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Abstract

Il problema del massimo comune sottografo ¢ una questione ben conosciuta in informatica, e consiste
nel ricercare, dati almeno due grafi, quello che é contemporaneamente isomorfo e di massima dimen-
sione. Tale dilemma viene anche sfruttato in altri ambiti, quali la scienza molecolare, per ritrovare
somiglianze tra proteine o altre molecole, o, addirittura, nel rilevamento di malware. Tuttavia, esso é
NP-hard, e questo ha inizialmente costretto, chiunque lo abbia affrontato, a cercare di approssimare
la soluzione ottimale. Negli ultimi anni, pero, in parte grazie allo sviluppo tecnologico, ed in parte
grazie alla scoperta di nuovi paradigmi, che permettessero di risolvere il MCS in tempi piu accettabili,
tale problema ¢é stato, in parte, alleviato. Tra i nuovi metodi di risoluzione del MCS, vi ¢ il cosiddetto
McSplit, un algoritmo branch and bound che, nel corso degli ultimi anni, é stato preso come riferimento
per la risoluzione del problema, e via via modificato in vari modi. Nessuna di queste nuove implemen-
tazioni, tuttavia, sembra aver implementato una versione adatta al multi-thread. Nella seguente tesi
si prende, come riferimento, una delle ultime "versioni" del McSplit, ovvero RRSplit, e, prendendo gli
schemi di parallelismo presenti nel McSplit originale, si cerca di rendere tale lavoro funzionante anche
in un contesto multi-thread su CPU. Successivamente, vengono condotte anche delle analisi per capire:

e Quanto I'RRSplit abbia giovato di un’implementazione multithread;

e Quanto le modifiche apportate in RRSplit abbiano velocizzato, in un contesto multithread, la
ricerca di un MCS, rispetto al McSplit parallelo originale.

In aggiunta, sono state condotte anche delle analisi sul dataset che & stato utilizzato per la risoluzione di
tale problema, e come le principali caratteristiche dello stesso possono aver influenzato, positivamente
o negativamente, le prestazioni degli algoritmi.

Come ultima parte di questa tesi, prendendo in considerazione un framework che andasse ad eseguire
I’algoritmo di McSplit su GPU, sono state attuate delle modifiche tali da permettere 'implementazione,
sullo stesso, degli elementi chiavi caratterizzanti RRSplit. Da li sono state condotte delle analisi per
capire D’efficacia di tale paradigma, confrontando le prestazioni ottenute su RRSplit, implementato su
GPU, con quelle che si sono riscontrate con McSplit su GPU.
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1 Introduzione

I grafi sono strutture dati molto generiche e particolarmente flessibili, rendendoli quindi molto adat-
tabili ed utilizzabili in una vasta gamma di problemi, che sono apparentemente molto eterogenei tra
di loro, quali: la chimica [1] [2] e la scienza molecolare [3] [4], andando a trovare un vasto utilizzo
addirittura nel campo della computer vision [5] ¢ malware detection [6], fino ad anche a problemi di
networking [7]. Con ’evoluzione dei dispositivi atti a risolvere e ricercare il massimo comune sottogra-
fo, cosi come anche delle strategie risolutive, tale problema & stato esteso per grafi che fossero via via
piu grandi. Ci sono anche alcuni ambiti(biologia molecolare, ad esempio), in cui la ricerca del massimo
comune sottografo viene anche svolto tra molteplici grafi [8]. In questa tesi, tuttavia, ci si soffermera
sulla ricerca del MCS tra due grafi, andando ad esaminare un approccio parallelo su CPU e GPU.

1.1 Definizioni

Al fine di rendere facile la compresione dell’argomento in questione, sono state raccolte qui alcune delle
definizioni che verranno usate nel corso della trattazione in maniera consistente:

Definizione 1 : Un grafo G é una coppia ordinata degli insiemi Vg e Eq, rappresentanti gli insiemi
dei vertici e degli archi, rispettivamente(G = {Vg, Eg}).

Definizione 2 : Si definisce adiacenza se, in Eg, si ritrova una tra le seguenti coppie di vertici,
< v,w > oppure < w,v >.

Figura 1: Grafo di esempio

Come é possibile notare dalla figura 1, il nodo 1 é adiacente ai vertici 2 e 3, mentre il nodo 2 non
é adiacente al nodo 3 e viceversa.

Definizione 3 : Un grafo puo essere diretto o non diretto: se é non diretto, cid vuol dire che Eg
& una relazione simmetrica, ovvero, per ogni arco che viene
rappresentato dalla coppia di vertici< w,v >, vi sara anche il suo simmetrico, < v, w >.

Figura 2: Grafo diretto Figura 3: Grafo non diretto



Definizione 4 : Un grafo H viene detto sottografo di G se Vg C Vg e Egy C Eg. Inoltre, se H
contiene tutti gli archi dei nodi selezionati in G, H ¢ definito sottografo indotto, diversamente
viene chiamato sottografo non indotto, o parziale.

Figura 4: Grafo G Figura 5: Grafo indotto di G gigura 6: Grafo non indotto di

Definizione 5 : Due grafi G ed H sono definiti isomorfi se esiste una funzione biunivoca ¢ : Vg —
V'y tale per cui, presa una coppia di vertici < v,w > con ve w € Vg, essa appartiene a Eg se e
solo se la coppia < ¢(v), #(w) > appartiene a Eg.

O
A \NG

Figura 7: Grafo G Figura 8: Grafo isomorfo di G




2 Problema del MCS

Il problema del massimo comune sottografo ha riscosso particolare attenzione nel corso del tempo, e
numerose definizioni sono state date in base a cio che si vuole massimizzare. Le principali definizioni
tuttavia tentano di massimizzare, rispettivamente, il numero di nodi e il numero di archi che suddetto
sottografo deve contenere al suo interno. Nel nostro caso si andra a considerare la prima delle due
definizioni, ovvero: dati due grafi G e H, il massimo comune sottografo che si andra a ricavare dai
essi sard quello che conterra il maggior numero di nodi, e sara, allo stesso tempo, indotto ed isomorfo
sia a G che a H. Tale problema ¢é anche estensibile ai casi in cui si vuole esplorare un grafo orientato,
rendendo necessario considerare anche la direzione degli archi stessi. I anche possibile I'utilizzo di
etichette applicate sui nodi e sugli archi stessi, portando alla generazione di ulteriori vincoli da tenere
in conto.

2.1 Applicazioni

I grafi sono, di per sé, delle strutture molto generiche e adattabili, e cid ha permesso di modellare un
grande numero di problemi, risolvibili mediante tecniche che sono state sviluppate per essere applicate
sugli stessi. Diversi campi di studi hanno trovato applicazioni per tale problema, tra i quali il campo
della chimica [1] [2] e lo studio di strutture molecolari [3] [4]. Ulteriori studi hanno portato alla luce
Papplicabilita di tali tecniche per altri campi, come la sicurezza informatica [6], la computer vision [5],
Panalisi di codice sorgente [9] e di circuiti digitali [10].

Ci sono anche dei casi, come accade nelle scienze molecolari [8], dove, anziché andar a cercare il massimo
comune sottografo prendendo in esame solamente due grafi, tale ricerca viene estesa e condotta su
molteplici grafi contemporaneamente.

Generalmente parlando, la ricerca del MCS pud essere applicata ad un qualunque problema, dove non
& solamente necessario verificare la presenza o meno di un elemento, ma anche la disposizione dello
stesso rispetto agli altri.

Un esempio in cui l'utilizzo di algoritmi per la risoluzione del massimo comune sottografo & stato
impiegato riguarda, come gia citato in precedenza, la scienza molecolare. Il caso in questione & quello
citato da boukhris [3], in cui tale problema viene impiegato per esaminare la somiglianza tra i siti di
legame delle proteine.

Tuttavia, il problema del massimo comune sottografo, applicato a questo caso, & stato adattato in
modo tale da presentare una certa tolleranza, sfruttando un algoritmo di quasi-clique detection.

In questo modo si possono meglio rappresentare le caratteristiche dei siti di legame delle proteine, che
possono essere soggette a mutazioni, evitando quindi che la ricerca di un MCS, applicata in modo
rigido, porti a scartare tanti risultati comunque validi.

2.2 Complessita dell’algoritmo

Il motivo che ha portato molteplici informatici a cercare soluzioni sempre piu efficienti per questo
problema, andando addirittura a convertirlo in un altro suo simile(ad esempio, andando a risolverlo
come si risolverebbe il problema della cricca massima, come citato da McCreesh [11]), risiede nella
complessita del MCS. Esso infatti é un problema NP-hard, e questo significa che, data la dimensione
dell’input(in questo caso, grafi composti da archi e vertici/nodi), il tempo richiesto per la sua risoluzione
puo essere di tipo esponenziale (da qui il motivo per cui i grafi presi in esame sono generalmente piccoli,
con un numero di nodi e di archi piuttosto limitato). Per capire come questo possa essere possibile e
le sue implicazioni, verranno date le seguenti definizioni di complessita di un problema, che sono state
coniate da una branca della teoria della calcolabilita, ovvero la teoria della complessita computazionale.
Tuttavia, viene inizialmente fatta 1’assunzione che, come calcolatore, si stia usando una macchina di
Turing deterministica, capace quindi di produrre, dato lo stesso input, e le stesse istruzioni da compiere,
lo stesso output. La MdT é un calcolatore che va ad utilizzare di un modello matematico, capace di
simulare il processo di calcolo umano, e quindi permettendone la sua scomposizione nei suoi passi



ultimi. La macchina presenta una testina utilizzata per la lettura e una per la scrittura, con le quali &
in grado di leggere e scrivere su un nastro potenzialmente infinito, partizionato, in maniera discreta,
in caselle. Preso un istante di tempo t1, la macchina si trova in un preciso stato interno si, che é dato
dall’elaborazione dei dati letti. Le componenti da considerare sono:

e Numero di cella osservata;
e Il suo contenuto;
e L’istruzione da eseguire;
Gli stati che si possono distinguere sono tre, ovvero:

e Configurazione iniziale, ovvero la configurazione che si ha prima che il programma venga
eseguito, per t = tp;

e Configurazione intermedia, cioé quando si sta per eseguire una specifica istruzione ad un
tempo t = t;;

e Configurazione finale, che si ottiene dopo che il programma ha terminato la sua esecuzione,
per t = t,.

Da cio si puo dedurre che andare ad implementare un algoritmo di tal tipo vuol semplicemente dire
che esso deve essere capace, volta dopo volta, di compiere una delle seguenti operazioni, ad ogni passo:

e Spostarsi di una casella a destra

e Spostarsi di una casella a sinistra

e Scrivere un simbolo, preso da un insieme di simboli a sua disposizione, su una casella
e Cancellare un simbolo gia scritto sulla casella che si sta osservando

e Fermarsi

Andare ad eseguire un’operazione o; tra gli istanti di tempo t1 e to vuol dire passare dallo stato interno
s1 a quello interno sq, interpretabile anche in questo modo: dato {s;,a;,0;,s2}, dove a; va ad indicare
il simbolo osservato dalla macchina, e data I'operazione o1, per un detto istante t; verra eseguita tale
operazione, che portera lo stato interno a cambiare da s; a so.

Le varie tipologie di problema che si possono incontrare sono le seguenti:
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Figura 9: Behnam Esfahbod, CC BY-SA 3.0
https://commons.wikimedia.org/w/index.php?curid=3532181

e Problema P: qualunque problema che, dato un input di dimensione n, possa essere risolto con
un numero di istruzioni polinomiale rispetto all’input stesso, viene definito problema P, ovvero
problema polinomiale;

e Problema NP: in questa definizione rientrano tutti i problemi di tipo polinomiale non determini-
stico, ovvero la macchina utilizzata per risolvere tale problema é non deterministica, implicando,
dato un input ed uno stato iniziale, il possibile ottenimento di molteplici output come risultato.

e Problema NP-completo: Un problema si dice NP-completo se ¢ un problema al quale &
possibile ridurre qualunque altro problema di complessita NP.

Da qui la conclusione che se si potesse risolvere anche uno solo di questi problemi, NP-completo,
in tempo polinomiale, allora tutti i problemi NP che possono essere ridotti al primo potrebbero
essere risolti in tempo polinomiale, rientrando quindi nella categoria dei problemi P.

Al giorno d’oggi non esiste perd nessuna dimostrazione che un problema NP completo possa
essere ridotto ad un problema polinomiale, né é mai stato dimostrato che cid non sia possibile.

e Problema NP-hard: un problema viene definito tale per via della sua difficolta di risoluzione,
che alcune volte supera anche quella di un problema np-completo, difficile gia di per sé. Un
problema NP-hard non é pero detto che sia anche NP-completo, e questo perché i problemi NP-
completi sono l'intersezione tra i problemi NP-hard e quelli NP, e quindi questo significa anche
che non é nemmeno detto che, dato un problema NP-hard, esso sia anche NP.

Per affrontare problemi di tale complessita ci si ¢ spesso ridotti ad approssimare, con una certa
precisione, la soluzione di alcuni problemi NP-hard, rendendo quindi il problema di complessita
polinomiale.

Purtroppo, non solo non esiste alcun algoritmo in grado di approssimare questo problema con una
data precisione, ma ¢é stato anche provato, nel 1992, da Kann [12], che esso appartiene alla famiglia
di problemi per cui vale il principio di complessita di approssimazione. Pertanto, a meno di essere in



grado di provare che la complessita NP sia riducibile a P, anche approssimare queste soluzioni richiede
una complessitd NP. Non essendo quindi possibile approssimare la soluzione al problema del MCS con
una complessitd polinomiale, la maggior parte degli studi, nel corso del tempo, é stata devoluta nel
tentativo di trovare un algoritmo che potesse risolvere tale problema in modi sempre piu efficienti,
andando quindi non pit ad approssimare la soluzione ottimale, ma al contrario andando a ricercarla e
a trovarla.

2.3 Approcci noti

Essendo un problema studiato da parecchio tempo(se ne parla gia dagli anni 70), diversi paradigmi
sono stati sviluppati, portando questo problema ad essere risolto, con I'avanzare del tempo, in modi
diversi e sempre piu efficienti. Tali tipi, che possono essere anche combinati tra di loro, che pitt sono
degni di nota sono i seguenti:

¢ Programmazione a Vincoli

E il metodo pitt semplice, ma che puo presentare i tempi di risoluzione pitt lunghi, poiché & molto
simile ad un approccio brute force. L’idea alla base, infatti, consiste nell’andare a prendere un
insieme di nodi dal primo grafo, e di andare a generare tutte le possibili soluzioni(se si vuole
andare ad enumerarle tutte, altrimenti ci si ferma alla prima soluzione corretta ed ottimale) as-
sociandolo a tutte le possibili permutazioni di nodi del secondo grafo. Una volta giunti a questo
punto, bastera verificare la correttezza delle soluzioni. Per quanto semplice come metodo di riso-
luzione, é molto suscettibile all’aumento del numero di nodi, e cid pud aumentare sensibilmente
il tempo necessario per risolvere il problema.

e Inferenza

La si potrebbe considerare ’evoluzione diretta della programmazione a vincoli. Si basa sull’idea
di andare a ridurre il numero possibile di soluzioni ottenute mediante combinazioni gia dall’i-
nizio, senza quindi che che poi debbano anche essere verificate. Cio viene svolto facendo delle
assunzioni, o sfruttando delle euristiche, che ci permettono di scartare delle combinazioni che
non condurrebbero a soluzioni ottimali. Un esempio semplice di tale tecnica puo essere il seguen-
te: si supponga di avere una soluzione parziale del sottografo comune e di voler aggiungere ad
essa una coppia di vertici. Il semplice conteggio dei nodi appartenenti alla soluzione adiacenti a
ciascuno dei vertici della coppia ci permette di inferire la validita dell’ abbinamento. Se un nodo
selezionato sul primo grafo non ha adiacenze ai nodi appartenenti alla soluzione, esso non potra
mai essere abbinato ad un nodo del secondo grafo adiacente ad uno o pit nodi della soluzione.
Per quanto risulti essere piu efficiente della programmazione a vincoli, si deve comunque tener
conto del costo computazionale che vi é dietro 'applicazione stessa delle inferenze. Infatti, le
implementazioni che si sono rivelate migliori non ricadono tra quelle in grado di rimuovere il
massimo numero di combinazioni, ma quelle che bilanciano al meglio il costo computazionale e
la capacita di pruning dell’approccio.

e Ricerca(Search)

L’idea alla base € che, nonostanze le inferenze che si possono fare, spesso la filtrazione che ne
viene da esse non ¢ sufficiente per trovare una soluzione, o dimostrare che essa non esiste. Si
& quindi costretti a tirare ad indovinare, prendendo una variabile, e forzandola a prendere un
valore tra quelli rimasti nel dominio, sperando che cid possa permettere ulteriori sviluppi, nel

tentativo di trovare la soluzione.

Nel caso in cui, pero, cid non dovesse avvenire, e quindi non si dovesse trovare la soluzione, il
processo viene ripetuto, attuando quindi una ricerca ricorsiva.

Proseguendo con la ricorsione, ci si potra rendere conto che la variabile presa in esame si &
rivelata essere sbagliata, poiché da essa non si genera alcuna soluzione(o non ¢ massima), e si



dovra quindi fare backtracking, oppure essa fara parte della soluzione, e si potra quindi proseguire
ulteriormente.

Ci sono vari tipi di algoritmi, in base al funzionamento di questo paradigma:

— Forward checking

Avviene quando si attuano una ricerca interlacciata e la propagazione dei vincoli in maniera
basilare, sui domini, come gia descritto prima;

— Mantaining arc consistency
Come dice il nome, ad ogni livello di ricerca si cerca di mantenere la consistenza degli archi;

— Conventional backtracking
In questa definizione rientrano gli algoritmi che non conservano i domini e non rileva-
no la mancanza di un valore valido per la variabile, fintanto che non si cerca di fare
un’assegnazione.

Per garantire delle buone prestazioni, é cruciale che l'algoritmo, incentrato sulla propagazione
dei vincoli dei quali fa uso, deve essere capace non solo di capire quando propagare tali vincoli,
ma anche quando deve non guardare a tale vincolo.

e FEuristica

L’idea alla base & che, quando si deve selezionare la prima variabile dalla quale partire, questa
scelta ha un grande peso, poiché, se scelta con criterio e in modo giusto, puo snellire i tempi di
risoluzione del problema in esame. Se essa viene perod scelta male, cid pud comportare dei tempi
di risoluzione parecchio allungati. Esempi di questo tipo di programmazione si possono ritrovare
in Haralick and Elliott [13], che andavano a considerare, e a scegliere, come primo dominio, quello
con i valori piu piccoli, e in McSplit, poiché in esso vi € la possibilita di usare, quando si fa la
scelta del dominio, una tra due differenti euristiche. Viene definita tale perche il risultato che ne
si ottiene ¢ piu dettato dai risultati empirici, ¢ non é quindi detto che la scelta fatta sia la piu
efficiente a livello scientifico.

e Branch and Bound

Nel 1982 McGregor [14] propose di applicare al problema del massimo comune sottografo un
procedimento basato sulla logica branch and bound. Esso si basa su una funzione di bound,
che permette di stimare il massimo risultato raggiungibile proseguendo dallo stato attuale della
ricerca, mentre definisce come ramo ciascun abbinamento di una coppia di nodi. L’approccio si
basa quindi sulla selezione di due nodi e, successivamente, sul calcolo del bound data la soluzione
raggiunta. A questo punto, l'algoritmo ¢ in grado di proseguire, aggiungendo una nuova coppia
di nodi, nel caso in cui il bound calcolato sia superiore alla dimensione finora raggiunta. In caso
contrario, scarta questo ramo della ricerca, eliminando I'ultima selezione di nodi, e cerca una
nuova coppia in grado di produrre un bound pit soddisfacente.

Questo metodo é quello che al giorno d’oggi ha ottenuto il maggiore successo ed é stato poi
raffinato nei lavori di Krissinel e Henrick [15] e in particolar modo nell’algoritmo McSplit di
McCreesh, Prosser e Trimble [16], frutto anche di numerose modifiche negli ultimi anni.

Questo approccio ¢ poi anche stato esteso nella versione k-down, dove il valore del bound &
impostato, all’inizio, esattamente al numero di nodi del grafo piu piccolo dei due. Viene poi
gradualmente decrementato ad ogni iterazione in cui non riesce a trovare una soluzione che
soddisfi quel valore del bound, fino a raggiungere eventualmente la soluzione massima possibile.

Essendo tale valore impostato in base alla grandezza del grafo piu piccolo, questa variante per-
mette di scartare pitt velocemente quei rami che, seppur di dimensione non massima, possiedono
un bound che puo superare la dimensione richiesta, ma senza poterla raggiungere veramente.
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3 Stato dell’arte

Come gia citato in precedenza, McGregor [14] & stato uno dei primi a proporre un algoritmo che si
basasse sulla tecnica del branch e bound. Il ramo rappresenta un possibile abbinamento di nodi, che
viene esteso fintanto che viene soddisfatta una specifica condizione, calcolata dalla funzione di bound:
il valore ritornato da quel ramo deve essere maggiore della massima dimensione raggiunta fino a quel
momento. Questo approccio ha subito varie modifiche, volte a rendere piu efficiente 1'algoritmo: nel
2004, grazie a Krissinel ed Henrick [15], la funzione di ricerca degli abbinamenti ¢ stata migliorata.
Con Vismara e Valery [17], invece, si fanno i primi passi verso la programmazione a vincoli.

Presi due grafi G ed H, il modello che si ritrova qui va ad associare una variabile D, con ogni vertice
v di G. Tale variabile, inoltre, contiene tutti i nodi del grafo H, pit una variabile aggiuntiva L, alla
quale Dy, viene assegnata se v non viene accoppiato a nessun vertice di H.

In caso contrario, D, viene assegnato al vertice di H con il quale vi é stata la corrispondenza.

Ci sono anche dei vincoli sugli archi, in maniera tale da conservare gli archi e non-archi tra i vari vertici
che trovano corrispondenza.

Con Ndiaye e Solnon [18] si fanno ulteriori passi in avanti con la programmazione a vincoli, poiché tutti
i vincoli che sono stati introdotti nel lavoro di Vismara e Valery [17] sono stati sostituiti da un vincolo
globale di completa differenza. Si & operato in questo modo per massimizzare i nodi di G(primo grafo)
assegnati ad H(secondo grafo), a patto che gli abbinamenti siano completamente diversi quando non
assegnati alla variabile speciale 1.

Inoltre, si € visto che, in base alle situazioni poste in esame, diversi vincoli e tecniche possono essere
impiegati per ovviare ad esse, come 'utilizzo di algoritmo di forward-checking per grafi etichettati.
Uno degli sviluppi recenti, e che ha anche subito una serie di modifiche, ¢ il cosiddetto algoritmo
McSplit, lavoro presentato da McCreesh, Trimble e Prosser [16], che riesce ad ottimizzare la replicazione
dei dati e presenta un migliore sistema di backtracking.
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4 Background

Nel capitolo precedente sono stati evidenziati alcuni lavori che hanno avuto come obiettivo quello di
risolvere il problema del massimo comune sottografo, cercando di avere grafi pit grandi, di risolverlo
nel minor tempo possibile, e di ottenere la soluzione piti completa possibile. Tra questi, ’algoritmo
di McCreesh, Trimble e Prosser [16] ¢ quello che, nel corso del tempo, da quando ¢é stato pubblicato,
ha ricevuto maggiore attenzione e successo, ricevendo svariate modifiche e nuove implementazioni, nel
tentativo di rendere la ricerca del MCS piu efficiente. Di seguito, si avra una descrizione dell’algo-
ritmo originale e di quelli successivi, trattando pero in maniera pit corposa solamente RRSplit [19],
argomento di interesse centrale in questa tesi. Tale implementazione, seguendo le linee base del Mc-
Split, ha introdotto altri elementi in modo da ovviare a quelli che possono essere i problemi incontrati
nell’algoritmo precedenti, e da migliorarne le prestazioni.

4.1 McSplit

Questo algoritmo segue i principi della programmazione a vincoli, seguendo 'approccio branch and
bound. McSplit [16] & stato sviluppato da Ciaran Mccreesh, Patrick Prosser, e James Trimble, nel
2017, all’'universita di Glasgow. Tale algoritmo, fonte di studio da parte di vari ricercatori, cosi come
anche oggetto di varie modifiche e nuove implementazioni da parte degli stessi, € oggetto di studio,
insieme ad RRSplit [19], della tesi in questione.

Algoritmo 1 : McSplit, versione seriale
MeSplit(G, H, M, Myest, domains)
if |M| > [Mpest| then
Mbest — ‘M|
end if
bound = calc_bound(domains, M)
if bound < |M| then
return
end if
bd < select _bidomain(domains)
v = find_min_value(bd.left)
remove_vtx_from_left domain(v,bd.left)
for w € bd.right do
remove_vtz(w, bd.right)
M .insert(v, w)
new__domains + filter _bidomains(domains, G, H)
MecSplit(G, Hy M, Myest, new _domains)
M.pop _back()
end for
MeSplit(G, H, M, Myest, domains)

Per rendere piu facile la comprensione, pero, verranno fornite ulteriori definizioni a riguardo:

Definizione 1 : Preso un nodo in un grafo, viene definita classe di adiacenza di quel nodo I’insieme
dei vertici che sono direttamente connessi ad esso mediante arco.

Definizione 2 : Nell’andare a parlare di questo problema, si ricorrera all’utilizzo dell’espressione
dominio. Tale termine verra impiegato per andare a parlare di un insieme di nodi associati fra
loro dalla stessa classe di adiacenza. Andando a considerare il caso del problema con due grafi,
si verra a parlare di bidominio, poiché si avranno due domini(uno per ogni grafo) per ogni classe.
Nel caso di n grafi, si avranno n domini per ogni classe(e.g. n = 3, si avra un tridominio);
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Definizione 3 : I nodi di due grafi che sono associati alla medesima classe di adiacenza sono definiti
compatibili;

Definizione 4 : viene definita soluzione un insieme di n-ple di nodi che siano compatibili, apparte-
nenti a n grafi diversi, e che possono essere abbinati per creare un sottografo comune. Nel caso
di due grafi, le n-ple si riducono a coppie, appartenenti a 2 grafi differenti.

Per poter meglio entrare nel merito dell’algoritmo, verra fornito un esempio a scopo esemplificativo:

Figura 10: Grafo di esempio

Sia dato il seguente grafo. Nell’andare ad utilizzare la definizione di adiacenza sopra data, & possibile
andare a costruire un bidominio per ogni vertice, dove uno dei domini rappresenta i vertici ad esso
adiacenti, mentre ’altro tiene conto dei nodi che invece non lo sono. Seguendo questo principio,
andando a costruire tale bidominio, ed andando a contrassegnare con 1 i vertici adiacenti e con 0 quelli
non adiacenti, per il vertice 1 si avra tale situazione: essendo adiacente ai vertici 2, 4 e 5, tale dominio
di adiacenza, denominato come Dy, conterra tali nodi, quindi D; = {2,4,5}, mentre Dy, che contiene i
nodi che non sono adiacenti al nodo 1, conterra il nodo 3, portando quindi ad avere Dy = {3}. Questo
processo, perod, pud essere espanso, e quindi, tenendo sempre conto del vertice 1, possiamo proseguire
a definire ulteriori classi di adiacenza, ma andando ad aggiungere un altro vertice. Se quindi, in questo
caso, noi scegliamo il vertice 2, le classi di adiacenza e di non adiacenza saranno aggiornate, ma avremo
bisogno di due cifre binarie per andare ad indicare gli ulteriori casi nei quali possiamo incorrere:

e Classe 11: i vertici presenti in tale dominio sono adiacenti sia al vertice 1 che al vertice 2. In
questo caso avremo che D13 = {0};

e Classe 10: tali vertici sono adiacenti al nodo 1, ma non al nodo 2. Nel grafo G, in questo caso,
tale dominio & Dyg= {4,5};

e Classe 01: questa classe va ad indicare tutti i nodi adiacenti al nodo 2, ma non al vertice 1, ed
¢ indicato con Dgi, che comprende il vertice 3 (Do; = {3});

e Classe 00: include i vertici che non sono adiacenti né a al vertice 1, né al vertice 2 (Dgg = {0}).

E quindi chiaro che questo procedimento pud continuare finché sara possibile aggiungere a tale analisi
un altro nodo, ottenendo sempre nuove classi di adiacenza(2Y, con N il numero di nodi presi in esame).
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Figura 11: Grafo G Figura 12: Grafo H

Riprendendo lo stesso grafo di prima, ed accostandolo ad un altro grafo, possiamo eseguire cio che é
stato visto poco prima, ma eseguendo tale analisi in parallelo. Vengono scelti, come vertici di partenza
i nodi 1 per il grafo G, ed A per il grafo H. Come primi domini di adiacenza abbiamo:

e Per il grafo G, D¢, = {2,4,5} e D% = {3};
e Per il grafo H, D!, = {B} e DY, = {C,D,E}.

Ci si rende subito conto che i vertici {2,4,5}, del grafo G, e {B}, del grafo H, sono compatibili, poiché
sono adiacenti, rispettivamente, ai nodi 1 ed A dei loro rispettivi grafi, e quindi appartengono alla
classe di adiacenza D1.

Proseguendo con la mappatura, si decide di andare a prendere un’altra coppia di vertici, ovvero 3 e C,
rispettivamente per i grafi G ed H.

Tale scelta viene fatta perche il vertice 3 appartiene al dominio di cardinalitd minore, ovvero Dy,
mentre il nodo C viene selezionato poiché compatibile con il nodo 3 ed avente I’etichetta minore.
Andando ad estendere la mappatura, i risultati che si ottengono sono i seguenti:

L4 DG11:{27475}7 DGIOZ{@}; DGOI:{®}7 DGOOZ{(Z)};
[ ] DHHZ{B}, DHlol{(Z)}, DH012{®}, DH()()Z{D,E}.

In questo caso é possibile notare come, considerando i domini di adiacenza qui sopra, gli unici vertici
che possono essere presi per espandere la mappatura sono quelli appartenenti a Dq1, ovvero, per G:
{2,4,5}, e per H: {B}, e questo perché essi sono compatibili.

Si procede ulteriormente, prendendo la coppia di vertici {2B}, che andranno a far parte della nuova
mappatura, e quindi espandere 1’eventuale soluzione, che in quell’iterazione é la seguente : {1A,3C,2B}.
Se si vuole ulteriormente proseguire con le analisi, servirebbe esaminare otto classi di adiacenza,
contrassegnate da tre cifre binarie, come 001, 000, etc.

Tale sviluppo si puo estendere fintanto che vi sono domini compatibili, e che permettono quindi di esten-
dere la mappatura, cosi come ¢ anche possibile esplorare i nodi non inizialmente presi in considerazione,
magari scegliendo un altro abbinamento di vertici e cercando di espandere di 1i la soluzione.

Come gia anticipato, McSplit é un algoritmo basato sulla programmazione a vincoli, che sfrutta il
branch-and-bound per risolvere il problema del MCS, e tale algoritmo & anche di natura ricorsiva.
L’algoritmo sfrutta un calcolo del bound per poter determinare se, procedendo ulteriormente, ovvero
prendendo in esame un determinato nodo, esso possa risultare o meno ottimale. Cid viene fatto
sfruttando un sistema di etichette che va a specificare, preso un nodo, la sua adiacenza rispetto ad altri
vertici(un esempio di etichetta puo essere 11, il che andrebbe ad indicare che, presa una determinata
coppia di vertici, appartenente alla soluzione, essi sarebbero entrambi adiacenti ad un insieme di nodi).
Ciascun nodo, appartenenente alla soluzione presa in considerazione, possiede la propria etichetta.
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L’impiego di tale sistema permette una pitt veloce convergenza del bound a valori vicini a quello della
soluzione massima che si otterrebbe nell’esplorazione del ramo, poiché accelera/migliora il processo di
pruning e backtracking nel momento in cui si sta procedendo ad esplorare una soluzione non ottimale.
Di seguito una spiegazione, passo per passo, dell’algoritmo, in maniera piu dettagliata, riprendendo gli
stessi grafi di prima:

Figura 13: Grafo G Figura 14: Grafo H

[1]2]3[4]5] [A|B|C|D[E]

Mediante ricerca in profondita, cid che viene fatto & quello di ricercare, partendo da una coppia di
nodi, un nuovo nodo nel grafo di sinistra tale che, sfruttando le classi di adiacenza, esso trovi un
abbinamento con un nodo del grafo di destra.

Sono stati usati diversi colori per andare ad indicare le diverse etichette binarie incontrate in questo
caso.

Come prima coppia di vertici, presi in modo arbitrario, vengono selezionati i nodi 1 ed A per i loro
rispettivi grafi.

La scelta della prima coppia di nodi avviene perché:

e Non essendo i nodi ancora etichettati, sono tutti compatibili;
e L’algoritmo di McSplit, alla luce di cio, seleziona i nodi con le etichette minori;

Un’ulteriore considerazione che si puo fare all’inizio é che il bound dei due grafi coincide con il numero
di vertici del grafo piu piccolo, e questo perché, senza aver esplorato i due grafi, & plausibile che il
massimo comune sottografo possa coincidere con il grafo con meno nodi.

Una volta selezionata la coppia di vertici, {1A}, si procede con la definizione dei loro domini, ovvero
le classi di adiacenza.

Inodi1ed A, nel passaggio successivo, sono stati scambiati di posto con I'ultimo elemento ed evidenziati
di verde, poiché facenti parte della soluzione parziale, e quindi, per ora, non devono essere piil presi in
considerazione.

I domini contenenti i vertici adiacenti ai nodi "di partenza" sono stati evidenziati con il colore blu,
mentre quelli non adiacenti con il colore rosso. Da cid emerge che, nel grafo G, il dominio piut piccolo
& composto dal singolo nodo non adiacente al nodo 1, ovvero 3, mentre nel grafo H cio coincide con
I'unico vertice che, invece, é adiacente ad A.
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Arrivati a questo punto, viene fatto il calcolo del bound, che viene cosi eseguito: si tiene conto del
numero di vertici che sono gia stati selezionati e che fanno parte della soluzione parziale(1, per ora).
Ad esso si sommano le cardinalita dei domini piil piccoli, presi dai rispettivi grafi G ed H(D%; e DYy,
poiché entrambi hanno un solo elemento).

In questo caso, quindi, il bound ora é uguale a 3, e questo significa che la soluzione massima puo avere
3 nodi.

Si procede ulteriormente con I’analisi, e si seleziona il dominio pit piccolo del grafo di sinistra, che in
questo caso, essendo costituito da un solo elemento, corrisponde con lo scegliere il nodo 3.

Vi sono dei vertici che sono compatibili con il nodo 3, e tra questi viene preso quello con ’etichetta
minore, e da qui si ha, come nuova coppia di vertici da aggiungere alla mappatura, la coppia {3,C}.
Vengono quindi a definite nuovamente le classi di adiacenza(che ora sono quattro), e con il colore
arancione sono indicati gli elementi appartenenti a D17 (elementi adiacenti ad entrambi i vertici della
mappatura), mentre con il rosa gli elementi appartenenti a Dgg(che non sono adiacenti né all’'uno né
all’altro nodo).

E da notare come, in questo specifico caso, si ¢ arrivati ad un punto dove le classi di adiacenza Dg; e
D1 non presentano alcun elemento, anche se, con altri grafi presi in considerazione, tale cosa potrebbe
non avvenire.

Inoltre, ci si accorge anche che, sebbene il grafo H presenti il dominio Dgg non vuoto, esso non trova
corrispondenza nel grafo G. Questo significa che, nella selezione della prossima coppia di nodi per
estendere la mappatura, i nodi D ed E sono automaticamente scartati, lasciando come unica opzione
valida il nodo B, poiché compatibile con i nodi del grafo G, ovvero 2,4,5.

Andando nuovamente a calcolare il bound, esso rimane ancora uguale a 3, e questo vuol dire che la
soluzione massima sara composta da 3 nodi.

Selezionando quindi la coppia di vertici 2 e B, ci si rende conto che la soluzione non puo piu espandersi,
poicheé si vengono a formare dei domini incompatibili tra loro, portando quindi il bound ad avere lo
stesso valore della dimensione della soluzione.

Non ha piu senso ricorrere ulteriormente, ma ¢ possibile, facendo backtracking, cercare di scartare
una parte della soluzione parziale, nel tentativo di trovare una soluzione pit grande. E possibile, per
esempio, considerare una coppia di vertici diversa da {1A} come coppia di partenza.

L’algoritmo, essendo ricorsivo, permette, ad ogni chiamata ricorsiva, di aggiornare, o comunque con-
servare, dei dati che sono cruciali per procedere ulteriormente con la ricerca della soluzione. Tali dati,
presenti nella struct Bidomain, sono:

e La posizione iniziale del dominio del grafo di destra;

e La posizione iniziale del dominio del grafo di sinistra;

La lunghezza del dominio del grafo di sinistra;

Le lunghezza del dominio del grafo di destra;

e Adiacenza o meno rispetto all’ultimo nodo selezionato.

Vengono utilizzate "solo" queste informazioni perché, come mostrato nell’immagine di sopra, cio che
accade é che, prendendo i nodi all’interno dei vettori, essi, appartenendo ad un dominio, vengono
ordinati in modo tale da avere tutti i vertici della stessa classe di adiacenza adiacenti tra di loro.
Ogni riordinamento successivo ad esso verra fatto solo con l'intento di riordinare i nodi all’interno delle
stesse classi di adiacenza.

Tale scelta, quindi, ha il vantaggio di usare meno memoria ed una rappresentazione pitt compatta dei
vari domini.

Tale algoritmo, inoltre, pud supportare anche il multi-threading.

Questo viene fatto perche McSplit, di per sé, si presta bene al parallelismo, seppur con un caveat:
I’algoritmo, arrivato ad un certo punto dell’esplorazione di un ramo, fa una singola copia delle strutture
dati, salvando quindi lo stato attuale, in quella ricorsione, e le passa ad un helper thread, cosi che,

16



mentre il main thread prosegue nell’esplorazione del ramo, ’helper thread, invece, esplora un differente
ramo.

Algoritmo 2 : McSplit, versione parallela
MeSplit(G, H, M, Myest, domains)
if |[M| > [Mpest| then
Mbcst — ‘M|
end if
bound = cale__bound(domains, M)
if bound < |M| then
return
end if
bd < select _bidomain(domains)
if M.size() <5 then
MecSplit_par(G, Hy M, Myest, domains)
end if
v = find_min_value(bd.left)
remove_vtx_from_left domain(v,bd.left)
for w € bd.right do
remove_ vtz (w, bd.right)
M.insert(v, w)
new _domains < filter _bidomains(domains, G, H)
MeSplit(G, Hy M, Myest, new__domains)
M.pop _back()
end for
MeSplit(G, H, M, Myest, domains)

Figura 15: Esempio di ramificazione di McSplit

Prendendo in esame la figura 15, rappresentante una possibile ramificazione ottenuta dall’algoritmo,
vengono evidenziati con il colore rosso gli elementi necessari per garantire che la soluzione trovata sia
massima. Tra questi, ’elemento che presenta il simbolo * va ad indicare che, esplorando tale ramo, ¢
possibile trovare la soluzione in maniera ottimale.

Con ’azzurro, invece, vengono indicati tutti gli elementi che non devono essere esplorati se la soluzione
massima € gia stata trovata, e che quindi é desiderabile evitare per quanto possibile.

Per rendere efficace il parallelismo, ogni volta che I’helper thread sta per processare dei dati futuri
nel loop foreach, fa una copia della copia di tali dati, e riparte con il loop foreach, evitando pero le
ricorsioni che sono gia state fatte. Tale parallelismo é stato limitato ad una profondita di 5, oltre la
quale si procede con una ricerca senza andare pill a copiare i dati.

Essendo questo algoritmo molto incentrato sul backtracking, ed usando strutture dati locali, ’anda-
re a copiare i dati senza alcun criterio porterebbe ad un significativo rallentamento dell’algoritmo,
risultando, quindi, pitt in un peggioramento delle prestazioni, che in un loro miglioramento.
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Figura 16: Vantaggi e svantaggi della parallelizzazione

Tuttavia, non é sempre garantito che, utilizzando tale paradigma di programmazione, si ottenga sempre
un miglioramento delle prestazioni, ed in genere, i casi che si possono presentare sono i seguenti:

Linear speedup: Avviene generalmente quando si va incontro a dei rami non eliminabili che
devono essere necessariamente esplorati, per poter cosi garantire la massimalita della soluzione,
e il lavoro viene diviso in parti pit o meno uguali;

No speedup: Succede quando i thread esplorano dei rami che non conducono alla soluzione
ottimale, e quindi evitabili;

Superlinear speedup: Accade quando un thread trova la soluzione ottima prima che sia trovata
nella run sequenziale, portando vari rami evitabili ad essere scartati nelle run parallele;

Slowdown: Puo succedere, come caso limite, quando, cercando di esplorare i vari rami, cio che
accade é che il main thread, nel trovare la soluzione ottima, va a replicare e passare i dati agli
helper thread. Tuttavia, questi non fanno altro che scartare immediatamente il ramo, portando
quindi ad uno spreco di tempo.

Un’ulteriore precisazione che va fatta é che generalmente questo tipo di problema porta ad avere
dei rami sbilanciati, condizione che pud comportare il rallentamento, anche significativo, dell’intero
processo. Questo accade percheé, se & vero che alcuni thread hanno gia terminato ’esplorazione dei
rami ai quali erano stati incaricati, € sufficiente che uno di questi sia ancora in esecuzione, perché sta
ancora esplorando un ramo particolarmente grande, per far "stallare" il tutto.

4.2

Versioni successive

In questa sezione verranno introdotti, seppur in maniera abbastanza concisa, i lavori che hanno portato
alla creazione di algoritmi che, seppur poggianti sul codice di McCreesh, presentano delle migliorie.
Da notare: in questi lavori, eccettuato RRSplit, é sempre stato presente un gruppo di persone che ha
lavorato dietro a ciascuno di questi algoritmi.
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4.2.1 MecSplit-RL

Il primo lavoro, volto a modificare ’algoritmo sviluppato da McCresh, preservandone pero le sue
funzionalita di base, ¢é il cosiddetto McSplit-RL [20].

Tale implementazione, prendendo le basi di McSplit, ed in particolar modo le euristiche che vengono
utilizzate, si pone come obbiettivo quello di raggiungere, il pitt velocemente possibile, le foglie di un
albero(ovvero, quei nodi sui quali non & piu possible ricorrere ulteriormente), e lo fa sfruttando i
principi del reinforcement learning.

L’algoritmo di branch-and-bound viene considerato una sorta di agente, ed ogni volta che esso compie
una scelta di branching, riceve una ricompensa commisurata ai benefici ottenuti da tale scelta, con lo
scopo di ridurre quanto piu possibile lo spazio di ricerca.

Tale scelta, inoltre, avra un punteggio(score) che dipende dalla somma delle ricompense ottenute con
le scelte precedenti.

E dunque chiaro che I’agente, nel momento in cui si trova ad un punto di branching, andra a compiere
la scelta associata al maggior punteggio.

4.2.2 McSplit-LL

Uscito nel 2022, MeSplit-LL [21] si presenta come il successore di McSplit-RL, poiché prende dei
concetti in esso gia presenti, come quello di score, seppur vengano qui migliorati.

Vengono introdotti due parametri, ovvero 'LSM(Long-Short Memory) e il LUM(Leaf vertex Union
Match). 11 primo parametro mantiene un punteggio per il nodo dal quale parte la ramificazione, usando
la ricompensa a breve termine di ogni nodo presente nel primo grafo e la ricompensa a lungo termine di
ogni coppia di nodo di entrambi i vertici. In questo modo & possibile attuare un pruning decisamente
piu efficace rispetto agli algoritmi precedenti.

Il LUM, invece, viene impiegato per accoppiare i nodi leaf connessi con quelli attualmente gia accop-
piati, portando anche qui un miglioramento delle prestazioni.

Uno dei motivi che ha portato alla creazione di tale algoritmo risiede in un "difetto" presente in McSplit-
RL: con Paumentare delle ricorsioni, i punteggi accumulati soffrivano di bias a causa di differenti
configurazioni attuali rispetto a quelli "storici", ovvero parecchio precedenti, che vengono qui risolti
tramite PLSM.

4.2.3 McSplit-DAL

Un altro lavoro da annoverare ¢ quello che ha portato alla creazione di McSplit-DAL [22].

11 fulcro di questo lavoro é che, mentre McSplit-RL e McSplit-LL concentrano i loro sforzi unicamente
sulla riduzione dell'upper bound via branching, quest’algoritmo tiene in considerazione anche quanto
un grafo venga realmente esemplificato per via di quel branching.

Inoltre, viene anche proposta una strategia di selezione del vertice ibrida, che si basa sul valore ottenuto
da una funzione, si da diversificare la ricerca. Facendo cosi, & quindi possibile applicare il branching
in maniera alternata, basandosi sui valori ritornati da queste funzioni.

4.2.4 RRSplit

Sviluppato nel 2025, tale algoritmo, oggetto di speciali attenzioni in questa tesi, introduce dei concetti
volti a scartare dei rami di ricerca che o porterebbero a soluzioni duplicate, e quindi inutili da esplorare,
oppure a soluzioni non ottimali, e quindi scartate a priori, prima di un’ulteriore ricorsione ridondante.
Nel corso della trattazione verranno usati delle notazioni che, per dovere di chiarezza, verranno qui
enunciati:

B: Si riferisce ad un ramo della ricorsione, che presentera una configurazione determinata dagli

elementi (S, C, D);

S: Fa riferimento al sottografo comune che, nello specifico ramo B, costituisce la soluzione parziale;
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C:

D:

P(C):

Con tale lettera vengono denominate le coppie di vertici che fanno parte del Candidate set, ovvero
possono essere ancora prese in considerazione per poter essere aggiunte alla soluzione parziale .S}

Denominata anche FEzxclusion set, é la struttura dati incaricata di salvare, ad ogni ramo della
ricorsione B, le coppie di vertici che, a differenza di quelle € C, non possono essere incluse in S}

Fa riferimento a {X; x Y;|1 < i < ¢}, ovvero ai sottoinsiemi del Candidate set, al quale & stata
applicata tale criterio di riduzione, gia presente in McSplit [16]:

Sia dato un ramo (5, C). Una coppia di vertici < v,w >€ C non puo formare alcun sottografo

comune con S se esiste una coppia di nodi

< v, w’ >€ S tale che v e w siano, allo stesso tempo, adiacenti o non adiacenti rispettivamente
!/ /

av ew.

Le riduzioni applicate nel lavoro di RRSplit sono le seguenti:

Vertex- Equivalence-based Reduction: L’idea alla base di tale riduzione si basa sul seguente caso:

presi due massimi comuni sottografi< g,h,¢ > e < ¢, b/, ¢’ > dei due grafi G ed H, vengono
definiti cs-isomorfi se g & isomorfo a ¢'(o, in maniera equivalente, h & isomorfo ad h’).

Poicheé tali sottografi comuni, definiti cs-isomorfi, condividono le stesse informazioni strutturali,

é chiaro che andare ad esplorarli tutti porta solo ad uno spreco di tempo. Quindi, se & stato
trovato, esplorando un ramo, uno di questi sottografi < g, h,¢ >, esso potra essere ignorato se
esiste < ¢’, b/, ¢’ > che soddisfa tali condizioni:

Condizione 1 < ¢',h/, ¢’ > & cs-isomorfo a < g, h, ¢ >;

Condizione 2 < ¢’,h/, ¢’ > ¢ stato gia trovato prima;
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Figura 17: Sottografo G

Figura 18: Sottografo H

()

Figura 19: Sottografo H; Figura 20: Sottografo Hy

Sia dato il seguente esempio: siano presi i grafi in figura 17 18 19 e 20. Alcuni dei loro vertici
sono evidenziati come facenti parte della soluzione, e sono distinti con colori diversi. E possibile
notare che alcune di queste configurazioni, riguardante il grafo H, presentano dei vertici che sono
strutturalmente equivalenti. Esplorare ciascuna di queste soluzioni ¢ quindi ridondante e porta
solo a consumo inutile di tempo.

Presa una coppia di vertici < v,w >, appartenenti al grafo G, essi vengono definiti struttu-
ralmente equivalenti, e vengono indicati come v ~ w, se Yo' € Vg, (v,v") € Eg < (w,v') €
Eg.

Vengano esaminati, per esempio, le figure 18 e 19, rappresentanti, rispettivamente, < g, h, ¢ > e
< g,h1,¢1 >, ovvero due delle possibili configurazioni isomorfe che si possono ottenere dal grafo
G e dal grafo H qui considerati. E possibile notare che, esaminando i vertici {1,2} dei sottografi
in figura 18 e 19, colorati in maniera alterna con i colori verde e viola, essi sono strutturalmente
equivalenti. Nell’andare quindi ad esplorare lo spazio delle soluzioni, € sufficiente considerare
solo una tra le due mappature qui presenti.

Lo stesso vale per i sottografi in figura 19 e 20 poiché, anche in questo caso, presi i vertici {4, 5, 6},
essi sono strutturalmente equivalenti, rendendo quindi le mappature < g, h1,p1 > e < g, ha, ¢o >
cs-isomorfe.

Basandoci dunque su questa definizione di vertici strutturalmente equivalenti, ¢ quindi possibile
andare a partizionare il grafo G in classi di equivalenza, dove essa, per il vertice v € Vg, viene
definita come tale: ¥(v) := {v' € Vg|v' ~v}.

Basandoci quindi sulla Verter Fquivalence, & possibile andare a riconoscere diversi sottografi
comuni che sono cs-isomorfi a quello dato da g, h, andando seplicemente a sostituire un vertice
€ Vg con uno che é strutturalmente equivalente.

Considerando v € Vg e un vertice che ne ¢ strutturalmente equivalente veq € ¥(v), & possibile
ottenere un sottografo comune cs-isomorfo in due casi:
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e Se voq € V@, diventa possibile scambiare i vertici mappati di v e veq, sostituendo quindi
<0, 0(V) > e < Veq, P(Veq) > con < U, P(Veq) > € < Veq, 9(V) >;

o Altrimenti, si rimpiazza < v, ¢(v) > con < veq, ¢(v) >, ovvero si sostituisce v con veq;

Da qui, si ha la formulazione del seguente lemma:

Lemma 1 Sia S =< g,h,¢ > un sottografo comune dei grafi G ed H, conv € Vg ev' € ¥(v).
Si verifichera uno dei sequenti casi:

Caso 1: v/ € V.5 = S\{< v,phi(v) >, < v, ¢(v") >tU{< v,p(v") >, < v, p(v) >} & un sottografo
comune cs-isomorfo a S;

Caso 2: v/ ¢ V.S =S\ {<v,¢) >U{<v, é(v) >} & un sottografo comune cs-isomorfo a S.

Per verificare che un sottografo comune cs-isomorfo é gia stato trovato in precedenza, viene
introdotta una nuova struttura dati, che viene definita exclusion set D. Essa viene aggiornata ad
ogni ricorsione, man mano che si procede nei vari rami di ricerca, cosi che ogni ramo viene cosi
indicato con (S,C, D). Ad essere specifici, in D sono presenti tutte le coppie di vertici che sono
gia state selezionate come facenti parte della soluzione parziale, e che quindi non devono essere
inclusi nei sottografi all’interno del ramo in considerazione.

Inizializzato vuoto, (dati (S, C, D), all’inizio esso sara (), Vg x Vg, 0)) ad ogni ricorsione, preso il
sotto-ramo B' = (S',C', D") che si forma con l'inclusione di < v,w' > in S, per il primo gruppo
si avra D' = DU {< v,w! >, <v,w? >, ... <v,w"! >}

Per il secondo gruppo, invece, dove si forma il sotto-ramo (S’,C’, D’), si avra D' = D.

Sia preso in considerazione un ramo (S,C, D) ed una coppia di vertici < v',w’ >€ D. Esiste
un antenato di tale ramo, indicato come (Sanc, Cancs Danc), dove v’ & stato preso come vertice
di branching. Questo porta quindi < v/, w’ > a non essere ancora presente in D, fintanto che
non si crea B, portando cosi ad avere D’y = Dane U {v/, w'}.

In questo modo, ciascun sottografo comune all’interno di B’,,., che contengono < v/, w’ >, sono
gia stati prima di giungere al ramo (S, C, D).

Da qui ¢é ora possibile sviluppare le riduzioni: si consideri il processo di ramificazione di un ramo
definito come (S =< g¢,h,¢ >,C,D) con X xY € P(C), e con v e X presi come vertice e
sottoinsieme di branching.

Riduzione al primo gruppo Si considera un sotto-ramo formato al primo gruppo includendo
<w,w >:w €Y, con ogni sottografo Sgyp che dovra includere tale coppia di vertici.
Tuttavia, se esiste una coppia di vertici < veq, w >€ D tale che veq € ¥(v), il ramo pud
essere scartato, poiché le condizioni 1 e 2 sono state soddisfatte.

Riduzione al secondo gruppo In questo caso, il vertice v viene escluso dalla selezione, por-
tando quindi ogni Ssub = (gsub, Asubs Psub) che si trova nel sotto-ramo ad escludere tale
vertice.

Se in Sgup si trova un vertice veq € C \ v, ma & comunque strutturalmente equivalente a v
le condizioni 1 e 2 sono soddisfatte, e quindi si puod scartare tale sotto-ramo.

Mazimality-based Reduction: Come il nome gia lascia intendere, questo tipo di riduzione si occupa
di rimuovere tutti i rami che, se esplorati, porterebbero ad una soluzione non massima. L’idea
sulla quale poggia questa riduzione é la seguente: andando ad esplorare un determinato ramo
di una ricorsione, esistera, per quello stesso ramo, una coppia di nodi < v,w > che deve essere
contenuta affinché la massimalita della soluzione sia garantita.

Da qui, & possibile quindi proseguire con ’esplorazione del sotto-ramo SU{< v,w >}, C\v\w, che
va ad escludere tale coppia di vertici v, w dal candidate set, aggiungendola quindi alla soluzione
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parziale, per garantire la massimalita della soluzione. Andare invece ad esplorare tutti i rami
che non includono tale coppia di vertici né nella soluzione parziale, né nel candidate set, significa
automaticamente esplorare delle soluzioni non massime per quel ramo di ricorsione, sprecando
quindi tempo.

E possibile quindi dire che esiste un sottografo comune, e che & il piit grande, Sopt € B tale per
cui Sopy contenga necessariamente una coppia di vertici < v,w >€ C, se per ogni sottoinsieme
X x Y all'interno di P(C) v e w sono, allo stesso tempo, adiacenti o non adiacenti a tutti gli
altri vertici presenti in X e Y rispettivamente.

VX xY e P(C): (N(v,X)=X\{v}ANw,Y)=Y\{w})V(N(v,X)=0ANw,Y)=10) (1)
Di qui il seguente lemma:

Lemma 2 Sia B = (S,C,D) un ramo e < v,w > una coppia di vertici € C che soddisfa
lequazione 1. Esiste un sottografo comune pit grande, denominato come S,p: nel ramo B tale
da contenere < v,w >.

Vertex- Equivalence-based Upper Bound: Se si considera un ramo della ricorsione, ed il massimo
comune sottografo in esso trovato(indicato con S’), & possibile terminare in anticipo la ricorsione
se 'upper bound sulla dimensione del sottografo comune ¢ minore o uguale a quella di S’.

Piu 'upper bound ¢ stringente, maggiore ¢ il numero di rami che si possono eliminare dalla
ricerca, risparmando quindi tempo.

Andando a considerare un sottografo comune Sgy, trovato nel ramo B = (S,C,D) ed un
sottoinsieme X x Y € P(C), si puo andare a fare la seguente formulazione:

|Ssub| NX xY < ubxy = mm{|X|, |Y|} (2)

Questo perche, se fosse altrimenti, un sottografo comune andrebbe a contenere due coppie di
vertici distinte < v,w > e < v/,w’ >. Cid porterebbe quindi uno dei due vertici, tra v e w,
ad essere uguale a v’ o w’, rispettivamente, violando cosi la definizione di funzione biunivoca.
Quindi, ubx vy é I'upper bound del numero di coppie di candidati che rientrano in X x Y e sono
presenti in un sottografo comune che si ritrova al ramo B = (S, C, D).

Inoltre, poiche tutti i sottoinsiemi in P(C) sono disgiunti, I'upper bound del ramo (5, C, D) sara
come segue:

|Sun| Subsc =S|+ > ubxy (3)
XxY€EP(C)

Le motivazioni che hanno indotto gli autori di RRSplit ad attuare tale riduzioni risiedono nel
fatto che tale upper bound ubx y non sarebbe abbastanza stringente.

Inoltre, presa una coppia di vertici < v,w >€ C, se esiste una coppia di nodi < v/, w >€ D :
v' = U(v), ogni sottografo comune trovato in (S,C, D) non pud includere < v,w >, portando
tale coppia di vertici ad essere rimossa da C'.

Da qui, quindi, il nuovo upper bound:

Si considera, per prima cosa, il sottoinsieme X x Y € P(C') e un vertice, scelto in maniera
arbitraria, v € X, e si partizionano X e Y come segue:

XL:XH\I/(U)7XR:X\XL (4)

YL ={w|<v,w>€ D e€¥(v)},YrR =Y \YL (5)
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In X1, appaiono tutti i vertici in X strutturalmente equivalenti a v, mentre Y1, contiene i vertici
w €Y che appaiono in una coppia di nodi < v, w >€ D : v' € ¥(v).

Da qui é possibile partizionare X x Y in X1, x Yy, X1, x Yr, Xr X Y, XRr X YR, ed & anche
possibile scartare tutte le coppie di vertici che si ritrovano nel partizionamento X, x Y7,.

Inoltre, Squp, contiene al piat min{|Xg|,|Y|} coppie di vertici nelle partizioni Xg x Y, e Xg x YR.
Se fosse altrimenti cido equivarrebbe ad ammettere ’esistenza di un vertice presente in Xg UY
che apparirebbe in due coppie di vertici distinti in Sg,1, portando quindi Sg,;, a non essere un
sottografo comune.

Procedendo allo stesso modo, é chiaro che S}, contiene, al pii,
min{|Xvl|,|Yr|, maz{]Y| — |XRr|,0}} coppie di nodi prese dalla partizione X, x Yy.

Ssub, quindi, contiene non pit di ub(x, y,py coppie di vertici da X x Y, con

ubx vy p := min{|Xg|, [Y[} + min{|Xv|, [Yr|, maz{[Y] - | Xr|,0}} (6)

E possibile quindi andare a definire il nuovo upper bound, riguardante perd un qualunque ramo
(S,C, D), ed esso, indicato come ubg c,p viene definito in questo modo:

|Ssub| < ubs,cp = |S] + Z ubx vy, p (7)
XxYEP(C)

Prendendo in esame il codice originale di RRSplit, ci sono degli elementi aggiuntivi, rispetto a McSplit,
che vengono adoperati per poter applicare le riduzioni viste nel capitolo precedente.
Essi sono:

EqClass E un vettore, che ha come dimensione il numero di nodi del grafo G, ed ha al suo interno
gli indici dei nodi stessi di quest’ultimo.

Supponendo che G abbia dimensione 20, dentro EqClass avremo disposti, in maniera ordinata,
dei numeri che vanno da 0 a 19, rappresentanti gli indici del grafo stesso.

Tale vettore viene utilizzato per la definizione di un upper bound piu stringente rispetto a quello
presente su McSplit, e rimane, nel corso delle iterazioni, invariato.

Inoltre, esso ha anche uno scope globale, ovvero puo essere acceduto da qualunque funzione,
senza la necessita di passarlo come argomento della funzione stessa;

index right I anch’esso un vettore, che peré ha come dimensione il numero dei nodi del grafo H,
ma presenta anch’esso gli indici degli stessi.

11 suo scopo & quello di andare a definire delle nuove partizioni, nel momento in cui si debbano
filtrare i vari bidomini, mettendo in campo la vertez-equivalence-based reduction.

A differenza di EqClass, questo vettore va incontro a modifiche, piti nel preciso subisce una serie
di scambi di posizione degli elementi che lo compongono.

Come per EqClass, anche index right ha uno scope globale.

best match E una variabile booleana che ¢ utilizzata per implementare la mazimality-based-reduction.
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Algoritmo 3 : RRSplit, versione seriale
RRSplit(G, H, M, M yest, domains)
if |M| > [Mpest| then

Mbest — ‘M|

end if

if EqClass_new_upper bound < |Mypest| then
return

end if

bd < select _bidomain(domains)
v = find_min_value(bd.left)
remove_ vtz from_left domain(v,bd.left)
best _match = false
for w € bd.right do
remove_vtz(w, bd.right)
swap(index _right|w],index _right[right[bd.right + bd.right len]])
M .insert(v, w)
new_domains «+ filter _bidomains(domains, G, H,best _match)
RRSplit(G, H, M, M pest, new _domains)
M.pop_back()
if best _match == true V bound < |Mypest| then
return
end if
end for
Refine candidate set by removing ¥,

RRSplit(G, H, M, M yest, domains)

Come ¢ gia possibile evincere dall’algoritmo 3, tali modifiche vengono utilizzate principalmente per
evitare che vengano fatte iterazioni inutili su rami che porterebbero o a soluzioni duplicate, oppure di
non massima dimensione.
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5 RRSplit parallelo, implementazione CPU

In questo capitolo verranno discusse tutte le modifiche e le aggiunte che sono state applicate ad RRSplit,
su CPU, in modo tale che esso possa supportare il multi-threading.

Questa sezione é divisa in due sottosezioni: nella prima vengono mostrate le modifiche al codice che
sono state fatte ad RRSplit, per poter supportare il multi-threading, nella seconda invece si metteranno
in evidenza alcune problematiche riscontrate nell’andare a compiere questo lavoro.

5.1 Implementazione parallela

Nell’andare a sviluppare tale codice, sono stati adoperati gli schemi di parallelismo presenti nel lavoro
parallelo di McCreesh, andando perd a fare delle aggiunte necessarie per permettere I'utilizzo delle
variabili che sono state aggiunte in RRSplit.

Algoritmo 4 : RRSplit, versione parallela
RRSplit(G, H, M, M yest, domains, index _right)
if |[M| > |[Mpest| then

Mbest — ‘M|

end if

if EqClass_new_upper _bound < |Mypest| then
return

end if

bd < select _bidomain(domains)
if M.size() <5 then
RRSplit_par(G, H, M, M s, domains, index__right)
end if
v = find_min_value(bd.left)
remove_vtx_from_left domain(v,bd.left)
best _match = false
for w € bd.right do
remove_ vtz (w, bd.right)
swap(index _right{w],index _right[right[bd.right + bd.right _len]])
M .insert(v, w)
new _domains < filter _bidomains(domains, G, H,best _match,index _right)
RRSplit(G, H, M, M pest, new _domains)
M.pop _back()
if best_match == true V bound < |Mpest| then
return
end if
end for
Refine candidate set by removing V¥,
RRSplit(G, H, M, M yest, domains, index _right)

Tra queste, la prima sostanziale modifica consiste nel non andare pit a dichiarare index right come
vettore globale.

Tale scelta é stata fatta perché inizialmente, come approccio risolutivo, per evitare che il vettore venisse
modificato in maniera errata, si era tentato di usare i mutex per garantire ’atomicita degli swap.
Seppur formalmente corretto pero, tale strategia risolutiva risultava essere estremamente inefficiente,
portando quindi a valutare un differente tipo di strategia.

Una differente implementazione, che ¢é risultata essere anche quella definitiva, ¢ stata quella di andare
a dichiarare ed inizializzare, all’interno del main, tale vettore, per poi procedere in tal modo:
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e Tale vettore viene passato all’interno delle varie funzioni, ovvero mcs, solve e solve nopar, fil-
ter _domains e le varie funzioni di partition, e questo perché tali funzioni, che prima potevano
accedervici senza che I’argomento venisse loro passato, ora non possono piu farlo;

e Ciascun thread opera con la propria copia di index right, che inizialmente & uguale per tutti, e
prosegue nel proprio ramo della ricerca;

e Ogni volta che si deve proseguire in un sotto-ramo della ricerca, il vettore viene passato by
reference. Questo permette non solo la modifica e la sua propagazione in avanti, ma anche
che tali modifiche si possano propagare all’indietro, nel momento in cui fosse necessario fare
backtracking, emulando cosi fedelmente il comportamento della versione seriale;

e Avendo ciascun thread la propria copia di index right, non € pit necessario applicare schemi di
mutua esclusione, poiché ciascuno di essi modifichera la propria versione del vettore, evitando
quindi problemi di concorrenza, e permettendo anche di mantenere il codice veloce.

Un’ulteriore modifica & stata anche implementata sulla porzione di codice atta alla definizione del
nuovo upper bound: utilizzando una variabile inc_size, che viene inizializzata a zero nella funzione
mecs, per poi venir propagata per ciascun ramo della ricerca, tale variabile, nel momento in cui si
verifica la condizione incumbent.size() < current.size(), verra modificata, e assumera come valore
incumbent.size().

Essa viene usata come indice di partenza all’interno del primo loop, e questo perché nell’implementa-
zione originale vengono esaminate tutte le tuple della soluzione parziale, risultando in una perdita di
tempo.

Usando invece inc_size come indice di partenza per andare a controllare solo le tuple che sono state
recentemente inserite, & possibile ridurre il numero di cicli che tale loop deve eseguire, riducendo cosi
anche il tempo impiegato.

for(vtxpair & a:current){
if(EqClass[a.v]==EqClass[v]&&w<a.w) w=a.w;

¥

Figura 21: Vecchio loop per il ritrovamento di vertici strutturalmente equivalenti, per definire il nuovo
upper bound

for(int 1 = incumbent size; i < current.size(); i++){
if(EqClass[current[i].v] == EqClass[v] && w < current[i].w)
w = current[i].w;

Figura 22: Nuovo loop per il ritrovamento di vertici strutturalmente equivalenti, per definire il nuovo
upper bound

Per quanto riguarda la variabile best _match, non sono state apportate modifiche alla sua implementa-
zione poiché, essendo tale variabile gia dichiarata all’interno della funzione solve, la sua trasposizione
in un ambiente parallelo non necessitava di modifiche.

A scopo di analisi, sono state utilizzate alcune variabili globali, che perd non hanno alcuna finalita
concernente il miglioramento delle prestazioni del codice, e sono:

solution time viene utilizzata per tracciare il tempo necessario per il ritrovamento del primo mas-
simo comune sottografo.
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Ogni volta che incumbent.size() < current.size(), in tale variabile viene salvato il tempo che
& stato impiegato per raggiungere tale soluzione parziale, e solamente nel momento in cui essa
viene ingrandita potra essere modificato;

max_sol iter él'equivalente disolution_ time, ma per le iterazioni, e il suo funzionamento ¢ analogo;

bool update(unsigned v, unsigned long long iterations){
while(true){
unsigned cur_v = value.load(std::memory order seq cst);
if(v > cur_v){
if(value.compare exchange strong(cur v, v,
std: :memory order_seq_cst)){
solution time = steady clock::now();
max_sol iter = iterations;
return true;
¥
¥

else
return false;

Figura 23: Esempio di aggiornamento del tempo e del numero di iterazioni per la prima soluzione
massima
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cuts questa variabile viene usata per evidenziare il numero di volte in cui la porzione di codice, che
definisce il nuovo upper bound, innesca il pruning, portando all’uscita anticipata da quel ramo
di ricerca, ed evitando quindi ricorsioni inutili.

if(w>e){
int count left=8, count right=e;
for (int i=bd.left len; i»=8; --i)
if(eqClass[left[bd.1+i]]==EqClass[v]) count left++;
for (int i=bd.right len; i»>=0; --1i)
if(right[bd.r+i]>w) count_right++;
if(bd.left len<=bd.right len && count left>count right){
if(bound+count right-count left<=incumbent.size()){
cuts++;
return;
}
}
if(bd.left len>bd.right len &&
(bd.right len-count_right)>(bd.left len-count left)){
if(bound+(bd.left len-count left)-
(bd.right len-count _right)<=incumbent.size()){
cuts++;
return;

Figura 24: Esempio di utilizzo della variabile cuts all’interno dei cicli di definizione del nuovo upper
bound
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5.2 Problematiche riscontrate
Nell’andare a fare le run per poter determinare quanto prestante fosse il codice, ci si é resi conto che

RRSplit, gia nella versione originale, ha manifestato dei bug in alcuni degli esperimenti compiuti(9 su
1050, per essere precisi).

In particolar modo, ci sono due caratteristiche, implementate nel codice, che hanno portato a trovare
sempre una soluzione che fosse piu piccola, rispetto a quella trovata da McSplit, di 1 di dimensione.
Le sezioni incriminate sono quelle relative alla maximality — based — reduction e, citando 1’algoritmo
3, al Refine candidate set by removing V,,.

for (int i=bd.right len; i»=@; --i) {
idx = index_of next smallest(right, bd.r, bd.right len+1, w);
if(idx==-1)
break;
w = right[bd.r + idx];
std::swap(index_right[w],index right[right[bd.r + bd.right len]]);
right[bd.r + idx] = right[bd.r + bd.right len];
right[bd.r + bd.right len] = w;
auto new_domains = filter_domains(domains, left, right,
go, g1, v, w,best match);
current.emplace back(vtxPair(v, w));
solve(ge, gl, incumbent, current, new domains, left, right,
matching size goal,level+1, incumbent size);
current.pop _back();
if(best match||bound <= incumbent.size()) return;

Figura 25: Porzione del codice che crea bug. Nello specifico, & I'ultimo if, relativo alla riduzione per
massimalita, a dare problemi

for(int 1 = @; i<bd.left len; ++1){
if(EqClass[left[bd.l+1i]]==EqClass[v]){
std::swap(left[bd.l+1i], left[bd.l+bd.left len-1]);
--bd.left len; --i;

}
¥

Figura 26: Sezione di codice, relativo allo sfoltimento del candidate set, che crea bug
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Cio che puo esser qui successo € che ’algoritmo, nell’andare a rimuovere dei rami di ricerca, da esso
ritenuti inutili, abbia in realta eliminato proprio quelli cruciali per andare a trovare con successo la
soluzione di massima dimensione.

Non avendo trovato soluzione a cio si é deciso, nella fase di running, di fare due run separate, testando
sia il codice difettoso sia quello che non andasse ad utilizzare tali sezioni di codice, per capire quanta
discrepanza potesse esserci nell’impiego o meno di quest’ultime.

Algoritmo 5 : RRSplit, versione parallela modificata
RRSplit(G, H, M, M pest, domains, index _right)
if |[M| > | Myest| then

Mbest — ‘M|

end if

if EqClass_new _upper bound < |Mpest| then
return

end if

bd < select _bidomain(domains)
if M.size() <5 then
RRSplit_par(G, H, M, Myest, domains,index__right)
end if
v = find_min_value(bd.left)
remove_ vtz from_left domain(v,bd.left)
for w € bd.right do
remove_vtz(w, bd.right)
swap(index _right[w],index _right|right[bd.right + bd.right _len]])
M .insert(v, w)
new__domains < filter _bidomains(domains, G, H,index_right)
RRSplit(G, H, M, M pest, new _domains)
M.pop _back()
end for
RRSplit(G, H, M, M yest, domains, index _right)
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6 Architettura GPU

Prima di esporre I'implementazione di RRSplit su GPU, pero, é doveroso fare un’introduzione sommaria
sul funzionamento stesso di una scheda grafica, comunemente detta GPU. Verranno esposti brevemente
tutti i suoi livelli/tipi di memoria, mettendo in luce gli vantaggi/svantaggi che si ottengono nell’andare
ad usare quel tipo di memoria, il tutto per rendere di piu facile comprensione cio che sara materia di
discussione nel capitolo seguente.

Tuttavia, é necessario specificare che, andando ad ampliare un lavoro precedente, che € stato svolto
seguendo l'architettura CUDA, utilizzata nelle schede NVIDIA, si é proseguito in questa direzione,
sfruttando quindi la medesima architettura.

GPU Grid

Block (0, 0) Block (1, 0)

v

Thread (0, 0) | Thread (1,0)  Thread (0, 0) Thread (1, 0)

CPU

F 9

F 9

Figura 27: Architettura GPU NVIDIA
https://www.3dgep.com/cuda-memory-model /

Global Memory

Tutte le variabili dichiarate in questa memoria possono essere modificate da qualunque kernel e sono
anche accessibili all’host attraverso specifiche funzioni implementate in CUDA.

E chiaro capire, perd, che tale tipo di memoria ¢ anche il pitl lento tra tutti, e generalmente viene
adoperato solamente quando vi devono essere delle operazioni di copia di dati tra host e device.

Per andare ad incapsulare un dato nella memoria globale, € sufficiente che essa sia preceduta da
__device__(ad esempio, __device__ int nj; sta ad indicare che la variabile intera n risiede nella
memoria globale, & ed quindi accessibile da chiunque).
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Shared Memory

Questo livello di memoria, invece, viene usata per condividere una variabile che dovra essere usata
all’interno di un blocco, ¢ pud quindi essere letta e modificata solo dai thread che sono all’interno di
quello stesso blocco.

Questa memoria, on-chip, & gid piu veloce rispetto a quella globale, e viene spesso usata quando si
vuole che la variabile abbia una visibilita ridotta al blocco di thread.

Per andare a dichiarare una variabile come tale, la si fa precedere da __shared__.

Constant Memory

Questa memoria é particolare perche, come il nome gia anticipa, qui dentro risiedono i dati che non
possono essere modificati in alcun modo, e che possono quindi essere soggetti solo a lettura.

E tuttavia simile alla global memory, perché i dati qui presenti sono accessibili da chiunque. Ma,
proprio per via della sua peculiarita, essa ¢ comunque molto veloce, poiché presenta anche la memoria
cache che velocizza le operazioni di lettura, risultando quindi piu efficiente.

Per dichiarare una variabile come costante, bisogna farla precedere da __constant__.

Texture Memory

E una memoria progettata per essere read-only, ottimizzando gli accessi a dati presentanti un pattern
di accesso specifico, quale la localita spaziale.
E anche provvista di memoria cache, portandolo ad essere piu veloce della global memory.

Local Memory

Fa riferimento ad una regione di memoria privata ad ogni singolo thread, la cui vita di un dato locale
coincide con quella del thread, e tale memoria ¢é fisicamente localizzata nella DRAM. Essendo off-chip,
I’accesso a tale memoria é molto piu lento rispetto all’accesso alla shared memory o ai registers on-chip.
Per dichiarare una variabile locale, basta farla precedere da __local .

Registers

E il tipo di memoria pitt veloce presente sulla GPU, e ciascun thread puo salvarvi all’interno dei dati,
che perd non sono accessibili agli altri thread.

Il numero di registri, pero, é parecchio limitato, e nel momento in cui il numero di variabili dovessero
eccedere quello dei registri, i dati in eccesso vengono salvati nella local memory
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7 RRSplit, implementazione GPU

Come gia accennato, per I'implementazione GPU del codice RRSplit ¢é stato adoperato un framework
gia esistente, che andava ad eseguire 'algoritmo di McSplit su GPU usando CUDA.

Anche questa sezione presentera una suddivisione in pit sottosezioni: la prima consistente ’esposizione
del framework esistente, che ¢ stato utilizzato per implementare RRSplit su GPU, il secondo per
evidenziare le modifiche ad esso apportate.

7.1 Framework esistente

11 lavoro dal quale si & partiti & quello di Gabriele Mosca [23], nel quale il codice di McSplit é stato
riscritto per permetterne il suo funzionamento all’interno delle GPU moderne. Tale framework sfrutta
un paradigma iterativo e non ricorsivo, e questo perché tali GPU, avendo una memoria dedicata alle
ricorsioni piuttosto limitata, non riuscirebbero a sostenere un numero cosi alto di ricorsioni come quello
che si puo riscontrare in McSplit.

Da questa premessa ¢ quindi sorta la necessita di creare delle strutture dati che salvassero le informa-
zioni importanti, senza doversi cosi affidare allo stack.

Tale struttura corrisponde ad un vettore di strutture dati, per permettere di utilizzare quanto meno
memoria possibile, e segue cio che é stato utilizzato in McSplit, salvando quindi tutte le informazioni
cruciali per ciascun dominio. KEssa é paerd anche ottimizzata in modo da utilizzare, per ciascuna di
queste informazioni, un solo byte di memoria.

Questa ottimizzazione non viene pero senza un "costo" poiché, operando in questo modo, la dimensione
massima del grafo ne risulta significativamente ridotta(massimo ipotetico pari a 256). Nel framework,
tuttavia, tale valore era stato impostato a 64, valore oltre il quale, molto probabilmente, le prestazioni
del codice sarebbero state parecchio limitate.

La struttura dati implementata da Mosca, contenente 8 dati riguardanti i domini presi in esame, e che
quindi occupa complessivamente 8 byte di memoria, ¢ composta da:

e indice di inizio del dominio sul grafo di sinistra(L);

e indice di inizio del dominio sul grafo di destra(R);

e la lunghezza del dominio sul grafo di sinistra(LL);

e la lunghezza del dominio sul grafo di destra(RL);

e adiacenza o meno del dominio all’ultimo nodo selezionato, usato per i grafi connessi(ADJ);
e lunghezza della soluzione parziale corrente(P);

e ultimo nodo selezionato sul secondo grafo(W);

e lunghezza iniziale del grafo di destra, utilizzato per accertarsi che tutte le possibili combinazioni
siano gia state provate(IRL).

Tali domini vengono poi salvati in un vettore di dati e, potendo una soluzione includere molteplici
domini, gli stessi vengono anche salvati in un secondo vettore di indici, che memorizza al suo interno
le posizioni iniziale e finale dei vari domini che appartengono alla medesima soluzione.

7.2 Aggiunte e modifiche al codice

Le principali aggiunte che sono state fatte al codice hanno avuto lo scopo di implementare le carat-
teristiche chiave di RRSplit, gid esaminate nella sezione 4.2.4, ad eccezione delle sezioni difettose, e
sono:
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}

e In graph.h sono state inserite le strutture dati presenti in RRSplit, ovvero il vettore degree e la
matrice adjlist, che vengono utilizzate per le nuove funzioni implementate;

e L’aggiunta dei parametri che sono presenti in RRSplit, ma non in McSplit(EqClass e index _right);

__constant_ ui d _EqClass[MAX GRAPH_SIZE];

__constant  unsigned int d degrees gl[MAX GRAPH SIZE];
__constant_ unsigned int d_adjlist[MAX GRAPH SIZE][MAX GRAPH_SIZE];
ui *EqClass;

unsigned int degrees[MAX GRAPH SIZE];

unsigned int adjlist[MAX GRAPH ST7E][MAX GRAPH ST7E];

Figura 28: Variabili aggiunte al framework

e [’aggiunta delle nuove funzioni di partizionamento del dominio del grafo di destra utilizzate da
RRSplit, ma non presenti in McSplit;

host =~ device  uchar partition_right(uchar *arr, uchar start, uchar len,
const uchar *adjrow, int *index right) {
uchar i=0;
for (uchar j=@; j<len; j++) {
if (adjrow[arr[start+]]]) {
int_swap(&index_right[arr[start+i]],&index_right[arr[start+j]]);
uchar_swap(&arr[start+i], &arr[start+j]);

i++;
return 1i;
host =~ device  uchar partition_sparse(uchar *arr, uchar start, uchar len,

unsigned int degree, const ui * adjlist, int *index right){
uchar pos, j=0;
for(uchar i=@;i<degree;++1i){
pos=index_right[adjlist[i]];
if(pos>=start && pos<start+len){
int swap(&index right[arr[start+j]],&index right[arr[pos]]);
uchar swap(&arr[start+j], &arr[pos]);
J++;
h
h

return j;

Figura 29: Funzioni utilizzate per le partizioni del dominio del grafo di destra

e La sezione di codice che implementa 1'upper pit stringente rispetto a quello gia sfruttato da
McSplit;
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for(uchar i = incumbent size; i < domains[bd pos - 1][P]; i++){
if(d EqClass[cur[i][L]] == d _EqClass[v] && w < cur[i][R])
w = cur[1][R];
¥

if(w > 0){
uint count left = @, count _right = @;
for (int 1 = bd[LL]; 1 >= @; 1--)
if(d EqClass[left[bd[L]+i]] == d EqClass[v])
count left++;
for (int 1 = bd[RL]; 1 >= @; 1i--)
if(right[bd[R]+1] > w)
count right++;
if(bd[LL] <= bd[RL] && count left > count right){
if(bound + count right - count left
<= (uint)(inc_pos + 1)){
bd pos--;
continue;
¥
¥
if(bd[LL] > bd[RL] && (bd[RL] - count right) >
(bd[LL] - count left)){
if(bound + (bd[LL] - count left) - (bd[RL] - count_right)
<= (uint)(inc_pos + 1)){
bd pos--;
continue;

Figura 30: Funzione di calcolo dell’'upper bound usato in RRSplit  GPU

e lo swap che avviene all'interno del loop della funzione di risoluzione del mcs, sfruttando il vettore

index_right, anche qui implementato;

Le modifiche attuate al codice, invece, sono le seguenti:

e Il limite della dimensione massima dei grafi é stato aumentato da 64 ad 80, poiché gli esperimenti

qui condotti coinvolgevano grafi di tale dimensione;

e All’interno della funzione generate _mnext domains, per il calcolo di r__len non viene pit adope-
rata la funzione partition ma, dipendentemente dal soddisfacimento o meno di una condizione,

partition__sparse o partition_right;

Tutte le implementazioni qui enunciate sono state applicate sia sulla porzione di codice relativo all’host

che sul codice eseguito dal device.
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8 Risultati

Di seguito, verranno presentati i risultati ottenuti andando ad utilizzare i codici su CPU, andando a
confrontare RRSplit _parallelo con RRSplit _seriale e McSplit _parallelo.

8.1 Comnsiderazioni sul dataset

E doveroso fare, tuttavia, delle considerazioni sul dataset ottenuto, prima di proseguire con ulteriori
analisi.

11 dataset utilizzato & quello disponibile sul sito http://mivia.unisa.it/datasets/graph-database/arg-
database/ [24] [25], e sono stati usati i grafi generati in maniera casuale, con due caratteristiche
specifiche:

mecsXX fa riferimento alla percentuale del grafo che & identico al kernel di partenza, dal quale poi
vengono generati tutti i grafi. Cio significa che, preso un kernel dal quale sviluppare tutti grafi,
mcs10 vuol dire che il 10% di quel grafo & identico al kernel di partenza,;

rXXX Indica la densita di archi del grafo, ovvero: preso un grafo(in questo esempio connesso) con
N vertici, il numero totale di archi che tale grafo puo avere, al massimo, sara uguale a N*(N-1).
Con tale parametro, il numero totale di archi possibile sara r*N(N-1)(con un caveat: se il numero
di archi non é sufficiente per ottenere un grafo connesso, ne vengono aggiunti altri). Quindi, se
si ha un grafo con 20 nodi ed r = 0.1, il numero massimo di archi che si potra avere dovrebbe
essere 0.1¥20%19 = 38.

Partendo da questi presupposti, ¢ stata fatta una run preliminare, con il semplice intento di vedere
quali grafi andassero incontro al pruning presente in RRSplit, portando a queste considerazioni:

e Una fetta molto ampia dei grafi presente nel dataset 7005 ha effettivamente innescato il pruning,
mentre lo stesso non si pud dire per quelli presenti in 701 ed r02. Infatti, se in r01 vi erano
alcuni casi, ma comunque significativamente minori rispetto a 7005, in r02 i grafi che innescano
tale pruning sono ancora minori. Da qui si &€ potuto evincere, quindi, che con dei grafi pit densi
diviene piu diffcile trovare strutture isomorfe, a meno che non si parli di grafi estremamente
densi, anche se non é questo il caso;

e [l numero di grafi che innesca il pruning di RRsplit varia in base alla grandezza stessa del grafo
e, piu nello specifico, con 'aumentare dei nodi del grafo il numero totale diminuisce;

e Andando a variare il parametro "mcsXX" il numero di grafi che presentava strutture isomorfe

& rimasto molto simile per mes10, mcs70 ed mes90, con 'ultimo presentante il valore piu alto.
Questo suggerisce che, usando una struttura piu simile al kernel di partenza, & piu facile andare
incontro a strutture isomorfe.

I valori piu bassi si sono riscontrati in mcs30 e mes50, ed il motivo per cui essi sono anche pit bassi
rispetto ad mcs10 potrebbe essere il seguente: essendo la rimanente parte generata casualmente,
& piu probabile che in mcs10 la parte generata casualmente porti a strutture isomorfe, cosi
come ¢é plausibile che in mcs30 e mcs50 la percentuale di kernel "in comune" non garantisca
necessariamente la presenza di strutture isomorfe.

Fatte le dovute considerazioni per il dataset da utilizzare negli esperimenti, si & deciso di proseguire in
questo modo:

e Sono stati presi 10 grafi che hanno innescato, nella run preliminare, il pruning di RRSplit;

e Tali grafi sono stati poi affiancati dalla loro controparte(ad esempio, A58 affiancato con B58 e
viceversa), creando cosi il singolo esperimento;
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Per il grafo di "sinistra", che verra denominato come grafo pattern, le dimensioni prese erano di
20, 25 e 30 nodi;

Per il grafo di "destra", denominato grafo target, la dimensione andava dai 20 agli 80 nodi, ma
facendo sempre in modo che non fosse piu piccolo del grafo pattern(ad esempio, si pud avere
30 A27e30 B27,25 Bl12e 50 Al2, ma non 30 A00 e 20 B00);

Per ciascuno di questi esperimenti sono state fatte 10 run, per verificare che i risultati fossero
sempre consistenti;

Tali procedure sono state ripetute per mes10, mcs30, mes50, mes70 e mes90;

Non essendovici abbastanza elementi in 701 e 702 per proseguire come sopra citato, tali run sono
state eseguite solo su 7005, prendendoli dal dataset rand.
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8.2

Risultati CPU

In questa sezione verranno messi a confronto la prestazioni ottenute dagli algoritmi adoperati su CPU,
e ci si soffermera in particolar modo su:

I tempi medi per run che gli algoritmi hanno impiegato per esplorare tutto lo spazio delle soluzioni;

I tempi medi per run che essi hanno richiesto per risalire alla prima soluzione di massima
dimensione;

Il numero di iterazioni medio per run che ciascun algoritmo ha eseguito per esplorare tutte le
posibili opzioni;
Il numero di iterazioni medio per run che gli stessi hanno richiesto per raggiungere la prima

soluzione di massima dimensione possibile;

Solo per RRSplit: la percentuale di volte che il pruning é stato innescato rispetto al numero
di iterazioni per run;

8.2.1 RMRSplit parallelo e RRSplit seriale

Andando a confrontare le prestazioni ottenute da RRSplit, e dalla sua versione parallela, si pud
riscontrare un netto miglioramento delle prestazioni.

Average Total Time(ms)

20000 B RRSplit_2
B RRSplit_4
RRESplit_2
B RRSplit_12
15000
N RRSplit_16
I RRSplit_ser
10000
5000
1]

Figura 31: Tempo medio per run per esplorare tutte le possibili soluzioni
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Figura 32: Iterazioni medie per run per esplorare tutte le possibili soluzioni
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Figura 33: Speedup, rispetto ad RRSplit seriale, relativo al tempo medio impiegato per I’esplorazione
di tutte le possibili soluzioni



Gia andando a considerare i seguenti grafici, si pud notare un miglioramento significativo per quanto
concerne sia i tempi che le iterazioni richiesti per esplorare tutte le possibili soluzioni. I tempi vengono
infatti ridotti fino a quasi 5 volte, e le iterazioni per un valore che, escluso il caso 2 thread, é sempre
maggiore di 2, presentando quindi una consistente diminuzione delle iterazioni richieste per poter
esplorare tutto lo spazio delle soluzioni.

Da questi grafici, inoltre, & possibile notare come prendere un numero di thread maggiore di 8 sembra
non portare pitt a dei miglioramenti significativi, poiché i valori ottenuti in figura 33 risultano essere
parecchio simili. Questo, molto probabilmente, é dovuto alle dimensioni dei grafi pattern che, non
superando i 30 nodi di grandezza, portano ’algoritmo, quando usa un numero elevato di thread, ad
esplorare rami non importanti per la definizione della soluzione.

B RRSplit_2
1,00E+07 B RRSplit_4
s RRSplit_8
S 500E+08
5 B RRSplit 12
]
@ W RRSplit_16
el
= U RRESplit_ser
S
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[
2
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()]
o
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1,00E+05 II
5 D0E+04

Figura 34: Iterazioni medie per run per trovare la prima soluzione di massima dimensione
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Figura 35: Speedup, rispetto a RRSplit seriale, relativo al tempo medio impiegato per trovare la prima
soluzione di massima dimensione

Prendendo in esame il grafico 34, si puod evidenziare una differenza con i risultati espressi in precedenza:
& possibile notare che, per un numero di thread maggiore o uguale a 8, i tempi e le iterazioni richieste
per esplorazione di tutte le possibili soluzioni non cambiano. Lo stesso non si pud tuttavia dire per
le iterazioni richieste per trovare la prima soluzione di dimensione massima.

E anzi possibile notare una diminuzione delle iterazioni qui richieste per un valore che & ben oltre 50
nel caso n_threads = 16, e che si attesta ad un valore tra 10 e 50 per i casi 4, 8, 12 thread.

Inoltre, confrontando i grafici nelle immagini 32 e 34, si nota come per RRSplit seriale la riduzione
delle iterazioni sia pari solo a poco piu di 2 circa, mentre negli altri casi & possibile anche superare il
fattore di riduzione 10. Questo mette in evidenza che, con una soluzione multi-thread, la convergenza
verso la prima soluzione diventa via via piu rapida rispetto all’approccio single-thread.

E tuttavia possibile notare, in questo caso, come mostrato dal grafico 35, che per n_threads = 4
si ha lo speedup migliore in termini di tempo richiesto per il ritrovamento della prima soluzione a
grandezza massima, avvicinandosi ad un valore pari a 9. Questo potrebbe essere dovuto ad eventuali
rallentamenti dovuti a carichi sbilanciati, nel caso in cui il numero di thread dovesse essere elevato,
portando quindi uno o piu thread ad esplorare rami inutili per la definizione della soluzione.
Andando con n_threads > 8 invece, il fattore di speedup varia relativamente poco, un valore che
quindi non sembrerebbe giustificare 1'utilizzo di un numero di thread cosi elevato.
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Figura 36: Rapporto percentile tra numero di inneschi del pruning(#cuts) e numero di iterazioni totali
per run

Continuando con le analisi, ed esaminando il rapporto, espresso in percentuali, delle volte in cui il
pruning di RRSplit & stato innescato rispetto al numero totale di iterazioni, é possibile fare delle
considerazioni:

e [’andamento generale é che all’aumentare dei thread la precentuale diminuisce. Cid puo essere
dovuto al fatto che, utilizzando la programmazione multi-thread, che pero sfrutta alcune variabili
globali per poter ricercare una soluzione ottima, esso comporti una riduzione delle iterazioni
"inutili". Tuttavia, attivandosi prima queste condizioni rispetto al pruning, anche il numero
degli inneschi viene ridotto;

e I valori, eccettuato per RRSplit 2 mesl0, rimangono coerenti con il variare del numero di
thread;

e Arrivati a n_thread = 8 i valori rimangono pressoché invariati.

e I valori seguono quello che era stato gia anticipato in precedenza: siccome mcs70 e mcs90
condividono una percentuale di grafo in comune maggiore rispetto alle altre controparti, e siccome
mcs10 ha piu probabilita di avere parti generate in modo casuale che siano isomorfe rispetto a
mes30 e mesd0, i grafi che innescano piu volte il pruning sono quelli appartenenti alla categoria
mces70 e mes90.

Invece, mecs50 € la categoria che presenta meno pruning rispetto agli altri, con mcs10 e mes30
che presentano valori simili, un po’ piu alti per mcs10.

Da queste osservazioni, pertanto, & possibile quindi comprendere che I'implementazione multi-thread
dell’algoritmo di RRSplit abbia beneficiato di tali modifiche, poiché esso ha permesso riduzioni signi-
ficative di tempo richiesto sia per esplorare tutte le soluzioni, che per trovare la prima soluzione di
dimensione massima, e lo stesso si puo dire per le iterazioni totali e richieste per il ritrovamento della
prima soluzione ottimale.
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8.2.2 RRSplit difettoso

Per dovere di completezza, al fine di poter comprendere di quanto le ottimizzazioni scartate, seppur
presentanti dei bug, possano aver inciso sulle prestazioni degli algoritmi di RRSplit, seriale e parallelo,
ulteriori run sono state portate a compimento, e sono state fatte le valutazioni come si & gia visto in
precedenza. Da cid é emerso che i risultati, pur essendo piu ravvicinati rispetto a quelli precedenti,
mostrano ancora come I'implementazione parallela, applicata su RRSplit, sia efficace. Vengono messe
in evidenza delle prestazioni che, sia per la versione seriale, che per quella parallela, seppur di un
margine minore, migliorano con 'utilizzo di tali sezioni di codice.
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Figura 37: Tempo medio per run per esplorare tutte le possibili soluzioni
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Figura 38: Iterazioni medie per run per esplorare tutte le possibili soluzioni

Come é possibile notare dai grafici in figura, 'impiego degli schemi di parallelismo ha permesso una
riduzione significativa dei tempi e delle iterazioni richieste per poter esplorare tutte le possibili soluzioni.
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Esaminando i risultati presenti nelle figure 39 e 40, le prestazioni, per quanto minori rispetto a quelle
citate nella sezione 8.2.1, rimangono comunque abbastanza elevate da giustificare un approccio multi-
thread su RRSplit, poiché i tempi richiesti per esplorare tutte le possibili soluzioni e quelli per trovare
la prima soluzione ottimale vengono significativamente ridotti.
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Figura 41: Iterazioni medie per run per trovare la prima soluzione di dimensione massima
Anche nel caso riguardante il numero totale di iterazioni necessarie per trovare la prima soluzione di

dimensione massima, essi si riducono in maniera efficace, permettendo ad RRSplit parallelo di essere
sempre piu efficiente rispetto alla controparte seriale.
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8.2.3 RRSplit parallelo e McSplit parallelo

Cio che si puo notare, andando ad esaminare i grafici qui presenti, invece, € che le prestazioni di RRSplit
parallelo, messe a confronto con quelle di McSplit parallelo, per quanto migliori, siano comunque
abbastanza ravvicinate.
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Figura 42: Tempo medio per run per esplorare tutte le possibili soluzioni(ms)

48



1,75E+07 B McSplit_2
T B RRSplit_2
T T McSplit_4
1 50E+07 B RRSplit_4
] 4
5 1 B McSplit_s
= .
& 1,25E+07 I RRSplit_8
= | W McSplt_12
=
2 T W RRSplit_12
% 1,00E+07 McSplit_16
@
o 1 I RRSplit_16
-
.{ +
7,60E+0D6
5 00E+06
Figura 43: Iterazioni medie per run per esplorare tutte le possibili soluzioni
1,50
1,45
®
E 1
|_
a 1
o)
=
@ 1,40
=
i -+
o
=
o 1
@
o
o 1,35
1,30

RRSplit_2 RRSplit_4 RRSplit 8  RRSplt_12  RRSplit_16

Figura 44: Speedup, rispetto a McSplit parallelo, relativo al tempo medio impiegato per I’esplorazione
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Osservando i risultati riportati dai grafici nelle figure 43 e 44, infatti, si pud notare che, escludendo il
caso n__thread = 2, che ha beneficiato in misura leggermente maggiore rispetto agli altri casi, i tempi
e le iterazioni richiesti per esplorare tutto lo spazio delle soluzioni migliora di un fattore pressoché
simile, inferiore a 1.5.
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Figura 45: Iterazioni medie per run per trovare la prima soluzione di massima dimensione
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Figura 46: Speedup, rispetto a McSplit parallelo, relativo al tempo medio impiegato per trovare la
prima soluzione di massima dimensione

Osservando le figure 45 e 46, cio che si nota é che lo speedup relativo al tempo medio impiegato
per trovare la prima soluzione di dimensione massima, cosi come anche il fattore di riduzione delle
iterazioni richieste per andarla a ritrovare, rimangono consistentemente attorno ai valori di prima, con
RRSplit che mantiene sempre delle prestazioni migliori rispetto a McSplit.

E pertanto possibile concludere che, sebbene non nella stessa misura che si & potuta riscontrare in
RRSplit seriale, 1'utilizzo delle caratteristiche presenti in RRSplit ha permesso un ottenimento di
prestazioni comunque superiori a McSplit, mantenendo sempre un discreto distacco per quanto riguarda
sia i tempi che le iterazioni richieste per la risoluzione del problema, rendendo quindi valido ’approccio
utilizzato.
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8.2.4 Osservazioni aggiuntive

E degno di nota, perd fare delle considerazioni aggiuntive riguardo a come la percentuale di somiglianza
del grafo, rispetto ad un kernel di partenza, possa aver influito sulle prestazioni.
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Figura 47: Tempi medi totali per run, in base al fattore mcs, RRSplit parallelo
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Figura 48: Tempi medi totali per run, in base al fattore mcs, McSplit parallelo
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Figura 49: Tempi medi totali per run, in base al fattore mcs, RRSplit seriale

Come gia anticipato, sono state fatte delle run preliminari per andare a vedere quali grafi, essendo
isomorfi, andassero ad innescare il pruning.

Da cio é emerso che quelli in mes30 e mes50 hanno avuto i risultati peggiori, cosi come anche,
esaminando i dati della figura 36, si fosse notato come mecs30 fosse il secondo gruppo di grafi con la
percentuale pitl bassa.

Esaminando anche i tempi medi totali ottenuti dalle run, andando pero a differenziare in base a questa
caratteristica, si pud notare come, a parte che per RRSplit seriale, che presenta dei tempi molto piu
lunghi in mes10, mes30 ¢ stato il sottogruppo che ha presentato, in maniera consistente, le prestazioni
peggiori.

Cio & dovuto, con buona probabilita, al fatto che i grafi, tolta la percentuale di kernel che li accomuna,
sono generati in maniera casuale. Se la percentuale di kernel in comune é gia molto alta di base, vi &
pit probabilita che i grafi siano isomorfi mentre, al contrario, se la percentuale ¢ molto bassa(come il
10% per appunto), pud succedere, con pit probabilita, che la parte generata in modo casuale possa
essere isomorfa. Questo dunque permetterebbe, nel caso di RRSplit, di attivare piu spesso il pruning ed
eliminare i rami inutili e, nel caso di McSplit, di trovare piu facilmente la soluzione ottimale, portando
anch’esso a scartare rami che non amplierebbero la soluzione, ma che anzi rallenterebbero l'intero
processo.

Tuttavia, I’andamento che si riscontra in RRSplit seriale, e che si differenzia dai risultati ottenuti
dai codici paralleli, pud essere dovuto dal seguente fatto: essendo in mcsi10 la percentuale di kernel
in comune minore rispetto agli altri casi I’algoritmo, a differenza delle implementazioni parallele, che
possono esplorare contemporanemente piu sotto-rami di ricerca, abbia trovato difficolta nel trovare
strutture isomorfe. Tale difficolta pud aver impedito l'algoritmo di ottimizzare, per questo caso, i
tempi di risoluzione.
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8.3 Risultati GPU

Per la sezione GPU, onde evitare che i tempi delle run diventassero spropositatamente lunghi, é stato
deciso di porre come limite di tempo della run stessa, oltre la quale 'algoritmo cessa 1’esecuzione, 20
minuti.

Inoltre, vi sono due parametri aggiuntivi, non presenti nei codici su CPU: ovvero:

BLOCK _SIZE Indica il numero di thread allinterno dello stesso blocco, e che quindi lavorano
contemporaneamente su un kernel GPU;

N _ BLOCKS Questo parametro specifica quanti blocchi, invece, sono presenti. E utile ricordare che
i thread all’interno di diversi blocchi non possono condividere tutti i dati, e che quindi regolare
tale valore equivale un po’ come andare a specificare il numero di thread CPU che vengono
utilizzati per il processo.

Per BLOCK SIZE si ¢ deciso di impostarlo a 512, mentre N BLOCK S ha assunto come valore,
per questi esperimenti, 64.

La scelta del valore di tali parametri é stata attuata dopo una run preliminare dove, avendo anche
qui impostato un timeout di 20 minuti, per evitare tempi di risoluzione troppo tediosi, sono emerse le
seguenti considerazioni:

e Con il diminuire di BLOCK SIZE le prestazioni generali delle run peggioravano gradualmente

e Per valori piu piccoli di N _BLOCKS cio che si riscontrava era un miglioramento delle presta-
zioni sulle run aventi, come grafo pattern, un grafo di 20 nodi, cosi come anche su alcune run con
il grafo pattern con dimensione 25. Questo perd andava a peggiorare lievemente alcune run che,
presentando il grafo pattern di dimensione 25, avevano, come grafo target, dei grafi con almeno
50-60 nodi. Allo stesso modo venivano anche rallentati, anche in maniera significativa, tutte le
run che presentassero, come grafo pattern, un grafo di 30 nodi.

Da queste premesse, le run sono state eseguite in maniera analoga a come gid spiegato in precedenza
nella Sezione 8.1.

Prendendo pero solo le run che sono state portate a pieno compimento, e che quindi non sono state
interrotte dal timeout, e dalle quali si é riusciti a trovare la soluzione di massima dimensione in modo
corretto, & possibile constatare che le prestazioni di RRSplit  GPU, per quanto molto vicina a quella
di McSplit _ GPU, siano sempre leggermente peggiori.
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Come ¢ gia possibile notare dal grafico 50, RRSplit riesce a completare un numero leggermente inferiore
di esperimenti rispetto a McSplit, 343 per RRSplit e 347 per McSplit, per essere precisi, su 1050 totali,
facendo si che le percentuali ad esse relative si attestassero sul 32-33% per entrambi i casi, come si
evince dalla figura 51.
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Figura 52: Tempi medi totali per run completate, su GPU

Inoltre, é possibile anche constatare che, se su CPU le migliorie presenti su RRSplit abbiano apportato
dei benefici, permettendo di ottenere delle prestazioni migliori a tutto tondo rispetto alla controparte
McSplit, su GPU tal cosa non si verifica, come si puo evincere dal grafico 52. Prendendo infatti le run
che sono andate a buon fine, & possibile riscontrare un peggioramento, seppur estremamante lieve, dei
tempi di risoluzione.

Da questi risultati sembra quindi emergere I'idea che RRSplit, seppur molto valido su CPU, riuscendo
anche ad ottenere grandi benefici dall'implementazione multi-thread, non sembri particolarmente adat-
to in un ambiente GPU. Cid potrebbe essere dato proprio da come 'ambiente CUDA/GPU funzioni,
portando tutte le ottimizzazioni, funzionanti su CPU, ad essere un dispendio fin troppo esoso su GPU,
sulla quale gran parte degli sforzi e del tempo possono essere devoluti alla sincronizzazione dei thread
nei vari blocchi, cosi come anche dei blocchi stessi.
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9 Conclusioni

Prendendo in considerazione i risultati ottenuti nel capitolo precedente, verranno qui esposti eventuali
sviluppi futuri, ma che in questa tesi non hanno trovato spazio di realizzazione.

9.1 Implementazione CPU di RRSplit

E stato possibile verificare che, utilizzando gli schemi di parallelismo adottati da McCreesh su RRSplit,
esso abbia apportato dei miglioramenti consistenti, avendo esso delle prestazioni migliori sia rispetto
a McSplit parallelo, sia rispetto a RRSplit seriale.

Tuttavia, come gid accennato in precedenza, tale algoritmo presenta ancora dei bug che non sono
ancora stati risolti, e che, nel caso in cui lo fossero, permetterebbe all’algoritmo di RRSplit, seriale e
parallelo, di essere pitl veloce.

Dovessero tali bug venire risolti, sarebbero necessari nuovi esperimenti, con la consapevolezza pero che
il divario di prestazioni ottenuto tra RRSPIlit e McSplit aumenterebbe ulteriormente.

9.2 Implementazione GPU di RRSplit

Si ¢ potuto evincere che, nell’ambiente GPU, tale algoritmo risulti avere prestazioni peggiori rispetto
alla controparte McSplit, mettendo in luce come esso non segua la stessa tendenza mostrata nel caso
CPU.

Tuttavia, per poter arrivare alla conclusione definitiva che RRSplit  GPU risulti essere sempre e con-
sistentemente peggiore di McSplit GPU, ulteriori esperimenti, condotti su grafi con diverse caratteri-
stiche rispetto a quelle enunciate nella sezione 8.1, devono essere condotti.

Un’altra direzione che si potrebbe prendere ¢, invece, quella di modificare il framework che é stato
utilizzato, per vedere se cid possa migliorare le prestazioni.
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