stages of each dataset, the encoded
training, validation, and test sets were combined into a unified dataset to enable
joint model training across heterogeneous network environments. Specifically, the
latent representations generated by the autoencoder were loaded for each dataset
(CIC-IDS2017, BoT-IoT, and UNSW-NB15), preserving their respective binary
labels for benign and attack traffic.

The unification process consisted of concatenating the encoded features and
corresponding labels along the sample dimension for each data partition (training,
validation, and test). This operation resulted in three integrated subsets:

• Unified training set — obtained by merging the latent features from the
three datasets and shuffling the samples to ensure randomized distribution.

• Unified validation set — created by concatenating the validation subsets
of each dataset, maintaining class proportions.

• Unified test set — constructed in the same way, allowing the evaluation of
model generalization across mixed traffic scenarios.

Table 4.7 summarizes the size of the unified dataset after concatenation of the
encoded representations from all sources.
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Table 4.7: Unified dataset composition after feature encoding and concatenation.

Subset Number of Instances
Training set 1,949,657
Validation set 1,081,719
Test set 2,163,437
Total 5,194,813

As shown in Table 4.7, the unified dataset consists of over five million samples
derived from the integration of multiple traffic sources. This diverse collection of
flows captures a wide range of normal and malicious behaviors, providing a solid
foundation for evaluating anomaly detection models under heterogeneous network
conditions.

The resulting unified dataset integrates diverse traffic patterns from enterprise,
IoT, and hybrid network environments, providing a comprehensive benchmark for
anomaly detection. This unified representation serves as the foundation for the
subsequent model training stage, where a shared classifier is optimized to detect
anomalies consistently across heterogeneous network domains.

4.2 Evaluations
The evaluation phase represents the process of assessing how well the proposed
model generalizes beyond the training data, by verifying its effectiveness and
limitations under realistic conditions on a test set. This section presents the
methodology adopted for the evaluation. First, the experimental setup is described,
including the two evaluation modes and the hyperparameter configuration. Then,
the metrics used to assess performance are detailed.

4.2.1 Experimental Setup
The evaluation of the proposed model is conducted under three main aspects:

• Evaluation modes

• Decision thresholds

• Hyperparameter configuration

Evaluation modes

Two complementary setups are considered. In the dataset-specific mode, which
serves as a baseline, the model is trained and evaluated on each individual dataset
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to assess its performance when tailored to specific traffic patterns and attack
characteristics. In the unified mode, all datasets are combined during training
to test the model’s ability to generalize across heterogeneous sources, providing
information on its robustness and adaptability to different network behaviors.

Decision thresholds

Instead of adopting a fixed threshold (e.g., 0.5), the classification threshold is chosen
based on the evaluation mode. In the dataset-specific configuration, the decision
threshold was optimized individually for each dataset using its test set. This choice
ensures that the model achieves the best possible metrics on each dataset, effectively
providing an upper-bound baseline against which other settings can be compared.
Conversely, in the unified configuration, a single threshold was determined on the
validation set of the unified dataset and then applied consistently across all test
subsets. This strategy provides a more realistic evaluation of the model’s robustness,
as it enforces a common decision boundary across heterogeneous network traffic.

Hyperparameter Configuration

Hyperparameters are settings that govern the learning process of a machine learn-
ing model but are not updated during training. They define aspects such as the
network architecture, learning rate, batch size, and activation functions, influ-
encing how effectively the model can learn from data and generalize to unseen
examples. Choosing appropriate hyperparameters is crucial for achieving optimal
performance, balancing convergence speed, stability, and model capacity. In the
proposed model, the configuration is specified separately for the autoencoder used
for feature extraction and for the MLP classifier. Table 4.8 summarizes the set
of hyperparameters used for the autoencoder and MLP training for the proposed
model. Other hyperparameters are detailed in Section 3.2.4.
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Table 4.8: Hyperparameter configuration of the proposed model.

Component Hyperparameters
Autoencoder

• Latent dimension tested:
[4,8,16,32,64]

• Batch size: 1024

• Epochs: 50

• Initial learning rate: 0.001

MLP Classifier

• Hidden layers: 512

• Num layers: 4

• Batch size: 1024

• Epochs: 30

• Initial learning rate: 0.0001

4.2.2 Evaluation Metrics
To assess the effectiveness of the proposed model, several evaluation metrics are
considered. These metrics are widely used in intrusion detection tasks and are
particularly suited for imbalanced datasets, providing a comprehensive view of
classification performance. In the proposed solution, they are used to evaluate the
final performance of the model on the test sets.

Basic Definitions In binary classification, the following quantities are used to
evaluate performance:

• TP (True Positives): instances correctly classified as positive (attack).

• TN (True Negatives): instances correctly classified as negative (normal).

• FP (False Positives): instances incorrectly classified as positive.

• FN (False Negatives): instances incorrectly classified as negative.
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These definitions form the basis for calculating accuracy, precision, recall, F1-
score, and other evaluation metrics.

Accuracy Accuracy measures the proportion of correctly classified instances
among the total number of samples:

Accuracy = TP + TN

TP + TN + FP + FN
(4.1)

Precision Precision quantifies the proportion of correctly predicted positive
instances among all predicted positives:

Precision = TP

TP + FP
(4.2)

Recall Recall measures the proportion of actual positive instances correctly
identified by the model:

Recall = TP

TP + FN
(4.3)

F1-score The F1-score is the harmonic mean of precision and recall, providing a
balanced measure of classification performance:

F1 = 2 · Precision · Recall
Precision + Recall (4.4)

ROC-AUC The Receiver Operating Characteristic – Area Under the Curve
(ROC-AUC) summarizes the trade-off between true positive rate and false positive
rate at different thresholds:

AUC =
Ú 1

0
TPR(FPR) d(FPR) (4.5)

where
TPR = Recall, FPR = FP

FP + TN
. (4.6)

These metrics collectively provide a detailed assessment of model performance.
For evaluating and comparing configurations such as different latent dimensions,
the F1-score was used as the primary reference metric due to its balance between
precision and recall.

The following section presents the experimental results obtained using these
metrics, highlighting the model’s performance across different datasets and configu-
rations.
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4.3 Results

4.3.1 Individual Dataset Results

In this section, the model is trained and evaluated separately on each dataset,
using the corresponding latent representations produced by the autoencoders
to ensure consistency with the proposed approach. The aim is to compare the
performance achieved when relying on a single dataset—thus yielding a dataset-
specific model—with the results obtained in the unified setting, where the model is
expected to generalize across heterogeneous data sources. This comparison also
allows to assess the performance differences on the same dataset under the two
training strategies. For each dataset, the F1-scores obtained by varying the size of
the latent space are reported in Figure 4.4. As shown, the optimal latent dimension
differs depending on the dataset.

Figure 4.4: F1-score on each dataset across different latent space dimensions.

Table 4.9 summarizes the F1-scores obtained for each dataset across different
latent space dimensions.
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Table 4.9: F1-scores for each dataset and latent space dimension (numerical values
corresponding to Figure 4.4).

Latent Dimension CIC-IDS2017 BoT-IoT UNSW-NB15
4 94.47 100 88.51
8 95.39 100 88.49
16 95.77 100 89.65
32 96.04 100 89.76
64 96.31 100 89.18

As shown in Figure 4.4, the three datasets present distinct behaviors with respect
to the latent space dimension:

• BoT-IoT - exhibits a constant F1-score of 100 across all latent space sizes,
indicating that this dataset is linearly separable even in very small latent
spaces. This behavior is likely due to its strong class imbalance and simpler
feature distribution.

• CIC-IDS2017 - shows a steadily increasing trend, from 94.47 at 4 dimensions
up to 96.31 at 64 dimensions, suggesting that larger latent spaces help capture
more complex traffic patterns.

• UNSW-NB15 - achieves its best performance at 32 dimensions (89.76) and
slightly decreases afterwards, indicating that excessive dimensionality may
introduce redundancy or noise, resulting in minor drops in F1-score.

These results show that the optimal latent space dimension is dataset-dependent:
CIC-IDS2017 benefits from larger representations, UNSW-NB15 favors a more
compact latent space, while BoT-IoT remains largely unaffected, highlighting
the challenge of designing a unified model that generalizes across heterogeneous
datasets.

To complement the F1-score analysis, Figures 4.5, 4.6, and 4.7 report the training
and validation loss curves when the model is trained separately on each dataset
with a latent dimension of 32. These plots allow for a direct comparison with the
unified setting, highlighting differences in convergence speed and generalization
behavior.
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Figure 4.5: Training and validation loss per epoch for the CIC-IDS2017 dataset
(latent dimension = 32).

Figure 4.6: Training and validation loss per epoch for the Bot-IoT dataset (latent
dimension = 32).
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Figure 4.7: Training and validation loss per epoch for the UNSW-NB15 dataset
(latent dimension = 32).

The loss curves highlight clear differences in the training dynamics across the
three datasets. For CIC-IDS2017, both training and validation losses decrease
steadily and remain close throughout the epochs, with the validation loss showing
minor oscillations but ultimately stabilizing. This indicates good convergence
and balanced generalization, consistent with the gradual F1-score improvement
observed as the latent dimension increases.

In the case of BoT-IoT, convergence is extremely rapid: the validation loss
drops sharply within the first epochs and approaches near-zero values, reflecting the
relative simplicity of the dataset. The small gap between training and validation
confirms the absence of overfitting, in line with the constant F1-score of 100
obtained across all latent space sizes.

Conversely, UNSW-NB15 presents a more challenging scenario. While both
training and validation losses converge to relatively low values, the validation curve
remains slightly higher and shows more fluctuations compared to the other datasets.
This behavior suggests a tendency to slight overfitting, which also explains the
lower F1-scores and the sensitivity to the choice of latent dimension.

Overall, these results confirm that single-dataset training produces distinct
convergence behaviors depending on dataset characteristics: smoother and balanced
for CIC-IDS2017, extremely fast for BoT-IoT, and more unstable for UNSW-NB15.

Table 4.10 summarizes the classification metrics obtained with a latent dimension
of 32 for each dataset.
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Table 4.10: Evaluation metrics for binary classification on each dataset with
latent dimension = 32.

Test Dataset Accuracy Precision Recall F1-score ROC-AUC
CIC-IDS2017 98.65 95.35 96.73 96.04 99.92
BoT-IoT 100 100 100 100 99.99
UNSW-NB15 99.72 84.45 95.79 89.76 99.96

To further analyze the classification performance at the class level, Figures 4.8,
4.9, and 4.10 present the confusion matrices for each dataset complementing the
numerical metrics in Table 4.10, providing insight into which classes are most often
misclassified

Figure 4.8: Confusion matrix for CIC-IDS2017 dataset (latent dimension = 32).

39



Evaluations and Results

Figure 4.9: Confusion matrix for BoT-IoT dataset (latent dimension = 32).

Figure 4.10: Confusion matrix for UNSW-NB15 dataset (latent dimension = 32).
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As shown in Figures 4.8, 4.9, and 4.10, the confusion matrices provide a detailed
view of the model’s performance at the class level. For CIC-IDS2017, the model
achieves a high true positive rate for both normal and attack traffic, with relatively
few misclassifications, reflecting its overall strong F1-score. In BoT-IoT, misclassifi-
cations are negligible, highlighting the dataset’s linearly separable nature and the
model’s ability to capture its patterns effectively. For UNSW-NB15, most normal
instances are correctly classified, but a small number of attacks are misclassified as
normal, consistent with the slightly lower F1-score observed in the metrics. These
matrices complement the quantitative metrics by revealing which classes contribute
most to residual errors and providing insights into dataset-specific challenges.

4.3.2 Unified Dataset Results
Building on the previous experiments on individual datasets, this section investigates
the performance of a model trained on a unified dataset. By combining all datasets,
the model is exposed to a more diverse and heterogeneous set of network traffic
patterns. To assess its effectiveness, performance is first analyzed across different
latent space sizes using the combined test set of CIC-IDS2017, BoT-IoT, and
UNSW-NB15. This analysis provides insights into how well a single model can
generalize across multiple datasets, and Figure 4.11 illustrates the trend of the
F1-score with respect to the latent dimension.

Figure 4.11: F1-score on the unified dataset across different latent space dimen-
sions.
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As shown in Figure 4.11, the F1-score increases with the latent space size up to
32 dimensions (F1 = 99.51) after which it decreases at 64 dimensions.The detailed
values for each latent space size are reported in Table 4.11.

Table 4.11: F1-scores of unified dataset across latent space dimensions (numerical
values corresponding to Figure 4.11).

Latent Dimension F1-score
4 96.57
8 98.91
16 99.14
32 99.51
64 99.35

Overall,this trend suggests that very small latent spaces are not sufficient to
capture the relevant patterns, while excessively large ones may introduce noise or
redundancy, leading to a marginal drop in performance beyond the optimal size.

Figure 4.12 shows the training and validation loss curves for the unified dataset
with latent dimension = 32. The training loss decreases steadily over the epochs,
while the validation loss exhibits minor fluctuations but generally trends downward,
indicating stable convergence. This explains the high overall F1-score and confirms
that the model generalizes well without overfitting.

Figure 4.12: Training and validation loss per epoch for the unified dataset (latent
dimension = 32).
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Table 4.12 presents the performance metrics for the unified dataset using latent
dimension = 32, which was identified as the optimal value in the F1 analysis
(Figure 4.11). Results are reported both for each individual dataset and for the
overall test set.

Table 4.12: Evaluation metrics for binary classification on the unified dataset
with latent dimension = 32.

Test Dataset Accuracy Precision Recall F1-score ROC-AUC
CIC-IDS2017 98.68 95.28 96.97 96.12 99.90
BoT-IoT 99.89 100 99.89 99.94 99.99
UNSW-NB15 99.74 86.88 94.35 90.46 99.97
Total Test 99.44 99.46 99.57 99.51 99.99

The results show that the unified model achieves strong generalization across
heterogeneous datasets, with an overall F1-score of 99.51 and ROC-AUC close to
1.0. Performance is nearly perfect on BoT-IoT, partly reflecting the strong class
imbalance that makes this dataset dominate the unified training. CIC-IDS2017
also records high precision and recall, while UNSW-NB15 proves more challenging,
with a lower F1-score (90.46) mainly due to reduced precision. Nevertheless, the
unified setting mitigates the dominance of BoT-IoT, enabling the model to retain
very high overall performance while preserving robustness across all datasets.

To further analyze the classification performance at the class level, Figures 4.13,
4.14, and 4.15 present the confusion matrices for each dataset in the unified setting,
complementing the numerical metrics reported in Table 4.12.
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Figure 4.13: Confusion matrix for CIC-IDS2017 dataset in unified setting (latent
dimension = 32).

Figure 4.14: Confusion matrix for BoT-IoT dataset in unified setting (latent
dimension = 32).
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Figure 4.15: Confusion matrix for UNSW-NB15 dataset in unified setting (latent
dimension = 32).

The confusion matrices for the unified model confirm its strong classification
capabilities across all datasets. CIC-IDS2017 and BoT-IoT exhibit very few mis-
classifications, reflecting the model’s ability to generalize effectively despite dataset
heterogeneity. For UNSW-NB15, a slightly higher number of misclassified samples
is observed, consistent with its lower F1-score, but the overall performance remains
robust. These results highlight that the unified model maintains high discrimination
between normal and attack traffic across diverse datasets.

4.3.3 Feature Importance
After obtaining the results from the trained model, Explainable AI (XAI) techniques
were applied to analyze how the features of the different datasets influenced the
binary classification. Based on the outcomes provided by XAI, the possibility of
employing this approach as a feature selection method was also investigated. This
section describes the adopted procedure and the results obtained.

SHAP

SHAP (SHapley Additive exPlanations) is an XAI technique for interpreting
machine learning models. It is based on the principles of cooperative game theory,
where each feature is considered a “player” contributing to the model’s output.
SHAP assigns a value (SHAP value) to each feature that quantifies its impact
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on the prediction, indicating whether it increases or decreases the output. These
values are computed by considering all possible combinations of features, providing
a theoretically sound measure of each feature’s contribution. This approach allows
features to be ranked according to their influence, making it possible to identify
the most essential variables. By providing a transparent and consistent measure
of feature importance, SHAP supports interpretable analyses and is particularly
suitable for complex models such as neural networks.

Methodology

In this work, SHAP was applied to the trained Autoencoder-MLP model to evaluate
the importance of the features extracted from each dataset, supporting the identifi-
cation of the most informative variables for anomaly detection in network traffic.
The goal was to investigate whether the results obtained from the explainability
analysis could be used to select the most relevant features, thus reducing the
dimensionality of the input data and assessing the potential of XAI as a feature
selection method.

The analysis was performed separately for each dataset using the same input
data of the previous Autoencoder. A wrapper consisting of the previously trained
autoencoder and the previous unified MLP model was used as the evaluation model.

To compute the SHAP values, a GradientExplainer was employed, using the
model’s gradients to estimate the contribution of each feature to the prediction
outcome. A random subset of 200 samples was selected both as background data
and as the evaluation set to simplify the computation. The resulting SHAP values
were aggregated by computing the mean absolute value across all samples, providing
a measure of global feature importance. These values were used to generate global
visualizations, such as bar and beeswarm plots, and to rank the features according
to their relative influence on the model’s output to perform subsequently feature
selection. Based on the feature ranking obtained, the cumulative importance of the
features was computed as the normalized cumulative sum of their mean absolute
SHAP values, representing the proportion of total feature importance captured by
the top-ranked variables. Features were then selected according to fixed thresholds
specific to each dataset. For instance, a 95% threshold was applied to CIC-IDS2017
due to its higher number of features, whereas a 90% threshold was used for the
other datasets. This process identified the subset that retained most of the model’s
explainability while reducing input dimensionality. These reduced feature sets were
subsequently employed to retrain and evaluate the model, assessing the effect of
SHAP-based feature selection on overall performance. In the next part, the results
obtained from this analysis are presented, including both those derived from the
original model and those achieved after applying SHAP-based feature selection.
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Results

Two types of SHAP visualizations were used to analyze feature importance and the
model’s behavior. The summary bar plot provides an overall ranking of features
based on the mean absolute SHAP values, indicating the average contribution of
each variable to the model’s predictions. The summary beeswarm plot offers a
compact and informative overview of how the most important features affect the
model’s output. Each dot represents a single data instance for a given feature. The
horizontal position of the dot corresponds to the SHAP value, showing the effect
of the feature on the prediction (increasing to the right, decreasing to the left),
while the vertical axis groups the dots by feature. Points accumulate along each
row, showing the density of similar SHAP values. The color of the dots reflects the
original feature value (blue for low, red for high), enabling observation of patterns
between feature values and their influence on model predictions. For each dataset,
the bar and beeswarm plots are displayed together in the same figure for easier
comparison.

Figure 4.16: summary bar (L) and summary beeswarm (R) for CIC-IDS2017
dataset obtained using SHAP

As shown in Figure 4.16, the SHAP analysis on the CIC-IDS2017 dataset
highlights that the features with the greatest influence on the model’s output
are PSH Flag Count and ACK Flag Count, highlighting the importance of TCP
flag-related attributes in anomaly detection. Observing the beeswarm plot, it
can be seen that high values of PSH Flag Count contribute more to the model’s
prediction, while for ACK Flag Count the contribution is more evenly distributed
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between normal and anomalous predictions. Other features, such as Idle Mean
and Bwd IAT Total, exhibit clearer and more consistent patterns, showing stronger
correlations between feature values and their impact on the model’s output.

Figure 4.17: summary bar (L) and summary beeswarm (R) for BoT-IoT dataset
obtained using SHAP

The SHAP analysis on the BoT-IoT dataset, shown in Figure 4.17, highlights
N_IN_Conn_P_DstIP, max, and state as the most important features, indicating
the relevance of connection statistics and state-related attributes in anomaly
detection. Looking at the beeswarm plot, a clear pattern can be observed for
N_IN_Conn_P_DstIP, where high feature values are associated with a positive
SHAP impact and low values with a negative impact. A similar behavior can be
seen for the state feature, while the max feature appears more evenly distributed
across the SHAP value range. Finally, an interesting observation concerns the daddr
feature, which shows a single point with a negative impact, possibly corresponding
to a specific destination address strongly associated with normal traffic.
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Figure 4.18: summary bar (L) and summary beeswarm (R) for UNSW-NB15
dataset obtained using SHAP

Finally, the SHAP analysis on the UNSW-NB15 dataset, shown in Figure 4.18,
highlights a single feature, dwin, as clearly more influential than the others, with a
large gap in the bar plot. Observing the beeswarm plot, it can be seen that low values
of dwin are associated with a positive impact on the model’s prediction, while high
values push the prediction toward normal traffic. An additional interesting pattern
appears in dttl, which shows an isolated point with a negative impact, similar to
the behavior observed for the daddr feature in BoT-IoT. These observations suggest
that dwin plays a dominant role in the model’s decision process for UNSW-NB15,
while other features contribute more sporadically or in specific conditions.

The SHAP visualizations described above were used to guide feature selection for
each dataset. Two configurations were evaluated, both based on the 95% cumulative
importance threshold:

• First configuration — A fixed number of 20 features was selected for all
datasets, corresponding to the smallest number of features required by any
dataset to reach the cumulative threshold.

• Second configuration — The number of features was chosen individually
for each dataset, resulting in 37 features for CIC-IDS2017, 20 features for
BoT-IoT, and 24 features for UNSW-NB15.

Both configurations were applied using the same unified model with unchanged
hyperparameters, including a latent dimension of 32 for the autoencoder, while
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only the number of input features varied according to the SHAP-based feature
selection.

Table 4.13: Evaluation metrics of the unified model on each dataset using SHAP-
based feature selection (first configuration).

Test Dataset Accuracy Precision Recall F1-score ROC-AUC
CIC-IDS2017 97.70 91.04 95.81 93.37 99.75
BoT-IoT 99.58 100 99.58 99.79 99.97
UNSW-NB15 99.69 81.95 97.33 88.98 99.96
Total Test 98.94 98.96 99.18 99.07 99.96

Table 4.14: Evaluation metrics of the unified model on each dataset using SHAP-
based feature selection (second configuration).

Test Dataset Accuracy Precision Recall F1-score ROC-AUC
CIC-IDS2017 98.64 95.11 96.91 96.00 99.90
BoT-IoT 99.88 100 99.88 99.94 100
UNSW-NB15 99.75 86.07 96.19 90.85 99.97
Total Test 99.43 99.43 99.56 99.50 99.99

The results in Tables 4.13 and 4.14 show that SHAP-based feature selection
preserves strong overall performance across all datasets. CIC-IDS2017 exhibits the
most noticeable performance drop when the feature count is reduced, reflecting
its larger proportion of removed features. In contrast, BoT-IoT and UNSW-NB15
remain largely stable, with UNSW-NB15 even showing a slight improvement in
the second configuration. This trend indicates that datasets with a high number
of original features are more sensitive to dimensionality reduction, while the
unified model maintains robust predictive capability overall, confirming SHAP’s
effectiveness as a feature selection method.

Building on the promising results obtained with the first SHAP-based configu-
ration, where each dataset was individually reduced to 20 features, an additional
experiment was conducted to evaluate whether a single autoencoder could effectively
replace the three separate ones. For this purpose, each dataset was reduced to the
selected features and then combined into a unified dataset. A single autoencoder
with latent dimension 32 was trained on it, and the resulting encoded representation
was used to train the MLP classifier.
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Table 4.15: Evaluation metrics for binary classification using a single autoencoder
with SHAP-based selection on the unified dataset with latent dimension = 32.

Test Dataset Accuracy Precision Recall F1-score ROC-AUC
CIC-IDS2017 97.71 90.22 96.94 93.46 99.77
BoT-IoT 99.37 100 99.37 99.68 99.96
UNSW-NB15 99.73 86.96 93.19 89.97 99.96
Total Test 98.84 98.87 99.10 98.98 99.96

The results in Table 4.15 show that using a single autoencoder for the unified
dataset achieves performance very close to that obtained with separate autoencoders.
Overall metrics are slightly lower in some cases (e.g., precision on CIC-IDS2017)
but remain strong across all datasets. This suggests that a shared latent represen-
tation can capture the essential features for anomaly detection while reducing the
complexity of training multiple autoencoders.
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Conclusions

5.1 Summary
This thesis addressed the challenge of achieving model generalization across het-
erogeneous datasets in network anomaly detection. Modern intrusion detection
datasets exhibit substantial differences in feature sets, traffic distributions, and
attack classification, making cross-dataset learning difficult and limiting the gener-
alization capability of machine learning models.

To address these challenges, a separate AutoEncoder was used for each dataset
to map the data into a 32-dimensional latent space. These latent spaces were
then aligned to form a unified representation, enabling the construction of a single
classification model trained on the integrated data. The system demonstrated
strong and consistent performance across all datasets, confirming the effectiveness
of latent-space integration as a solution to dataset heterogeneity.

Furthermore, SHAP-based explainability was employed to analyze feature im-
portance and identify the most influential features. This analysis guided a feature
selection process that reduced the dimensionality of the unified representation. The
results obtained using the selected features were very close to those achieved with
the full AutoEncoder representation on the unified dataset, demonstrating that
SHAP-based feature selection preserves the model’s high detection performance
while enabling a more compact representation, confirming the effectiveness of this
approach.

5.2 Implications
The results obtained in this thesis have several important implications for network
anomaly detection. First, the use of AutoEncoders to project traffic into a shared
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latent space enables the harmonization of heterogeneous data sources while pre-
serving the structure and semantics of the original traffic. This demonstrates the
feasibility of building intrusion detection models capable of operating across diverse
environments, remaining robust even when exposed to variations in traffic patterns
or attack types.

Additionally, the incorporation of SHAP-based analysis shows that explain-
ability can play a practical role beyond model interpretation. Using SHAP as a
feature selection method makes it possible to reduce dataset dimensionality without
sacrificing detection performance. This is particularly important for improving
confidence in intrusion detection systems, thanks to the transparency provided by
SHAP’s feature importance analysis.

Moreover, the results observed with the single AutoEncoder configuration, as
shown in Table 4.15 confirm that SHAP-based feature selection can support compact
and unified representations across multiple datasets. This highlights the flexibility
of the proposed workflow and its ability to maintain strong detection performance
even in a simplified configuration.

In conclusion, the combined use of AutoEncoders and SHAP-based feature
selection enables the development of a classification model that can detect different
types of attacks with high performance while also providing interpretability through
feature importance analysis.

5.3 Limitations
Although the proposed approach demonstrates strong performance, some limitations
must be considered when interpreting the results.

First, although it is possible to use a single AutoEncoder leveraging SHAP for fea-
ture selection and achieving strong performance, the dataset-specific configuration
currently performs slightly better. This indicates that separate AutoEncoders may
provide more stable and well-separated latent spaces, which could limit scalability
when integrating additional datasets.

Second, managing highly heterogeneous datasets remains a fundamental chal-
lenge. Since each AutoEncoder is trained independently on a different dataset,
the meaning of each latent dimension may vary across datasets. Although all
models encode the input traffic into a 32-dimensional latent space, there is no
guarantee that a given dimension represents the same underlying concept in all
datasets. This lack of consistent semantics can limit the interpretability of the
unified representation and may affect the robustness and generalization of the
model when applied to new or structurally different datasets.

Third, although SHAP is useful for identifying important latent features, it has
inherent limitations. Its results can vary depending on model initialization, the
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choice of background dataset, or the specific model used. Additionally, calculating
SHAP values can be computationally intensive for large datasets or complex models.
Finally, since latent dimensions are abstract representations, even highly ranked
features may not correspond directly to interpretable network behaviors, limiting
the practical interpretability of the feature selection process.

Fourth, the models used in this work, including the AutoEncoders and the
MLP classifier, are relatively simple. While they achieve strong performance, it is
possible that more complex architectures could further improve detection metrics
or better capture complex relationships in the data. This represents a limitation in
terms of exploring the full potential of more sophisticated modeling approaches.

5.4 Future Research
Based on the framework developed in this thesis, several improvements and further
research opportunities can be explored. A first improvement regarding the SHAP
analysis could involve further investigation into the optimal number of selected
features across all datasets to achieve better results with a single AutoEncoder.
In addition, investigating the most appropriate latent dimensionality for the Au-
toEncoder in combination with SHAP-based feature selection could help further
enhance detection performance while maintaining interpretability.

Another potential improvement could involve investigating cross-dataset gen-
eralization by training the model on two datasets and evaluating it on a third,
previously unseen dataset. This setup allows assessing how well the model gen-
eralizes to new environments and traffic distributions. In cases of suboptimal
performance, it would also help determine whether retraining is necessary and
the number of samples required from the new dataset to achieve high detection
performance.

Finally, further improvements could be explored by employing more complex
model architectures for both the AutoEncoder and the classification model. Using
deeper or more advanced models may help capture complex relationships in the
data, potentially improving detection performance. Additionally, exploring the
framework with alternative datasets that are more complex and heterogeneous
than those considered in this study could provide a better understanding of its
generalizability and robustness.
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