
Politecnico di Torino

Corso di Laurea Magistrale in Ingegneria Informatica
A.a. 2024/2025

Sessione di laurea Dicembre 2025

Design e sviluppo di una piattaforma
Web a supporto della diagnosi
linguistica nei bambini bilingui

Relatore:

Luigi De Russis

Candidato:

Giuseppe Bennardo

Sommario

Il presente lavoro descrive la progettazione e lo sviluppo di una piattaforma web
ideata per supportare la diagnosi linguistica nei bambini bilingui, offrendo strumenti
digitali per la raccolta, la gestione e l’analisi dei questionari e delle risposte. Il
sistema si compone di due interfacce distinte: una dashboard per gli operatori
sanitari, dedicata alla creazione, al monitoraggio e all’analisi dei questionari, e una
web app per le famiglie, progettata per l’uso da dispositivi mobili, multilingue,
accessibile e dotata di assistente vocale. Sono stati definiti i requisiti funzionali e
non funzionali e progettata un’architettura software modulare, che ha consentito
l’implementazione di funzionalità quali editor visuale dei questionari, autosalva-
taggio progressivo e monitoraggio in tempo reale. La fase di test e validazione
ha permesso di valutare l’usabilità, la correttezza e la rispondenza del sistema
ai requisiti prefissati. I risultati evidenziano come la soluzione proposta migliori
l’efficienza del processo diagnostico e la qualità dei dati raccolti, aprendo la strada
a futuri sviluppi quali analisi automatizzate, ampliamento del supporto a varianti
linguistiche e dialettali, nuove funzionalità legate alla comunicazione con la famiglia,
e infine interoperabilità con sistemi sanitari esistenti.

Ringraziamenti

Ai miei genitori, per il loro sostegno co-
stante.
A mio fratello, per la sua presenza discre-
ta ma importante.
Ai miei nonni e ai miei zii, per l’affetto e
il supporto che non sono mai mancati.
Ai miei amici, per la leggerezza e la vici-
nanza in ogni fase di questo percorso.
Ad Agnese, per il suo supporto, la pazien-
za e l’amore di ogni giorno.

ii

Indice

Elenco delle tabelle vii

Elenco delle figure viii

1 Introduzione 1
1.1 Motivazioni del progetto . 1
1.2 Contesto applicativo e obiettivi . 3

1.2.1 Digitalizzazione e ottimizzazione del processo 3
1.3 Struttura della tesi . 5

2 Stato dell’arte e scelte tecnologiche 6
2.1 Soluzioni esistenti . 6
2.2 Analisi delle tecnologie e motivazioni delle scelte 7
2.3 Architettura generale e distribuzione 8

3 Analisi e progettazione del sistema 10
3.1 Introduzione e metodologia di analisi 10

3.1.1 Evoluzione e validazione dei requisiti 11
3.2 Raccolta e definizione dei requisiti 12

3.2.1 Requisiti funzionali . 12
3.2.2 Requisiti non funzionali . 14

3.3 Casi d’uso principali . 15
3.3.1 Descrizione dei casi d’uso . 15
3.3.2 Workflow principale del ciclo di compilazione 16
3.3.3 Workflow di gestione delle segnalazioni 17

3.4 Software design . 19
3.4.1 Architettura del sistema . 19
3.4.2 Panoramica sulle tecnologie utilizzate 21
3.4.3 Modello dati e schema logico 32
3.4.4 Pattern architetturali: Controller-Service-Repository 35

3.5 Meccanismi chiave del sistema . 37

iv

3.5.1 Avvio, ripresa e autosalvataggio della compilazione 37
3.5.2 Gestione della lingua . 37
3.5.3 Modello di accesso e autenticazione 38

3.6 Progettazione UI e requisiti di accessibilità 39
3.6.1 Mockup e design preliminare 39
3.6.2 Supporto agli screen reader 39
3.6.3 Lettura assistita tramite Text-to-Speech 40

4 Implementazione 41
4.1 Struttura generale del progetto . 41
4.2 Modulo shared: modelli, validazione e risorse comuni 43

4.2.1 Definizione degli schemi con Zod 43
4.2.2 Inferenza dei tipi TypeScript 44
4.2.3 Data Transfer Object e contratti di comunicazione 44
4.2.4 Gestione della localizzazione e catalogo delle lingue 45

4.3 Frontend dedicato agli operatori sanitari 46
4.3.1 Architettura . 46
4.3.2 Dashboard principale e sistema di navigazione 47
4.3.3 Visualizzazione della compilazione 48
4.3.4 Editor dei template per i questionari 51
4.3.5 Gestione dei feedback . 55
4.3.6 Gestione dell’autenticazione 57
4.3.7 Registrazione degli utenti e reset password 58

4.4 Frontend dedicato alle famiglie . 59
4.4.1 Architettura . 59
4.4.2 Flusso di compilazione . 60
4.4.3 Gestione multilingua . 62
4.4.4 Accessibilità . 63

4.5 Backend . 64
4.5.1 Architettura a tre livelli . 64
4.5.2 Implementazione delle API principali 68
4.5.3 Gestione degli errori nel backend 70
4.5.4 Autenticazione e registrazione degli utenti 71

4.6 Sintesi dei risultati implementativi 72

5 Validazione e risultati 73
5.1 Test tecnici . 74

5.1.1 Test delle API . 74
5.1.2 Test end-to-end manuali . 75

5.2 Validazione con utenti reali . 76
5.2.1 Validazone lato famiglia . 77

v

5.2.2 Validazione lato operatore 79
5.2.3 Valutazione dell’usabilità tramite SUS 84

5.3 Interpretazione dei risultati . 85

6 Conclusioni 87
6.1 Sintesi del lavoro svolto . 87
6.2 Limiti del lavoro . 88
6.3 Sviluppi futuri . 89

Bibliografia 90

vi

Elenco delle tabelle

3.1 Requisiti funzionali del sistema . 13
3.2 Requisiti non funzionali del sistema 14

5.1 Risultati del task T1 - famiglia . 78
5.2 Risultati del task T2 - famiglia . 78
5.3 Risultati del task T1 - Operatori 81
5.4 Risultati del task T2 - Operatori 81
5.5 Risultati del task T3 - Operatori 81
5.6 Risultati del task T4 - Operatori 82
5.7 Risultati del task T5 - Operatori 82
5.8 Risultati del task T6 - Operatori 82
5.9 Risultati del task T7 - Operatori 82
5.10 Punteggi SUS ottenuti dai partecipanti – lato famiglia 85
5.11 Punteggi SUS ottenuti dai partecipanti – lato operatore 85

vii

Elenco delle figure

3.1 Diagramma casi d’uso . 16
3.2 Workflow principale . 18
3.3 Workflow segnalazione . 19
3.4 Architettura del sistema . 21
3.5 Schema database . 35
3.6 Mockup preliminari dell’interfaccia utente dedicata alle famiglie . . 40

4.1 Struttura cartelle . 42
4.2 DTO e validazione con Zod . 45
4.3 Schermata principale dashboard . 48
4.4 Dettagli singola compilazione . 50
4.5 Risposte e note . 51
4.6 Creazione nuovo questionario . 53
4.7 Selezione del tipo domanda . 54
4.8 Editing domanda risposta multipla 55
4.9 Pagina dei feedback . 56
4.10 Registrazione e reset della password 59
4.11 Pagina di accesso al questionario 61
4.12 Pagine compilazione . 62
4.13 Pipeline della richiesta . 66

viii

Capitolo 1

Introduzione

1.1 Motivazioni del progetto

Negli ultimi anni, la crescente presenza di bambini bilingui nel sistema educativo e
sanitario italiano ha posto nuove sfide nella valutazione dello sviluppo linguistico
in età evolutiva. Secondo i dati ISTAT 2023, gli stranieri residenti in Italia
rappresentano circa l’8,6% della popolazione totale, con una netta concentrazione
nel Centro-Nord (83,4%) [1]. I minori costituiscono circa un quinto (20,8%) della
popolazione straniera residente, pari a oltre un milione di bambini e adolescenti,
molti dei quali nati in Italia da genitori migranti di prima generazione. Nella Città
Metropolitana di Torino, contesto territoriale di riferimento del presente lavoro, la
quota di popolazione straniera ha raggiunto il 9,52% del totale, mentre i minori
stranieri rappresentano il 14,2% della popolazione minorile complessiva [2].

Questo quadro demografico conferma come le situazioni di bi- o plurilinguismo
siano ormai la norma più che l’eccezione, rendendo necessario un adeguamento degli
strumenti clinici e didattici alla realtà multiculturale del territorio. Tuttavia, nella
pratica quotidiana dei servizi sanitari e scolastici, il bilinguismo è spesso percepito
come un fattore di rischio, piuttosto che come una risorsa cognitiva e comunicativa.

La letteratura scientifica contemporanea sottolinea invece che i bambini bilingui
non presentano un ritardo patologico nello sviluppo linguistico, ma un diverso
percorso evolutivo, fortemente influenzato dalla quantità e qualità dell’input lin-
guistico ricevuto [3]. Durante la fase di acquisizione della seconda lingua (L2),
il profilo linguistico di questi bambini può temporaneamente somigliare a quello
dei coetanei monolingui con Disturbo Primario del Linguaggio (DPL), ma tali
differenze riflettono una variazione tipica e non un deficit .

Come osservano Caselli e Rinaldi [4] nei bambini bilingui le differenze individuali
risultano spesso più ampie rispetto ai monolingui, a causa della complessità dei fat-
tori che influenzano lo sviluppo linguistico: età di prima esposizione, contesto d’uso

1

Introduzione

delle lingue, tempo dedicato a ciascuna lingua e livello di stimolazione linguistica
familiare. Analogamente, Marini e Vicari [5] evidenziano che la corretta distinzione
tra disturbo del linguaggio e variazione bilingue richiede strumenti di valutazione
culturalmente sensibili e un’attenta analisi qualitativa del contesto comunicativo.
Senza strumenti adeguati, il rischio è duplice: da un lato diagnosticare erronea-
mente un disturbo linguistico (over-identification), dall’altro non riconoscerne la
presenza reale (under-identification), compromettendo l’intervento precoce e la
presa in carico.

In molti centri di neuropsichiatria infantile italiani, la raccolta delle informazioni
linguistiche avviene ancora tramite questionari cartacei o moduli digitali disomo-
genei, che comportano difficoltà nella gestione, archiviazione e analisi dei dati.
Inoltre, la presenza di famiglie con competenze linguistiche limitate in italiano può
ostacolare la compilazione autonoma dei questionari, riducendo la qualità delle
informazioni raccolte e aumentando il carico di lavoro per gli operatori sanitari.

In risposta a tali criticità, è stato avviato lo sviluppo di una piattaforma
web per la digitalizzazione e gestione dei questionari di valutazione linguistica
nei bambini bilingui, ideata per essere utilizzata congiuntamente da operatori
sanitari (neuropsichiatri, logopedisti, psicologi) e famiglie. L’obiettivo principale è
digitalizzare e ottimizzare l’intero processo di valutazione, garantendo:

• la standardizzazione dei questionari e la raccolta strutturata dei dati;

• la riduzione degli errori e dei tempi di gestione;

• un’esperienza accessibile e multilingue (inizialmente italiano, spagnolo e arabo,
con possibilità di estensione);

• l’integrazione di strumenti di accessibilità, come un assistente vocale;

• la conformità alle normative sulla privacy e sulla protezione dei dati sanitari
(GDPR).

La piattaforma rappresenta non solo un’evoluzione tecnologica, ma anche un
cambiamento di paradigma nella pratica clinica: consente una diagnosi linguistica
più equa e inclusiva, fondata su dati digitali, dinamici e facilmente condivisibili.
Essa si inserisce in una prospettiva di sanità digitale inclusiva, coerente con gli
Obiettivi dell’Agenda 2030 delle Nazioni Unite, in particolare:

• Obiettivo 3: garantire salute e benessere per tutti e per tutte le età;

• Obiettivo 4: assicurare un’istruzione di qualità, equa e inclusiva;

• Obiettivo 10: ridurre le disuguaglianze tra e all’interno dei Paesi.

2

Introduzione

La promozione del multilinguismo è inoltre riconosciuta come una priorità a
livello europeo. La politica linguistica dell’Unione Europea incoraggia ogni cittadino
a padroneggiare almeno due lingue oltre alla propria lingua madre, considerando
il multilinguismo un elemento chiave della competitività, della coesione sociale
e della comprensione interculturale [6] In tale contesto, il progetto contribuisce
concretamente alla realizzazione di questi obiettivi, promuovendo una diagnosi
linguistica equa, accessibile e tecnologicamente avanzata, capace di valorizzare la
diversità linguistica dei bambini e delle loro famiglie.

1.2 Contesto applicativo e obiettivi
Il progetto nasce dall’esigenza di supportare il lavoro clinico degli operatori sanitari
che si occupano della valutazione linguistica di bambini bilingui in età prescolare e
scolare. In ambito neuropsichiatrico e logopedico, la raccolta dei dati anamnestici
e linguistici costituisce un passaggio essenziale per distinguere tra uno sviluppo
linguistico tipico e la presenza di un Disturbo Primario del Linguaggio (DPL) o
di altre difficoltà comunicative [7]. Tuttavia, nella pratica corrente, tale raccolta
avviene prevalentemente attraverso questionari cartacei o file statici, la cui gestione
comporta numerosi limiti: perdita o duplicazione dei dati, difficoltà di consultazione,
tempi lunghi di analisi e mancanza di uniformità nelle informazioni raccolte.

Inoltre, la crescente presenza di famiglie con una lingua madre diversa dall’i-
taliano rende la compilazione dei questionari spesso complessa o imprecisa. Gli
operatori segnalano che le barriere linguistiche e tecnologiche possono compromette-
regr la completezza e l’attendibilità dei dati, rendendo più difficile la valutazione del
profilo linguistico del bambino. Queste criticità si traducono non solo in inefficienze
operative, ma anche in rischi clinici, come la possibilità di diagnosi non accurate o
ritardate.

1.2.1 Digitalizzazione e ottimizzazione del processo

La piattaforma web fornisce un sistema centralizzato in cui gli operatori sanitari
possono: creare, modificare e archiviare questionari digitali tramite un editor visuale
interattivo; monitorare in tempo reale lo stato di compilazione dei questionari inviati
alle famiglie; aggiungere note cliniche o osservazioni contestuali alle risposte ricevute;
filtrare e esportare i dati in formati standard (CSV, Excel) per ulteriori analisi o
integrazione con altri sistemi sanitari.

Per le famiglie, la piattaforma offre un’interfaccia intuitiva e accessibile, che
consente di compilare i questionari in modo guidato e multilingue.

Obiettivi del progetto

3

Introduzione

Gli obiettivi progettuali sono stati definiti in stretta collaborazione con l’équipe
clinica dell’ASL e possono essere articolati in tre macro-aree: clinica, tecnologica e
sociale.

Obiettivi clinici
• Supportare gli operatori nella raccolta standardizzata di dati linguistici e

anamnestici, riducendo la variabilità dovuta a compilazioni manuali.

• Migliorare l’accuratezza diagnostica nella distinzione tra disturbo del linguag-
gio e differenze bilingui, fornendo dati più completi e strutturati.

• Facilitare la continuità del percorso clinico, permettendo di consultare e
aggiornare le compilazioni in modo tracciato e sicuro.

Obiettivi tecnologici
• Realizzare una web application completa e responsive, composta da due moduli

principali:

– una dashboard gestionale per gli operatori sanitari, che consenta la crea-
zione, modifica e consultazione dei questionari, il monitoraggio delle
compilazioni e la gestione delle segnalazioni o note cliniche;

– un’interfaccia di compilazione guidata per le famiglie, ottimizzata per
dispositivi mobili, che permetta un accesso rapido tramite link dedicato e
autenticazione mediante codice fiscale del bambino.

• Garantire un’esperienza d’uso fluida e inclusiva, implementando funzionalità di
autosalvataggio progressivo e una compilazione a più step, in modo da evitare
la perdita di dati anche in caso di interruzione della sessione.

• Assicurare la compatibilità multipiattaforma (desktop, tablet e smartphone)
e la piena accessibilità, nel rispetto delle linee guida WCAG 2.1, integrando
meccanismi di lettura vocale e navigazione semplificata.

• Strutturare il sistema in modo che possa essere installato e mantenuto su in-
frastruttura locale o virtualizzata dell’ente sanitario, garantendo indipendenza
da piattaforme cloud esterne e pieno controllo dei dati sensibili.

Obiettivi sociali e di accessibilità
• Promuovere l’inclusione linguistica delle famiglie migranti, offrendo interfacce

multilingue e strumenti di assistenza vocale.

• Favorire la collaborazione tra operatori sanitari e genitori, rendendo la comu-
nicazione più chiara e bidirezionale.

• Sostenere la riduzione delle disuguaglianze di accesso ai servizi diagnostici, in
linea con i principi dell’Agenda 2030 (Obiettivi 3, 4 e 10).

4

Introduzione

1.3 Struttura della tesi
La presente tesi è articolata in sei capitoli, ciascuno dei quali affronta una fase
specifica del percorso di analisi, progettazione e sviluppo della piattaforma web.
Dopo il capitolo introduttivo, i capitoli successivi sono:

Il Capitolo 2 – Stato dell’arte e soluzioni analoghe analizza il panora-
ma tecnologico di riferimento, esaminando le principali soluzioni esistenti per la
creazione e gestione di questionari digitali. Il capitolo discute i limiti di tali sistemi
e le motivazioni che hanno portato alla progettazione di una piattaforma dedicata,
mettendo a confronto diverse tecnologie e modelli architetturali.

Il Capitolo 3 – Progettazione e design del sistema Vengono illustrati
i criteri che hanno guidato la raccolta dei requisiti, i principali attori coinvolti
e i casi d’uso rappresentativi, con il supporto di diagrammi e schemi descrittivi.
Approfondisce l’architettura logica e fisica della piattaforma, descrivendo la strut-
tura generale del sistema, il modello dei dati e i meccanismi fondamentali come
autosalvataggio, gestione multilingua e autenticazione.

Il Capitolo 4 – Implementazione e sviluppo illustra nel dettaglio la
realizzazione pratica della piattaforma, descrivendo l’organizzazione del progetto,
i principali moduli software e le componenti di frontend e backend. Particolare
attenzione è riservata alle funzionalità di accessibilità, tra cui il supporto per screen
reader e la sintesi vocale tramite Web Speech API.

Il Capitolo 5 – Test, validazione e risultati presenta le strategie di verifica
e validazione del sistema, cioè test API, test E2E e prove di usabilità condotte
con utenti reali. I risultati ottenuti vengono analizzati in termini di correttezza,
prestazioni e grado di soddisfazione degli utenti.

Il Capitolo 6 - Conclusioni Infine, il lavoro si conclude con una sezione di
conclusioni, nella quale vengono riassunti i risultati raggiunti, discusse le principali
difficoltà incontrate e delineate le possibili evoluzioni future della piattaforma.

5

Capitolo 2

Stato dell’arte e scelte
tecnologiche

L’analisi dello stato dell’arte costituisce il punto di partenza per la definizione
delle scelte tecnologiche e architetturali alla base della piattaforma sviluppata. In
questa fase, è stato fondamentale valutare le soluzioni esistenti per la gestione e la
digitalizzazione di questionari, al fine di comprenderne le potenzialità e i limiti e di
individuare le aree in cui fosse necessario proporre un sistema alternativo.

Il progetto è nato su richiesta diretta del reparto di Neuropsichiatria Infantile
dell’ASL CN2, che, in collaborazione con il Politecnico di Torino, ha espresso
l’esigenza di una piattaforma web personalizzata per la gestione dei questionari
diagnostici relativi alla valutazione linguistica dei bambini bilingui. Le soluzioni in
uso – principalmente Microsoft Forms e Google Moduli – si erano rivelate inadeguate
rispetto alle necessità operative del reparto.Le dottoresse del reparto hanno infatti
segnalato numerose criticità, tra cui la mancanza di un controllo centralizzato
dei dati, l’impossibilità di gestire in modo efficiente questionari multilingua, e la
difficoltà di offrire ai genitori un’interfaccia realmente accessibile e intuitiva.

Questa insoddisfazione ha reso evidente la necessità di progettare un sistema ad
hoc, più flessibile, moderno e indipendente dalle piattaforme cloud commerciali.

2.1 Soluzioni esistenti
Le principali piattaforme oggi disponibili per la creazione e gestione di questionari
digitali sono Google Moduli (Google Forms), Microsoft Forms e Typeform. Tutti e
tre gli strumenti adottano un modello cloud “Software as a Service” (SaaS), che
consente di creare moduli interattivi, raccogliere automaticamente le risposte e
visualizzare statistiche in tempo reale.

6

Stato dell’arte e scelte tecnologiche

Google Moduli: parte della suite Google Workspace, è ampiamente utilizzato
grazie alla sua semplicità e alla possibilità di esportare i risultati in Google Sheets.
Tuttavia, il sistema offre funzionalità limitate di personalizzazione: il layout è rigido
e la gestione multilingua non è nativa, ma richiede la duplicazione del questionario
per ciascuna lingua. Inoltre, la conservazione dei dati avviene esclusivamente sui
server Google, senza possibilità di archiviazione locale o gestione diretta delle
informazioni.

Microsoft Forms: integrato nella suite Microsoft 365, è stato lo strumento
effettivamente utilizzato dal reparto dell’ASL CN2 fino all’avvio di questo progetto.
Le dottoresse hanno confermato che l’applicazione veniva impiegata per la distribu-
zione dei questionari ai genitori, apprezzandone l’interfaccia intuitiva e la facilità
di condivisione. Tuttavia, l’esperienza d’uso si è rivelata limitante sotto diversi
aspetti. In primo luogo, l’applicazione non offre un vero supporto per la gestione
multilingua all’interno dello stesso questionario: ogni lingua richiede la creazione
di un modulo separato, con conseguente aumento della complessità gestionale e
del rischio di incongruenze tra versioni. In secondo luogo, la piattaforma non
prevede una dashboard dedicata per gli operatori, rendendo difficile monitorare
lo stato delle compilazioni o associare in modo strutturato le risposte ai singoli
casi. Infine, la completa dipendenza dall’infrastruttura cloud Microsoft impedisce
la conservazione locale dei dati e limita la possibilità di personalizzare interfaccia e
flussi di compilazione. Per queste ragioni, nonostante la sua semplicità, Microsoft
Forms è stata considerata una soluzione non adeguata per il contesto specifico del
reparto.

Typeform: rappresenta una soluzione commerciale più evoluta, orientata
all’esperienza utente. La piattaforma si distingue per un’interfaccia moderna e
interattiva, basata su un modello “conversazionale” di compilazione: le domande
vengono presentate una alla volta, rendendo l’esperienza più fluida e accattivante.
Typeform consente un livello maggiore di personalizzazione grafica e supporta una
logica condizionale più articolata rispetto ai concorrenti gratuiti. Tuttavia, anche
questa soluzione presenta limiti sostanziali in contesti professionali che richiedano
un controllo rigoroso dei dati: i dati vengono memorizzati su server esterni, le
possibilità di esportazione automatizzata sono limitate ai formati supportati dal
servizio e la versione gratuita non permette l’uso intensivo o l’integrazione diretta
con database locali.

2.2 Analisi delle tecnologie e motivazioni delle
scelte

Nel valutare le tecnologie possibili per il backend e il frontend della piattaforma,
sono stati considerati diversi framework e modelli architetturali, con una particolare

7

Stato dell’arte e scelte tecnologiche

attenzione alle reali esigenze operative del progetto: un numero moderato di utenti,
flussi di compilazione relativamente leggeri, necessità di manutenzione sostenibile e
installazione su infrastruttura interna. Tre alternative principali sono dunque state
oggetto di analisi: Spring Boot, Django, Express.js/Node.js.

Spring Boot è ampiamente utilizzato in ambito enterprise e offre un ecosistema
completo, ma la sua struttura modulare e la quantità di configurazioni lo rendono
poco adatto a progetti di piccola scala. Secondo benchmark pubblicati da InfoQ [8]
e JetBrains [9], le applicazioni Spring Boot hanno tempi medi di avvio di 5–6 secondi
e un consumo di memoria superiore rispetto a equivalenti implementazioni Node.js.
Un’analisi più ampia conferma che Node.js eccelle nelle operazioni I/O-bound e in
scenari con elevata concorrenza, mentre Spring Boot risulta più adatta a carichi
CPU-intensivi o applicazioni enterprise complesse [10].

Django, pur offrendo un solido ORM e un framework completo, adotta un para-
digma più rigido e centralizzato, meno adatto a interfacce dinamiche e a componenti
web altamente reattive. In considerazione della natura del sistema — questionari,
flussi di compilazione, non elevati carichi di elaborazione— è stato dunque preferito
un ambiente leggero e rapido da gestire. Express.js/Node.js ha offerto multipli
vantaggi: linguaggio unico per frontend e backend (JavaScript/TypeScript), tempi
di setup inferiori, minore sovraccarico di runtime e maggior flessibilità in fase di
evoluzione. Queste condizioni hanno reso la scelta tecnologica coerente sia con
le competenze già acquisite dallo sviluppatore, sia con la scalabilità contenuta
prevista per l’applicazione.

Per il frontend, la selezione di React si è basata sulla sua diffusione (> 48 %
degli sviluppatori frontend secondo un’indagine del 2025) [11] e sulla capacità di
supportare interfacce modulari e accessibili. Per la persistenza dati, la combina-
zione di PostgreSQL e Prisma ORM ha garantito integrità relazionale, migrazioni
automatizzate e manutenzione agevole, requisito rilevante in un contesto in cui le
entità (operatori, questionari, risposte) presentano relazioni chiare e stabili.

2.3 Architettura generale e distribuzione
L’architettura della piattaforma è stata progettata con un approccio a tre livelli:
livello di presentazione, logica applicativa e persistenza dei dati. Il frontend eroga
l’interfaccia utente e le interazioni, il backend espone API RESTful e gestisce
la logica applicativa, mentre il database memorizza le entità e le relazioni senza
dipendere da infrastrutture esterne.

Dal punto di vista dell’infrastruttura, la scelta di installare il sistema su una
macchina virtuale dedicata nella rete interna dell’ente è stata motivata da una
valutazione costi-benefici che ha tenuto in conto il contesto normativo e operativo.
In letteratura, il passaggio al cloud pubblico è stimato in molte organizzazioni al 41

8

Stato dell’arte e scelte tecnologiche

%dei carichi di lavoro entro il 2020, con un conseguente declino di circa 10 punti
percentuali per l’on-premise dal 37 % al 27 % [12]. Tuttavia, quando la priorità è
il controllo dei dati e la conformità normativa, la soluzione on-premise o VM locale
rimane preferita: ad esempio, oltre il 58 % delle aziende ha espresso la preferenza
per mantenere carichi critici in ambienti locali.[12]

La decisione di evitare container e orchestratori deriva dal fatto che il carico
operativo previsto non richiede scalabilità orizzontale massiva né gestione di micro-
servizi complessi. Questo si traduce in una riduzione della complessità operativa,
dei costi di manutenzione e dei rischi di failure legati a infrastrutture distribuite.
Un’analisi sistematica tra cloud e on-premise evidenzia che, pur offrendo maggio-
re flessibilità, il cloud introduce overhead di gestione che in contesti piccoli può
risultare controproducente. [13]

Per quanto riguarda lo scambio tra i livelli applicativi, l’adozione di API REST e
formati JSON favorisce interoperabilità e future estensioni senza vincoli architettu-
rali. L’isolamento tra componenti consente inoltre di sostituire o aggiornare ciascun
modulo indipendentemente, riducendo il rischio di impatti sistemici. La scelta di
una VM interna garantisce backup, snapshot e controllo completo sull’ambiente
di esecuzione, elementi essenziali in un contesto che deve rispettare normative
sanitarie e requisiti di riservatezza.

9

Capitolo 3

Analisi e progettazione del
sistema

3.1 Introduzione e metodologia di analisi

La fase di analisi dei requisiti ha rappresentato il punto di partenza del processo
di progettazione della piattaforma web, con l’obiettivo di tradurre in specifiche
funzionali e tecniche le esigenze operative del reparto di Neuropsichiatria Infantile
dell’ASL di Torino. Il progetto è nato su iniziativa di due dottoresse del reparto,
che hanno espresso la necessità di disporre di uno strumento digitale dedicato alla
somministrazione, raccolta e gestione dei questionari linguistici utilizzati durante
le valutazioni dei bambini bilingui. In collaborazione con il Politecnico di Torino e
sotto la supervisione del professor Luigi De Russis, è stato avviato un processo di
co-progettazione che ha portato alla definizione delle funzionalità e dei requisiti
della piattaforma.

L’attività di analisi è stata condotta attraverso una serie di incontri in presenza
tra il team universitario e le professioniste del reparto. Durante tali riunioni, le
dottoresse hanno illustrato le modalità operative attuali e le difficoltà riscontrate
nell’utilizzo degli strumenti esistenti — in particolare Microsoft Forms, allora
impiegato per la distribuzione dei questionari ai genitori. Dalle discussioni è emersa
la necessità di una piattaforma centralizzata, personalizzabile e accessibile, in grado
di superare i limiti di soluzioni cloud generiche e di ottimizzare la gestione del
flusso di compilazione.

Tra le funzionalità ritenute prioritarie sono state individuate:

• la gestione multilingue dei questionari, per permettere la compilazione da
parte di famiglie non italofone;

10

Analisi e progettazione del sistema

• l’integrazione di un assistente vocale a supporto dell’accessibilità e della
comprensione delle domande;

• un’interfaccia responsive, utilizzabile da computer, tablet e smartphone;

• la presenza di un meccanismo di autosalvataggio progressivo con compila-
zione multistep, per evitare la perdita di dati e permettere di riprendere la
compilazione in più momenti;

• un sistema per la tracciabilità e il monitoraggio delle compilazioni da parte
degli operatori sanitari.

Nel corso degli incontri, le esigenze espresse sono state progressivamente for-
malizzate e organizzate in un insieme strutturato di requisiti. La definizione non
è avvenuta in un’unica fase, ma attraverso un processo iterativo e incrementale:
dopo una prima identificazione delle funzionalità chiave, è stata elaborata una
proposta di requisiti preliminari, successivamente discussa e rivista insieme alle
dottoresse e al relatore. Questo confronto ha permesso di valutare la fattibilità
tecnica di ciascuna richiesta, di chiarire le priorità e di trasformare le esigenze
cliniche e organizzative in specifiche tecniche realizzabili.

Il risultato di questa fase è consistito in un insieme coerente di funzionalità,
requisiti e casi d’uso principali, che hanno guidato la progettazione dell’architettura
del sistema e la successiva fase di implementazione. In particolare, l’analisi ha
consentito di individuare le entità fondamentali del dominio applicativo, i ruoli
degli utenti e i flussi di interazione che saranno descritti nei paragrafi seguenti.

3.1.1 Evoluzione e validazione dei requisiti
Durante il processo di analisi e di confronto con le dottoresse del reparto, alcune
delle funzionalità inizialmente ipotizzate sono state oggetto di revisione, al fine di
semplificare l’utilizzo del sistema e ottimizzare le risorse di sviluppo. Un esempio
significativo riguarda il meccanismo di autenticazione per le famiglie.Nella prima
versione concettuale del progetto, era stato previsto un sistema di accesso basato
su link o QR code univoco, generato dall’operatore per ciascun caso clinico. La
famiglia avrebbe ricevuto un collegamento personalizzato, valido per accedere
direttamente al questionario senza necessità di registrazione. Questo modello
garantiva un buon livello di anonimato e tracciabilità, ma richiedeva la gestione di
codici temporanei, invii manuali e potenziali problemi di scadenza o smarrimento
dei link. Durante la validazione con il reparto, si è deciso di semplificare l’approccio,
adottando un sistema basato sull’inserimento del codice fiscale del bambino come
chiave identificativa. Questa soluzione riduce la complessità gestionale, elimina la
necessità di generare e distribuire link personalizzati e mantiene una sufficiente
univocità, a scapito però di un leggero sacrificio in termini di anonimato. La scelta

11

Analisi e progettazione del sistema

è stata motivata da criteri di praticità, rapidità d’uso e robustezza operativa, più in
linea con l’ambiente sanitario di destinazione.

Un’ulteriore modifica ha riguardato la funzionalità di riconoscimento vocale
(speech-to-text), inizialmente ipotizzata per consentire la compilazione tramite
dettatura. Durante la fase di analisi è emerso che la maggior parte delle famiglie
utilizza dispositivi mobili con tastiere già dotate di microfono integrato (Google
Voice Typing o Siri Dictation). Implementare un riconoscimento vocale interno alla
piattaforma avrebbe introdotto dipendenze da servizi esterni e possibili problemi di
compatibilità tra sistemi operativi. La funzione che è stata mantenuta invece è quella
di lettura vocale (text-to-speech) delle domande, più utile ai fini dell’accessibilità e già
nativamente supportata dai browser moderni. Infine, alcune funzionalità considerate
opzionali sono state eliminate in fase di revisione. Tra queste, il sistema di notifiche
e reminder automatici per ricordare la compilazione dei questionari in sospeso.
Le dottoresse hanno infatti osservato che la durata media della compilazione è
breve e il tasso di abbandono minimo, rendendo tale funzione superflua rispetto
ai costi di implementazione e manutenzione. Questi adattamenti dimostrano
come l’intero processo di definizione dei requisiti sia stato condotto secondo un
approccio incrementale e partecipativo, in cui le decisioni progettuali sono state
progressivamente validate in base a criteri di efficacia, semplicità e coerenza con le
esigenze del contesto clinico. Le versioni intermedie di alcuni workflow e diagrammi,
come quello relativo al sistema di login inizialmente proposto, sono state mantenute
a fini di documentazione interna e di confronto metodologico, ma non sono state
incluse nel progetto finale. La progettazione successiva si è quindi basata sulle
versioni consolidate dei flussi operativi, illustrate nei paragrafi seguenti.

3.2 Raccolta e definizione dei requisiti

3.2.1 Requisiti funzionali

I requisiti funzionali (RF) descrivono i servizi e le operazioni che il sistema deve
essere in grado di eseguire per rispondere agli obiettivi del progetto. Essi definiscono
cosa il sistema fa, indipendentemente dalle modalità implementative. Nella tabella
seguente vengono elencati i principali requisiti funzionali individuati.

12

Analisi e progettazione del sistema

ID Descrizione Priorità
RF01 Il sistema deve permettere all’operatore sanitario di au-

tenticarsi tramite credenziali e accedere alla dashboard di
gestione.

Alta

RF02 Il sistema deve consentire all’operatore di creare, modifica-
re e cancellare questionari digitali, partendo da template
predefiniti o personalizzati.

Alta

RF03 Ogni questionario deve poter essere distribuito tramite un
link univoco accessibile dalla famiglia destinataria.

Alta

RF04 All’apertura del questionario, la famiglia deve poter identi-
ficarsi tramite l’inserimento del codice fiscale del bambino.

Alta

RF05 Il sistema deve consentire la compilazione multistep del
questionario, con autosalvataggio progressivo dei dati in
caso di interruzione.

Alta

RF06 Le domande dei questionari devono supportare la traduzio-
ne in più lingue selezionabili all’avvio della compilazione.

Alta

RF07 La piattaforma deve integrare un assistente vocale per la
lettura dei testi (text-to-speech) a supporto dell’accessibi-
lità.

Media

RF08 L’operatore deve poter visualizzare, filtrare e scaricare le
compilazioni ricevute, con possibilità di aggiungere note
cliniche associate.

Alta

RF09 Il sistema deve consentire all’operatore di monitorare lo
stato dei questionari (in corso e completati) e visualizzare
in tempo reale le risposte già fornite, anche per questionari
parzialmente completati..

Alta

RF10 L’utente familiare deve poter modificare e completare una
compilazione interrotta senza perdere i dati inseriti in
precedenza.

Alta

RF11 L’operatore deve poter eliminare questionari obsoleti o
creati per errore. L’eliminazione potrebbe richiedere una
conferma.

Media

RF12 L’operatore deve poter aggiungere annotazioni o osserva-
zioni professionali alle risposte fornite dai genitori.

Media

RF13 Il sistema deve fornire un sistema di gestione dei feedback:
durante la compilazione, l’utente famiglia può inviare,
attraverso una modale, un feedback di segnalazione re-
lativo all’intero questionario o a una domanda specifica.
L’operatore può vedere la lista delle segnalazioni ed even-
tualmente risolverli.

Media

RF14 Nella definizione del template del questionario è possibile
associare un testo di aiuto opzionale a ciascuna domanda.
Se presente viene visualizzata un’icona (“?”) accanto alla
domanda. .

Bassa

Tabella 3.1: Requisiti funzionali del sistema

13

Analisi e progettazione del sistema

I requisiti funzionali sopra riportati coprono l’intero ciclo di vita del questionario,
dalla creazione alla compilazione e alla gestione dei dati. Essi costituiscono la base
operativa per la definizione dei casi d’uso e dei flussi applicativi descritti nelle
sezioni successive.

3.2.2 Requisiti non funzionali
I requisiti non funzionali (RNF) descrivono le caratteristiche qualitative del sistema,
ovvero come esso deve comportarsi per garantire sicurezza, affidabilità e usabilità.
La tabella seguente riassume i principali requisiti non funzionali individuati.

ID Descrizione Priorità
RNF01 Il sistema deve essere conforme al Regolamento Europeo

2016/679 (GDPR) per la protezione dei dati personali.
Alta

RNF02 Tutti i dati devono essere memorizzati su un database
locale o in ambiente virtuale interno all’ente, garantendo
controllo e tracciabilità.

Alta

RNF03 L’interfaccia deve essere accessibile, in conformità alle
linee guida WCAG 2.1, e supportare screen reader e assi-
stenti vocali.

Alta

RNF04 L’applicazione deve essere responsive, garantendo un’espe-
rienza ottimale su dispositivi desktop e mobile.

Alta

RNF05 I tempi medi di caricamento delle pagine devono essere
inferiori a 1 secondo in condizioni di rete standard.

Media

RNF06 Il sistema deve essere altamente affidabile con tempi di
inattività minimi, garantendo la disponibilità dei dati e
dei servizi quando necessario..

Alta

RNF07 La piattaforma deve essere manutenibile e modulare, con-
sentendo aggiornamenti e aggiunta di nuove lingue o fun-
zionalità senza modifiche invasive.

Media

RNF08 L’interfaccia deve utilizzare un linguaggio visivo semplice e
coerente, adatto a utenti con competenze digitali limitate.

Alta

RNF09 Tutte le operazioni devono essere tracciabili nel sistema
di logging, con livelli di accesso differenziati per ruolo.

Media

RNF10 Il sistema deve essere in grado di gestire un numero cre-
scente di utenti, questionari e dati senza degradazione
delle prestazioni. Capacità di gestire almeno 10 questio-
nari attivi contemporaneamente e supporto per almeno 2
operatori sanitri concorrenti.

Media

Tabella 3.2: Requisiti non funzionali del sistema

14

Analisi e progettazione del sistema

3.3 Casi d’uso principali
La modellazione dei casi d’uso è stata condotta successivamente alla definizione dei
requisiti funzionali e non funzionali, con l’obiettivo di rappresentare in modo formale
le interazioni tra gli attori e il sistema. Nel presente progetto, i requisiti sono stati
elaborati e validati in una fase preliminare, poiché derivano direttamente dalle
necessità espresse dagli operatori sanitari e dalle specifiche funzionalità richieste
per la piattaforma. I casi d’uso illustrati di seguito traducono quindi tali requisiti
in flussi operativi concreti, descrivendo il comportamento del sistema in relazione
ai due principali attori identificati: operatore sanitario e famiglia. Questa scelta
metodologica consente di mantenere una chiara tracciabilità tra requisiti e processi,
garantendo coerenza tra la fase analitica e la progettazione successiva.

3.3.1 Descrizione dei casi d’uso
Il diagramma dei casi d’uso, riportato in Figura 3.1, rappresenta le principali
interazioni tra i due attori identificati — Genitore e Operatore sanitario — e la
piattaforma web. L’obiettivo della modellazione è descrivere, a livello concettuale,
il comportamento del sistema in risposta alle azioni dell’utente, evidenziando le
funzionalità chiave individuate durante la fase di analisi dei requisiti.

L’attore “Genitore” interagisce con il sistema principalmente nella fase di compi-
lazione del questionario. Il flusso inizia con l’accesso al questionario tramite link o
QR code fornito dall’operatore, seguito dalla fase di identificazione mediante codice
fiscale del bambino selezione della lingua di compilazione. Fatto l’accesso l’utente
può procedere attraverso una compilazione multistep, con autosalvataggio auto-
matico dei progressi. Durante la compilazione, la famiglia può segnalare eventuali
domande ambigue o difficili da comprendere, interagendo così indirettamente con
l’operatore sanitario. In aggiunta, il caso d’uso Usare assistente vocale è definito
come un’estensione opzionale della compilazione, permettendo la lettura automatica
delle domande tramite sistema text-to-speech, al fine di migliorare l’accessibilità
per utenti con difficoltà visive o linguistiche.

L’attore “Operatore sanitario” interagisce con la piattaforma in modo più
ampio, gestendo l’intero ciclo di vita dei questionari. Le sue attività principali
comprendono la creazione di nuovi questionari, la gestione delle lingue disponibili,
il monitoraggio delle risposte e l’aggiunta di note cliniche associate a singole
compilazioni. L’operatore può inoltre risolvere le segnalazioni inviate dalle famiglie,
integrando le informazioni ricevute nel processo diagnostico, e infine esportare i
risultati in formato Excel per successive analisi. Alcune relazioni di inclusione
evidenziano dipendenze funzionali tra le attività, come l’inclusione obbligatoria
della “Creazione del questionario” nel caso d’uso “Aggiungere lingua” o della
“Visualizzazione risposte” in “Aggiungere note”.

15

Analisi e progettazione del sistema

Figura 3.1: Diagramma casi d’uso

3.3.2 Workflow principale del ciclo di compilazione
Il diagramma in Figura 3.2 rappresenta il flusso complessivo di interazione tra i
due attori principali della piattaforma — operatore sanitario e famiglia — durante
l’intero ciclo di vita di un questionario, dalla sua creazione fino alla revisione delle
risposte. Sono state adottate tre swimlane per distinguere chiaramente le attività
di ciascun attore, riducendo al minimo le operazioni ridondanti svolte dal sistema.

Il flusso inizia con la creazione del questionario da parte dell’operatore, che
accede alla dashboard, genera un nuovo template e ne ottiene il link univoco di
compilazione. Tale link viene condiviso con la famiglia attraverso il canale preferito
(email, messaggio o QR code).

La famiglia, aprendo il link ricevuto, accede alla pagina di ingresso in cui deve
selezionare la lingua di compilazione e inserire il codice fiscale del bambino. Le
lingue disponibili per la selezione non sono fisse, ma dipendono dalle traduzioni
effettivamente presenti nel momento dell’accesso: il sistema mostra soltanto le
versioni linguistiche già caricate per quel questionario. Una volta selezionata la
lingua e inserito il codice fiscale, il sistema verifica la validità dei dati: se il codice

16

Analisi e progettazione del sistema

fiscale è valido, viene creata (o ripristinata, in caso di sessione esistente) una
submission associata a quel questionario e a quella lingua, impostata nello stato
in progress. È importante notare che, dopo l’avvio della compilazione, la lingua
scelta diventa vincolante: se la famiglia tenta di riaccedere al questionario in una
lingua diversa da quella iniziale, il sistema rileva l’incongruenza e blocca l’accesso,
richiedendo di utilizzare la lingua originaria. Tale vincolo evita discrepanze tra
le versioni linguistiche del questionario e garantisce la coerenza dei dati raccolti.
Nella dashboard dell’operatore, la compilazione compare nella sezione dedicata,
dove è possibile visualizzare le risposte ricevute, aggiungere note alle risposte e,
se necessario, esportare i dati in formato Excel per ulteriori analisi. Il workflow
termina quando l’operatore conclude la revisione, completando il ciclo logico del
questionario.

3.3.3 Workflow di gestione delle segnalazioni
Il workflow illustrato in Figura 3.3 descrive il flusso di comunicazione tra famiglia e
operatore sanitario in caso di segnalazione di un’anomalia o di una domanda poco
chiara durante la compilazione del questionario. La famiglia, durante la compila-
zione, può attivare la funzione Segnala domanda, inserendo un breve messaggio
descrittivo. Il sistema registra la segnalazione e la associa alla specifica domanda
e al questionario compilato, impostandone lo stato iniziale a nuova. L’operatore
visualizza nella dashboard la lista delle segnalazioni, con la possibilità di aprirle,
impostare lo stato su in esame e, successivamente, su risolta. Al salvataggio, la se-
gnalazione viene rimossa dall’elenco delle nuove e resta disponibile per consultazione
archivistica.

17

Analisi e progettazione del sistema

Figura 3.2: Workflow principale

18

Analisi e progettazione del sistema

Figura 3.3: Workflow segnalazione

3.4 Software design
La progettazione software definisce la struttura logica del sistema, le relazioni tra
i suoi componenti e i principi di design che ne guidano lo sviluppo. Nelle pagine
seguenti viene presentato il diagramma dell’architettura generale della piattaforma
e una panoramica delle principali tecnologie impiegate per la realizzazione dei vari
moduli, con particolare attenzione al ruolo di ciascun componente all’interno del
sistema.

3.4.1 Architettura del sistema
L’architettura generale, illustrato in Figura 3.4 della piattaforma è di tipo client–server,
basata su un modello a tre livelli (presentation, application e data layer). Il sistema
è composto da due interfacce distinte ma integrate: Frontend operatori sanitari,
sviluppato in React e gestito tramite Vite, che fornisce una dashboard per la
creazione, la gestione e l’analisi dei questionari. Frontend famiglie, anch’esso basato
su React/Vite, dedicato alla compilazione dei questionari da parte dei genitori,
con interfaccia semplificata e multilingue. Entrambi i frontend comunicano con

19

Analisi e progettazione del sistema

il backend tramite API RESTful, garantendo uno scambio dati standardizzato
in formato JSON. Le API espongono endpoint per la gestione di autenticazione,
questionari, compilazioni e note.

Il backend è sviluppato in Node.js con il framework Express, organizzato secondo
una struttura modulare a livelli:

• Route layer , che definisce i percorsi delle API e applica i middleware di
autenticazione e validazione;

• Controller layer , responsabile della logica di gestione delle richieste e della
composizione delle risposte HTTP;

• Service layer , che incapsula la logica applicativa;

• Repository layer , che interagisce con il database tramite il Prisma ORM.

Il database relazionale scelto è PostgreSQL e Prisma funge da strato di astrazione
per l’accesso ai dati, gestendo le migrazioni e fornendo un modello fortemente
tipizzato in TypeScript. L’autenticazione avviene in modo differenziato per le due
tipologie di utenti:

• gli operatori sanitari si autenticano tramite JWT (JSON Web Token), con
credenziali gestite nel database;

• le famiglie accedono ai questionari tramite codice fiscale e link fornito dall’o-
peratore, senza necessità di registrazione.

20

Analisi e progettazione del sistema

Figura 3.4: Architettura del sistema

3.4.2 Panoramica sulle tecnologie utilizzate

React

React è una libreria JavaScript open source sviluppata da Meta (in origine Facebook)
per la costruzione di interfacce utente interattive e dinamiche. Introdotta nel 2013,
si è rapidamente affermata come uno degli strumenti più utilizzati per lo sviluppo
di applicazioni web moderne grazie al suo approccio dichiarativo, alla gestione
efficiente del rendering e alla forte modularità basata sui componenti.

Alla base del modello di React vi è il concetto di componente, un’unità indi-
pendente e riutilizzabile che rappresenta una parte dell’interfaccia utente. Ogni
componente può possedere un proprio stato (state) e ricevere dati attraverso le
props (proprietà), consentendo la costruzione di interfacce complesse mediante la
composizione di elementi semplici. Questo paradigma component-based favorisce
la separazione delle responsabilità e semplifica la manutenzione e l’estensione del
codice.

Un aspetto distintivo di React è l’uso del Virtual DOM, una rappresentazione
virtuale in memoria del Document Object Model reale. Ogni volta che lo stato
dell’applicazione cambia, React aggiorna il Virtual DOM e calcola in modo efficiente
le differenze rispetto alla versione precedente, applicando poi solo le modifiche
necessarie al DOM effettivo. Tale meccanismo riduce i costi computazionali del

21

Analisi e progettazione del sistema

rendering e migliora notevolmente le prestazioni rispetto a un aggiornamento diretto
del DOM tradizionale [14].

Il ciclo di vita di un componente React si articola in diverse fasi (montaggio,
aggiornamento e smontaggio), che possono essere gestite mediante gli hook, intro-
dotti a partire dalla versione 16.8. Gli hook sono funzioni speciali che permettono
di utilizzare lo stato e altre funzionalità di React senza dover scrivere classi. Tra
i più utilizzati vi sono useState per la gestione dello stato locale, useEffect per
l’esecuzione di effetti collaterali e useContext per la condivisione di dati globali tra
componenti senza ricorrere al passaggio esplicito di props. Gli hook favoriscono un
modello di sviluppo più funzionale e leggibile, e costituiscono oggi la base di quasi
tutte le applicazioni React moderne [15].

La libreria integra inoltre un sistema di routing client-side, generalmente imple-
mentato tramite pacchetti dedicati come React Router, che consente la gestione
della navigazione tra pagine senza ricaricare l’intera applicazione. Questo approccio
single-page application (SPA) offre una migliore continuità d’esperienza utente e
riduce i tempi di caricamento percepiti.

React è progettato per essere agnostico rispetto al backend e si adatta facil-
mente a differenti contesti architetturali, comunicando con server o API REST
tramite chiamate asincrone (fetch o librerie dedicate come Axios). Il flusso di dati
unidirezionale – dai componenti genitore verso i figli – favorisce la prevedibilità
dello stato e riduce il rischio di effetti collaterali indesiderati.

Ottimizzazione e architettura a componenti in React

Dal punto di vista della produttività, React si integra con un ampio ecosistema di
strumenti: sistemi di bundling e sviluppo locale (come Vite, Webpack o Parcel),
librerie di gestione dello stato globale (Redux, Zustand, Recoil), e framework full-
stack come Next.js o Remix. L’ampia comunità open source garantisce un continuo
aggiornamento, una documentazione estesa e il supporto di numerosi componenti
di terze parti.

Un aspetto fondamentale dello sviluppo con React riguarda la gestione efficiente
dei render e l’ottimizzazione delle prestazioni, specialmente in applicazioni complesse
con numerosi componenti interattivi. Per questo motivo, la libreria mette a
disposizione una serie di strumenti che permettono di controllare e ridurre i ricalcoli
inutili, come gli hook useMemo e useCallback, insieme al componente di ordine
superiore React.memo.

L’hook useMemo consente di memorizzare il risultato di un calcolo costoso
finché le sue dipendenze non cambiano, evitando che l’operazione venga rieseguita
a ogni render. È particolarmente utile per ottimizzare trasformazioni di dati
o computazioni pesanti che dipendono da valori di input relativamente stabili.
In modo analogo, useCallback permette di memorizzare la definizione di una

22

Analisi e progettazione del sistema

funzione, in modo che React la ricrei solo quando le variabili da cui dipende
subiscono modifiche. Questo risulta utile nei casi in cui si passi una callback
come prop a componenti ottimizzati o a hook che richiedono stabilità referenziale.
Infine, React.memo può essere utilizzato per avvolgere componenti “puri”, cioè che
producono sempre lo stesso output a parità di input, impedendo il loro re-render
se le props non sono cambiate.

Questi strumenti vanno però usati con consapevolezza. Un uso eccessivo della
memoization può infatti introdurre complessità non necessaria e, paradossalmente,
ridurre le prestazioni complessive dell’applicazione. Ogni funzione memoizzata
comporta un costo di gestione della cache e un controllo delle dipendenze, e nei casi
in cui il lavoro da evitare sia minimo, tale overhead può superare i benefici. Inoltre,
la dichiarazione errata o incompleta delle dipendenze di useMemo o useCallback
può produrre comportamenti inattesi, come valori obsoleti o mancati aggiornamenti.
È quindi buona pratica applicare queste ottimizzazioni solo dopo aver individuato,
tramite strumenti di profiling, le parti effettivamente critiche dal punto di vista
delle performance.

Con l’introduzione del React Compiler (introdotto sperimentalmente nel 2025),
molte di queste ottimizzazioni potranno essere automatizzate dal compilatore stesso,
che sarà in grado di rilevare i calcoli ripetuti e stabilire autonomamente quando
è opportuno applicare memoization. Tuttavia, comprendere il funzionamento di
useMemo e useCallback rimane essenziale, sia per scrivere codice performante, sia
per interpretare correttamente il comportamento dei componenti ottimizzati.

Sul piano architetturale, React promuove un modello basato su componenti:
l’interfaccia utente è costruita come una composizione di elementi autonomi, ognuno
dei quali incapsula logica, struttura e comportamento. Questo paradigma comporta
numerosi vantaggi. In primo luogo, la riusabilità: un componente ben progettato
può essere facilmente impiegato in diverse parti dell’applicazione o in progetti
differenti, riducendo la duplicazione di codice e favorendo la coerenza visiva e
funzionale. Inoltre, la modularità facilita la manutenzione: modificare o aggiornare
una singola parte dell’interfaccia non influisce sul resto del sistema, migliorando la
stabilità complessiva e semplificando l’attività di test.

Un ulteriore punto di forza risiede nel flusso unidirezionale dei dati, secondo cui
le informazioni vengono trasmesse dai componenti genitore a quelli figli attraverso
le props. Questo approccio rende il comportamento dell’applicazione più prevedibile
e riduce la possibilità di effetti collaterali indesiderati, specialmente in applicazioni
con un numero elevato di stati locali. In presenza di dati condivisi tra componenti
distanti nella gerarchia, React mette a disposizione il Context API, che consente di
evitare il cosiddetto prop drilling – il passaggio di props lungo catene di componenti
intermedi – fornendo un meccanismo centralizzato e controllato per la distribuzione
dei dati globali.

Tuttavia, l’architettura a componenti presenta anche alcuni limiti. In applicazioni

23

Analisi e progettazione del sistema

di grandi dimensioni, la frammentazione in troppi componenti può aumentare la
complessità cognitiva del progetto, rendendo più difficile comprendere il flusso dei
dati e le dipendenze tra i moduli. Inoltre, le variazioni di stato nei componenti di
livello superiore possono propagarsi e causare ri-render a cascata, impattando le
prestazioni. In questi casi, l’uso mirato di React.memo, useMemo e useCallback
diventa fondamentale per isolare i componenti che non necessitano di aggiornamento
e per mantenere l’interfaccia reattiva.

La gestione dello stato globale rappresenta un’altra sfida tipica: se tutto lo stato
viene gestito esclusivamente tramite props, l’applicazione rischia di diventare rigida
e difficile da estendere. Per questo motivo, la combinazione di stato locale, Context
API e, quando necessario, librerie esterne di state management (come Redux o
Zustand) consente di ottenere un equilibrio tra isolamento e condivisione dei dati.

In definitiva, React offre un modello architetturale fortemente modulare e scala-
bile, che incoraggia la costruzione di interfacce dinamiche attraverso componenti
indipendenti e riutilizzabili. L’adozione consapevole dei suoi strumenti di otti-
mizzazione consente di realizzare applicazioni performanti e facilmente estendibili,
mantenendo al tempo stesso chiarezza strutturale e coerenza progettuale.

In un contesto applicativo come quello della piattaforma per la valutazione
linguistica, React consente di realizzare interfacce responsive, accessibili e facil-
mente internazionalizzabili. La struttura a componenti favorisce la separazione
tra i moduli dedicati a operatori sanitari e famiglie, e l’adozione di hook come
useState e useEffect rende possibile implementare funzionalità dinamiche quali
l’autosalvataggio e l’aggiornamento in tempo reale delle risposte.

Vite

Vite è un build tool moderno e altamente performante progettato per offrire
un’esperienza di sviluppo più veloce e fluida rispetto ai tradizionali strumenti di
bundling come Webpack o Parcel. Il suo nome, derivato dal francese “vite” (che
significa “veloce”), riflette la filosofia alla base del progetto: ridurre drasticamente
i tempi di avvio e di ricompilazione durante lo sviluppo. Creato da Evan You, lo
stesso autore di Vue.js, e mantenuto oggi come progetto open source indipendente,
Vite è diventato uno degli strumenti di riferimento per applicazioni frontend basate
su framework come React, Vue, Svelte o Preact [16].

Alla base del funzionamento di Vite vi è un approccio innovativo al processo
di build e sviluppo locale. In ambiente di sviluppo, Vite non esegue un vero e
proprio bundling iniziale del codice: invece, utilizza un dev server basato su moduli
ECMAScript (ESM) che serve direttamente i file sorgente al browser. Grazie al
supporto nativo di ESM nei browser moderni, il caricamento dei moduli avviene in
modo dinamico e selettivo: viene eseguita e aggiornata solo la porzione di codice
effettivamente necessaria. Ciò consente un tempo di avvio praticamente istantaneo,

24

Analisi e progettazione del sistema

indipendente dalle dimensioni complessive del progetto. Durante le modifiche, Vite
sfrutta un meccanismo di Hot Module Replacement (HMR) estremamente efficiente,
che aggiorna in tempo reale solo i moduli modificati senza ricaricare l’intera pagina.
Questo garantisce un ciclo di sviluppo più reattivo e riduce significativamente il
tempo di feedback per lo sviluppatore [17].

Nel momento in cui si passa alla fase di produzione, Vite cambia completamente
modalità operativa e utilizza Rollup come motore di bundling. In questo modo,
genera un output ottimizzato con tree shaking, code splitting e minimizzazione
del codice JavaScript e CSS, garantendo dimensioni ridotte dei file finali e tempi
di caricamento più rapidi in ambiente di deploy. La combinazione di un server di
sviluppo ultrarapido e di un sistema di build solido e standardizzato rappresenta uno
dei motivi principali per cui Vite è stato adottato in larga scala nelle applicazioni
React moderne.

Uno dei punti di forza di Vite è la sua architettura modulare e configurabile,
basata su un sistema di plugin compatibile con l’ecosistema Rollup. I plugin
consentono di estendere il comportamento del tool, ad esempio per aggiungere il
supporto a framework, preprocessori CSS o strumenti di analisi del bundle. Vite
supporta nativamente TypeScript, JSX/TSX, PostCSS e CSS Modules, riducendo
la necessità di configurazioni complesse. La configurazione è definita in un semplice
file vite.config.ts o vite.config.js, dove possono essere personalizzati aspetti come
alias di importazione, proxy verso API esterne, ottimizzazione delle dipendenze e
parametri del server di sviluppo.

Nel contesto della piattaforma per la valutazione linguistica, Vite svolge un
ruolo cruciale come strumento di build e ambiente di sviluppo del frontend React.
Consente agli sviluppatori di lavorare con tempi di risposta immediati, facilitando la
creazione di componenti interattivi e l’integrazione con le API del backend Express.
Il supporto integrato per TypeScript permette di mantenere un codice fortemente
tipizzato e ridurre gli errori in fase di compilazione, mentre l’integrazione nativa
con Tailwind CSS semplifica la generazione dinamica degli stili e la gestione del
design responsive. Inoltre, la possibilità di definire alias per i percorsi delle cartelle
(@components, @hooks, ecc.) e di utilizzare variabili d’ambiente attraverso il file
.env contribuisce a una struttura del progetto più ordinata e manutenibile.

Un ulteriore vantaggio di Vite risiede nel suo design trasparente e minimale: il
tool non impone una particolare struttura o convenzione architetturale, ma fornisce
un’infrastruttura leggera e coerente per la gestione del ciclo di vita del progetto.
Questo approccio “non intrusivo” si adatta perfettamente a contesti accademici
e professionali in cui la priorità è la sperimentazione e la rapidità di sviluppo,
mantenendo al contempo standard industriali di efficienza e portabilità.

Infine, la documentazione ufficiale di Vite enfatizza l’obiettivo di “rendere il web
development più semplice e immediato” attraverso un ecosistema basato su moduli
moderni, un’interfaccia di configurazione minimale e un’integrazione naturale con

25

Analisi e progettazione del sistema

gli strumenti del frontend contemporaneo. In un progetto come quello descritto in
questa tesi, in cui il frontend deve rimanere reattivo e leggero pur comunicando con
un backend complesso, Vite si rivela una soluzione ideale per garantire velocità,
modularità e stabilità lungo tutto il ciclo di sviluppo.

Tailwind CSS

Tailwind CSS è un framework CSS “utility-first” che si è affermato come una delle
soluzioni più utilizzate per la progettazione di interfacce web moderne. A differenza
dei framework tradizionali basati su componenti predefiniti (come Bootstrap o
Materialize), Tailwind adotta un approccio più flessibile: invece di fornire set di
componenti stilizzati, mette a disposizione una vasta collezione di classi atomiche
che rappresentano singole proprietà CSS — come margini, colori, tipografia, layout,
spaziature o ombre. Questo modello consente di costruire componenti e layout
personalizzati direttamente nel markup, senza definire manualmente fogli di stile
separati [1].

L’idea alla base di Tailwind è rendere il processo di sviluppo dell’interfaccia
più rapido, prevedibile e scalabile. Il framework genera automaticamente classi
standardizzate e coerenti, permettendo allo sviluppatore di combinare utility come
blocchi Lego. Ad esempio, classi come flex, justify-between, p-4, text-gray-700 o
rounded-xl descrivono in modo dichiarativo layout e stile, riducendo la necessità
di scrivere CSS personalizzato. Questo approccio favorisce una maggiore coerenza
visiva e limita la creazione di stili divergenti, uno dei problemi più comuni nei
progetti di lunga durata [2].

Uno dei punti di forza più rilevanti è l’estrema configurabilità tramite il file
tailwind.config.js. Questo file consente di definire palette di colori personalizzate,
scale di spaziatura, breakpoint responsive e varianti avanzate, oltre a permettere
l’estensione del tema con componenti riutilizzabili o classi personalizzate. Il sistema
è pensato per adattarsi a qualunque design system, permettendo alle applicazioni di
mantenere un’identità visiva consistente senza essere vincolate a uno stile predefinito.
L’aggiunta di plugin ufficiali o di terze parti amplia ulteriormente le funzionalità
del framework, ad esempio per gestire tipografia avanzata, forme, animazioni o
accessibilità.

Tailwind è strettamente integrato con strumenti moderni come PostCSS e i
build tool contemporanei. Nella pipeline di sviluppo, Tailwind analizza i file
dell’applicazione per individuare le classi effettivamente utilizzate e applica una
fase di purging per eliminare tutte quelle inutilizzate. Questo processo consente di
mantenere il bundle CSS estremamente leggero in produzione, anche nei progetti
con un elevato numero di componenti. In combinazione con strumenti come Vite,
l’aggiornamento degli stili avviene quasi istantaneamente durante lo sviluppo,

26

Analisi e progettazione del sistema

grazie al supporto nativo per l’hot module replacement e per la ricompilazione
incrementale [3].

Un altro elemento che ha contribuito alla popolarità di Tailwind è il suo eccellente
supporto alla progettazione responsive. Il framework utilizza una sintassi intuitiva
basata su prefissi (sm:, md:, lg:, xl:) che permettono di applicare stili specifici
per ciascun breakpoint direttamente nella classe del markup. In questo modo, il
comportamento responsive non richiede la scrittura di regole media query separate,
riducendo la dispersione del codice e migliorando la leggibilità. Anche la gestione
dei temi scuri (dark mode) è integrata nel sistema tramite varianti come dark:
o strategie basate su classi CSS, permettendo una personalizzazione semplice e
dichiarativa.

Tailwind presta particolare attenzione anche all’accessibilità: le sue utility
incorporano best practice visive (spaziatura coerente, contrasti adeguati, uso
corretto della tipografia) e possono essere facilmente combinate con attributi ARIA
o con librerie specializzate per la gestione di componenti accessibili. Sebbene
Tailwind non fornisca componenti ARIA-compliant pre-costruiti, la sua natura
“non prescrittrice” consente di realizzarli in modo personalizzato, integrandosi bene
con strumenti di design system e con framework che puntano all’accessibilità, come
React in combinazione con librerie headless.

Dal punto di vista architetturale, l’adozione di un sistema utility-based riduce
la dipendenza da fogli di stile monolitici e facilita la manutenzione del codice
CSS in progetti su larga scala. Poiché ogni stile è dichiarato nel markup, diventa
semplice individuare quali parti dell’interfaccia utilizzano specifiche proprietà
grafiche, riducendo il fenomeno del “CSS morto” e semplificando il refactoring. Allo
stesso tempo, la natura atomica delle classi permette di creare componenti ad alta
coesione e facilmente riutilizzabili, aspetto fondamentale nelle applicazioni React
con molti elementi interattivi.

In conclusione, Tailwind CSS rappresenta una soluzione moderna e performante
per la progettazione di interfacce web, che si distingue per flessibilità, coerenza e
velocità di sviluppo. La combinazione di classi utility, configurazione centralizzata,
integrazione con strumenti di build contemporanei e supporto responsive lo rende
particolarmente adatto a progetti modulari e dinamici, come la piattaforma descritta
in questa tesi. Grazie a un ecosistema maturo e a una curva di apprendimento
più rapida rispetto ai framework CSS tradizionali, Tailwind permette di costruire
interfacce completamente personalizzate mantenendo un codice pulito, scalabile e
semplice da mantenere nel lungo periodo.

Express JS

Express.js è uno dei framework web più diffusi nell’ecosistema Node.js e rappresenta
oggi uno standard de facto per la realizzazione di API e applicazioni lato server.

27

Analisi e progettazione del sistema

Introdotto nel 2010 e mantenuto da una community molto ampia, Express si
caratterizza per un approccio minimalista, non intrusivo e altamente estensibile.
A differenza di framework più strutturati, Express non impone una particolare
architettura applicativa, ma offre un insieme di primitive e astrazioni su cui gli
sviluppatori possono costruire in libertà la propria organizzazione del codice. Questo
equilibrio tra semplicità e flessibilità ha contribuito alla sua adozione in un’ampia
varietà di contesti, dalle piccole API alle architetture enterprise [1].

Uno degli elementi centrali di Express è il sistema di routing, cioè il meccanismo
che permette di definire quali funzioni debbano essere eseguite in risposta a specifiche
richieste HTTP. Il framework fornisce metodi dedicati per ciascun verbo HTTP
(app.get, app.post, app.patch, app.delete, ecc.), permettendo di associare a ogni
rotta una o più funzioni middleware che implementano la logica di gestione. Il
routing di Express è basato su pattern dichiarativi: percorsi statici, parametrici (ad
esempio /users/:id) o annidati possono essere definiti in modo intuitivo, favorendo
la modularità e la suddivisione del backend in file e router separati. Tale modello
richiama la struttura REST tradizionale e si integra naturalmente con architetture
basate su controller e servizi applicativi [2].

Un elemento distintivo del framework è il concetto di middleware, uno dei pilastri
dell’architettura Express. Un middleware è una funzione che riceve l’oggetto della
richiesta (req), della risposta (res) e un terzo parametro (next) che consente di
delegare l’esecuzione al livello successivo della catena. L’uso di app.use() permette
di applicare middleware a livello globale, mentre è possibile associare middleware
specifici anche a singole rotte o a gruppi di rotte tramite gli oggetti Router(). Questo
modello permette di separare responsabilità diverse in componenti autonomi, come
la gestione dell’autenticazione, la validazione dei dati, il parsing del corpo della
richiesta, la gestione degli errori o la registrazione dei log.

Un aspetto fondamentale del middleware è la loro composizione sequenziale:
Express esegue i middleware nell’ordine in cui vengono dichiarati, con un flusso
di controllo esplicito che attraversa ciascuna funzione fino alla generazione della
risposta. La documentazione ufficiale sottolinea come questo modello favorisca
l’estensibilità, poiché ogni middleware può trasformare la richiesta, interrompere
il flusso o delegare ulteriori elaborazioni [1]. Questo paradigma è ideale per
implementare pipeline come:

• parsing dei dati in ingresso

• validazioni basate su schema

• autorizzazione tramite token o sessioni

• gestione unificata degli errori

• logging strutturato delle richieste

28

Analisi e progettazione del sistema

Express integra inoltre alcuni middleware essenziali per la gestione dei forma-
ti più comuni. A partire dalla versione 4.16, il framework include nativamente
express.json() e express.urlencoded(), che permettono di effettuare il parsing auto-
matico del corpo delle richieste rispettivamente in formato JSON e URL-encoded.
Questi middleware risultano fondamentali nella progettazione di API che accettano
input strutturati o parametri di formulari, poiché garantiscono che i dati siano
disponibili in req.body in modo semplice e coerente.

In contesti moderni, Express è spesso utilizzato come backend per applicazioni
single-page (SPA) sviluppate con framework come React. Per questa ragione,
è frequente l’uso di middleware dedicati alla gestione della Sicurezza (CORS) o
di proxy locali che reindirizzano le richieste API provenienti dal frontend allo
stesso dominio durante la fase di sviluppo. Sebbene Express non fornisca un
middleware CORS integrato, la sua architettura modulare permette di includere
facilmente pacchetti esterni come cors, raccomandato nella guida ufficiale per
garantire compatibilità con applicazioni distribuite su origini diverse [3].

Un’altra componente essenziale nella progettazione di API è la gestione cen-
tralizzata degli errori, che Express supporta nativamente attraverso middleware
specifici che accettano quattro parametri (err, req, res, next). Questo permette
di intercettare eccezioni o fallimenti verificatisi in qualsiasi punto del flusso di
middleware e di restituire risposte strutturate e uniformi, migliorando la robustezza
dell’applicazione e semplificando l’identificazione dei problemi durante la fase di
sviluppo e produzione.

Express si presta inoltre a essere utilizzato in combinazione con ORM e strumenti
di accesso ai dati, integrandosi facilmente con Prisma, Sequelize o Mongoose. Il
pattern più diffuso consiste nel delegare la logica applicativa a un livello di servizio
separato, mentre i router di Express fungono da punto di ingresso che valida l’input
e instrada la richiesta verso il servizio corretto. Questo approccio, ampiamente
adottato nell’industria, permette di disaccoppiare il framework web dalla logica di
dominio dell’applicazione, mantenendo il backend più flessibile e testabile.

Dal punto di vista progettuale, la leggerezza e l’assenza di vincoli strutturali
forti hanno rappresentato uno dei principali motivi della diffusione di Express,
soprattutto in applicazioni modulari o in contesti in cui si preferisce adottare una
architettura esplicita e personalizzabile piuttosto che aderire rigidamente a un
framework full-stack. La documentazione ufficiale invita gli sviluppatori a partire
da una base minimale e ad arricchire progressivamente l’applicazione introducendo
solo i middleware necessari, un approccio “opt-in” che riduce la complessità iniziale
e facilita la manutenzione a lungo termine.

In sintesi, Express costituisce un framework maturo, stabile e versatile, capace di
adattarsi a progetti di diversa scala grazie al suo modello basato sui middleware e
alla sua filosofia minimalista. Le funzionalità cardine – routing dichiarativo, catena
di middleware, parsing delle richieste, gestione centralizzata degli errori e ampia

29

Analisi e progettazione del sistema

estendibilità – lo rendono una scelta ideale per progettare API REST e sistemi
server-side in Node.js, come nel caso della piattaforma descritta in questa tesi.

Prisma ORM

Prisma ORM è un Object-Relational Mapper moderno per ambienti Node.js e
TypeScript, progettato per migliorare significativamente l’esperienza dello svilup-
patore nel gestire la persistenza dei dati. Il cuore di Prisma è costituito dal file
schema.prisma, che funge da unico punto di configurazione del modello dati: qui si
definiscono la sorgente dati (datasource), il generatore del client (generator), e i
modelli che rappresentano le tabelle/contenitori nel database.

1 datasource db {
2 provider = " postgresql "
3 url = env(" DATABASE_URL ")
4 }
5
6 generator client {
7 provider = "prisma -client -js"
8 }
9

10 model User {
11 id Int @id @default (autoincrement ())
12 email String @unique
13 name String ?
14 posts Post []
15 }

Si tratta di una rappresentazione dichiarativa che viene poi trasformata, tramite
migrazioni automatiche o manuali, in una struttura relazionale nel database. Una
volta generato, il prisma client fornisce un’interfaccia tipizzata per eseguire query:
ad esempio prisma.user.findMany() restituisce oggetti di tipo correlato al modello
User, sicuri relativamente al tipo, con auto-completamento nel codice TypeScript.
Questo riduce notevolmente gli errori a compile time e migliora la qualità delle
interazioni con il database.

Una delle caratteristiche distintive di Prisma è il sistema di migrazione: definendo
o modificando i modelli nel file schema.prisma, è possibile generare automaticamente
file di migrazione SQL che evolvono la struttura del database in modo coerente.
Tale meccanismo semplifica l’allineamento tra modello applicativo e struttura
fisica del database, favorendo una manutenzione più agevole. In contesti in cui
si lavora in team o in ambienti di produzione, questa funzionalità consente di
tracciare l’evoluzione del modello dati, versionare le modifiche e garantire che
tutti gli ambienti (sviluppo, test, produzione) condividano la stessa struttura. Nel

30

Analisi e progettazione del sistema

contesto di una piattaforma backend modulare, come quella progettata per questa
tesi, Prisma svolge il ruolo di strato di persistenza che agisce tra il repository
layer e il database relazionale. Grazie alla sua generazione del client tipato, i
servizi business-logic possono invocare operazioni CRUD, join, filtri e relazioni
senza incorrere in query SQL manuali, riducendo così la complessità del codice e il
margine di errore.

Un aspetto spesso trascurato ma fondamentale nella gestione di un database
durante le prime fasi di sviluppo è la possibilità di popolare automaticamente
il sistema con un insieme di dati iniziali. Prisma supporta nativamente questo
meccanismo attraverso il file di seed, una funzionalità che permette di definire script
per creare utenti, record o configurazioni di base necessari per avviare l’applicazione.
Il seed è utile sia per il lavoro locale dello sviluppatore, sia per ambienti di testing
o staging, in cui è importante disporre di un set di dati coerente e riproducibile.
La presenza di un file di seed è particolarmente vantaggiosa in applicazioni che
richiedono la creazione di utenti amministratori, ruoli, permessi, template predefiniti
o altre entità indispensabili per il funzionamento dell’applicazione. Nel caso di
piattaforme che gestiscono dati strutturati — come questionari, lingue disponibili,
profili utente o impostazioni della dashboard — un seed consente di automatizzare
la configurazione iniziale, evitare errori legati a inserimenti manuali e garantire
consistenza tra gli ambienti.

Data la natura della piattaforma — con entità multiple (operatori, famiglie,
sottomissioni, risposte, note) e relazioni tra loro — scegliere Prisma consente di
avere un modello dati chiaro, tipato e coerente con il backend in TypeScript. La
generazione automatica del client tipato fornisce un grande vantaggio in termini di
manutenibilità e sicurezza dei tipi, mentre l’uso delle migrazioni rende l’evoluzione
del database più controllabile. In sintesi, Prisma ORM si configura come la soluzione
di persistenza moderna e robusta per il progetto: offre l’equilibrio tra astrazione e
controllo, produttività e correttezza strutturale, qualità essenziali per lo sviluppo
di un sistema scalabile e mantenibile.

PostreSQL

PostgreSQL è un sistema di gestione di basi di dati relazionali open-source tra i
più diffusi e affidabili nel panorama moderno. La sua architettura è pienamente
conforme agli standard SQL e integra funzionalità avanzate che lo rendono par-
ticolarmente adatto a sistemi complessi, multi-utente e orientati alla consistenza.
Per queste ragioni viene adottato in numerosi contesti sanitari, amministrativi e
enterprise.

Nel caso della piattaforma descritta in questa tesi, PostgreSQL rappresenta
una scelta ottimale principalmente per tre motivi: integrità dei dati, modellazione
relazionale e robustezza nelle operazioni concorrenti.

31

Analisi e progettazione del sistema

Poiché la web app gestisce entità strettamente collegate fra loro—operatori
sanitari, questionari, traduzioni, compilazioni, risposte, note cliniche—è essenziale
disporre di un database che supporti nativamente relazioni uno-a-molti e molti-
a-uno, garantendo vincoli di integrità tramite chiavi esterne, vincoli UNIQUE e
NOT NULL. PostgreSQL eccelle in questo tipo di modellazione ed evita alla radice
inconsistenze logiche nelle relazioni tra le tabelle, un aspetto delicato quando si
conservano dati clinici o para-clinici.

Un altro punto di forza è la gestione delle transazioni ACID e del controllo
della concorrenza tramite MVCC (Multiversion Concurrency Control). Questo
meccanismo permette a più utenti di leggere e scrivere dati simultaneamente senza
blocchi inutili, garantendo coerenza anche in momenti in cui più famiglie compilano
questionari mentre gli operatori consultano o filtrano le risposte. Rispetto a
database più semplici come MySQL in configurazione standard, PostgreSQL ha un
sistema di concorrenza più avanzato e garantisce livelli di isolamento robusti senza
compromessi sulle prestazioni.

PostgreSQL si distingue anche per l’affidabilità e la maturità del suo query plan-
ner, che genera piani di esecuzione ottimizzati sulla base di statistiche aggiornate.
Per una web app che esegue frequenti interrogazioni filtrate—ad esempio recuperare
compilazioni “in progress”, ricercare per codice fiscale o estrarre tutte le risposte
relative a un questionario—questo significa tempi di risposta stabili e prevedibili.

Infine, rispetto ad altre soluzioni SQL, PostgreSQL offre una maggiore estendibi-
lità: supporta tipi di dato avanzati, indici specializzati, funzioni definite dall’utente
e modalità operative ibridi (relazionali + JSONB). Queste estensioni, pur non indi-
spensabili per la versione attuale della piattaforma, rendono PostgreSQL una scelta
lungimirante in vista di possibili evoluzioni future, come log narrativi, metadati
complessi o storicizzazioni avanzate delle revisioni dei questionari.

3.4.3 Modello dati e schema logico
Il modello dati della piattaforma è di tipo relazionale e organizza le informazioni in
un insieme di entità strettamente collegate tra loro. Le tabelle principali sono:

• Operator

• Template

• Submission

• Answer

• OperatorNote

• FeedbackReport

32

Analisi e progettazione del sistema

Ciascuna entità è stata progettata per riflettere un’unità logica del dominio appli-
cativo: gli operatori sanitari, i questionari, le compilazioni effettuate dalle famiglie,
le singole risposte e le note/feedback associati.

Operator

L’entità Operator rappresenta gli utenti professionali del sistema, ovvero gli opera-
tori sanitari che accedono alla dashboard, gestiscono i questionari e consultano le
compilazioni. Ogni operatore è identificato da un identificativo univoco operator_id
di tipo UUID, ha un indirizzo email univoco, un hash di password e un ruolo (ad
esempio “operator” o “admin”). Sono inoltre tracciate le informazioni anagrafiche
di base (nome completo) e alcuni flag applicativi, come l’obbligo di cambio password
al primo accesso. La relazione con le altre entità è data principalmente dal legame
uno-a-molti con OperatorNote, che rappresenta le note inserite dagli operatori sulle
compilazioni.

Template

L’entità Template modella i questionari configurabili dalla piattaforma. Ogni
template è identificato da un template_id, un nome univoco e un campo descrittivo
opzionale. Un elemento centrale del modello è il campo structure_definition,
di tipo JSON, che contiene la definizione strutturata del questionario (sezioni,
domande, opzioni di risposta, lingue, ecc.). Il template include anche un array di
available_languages, che elenca le lingue in cui il questionario è disponibile, e i
timestamp di creazione e aggiornamento. Un flag booleano, is_active, permette
di distinguere i questionari utilizzabili da logica di onDelete configurabile)quelli
storicizzati o disattivati. La cancellazione di un template comporta l’eliminazione
di tutti i feedback associati.

Submission

L’entità Submission rappresenta una compilazione di un questionario da parte di
una famiglia. È identificata da submission_id ed è collegata a:

• un template (template_id),

• il codice fiscale del minore o della famiglia (fiscal_code),

• la lingua in cui è stata effettuata la compilazione (language_used).

La submission mantiene uno stato (status, ad esempio “InProgress” o “Com-
pleted”) e traccia l’ultimo step compilato (current_step_identifier), utile per
implementare il meccanismo di avvio/ripresa del questionario. Sono inoltre presenti

33

Analisi e progettazione del sistema

campi temporali e un campo metadata di tipo JSON per eventuali informazioni
aggiuntive.

Answer

L’entità Answer contiene le singole risposte alle domande del questionario. Ogni
record è identificato da un answer_id numerico autoincrementale ed è collegato a
una submission tramite submission_id. Il campo question_identifier identifica in
modo univoco la domanda all’interno del template, mentre answer_value è di tipo
JSON e consente di rappresentare in modo flessibile diversi tipi di risposta (testuale,
numerica, scelta multipla, ecc.). Il campo saved_at registra il momento in cui la
risposta è stata salvata, a supporto dell’autosalvataggio e della ricostruzione della
cronologia.

A livello di vincoli, è definita una unicità composta (submission_id, que-
stion_identifier), che garantisce l’esistenza di al massimo una risposta per ciascuna
domanda all’interno di una data submission

OperatorNote

OperatorNote rappresenta le note inserite dagli operatori in relazione a una compi-
lazione o a specifiche domande. Ogni nota è identificata da un note_id (UUID) ed
è collegata sia a una submission sia a un operatore . In modo opzionale, può essere
associata anche a una singola domanda tramite question_identifier, permettendo di
agganciare un commento a una risposta specifica del questionario. La cancellazione
di una submission comporta la cancellazione a cascata delle note associate, mentre
la cancellazione o disattivazione di un operatore può comportare l’aggiornamento
del riferimento, mantenendo comunque la nota nel sistema.

FeedbackReport

FeedbackReport modella i feedback o le segnalazioni raccolte sulla qualità del
questionario o della compilazione. Ogni record contiene un feedback_id , la
possibile associazione a una submission, il riferimento al template, un identificatore
di domanda opzionale , il testo del feedback e un campo reporter_metadata di tipo
JSON per memorizzare metadati sul segnalante (ad esempio canale, priorità, ruolo).
Sono presenti anche lo status del feedback (“New”, “Investigating”, “Resolved”,
ecc.) e il timestamp di invio

34

Analisi e progettazione del sistema

Figura 3.5: Schema database

3.4.4 Pattern architetturali: Controller-Service-Repository
Il pattern Controller-Service-Repository è una variante della classica architettura a
livelli, progettata per promuovere la separazione delle responsabilità, migliorare
la manutenibilità e rendere il codice più testabile. In questo schema, l’interazione
dell’applicazione si articola in tre layer distinti:

35

Analisi e progettazione del sistema

• Controller: è il primo punto di contatto con le richieste esterne (tipicamente
HTTP). Il controller riceve l’input, lo valida in parte, ed invoca uno o più
servizi per soddisfare la richiesta. In questo modo, il controller si occupa della
comunicazione con il mondo esterno piuttosto che della logica applicativa
profonda.

• Service: layer in cui risiede la logica di business dell’applicazione, orchestrando
le operazioni richieste dal controller, gestendo transazioni, invocando repository,
combinando più operazioni, e applicando regole di dominio. Questo layer non
dovrebbe occuparsi di accesso diretto al database o di logica di presentazione.

• Repository: strato dedicato all’accesso ai dati: contiene le query, le operazioni
CRUD, l’interazione con l’ORM o il database. Il repository astrae il meccani-
smo di persistenza, offrendo al servizio una interfaccia chiara e indipendente
dalla tecnologia di storage.

Confronto con altri pattern

Esaminare pattern alternativi aiuta a comprendere la scelta. Alcuni modelli simili
sono:

• MVC (Model-View-Controller): pattern originario per interfacce utente, in
cui il Controller gestisce input dell’utente, la View la presentazione e il Model
i dati e le regole. Tuttavia, per applicazioni server-side che gestiscono logica
complessa e persistenza, l’MVC può risultare troppo “piatto” e rischiare di
concentrare troppa logica nel controller o nel modello.

• Service-Repository (senza controller separato): in alcuni contesti si uniscono
Controller e Service, ma questo abbassa la separazione di responsabilità.

• Hexagonal Architecture: un’architettura più generale che enfatizza l’isolamento
del core del dominio da infrastrutture esterne (come UI, DB, servizi esterni).
In confronto, il pattern Controller-Service-Repository può essere visto come
una declinazione più pragmatica e “livellata” di tale architettura, adatta a
sistemi con vincoli moderati di complessità.

Nel contesto della piattaforma sviluppata, il pattern Controller-Service-Repository
è stato scelto perché offre una struttura chiara e modulare, capace di separare in
modo netto la gestione delle richieste HTTP, la logica di business e l’accesso ai
dati. Questa suddivisione permette di mantenere il codice più leggibile e facilmente
estendibile, riducendo il rischio che componenti diversi si mescolino tra loro. Allo
stesso tempo, il pattern favorisce la testabilità: i servizi possono essere verificati
in isolamento e i repository possono essere sostituiti o simulati senza modificare

36

Analisi e progettazione del sistema

il resto dell’applicazione. La scelta di Controller-Service-Repository rappresenta
quindi un equilibrio efficace tra semplicità, scalabilità futura e manutenibilità del
codice.

3.5 Meccanismi chiave del sistema
La piattaforma integra una serie di meccanismi progettati per garantire un’espe-
rienza di compilazione affidabile, coerente e adatta al contesto d’uso. In questa
sezione vengono descritti i principi alla base della gestione della compilazione dei
questionari, della selezione linguistica e dell’autenticazione degli utenti. L’obiettivo
è illustrare le scelte architetturali che guidano il funzionamento del sistema, senza
entrare nei dettagli implementativi che verranno approfonditi nel Capitolo 4.

3.5.1 Avvio, ripresa e autosalvataggio della compilazione
La compilazione di un questionario è stata progettata come un processo progressivo,
capace di adattarsi alle esigenze delle famiglie, che possono completare il modulo
in più sessioni e con tempi variabili. Per evitare la perdita dei dati e garantire la
continuità del flusso, il sistema introduce tre elementi concettuali: l’identificazione
univoca della compilazione, la possibilità di ripresa e l’autosalvataggio incrementale.

Al momento dell’accesso, la famiglia indica il proprio codice fiscale e seleziona il
questionario da compilare. Il sistema utilizza queste informazioni per determinare
se esiste già una compilazione associata e non completata. In tal caso, l’utente
viene ricondotto allo stato corrente della sessione, in base allo step precedente-
mente raggiunto e alle risposte già salvate. Se non esiste una compilazione attiva,
viene creata una nuova istanza in stato “in corso”, collegata al template scelto e
caratterizzata da un identificatore univoco.

La ripresa del questionario è resa possibile dal fatto che ogni compilazione
mantiene traccia sia del suo stato, sia dell’ultimo punto raggiunto. Le risposte
non vengono accumulate al termine del processo, ma registrate man mano tramite
aggiornamenti puntuali. Questo approccio consente di preservare i progressi anche
in caso di chiusura accidentale della pagina, interruzioni prolungate o perdita
temporanea della connessione. Per garantire l’affidabilità del salvataggio intermedio,
la piattaforma adotta un modello incrementale e idempotente. Ogni modifica
rilevante, come l’inserimento di una risposta o il passaggio allo step successivo,
genera un aggiornamento della compilazione e della risposta corrispondente.

3.5.2 Gestione della lingua
La piattaforma prevede una gestione articolata della lingua, che coinvolge sia il
contenuto dei questionari sia gli elementi dell’interfaccia utente. Le due dimensioni

37

Analisi e progettazione del sistema

sono complementari ma distinte, poiché rispondono a esigenze diverse: la prima ri-
guarda la disponibilità del questionario in più lingue, la seconda la personalizzazione
dell’esperienza utente.

Dal punto di vista dei contenuti, ogni questionario può essere reso disponibile in
una o più lingue attraverso la definizione delle relative versioni nel template. Al
momento dell’accesso, la famiglia seleziona la lingua in cui desidera compilare il
questionario tra quelle offerte per quel template specifico. La scelta viene fissata al
momento dell’avvio della compilazione, garantendo coerenza tra le domande e le
risposte per tutta la durata del processo. Qualora l’utente tenti successivamente di
accedere al questionario in una lingua diversa, il sistema impedisce la modifica, in
modo da preservare l’uniformità dei dati raccolti.

Parallelamente alla lingua del contenuto, la piattaforma gestisce la lingua del-
l’interfaccia attraverso un sistema di traduzione centralizzato. I testi statici dell’ap-
plicazione — come etichette, messaggi di errore, pulsanti e indicazioni operative

— non sono codificati direttamente nei componenti, ma vengono recuperati da
un dizionario organizzato per chiavi e lingue. Un contesto globale nel frontend
mantiene la lingua corrente e rende disponibili le traduzioni ai vari componenti,
permettendo all’interfaccia di adattarsi dinamicamente alla lingua selezionata.

3.5.3 Modello di accesso e autenticazione
La piattaforma adotta due meccanismi distinti per l’accesso, riflettendo le diverse
finalità e i diversi livelli di responsabilità previsti per famiglie e operatori sanitari.
È importante sottolineare che, per le famiglie, il sistema non implementa un vero e
proprio login, poiché non esiste un profilo utente, né una sessione autenticata nel
senso tradizionale. L’accesso è invece strettamente legato al processo di compilazione
di un singolo questionario.

Per le famiglie, l’ingresso nel sistema avviene attraverso un link associato
al template del questionario, il cui identificativo univoco è presente nell’URI.
Dopo aver aperto il link, viene richiesto esclusivamente il codice fiscale, utile a
determinare se esiste una compilazione già avviata oppure se è necessario crearne
una nuova. Il codice fiscale non funge da credenziale, ma da chiave di contesto
che permette al backend di individuare la submission associata a quell’utente e a
quel questionario. Una volta verificata la presenza di una compilazione in corso o
la necessità di generarne una nuova, il sistema consente alla famiglia di procedere
con la compilazione senza introdurre sessioni persistenti o token di autenticazione.
Questo approccio riduce al minimo la complessità dell’esperienza utente e risponde
alla necessità di eliminare la registrazione formale delle famiglie, mantenendo
comunque un livello adeguato di coerenza logica nella gestione delle compilazioni.
Gli operatori sanitari, al contrario, devono poter accedere a un’area riservata,
consultare le compilazioni ricevute, gestire i questionari, inserire note e svolgere

38

Analisi e progettazione del sistema

attività operative. Per questa ragione il loro accesso richiede un meccanismo di
autenticazione vero e proprio. Il sistema prevede account nominativi con credenziali
e utilizza un modello basato su JSON Web Token per la gestione delle sessioni. Al
momento dell’accesso, un token firmato viene rilasciato e inviato dal client in ogni
richiesta successiva verso le API riservate. Il backend valida il token, identifica
l’operatore e applica i controlli di autorizzazione necessari.

3.6 Progettazione UI e requisiti di accessibilità
La progettazione dell’interfaccia utente per le famiglie è stata guidata non solo da
obiettivi estetici e di semplicità d’uso, ma soprattutto dai requisiti di accessibilità
definiti durante l’analisi dei requisiti (RNF3 e RNF8). In questa sezione vengono
presentati i mockup preliminari realizzati in Figma e le principali scelte progettuali
che hanno orientato la realizzazione di un’interfaccia adatta a famiglie con livelli
differenti di competenza digitale, utilizzabile prevalentemente da smartphone e
accessibile anche mediante screen reader e sintesi vocale. Particolare attenzione è
stata dedicata all’uso di etichette ARIA, alla localizzazione degli annunci vocali, al
supporto alle Web Speech API per la lettura assistita e alla scelta di colori ad alto
contrasto finalizzati a migliorare la leggibilità.

3.6.1 Mockup e design preliminare
Nella fase di progettazione è stato realizzato un mockup dell’interfaccia dedicata
alle famiglie, con lo scopo di definire il flusso di accesso e le principali componenti
della schermata di compilazione. Poiché la compilazione avviene prevalentemente
da smartphone, l’interfaccia è stata sviluppata secondo un approccio mobile-first,
mantenendo comunque una piena responsività anche per tablet e desktop. Il design
preliminare includeva anche un pulsante globale per l’attivazione della sintesi
vocale (TTS), posizionato nella parte superiore della schermata. Tuttavia, durante
l’evoluzione del progetto, questa soluzione è stata rivista a favore di un approccio
più intuitivo, che prevede un pulsante di riproduzione direttamente accanto a ogni
singola domanda, così da associare l’attivazione della lettura al contenuto specifico.

3.6.2 Supporto agli screen reader
In fase di design si è previsto l’utilizzo di attributi ARIA per descrivere semantica-
mente i componenti UI (pulsanti, campi di input, stati della risposta, avanzamento
della compilazione). Un aspetto particolarmente rilevante riguarda la localizzazione
degli annunci vocali: le etichette ARIA devono riflettere la lingua scelta dall’utente
per la compilazione, evitando incongruenze tra lingua dell’interfaccia e lingua del
lettore di schermo.

39

Analisi e progettazione del sistema

3.6.3 Lettura assistita tramite Text-to-Speech
Accanto al supporto per gli screen reader, la piattaforma integra un meccanismo
di lettura assistita tramite la Web Speech API, progettato per aiutare utenti con
difficoltà di lettura o che preferiscono un supporto audio durante la compilazione.
La presenza di un sistema TTS rende inoltre l’applicazione più inclusiva non solo
per utenti con disabilità, ma anche per persone con difficoltà temporanee, scarsa
familiarità con l’italiano, o situazioni in cui la lettura del testo non è agevole.

(a) Schermata di accesso (b) Pagina di compilazione del questionario

Figura 3.6: Mockup preliminari dell’interfaccia utente dedicata alle famiglie

40

Capitolo 4

Implementazione

Il presente capitolo descrive nel dettaglio la fase di implementazione della piat-
taforma, illustrando come le scelte architetturali e i modelli progettuali definiti
nel Capitolo 3 siano stati tradotti in componenti software concreti. L’obiettivo è
mostrare in che modo la progettazione sia stata effettivamente realizzata all’interno
del sistema, evidenziando le soluzioni adottate, le tecnologie utilizzate e il ruolo dei
diversi moduli nello sviluppo complessivo dell’applicazione.

4.1 Struttura generale del progetto
L’implementazione è organizzata all’interno di una monorepo, scelta progettuale
che consente di integrare in un unico spazio di lavoro i diversi moduli software
che compongono la piattaforma. Tale approccio permette di mantenere un elevato
livello di coerenza tipologica, semplificare la gestione delle dipendenze e favorire
l’evoluzione congiunta dei componenti, rendendo il processo di sviluppo più lineare
e controllabile.

La monorepo ospita quattro moduli principali:

• server/, che contiene il backend sviluppato in Node.js ed Express, responsabile
dell’esposizione delle API REST, della logica applicativa e dell’accesso al
database tramite Prisma;

• client/, il frontend dedicato agli operatori sanitari, realizzato in React e
TypeScript, che include la dashboard, l’editor dei questionari e gli strumenti
di gestione e consultazione delle compilazioni;

• family-client/, l’interfaccia di compilazione destinata alle famiglie, pro-
gettata per un utilizzo ottimale su smartphone e caratterizzata da un flusso
lineare, multilingue e orientato all’accessibilità;

41

Implementazione

• shared/, che raccoglie gli schemi Zod, i tipi TypeScript, i DTO e le risorse
comuni utilizzate trasversalmente dagli altri moduli, e che costituisce la base
semantica condivisa dell’intera applicazione.

L’organizzazione interna della monorepo si avvale dei workspace di npm, che
permettono una gestione centralizzata e non ridondante delle dipendenze, e di una
serie di configurazioni condivise per TypeScript, Prisma, ESLint, Prettier e per
i sistemi di build basati su Vite. Questa struttura modulare facilita lo sviluppo
parallelo, la manutenzione del codice e la propagazione delle modifiche, garantendo
che l’intera codebase evolva in modo coerente e controllato.

Il diagramma in figura 4.1 illustra la struttura delle directory e i rapporti tra
i vari moduli, evidenziando la suddivisione logica e le dipendenze reciproche che
caratterizzano l’architettura della piattaforma.

Figura 4.1: Struttura cartelle

42

Implementazione

4.2 Modulo shared: modelli, validazione e risorse
comuni

Il modulo shared/ costituisce uno dei componenti architetturalmente più significa-
tivi dell’intera piattaforma. Esso raccoglie le definizioni degli schemi dati, i modelli
di validazione, i tipi TypeScript e le strutture ausiliarie che vengono utilizzati in
modo trasversale dal backend e dai due frontend. L’obiettivo principale di questo
modulo è garantire un punto di definizione univoco per tutta la semantica del
sistema, preservando la coerenza tra le varie parti dell’applicazione e riducendo in
modo significativo il rischio di disallineamenti tipici degli sviluppi multi-modulo.

La scelta di centralizzare la definizione dei modelli riflette un approccio schema-
driven, nel quale la struttura e la forma dei dati sono definite in un solo luogo
e successivamente importate dai diversi componenti della piattaforma. Questo
principio permette di mantenere una corrispondenza esatta tra ciò che il backend
si aspetta di ricevere e ciò che i frontend inviano o interpretano, costruendo così
una pipeline dati omogenea, robusta e più semplice da mantenere nel tempo.

4.2.1 Definizione degli schemi con Zod

La definizione formale delle strutture dati all’interno del modulo shared è affidata
alla libreria Zod, uno strumento che consente di descrivere oggetti, array, unioni
e tipi complessi attraverso un sistema dichiarativo e pienamente tipizzato. A
differenza di altri validatori, Zod è stato progettato per integrarsi in modo nativo
con TypeScript, permettendo di ottenere non solo una validazione runtime, ma
anche un modello statico perfettamente coerente con gli schemi definiti. Questa
caratteristica lo rende particolarmente adatto in contesti full-stack in cui più
componenti devono condividere le stesse strutture semantiche.

Il funzionamento di Zod si basa sulla definizione di oggetti schema che descrivono
in modo rigoroso la forma dei dati ammessi. Ogni campo può essere annotato con
vincoli specifici, con regole di optionalità, con predicati personalizzati e con trasfor-
mazioni applicate prima della validazione finale. Nel caso della piattaforma, questo
approccio si rivela particolarmente utile poiché i questionari includono elementi
eterogenei (testi, scelte multiple, numeri, date, testi di aiuto, etichette multilingua),
che richiedono un controllo fine sulla correttezza formale delle compilazioni.

La validazione viene quindi applicata tanto nel backend, per garantire la confor-
mità dei payload in ingresso, quanto nei frontend, dove svolge un ruolo preventivo
intercettando errori prima dell’invio al server. In questo modo l’intero ciclo di
vita dei dati è governato da un unico insieme di regole, mantenute e aggiornate
all’interno del modulo shared.

43

Implementazione

4.2.2 Inferenza dei tipi TypeScript
Uno dei principali vantaggi offerti da Zod è la possibilità di inferire automaticamente,
a partire dallo schema dichiarato, il corrispondente tipo TypeScript. Questo
meccanismo elimina completamente la necessità di definire manualmente interfacce
duplicate o strutture parallele, una situazione che nei sistemi distribuiti porta
facilmente a incoerenze semantiche tra le parti.

Nel modulo shared, ogni schema è dunque accompagnato dalla derivazione
esplicita del proprio tipo TypeScript. Ad esempio, lo schema di una domanda del
questionario può essere definito in Zod nel modo seguente:

1 export const QuestionSchema = z. object ({
2 id: z. string (),
3 type: z.enum (["text", " choice ", " number "]),
4 label: z. record (LanguageCodeSchema , z. string ()),
5 helpText : z. record (LanguageCodeSchema , z. string ()). optional (),
6 required : z. boolean (). optional ()
7 });
8
9 export type Question = z.infer < typeof QuestionSchema >;

Listing 4.1: Schema Question

In questo modo, ogni componente dell’applicazione che utilizza il tipo Que-
stion fa riferimento esattamente alla stessa definizione, senza margini di ambiguità.
Qualunque modifica apportata allo schema viene immediatamente riflessa nei tipi
generati, garantendo un allineamento automatico dell’intera codebase. Questo mec-
canismo si rivela particolarmente prezioso nelle interazioni tra client e server, dove
la stabilità del contratto dati è essenziale per evitare errori difficili da diagnosticare
durante la fase di esecuzione

4.2.3 Data Transfer Object e contratti di comunicazione
Oltre agli schemi dei modelli interni, il modulo shared contiene una serie di Data
Transfer Object (DTO), ossia strutture dati che definiscono in maniera esplicita il
formato delle richieste e delle risposte che circolano tra frontend e backend. Un
DTO non rappresenta il modello persistito nel database, ma la forma esatta con
cui i dati devono essere serializzati durante la comunicazione attraverso le API. La
distinzione è importante: mentre gli schemi applicativi modellano la struttura logica
delle entità, i DTO definiscono il contratto che vincola client e server, assicurando
che entrambi concordino sul formato dei dati scambiati.

Nel contesto della piattaforma, i DTO risultano fondamentali per descrivere
formalmente operazioni delicate come il salvataggio progressivo delle risposte, l’avvio
o la ripresa di una compilazione, l’invio di un feedback o la generazione dei dati per
l’esportazione. Ognuna di queste operazioni richiede di definire con precisione quali

44

Implementazione

campi devono essere presenti, quali siano opzionali, quali trasformazioni vadano
applicate e quali vincoli siano ammessi.

Il backend utilizza tali definizioni tramite un middleware di validazione che
applica gli schemi Zod associati ai DTO, rifiutando automaticamente ogni richiesta
che non sia conforme. I frontend, simmetricamente, ne sfruttano i tipi inferiti
per costruire richieste sempre coerenti e per garantire che l’interazione con le
API avvenga nel rispetto del contratto definito. Questo contribuisce a ridurre
significativamente il rischio di errori runtime e rafforza la robustezza della pipeline
di comunicazione.

Il ruolo degli schemi e dei DTO all’interno dell’architettura complessiva è
sintetizzato nella Figura 4.2 che mostra come il modulo shared agisca da sorgente
unificata di verità per frontend e backend.

Figura 4.2: DTO e validazione con Zod

4.2.4 Gestione della localizzazione e catalogo delle lingue
Il modulo shared include anche un sottosistema dedicato alla gestione della lo-
calizzazione, che fornisce un punto centralizzato per la definizione delle lingue
supportate e per l’accesso ai contenuti multilingue. Questo componente svolge un
ruolo essenziale nell’assicurare coerenza tra i due frontend e il backend, evitando la
duplicazione di logiche e garantendo un comportamento uniforme nella selezione e
nel fallback dei testi.

La gestione delle lingue è articolata attorno a un catalogo linguistico, una
struttura che descrive per ciascuna lingua il codice identificativo, il nome in inglese

45

Implementazione

e nella lingua nativa, eventuali metadati aggiuntivi e un indicatore che ne segnala
l’appartenenza al set di lingue predefinite. Tale catalogo permette di mantenere
in un unico punto l’elenco completo delle lingue disponibili e costituisce la base
per le funzioni che ne regolano l’utilizzo all’interno dell’applicazione. Questo
approccio consente, ad esempio, di presentare in modo uniforme la lista delle
lingue selezionabili, di garantire etichette corrette nelle interfacce e di semplificare
l’aggiunta di nuove lingue in futuro.

Il sistema di localizzazione gestisce anche i testi tradotti attraverso una strut-
tura dati che associa a ciascuna lingua la relativa stringa. A partire da questa
rappresentazione, funzioni dedicate determinano il testo da mostrare all’utente
in base alla lingua scelta e applicano automaticamente regole di fallback nel caso
in cui la traduzione specifica non sia disponibile. La presenza di un meccanismo
centralizzato consente ai due frontend di ottenere un comportamento coerente, indi-
pendentemente dal contesto in cui il testo viene utilizzato (etichette di interfaccia,
domande del questionario, testi di aiuto, messaggi di sistema).

Oltre alla risoluzione dei testi, il modulo offre utilità per assicurare che gli oggetti
contenenti traduzioni siano allineati alle lingue attualmente abilitate, aggiungendo
le voci mancanti o rimuovendo quelle non più necessarie

4.3 Frontend dedicato agli operatori sanitari
Il frontend dedicato agli operatori sanitari costituisce la parte più articolata della
piattaforma, poiché concentra le funzionalità necessarie alla creazione e modifica dei
questionari, al monitoraggio delle compilazioni e alla consultazione delle risposte.
Questa sezione descrive l’organizzazione interna dell’applicazione, le principali strut-
ture architetturali e i meccanismi implementativi che ne regolano il funzionamento.
Le sottosezioni successive approfondiscono gli aspetti relativi alla navigazione, ai
componenti principali e alle interazioni con il backend.

4.3.1 Architettura
React Router L’applicazione per gli operatori è organizzata come un insieme
di componenti React strutturati secondo un modello modulare, basato sulla se-
parazione tra pagine, componenti riutilizzabili e servizi di comunicazione con il
backend. La navigazione interna è gestita attraverso React Router, che permette
di definire percorsi distinti per la dashboard, l’editor dei questionari, la gestione
dei template, le compilazioni e le aree amministrative. Ogni pagina corrisponde a
un componente principale che coordina i sotto-componenti necessari e richiama le
funzioni API dedicate.

La comunicazione con il backend è implementata tramite un livello di servizi
che incapsula tutte le chiamate HTTP. Questi servizi utilizzano i tipi e i DTO

46

Implementazione

definiti nel modulo shared per garantire che i dati scambiati siano coerenti con gli
schemi della piattaforma. La gestione delle risposte, degli errori e delle eventuali
trasformazioni dei dati è centralizzata, così da ridurre la duplicazione di logica nei
componenti.

React Context Per lo stato globale dell’applicazione — in particolare auten-
ticazione, informazioni sull’utente e gestione dei token — è stato implementato
un Context React dedicato, che espone una serie di metodi per eseguire il login,
verificare la sessione e gestire la sua scadenza. La scelta di utilizzare un Context
consente a tutti i componenti dell’applicazione di accedere allo stato condiviso in
maniera semplice e senza propagare esplicitamente proprietà attraverso la gerarchia
dei componenti.

Tailwind CSS Lo stile dell’interfaccia è realizzato con Tailwind CSS, utilizzato in
forma utility-first: ciò permette di definire layout e componenti visivi direttamente
all’interno del markup dei componenti React, mantenendo lo stile dell’applicazione
consistente e facilmente estendibile. Le strutture ricorrenti, come card, pulsanti e
container, sono state organizzate in componenti UI riutilizzabili, così da facilitare
l’omogeneità dell’interfaccia e la manutenzione del codice.

4.3.2 Dashboard principale e sistema di navigazione
La dashboard costituisce la pagina iniziale del frontend operatori e funge da punto di
accesso principale alle funzionalità dell’applicazione. Essa organizza in modo sinteti-
co l’insieme delle operazioni disponibili—consultazione delle compilazioni, gestione
dei template, visualizzazione dei feedback e operazioni amministrative—offrendo
una panoramica immediata dello stato del sistema e un accesso diretto alle sezioni
più rilevanti.

L’interfaccia è costruita attraverso una combinazione di componenti dedicati e
layout modulari. La struttura principale è gestita da AppLayout , che comprende
la barra laterale di navigazione Sidebar e l’area di contenuto centrale. La sidebar
contiene i collegamenti alle diverse rotte protette dell’applicazione, corrispondenti
alle funzionalità operative effettivamente implementate nel routing: dashboard
generale, lista delle compilazioni, gestione dei template, pagina dei feedback, pa-
gina di registrazione utenti (solo per amministratori) e cambio password. Tale
organizzazione deriva direttamente dalle rotte definite all’interno del componente
App.tsx, dove ciascuna pagina è mappata a un percorso univoco e protetto da
ProtectedRoute.

Il layout laterale è affiancato da una serie di componenti UI, come StatsCard e
TemplateCard, che permettono di rappresentare indicatori sintetici, informazioni
aggregate o elementi di elenco in modo coerente. Questi componenti, realizzati

47

Implementazione

con Tailwind CSS, favoriscono una presentazione visivamente uniforme e flessibile,
mantenendo leggibilità e semplicità d’uso. La dashboard utilizza inoltre componenti
di utilità come LoadingSpinnger e Toast, impiegati rispettivamente per segnalare
lo stato di caricamento e per mostrare notifiche di esito.

All’interno della pagina DashboardPage vengono caricate e presentate le in-
formazioni principali su cui l’operatore basa la propria attività: l’elenco delle
compilazioni disponibili, filtrabile tramite il componente Filters, e il collegamento
rapido alle funzionalità più utilizzate. La presenza della barra laterale garantisce
una navigazione costante e stabile, mantenendo il contesto operativo dell’utente
indipendentemente dalla sezione visitata.

La Figura 4.3 mostra la schermata principale della dashboard, evidenziando
gli elementi organizzativi principali: la sidebar a sinistra, l’area centrale dedicata
alla tabella delle compilazioni, filtri di ricerca e delle statistiche sulle compilazioni
(sezione in alto).

Figura 4.3: Schermata principale dashboard

4.3.3 Visualizzazione della compilazione
La visualizzazione del dettaglio di una compilazione consente agli operatori sanitari
di analizzare in modo strutturato le risposte fornite dalle famiglie e di inserire
eventuali annotazioni cliniche associate a specifiche domande. Questa funzionalità è
accessibile dalla dashboard attraverso la selezione di una submission, che reindirizza
alla rotta /submissions/:id gestita dal componente SubmissionViewPage.

48

Implementazione

Submission All’apertura della pagina, l’applicazione effettua il caricamento dei
dati tramite il servizio submissionApi, recuperando sia le informazioni principa-
li della compilazione (template utilizzato, stato, timestamp, codice fiscale), sia
l’insieme delle risposte organizzate per sezione. La struttura interna della pagi-
na è modulata attraverso due componenti dedicati: SubmissionSectionView e
SubmissionQuestionView. Il primo si occupa di presentare il titolo della sezione
e di iterare sulle domande in essa contenute, mentre il secondo gestisce il rendering
del singolo item, mostrando testo della domanda, tipo di risposta e contenuto
fornito dalla famiglia.

Data la natura variabile dei questionari e la possibilità che essi contengano
domande di tipologie differenti, la componente SubmissionQuestionView effettua
una renderizzazione condizionale basata sui tipi definiti negli schemi Zod del modulo
shared, garantendo una rappresentazione coerente con la struttura del template
originale. Le risposte vengono formattate in modo leggibile, con adattamenti
specifici per tipologie come selezioni multiple, risposte numeriche o testo libero.

Note Una funzionalità rilevante della pagina riguarda l’inserimento delle note,
che consentono all’operatore di aggiungere osservazioni contestuali legate alla
singola domanda. Queste note vengono gestite tramite il servizio notesApi e
sono rappresentate direttamente sotto ciascuna risposta tramite un campo di testo
dedicato o un’area espandibile, a seconda della quantità di contenuto presente.
L’operatore può aggiungere, eliminare la nota, con salvataggio immediato e notifica
tramite il sistema di toast.

Il layout della pagina è progettato per favorire la leggibilità: le sezioni vengono
presentate in sequenza verticale, ciascuna con una chiara separazione visiva, mentre
le domande sono indentate e accompagnate da indicatori grafici che ne facilitano
l’interpretazione. Le figure 4.4 e 4.5 mostrano un esempio della vista dettagliata di
una sezione, illustrando la relazione tra il testo della domanda, la risposta fornita
dalla famiglia e l’area destinata alle annotazioni.

Esportazione Oltre alla consultazione, dalla pagina è possibile eseguire azioni
aggiuntive correlate alla compilazione, come l’esportazione del questionario in
formato Excel, accessibile tramite il pulsante Esporta. Questa operazione consente
agli operatori di ottenere una copia strutturata delle risposte per ulteriori analisi o
per allegarla alla documentazione clinica. L’esportazione è implementata traimit il
servizio utilsApi che invia una richiesta HTTP alla rotta dedicata del backend.
Quest’ultimo elabora la richiesta e genera dinamicamente un file Excel a partire
dalla submission. Nel frontend, la risposta del server viene gestita come un blob di ti-
po application/vnd.openxmlformats-officedocument.spreadsheetml.sheet,
che viene convertito in un URL temporaneo e scaricato automaticamente dal
browser.

49

Implementazione

Figura 4.4: Dettagli singola compilazione

50

Implementazione

Figura 4.5: Risposte e note

4.3.4 Editor dei template per i questionari
L’editor visuale dei questionari è uno dei componenti centrali del frontend operatori
e consente la creazione e la modifica dei template utilizzati dal frontend delle
famiglie. L’interfaccia è raggiungibile attraverso le rotte /templates/editor e
/templates/editor/:id, gestite dalla pagina QuestionnaireEditorPage, la quale
carica i dati del template tramite il servizio templateApi e inizializza lo stato
interno dell’editor con la struttura delle sezioni e delle domande definite nel backend.

L’editor è organizzato come una composizione di componenti specializzati,
ciascuno dei quali gestisce una parte specifica della struttura del questionario. Il
componente principale, QuestionnaireEditorPage, mantiene lo stato complessivo
del template e si occupa di:

• recuperare il template esistente (se l’ID è presente),

• propagare i dati ai sotto-componenti,

51

Implementazione

• gestire il salvataggio tramite le API

• coordinare le modifiche effettuate nelle sezioni e nelle singole domande.

L’editor permette di operare sulle sezioni del template tramite il componente
SectionEditor. Ogni sezione presenta un titolo multilingua, ottenuto dalla strut-
tura LocalizedText definita nel modulo shared, ed è composta da un insieme
ordinato di domande. Il SectionEditor espone funzionalità per:

• modificare il titolo della sezione nelle lingue attive,

• aggiungere una nuova domanda,

• eliminare una sezione,

• riordinare le domande tramite controlli dedicati (quando presenti nel layout).

Per la modifica delle singole domande viene utilizzato il componente QuestionEditor,
che gestisce i campi principali dell’oggetto Question definito negli schemi Zod tra
cui:

• il testo e il tipo della domanda,

• l’eventuale testo di aiuto,

• le opzioni, nel caso di domande a scelta multipla,

• la proprietà required, quando prevista.

La selezione del tipo di domanda avviene tramite QuestionTypeSelector, un
componente dedicato che permette all’operatore di scegliere tra i tipi disponibili
(testo, scelta, numerico, ecc.) come definiti nello schema condiviso. Il cambiamento
del tipo aggiorna la struttura interna della domanda, mantenendo la validazione
coerente rispetto allo schema Zod. Poiché ogni testo del questionario è definito
come LocalizedText, l’editor integra anche un componente LanguageSelector,
che consente di decidere quali lingue siano attive per il template in modifica.
L’aggiunta o la rimozione di lingue avviene mediante funzioni del modulo shared,
come ensureLocalizedTextLanguages, che garantiscono che ogni domanda e
sezione dispongano delle chiavi necessarie, anche quando una nuova lingua viene
attivata. Questo meccanismo centralizzato evita inconsistenze nella struttura
interna del template e permette all’operatore di completare agevolmente tutte le
traduzioni. Ogni modifica all’interno dell’editor aggiorna lo stato del template
in memoria, e successivamente il salvataggio viene eseguito tramite un pulsante
dedicato, che invia l’intera struttura al backend. L’editor non utilizza salvataggi

52

Implementazione

incrementali, ma invia il payload completo del template, sfruttando la validazione
lato server basata sugli schemi Zod presenti in shared. Eventuali errori vengono
restituiti al frontend e gestiti tramite il sistema di toast. Dal punto di vista visivo,
l’interfaccia dell’editor presenta una struttura verticale, in cui sezioni e domande
sono chiaramente separate e dotate di controlli localizzati. In Figura 4.6 è mostrata
una sezione dell’editor dove è possibile selezionare la lingua del template che si
sta creando o modificando, titolo e descrizione. Mentre la Figura 4.7 illustra il
componente per scegliere la tipologia della domanda e la Figura 4.8 mostra invece
l’editing di una domanda a risposta multipla.

Figura 4.6: Creazione nuovo questionario

53

Implementazione

Figura 4.7: Selezione del tipo domanda

54

Implementazione

Figura 4.8: Editing domanda risposta multipla

4.3.5 Gestione dei feedback
La gestione dei feedback rappresenta uno strumento supplementare che consente
agli operatori di ricevere segnalazioni, commenti o richieste di chiarimento da
parte delle famiglie durante la compilazione del questionario. Questa funzionalità è
accessibile tramite la rotta /feedback, gestita dal componente FeedbackPage, e
permette agli operatori di consultare i messaggi ricevuti, applicare filtri e analizzare
il contesto in cui il feedback è stato generato.

All’avvio della pagina, il frontend richiama il servizio feedbackApi, il quale
interroga l’endpoint dedicato del backend per ottenere l’elenco dei feedback completi
di metadati: stato della segnalazione (Nuovo, In esame, Risolto), riferimento alla
submission e al template associato, identificativo interno della domanda e testo del
messaggio inserito dall’utente. Il backend elabora questi dati tramite il repository
feedback.repository.ts, che costruisce una query arricchita con il nome del
template, permettendo così all’interfaccia operatore di presentare un quadro più
comprensibile di ogni segnalazione.

All’interno dell’interfaccia, i feedback vengono mostrati in forma tabellare
o mediante card, con la possibilità di applicare filtri dinamici. Il componente
Filters consente, ad esempio, di filtrare per stato o per template, mentre per
la ricerca per domanda il sistema utilizza l’identificativo della domanda stessa

55

Implementazione

question_identifier. Quest’ultima modalità, pur essendo funzionale, risulta
meno intuitiva, poiché richiede di conoscere o interpretare l’identificatore interno
anziché visualizzare il testo completo della domanda. Tale limite è stato eviden-
ziato come criticità durante le attività di validazione e rappresenta un punto di
miglioramento previsto nelle revisioni future, in cui si prevede di sostituire il filtro
basato sull’identificativo con un filtro testuale direttamente collegato al contenuto
della domanda.

La pagina consente anche di accedere al dettaglio di ogni feedback, attraverso
una modale che mostra il testo originale e i metadati correlati. L’operatore
può modificare lo stato della segnalazione, permettendo una gestione strutturata
delle comunicazioni ricevute. Le azioni effettuate vengono propagate al backend
attraverso feedbackApi, che invia aggiornamenti utilizzando i DTO definiti nel
modulo shared, garantendo la coerenza della struttura dati lungo l’intera pipeline.

In Figura 4.9 è riportato un esempio dell’interfaccia di consultazione dei feedback,
con i principali elementi dell’interazione: elenco delle segnalazioni, filtri disponibili e
stato di avanzamento delle attività di revisione. Tale rappresentazione evidenzia la
funzione di raccordo svolta da questa sezione, che collega informazioni provenienti
dalle compilazioni alle attività operative dell’operatore sanitario.

Figura 4.9: Pagina dei feedback

56

Implementazione

4.3.6 Gestione dell’autenticazione

L’accesso all’area operatori è regolato da un meccanismo di autenticazione basato
su JSON Web Token (JWT), gestito interamente sul frontend tramite un contesto
dedicato e un componente di protezione delle rotte. L’obiettivo è mantenere la
logica di sessione in un unico punto, semplificando il controllo degli accessi e
l’applicazione delle regole di autorizzazione ai diversi percorsi dell’applicazione.

Il nucleo della gestione dell’autenticazione è il contesto AuthContext. Questo
componente mantiene lo stato dell’utente autenticato , il token JWT corrente e
un indicatore di caricamento utilizzato durante le fasi di inizializzazione o di login.
Al montaggio dell’applicazione, il contesto tenta di recuperare un eventuale token
salvato in precedenza nello localStorage del browser; se presente, il token viene
decodificato mediante la libreria jwt-decode e, in caso di validità, lo stato viene
inizializzato di conseguenza. In questo modo l’utente non è costretto a effettuare il
login a ogni ricaricamento della pagina, purché il token non sia scaduto.

Le operazioni di login e logout sono esposte dal contesto sotto forma di funzioni
che i componenti di pagina possono richiamare. La pagina di accesso (LoginPage)
raccoglie le credenziali dell’operatore e invia i dati al backend tramite il servizio
authApi. In caso di successo, il token restituito viene memorizzato in localStorage
e passato al contesto, che ne estrae le informazioni rilevanti (identificativo utente,
ruolo, e un flag per cambio password al primo accesso). L’eventuale presenza di
errori viene gestita tramite il ErrorContext, che visualizza messaggi all’utente
tramite un sistema di notifiche. Il logout, al contrario, cancella il token dallo
storage locale, azzera lo stato del contesto e reindirizza l’utente verso la pagina
di login; il pulsante di uscita (LogoutButton) non fa altro che richiamare questa
funzione centrale.

Il controllo degli accessi alle varie sezioni dell’applicazione è affidato al com-
ponente ProtectedRoute, che incapsula la logica di verifica dell’autenticazione
e, quando necessario, dei permessi. Ogni rotta protetta in App.tsx è definita
wrappando il componente di pagina all’interno di ProtectedRoute. Quest’ultimo
legge lo stato del contesto di autenticazione e, se la sessione non è ancora stata
inizializzata, mostra una schermata di caricamento; se l’utente non è autenticato,
effettua un redirect verso /login, preservando nel proprio stato di navigazione la
rotta di origine per consentire un eventuale ritorno dopo il login. Quando viene
specificato l’elenco di ruoli richiesti, il componente confronta il ruolo dell’utente con
quelli ammessi e, in caso di mancata corrispondenza, blocca l’accesso alla pagina.

Un aspetto particolare riguarda la gestione del flag must_change_password,
utilizzato per imporre il cambio della password al primo accesso o dopo un reset
effettuato da un amministratore. In questo caso, il ProtectedRoute può essere
configurato con l’opzione allowIfMustChange, che consente l’accesso alla sola
pagina /change-password anche quando il flag indica che l’utente deve aggiornare le

57

Implementazione

proprie credenziali. Per tutte le altre pagine, il componente intercetta la condizione
e reindirizza automaticamente alla vista di cambio password, impedendo l’utilizzo
dell’applicazione fino al completamento dell’operazione. Una volta cambiata la
password, il backend restituisce un nuovo token senza il flag impostato, e il contesto
aggiorna lo stato dell’utente di conseguenza.

Nel complesso, la combinazione di AuthContext, ProtectedRoute, pagina di login
e pagina di cambio password realizza un sistema di autenticazione e autorizzazione
pienamente integrato nel frontend, in grado di controllare l’accesso alle funzionalità
sensibili (come la gestione dei questionari, delle compilazioni, dei feedback e degli
utenti) e di riflettere correttamente le decisioni di sicurezza implementate nel
backend.

4.3.7 Registrazione degli utenti e reset password

La piattaforma prevede un’area dedicata alla gestione degli utenti, accessibile
esclusivamente agli operatori con ruolo di amministratore. Questa funzionalità è
esposta attraverso la rotta protetta /operators/register, che verifica il ruolo
dell’utente tramite il componente ProtectedRoute prima di consentire l’accesso
alla pagina. All’interno della vista, implementata in RegisterUserPage, sono
disponibili due operazioni principali: la registrazione di un nuovo operatore e il
reset della password di un operatore esistente.

Il modulo di registrazione consente all’amministratore di inserire i dati principali
dell’utente (nome, email e ruolo) e inviare la richiesta al backend mediante il
servizio authApi. L’interfaccia gestisce in modo uniforme conferme ed eventuali
errori tramite il sistema centralizzato di toast, così da garantire un feedback
immediato. Una struttura simile è utilizzata per il pannello dedicato al reset della
password, che richiede l’inserimento dell’email dell’operatore e mostra, in caso di
successo, la nuova password temporanea generata dal server.

La pagina è integrata nel layout generale del frontend operatori e mantiene
coerenza visiva con le altre viste amministrative. La Figura 4.10 illustra un esempio
dell’interfaccia, mostrando i due moduli principali e l’organizzazione complessiva
della pagina. In questa fase l’attenzione rimane concentrata sugli aspetti operativi
della gestione degli utenti, mentre la logica interna di registrazione, validazione dei
ruoli e aggiornamento delle credenziali sarà approfondita nel capitolo dedicato al
backend.

58

Implementazione

Figura 4.10: Registrazione e reset della password

4.4 Frontend dedicato alle famiglie
Il frontend destinato alle famiglie è progettato per offrire un’esperienza di compila-
zione semplice, lineare e accessibile, ottimizzata per l’utilizzo da dispositivi mobili.
A differenza dell’area operatori, questa interfaccia è focalizzata esclusivamente sulla
raccolta delle risposte e non richiede autenticazione tramite credenziali: l’utente
accede attraverso un link dedicato e avvia o riprende la compilazione inserendo il
codice fiscale del bambino

4.4.1 Architettura
Il frontend famiglie è organizzato in un insieme ridotto di pagine principali:

• CFLoginPage consente di inserire il codice fiscale e iniziare il flusso di compi-
lazione.

• QuestionnairePage gestisce la visualizzazione dinamica del questionario, una
domanda alla volta o per gruppi sequenziali, con autosalvataggio.

• CompletionPage mostra il messaggio di completamento al termine del que-
stionario.

La logica di routing è gestita tramite React Router, come nel frontend operatori,
ma in forma più semplice: non sono presenti rotte protette, mentre ogni pagina
assume che sia già disponibile il contesto minimo necessario per procedere (template

59

Implementazione

associato e submission avviata). L’intero flusso è lineare e privo di biforcazioni
complesse, favorendo una navigazione intuitiva su dispositivi mobili.

La comunicazione con il backend è regolata da due servizi API principali:

• submissionApi, che gestisce la creazione o il recupero dello stato di compi-
lazione tramite l’endpoint start_or_resume, e l’autosalvataggio progressivo
tramite save_progress;

• feedbackApi utilizzato per l’invio di eventuali segnalazioni da parte dell’utente
durante la compilazione

Entrambi i servizi utilizzano gli stessi DTO e schemi TypeScript importati dal
modulo shared, garantendo che la struttura dei payload di richiesta e risposta sia
coerente con quella impiegata dal backend. Questo meccanismo permette di evitare
duplicazioni nella definizione dei tipi e di assicurare che eventuali modifiche agli
schemi Zod centrali siano propagate automaticamente a entrambe le applicazioni
frontend.

4.4.2 Flusso di compilazione
La prima fase è gestita da CFLoginPage, che raccoglie il codice fiscale del bambino
e permette di avviare o recuperare una compilazione già esistente. Alla conferma
dell’input, la pagina richiama il servizio submissionApi.startOrResume il quale
invia la richiesta al backend. In caso di risposta positiva, il frontend riceve dal
server il contenuto del template e lo stato corrente della submission. Queste
informazioni vengono memorizzate nello stato del componente tramite gli hook di
React e passate come parametri alla fase successiva del flusso. Se la submission
esiste già, l’interfaccia riprende automaticamente dal punto in cui la famiglia aveva
interrotto la compilazione.

Render dinamico questionario Nella pagina di compilazione, l’intero questio-
nario è costruito in modo dinamico a partire dalla definizione del template e dallo
stato locale delle risposte, senza campi hard–coded.

All’avvio, il componente QuestionnairePage riceve tre informazioni fondamen-
tali:

• il Template, che contiene in structure_definition la struttura del questio-
nario serializzata in formato QuestionnaireData (sezioni, domande, opzioni,
lingue);

• l’elenco delle risposte già salvate, come array di oggetti;

• l’eventuale identificativo dell’ultimo step completato, corrispondente a una
sezione del questionario.

60

Implementazione

A partire da questi dati, QuestionnairePage imposta lo stato locale.
Le risposte restituite dal backend vengono immediatamente trasformate in una

mappa answersMap, indicizzata per question_identifier. Per ogni elemento
ricevuto, se sono presenti sia l’identificativo di domanda che il valore della risposta,
la coppia viene copiata nello stato locale. Questa mappa costituisce l’unica fonte di
verità delle risposte lato client: tutte le componenti di input leggono e aggiornano
i valori partendo da answers. La vera costruzione dell’interfaccia avviene nella
funzione renderQuestion, che, dato un oggetto Question, estrae il testo localiz-
zato, recupera dal dizionario answers il valore corrente (se presente) e sceglie il
componente di input appropriato.

Per ogni domanda della sezione corrente, QuestionnairePage invoca render-
Question, che incapsula il testo, l’eventuale messaggio di errore, il valore prove-
niente da answers e i pulsanti di accessibilità (ad esempio per il TTS) dentro
un QuestionBlock. In questo modo, l’interfaccia si adatta automaticamente a
qualunque struttura sia definita nel template, senza logica specifica legata a singole
domande.

Una volta completate tutte le sezioni, il sistema mostra la pagina CompletionPa-
ge, che conferma l’avvenuto invio delle risposte e conclude il flusso di compilazione.
Durante la compilazione, l’utente ha inoltre la possibilità di inviare segnalazioni
tramite il servizio feedbackApi.

Figura 4.11: Pagina di accesso al questionario

61

Implementazione

(a) Compilazione questionario (b) Modale feedback

Figura 4.12: Pagine compilazione

4.4.3 Gestione multilingua

Il frontend famiglie supporta la compilazione del questionario in più lingue e
utilizza un sistema di localizzazione unificato che combina i testi definiti nel
template con le traduzioni dell’interfaccia. La parte centrale di questo meccanismo
è rappresentata dal modulo shared, che fornisce il tipo LocalizedText e funzioni
come getLocalizedText, utilizzate per selezionare la traduzione corretta in base
alla lingua scelta dall’utente. La funzione applica inoltre un semplice meccanismo di
fallback: se la traduzione nella lingua selezionata non è disponibile, viene mostrato
il testo nella lingua di default o, in ultima istanza, una delle traduzioni presenti.

L’applicazione dispone anche di un TranslationContext, che mantiene la lingua
corrente e fornisce una funzione t(key) per tradurre le etichette dell’interfaccia.
Tutte le pagine principali del flusso sono avvolte dal provider di questo contesto, che
consente di cambiare lingua in qualsiasi momento e di aggiornare automaticamente
i testi mostrati.

62

Implementazione

Il selettore di lingua recupera l’elenco delle lingue supportate dal catalogo
condiviso e permette all’utente di passare dall’italiano ad altre lingue disponibili.
La scelta viene memorizzata localmente, così da essere ripristinata a ogni accesso
successivo. La stessa lingua viene poi utilizzata per risolvere i testi del questionario
tramite le funzioni del modulo condiviso, garantendo coerenza tra interfaccia e
contenuti.

In questo modo, sia i testi statici dell’applicazione sia quelli provenienti dal
template risultano correttamente sincronizzati e aggiornati in base alla lingua
selezionata dall’utente, offrendo un’esperienza di compilazione multilingue semplice
e coerente.

4.4.4 Accessibilità
L’accessibilità rappresenta una componente essenziale del frontend destinato alle
famiglie, in risposta ai requisiti non funzionali RNF3 e RNF8, che richiedono
un’interfaccia utilizzabile anche da utenti con difficoltà linguistiche, cognitive o
visive. L’implementazione combina tre assi principali: il supporto agli screen
reader, la sintesi vocale delle domande tramite Web Speech API e un insieme di
accorgimenti visivi conformi ai principi WCAG, come contrasto elevato, gerarchia
tipografica chiara e pulsanti adeguati all’uso su dispositivi mobili.

Supporto agli screen reader

Il supporto è realizzato tramite il componente AnnouncementProvider, collocato
alla radice del frontend famiglie. Questo componente espone un contesto React che
permette a tutte le pagine e ai componenti del questionario di generare annunci
vocali tramite una funzione announce(message). Dal punto di vista tecnico, il
provider crea una regione con aria-live="polite", aggiornata dinamicamente
quando viene richiesto un annuncio.

L’utilizzo della modalità polite garantisce che gli screen reader integrino i mes-
saggi in modo non intrusivo, evitando interruzioni improvvise della lettura in corso.
I messaggi vengono generati in situazioni chiave del flusso di compilazione:

• quando l’utente passa da una sezione del questionario alla successiva;

• quando una domanda obbligatoria non risulta compilata;

• quando si verifica un errore durante il caricamento o il salvataggio;

• quando viene aggiornato il contenuto di una domanda in base alla lingua
selezionata.

63

Implementazione

Questa soluzione consente di migliorare l’orientamento dell’utente, soprattutto
quando lo schermo non fornisce un riferimento visivo chiaro, come nel caso di
schermate composte esclusivamente da elementi testuali. Poiché l’interfaccia è
progettata per dispositivi mobili, il supporto allo screen reader diventa essenziale
anche per utenti che utilizzano assistenti vocali integrati (es. VoiceOver su iOS o
TalkBack su Android).

Sintesi vocale tramite Web Speech API

Alla funzionalità di screen reader si affianca un sistema di Text-to-Speech (TTS)
integrato direttamente nel frontend e realizzato tramite la Web Speech API. La
logica centrale è incapsulata nell’hook useTextToSpeech, che fornisce tre operazioni:
avviare la lettura di un testo, interromperla e aggiornare automaticamente la lingua
della voce.

Quando l’utente seleziona il pulsante “ascolta” all’interno di un QuestionBlock,
il frontend genera un oggetto SpeechSynthesisUtterance, impostando come testo
la versione localizzata della domanda e come lingua il codice scelto nel componente
di selezione. La Web Speech API si occupa quindi di trasformare il testo in parlato,
utilizzando la voce disponibile più compatibile con la lingua selezionata.

Il TTS è strettamente integrato con la navigazione del questionario:

• la lettura viene automaticamente interrotta quando l’utente passa alla domanda
successiva;

• la lingua della voce viene aggiornata quando l’utente cambia lingua nel selettore
multilingua;

• eventuali annunci generati dallo AnnouncementProvider non interrompono la
sintesi vocale in corso, ma vengono accodati con priorità inferiore.

Questa soluzione supporta efficacemente utenti con difficoltà di lettura o alfabetiz-
zazione limitata, consentendo loro di completare autonomamente il questionario.

4.5 Backend

4.5.1 Architettura a tre livelli
Controller Il backend della piattaforma è realizzato come API REST in Express e
segue concretamente il pattern Controller–Service–Repository descritto nel Capitolo
3. In fase di implementazione, questa struttura è stata resa esplicita a partire dal
livello di routing e dalla definizione dei middleware Express, in modo che il flusso
di ogni richiesta sia chiaramente tracciabile.

64

Implementazione

I controller rappresentano il punto di ingresso delle richieste HTTP e so-
no raggruppati per area funzionale. Ognuno di essi riceve una richiesta già
validata dai middleware, estrae i parametri tipizzati (ad esempio LoginInput,
StartOrResumeRequest, CreateTemplateInput definiti nel modulo shared o nei
validator locali) e delega l’esecuzione al servizio corrispondente, limitandosi a co-
struire la risposta HTTP sulla base del risultato. In questo modo il controller
rimane sottile e privo di logica di dominio: si occupa principalmente di adattare la
richiesta e la risposta al protocollo HTTP.

In caso di eccezioni, il controller non gestisce direttamente l’errore, ma si limita
a invocare next(error), demandando la gestione al middleware globale. Questo
approccio consente di mantenere uniforme il formato delle risposte di errore e di
centralizzare le decisioni relative ai codici di stato HTTP e ai messaggi restituiti al
client.

Service Lo strato di service incapsula la logica applicativa vera e propria. Qui
vengono orchestrate le operazioni che possono coinvolgere più repository, la gestione
delle transazioni Prisma e l’applicazione delle regole di dominio (ad esempio, la
distinzione tra nuova submission e ripresa in startOrResume, l’aggiornamento dello
stato e dei timestamp in save_progress, la generazione di password temporanee
lato admin, la preparazione dei dati per l’esportazione in Excel). Il service non
conosce i dettagli HTTP: riceve parametri tipizzati e restituisce oggetti dominio
o DTO, mantenendo il backend più testabile, riutilizzabile e indipendente dal
framework web utilizzato.

Una parte rilevante della logica lato service riguarda la coerenza del flusso tra i
diversi attori del sistema. Ad esempio, nei metodi legati alle submission, il service si
occupa di verificare lo stato corrente (in corso o completata), applicare le regole di
business che impediscono modifiche non consentite e mantenere allineati i metadati
(step corrente, lingua di compilazione, timestamp).

Repository Il livello di repository è responsabile dell’accesso ai dati tramite
Prisma. Ogni repository si occupa di una specifica entità o gruppo di entità,
implementando operazioni CRUD, query con filtri e join necessarie a ricostruire le
viste richieste dal service. In questo modo, lo strato di persistenza rimane isolato e
può essere evoluto senza impattare i controller o i servizi, ad esempio nel caso di
una ristrutturazione dello schema o di un cambio di tecnologia di storage.

I repository sfruttano le funzionalità avanzate di Prisma (come le include e le
transazioni) per comporre query adatte ai casi d’uso reali, delegando comunque
ai service la responsabilità di interpretare i dati recuperati in termini di logica di
dominio.

Sopra questi tre livelli si colloca il router di Express. Ogni rotta dichiara in modo
esplicito la sequenza di middleware da applicare (autenticazione, autorizzazione,

65

Implementazione

validazione) e il controller che dovrà elaborare la richiesta. Il file app.ts registra
globalmente i middleware di infrastruttura (CORS, helmet, rate limiting, parsing
JSON/URL-encoded), monta i router sul prefisso /api/v1/... e, infine, definisce
un handler per le route non trovate e il middleware di gestione degli errori. In
questo modo, la pipeline di una richiesta HTTP può essere riassunta come in Figura
4.13:

Figura 4.13: Pipeline della richiesta

Middleware di autenticazione

L’accesso alle API dedicate agli operatori è protetto da un middleware di autentica-
zione. La funzione authMiddleware verifica la presenza dell’header Authorization,
controlla che sia nel formato Bearer <token> e delega a verifyJwt la validazione
del token JWT firmato lato server. In caso di esito positivo, il payload decodificato
viene aggiunto all’oggetto Request (campo req.operator), rendendo disponibili ai
controller informazioni quali operator_id, role e il flag must_change_password.
Se il token è assente, malformato o non valido, il middleware solleva un ApiError
con codice 401, che sarà poi gestito dal middleware globale.

Accanto al controllo di autenticazione, il backend implementa un middleware
di autorizzazione basato sui ruoli, requireRole. Questa funzione di ordine supe-
riore riceve l’elenco dei ruoli ammessi e restituisce un middleware che verifica che
req.operator sia presente e che il ruolo contenuto nel token appartenga al set
richiesto; in caso contrario viene sollevato un errore 403. In questo modo, le route
più sensibili (come la registrazione di nuovi operatori o l’eliminazione di templa-
te) possono essere protette aggiungendo semplicemente requireRole(["admin"])
nella catena di middleware della rotta.

È importante notare che le famiglie non utilizzano alcun meccanismo di auten-
ticazione basato su token o sessioni persistenti: l’accesso alle API lato famiglia
è regolato dal codice fiscale e dall’identificativo della submission, come descritto
nel Capitolo 3. L’assenza di un profilo utente tradizionale riduce la complessità
dell’autenticazione per questo attore e concentra le verifiche di sicurezza sulle API
di backoffice.

66

Implementazione

Middleware di validazione

La validazione degli input è centralizzata nel middleware generico validate. Questo
middleware riceve in ingresso uno schema Zod e l’indicazione della parte della
richiesta da validare (body, query o params); in fase di esecuzione tenta di eseguire
schema.parse sulla porzione corrispondente della request. Se la validazione ha
successo, la request viene sovrascritta con la versione tipizzata e normalizzata (ad
esempio, trimming automatico delle stringhe o trasformazioni definite nello schema)
e il flusso prosegue verso il controller.

In caso di ZodError, il middleware raccoglie in una lista i singoli errori (campo
e messaggio) e li incapsula in un oggetto ApiError con codice 400, delegando
la risposta al gestore globale. Questa soluzione consente di riutilizzare lo stesso
meccanismo per tutte le route, passando semplicemente lo schema appropriato,
e garantisce che i controller ricevano sempre parametri già validati, riducendo il
rischio di bug dovuti a input non controllati.

Il fatto che gli schemi Zod risiedano nel modulo shared permette inoltre di
utilizzare gli stessi contratti sia nel backend, per la validazione runtime, sia nei
frontend, per la tipizzazione statica e la validazione preventiva dei form. In questo
modo, l’intero sistema si appoggia a una singola fonte di verità per la struttura dei
dati.

Middleware di gestione degli errori

La catena dei middleware si chiude con un middleware di error handling globale,
globalErrorHandler. Questo componente intercetta sia gli ApiError esplicita-
mente generati dall’applicazione (ad esempio per input non validi, token mancanti o
permessi insufficienti), sia eventuali eccezioni non gestite, e restituisce al client una
risposta JSON strutturata con campi status_code, error, message, timestamp e,
facoltativamente, details quando sono disponibili informazioni puntuali sui campi
in errore.

• In termini pratici: errori di validazione sui dati in ingresso generano tipicamente
risposte con codice 400,

• errori di autenticazione producono 401, errori di autorizzazione 403,

• tentativo di accedere a risorse inesistenti (ad esempio una submission non
trovata) viene tradotto in un 404.

• eventuali eccezioni non previste vengono invece mappate su un generico 500,
preservando i dettagli interni nei log del server ma evitando di esporli al client.

67

Implementazione

La presenza di un unico punto di raccolta degli errori semplifica sia il debugging
sia la gestione dei messaggi lato frontend, che può contare su un formato uniforme
e prevedibile per tutte le API.

4.5.2 Implementazione delle API principali
Avvio o ripresa della compilazione (start_or_resume)

L’endpoint start_or_resume rappresenta il punto di ingresso del flusso di com-
pilazione dal lato delle famiglie. Il controller riceve un payload validato tramite
Zod (codice fiscale, template e lingua) e delega l’intera logica al servizio dedicato.
La prima operazione del service consiste nel verificare, tramite il repository delle
submission, se esista già una compilazione attiva (cioè non completata) per la
coppia (codice fiscale, template). Questa ricerca viene effettuata tramite una query
Prisma che include anche l’elenco delle risposte eventualmente già salvate.

Se non è presente alcuna submission attiva, il servizio ne crea una nuova, inizializ-
zando i campi principali (completed = false, lingua selezionata, current_step_identifier
relativo alla prima sezione del questionario). Se invece esiste una submission in
corso, il servizio la riutilizza e, prima di restituire la risposta al client, ricava quale
sezione deve essere mostrata successivamente. Tale informazione deriva dal campo
current_step_identifier, aggiornato dal salvataggio progressivo e applicato nel
frontend per riprendere la compilazione dal punto corretto.

Indipendentemente dal caso (creazione o ripresa), il service recupera la struttura
del questionario dal repository dei template (campo structure_definition) e
costruisce un DTO che contiene: i dati della submission, lo stato corrente, la
struttura del questionario, la mappa delle risposte già fornite e lo step da cui
riprendere. Il controller si limita infine a restituire questo oggetto al frontend,
che potrà ricostruire dinamicamente l’interfaccia, mantenendo separati il formato
interno dei dati e il layout di presentazione.

Autosalvataggio progressivo (save_progress)

L’endpoint save_progress implementa il meccanismo di salvataggio incrementale
delle risposte, utilizzato dal frontend famiglie dopo ogni modifica. Il controller valida
il payload (submission, risposte, step corrente ed eventuale flag di completamento)
e passa la gestione al servizio. Il service recupera la submission tramite repository e
verifica che non sia marcata come completata, prevenendo modifiche su questionari
già conclusi.

La fase centrale dell’operazione è l’aggiornamento delle risposte nella tabella
Answers. Tale operazione viene eseguita all’interno di una transazione Prisma: per
ogni risposta ricevuta, il repository esegue un’operazione di upsert basata sulla chia-
ve composta (submission_id, question_identifier). In questo modo l’API

68

Implementazione

risulta idempotente: invii ripetuti dello stesso payload non generano duplicati ma ag-
giornano la risposta esistente. All’interno della stessa transazione il servizio aggiorna
i metadati della submission, impostando il nuovo current_step_identifier e, nel
caso il questionario sia stato completato, marcando la submission come completed.

Se tutte le operazioni della transazione si concludono con successo, Prisma
effettua il commit; in caso di errore la transazione viene annullata e l’eccezione
viene gestita dal middleware globale. Questo approccio garantisce che la submission
e le risposte rimangano sempre in uno stato coerente, anche in presenza di richieste
ripetute, connessioni instabili o interruzioni improvvise del flusso.

Template, feedback, note ed esportazione

Oltre alle API centrali di gestione delle submission, il backend espone un insieme
di endpoint dedicati a operazioni di natura prevalentemente CRUD. Queste API
seguono lo stesso schema architetturale basato su controller, service e repository, con
una logica interna meno articolata rispetto a start_or_resume e save_progress.

Le API relative ai template consentono di creare un nuovo template, modifi-
carne la struttura e recuperare l’elenco o un singolo template tramite il relativo
template_id. Il repository dei template incapsula le operazioni di lettura e scrit-
tura sul database e include funzioni per recuperare la struttura del questionario
(structure_definition) e aggiornare le meta-informazioni associate. Poiché la
struttura del questionario è memorizzata in formato JSON, le operazioni richieste
si riducono principalmente alla serializzazione e deserializzazione del campo, più le
normali logiche di validazione dei dati in ingresso.

La gestione dei feedback è implementata in modo analogo. Le API permettono
alla famiglia di inviare una segnalazione durante la compilazione e agli operatori
sanitari di consultare la lista dei feedback ricevuti applicando filtri sullo stato o
sul template. La logica applicativa è principalmente focalizzata sull’applicazione
dei filtri e sull’aggiornamento dello stato della segnalazione (ad esempio, “nuovo”
o “revisionato”). Il repository corrispondente utilizza Prisma per comporre le
condizioni di ricerca e includere le informazioni di contesto necessarie alla vista
operatore. Nella versione attuale, il filtro sulla domanda si basa sull’identificativo
interno, soluzione funzionale ma meno intuitiva rispetto a un filtraggio per testo o
per sezione, come evidenziato nella fase di validazione.

Le note cliniche associate alle singole risposte vengono gestite tramite le API
esposte in notes.routes.ts. Anche in questo caso, il servizio si limita a validare
l’input, recuperare la risposta associata e aggiornare o creare la nota corrispondente
nella tabella dedicata. Le note vengono restituite al frontend operatori integran-
dole nel dettaglio della compilazione, ma la loro gestione non richiede logiche
particolarmente complesse.

69

Implementazione

Infine, il backend mette a disposizione un endpoint per l’esportazione delle
compilazioni in formato Excel, implementato nel file export.service.ts. La
generazione del file utilizza la libreria exceljs, che permette di creare un workbook
e di aggiungere un foglio di lavoro per ciascuna sezione del questionario. Ogni foglio
contiene le domande e le risposte corrispondenti, insieme alle eventuali note cliniche
associate. Il risultato viene inviato al client come payload binario, consentendo al
browser dell’operatore di avviare direttamente il download del file.

Nel complesso, queste API completano la funzionalità della piattaforma fornendo
gli strumenti necessari per la gestione dei questionari, delle segnalazioni e dei dati
clinici, mantenendo la coerenza con il modello architetturale e le convenzioni
applicate alle API principali.

4.5.3 Gestione degli errori nel backend
La gestione degli errori del backend è stata implementata in modo centralizzato, con
l’obiettivo di fornire risposte coerenti e strutturate a tutte le API della piattaforma.
L’intero meccanismo si basa su una combinazione di middleware Express, una classe
di errore applicativo dedicata e un formato uniforme di risposta. In questo modo, i
controller e i service possono sollevare eccezioni senza occuparsi direttamente della
costruzione della risposta HTTP, mantenendo il codice più leggibile e separando
chiaramente la logica applicativa dalla gestione dei fallimenti.

L’elemento principale del sistema è la classe ApiError. Essa rappresenta un
errore operativo previsto (ad esempio input non valido, permessi insufficienti
o risorse non trovate) e incapsula tre informazioni fondamentali: il codice di
stato HTTP, un messaggio descrittivo e, facoltativamente, un insieme di dettagli
aggiuntivi da restituire al client. I service utilizzano questa classe per segnalare
condizioni di errore applicative, come la presenza di una submission non compatibile
con l’operazione richiesta o il tentativo di registrare un utente già esistente.

Tutti gli errori sollevati nel flusso — sia ApiError sia eccezioni non previste
— vengono intercettati dal middleware globale globalErrorHandler, registrato
come ultimo elemento della catena middleware in app.ts. Questo componente
identifica il tipo di errore e costruisce una risposta JSON normalizzata che include
almeno i campi status_code, error, message e timestamp. Se l’errore deriva
da una validazione Zod, il middleware inserisce anche la lista dei campi non
validi nel campo details, in modo da fornire al frontend informazioni utili per la
visualizzazione dei messaggi di errore all’utente.

La validazione degli input è strettamente integrata con il meccanismo di gestione
degli errori tramite il middleware validate, che applica lo schema Zod corrispon-
dente alla parte della richiesta da validare (body, query o params). In caso di
errore di validazione, il middleware non prosegue verso il controller ma solleva
direttamente un ApiError con codice 400, popolando automaticamente il campo

70

Implementazione

details con la lista degli errori Zod. Questo garantisce che nessun controller riceva
mai input non validi, migliorando la robustezza e riducendo la complessità delle
funzioni applicative.

4.5.4 Autenticazione e registrazione degli utenti

Il sistema di autenticazione degli operatori sanitari si basa su token JWT firmati
dal server e verificati tramite middleware dedicati. L’intera logica è implementata
nei file auth.controller.ts, auth.service.ts e nel repository degli operatori.
Tutte le credenziali vengono gestite esclusivamente lato backend, con hashing
tramite bcrypt e nessuna memorizzazione o restituzione della password in chiaro,
ad eccezione delle password temporanee generate durante il reset amministrativo.

L’API di login valida le credenziali fornite dal frontend, recupera l’operatore dal
database e confronta l’hash della password. In caso positivo, il servizio genera un
JWT contenente l’identificativo, il ruolo e il flag must_change_password, che indica
se l’utente è obbligato a modificare la password al primo accesso. Il token viene
poi utilizzato dal frontend attraverso il contesto di autenticazione per controllare
l’accesso alle sezioni riservate.

La registrazione di nuovi operatori è riservata agli amministratori e protetta
tramite il middleware requireRole(["admin"]). Il servizio register verifica l’as-
senza di duplicati e crea un nuovo record nella tabella Operators, imponendo il flag
must_change_password = true. In questo modo l’utente deve necessariamente
impostare una password definitiva al primo login.

Il reset della password, anch’esso limitato agli amministratori, genera una nuova
password temporanea mediante il modulo crittografico di Node.js. Il nuovo hash
sostituisce quello precedente e il flag must_change_password viene nuovamente
impostato a true. La password temporanea viene mostrata una sola volta al-
l’amministratore nella risposta dell’API, in modo che possa essere comunicata
all’operatore con canali separati.

Il cambio password è gestito dall’endpoint change_password, che non rappre-
senta una funzionalità di aggiornamento volontario della password, ma un passaggio
obbligato quando must_change_password è attivo. Il middleware authMiddleware
consente l’accesso solo agli utenti autenticati, mentre la logica del controller control-
la esplicitamente che il flag sia effettivamente impostato a true. Solo in tal caso
il servizio procede a validare la password corrente, a generare l’hash della nuova
password e ad aggiornare il record nel database. Al termine, il servizio genera un
nuovo JWT senza il flag di obbligo, consentendo all’utente di accedere al resto
dell’applicazione.

Questo flusso garantisce che le password temporanee non possano essere utilizzate
come credenziali permanenti e che il cambio venga effettuato in un punto ben

71

Implementazione

definito del processo, aumentando la sicurezza dell’intero sistema di autenticazione
e riducendo al minimo l’esposizione delle credenziali.

4.6 Sintesi dei risultati implementativi
In questo capitolo è stata presentata l’implementazione completa della piattaforma,
descrivendo nel dettaglio le soluzioni adottate nei due frontend, nel backend e nel
modulo condiviso. Le sezioni hanno illustrato come le scelte architetturali definite in
fase di progettazione siano state tradotte in componenti concreti: dalla struttura del
frontend operatori con l’editor visuale dei questionari e gli strumenti di consultazione
delle compilazioni, fino al frontend famiglie con il flusso di compilazione guidata, il
salvataggio progressivo e il supporto multilingua. La parte server-side ha mostrato
l’applicazione dello schema a tre livelli, l’integrazione con Prisma e l’uso di schemi
condivisi per validazione e tipizzazione, insieme a un meccanismo uniforme di
gestione degli errori e dell’autenticazione.

Il risultato è un sistema coerente e modulare, in cui i diversi componenti intera-
giscono attraverso contratti tipizzati e schemi condivisi, riducendo le possibilità
di incoerenze tra client e server e migliorando la manutenibilità del codice. La
gestione delle submission, l’autosalvataggio e la ripresa della compilazione sono stati
implementati in modo da garantire robustezza anche in presenza di interruzioni,
mentre la parte amministrativa offre agli operatori gli strumenti necessari per
monitorare e gestire l’intero processo.

Il prossimo capitolo sarà dedicato alle attività di test e validazione, con l’obiettivo
di verificare la correttezza funzionale delle API e dei principali flussi d’interazione,
oltre a valutare l’usabilità e l’efficacia della piattaforma dal punto di vista degli utenti
finali. I test riportati consentiranno di valutare in che misura l’implementazione
soddisfa i requisiti individuati nella fase di analisi e se la piattaforma risponde
adeguatamente alle esigenze cliniche che ne hanno motivato lo sviluppo.

72

Capitolo 5

Validazione e risultati

La fase di test e validazione costituisce un elemento fondamentale del processo di
sviluppo della piattaforma, poiché permette di verificare il corretto funzionamento
delle funzionalità implementate e di valutarne l’efficacia nel contesto operativo
reale. Lo scopo di questo capitolo è presentare le attività svolte per garantire la
qualità del sistema, analizzando sia gli aspetti tecnici sia l’esperienza d’uso degli
utenti finali.

In questa fase del progetto non sono stati implementati test automatici di
tipo unit testing o integration testing. Tale scelta è stata dettata dalla natura
del sistema e dalla necessità di concentrare gli sforzi sulle modalità di verifica
più rilevanti rispetto agli obiettivi del progetto. Trattandosi di una piattaforma
orientata principalmente all’interazione utente e al supporto alla compilazione di
questionari, la valutazione dell’usabilità e della chiarezza dei flussi riveste un ruolo
centrale. Per questo motivo, è stato adottato un approccio focalizzato su test
funzionali e su una validazione qualitativa approfondita con utenti reali, in grado
di restituire indicazioni concrete sull’esperienza d’uso.

Le attività di testing si articolano quindi in tre aree principali:

• Test tecnici delle API, effettuati tramite strumenti dedicati per verificare la
correttezza delle operazioni di creazione, lettura, aggiornamento e cancellazione
dei dati, la gestione delle autorizzazioni e il comportamento del sistema in
presenza di input non validi;

• Test end-to-end manuali, finalizzati a valutare il funzionamento comples-
sivo dei principali flussi applicativi, come la compilazione del questionario,
l’autosalvataggio delle risposte, la visualizzazione delle submission e la gestione
delle note da parte dell’operatore;

• Validazione con utenti reali, la parte più rilevante dell’intero processo di
verifica, condotta direttamente presso la struttura dell’ASL. Questa attività

73

Validazione e risultati

ha coinvolto due gruppi distinti di partecipanti (famiglie e operatori) e ha per-
messo di raccogliere metriche oggettive, osservazioni qualitative e valutazioni
soggettive tramite il questionario SUS.

L’insieme di queste attività consente di ottenere una valutazione completa
del sistema, verificando non solo la correttezza del comportamento tecnico della
piattaforma, ma anche la sua effettiva usabilità e il grado di supporto che offre
agli utenti nei diversi scenari d’uso. Nelle sezioni seguenti vengono presentati nel
dettaglio i test condotti e i risultati ottenuti.

5.1 Test tecnici
5.1.1 Test delle API
La prima fase di verifica tecnica ha riguardato il comportamento delle API del
backend, sviluppate in Node.js ed esposte tramite architettura REST. L’obiettivo
dei test era assicurare la correttezza delle operazioni principali del sistema, la
gestione appropriata degli errori e la coerenza dei dati scambiati tra frontend e
backend.

I test sono stati condotti utilizzando strumenti dedicati, tra cui Postman e
Thunder Client, che hanno permesso di isolare e verificare singolarmente i singoli
endpoint. Sono state testate tutte le principali categorie di operazioni:

• Gestione dei template dei questionari (creazione, aggiornamento, elimi-
nazione, recupero dei questionari disponibili).

• Gestione delle compilazioni (submission) con particolare attenzione al
meccanismo di autosalvataggio progressivo e al recupero dello stato corrente.

• Gestione delle note associate alle risposte fornite dalla famiglia.

• Sistema di feedback per l’invio, la consultazione e l’aggiornamento delle
segnalazioni.

• Autenticazione e autorizzazione tramite token JWT per gli operatori
sanitari.

Per ogni endpoint sono stati verificati:

• la correttezza del payload inviato e ricevuto;

• il rispetto del formato previsto dagli schemi di validazione lato backend;

• il comportamento in caso di input errati o dati mancanti;

74

Validazione e risultati

• la gestione corretta dei codici di risposta HTTP;

• la coerenza dei vincoli del database tramite Prisma ORM.

I test hanno confermato la stabilità delle API e la correttezza del flusso dati,
inclusi i casi limite come l’invio di risposte parziali, formati non validi o tentativi
di accesso non autorizzati. Il sistema ha risposto sempre con messaggi chiari e
codici di errore adeguati, garantendo un comportamento prevedibile e robusto per
l’interfaccia frontend.

5.1.2 Test end-to-end manuali
Oltre ai test sulle API, è stata condotta una sessione sistematica di test end-
to-end manuali finalizzata a verificare il comportamento dell’intera piattaforma
nelle condizioni d’uso reali. A differenza dei test sulle singole funzionalità, i
test E2E permettono di valutare la coerenza complessiva del sistema, il corretto
funzionamento dei flussi di navigazione e l’integrazione tra frontend, backend e
database.

I test sono stati eseguiti simulando i due principali attori della piattaforma: la
famiglia, che compila il questionario, e l’operatore sanitario, che crea, gestisce e
analizza i questionari. I flussi verificati includono:

• Compilazione del questionario da parte della famiglia apertura del link,
inserimento del codice fiscale, scelta della lingua, compilazione step-by-step
con autosalvataggio e conclusione della submission.

• Gestione delle compilazioni lato operatore visualizzazione in tempo
reale dello stato (in corso, completato), apertura delle risposte e inserimento
di note.

• Ricerca e filtraggio avanzato per data, stato, lingua e codice fiscale,
verificando sia la correttezza dei risultati sia la responsività dell’interfaccia.

• Creazione e modifica dei questionari tramite editor visuale aggiunta
e riordino delle sezioni, creazione di domande di tipologie diverse, gestione
delle versioni multilingua.

• Sistema di feedback invio di una segnalazione da parte della famiglia,
visualizzazione lato operatore, aggiornamento dello stato.

• Esportazione dei dati generazione del file Excel contenente tutte le risposte
della submission selezionata.

75

Validazione e risultati

I test sono stati condotti simulando scenari realistici, inclusi casi limite come
l’interruzione della compilazione, l’inserimento di campi incompleti, la modifica di
un questionario già pubblicato e la verifica dell’autosalvataggio in condizioni di
rete instabile.

Tutti i flussi principali sono risultati correttamente eseguibili e coerenti. Le
criticità emerse — principalmente relative alla chiarezza di alcuni pulsanti nell’editor
e alla sezione dei feedback — sono state approfondite nella successiva validazione
con utenti reali e hanno guidato le osservazioni qualitative presentate nelle sezioni
seguenti.

5.2 Validazione con utenti reali
La fase di validazione con utenti reali rappresenta il momento centrale dell’intero
processo di verifica della piattaforma. A differenza dei test tecnici preliminari, fina-
lizzati principalmente a garantire la correttezza delle API, dei flussi di navigazione
e dei meccanismi di autosalvataggio, la validazione in presenza permette di valutare
l’usabilità effettiva del sistema e la sua capacità di supportare gli utenti finali nelle
attività previste.

Per garantire una valutazione realistica e rappresentativa, la sessione di test è
stata condotta direttamente presso la struttura dell’ASL, coinvolgendo due gruppi
distinti di utenti:

• 4 operatori sanitari (fisioterapista, infermiere, amministrativa, segretaria),
utilizzati come campione per testare il lato “operatore” della piattaforma;

• 4 famiglie/pazienti del reparto, incaricate di valutare l’esperienza d’uso lato
compilazione.

Per ciascun partecipante e per ciascun task sono stati raccolti i seguenti
parametri:

• Tempo di completamento, misurato dall’avvio del task al suo completamento
o abbandono;

• Numero di errori, inteso come numero di volte in cui l’utente ha commesso
degli errori che hanno compromesso il flusso e quindi ha dovuto ripetere il
task;

• Aiuti richiesti, ovvero il numero di interventi espliciti da parte dell’osservatore
(chiarimenti, suggerimenti, indicazioni sul prossimo passo);

• Risultato, codificato come completamento corretto del task, completamento
con aiuto o fallimento.

76

Validazione e risultati

Al termine delle attività, ad ogni partecipante è stato inoltre somministrato
il questionario di valutazione SUS (System Usability Scale), uno strumento stan-
dardizzato composto da dieci affermazioni finalizzato a misurare la percezione
soggettiva dell’usabilità del sistema.

Le due sottosezioni seguenti riportano in dettaglio il processo di validazione per
ciascun gruppo di utenti, con i relativi task, risultati quantitativi e osservazioni
qualitative.

5.2.1 Validazone lato famiglia
La prima fase di validazione con utenti reali ha riguardato il lato famiglia della
piattaforma. L’obiettivo principale era verificare se i genitori fossero in grado di
completare in autonomia il flusso di compilazione del questionario e utilizzare le
principali funzionalità messe a disposizione dal sistema.

Per questa attività è stato utilizzato un template di prova, ovvero una versione
ridotta del questionario effettivamente impiegato dalle dottoresse per lo screening
linguistico. Tale scelta ha permesso di mantenere la struttura e la logica del
questionario reale, riducendo al contempo il carico cognitivo e la durata della
compilazione durante il test.

Sono stati coinvolti quattro partecipanti, selezionati tra i pazienti del reparto e
le relative famiglie. A ciascuno di essi è stato chiesto di svolgere individualmente
due task specifici:

• T1 – Completare il flusso di compilazione: accedere alla piattaforma a
partire dal link fornito, inserire il codice fiscale richiesto, selezionare la lingua
(quando previsto) e completare interamente la compilazione del questionario
di prova fino alla schermata di conferma finale.

• T2 – Segnalare una domanda poco chiara: individuare, all’interno
del questionario, una domanda percepita come ambigua, difficile o poco
comprensibile e utilizzare l’apposita funzionalità di segnalazione per inviare
un feedback all’équipe.

Analisi quantitativa dei risultati

I risultati quantitativi raccolti per i due task sono riportati nelle tabelle 5.1 e 5.2,
una per ciascun task.

Analisi qualitativa dei risultati

Dall’osservazione diretta delle sessioni di prova e dall’analisi dei parametri raccolti
nelle Tabelle 5.1 e 5.2 emergono alcune considerazioni qualitative sull’esperienza
d’uso della piattaforma da parte delle famiglie.

77

Validazione e risultati

Utente Tempo Errori Aiuti Risultato
U1 2m20s 0 0 Successo
U2 5m43s 1 1 Successo parziale
U3 3m2s 0 0 Successo
U4 2m35s 0 0 Successo

Tabella 5.1: Risultati del task T1 - famiglia

Utente Tempo Errori Aiuti Risultato
U1 1m45s 0 0 Successo
U2 3m50s 1 2 Successo parziale
U3 1m31s 0 0 Successo
U4 2m07s 1 0 Successo parziale

Tabella 5.2: Risultati del task T2 - famiglia

Nel complesso, tre partecipanti su quattro hanno portato a termine entrambi i
task senza incontrare difficoltà rilevanti. I tempi di completamento sono risultati
contenuti e coerenti con le aspettative per un questionario di prova a complessità
ridotta: la maggior parte degli utenti ha completato il flusso T1 in circa due o
tre minuti e il task di segnalazione T2 in poco più di un minuto. L’assenza di
errori e richieste di aiuto per questi tre utenti suggerisce che l’interfaccia utente sia
sufficientemente chiara anche per persone con familiarità limitata con strumenti
digitali.

L’utente U2 rappresenta un caso particolarmente interessante dal punto di vista
qualitativo. È stato l’unico partecipante a commettere errori in entrambi i task e
l’unico ad aver richiesto assistenza esplicita. Durante il task T1 ha inizialmente
confuso il pulsante per avanzare allo step successivo con quello di ritorno alla
schermata precedente, causando una ripetizione involontaria di una parte del
questionario. Un errore simile si è verificato in T2, dove il partecipante ha tentato
di inviare la segnalazione tramite la barra di ricerca del browser, confondendo tale
interfaccia con il campo di inserimento previsto dalla piattaforma. Nonostante ciò,
con un minimo supporto è riuscito a portare a termine entrambi i task.

Un aspetto rilevante emerso durante i test riguarda l’utilizzo delle funzionalità
di accessibilità. Nessuno dei partecipanti ha avuto necessità di ricorrere allo
screen reader o al sistema di sintesi vocale (TTS) durante la compilazione. Questo
risultato è coerente con il profilo dei partecipanti, tutti dotati di buona autonomia
nella lettura e nella comprensione del testo. Nonostante ciò, la presenza di tali
funzionalità mantiene un ruolo fondamentale, in quanto pensate per supportare
utenti con ridotte competenze alfabetiche, difficoltà linguistiche o condizioni che
rendono difficoltosa la lettura del testo sullo schermo.

78

Validazione e risultati

Complessivamente, il flusso di compilazione e il sistema di segnalazione sono
stati percepiti come chiari e coerenti. La presenza di un solo utente in difficoltà – e
per motivi legati principalmente alla scarsa dimestichezza con strumenti digitali –
suggerisce che la piattaforma sia già sufficientemente robusta dal punto di vista
dell’usabilità e adatta al target previsto, pur lasciando spazio a piccoli interventi
migliorativi mirati a incrementare ulteriormente la chiarezza dell’interfaccia.

5.2.2 Validazione lato operatore
La validazione del lato operatore ha coinvolto quattro utenti appartenenti al perso-
nale dell’ASL, selezionati tra figure amministrative o sanitarie non direttamente
coinvolte nella gestione dei questionari nella pratica clinica. L’obiettivo era simula-
re il comportamento di un utente che utilizza la piattaforma per la prima volta,
valutando l’intuitività della dashboard, dei filtri, dell’editor dei questionari e delle
funzionalità di condivisione ed esportazione.

A ciascun partecipante è stato chiesto di completare una serie di sette task,
progettati per coprire in modo sistematico tutte le funzionalità principali dell’in-
terfaccia operatore. Per ogni task sono stati definiti in anticipo il risultato atteso
e la relativa motivazione, così da verificare in maniera oggettiva l’efficacia dei
componenti dell’interfaccia e la chiarezza dei flussi.

Di seguito vengono riportati i task somministrati:

• T1 – Filtrare compilazioni completate in italiano dopo l’1 marzo 2024
ed eliminare la prima dell’elenco Risultato atteso: l’utente deve utilizzare
i filtri della dashboard per selezionare le compilazioni con stato “Completato”,
impostare il filtro sulla lingua italiana e applicare il filtro sulla data. Una volta
ottenuta la lista filtrata, deve individuare la prima compilazione ed eliminarla.
Motivazione: questo task permette di valutare la comprensibilità e l’utilità dei
filtri presenti nella dashboard, verificando se la loro posizione, etichettatura e
comportamento risultano intuitivi.

• T2 – Cercare la compilazione associata a un codice fiscale specifico,
aggiungere una nota e esportare il questionario in formato Excel
Risultato atteso: l’utente deve utilizzare il filtro dedicato al codice fiscale per
trovare la compilazione desiderata, aprirla e inserire una nota in una risposta
a scelta. Successivamente deve individuare il pulsante per esportare l’intera
compilazione in formato Excel.

Motivazione: questo task valuta la visibilità del campo di ricerca per codice
fiscale, la facilità nell’aprire una compilazione dalla lista filtrata e la chiarezza
dei pulsanti dedicati alle note e all’esportazione.

79

Validazione e risultati

• T3 – Cercare un feedback in stato “In esame” per un questionario
dal titolo specifico con identificativo domanda anch’esso specifico
e portarlo nello stato “Risolto” Risultato atteso: l’utente deve accedere
alla sezione dei feedback, applicare i filtri per mostrare solo quelli in stato “In
esame”, selezionare il feedback corretto e modificarne lo stato impostandolo a
“Risolto”.
Motivazione: il task consente di verificare l’efficacia dei filtri anche nella sezione
dedicata alle segnalazioni e la chiarezza del meccanismo di aggiornamento
dello stato di un feedback.

• T4 – Selezionare un questionario dall’elenco dei template e condi-
viderlo tramite link o QR code Risultato atteso: l’utente deve navigare
nella sidebar fino alla sezione dei template, selezionare un questionario e
individuare il pulsante di condivisione che consente di generare link e codice
QR. Motivazione: questo task valuta la capacità dell’utente di orientarsi tra
le sezioni, riconoscere il contesto in cui si trova e individuare autonomamente
la funzionalità di condivisione.

• T5 – Creare un nuovo questionario in italiano con una sezione e una
domanda a scelta multipla obbligatoria Risultato atteso: dalla dashboard
dei template l’utente deve selezionare la creazione di un nuovo questionario,
inserire titolo e descrizione in italiano, aggiungere una sezione e inserire una
domanda a scelta multipla con almeno due opzioni, contrassegnandola come
obbligatoria. Infine deve salvare il questionario. Motivazione: questo task
permette di testare la comprensibilità e la facilità d’uso dell’editor, verificando
se l’utente è in grado di creare un questionario da zero senza supporto.

• T6 – Modificare un questionario esistente aggiungendo una domanda
aperta alla prima sezione e creando una seconda sezione con altre
due domande Risultato atteso: l’utente deve riaprire un questionario già
creato (inizialmente visualizzato in modalità anteprima), individuare l’icona
che consente di entrare in modalità modifica, aggiungere alla prima sezione
una domanda a risposta aperta, creare una seconda sezione e inserire due
domande aggiuntive, quindi salvare.
Motivazione: il task verifica se il passaggio dalla modalità anteprima alla
modalità modifica è chiaro e se la struttura dell’editor risulta intuitiva anche
in caso di modifiche complesse.

• T7 – Aggiungere una lingua extra (es. cinese) al questionario, com-
pilare i campi necessari e salvare Risultato atteso: l’utente deve utilizzare
il pulsante dedicato alle lingue extra, selezionare una lingua dall’elenco esteso,

80

Validazione e risultati

compilare almeno il titolo del questionario e i titoli delle sezioni nella nuova
lingua, verificare lo switch linguistico e salvare.

Motivazione: questo task testa l’usabilità della funzionalità di gestione multi-
lingua, in particolare la capacità dell’utente di individuare la sezione dedicata
all’aggiunta delle lingue non predefinite e comprendere la struttura dei campi
da compilare.

Analisi quantitativa dei risultati

I risultati quantitativi raccolti per i task sono riportati nelle tabelle elencate di
seguito

Utente Tempo Errori Aiuti Risultato
U1 1m56s 1 1 Successo parziale
U2 1m17s 0 0 Successo
U3 2m7s 1 0 Successo parziale
U4 1m34s 0 0 Successo

Tabella 5.3: Risultati del task T1 - Operatori

Utente Tempo Errori Aiuti Risultato
U1 32s 0 0 Successo
U2 20s 0 0 Successo
U3 56s 1 0 Successo Parziale
U4 49s 0 0 Successo

Tabella 5.4: Risultati del task T2 - Operatori

Utente Tempo Errori Aiuti Risultato
U1 15s 0 0 Successo
U2 1m4s 0 1 Successo parziale
U3 1m17s 0 1 Successo parziale
U4 2m21s 0 1 Successo

Tabella 5.5: Risultati del task T3 - Operatori

81

Validazione e risultati

Utente Tempo Errori Aiuti Risultato
U1 11s 0 0 Successo
U2 13s 0 0 Successo
U3 10s 0 0 Successo
U4 21s 0 0 Successo

Tabella 5.6: Risultati del task T4 - Operatori

Utente Tempo Errori Aiuti Risultato
U1 44s 0 0 Successo
U2 2m20s 0 1 Successo parziale
U3 1m56s 0 1 Successo
U4 1m35s 0 0 Successo

Tabella 5.7: Risultati del task T5 - Operatori

Utente Tempo Errori Aiuti Risultato
U1 17s 0 0 Successo
U2 1m 0 0 Successo
U3 1m17s 1 0 Successo parziale
U4 40s 0 0 Successo

Tabella 5.8: Risultati del task T6 - Operatori

Utente Tempo Errori Aiuti Risultato
U1 30s 0 0 Successo
U2 50s 0 0 Successo
U3 1m10s 0 1 Successo
U4 1m3s 0 0 Successo

Tabella 5.9: Risultati del task T7 - Operatori

Analisi qualitativa dei risultati

L’analisi qualitativa dei task T1–T7 svolti dagli operatori consente di evidenziare
punti di forza e criticità dell’interfaccia gestionale della piattaforma. I risultati
mostrano come tutte le funzionalità principali siano state comprese e utilizzate
correttamente, pur con alcune difficoltà localizzate nei task più articolati o in quelli
che richiedono un livello maggiore di precisione nell’interazione. Di seguito vengono
presentate le osservazioni suddivise per categoria di task.

82

Validazione e risultati

Task di ricerca e filtraggio (T1–T2). I task dedicati all’utilizzo dei filtri della
dashboard (T1 e T2) sono stati completati correttamente da tutti i partecipanti.
I filtri relativi allo stato della compilazione, alla lingua e alla data sono stati
individuati rapidamente da tutti gli utenti, con tempi di completamento compresi
tra 1 e 2 minuti nel caso del task T1. Gli errori registrati in T1 (da U1 e U3)
derivano dalla selezione errata del filtro sulla data. In T2, tutti gli utenti hanno
portato a termine il task con successo e senza necessità di aiuto, dimostrando che la
ricerca tramite codice fiscale è ben visibile e compresa in modo uniforme. L’unica
problematica è stata ritrovata nel T2 fatto da U3, la zona da cliccare per accedere
alla submission non è stata individuata immediatamente. Questo può essere uno
spunto da approfondire per migliorare la zona "cliccabile", potrebbe essere estesa a
tutta la riga della tabella.

Task di gestione dei feedback (T3). Il task relativo alla gestione dei feedback
è stato quello che ha generato il maggior numero di richieste di aiuto (tre su quattro
utenti). I tempi di completamento sono stati significativamente più elevati rispetto
alla media degli altri task, indicando una minore immediatezza dell’interazione. La
causa principale della difficoltà è stata individuata nella modalità di filtraggio dei
feedback: attualmente il filtro permette di ricercare una segnalazione attraverso
il solo identificativo della domanda (es. s3_q2), una convenzione interna efficace
per lo sviluppatore ma non immediatamente interpretabile dal personale sanitario
o amministrativo. Durante il test è stato osservato che gli utenti tendevano a
cercare la domanda attraverso il testo esplicito della domanda stessa, non trovando
riscontro nell’interfaccia. Tale comportamento rende evidente che il filtro dovrà
essere ampliato o riprogettato per consentire la ricerca tramite una descrizione più
leggibile o attraverso parole chiave del testo della domanda.

Task di navigazione e condivisione (T4). Il task T4 è stato eseguito corret-
tamente e con tempi estremamente ridotti (tra 10 e 21 secondi). Tutti gli utenti
hanno dimostrato di sapersi orientare senza difficoltà nella sidebar e di individuare
rapidamente il pulsante dedicato alla condivisione dei questionari. Questo risultato
conferma che la struttura di navigazione viene percepita come chiara e coerente.

Task di creazione e modifica dei questionari (T5–T6). I task T5 e T6
hanno messo alla prova l’usabilità dell’editor dei questionari. In T5 gli utenti hanno
completato con successo la procedura di creazione di un nuovo questionario, sebbene
con tempi variabili (tra 44 secondi e 2 minuti e 20 secondi). Le due richieste di aiuto
osservate (U2 e U3) sono state dovute alla necessità di individuare correttamente il
pulsante per aggiungere una nuova sezione e la corretta tipologia di domanda da
inserire, suggerendo che alcuni pulsanti dell’editor potrebbero beneficiare di icone
più esplicative o di una maggiore evidenza visiva.

83

Validazione e risultati

Il task T6, dedicato alla modifica di un questionario esistente, è risultato quello
con la maggiore dispersione nei tempi e con la presenza di errori (U3) legati al
mancato passaggio dalla modalità anteprima alla modalità modifica. Durante
il test è emerso chiaramente che l’icona responsabile di questo passaggio non
è sufficientemente evidente e rischia di essere confusa con elementi grafici non
interattivi. Tale criticità suggerisce la necessità di rendere più visibile lo stato
corrente del questionario e di distinguere maggiormente le due modalità.

Task di gestione multilingua (T7). Il task T7 è stato completato con successo
da tutti gli operatori, mostrando tempi di esecuzione compresi tra 30 secondi e 1
minuto e 10 secondi. La procedura di aggiunta di una lingua extra è stata compresa,
anche se un utente (U3) ha richiesto assistenza per individuare il pulsante che
apre il menu delle lingue aggiuntive. L’osservazione suggerisce che la funzionalità
è generalmente intuitiva, ma potrebbe trarre beneficio da un posizionamento
più evidente o da un’etichettatura più esplicita, soprattutto considerando che
l’operazione non è tra le più frequenti nella pratica quotidiana.

Nel complesso, l’analisi qualitativa indica che gli operatori hanno percepito
la piattaforma come usabile e coerente, completando tutte le attività assegnate
senza blocchi critici. Le principali aree di miglioramento riguardano la gestione
dei feedback, dove il meccanismo di ricerca deve essere reso più leggibile, e alcune
funzionalità dell’editor dei questionari, che richiedono una maggiore evidenza visiva
per ridurre gli errori e il ricorso all’aiuto esterno.

5.2.3 Valutazione dell’usabilità tramite SUS
Per completare la valutazione dell’usabilità della piattaforma è stato utilizzato il
System Usability Scale (SUS), un questionario standardizzato composto da
dieci affermazioni con risposta su scala Likert a cinque punti. Il SUS è ampiamente
adottato nella letteratura scientifica e industriale grazie alla sua capacità di produrre
un punteggio sintetico dell’usabilità percepita, compreso tra 0 e 100, interpretabile
attraverso benchmark consolidati.

Il questionario è stato somministrato al termine della sessione di test a entrambi
i gruppi di utenti coinvolti: le famiglie che hanno svolto il flusso di compilazione
e gli operatori che hanno testato la dashboard gestionale. Ogni partecipante ha
valutato la piattaforma sulla base della propria esperienza immediata, fornendo
così una misura soggettiva della facilità d’uso, dell’intuitività e della soddisfazione
generale.

I punteggi ottenuti nei due gruppi sono riportati nelle Tabelle 5.10 e 5.11. Per
entrambe le categorie di utenti è stato inoltre calcolato il punteggio medio, utile
per confrontare i risultati con le classificazioni proposte in letteratura.

84

Validazione e risultati

Secondo i benchmark comunemente adottati , un punteggio superiore a 68
indica un livello di usabilità considerato “Accettabile”, mentre valori superiori a 80
rientrano nella fascia “Excellent” o “Grade A”, tipica dei sistemi percepiti come
estremamente facili da usare. Un valore compreso tra 70 e 80 è generalmente
classificato come “Good” o “Usable”.

L’analisi dei risultati raccolti mostra che entrambi i gruppi hanno espresso una
valutazione complessivamente positiva della piattaforma, con punteggi stabilmente
al di sopra della soglia di accettabilità e, in alcuni casi, prossimi alla fascia superiore
di qualità. Ciò conferma che la piattaforma risulta intuitiva, semplice da utilizzare
e adatta al contesto applicativo per cui è stata progettata.

Utente Punteggio SUS
U1 90
U2 85
U3 87,5
U4 87,5
Media 87,5

Tabella 5.10: Punteggi SUS ottenuti dai partecipanti – lato famiglia

Utente Punteggio SUS
U1 87,5
U2 90
U3 92,5
U4 87,5
Media 89,375

Tabella 5.11: Punteggi SUS ottenuti dai partecipanti – lato operatore

5.3 Interpretazione dei risultati
Le attività di test e validazione descritte in questo capitolo hanno permesso di
verificare in modo approfondito il corretto funzionamento della piattaforma, valutan-
done sia gli aspetti tecnici sia l’effettiva usabilità da parte degli attori coinvolti nel
processo di screening linguistico. I test delle API e i test end-to-end manuali hanno
confermato la stabilità del backend, la coerenza dei flussi applicativi e l’affidabilità
dei meccanismi di autosalvataggio, autenticazione, filtraggio ed esportazione dei
dati.

85

Validazione e risultati

La validazione con utenti reali ha costituito la parte più significativa dell’intero
processo. Le famiglie hanno dimostrato di poter completare il questionario in
autonomia, con tempi contenuti e senza difficoltà rilevanti, evidenziando la chiarezza
dell’interfaccia e la linearità del flusso di compilazione. Anche gli operatori sanitari
hanno portato a termine tutti i task assegnati, mostrando una buona comprensione
delle funzionalità principali della dashboard, dell’editor dei questionari e del sistema
di gestione dei feedback. Le difficoltà riscontrate hanno riguardato principalmente
task complessi o meno frequenti, come l’aggiornamento dello stato dei feedback e il
passaggio dalla modalità anteprima alla modalità modifica nei questionari esistenti.
Tali osservazioni indicano aree specifiche in cui l’interfaccia può essere ulteriormente
migliorata per incrementare la chiarezza e ridurre il carico cognitivo degli utenti.

I punteggi SUS ottenuti da entrambi i gruppi confermano la percezione positiva
dell’usabilità della piattaforma, con valori superiori alla soglia di accettabilità e
prossimi alle fasce di qualità “Good” o “Excellent”. Questi risultati, insieme alle
analisi quantitative e qualitative, indicano che il sistema risulta adeguato all’utilizzo
nel contesto clinico per cui è stato progettato, offrendo un’esperienza d’uso intuitiva
e coerente.

Nel complesso, il processo di validazione ha dimostrato che la piattaforma
è già sufficientemente matura per un utilizzo pilota all’interno del reparto, pur
evidenziando margini di miglioramento che potranno essere affrontati nelle future
evoluzioni del sistema. Il capitolo successivo discuterà le conclusioni generali del
progetto, le sue limitazioni e le possibili direzioni per lo sviluppo futuro.

86

Capitolo 6

Conclusioni

6.1 Sintesi del lavoro svolto

Il lavoro descritto in questa tesi ha portato alla progettazione e allo sviluppo di
una piattaforma web dedicata alla raccolta strutturata di informazioni linguistiche
e anamnestiche sui bambini bilingui, con l’obiettivo di supportare in modo più
efficiente e inclusivo il processo clinico svolto presso il reparto di Neuropsichiatria
Infantile dell’ASL CN2. La piattaforma è composta da due componenti principali:
una dashboard per gli operatori sanitari, che consente la gestione dei questionari, il
monitoraggio delle compilazioni e l’inserimento di annotazioni cliniche; e un frontend
ottimizzato per smartphone destinato alle famiglie, che permette la compilazione
guidata e multilingue dei questionari.

L’architettura full-stack, basata su React e TypeScript per i frontend, Node.js
ed Express per il backend e PostgreSQL come database, è stata progettata per
garantire modularità, coerenza dei dati e facilità di manutenzione. Particolare
attenzione è stata dedicata agli aspetti di accessibilità, con l’adozione di etichette
ARIA, una struttura visiva ad alto contrasto e il supporto alla lettura assistita
tramite Web Speech API.

La fase di validazione ha coinvolto sia famiglie sia operatori, comprendendo test
tecnici delle API, test end-to-end manuali e sessioni di usability testing basate
su task specifici. I risultati sono stati complessivamente molto positivi: tutte le
funzionalità critiche hanno mostrato stabilità e le interazioni principali sono state
comprendibili anche per utenti con competenze digitali limitate. I punteggi SUS,
con valori pari a 87,5 per le famiglie e 89,375 per gli operatori, indicano un livello
di usabilità globalmente eccellente.

La piattaforma, nella sua versione attuale, risponde pienamente agli obiettivi
iniziali di digitalizzazione, accessibilità e gestione multilingue, risultando idonea
per un utilizzo pilota nel contesto clinico per cui è stata pensata.

87

Conclusioni

6.2 Limiti del lavoro

Sebbene la piattaforma rispecchi gli obiettivi funzionali e non funzionali individuati
nella fase di analisi, esistono alcune limitazioni che ne delineano i margini di
miglioramento.

Un primo limite riguarda il processo di validazione, condotto su un campione
ridotto di famiglie e operatori. Le osservazioni raccolte offrono indicazioni qua-
litative di grande valore, ma non permettono di generalizzare in modo completo
l’efficacia del sistema a tutta la popolazione potenzialmente interessata. Una valu-
tazione più ampia, condotta su un numero maggiore di utenti e in contesti diversi,
permetterebbe di verificare la stabilità dell’esperienza d’uso in scenari più variabili.

Dal punto di vista funzionale, la piattaforma si concentra sulla raccolta e sulla
consultazione dei dati, senza includere strumenti di analisi automatica, calcolo di
punteggi o generazione strutturata di report clinici. L’interpretazione delle risposte
resta quindi interamente affidata all’operatore, che deve ricorrere a strumenti esterni
per valutare eventuali indicatori di rischio linguistico.

Per quanto concerne il supporto multilingue, il sistema consente già la gestione
di numerose lingue attraverso template localizzati. Tuttavia, non tratta ancora
in modo specifico le varianti dialettali, le varietà regionali o le forme miste di
bilinguismo, molto frequenti nelle comunità migranti. Inoltre, il comportamento
della sintesi vocale dipende dalle capacità del browser e dal sistema operativo:
alcune lingue presentano voci di qualità inferiore o tempi di risposta meno regolari,
con un potenziale impatto sull’esperienza d’uso.

Alcune scelte di interfaccia risultano migliorabili sulla base delle osservazioni
emerse nei task di validazione. Il sistema di filtraggio dei feedback, ad esempio, si
basa sull’identificativo interno della domanda (come s3_q2), che non è intuitivo per
gli operatori, i quali farebbero riferimento più facilmente al testo della domanda o
alla sezione del questionario. Allo stesso modo, alcune interazioni della dashboard

— come la selezione della riga nelle tabelle o la distinzione tra anteprima e modifica
nell’editor — richiedono un breve apprendimento iniziale.

Infine, la piattaforma è stata progettata e validata all’interno di un singolo
contesto clinico, caratterizzato da flussi di lavoro specifici. Pur essendo questo un
punto di forza in termini di aderenza alle pratiche reali, l’adozione in altri reparti
o strutture sanitarie potrebbe richiedere adattamenti dei processi o dei template
utilizzati.

Nel complesso, tali limiti non compromettono la solidità e l’efficacia del sistema,
ma suggeriscono direzioni concrete per le evoluzioni future della piattaforma.

88

Conclusioni

6.3 Sviluppi futuri
Le possibili evoluzioni del sistema riguardano sia l’arricchimento delle funzionalità,
sia il consolidamento dell’esperienza d’uso sulla base dei risultati della validazione.

Una prima area di sviluppo riguarda l’introduzione di strumenti di analisi
automatica dei dati, come il calcolo di punteggi o indicatori sintetici associati a
specifiche aree del linguaggio. L’integrazione di tali strumenti permetterebbe agli
operatori di ottenere rapidamente un quadro preliminare delle risposte fornite,
riducendo il tempo necessario per la valutazione manuale. In parallelo, potrebbe
essere utile implementare un sistema di generazione automatica di report clinici, sia
in forma strutturata (PDF riepilogativi), sia in prospettiva mediante tecniche basate
su modelli linguistici di grandi dimensioni (LLM) per produrre sintesi testuali più
articolate.

Sul versante linguistico, l’ampliamento del supporto a nuove lingue potrebbe
essere affiancato da una gestione più articolata delle varianti linguistiche e dialettali,
eventualmente integrando strumenti di supporto alla traduzione o workflow dedicati
per la revisione dei contenuti multilingua.

L’esperienza utente può essere affinata intervenendo su alcuni elementi emersi nei
task di validazione. Il sistema di gestione dei feedback potrebbe essere riprogettato
per permettere la ricerca tramite testo o tramite sezione di appartenenza della
domanda, anziché tramite identificativi interni. L’editor dei questionari potrebbe
includere meccanismi più espliciti per distinguere anteprima e modifica, mentre la
dashboard potrebbe beneficiare di interazioni più ampie e di micro-feedback visivi
per facilitare la selezione degli elementi.

Infine, la piattaforma potrebbe essere estesa con funzionalità opzionali legate
alla comunicazione con le famiglie, come meccanismi di reminder sulle compilazioni
incomplete o notifiche interne alla dashboard per segnalare nuove attività da parte
degli utenti.

In sintesi, gli sviluppi futuri mirano a potenziare le capacità analitiche, ampliare
la copertura linguistica e migliorare ulteriormente l’accessibilità e la chiarezza
dell’esperienza utente. Queste direzioni evolutive, combinate con ulteriori cicli di
validazione, potranno rendere la piattaforma uno strumento ancora più completo,
flessibile e adattabile alle esigenze cliniche.

89

Bibliografia

[1] ISTAT. Popolazione residente e stranieri in Italia – Dati demografici 2023.
Sito web ISTAT. 2023. url: https://www.istat.it (cit. a p. 1).

[2] TorinoClick. Osservatorio Stranieri 2022, Città Metropolitana di Torino:
9,52% stranieri; 14,2% minori stranieri. Portale istituzionale TorinoClick.
2023. url: https://www.torinoclick.it (cit. a p. 1).

[3] P. Bonifacci. I bambini bilingui: Favorire gli apprendimenti nelle classi multi-
culturali. Roma: Carocci, 2018 (cit. a p. 1).

[4] M. C. Caselli e P. Rinaldi. Valutazione e presa in carico di bambini figli di
migranti: Metodi e strumenti per l’identificazione di uno sviluppo atipico del
linguaggio in età prescolare. Trento: Erickson, 2024 (cit. a p. 1).

[5] A. Marini e S. Vicari. I disturbi del linguaggio in età evolutiva: Caratteristiche,
diagnosi e trattamento. Bologna: Il Mulino, 2022 (cit. a p. 2).

[6] Parlamento Europeo. La politica linguistica dell’Unione Europea. Scheda
tematica – Parlamento Europeo. 2020. url: https://www.europarl.europa.
eu/factsheets/it/sheet/142/la-politica-linguistica (cit. a p. 3).

[7] G. Gintoli. Progetto formativo - Bilinguismo: definizioni, rcierca e stato
dell’arte. Slide Corso ECM - ASL CN2. 2015. url: https://unric.org/it/
agenda-2030/ (cit. a p. 3).

[8] InfoQ. Java vs Node.js Performance Comparison. Analisi comparativa delle
prestazioni tra Java e Node.js pubblicata su InfoQ. 2024. url: https://apur
avchauhan.medium.com/node-js-vs-java-web-performance-benchmark-
analysis-scaling-insights-de2ce3998d18 (cit. a p. 8).

[9] JetBrains s.r.o. The State of Developer Ecosystem 2024. Rapporto annuale
sullo stato dell’ecosistema degli sviluppatori, JetBrains. 2024. url: https:
//www.jetbrains.com/lp/devecosystem-2024/ (cit. a p. 8).

90

https://www.istat.it
https://www.torinoclick.it
https://www.europarl.europa.eu/factsheets/it/sheet/142/la-politica-linguistica
https://www.europarl.europa.eu/factsheets/it/sheet/142/la-politica-linguistica
https://unric.org/it/agenda-2030/
https://unric.org/it/agenda-2030/
https://apuravchauhan.medium.com/node-js-vs-java-web-performance-benchmark-analysis-scaling-insights-de2ce3998d18
https://apuravchauhan.medium.com/node-js-vs-java-web-performance-benchmark-analysis-scaling-insights-de2ce3998d18
https://apuravchauhan.medium.com/node-js-vs-java-web-performance-benchmark-analysis-scaling-insights-de2ce3998d18
https://www.jetbrains.com/lp/devecosystem-2024/
https://www.jetbrains.com/lp/devecosystem-2024/

BIBLIOGRAFIA

[10] Apurav Chauhan. Node.js vs Java Web Performance Benchmark Analysis &
Scaling Insights. Articolo pubblicato su Medium – Analisi comparativa delle
prestazioni tra Node.js e applicazioni Java Spring Boot. 2024. url: https:
//apuravchauhan.medium.com/node- js- vs- java- web- performance-
benchmark-analysis-scaling-insights-de2ce3998d18 (cit. a p. 8).

[11] Stack Overflow. Stack Overflow Developer Survey 2025. Rapporto annuale
sulla community degli sviluppatori – Stack Overflow. 2025. url: https:
//survey.stackoverflow.co/2025/ (cit. a p. 8).

[12] Microsoft Corporation. Cloud storage vs. on-premises servers: 9 things to
keep in mind. Articolo tecnico Microsoft Business Insights. 2020. url: https:
/ / www . microsoft . com / en - us / microsoft - 365 / business - insights -
ideas/resources/cloud-storage-vs-on-premises-servers (cit. a p. 9).

[13] Asif Ali, Irfan Ahmed Kandhro et al. Systematic Analysis of On-Premise
and Cloud Services. International Journal of Cloud Computing, Vol. 13, No.
3. 2024. url: https://www.researchgate.net/publication/379970310_
Systematic_Analysis_of_On_Premise_and_Cloud_Services (cit. a p. 9).

[14] React Documentation. Introducing JSX and Virtual DOM. Documentazione
ufficiale di React. url: https://react.dev/learn (cit. a p. 22).

[15] React Documentation. Hook Reference. Documentazione ufficiale di React.
url: https://react.dev/reference/react (cit. a p. 22).

[16] Vite Documentation. Getting Started. Vite official documentation website.
url: https://vitejs.dev/guide/ (cit. a p. 24).

[17] Vite Documentation. Development Server and Hot Module Replacement. Vite
official documentation website. url: https://vitejs.dev/guide/features.
html (cit. a p. 25).

91

https://apuravchauhan.medium.com/node-js-vs-java-web-performance-benchmark-analysis-scaling-insights-de2ce3998d18
https://apuravchauhan.medium.com/node-js-vs-java-web-performance-benchmark-analysis-scaling-insights-de2ce3998d18
https://apuravchauhan.medium.com/node-js-vs-java-web-performance-benchmark-analysis-scaling-insights-de2ce3998d18
https://survey.stackoverflow.co/2025/
https://survey.stackoverflow.co/2025/
https://www.microsoft.com/en-us/microsoft-365/business-insights-ideas/resources/cloud-storage-vs-on-premises-servers
https://www.microsoft.com/en-us/microsoft-365/business-insights-ideas/resources/cloud-storage-vs-on-premises-servers
https://www.microsoft.com/en-us/microsoft-365/business-insights-ideas/resources/cloud-storage-vs-on-premises-servers
https://www.researchgate.net/publication/379970310_Systematic_Analysis_of_On_Premise_and_Cloud_Services
https://www.researchgate.net/publication/379970310_Systematic_Analysis_of_On_Premise_and_Cloud_Services
https://react.dev/learn
https://react.dev/reference/react
https://vitejs.dev/guide/
https://vitejs.dev/guide/features.html
https://vitejs.dev/guide/features.html

	Elenco delle tabelle
	Elenco delle figure
	Introduzione
	Motivazioni del progetto
	Contesto applicativo e obiettivi
	Digitalizzazione e ottimizzazione del processo

	Struttura della tesi

	Stato dell'arte e scelte tecnologiche
	Soluzioni esistenti
	Analisi delle tecnologie e motivazioni delle scelte
	Architettura generale e distribuzione

	Analisi e progettazione del sistema
	Introduzione e metodologia di analisi
	Evoluzione e validazione dei requisiti

	Raccolta e definizione dei requisiti
	Requisiti funzionali
	Requisiti non funzionali

	Casi d’uso principali
	Descrizione dei casi d’uso
	Workflow principale del ciclo di compilazione
	Workflow di gestione delle segnalazioni

	Software design
	Architettura del sistema
	Panoramica sulle tecnologie utilizzate
	Modello dati e schema logico
	Pattern architetturali: Controller-Service-Repository

	Meccanismi chiave del sistema
	Avvio, ripresa e autosalvataggio della compilazione
	Gestione della lingua
	Modello di accesso e autenticazione

	Progettazione UI e requisiti di accessibilità
	Mockup e design preliminare
	Supporto agli screen reader
	Lettura assistita tramite Text-to-Speech

	Implementazione
	Struttura generale del progetto
	Modulo shared: modelli, validazione e risorse comuni
	Definizione degli schemi con Zod
	Inferenza dei tipi TypeScript
	Data Transfer Object e contratti di comunicazione
	Gestione della localizzazione e catalogo delle lingue

	Frontend dedicato agli operatori sanitari
	Architettura
	Dashboard principale e sistema di navigazione
	Visualizzazione della compilazione
	Editor dei template per i questionari
	Gestione dei feedback
	Gestione dell'autenticazione
	Registrazione degli utenti e reset password

	Frontend dedicato alle famiglie
	Architettura
	Flusso di compilazione
	Gestione multilingua
	Accessibilità

	Backend
	Architettura a tre livelli
	Implementazione delle API principali
	Gestione degli errori nel backend
	Autenticazione e registrazione degli utenti

	Sintesi dei risultati implementativi

	Validazione e risultati
	Test tecnici
	Test delle API
	Test end-to-end manuali

	Validazione con utenti reali
	Validazone lato famiglia
	Validazione lato operatore
	Valutazione dell'usabilità tramite SUS

	Interpretazione dei risultati

	Conclusioni
	Sintesi del lavoro svolto
	Limiti del lavoro
	Sviluppi futuri

	Bibliografia

