
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Optimization of Spiking Neural
Networks execution on low-power

microcontrollers

Advisors
Prof. Gianvito Urgese
Dr. Andrea Pignata
Dr. Vittorio Fra

Candidate
Simone Delvecchio

December 2025

Abstract

The rapid proliferation of AI has prompted researchers to direct significant atten-
tion towards the development of novel and innovative solutions that optimise its
performance and power consumption. Spiking Neural Networks (SNN) represent
a particular type of neural network that emulates the behaviour of the biological
brain to enhance neural computation. This results in advantages such as low-power
consumption, effective memory-processing colocation, and event-driven execution.

The potential benefits of neuromorphic computing could be realised through
the utilisation of optimised neuromorphic hardware, such as SpiNNaker 2 and Intel
Loihi 2. However, these accelerators are difficult to obtain and often expensive due
to their experimental nature.

The present work investigates a potential solution to be implemented on micro-
controller units (MCUs) to run SNN in small and low-power systems. To this end,
SNN models are deployed leveraging HW modules such as DSP and memory access
accelerators, available in the target architectures.

The development focused on reproducing Leaky-Integrate and Fire (LIF) and
Izhikevich neurons, implementing fully-connected, one-by-one, and recurrent con-
nectivity. This effort led to the implementation of the snn2mcu C library which
currently supports two neuron models, three connectivity patterns, and two target
MCUs.

The first target of the snn2mcu library is the general-purpouse ARM Cortex
M7 core from STMicroelectronics. Quantization has been implemented converting
floating point network parameters to fixed-point data types compatible with the
ARM DSP library (CMSIS) that provides an optimised implementation of common
math operations and vectorised functions. The second target is the open source
GAP8 architecture with Risc-V processors. Optimization have been implemented
by exploiting the multi-level memory layout and the multiple cores available in the
system.

snn2mcu also supports SNNs described with the Neuromorphic Intermediate
Representation (NIR) framework. An automatic tool has been designed to generate
optimized firmware starting from the high level NIR description of the SNN, thus
removing the need for manual coding and facilitating development on embedded
systems.

3

To evaluate the usability of the library, two SNN models were deployed on the
GAP 8 and ARM core. The first is a SNN designed to classify seven Braille charac-
ters using input spikes from a robotic finger that produces twelve signal channels.
The second is a classifier for handwritten numbers taken from the MNIST dataset.
The Braille SNN model on the ST-ARM was executed 6x faster than floating point
SNN simulators achieving the same accuracy of 91.43% over a 140-sample test
dataset. The second model achieved an average energy consumed per sample of
10.54 mJ and an execution time of 187.82 ms per sample, and power consump-
tion in line with a specific optimised FPGA design. In summary, the present work
demonstrates that the utilisation of optimisation techniques, such as fixed-point
mathematics with reduced bit-depth, DSP vectorised functions, multilevel cache,
and code efficiency, can enable an effective deployment of SNNs on a wide variety
of commercial grade MCUs.

4

Contents

List of Figures 7

List of Tables 9

1 Introduction 11

2 Background 15
2.1 SNN: overview and neuromorphic computing over the Edge 15
2.2 Use cases of SNNs . 19

2.2.1 Neu-BrAuER . 20
2.2.2 SNN-based HAR on Commercial Edge devices 21

2.3 HW designed for neuromorphic applications 22
2.3.1 Spinnaker 2 . 22
2.3.2 Intel Loihi 2 . 23

2.4 Frameworks to develop SNNs . 24
2.4.1 snnTorch . 24
2.4.2 Neuromorphic Intermediate Representation 25

2.5 Analysis of low power HW . 26
2.5.1 STM32H757I-EVAL . 26
2.5.2 GAP-8 . 30

2.6 Tools to support NN at the Edge 32
2.6.1 PULP-NN . 32
2.6.2 ST Edge AI Core . 33

2.7 SNNs for widely available HW platforms 34
2.7.1 Spiker+ . 34
2.7.2 SNN decoder for Implantable Brain Machine Interfaces . . . 35

2.8 Proposed solution . 36

3 Materials and methods 39
3.1 SNN Model Architecture . 39

3.1.1 The model and its purpose 39
3.1.2 LIF neuron structure . 40

5

3.2 SNNTorch Implementation . 42
3.2.1 Training and Validation of the model 42

3.3 SNN for ST Board (snn2mcu) . 44
3.3.1 Initialisation of the environment 44
3.3.2 SNN execution and optimisations 45
3.3.3 LCD implementation . 48

3.4 Izhikevich on ST Board . 49
3.4.1 Izhikevic neuron model . 49
3.4.2 Izhikevich for ST Board . 50

3.5 SNN for GAP8 processor . 51
3.5.1 Program flow and Implementation 51

3.6 NIR-to-C translator . 54
3.6.1 From SNNTorch to NIR . 54
3.6.2 From NIR to C . 55

3.7 Used tools . 57

4 Results and discussion 59
4.1 Braille Model Results . 59

4.1.1 LIF neuron Behaviour: snnTorch VS Board 59
4.1.2 ds_test across different platforms 63

4.2 MNIST Benchmark using Spiker+ and NIR generator 70
4.2.1 Spiker+ SNN description and training 70
4.2.2 extract_nir and translation to C 71
4.2.3 Benchmark over ST Board 72
4.2.4 Comparison against FPGA 75

5 Conclusion 77
5.1 Validation and Performance Analysis 78
5.2 Challenges and Limitations . 79
5.3 Future Research Directions . 79
5.4 Final Reflections . 80

A Inference Results tables 83

Bibliography 89

6

List of Figures

1.1 Workflow followed for the thesis . 13

2.1 Workflow of Neu-BrAuER development 20
2.2 STM32H757I-EVAL ST Board . 28
2.3 GAP-8 structure scheme . 31

3.1 LIF Behaviour scheme. 42
3.2 Comparing data types, standard, fixed q15 and fixed q8. Red is sign,

Yellow is exponent, Green is mantissa. 46

4.1 N0 behaviour for Input1 pattern across the timesteps. 60
4.2 N1 behaviour for Input1 pattern across the timesteps. 60
4.3 N2 behaviour for Input1 pattern across the timesteps. 61
4.4 N3 behaviour for Input1 pattern across the timesteps. 61
4.5 N4 behaviour for Input1 pattern across the timesteps. 61
4.6 N5 behaviour for Input1 pattern across the timesteps. 61
4.7 N6 behaviour for Input1 pattern across the timesteps. 62
4.8 N0 behaviour for Input2 pattern across the timesteps. 63
4.9 N1 behaviour for Input2 pattern across the timesteps. 63
4.10 N2 behaviour for Input2 pattern across the timesteps. 63
4.11 N3 behaviour for Input2 pattern across the timesteps. 63
4.12 N4 behaviour for Input2 pattern across the timesteps. 64
4.13 N5 behaviour for Input2 pattern across the timesteps. 64
4.14 N6 behaviour for Input2 pattern across the timesteps. 64
4.15 N0 spike accumulation ds_test . 65
4.16 N1 spike accumulation ds_test . 66
4.17 N2 spike accumulation ds_test . 66
4.18 N3 spike accumulation ds_test . 67
4.19 N4 spike accumulation ds_test . 67
4.20 N5 spike accumulation ds_test . 68
4.21 N6 spike accumulation ds_test . 68
4.22 Startup screen LCD . 69
4.23 Results over LCD . 69

7

4.24 Tension of the board while executing. 73
4.25 One sample of the current value when executing MNIST 74
4.26 Output UART MNIST classifier . 74

5.1 Summary of the complete System 78

8

List of Tables

4.1 Input1 Pattern Across Timesteps (Neurons 0 to 11) 60
4.2 Input2 Pattern Across Timesteps (Neurons 0 to 11) 62
4.3 Comparison of snn2mcu and spiker+ 75

A.1 140 sample ds_test, T stands for snnTorch, B for ST Board, and G
for GAP8 SoC. More details in 4.1 86

9

10

Chapter 1

Introduction

The rapid diffusion of artificial intelligence into everyday devices has created a
strong demand for solutions that can run sophisticated models directly on low-
power, resource-constrained hardware at the edge, such as microcontroller-based
boards and small system-on-chip platforms. Traditional deep neural networks are
typically executed on GPUs, high-end CPUs, or specialised accelerators, making
them very difficult to integrate into embedded systems that must operate with strict
limits on energy, memory, and real-time responsiveness. Neuromorphic computing
and, in particular, Spiking Neural Networks(SNNs) offer a compelling alternative
because they model information processing using discrete spikes and event-driven
dynamics, enabling sparse activity, local state, and a natural fit for low-power,
always-on sensing tasks. However, bridging the gap between advanced neuromor-
phic models and widely avaiable microcontrollers remains challenging due to the
lack of dedicated hardware support and standard, reusable software workflows.
Current approaches to neuromorphic computing have largely focused on specialised
hardware platforms such as SpiNNaker 2 and Intel Loihi 2, which integrate custom
accelerators, advanced memory hierarchies, and event-driven architectures to exe-
cute SNNs with high efficiency. These platforms demonstrate excellent performance
and energy efficiency but are often expensive, hard to access, and not suitable for
large-scale deployment in commercial embedded products. At the same time, soft-
ware frameworks such as snnTorch and the Neuromorphic Intermediate Represen-
tation (NIR) have significantly simplified the design, training, and representation
of SNN models at a high level, but they do not natively provide optimised, turnkey
support for deployment on generic low-power microcontrollers. Other edge-oriented
toolchains, like PULP-NN for GAP-based SoCs and ST Edge AI Core for STM32
devices, strongly optimise classical quantised neural networks yet offer little or no
direct support for SNN-specific primitives and spike-based execution. As a result,
there is a clear gap between high-level SNN research tooling and practical, reusable
workflows for deploying SNNs on common MCU platforms such as ARM Cortex-
M7 and RISC-V based systems like GAP-8.

11

Introduction

This thesis addresses that gap by proposing and implementing a complete work-
flow and software library for executing SNNs on low-power microcontrollers using
only widely avaiable hardware and open or standardised software components. The
work centres on the design and deployment of the snn2mcu C library, which sup-
ports two neuron models, Leaky-Integrate-and-Fire (LIF) and Izhikevich neurons,
and multiple connectivity patterns, such as fully connected, recurrent, and one-by-
one topologies, targeting both ARM Cortex-M7 based STM32H757I-EVAL board
and the GAP-8 RISC-V SoC. High-level SNNs are first designed and trained in
Python using snnTorch; then, through a quantisation and optimisation process,
they are translated into efficient fixed-point implementations that exploit DSP ex-
tensions, vectorised arithmetic, and multi-level memory structures available on the
target MCUs. The library is further made compatible with NIR, so that SNN
models described in NIR can be automatically converted into optimised embedded
code, enabling a hardware-agnostic, reproducible pipeline from research prototypes
to deployable firmware. The methodology is validated using two representative
case studies: a Braille tactile classifier and a handwritten digit classifier based on
MNIST, demonstrating that commercial MCUs can achieve accuracy and energy
efficiency comparable to more specialised solutions when properly optimised.
The methodology followed to develop this system is briefly described as follows:

• Research and analysis: A review of all the tools used has been conducted,
including common SNN models, neuron dynamics, training strategies, and
state-of-the-art neuromorphic hardware and frameworks. This was done to
identify gaps in SNN support on widely available MCUs.

• Single-neuron modelling: The neuron equations are then replicated in
hardware platforms using smart quantisation and optimised operations. The
LIF neuron dynamics and Izhikevich implementation are adapted for fixed-
point arithmetic.

• Single-network implementation: Trials have been conducted on very
small networks, and the Braille classifier has been reproduced on both the
ST Board and the GAP-8 SoC, with validation against the snnTorch refer-
ence simulations.

• NIR-to-C parser: A translator has been developed that converts SNNs
described in NIR into the corresponding C code and headers, which are com-
patible with snn2mcu and, in particular, the ST Board.

• Parser benchmarking on a real use case: Ultimately, the parser was
evaluated using a real-world SNN. In this case, it was a MNIST model that
was generated using pre-existing tools: Spiker + combined with the NIR
exporter. Correctness checks were performed, and the execution time and
energy per inference were benchmarked on the ST Board.

12

Introduction

Figure 1.1: Workflow followed for the thesis

13

14

Chapter 2

Background

One of the most challenging aspects of this project is identifying and utilising novel
solutions to optimise SNNs on edge devices. The first section will explain why
SNN inferences on the edge are an effective solution for neuromorphic computing,
providing a detailed description of the features and characteristics that define this
approach. Subsequently, the underlying equations of the neuron model will be
examined in more detail. This analysis will also emphasise how the model is em-
ployed and why it outperforms conventional neural networks. Several existing SNN
implementations will also be described to determine the primary fields in which
these architectures are used. The use of specific accelerators in academic settings
will be examined, focusing on their effectiveness in executing SNN operations. The
investigation will delve into the intricacies of these accelerators, elucidating their
strengths and limitations. Furthermore, the chapter will examine frameworks for
developing SNNs at a higher level using high-level languages such as Python. It
will provide descriptions and details of the hardware used and explore its potential
applications in general neural network inference. The analysis will present specific
tools and libraries, demonstrating how the research in this thesis fills a significant
gap in the field of SNNs. Several specific tools for developing edge SNNs have
already been developed, and these will be described in the following section. Fi-
nally, the chapter will conclude with an explanation of the importance of all the
previously described research and projects to this contribution.

2.1 SNN: overview and neuromorphic computing
over the Edge

Among the best ways to deploy intelligence at the edge, i.e., directly on a hardware
platform, is surely the use of neuromorphic computing. As described in [1], neuro-
morphic computing exploits methods for developing intelligent systems inspired by
the biological brain. This particular implementation allows for greater efficiency,

15

Background

scalability, and adaptability in intelligent applications.

Neuromorphic computing features Traditional Von Neumann architectures
are based on the hard decoupling of computing units (CPUs) and memory units
(typically RAM). This results in high energy consumption and speed bottlenecks
caused by the transfer of data between memory and processing units. The idea of
neuromorphic computing, on the other hand, is to couple memory and computa-
tion, shortening the distance between them using different types of architecture.
This is achieved by incorporating neurons into intelligent architectures that endow
applications with smart behaviour simply by preserving a state, generating spikes,
and processing weights.

Another important feature of neuromorphic computing is sparsity: indeed, neu-
rons in a network can perform actions sparsely, i.e. not all neurons are active
throughout the execution of each step, but only some of them. This enables energy
consumption to be kept low, with an average overall neuron activity that is sparse
for each timestep.

Traditional AI systems typically rely on global backpropagation during learning,
which causes high energy consumption when updating all the weights across all the
layers of the network. Instead, neuromorphic systems could improve this learning
process by focusing on local pre- and postsynaptic activity. By exploiting these
rules, the system can update weights based on local activity features, favouring
continuous learning.
Neuromorphic systems can also perform actions across a wide range of timesteps,
operating with fast synaptic iteration as well as slower training, and have high
temporal processing capabilities. This feature is fundamental when different sensed
data need to be processed in a short amount of time for real-time applications.

Another key feature of neuromorphic systems is their brain-inspired hierarchi-
cal organisation, which, alongside layer structure, enables the easier processing of
large and complex sensory information while reducing redundancy, a characteristic
of normal non-hierarchical structures.

Ultimately, brain-inspired technology is also easy to deploy on hardware sys-
tems with strict memory limitations. This is because it uses spike event-driven
technology instead of computing specific inputs, as is the case with normal deep
learning models. The intrinsic parallelisation of the networks also allows systems
to be developed that exploit the parallel execution of different neurons in a layer
altogether to improve overall performance.

16

2.1 – SNN: overview and neuromorphic computing over the Edge

SNN models and training In order to facilitate a more profound comprehen-
sion of the Spiking Neural Network behaviour and its characteristic dynamics, a
concise presentation of the aforementioned networks and the manner in which they
are exploited is herein provided. As stated in the review by Nguyen (2021) [2],
neurons are inspired by actual brain biological behaviours. However, it is speci-
fied here that the Hodgkin-Huxley model is the most accurate model in terms of
brain behaviour, but that it is complex to use. In this review, other simpler neu-
ron models are briefly described. One such example is the Izhikevic model, which,
due to its dynamics and non-linear behaviour, represents an optimal trade-off be-
tween computational power and feasibility. Notwithstanding, the most frequently
employed neuron models in accordance with the cited literature are the Leaky-
Integrate and Fire (LIF) model and the more elementary Integrate and Fire (IF)
model. The behaviour of these models is predicated on the accumulation of weight
from preceding spikes, in conjunction with the dynamic generation of spikes at
the level of spike generations. The membrane potential of the neuron attains a
threshold value, thus instigating the aforementioned behaviour. Furthermore, the
membrane potential undergoes a leakage loss over time, irrespective of the occur-
rence of spikes. In the event of a spike being performed, it is within the capabilities
of the modeler to place the neuron in a recovery phase that temporarily disables
it. The review elucidates that a number of models have been subjected to trials
for the implementation of LIF (Leaky Integrate-and-Fire) or more straightforward
models, which have demonstrated commendable performance. However, contempo-
rary researchers are endeavouring to identify methodologies for the incorporation
of computationally expensive neurons, such as Hodgkin-Huxley, within hardware
devices. This objective is being pursued through the utilisation of numerical pro-
cedures, including the Euler method, for the purpose of simplifying these models.

In this review, the function of the synapse in SNNs is elucidated. The synapse
is defined as a connection between neurons in the network, and it has been demon-
strated that whenever a neuron spikes, the spike affects the neuron linked with
a positive (excitatory) or a negative (inhibitory) behaviour on the state of the
connected neuron. The management of this process is facilitated by the synap-
tic weights. In contrast to conventional artificial neural networks, these weights
demonstrate plasticity over time, adapting to the behaviour of spikes originating
from pre- and post-synaptic neurons.

SNNs differ from conventional artificial intelligence in that they can be trained in
various ways, making them more adaptable to different inferences. As previously
mentioned, one training method exploits the adjustment of strengths according
to the timing difference between pre- and postsynaptic spikes. This is known as
spike-timing-dependent plasticity (STDP). In this context, the temporal proxim-
ity of spikes modulates the strength of connections. Reduced temporal proximity

17

Background

enhances strength, while increased temporal proximity reduces it. However, this
method is not employed for comprehensive learning due to its inability to coordi-
nate complex learning across different layers in large networks. A more prevalent
learning method is supervised learning, which is based on analysing the gradients
used to minimise the distance between the expected and produced outputs. Spike
generation is a discrete process involving non-differentiable activation functions. To
overcome this issue, surrogate gradient activation functions are employed to con-
vert the spikes into continuous real values, thus facilitating gradient flow during
training. This approach has been shown to deliver levels of accuracy comparable
to those of a standard artificial neural network. An alternative method involves
converting previously trained artificial neural networks (ANNs) into spiking neural
networks (SNNs). While this approach is effective, encompassing all ANN training
methods, there is a caveat: not all ANNs can be translated into SNNs. In most
cases, the optimisations made for ANNs cannot be transferred directly to SNNs.
This can result in concerns regarding power consumption and a potential increase
in complexity.

A deeper look at LIF model In [3], is provided a detailed explanation of what
a LIF neuron is, how it works and the key equations and elements that describe its
behaviour. As previously mentioned, this is one of the most common neuron mod-
els used in typical spiking neural networks (SNNs), and it has some core elements
that describe its dynamics during execution.

• Membrane voltage integration: neuron integration of incoming current
represented as input J(t).

• Leakiness: During execution, there is a leakage towards resting potential
governed by a membrane time constant RC, where R stands for resistance
and C stands for capacitance.

• Firing threshold: when the membrane voltage v(t) reaches threshold Vth

the neuron generates a spike.

• Reset and refractory behavior: the neuron resets to resting potential for a
refractory period indicated by tref after a spike; this is used to give the model
more time awareness. Among the most commonly used reset state behaviours
there are the reset to zero and the subtractive reset. The former assigns the
neuron a membrane potential of 0, while the latter, when triggered by a spike,
subtracts a potential amount equivalent to the threshold value. This process
affords the neuron model enhanced temporal dynamics.

18

2.2 – Use cases of SNNs

If we want to represent the neuron model dynamics using one single equation, which
is time-continue, in the same paper, the equation is described like:

RC
dv(t)

dt
= −v(t) + J(t)

From the same document, there is also a description of the Steady-State firing rate
equation, often used to predict the spiking dynamic in a normal execution when
J(t) = j is a constant current:

r(j) = 1
tref + RClog(1

1− Vth
j

)

if j is grater then Vth, 0 otherwise.
This equation is useful for training with this specific neuron model. As mentioned
in previous research, the spike pattern must be ’smoothed’ to make it compatible
with common training techniques, such as back propagation. To achieve this, the
following soft function is often used:

r(j) = 1
tref + RClog(1

1− Vth
ρ(j,γ)

)

where the element ρ(j, γ) is formed by:

ρ(j, γ) = γlog(1 + exp(j

γ
)

where exp stands for the exponential function, and the factor γ is a smoothing
parameter used to smooth the response curves made by LIF neurons for differen-
tiability.
These are all the useful pieces for working with LIF neurons in the best way. Sec-
tion 3.1.2 will describe the neuron dynamics used in this thesis, namely the LIF
dynamic equation in the context of a discrete-time application. Indeed, if we dis-
cretise the aforementioned equation from the cited paper, we obtain:

VT +1 = Vreset + β(VT − Vreset) + (1 − β)J(t)

Where the β will later be described as a factor derived from RC in the equation (RC
= τ there), and the input current (1 − β)J(t) corresponds directly to the strengths
summed together during each executive cycle in that section.

2.2 Use cases of SNNs
In this section, a couple of use cases will be analyzed in order to be more aware of
the current state-of-the-art architectures.

19

Background

2.2.1 Neu-BrAuER

The first use case that deserves a mention is Neu-BrAuER [4]. The workflow is
briefly summarised in Figure 2.1. This work focuses on the classification and audio
reading of Braille letters from sensory touch data. Neu-BrAuER can interpret
signals detected by commercial capacitive pressure sensors and enable the correct
pronunciation of letters according to the classification after sensing. The network
structure consists of a three-layer, fully connected recurrent spiking neural network
(RSNN) that uses LIF neurons. The model senses data from 12 different channels
and can be implemented directly on commercial edge devices. To optimise inference
execution over the edge, quantisation is performed to reduce all neuron states to 4-
and 8-bit precision within different network layers, achieving gains in memory and
execution efficiency without significantly degrading learning dynamics. Training of
the network was performed using GPU accelerators and SNNtorch, and the model
was deployed as an ONNX model for use on commercial MPUs. The resulting
system is fast and optimised for real-time scenarios involving the acquisition of
numerous samples without degradation.
This work also reports excellent results. Indeed, a median classification accuracy
of 73.09% is achieved, with a standard deviation of 1.08%, across 50 test runs on
a balanced dataset containing 27 classes. Some letters achieved 100% accuracy,
but others, such as O, P and Q, were more difficult to classify. The network was
executed on an STM32MP157F board and the median inference time was 264 ms
per sample, with a peak of 400 ms. These results were also achieved with thousands
of sample executions. The energy consumption is 313 mJ per inference, which is
suitable for wearable or battery-powered devices. These results demonstrate that
good results can be achieved when executing SNNs, even with small bit-widths and
commercial tools.

Figure 2.1: Workflow of Neu-BrAuER development

20

2.2 – Use cases of SNNs

2.2.2 SNN-based HAR on Commercial Edge devices
To understand the power of SNN current implementations, it has been considered
another use case presented in [5]. This work focuses on human activity recognition
(HAR) using a neuromorphic architecture called L2MU, which is a spiking variant
of the Legendre Memory Unit (LMU) model. This work enhances the LMU model’s
capabilities by employing a LIF neuron structure that focuses on both simple LIF
models and their more advanced synaptic variants. This architecture is designed
to take raw sensor data; therefore, no layer is needed to convert that data, and
it can be implemented directly on edge devices as well as on specialised neuro-
morphic hardware. The architecture incorporates an encoding module capable of
transforming continuous sensed data into spiking activity using a multi-layer LIF-
based neural population. The model also supports hyperparameter optimisation
for network architecture and specific neuron dynamics, which is useful for selecting
the optimal structure required for high HAR task recognition accuracy.
This model uses a dataset (WISDM) comprising smartwatch sensor data that rep-
resents various actions performed by multiple subjects. The samples are segmented
into two-second windows and the network specialises in recognising hand-related
activities, categorising them into seven different values. The data is divided into
three sets: 60% for training, 20% for validation and 20% for testing. L2MU trans-
lates ordinary LMU equations by exploiting only LIF neuron populations and spike
patterns, ensuring full neuromorphic flow.
Adaptations to embedded and real-time applications are made by exploiting weight
pruning (via the Sconce Python library) and retraining. This is an innovative way
to compress SNN models for hardware with resource constraints, resulting in only a
small loss of accuracy. Trials were conducted using three different commercial plat-
forms: STM32MP157F-DK2, Raspberry Pi 3B and Raspberry Pi 4B. These boards
run standard Linux-based operating systems and SNN inference is conducted using
ONNX Runtime with PyTorch-based conversion for snnTorch.
Overall, both leaky and synaptic neurons performed very well, with median test
accuracy above 93%. However, LIF neurons performed slightly better, especially
after compression, demonstrating superior accuracy, stability and greater efficiency
in memory usage.
The same model, which uses LIF neurons, is deployed on each commercial board,
achieving the following results:

• STM32MP1 board has used 65.7 MB of RAM with 0.13 s as Mean Inference
Time and 215.1 mJ as Mean Energy per Inference.

• Raspberry Pi 3B board has used 77.8 MB of RAM with 0.06 s as Mean
Inference Time and 268.8 mJ as Mean Energy per Inference.

• Raspberry Pi 4B board has used 77.4 MB of RAM with 0.03 s as Mean
Inference Time and 153.9 mJ as Mean Energy per Inference.

21

Background

The accuracy achieved is 93.91%, which is consistent across all models. Synaptic
accuracy is slightly lower, but RAM consumption is consistently higher across all
devices. Overall, this work demonstrates that, if correctly designed and imple-
mented, simple neuron models such as LIF can achieve high enough accuracy to
justify their usage, even for commercial devices.

2.3 HW designed for neuromorphic applications
SNNs provide good results when executed on commercial platforms, but SNNs
perform best when designed specifically for hardware devices optimised for neuro-
morphic operations. This section will describe two different types: Spinnaker 2 and
Loihi 2 by Intel.

2.3.1 Spinnaker 2
Spinnaker 2 introduced several innovations in the field of neuromorphic computing,
with a focus on energy efficiency, scalability and hybrid computation for neural
networks. As stated in [6], the chip uses advanced 22 nm FDSOI technology with
adaptive body biasing to reduce energy consumption and address process variation.
It efficiently performs at low voltages of around 0.5 V to ensure lower energy con-
sumption. Dynamic voltage and frequency scaling (DVFS) connects power supplies
and clocks directly to computations, primarily neural spiking, and can adapt power
consumption dynamically and coherently in response to the workload. This results
in around 60% less power consumption than using a static power supply for typical
SNN operations.
The processor architecture is the ARM Cortex-M4F core with single-precision
floating-point computation, an improvement on the previous Spinnaker design.
There are also integrated accelerators within each processing element (PE), which
boost typical neural network computations. These consist of dedicated MAC arrays
(4x16 8-bit units) target matrix and convolution operations, executing in parallel
independently from the main core to speed up neuromorphic operations. Other ac-
celerators focus on exponentials, logarithmic operations and random number gen-
eration to facilitate neuromorphic simulations.
A quad-processing-element (QPE) modular unit is used to improve the architec-
ture. Each unit incorporates four PEs and a Network-on-Chip (NoC) router in
a Globally Asynchronous Locally Synchronous (GALS) layout, which minimises
complexity and power demands. The NoC system incorporates two different inter-
laced structures for data and configuration, using two asynchronous FIFOs, logic
to handle various neural events, error correlation features and out-of-order buffers
to increase speed and enable scalable communication between multiple PEs. Local
and distributed memory architectures separate SRAM banks, minimising access

22

2.3 – HW designed for neuromorphic applications

contention to enable full parallel processing across elements.
So, Spinnaker 2 uses a hybrid approach, combining common processor architecture
with a set of accelerators that optimise common, repetitive neural operations. This
makes the system perform faster while consuming minimal energy. Its architecture
is also optimised for event-driven MAC usage, enabling efficient multi-bit signal
processing to mimic biological graded neuron responses, or it could be exploited for
complex learning mechanisms.
To effectively demonstrate the model’s enhanced performance, standard bench-
marks were conducted. SpiNNaker 2 achieves efficiency rates of approximately
16–20 CoreMarks per MHz and 1.47–1.75 TOPS/W for 8-bit operations, all at
low supply voltages, when running standard benchmarks. The accelerators made
it possible to execute convolutional and matrix operations using the MAC arrays,
achieving speedups of up to 610x and energy consumption reductions of up to 652x
for convolutional layers compared to executing the same kind of operations with
the ARM core only. This hybrid approach enables support for the neural engi-
neering framework (NEF) via the ARM core, while the accelerators handle all the
repetitive, energy-intensive neuromorphic operations. Overall, this system’s scala-
bility and architecture model make SNN development and execution much easier
and faster.

2.3.2 Intel Loihi 2
Another important system that is highly optimised for neuromorphic operations,
and more precisely, SNNs, is the Intel Loihi 2. The main features and characteristics
of this model are described in detail in [7]. Its architecture comprises micropro-
cessor cores and up to 128 asynchronous neuron cores, which are linked together
with a network-on-chip (NoC). The neuron cores specialise in executing high-speed
spiking neuron computations and spiking logic.
The neurons are programmable using custom microcode, which allows various cus-
tom neuron models to be implemented, not just common models such as LIFs.
Improvements have been made on the previous model and this chip is now capable
of computing spikes with integer-valued payloads, improving precision while main-
taining the sparsity introduced by spiking behaviour. Loihi 2 can handle the latest
learning algorithms, such as backpropagation, and its architecture can improve
synaptic and neuronal density. It exploits advanced memory partitioning, convolu-
tional, factorised and stochastic connectivity, and compressed synapse encodings to
increase efficiency by up to 160x. As previously mentioned, performance is dramat-
ically boosted with up to 10x faster spike generation, 5x faster synaptic operations
and 2x faster neuron updates compared with previous models. Timesteps are exe-
cuted at a speed of 200 ns to outperform real biological circuits. Thanks to Ethernet
and GPIO ports, it is also easy to integrate with other systems to communicate
with different sensors and environments.

23

Background

The Loihi 2 offers many features for customising and optimising neuron behaviour.
Unlike the previous model, it also has soft-partitioned, asynchronous memories to
speed up memory access and neuron dynamics. In terms of results, this model
also consumes less than 1 watt in real-world applications, which is lower than
general-purpose GPUs or CPUs, which could consume 10 to 100s of watts for simi-
lar workloads. It also supports Sigma-Delta Neural Networks, achieving 10x faster
speeds and lower energy consumption than previous neuron models. All other
neuron updates are also improved. A single Loihi 2 chip can support up to one
million neurons and 120 million synapses by exploiting compression and flexible
resource allocation. Unlike other models, the Loihi 2 is supported by Lava, an
open-source, community-driven software framework that makes this system easier
to use and handle. Lava supports simulation and profiling across CPU, GPU and
neuromorphic hardware, promoting broader adoption and facilitating experimenta-
tion. This model’s strengths are undoubtedly its open-source software access and
high programmability.

2.4 Frameworks to develop SNNs
As mentioned in previous sections of this chapter, SNNs produce excellent results in
neuromorphic systems simply through their use. Frameworks are designed to facil-
itate and streamline their development. SNNTorch is a PyTorch-based framework
for SNN development. SNNs can be represented using the Neuromorphic Interme-
diate Representation (NIR), which makes them easily portable between different
development environments.

2.4.1 snnTorch
The main features of this Python framework are detailed in [8]. This framework
optimizes spike representation through the networks using single-bit values, which
greatly reduces computational costs, particularly when deployed on actual hard-
ware platforms. The framework now supports LIF neurons, current-based neu-
rons, recurrent structures and advanced models such as spiking LSTMs and spiking
Transformers. SNNs can interpret and produce spikes using rate coding (encod-
ing information in spike counts), latency coding (using the timing of spikes), delta
modulation (responding to input changes) and population coding (distributing in-
formation across groups), providing significant compatibility with systems that use
time-dependent inputs, such as vision, sound and biosignals.
SNNs have huge compatibility with deep learning tools simply by being expressed
as discrete-time equations. Like these tools, SNNs can benefit from features such
as batch normalisation, residual connections and automatic differentiation.
Supported training techniques include:

24

2.4 – Frameworks to develop SNNs

• Surrogate Gradient Descent: it overcomes the non-differentiability of
spikes using a smooth, differentiable surrogate function during the backward
pass, making spiking neural networks (SNNs) compatible with backpropaga-
tion through time (BPTT). Various surrogate functions can be employed, such
as sigmoid, arctan and triangular, and these can be used as hyperparameters
of the network.

• Objective Functions: there is also support for different loss/objective set-
tings, such as spike-rate targets and spike-timing (latency) objectives. Ob-
jectives that operate directly on the membrane potential are also supported,
enabling compatibility with both rate- and latency-based learning schemes.

• Local and Online Learning Algorithms: Alongside traditional backprop-
agation with temporal unrolling, localized, biologically inspired approaches
are also supported, with methods such as e-prop, Decolle and event-based
plasticity (three-factor rules) implemented to enhance biological plausibility.

SNNs can be defined and structured using a familiar deep learning syntax. Layers,
synapses and neurons are also fully compatible with standard PyTorch modules.
Following normal ANN workflows, training is eased by simply adding time-stepped
simulations and spike-based activities. Optimizers such as Adam and SGD are
also available. Parameters such as the decay factor, thresholds, weights, biases,
and other typical parameters can be set to be learnable, thereby enhancing the
network’s plasticity. The framework can easily bridge the gap between traditional
ANN methods and new SNN methods, demonstrating that SNNs can be trained
directly using deep learning methodologies while retaining brain-like characteristics.
Along with the paper, the documentation is easily available online and contains
ready-to-use tutorials for developing SNNs. Ultimately, the framework is excellent
for easily training SNN models and has the tools to perform simulations on the
models that can later be easily reproduced on specific target platforms.

2.4.2 Neuromorphic Intermediate Representation
The paper [9] describes the main features of the first standardised reference for
neuromorphic computing, which is a powerful tool for future progress in this field.
As NIR is completely platform-independent, it can be used to describe neuromor-
phic structures and computations at a high level of abstraction, facilitating the
porting of the same model across different tools. NIR has definitive and fixed
primaries that correspond to the standard features of neurons and connections be-
tween layers. These primaries can capture both continuous and discrete dynamics,
enabling a complete description of SNNs, which can be deployed more easily and
faithfully over hardware platforms. SNN development focuses solely on the model
itself, not its specific implementation, enabling faster reproducibility. As the model

25

Background

description is graph-based, the primitives of NIR are represented as nodes in this
graph (e.g. leaky integrator, integrate-and-fire neurons, linear layers, convolutions
and spikes), with edges representing signal flow. This makes it easy to manage
the complexity of SNNs in simple structures, which also makes model development
easier. NIR is purely declarative and completely machine-readable, and it also al-
lows for the future extension of the primitive set as technology evolves and new
structures and neurons emerge. NIR already supports seven neuromorphic simu-
lators and four contemporary digital neuromorphic hardware platforms, including
Intel Loihi 2, SynSense Speck, SpiNNaker2 and Xylo. This enables faster testing
and benchmarking of the same model across different platforms, facilitating per-
formance analysis and the identification of optimal solutions. Three representative
tasks were used to conduct comprehensive experiments: a leaky integrate-and-fire
neuron (basic), a spiking convolutional neural network (vision), and a spiking re-
current neural network (temporal processing). These models were then executed
on all available platforms to examine qualitative and quantitative similarities in
computational outcomes. In terms of accuracy, the Sequential Convolutional Neu-
ral Network (SCNN) model trained on neuromorphic MNIST achieved a mean test
accuracy of 97.7%, with a standard deviation of 0.9%, resulting in the reliable
preservation of the model across different simulators and processors. In summary,
NIR occupies the same position in SNN development as ONNX or MLIR in deep
learning, paving the way for a comprehensive, standardised representation of SNNs
that has the potential to incorporate additional platforms.

2.5 Analysis of low power HW
One of the issues with the neuromorphic hardware previously described is that it
is often difficult to acquire, expensive, and unavailable for purchase. This section
will analyse two alternatives to traditional hardware that could be used to develop
SNNs by exploiting the power of neuromorphic models. These are the STM32H757I-
EVAL ST Board and the GAP-8 based on PULP.

2.5.1 STM32H757I-EVAL
The characteristics of the STM32H757I-EVAL ST Board (Figure 2.21 are detailed
in the STMicroelectronics documentation [10]. It is clear from this documentation
that the board is designed to deliver robust computational performance while op-
timising energy efficiency, making it suitable for demanding applications as well as
power-sensitive deployments. The board has a dual-core setup with a high-speed

1https://www.st.com/en/evaluation-tools/stm32h757i-eval.html

26

https://www.st.com/en/evaluation-tools/stm32h757i-eval.html

2.5 – Analysis of low power HW

Arm Cortex-M7 and Cortex-M4 (optimised for low power and real-time signal pro-
cessing), and provides 2 MB of flash memory and 1 MB of RAM for storing code
and data. It also has a variety of peripherals that can be used to integrate devel-
oped applications with other environments, such as USB OTG HS/FS, Ethernet,
CAN FD, audio interfaces (DAC, ADC and SAI), digital MEMS microphones and
extensive memory support (SDRAM, SRAM, NOR and Quad-SPI flash, as well as
a microSD card). The board also features a 4" 480×800 TFT colour touchscreen
display with a MIPI DSI interface, as well as a hardware cryptographic accelerator,
which is absent from the STM32H74xI variants. To enhance system compatibility
with other environments, support for multiple connectivity interfaces has been en-
abled, including USB ports, Ethernet and CAN FD for high-speed networking, I2C
and RS-232, as well as extension connectors. Complete debugging and program-
ming support is also provided through the use of STLINK-V3E. The system also
supports custom voltage supply to cores; in particular, the microcontroller’s core
voltage can be supplied by either the internal, high-efficiency, DC/DC switch-mode
power supply (SMPS), or a linear regulator (LDO). The SMPS is set by default and
is generally best for low power, but the LDO could also be used, or a hybrid ap-
proach could be employed. The board can also be configured using specific jumpers
to select the desired features for particular applications. For example, a jumper can
be used to select one of six independent power supply options. STLINK USB, mul-
tiple USB OTG ports, an external 5 V DC adapter or power from daughterboard
connectors, enabling the board to be used in almost every scenario. Current lim-
itation and overcurrent detection are also in place to protect the board itself and
any linked daughter boards, and the board status can easily be seen through the
use of embedded LEDs.
All of the described interfaces also have low-power modes. For example, the USB
and Ethernet PHY interfaces can be configured for low-power states when not in
use, and in specific scenarios, the RTC with backup battery can be used for ultra-
low-power timekeeping. The board is equipped with various peripherals, including
a potentiometer, a joystick, a tamper switch, a wake-up button, a reset button,
multiple general-purpose LEDs and an LCD touchscreen, to facilitate interactive
prototyping and HMI projects. The MFX IO expander provides additional GPIOs
and peripheral control. The board is supported by many major development en-
vironments, such as IAR, KEIL MDK-ARM and STM32CubeIDE. Numerous ex-
ample programs in the free STM32Cube MCU package demonstrate how to use
the peripherals, along with the relevant libraries. These libraries allow you to cre-
ate fully customised and optimised systems. Now, a deeper explanation of the
main core will be given to demonstrate the power of this architecture in low-power
scenarios.

Arm Cortex-M7 All the main characteristics of the M7 core featured in the
board are gathered in [11]. It adopts the Armv7E-M instruction set and boasts a

27

Background

Figure 2.2: STM32H757I-EVAL ST Board

6-stage, dual-issue superscalar pipeline. This enables the parallel execution of mul-
tiple instructions, thereby increasing throughput in computationally intensive sce-
narios. It also has hardware branch prediction capabilities and integrated tightly-
coupled memories (TCMs), giving the system high compatibility with real-time
decision-making scenarios. Furthermore, it is described as outperforming previ-
ous models by achieving outstanding benchmark scores of 5.01 CoreMarks/MHz.
To minimise memory latency, the system also has built-in instruction and data
caches for memory-bound scenarios. Up to 16 MB of instruction and data TCMs

28

2.5 – Analysis of low power HW

are designed to provide deterministic performance in real-time scenarios with pre-
dictable access times. Secure access control is also granted through the use of a
Memory Protection Unit (MPU). One of the most important features of this core ar-
chitecture is the advanced digital signal processor (DSP) extension, which features
single-cycle multiply-accumulate (MAC) instructions and SIMD (single instruction,
multiple data) arithmetic for parallel data processing (eight 16-bit operations per
cycle). The hardware divide unit is particularly useful for the fast execution of
mathematical operations. Operations such as multiply-accumulate, division and
square root are supported by an optional floating-point unit (FPU) for single and
double precision. The architecture is built around a high-speed AMBA4 AXI and
AHB interconnect supporting wide (64-bit) communication with external memories
and other system on a chip (SoC) peripherals. Advanced debugging, tracing and
external system management are also facilitated through interfaces such as APB,
ATB and private peripheral buses. Optional elements such as the embedded trace
macrocell (ETM), the data watchpoint and trace (DWT) and the instrumentation
trace functionality provide precise real-time debugging and trace analysis, which is
particularly important in real-time scenarios. The Nested Vectored Interrupt Con-
troller (NVIC) enables rapid interrupt handling and supports up to 240 configurable
external interrupts and 256 priority levels, providing comprehensive customisable
interrupt management for critical systems. To minimise the board’s energy con-
sumption when the system must remain inactive, the optional Wake-up Interrupt
Controller (WIC) and low-power sleep modes could be used to allow dynamic power
consumption that is consistent with the workload.
Now, we will take a closer look at DSP extension to enhance the optimisations
made to speed up mathematical operations.

DSP [12] indicates that the Digital Signal Processor (DSP) extension of the M7
processor comprises hardware and instruction set enhancements that enable it to
perform optimally in signal processing fields such as audio, sensor data processing,
telecommunications and control systems. This is achieved by combining high-speed
arithmetic, parallel data processing and specialised memory access patterns to ac-
celerate arithmetic operations beyond the capabilities of the standard core. In
addition to the previously mentioned optimisations, there is also wide support for
a variety of data types, such as integers, fractional formats and floating-point num-
bers, which provides flexibility for fixed- and floating-point computations. DSP
MAC instructions can multiply and sum values in one step, which is a frequent
operation in algorithms such as digital filters or fast Fourier transforms (FFTs).
Operations are parallelised using SIMD instructions, which allow multiple smaller
data elements to be processed simultaneously. For example, two 16-bit or four 8-
bit calculations can be performed in parallel within a 32-bit register. Overheads
and bottlenecks are optimised using techniques such as loop unrolling and efficient
memory access (e.g. using FIFO buffers to emulate circular addressing), which

29

Background

significantly reduces the cycle count of processors without a DSP. These optimisa-
tions, which are embedded directly in the M7 core, remove the need for a separate
DSP chip, keeping the overall cost of boards with these cores low and making them
more accessible.

2.5.2 GAP-8
The main features of the GAP8 SoC are detailed in [13]. The overall structure is
synthetized in Figure 2.3. Its architecture focuses on optimising local data process-
ing, minimising data transmission needs and enabling low battery consumption,
making it well-suited to the IoT domain. The GAP8 comprises a dual-domain
system-on-chip fabricated using a 55 nm low-power CMOS process. It is formed by
an energy-efficient microcontroller called the Fabric Controller, which has a com-
puting cluster. Based on an enhanced RISC-V core, it can manage various general
device operations and interfaces, directly exploiting all the on-chip peripherals, such
as QSPI, I2C, I2S, the camera and PWM. This facilitates real-time, multi-modal
data acquisition.
The cluster operates in different voltage and frequency domains and is made up of
eight identical RISC-V cores, with the same architecture of the controller. These
cores are supplemented by a hardware convolution engine (HWCE), which is dedi-
cated to accelerating convolutional neural network (CNN) inference. Using a flex-
ible shared memory, it can easily parallelise all normal NN tasks and speed up all
common executions. The memory hierarchy is organised to enable easy memory
parallelisation access by all eight cores and is supported by a multi-channel DMA
system designed for low-latency data transfers. The system can rely on 512 KB of
on-chip memory and expandable external memory to easily extend hardware capa-
bilities according to model demands.
The system’s software environment is built around GCC toolchains and offers native
support for parallel programming via OpenMP. Developers can use explicit tools to
automate memory tiling and scheduling, making it easier to manage the memory
hierarchy. This approach facilitates the deployment of NN models by enabling them
to be developed through high-level frameworks such as TensorFlow and by using
explicit core generators for the target architecture. GAP-8 uses aggressive power
optimisation mechanisms such as integrated DC/DC converters and deep retention
modes. In deep sleep mode, power consumption can be reduced to as little as 3.6
µW, and peak computational loads can be handled with just 75 mW. Overall, this
permits longer execution times using standard batteries.
The system architecture is designed to easily adapt to different workloads. Nearly
linear acceleration is observed when parallelising across its eight cores. The ob-
served benchmarks are impressive: the SoC achieves up to 10 GMACs for CNN
computations at 90 MHz, with an energy efficiency of 600 GMACs/W. Common
NN tasks, such as CIFAR-10 image classification, can be completed in around 650

30

2.5 – Analysis of low power HW

µs at 15 mW. This enables the execution of 10 frames per second for almost two
years on a single AAA battery, guaranteeing continuous, intelligent sensing at the
edge. The system can efficiently optimise operations such as FFTs, matrix multi-
plications, convolutions and advanced signal analytics, using both SIMD extensions
to the RISC-V cores and the HWCE accelerator to achieve 10x better energy effi-
ciency than software-only execution.
Using this architecture, systems that were previously thought to be deployed in
cloud environments can now be easily deployed on an actual hardware platform,
achieving faster speeds for real-time scenarios and dramatically reducing energy
consumption. This architecture is excellent for easily sensing at the edge and di-
rectly computing fast, typical NN operations.

Figure 2.3: GAP-8 structure scheme

31

Background

2.6 Tools to support NN at the Edge
In the previous section, some common hardware platforms were described to illus-
trate the characteristics that are useful for building Edge AI applications. These
platforms also offer excellent support for the implementation of typical NNs through
the use of ready-to-use dedicated tools and libraries: PULP-NN is used for the
GAP-8 SoC, and the ST Edge AI Core is used for commercial ST boards.

2.6.1 PULP-NN
As described in [14], PULP-NN is an optimised, open-source software library de-
signed for the efficient inference of quantised neural networks (QNNs) on multi-core,
ultra-low-power RISC-V processors. Target architectures include the Parallel Ultra-
Low Power (PULP) architecture and commercial implementations such as GAP-8.
The library is suited to high-throughput applications with low power requirements.
It supports aggressive quantisation using data types such as INT-8, INT-4, INT-2
and INT-1 for weights and activations. It contains optimized kernels, such as con-
volution, fully-connected, ReLU and max-pooling, which are tailored for reduced
precision arithmetic. Binary kernels can be easily handled by exploiting the logi-
cal XNOR and bit-count instructions available in the instruction set architecture
(ISA).
To drastically speed up typical neural network (NN) operations, the DSP instruc-
tion set architecture (ISA) extensions present in PULP-based RISC-V cores are
used extensively, such as for SIMD operations (e.g. sdotp4 for vector dot prod-
ucts), hardware loops, and efficient memory access. The cluster of eight cores is
also exploited to parallelise workloads and achieve a near-linear speedup in mathe-
matical operations. The library uses the HWC (height-width-channel) data layout
for activations and weights to optimise memory bandwidth and target the optimisa-
tion of operations such as matrix multiplication. im2col routines and custom pack-
ing/unpacking functions for sub-byte data are implemented to make the operation
more compatible with SIMD units and minimise the memory footprint. These op-
timisations achieve very good results in terms of throughput, delivering up to 15.5
multiply-accumulate operations per cycle (MACs/cycle) on INT-8 kernels when
running optimised matrix multiplication. The library outperforms common NN
libraries for commercial platforms such as ARM CMSIS-NN, delivering a speedup
of up to 63× over the baseline sequential RV32IMC and significantly higher energy
efficiency and performance than STM32L4 and STM32H7 MCUs when operating at
maximum frequency. The library also enables GAP-8 to run a CIFAR-10 network
in 19.6× fewer cycles than CMSIS-NN on STM32H7, offering 14.1× better energy
efficiency than STM32L4.
The open-source nature of the system ensures adaptability and makes it open to
further updates to improve performance as technology advances. It also permits

32

2.6 – Tools to support NN at the Edge

the efficient development of real-time applications, especially compared to other
commercially available tools. This system paves the way for the deployment of
highly quantised networks in environments with limited resources, demonstrating
that aggressive quantisation (even down to 1 bit) is feasible on programmable par-
allel architectures with minimal loss of accuracy, provided that proper training
techniques are employed. While this system could deliver very high performance,
it undoubtedly requires a high degree of expertise in the field.

2.6.2 ST Edge AI Core

The main feature of the ST Edge AI Core tool could be extracted from the datasheet
provided by ST in [15] and the cited web page. This freely available desktop soft-
ware suite, developed by STMicroelectronics, is used to optimise, compile and de-
ploy artificial intelligence (AI) models on a wide variety of ST hardware platforms,
including STM32 and Stellar microcontrollers and microprocessors, as well as smart
sensors equipped with ISPU and MLC functionalities. The tool’s primary function
is to automatically transform pre-trained neural networks and classical machine
learning models into highly optimised C code, facilitating the deployment of Edge
AI applications from a standard model. It supports several AI frameworks, such
as Keras and TensorFlow Lite, as well as any framework with ONNX export, such
as PyTorch and MATLAB. This gives complete flexibility and compatibility for
modern model workflows.
The tool further enhances computational efficiency by leveraging the generation
of libraries that use dedicated hardware acceleration through the ST Neural-ART
NPU wherever available. If the NPU does not support neural network operations,
the tool seamlessly schedules these tasks to execute on the CPU, ensuring optimal
use of resources. The software also enables users to assess RAM and flash usage
during deployment, providing a more customisable environment. Optimisation op-
tions are provided to balance inference speed and binary size, catering for diverse
application constraints. STEdgeAI-Core also features verification tools, allowing
benchmarking and validation on host systems (Windows, MacOS and Linux) and
actual ST hardware, ensuring reliability during edge AI development. The tool
is accessible via a graphical interface and a command-line utility, and comes with
comprehensive documentation to ease access and usage. STEdgeAI-Core is a key
component of the ST Edge AI Suite, which aims to streamline every stage of AI
deployment, from initial data management to final hardware integration, to create
a robust, developer-friendly ecosystem. However, neither this tool nor the previ-
ously described one has direct SNN support. This is an issue that developers must
overcome for their implementations with these tools to be as straightforward as
standard NN deployment.

33

Background

2.7 SNNs for widely available HW platforms
Following the analysis of commonly available, ready-to-use neural network (NN)
tools for deployment on the edge, this paper will describe two solutions for de-
veloping spiking neural networks (SNNs) directly on widely available hardware
devices. The first solution is Spiker+, which is specific to FPGA development, and
the second is for deployment on RISC-V microcontrollers.

2.7.1 Spiker+
All Spiker+ features are fully described in [16]. It is a comprehensive framework
designed to generate efficient hardware accelerators for spiking neural networks
(SNNs) that are deployed on field programmable gate arrays (FPGAs) for edge
inference applications. The framework is designed to efficiently integrate artificial
neural networks (ANNs) at the edge for common critical real-time applications. The
multi-layer architectures produced by this framework support both fully connected
feed-forward (FF-FC) and recurrent (FC-R) SNN architectures, enabling the de-
ployment of a large number of typical SNN models. The tool supports various Leaky
Integrate and Fire (LIF) neuron model implementations (first- and second-order),
with options for hard or subtractive reset mechanisms. Enhancements focus on
minimising resource usage while maintaining computational accuracy. All network
characteristics, such as network architectures, neuron types and input encoding
schemes, can be described using a user-friendly Python interface. This makes the
system more usable at a higher level of abstraction.
The hardware structure has been engineered to support high levels of both paral-
lelism and modularity, while also ensuring a low-area footprint. The system utilises
a start-ready handshake protocol for the purpose of synchronising and communicat-
ing between network components, thus optimising speed and power efficiency. The
training framework utilises existing SNN training tools that support backpropaga-
tion through time (BPTT) with surrogate gradients. The process of optimisation
and quantisation is also automatic, and is performed on neuron states such as
synaptic weights and neuron parameters. This is done in order to balance accuracy
and hardware constraints. The tool is also enriched by an automatic VHDL code
generator with configurable memory storage options for synaptic weights. The sys-
tem has been evaluated using two different datasets. In the first experiment, on the
MNIST dataset, the feed-forward I-order LIF SNN was used, and Spiker achieved
an accuracy of 93.85% with a classification latency of 780 microseconds per input
image. This experiment also demonstrated that the system could consume only 180
mW of power on a low-end Xilinx XC7Z020 FPGA. In the second experiment, it
was demonstrated that, using modest hardware resources, a compact and energy-
efficient design suitable for resource-constrained edge devices could be achieved.
In the context of audio classification, the Spiking Heidelberg Dataset (SHD) has

34

2.7 – SNNs for widely available HW platforms

been found to be a particularly effective resource. Utilising recurrent architectures
and II-order LIF neurons, the SHD has been demonstrated to achieve an accuracy
of 72.99%, accompanied by a latency of 540 microseconds and a power consump-
tion of 430 mW. This scenario encompasses a greater number of complex tasks,
thus necessitating a greater quantity of memory and logic resources. However, it is
notable that the results obtained demonstrate a favourable power-to-performance
ratio in comparison to a significant number of contemporary FPGA SNN acceler-
ators. It is evident that the system is capable of operating with minimal power
consumption while achieving competitive levels of accuracy. It exhibits minimal
utilisation of FPGA resources, thereby facilitating its deployment on compact,
power-constrained devices. Additionally, it is equipped with a Python interface,
which expedites the development of Edge SNNs. The impact of input spike activ-
ity and encoding schemes on power and latency is significant. Clock-driven update
policies have been shown to be effective for small to medium-scale accelerators.
Quantisation of neuron and synapse parameters has been demonstrated to have
minimal impact on accuracy, but a significant impact on power savings. This fa-
cilitates larger implementable network sizes. However, it should be noted that
memory capacity on the FPGA could be a limiting factor when implementing large
and complex models. This tool is great for deploying SNNs on hardware, but it is
limited to FPGAs, which are often expensive and generally require a high level of
digital design expertise for deployment.

2.7.2 SNN decoder for Implantable Brain Machine Inter-
faces

All the details regarding this specific implementation over RISC-V microcontrollers
are present in [17]. The system is a SNN designed as a neural decoder for regres-
sion tasks in implantable brain-machine interfaces (BMI). It is a low-complexity
architecture comprising LIF neurons with trainable decay factors that are spe-
cific to each neuron rather than being uniform across the network. This design is
flexible with regard to different temporal dependencies, which is an essential con-
sideration for time-series neural decoding. The model uses ’spiking band power’
(SBP), extracted from 96 channels, as the input feature. SBP uses a band-pass
filter (300–1000 Hz) to reduce the data rate while retaining predominantly infor-
mation from individual neural spikes — a choice that balances power efficiency
and predictive accuracy. The architecture uses fully connected spiking layers, each
containing 256 neurons, except for the output layer which predicts two-finger ve-
locities. This process is handled entirely by neuron states, rather than exploiting
any multi-step temporal convolutions, to optimise performance. Each neuron uses
a custom reset-by-subtract scheme: whenever a neuron spikes, the membrane po-
tential is decremented by the threshold value, giving the neurons more temporal

35

Background

awareness. The network is trained using an enhanced spatio-temporal backpropa-
gation (STBP) method. This method exploits trainable decay factors per neuron
and noise injection before data normalisation for regularisation. Dropout is applied
to the spatial dimensions during training (probability = 0.2) to combat overfitting.
Batch normalisation uses threshold-dependent scaling and is fused into the weights
and biases for deployment. Quantisation-aware training enables very low bit widths
(down to 4 bits for the weights and 3 bits for the decays) with minimal loss of per-
formance.
The input data used for training is prepared accurately to enhance the system’s
reliability and accuracy. Indeed, sequences are generated using a sliding window
of 10 time steps and 9-step overlaps to increase the effective sample size via noise-
based augmentation. The system is deployed on a RISC-V-based SoC (System
on a Chip), the GAP9, and optimisations are made using DMA (Direct Memory
Access) access for faster weight transfer and SIMD (Single Instruction Multiple
Data) instructions to parallelise computations of neuron states and spikes. Dis-
tinct strategies for data movement and execution are applied to the input and
spiking layers to minimise memory footprint (total storage of around 160 KB) and
transfer overhead. When tested on two non-human primate benchmark datasets,
the SNN achieved superior performance, with correlation coefficients of 0.783 and
0.624 for finger velocity prediction in datasets A and B respectively. This sur-
passes the performance of state-of-the-art Kalman filter (KF) and artificial neural
network (ANN)-based decoders for offline inference. The system also achieved ex-
cellent efficiency results, consuming only 1.88 µJ of energy and 0.50 mW of power
per inference via duty-cycled operation, with an average inference time of 0.12 ms.
Using only 4-bit weights and higher-precision membrane potentials for stability has
not resulted in relevant accuracy losses.
The results achieved here are excellent, but this work focused solely on one imple-
mentation using one target architecture, which makes it difficult to deploy different
applications using the same optimisation approach.

2.8 Proposed solution

After analysing all state-of-the-art systems that exploit SNNs, their implementa-
tion advantages, and how they are used to optimise neuromorphic applications, this
thesis will briefly describe the tools and approach used to solve some of the afore-
mentioned solutions’ problems, proposing a more standardised system that could
be used to optimally deploy a simple SNN architecture over standard MCUs.
The system merges the strenghts of the previously mentioned tools to achieve:

• Optimised SNN execution on classic, affordable, commercial microcontrollers.

36

2.8 – Proposed solution

• Two different hardware systems are targeted to perform custom-specific op-
timisations for specific hardware architectures.

• The library is generated directly from the NIR description to provide greater
flexibility for the proposed solution in different SNN applications for one of
the target systems that uses LIF neurons.

37

38

Chapter 3

Materials and methods

After analyzing previous trials in this field of research and after analyzing the
hardware where the system must be implemented, in this chapter, I present the
work I carried out to develop the final system solution, composed of a ready-to-
work SNN across different platforms and hardwares. In particular, the focus is
on:

• SNN model development using the snnTorch framework, with training and
testing.

• Deployment of the same model in an ST Board with optimized features.

• Deployment of the model into GAP8 hardware platform.

• NIR-to-C translator capable of translating NIR described SNN with a similar
architecture as the proposed one into a .h/.c file bootable on the board.

• Only on ST Board, an half-optimised version of the Izhikevich neuron model.

The chapter contains the implementation details of the solution with all the
tools used to make the system work.

3.1 SNN Model Architecture
In this first section, I will discuss about the model of neurons used in the architecture
and on how the neurons are linked to each other to make the system work.

3.1.1 The model and its purpose
I decided to implement an SNN capable of making a classification of 7 different
classes. The goal of such a model is to translate a signal input taken by a robotic
hand when passing its finger over a Braille character [4].

39

Materials and methods

The input comprises 12 channels from 12 analog sources. Each of these channels
is monitored for temporal variations. When a channel’s analog signal exceeds a
predetermined threshold in either direction, a value of 1 is assigned to indicate a
significant change. Conversely, periods during which the signal remains within the
threshold result in the assignment of a value of 0, denoting stability. This threshold-
based approach transforms the continuous analogue input into a binary sequence,
where spikes represent moments of change and zeros indicate periods with constant
signal values. This encoding method allows relevant dynamic information to be
efficiently extracted from analog signals for subsequent classification tasks in the
model.
From these 12 inputs ready to be computed, the system is capable of showing at
the output through a single neuron spike what the braille character recognized by
the robotic hand among 7 different values, which represent 7 different characters
(classes), that corresponds to Space, A, E, I, O, U, Y.
So, the input of the neural network is composed of 12 different channels of binary
values, the output is composed of 7 spike values, which are produced by 7 single
neurons in a one-hot encoding style to identify the class that is recognized, the
so-called output layer.
The architecture has also an hidden layer which is composed by 38 neurons, these
neurons are directly fed by the 12 inputs in a all to all connection (fully connected),
so each neuron receives at the input spikes from all the 12 input channels to compute
a value and to spike, each neuron in the hidden layer has also a recurrent connection
to itself, so whenever a neuron in the hidden layer spikes, it affects also the input of
the next timestep. The output layer, instead, is only fully connected to the hidden
layer without recurrences. Both layers are made by LIF neurons (Leaky-integrate
and fire), with the only difference that the hidden layer has also recursive links.

3.1.2 LIF neuron structure
The LIF neuron used in this model is a first-order LIF neuron, which, in the end,
corresponds to an implementation of the following equation:

V = Vreset − (Vcurrent − Vreset) · β + Iweighted

Where:

• V : Membrane potential at the end of each timestep (evaluated just before
spike decision)

• Vreset: Resting membrane potential value after neuron reset

• Vcurrent: Current membrane potential value at timestep T

40

3.1 – SNN Model Architecture

• β: Decay factor constant computed as:

β = exp
(︃

−1
τ

)︃
where τ is the membrane time constant, ensuring 0 < β < 1

• Iweighted: Weighted input sum calculated as:

Iweighted =
∑︂

i

wi · xi(t)

where wi are synaptic weights and xi(t) are input spikes at time t

This could, in general, be done when the R resistance of the neuron is equal to 1
ohm, so the value of current in Amperes and Volts is numerically the same, and,
in the end, the weighted input accumulated in the equation is a tension with the
same numerical value as the current.
The spike decision is made by a comparison against a particular membrane value
denominated Vthreshold, and in our so-called reset to zero implementation, the spik-
ing behaviour is the following:

S =

⎧⎨⎩0, if V < Vthreshold

1, if V ≥ Vthreshold

And whenever the spike occurs, the value of the membrane is set to 0 from the next
timestep after a spike.
So, if my implementation is reset to zero, we can write an easier implementation of
the previous equation, which consists only in:

V = (Vcurrent) · β + Iweighted

For this equation remains the consideration on the R resistance of the neuron equal
to 1.
This is the no recurrent variant of the LIF; the recurrent one is slightly similar
to this one, but in my implementation, each neuron of the hidden layer also has
another input generated by the spikes of the same neuron on itself. So, in the
recurrent one, each neuron has a specific link to itself with a specific weight to have
also more temporal memory through the computation of the samples. The typical
LIF behaviour is schematized in Figure 3.1.

41

Materials and methods

Figure 3.1: LIF Behaviour scheme.

3.2 SNNTorch Implementation
In this section, I will discuss about how I have implemented the previously discussed
SNN structure using the framework SNNTorch.
First of all, i’ve identified what are the models of neurons in SNNTorch, which I
can use to make the system work as expected. I found out that for the hidden
layer, I can use the RLeaky neuron and for the output layer, I can use the Leaky
one with the following settings:

• RLeaky: reset mechanism = "zero", all to all = false, reset delay = false.

• Leaky: reset mechanism = "zero", reset delay = false.

For all other settings of the network, I’ve taken some values from pre-existing
networks already implemented using another kind of neurons (Section 2.2.1), and
I will go into it in the training subsection.

3.2.1 Training and Validation of the model
To make the whole network work properly, I had to train the network to assign the
right weights to maximise the correct class predictions.
So, I have used three different files of tensor datasets, one for training, one for
validation and one for testing, already used in another previous work [4].
Together with these files, I have used fixed values for betas and for thresholds from
the beginning of the training, beta1 = 0.90, beta2 = 0.55 and the threshold equal
for all neurons equal to 1.0.

42

3.2 – SNNTorch Implementation

The following paragraphs explain the steps required to train a spiking neural net-
work, adapting it to the specific custom model that I must train to compute the
right weights of the network.
In my model, I need two weight matrices, one for the fully connected input-hidden
layer stage and one for the hidden layer-output stage, always fully connected. I
need another vector of weights for the recurrent connections, which is composed
by 38 values in a 1 to 1 binding with the hidden layer structure (1 weight for each
layer).
For the normal weights matrix, the system already uses initial values of weights
following these equations retrieved from SNNTorch Documentation:

W ∼ U
(︄

−
√︄

1
input_channels ,

√︄
1

input_channels

)︄

So, I have also used this kind of initialisation for the vector of recurrent weights
because this was not done in the previous work implementations of training.
After these elements are set in initialisation, the training loop uses these elements
to discover the right weights to maximise the right class prediction given the input
samples:

• Lost Function Selection: To make the network aware of temporal integra-
tion patterns, a cross-entropy loss is applied to spike count over time so the
system doesn’t rely on instantaneous spike events.

• Gradient Handling: The fast sigmoid surrogate gradient function can pro-
vide smooth gradients during the backpropagation steps and mantains hard
thresholds in forward steps, ensuring correct behaviour of the network.

So, the weights after each training loop are updated following this approach:

• A clear of previous computed gradients is performed.

• A store of the new gradients is made.

• An optimisation of weights is made using Adam optimiser.

After the training loop, validation loops are performed, where the model is re-
run, at each epoch of training and, using a different dataset for validation, is able
to perform the loss computation using the same weights as that training loop, and
at each step also accuracy is also computed.
In the case of Validation, no actions were made on weights, only loss and accuracy
computations.
In the end, the dataset test is used to perform the testing over the best values of
weights among all the epochs, which is chosen by seeing the epoch where the net
has the best validation accuracy among all. In our case, the epochs are 500.

43

Materials and methods

3.3 SNN for ST Board (snn2mcu)
After the developement of the SNN model using SNNTorch, in this section is de-
scribed how that model is imported into a .c implementation which can be executed
by an ST Board.
The target board which i’ve used is an STM32H757I-EVAL, and the developement
has focused on three main steps of work:

• Generation of initial setup code using cubeMX software.

• Realisation of a custom SNN model which mimics one-by-one the behaviour
of the SNNTorch model using some optimisation to speed up some operations.

• Print some outputs of the model using UART peripheral of the board first,
and then print also on the LCD of the board to see the results directly from
the board itself.

3.3.1 Initialisation of the environment
First of all, to ease the initial setup of all the peripherals which I’ve used to perform
all the SNN operation I’ve used the cubeMX1 program to setup all the hardware
peripherals and to setup the clock frequencies of those peripherals in a way that
the operations can be coherently executed and then the outputs can be correctly
shown.
So, in the first place, I’ve started a new project from an ST Board, STM32H757I-
EVAL is chosen, and then the initial config is chosen at first. Together with the
default settings, usart1 peripheral is enabled in my project, so I can track and see
all the operations done by just setting up a UART receiver using PUTTY. The
settings used for UART are:

• 115200 bits/s for the Baud rate.

• 8 bits of word length without parity bit.

• 1 stop bit implementation.

Then, for all other peripherals, the default settings are maintained so a generation
of the code to be opened by STM32cubeIDE is executed.
At this point, I want to use the full optimisations to make a faster model and
program the LCD peripheral more easily. Some libraries provided by ST must be
imported, even though they are not directly included in the CubeMX project. In

1https://www.st.com/en/development-tools/stm32cubemx.html

44

https://www.st.com/en/development-tools/stm32cubemx.html

3.3 – SNN for ST Board (snn2mcu)

particular, I’ve imported the DSP2 and NN extensions to unlock the full optimi-
sations over the mathematical operations of the SNN, and I’ve also imported the
BSP3 functions to handle the LCD configuration with some utilities to operate with
the same device.
To import, a path to the include directories to the respective libraries is explicitly
pointed out to the GCC compiler, among the others already present for the com-
mon CMSIS and HAL libraries, which were standard generated by cubeMX. Then,
the source code for the NN is directly included in the project in the common folder,
for DSP, instead, I’ve used the already given .a files so the libraries can be imported
directly from there.
For the BSP, a set of files containing the useful libraries and peripherals for per-
forming LCD operations is imported, based on an existing example.
And after that, all the peripherals used by the SNN are ready to use.

3.3.2 SNN execution and optimisations
At this point, the implementation on the board could be realised. The core of the
SNN is described through two files (.h/.c), which contain neuron structures, weight
vectors and functions that are used to initialise the network, perform simulation
steps, display the results of the operations and clear the neural network status.
This allows independent classification of samples in a single run, for example.
The main function, apart from the initialisation functions generated by cubeMX,
can perform the following operations on the SNN, calling the respective functions:

• The initialisation function to load the model on memory.

• The function to give the correct input vectors before each simulation timestep.

• the function to clear the SNN status if we want to give other independent
samples to the network.

Data types used

The main feature of this custom network is the use of some particular variables on
8 and 16 bits. The q7_t type of variable is an 8 bit variable, which I use just to
give/take/propagate spikes through the network, so I can represent spikes by only
writing ones on this 8 bit values instead of using 32 bit variables, which could result
in a lot of wasted bits unused. The q15_t is instead used to represent weights,
perform operations using them, represent membrane status and other neuron fea-
tures like the threshold voltage and decay factor. The q15_t is on 16 bits, can

2https://arm-software.github.io/CMSIS_5/DSP/html/index.html
3https://github.com/STMicroelectronics/stm32h747i-eval-bsp

45

https://arm-software.github.io/CMSIS_5/DSP/html/index.html
https://github.com/STMicroelectronics/stm32h747i-eval-bsp

Materials and methods

represent only numbers in the range of [-1, 1], these are effectively integer numbers,
but represent in a quantised manner all the values between -1 and 1 representable
using 16 bits, the first used only to show if the number is negative or positive. The
differences from the normal floating-point data type are emphasised in Figure 3.2.
The absence of an exponent field means that q15_t and q7_t can only represent
values between -1 and 1. Fewer mantissa bits also mean that less precision can be
represented overall.

Figure 3.2: Comparing data types, standard, fixed q15 and fixed q8. Red is sign,
Yellow is exponent, Green is mantissa.

Neuron structure and optimised execution

Other than that, this type of data are useful also because the DSP extension of
CMSIS has some functions optimised to perform operations using these variables.
The neuron in this implementation is a C struct; it has 4 different values rep-
resented in q15_t, which represent the threshold, the reset value, the membrane
potential and the decay factor (the beta in the equation). Now I’ll go into a deeper
explanation of the code in this particular case, in the NIR Chapter 3.6, instead,
there is also a description of what could be generated and how the code is modified
accordingly to different situations.
The main functions of the SNN implementation on board are:

• usart1_print: Takes a string and uses HAL function to transmit over usart1
peripheral of the board to be read.

• print_float: Takes a floating number in input, the number is converted in
character strings to be then represented in the right way on uart and then
calls usart1 print to print the value. This function has been used mainly to
perform debug prints in order to check the specific neurons behaviour after
the cycles of simulation. I left the implementation there so anyone could also
check the behaviour of the network.

• LIFNeuron_init: Takes in input a pointer to neuron struct, the threshold
and the reset values. So, the neuron variables are initialised.

46

3.3 – SNN for ST Board (snn2mcu)

• LIFNeuron_Layer_Update_Vectorized: This function is one of the
main ones used for performing neural operations within a layer. In particular,
it is used for recurrent layers and takes the following as inputs: a pointer to
the layer (an array of neurons), the input spikes, the weights vector, the num-
ber of inputs, the number of neurons in the layer, the recurrent spikes and
weights, and a flag variable that indicates whether the function is one-to-one.
After the operations, the function fills the output array, which is passed to
the function as a pointer, so that the results can be displayed or propagated.
Firstly, all the neuron parameters are extracted from the structs into different
arrays to perform operations later. The weighted input accumulator is ini-
tialised and filled with zeros. This is used to update the values of each neuron
based on the inputs received by each neuron. Each entry corresponds to the
input received by a specific neuron at a given timestep. By checking the flag,
we can see if the layer is fully or one-to-one connected to the previous layer.
This allows us to use the arm_add_q15 function in two different ways.

– In one-to-one, each input spike is checked in a for loop, but only one
entry is updated each cycle time. Therefore, even though this function
could perform vectorised operations, this is not exploited here.

– If fully connected, all the entries in the weight vectors referring to that
specific input neuron are added to all the entries of the weighted_input
matrix in parallel. This means that there is only one loop at the inputs,
and vectorised accumulation is exploited using the vectorised function.
This is possible because the weights in the vector are ordered according
to the pattern of inputs to neurons (in0->n0, in0->n1, in0->n2, ... in1-
>n0, ... until the end).

The presence of values in recurrent inputs and the recurrent matrix is checked,
and if any are found, the update follows the one-to-one approach like it was
described above.
After these accumulations, the other operations are standard for all the neu-
rons in the layer following the update functions already described in previ-
ous chapters, so variations of the add function are exploited: arm_sub_q15,
arm_mult_q15, the latter for decay computation.
In the end, the current membrane value for each neuron is compared with the
threshold value; if above, the membrane is reset, and a spike is generated; if
not, a 0 is generated in the output spike.

• LIFNeuron_Layer_Update_Vectorized_NoRecurrent: Same exact
behaviour as the previous function, but has no recurrency checking or update,
used for no recurrent layers only.

47

Materials and methods

• Load_NIR_Weights: This function is used to initialise the Weights of the
network, and then these are scaled to a smaller values to prevent overflow
on using q15_t variables. Then, from floating point (float), these values are
converted into ready-to-use q15_t values to match the standard of the custom
architecture.

• SNN_Init: This function is used to initialise the networks. Values for
threshold, reset and betas are chosen, scaled with the same scaling factor
as the weights and then the LIFNeuron init is called for all the neurons of
the layer. The scaling factor is not applied to betas for two reasons, the first
is that is not necessary given the fact that are always numbers < 1 but the
other reason is that the betas must be multiplicated to the current membrane
value to perform the decay, if scaled, the beta multiplication becomes no more
consistent with the no-scaled architecture, because the scaling works fine and
without problems only if accumulation or subtractions are performed. Dur-
ing multiplications with both membranes and betas scaled, the result of the
multiplication is no longer equivalent to the normal network behaviour. After
the neuron initialisation, the Load weights function is called here, and all the
spikes for recurrent connections are set to zero.

• SNN_Run_Timestep: takes as input pointers to input and output spikes,
performs in order the execution of the operations in the layers using the
update functions, propagates the spikes from one layer to the other and gives
also back the spikes for the recurrent layers.

• SNN_Reset_State: this function resets the state of the network, putting
all the membranes to reset values and spikes to 0.

3.3.3 LCD implementation
All the results of the SNN execution are printed in some functions in the main.
Here, we will focus on how the functions are used to print something on the LCD
before and after the neural network execution.
First of all, using MPU_Config() function, the MPU attributes are configured as
Write Through for SDRAM, then SDRAM and UART are initialised. Then LCD is
initialised, parameters of LCD are configured as the active layer, the pixel format
and the resolution of the LCD of the board. After all the init steps to initialise the
LCD, two custom functions are used to print the initialisation of a simulation and
the end of the simulation. At this point, the use of UTIL function is exploited to
easily set fonts, write strings, and set text and background colours to read results
directly from the board.
All the stuff related to results and optimisations is deeply described later in the
results chapter.

48

3.4 – Izhikevich on ST Board

3.4 Izhikevich on ST Board
To avoid focusing solely on one neuron implementation, the Izhikevich neuron model
is also supported. This model is slightly less optimised due to its more complex
nature. Firstly, a brief description of the neuron model will be given, and the
differences from the previous ST implementation will be emphasised at the end.
This model is only developed for the ST Board.

3.4.1 Izhikevic neuron model
The Izhikevich model is widely recognised as a SNN neuron model for its biological
plausibility and computational efficiency. In this implementation, each neuron is
defined by a set of state variables and parameters, namely the membrane potential
(V), the recovery variable (u) and the parameters (a, b, c, d) that determine the
spiking and adaptation dynamics. The discretised form can be described as follows:

V = Vcurrent + ∆t(0.04V 2
current + 5Vcurrent + 140 − ucurrent + Iweighted

u = ucurrent + ∆t · a(bVcurrent − ucurrent)

And the spike behaviour is the following:

S =

⎧⎨⎩0, if V < Vthreshold

1, V = c, u = u + d if V ≥ Vthreshold

The parameters used in this equation means:

• V : Membrane potential at the end of each timestep (evaluated just before
spike decision)

• Vcurrent: Current membrane potential value at timestep T

• ∆t: is the discretization timestep set to 1 for simplicity.

• a: Time scale of the recovery variable u; typically determines how quickly u
responds to chaingings in membrane potential.

• b: Sensitivity of the recovery variable to the membrane potential; controls the
coupling between u and V

49

Materials and methods

• c: Post-spike reset value for membrane potential (V); sets the new voltage
immediately after a spike.

• d: Post-spike increment for recovery variable (u).

• Iweighted: Weighted input sum calculated as:

Iweighted =
∑︂

i

wi · xi(t)

where wi are synaptic weights and xi(t) are input spikes at time t

• Vthreshold: It is the voltage threshold which is used to spike like in LIF model.

This has resulted in a different approach to optimisation starting from previously
discribed model for LIF neurons.

3.4.2 Izhikevich for ST Board
The main difference between this model and the previous one is that only the
weights and spikes are quantised here to optimise the operations. This is because
the Izhikevich neuron’s more complex state update dynamics require more precision
than the q15_t datatype can provide. I kept the float32_t datatype because this
datatype is also supported by the DSP ARM Extension, ensuring that operations
are always performed in an optimised way.
The main differences in the code are as follows:

• IzhikevichNeuron_Init: In this function, the neuron is initialised with
all the parameters which are different from LIF (a,b,c,d,v_init and u). u is
initialised as b*v_init.

• IzhikevichNeuron_Update: now in this implementation, the neuron up-
date state is done here, right after weight accumulation, exploiting the f32
variants of the arm CMSIS DSP functions (arm_mult_f32, arm_add_f32,
etc.)

• IzhikevichNeuron_Layer_Update_Vectorized: It behaves initially like
before for normal weight accumulation, supporting also recurrency, then the
weight accumulated is translated into the float32_t datatype in order to make
weight accumulation compatible with floating computation of the update
function.

For the rest, it follows the same scheme of execution supporting also recurrency for
each node, like in the previous LIF implementation.

50

3.5 – SNN for GAP8 processor

3.5 SNN for GAP8 processor
After the hardware board implementation, the development of the network on an-
other kind of platform has been done.
The target architecture now is not a single-core architecture, so a multicore ap-
proach is exploited, and also the memory management is optimized with smart
accesses to L1 and L2 shared memories. Together with that, the operation of the
program and of the network are executed exploiting the 8-core cluster to speedup
all the initialization and execution processes.
The project in this case is not executed on physical hardware; instead, the pro-
gram is executed on the GVSOC simulator (GreenWaves4 Virtual System on Chip),
which is a virtual platform that runs upon Ubuntu Operating System and is used
to simulate the instruction set architecture of a specific SoC with GAP8 RISC-V
processor.

3.5.1 Program flow and Implementation
The target model is always the same as the other platforms, the Braille classifica-
tor, but on this specific implementation, I’ve exploited all the extra features of this
platform to enhance the SNN performances.
From now on, I will describe each of the functions present on the program to empha-
size how the cluster implementation and the memory optimizations are performed:

• NeuronOpt: a C struct with floats potential, threshold, reset, and alpha
(the beta decay factor already pre-computed), and an int spiked, which is
used as a flag for spikes.

• LayerInstanziationOpt: a C struct with the identification int like the layer
id, the number of neurons in the layer, the number of inputs to the layer, a
pointer to the array of neurons, a pointer to output, and a pointer to input
values.

• In Main, the pmsis_kickoff() function is called, responsible for kernel ini-
tialization, all SoC hardware setup, Cluster preparation, and launches the
main function, which is passed here as an argument.

• The main function for the network initialization and execution is
neuron_instanziation_opt(), here the cluster is initialized, then config-
ured and opened. If there are no problems, the system is correctly initialized.
Then the initialization phase begins, so each layer is initialized one after the

4https://github.com/GreenWaves-Technologies/gap_sdk

51

https://github.com/GreenWaves-Technologies/gap_sdk

Materials and methods

other in an L1 buffer, and later the data is sent to L2 using the DMA accel-
eration of the SoC. Then other operations like neuron initialization, weight
assignment, and execution happen here, and the classification and testing of
this specific model are also done. The general functions to make the entire
system work are now described.

• pi_cluster_send_task_to_cl() is the function used in the main to send
to the 8 cores cluster all the functions that we want to execute in a opti-
mized way, each basic function of the SNN is called by pi_cl_team_fork(),
a function call inside the specific cluster_delegate functions, and this is used
to select the specific core that should manage a particular task. In my im-
plementation here, I send the task to all 8 cores to optimize, and further
decisions are made to keep data coherent among the system and to optimize
the speed.

• cluster_layer_init_opt() is the main function used to initialize all the
neurons inside a layer and the layer itself. Thanks to the previously mentioned
code, all the 8 cores in a parallelized way access this function, and to keep
track of the operations, the core id of each core and the total number of
cores are stored in variables. Using a Round Robin scheduling made by a for
loop and using core IDs and total number of cores in a wise way, a parallel
initialization of neurons is made, so 8 neurons per time could be initialized,
and if in the cluster there are more than 8 neurons, the remaining ones are
initialized in the next cycle of the for loop. The neurons assigned to the
cores in this way could be initialized independently wisely and coherently. In
the for loop, the initialize_neuron_opt() is called to initialize the layer
and the neurons inside it, setting features like threshold, reset values, and so
on in a similar way to the other implementations. Here also the output of
each neuron is set to 0. The result is a 1-to-1 matching between the neuron
number of the layer and the core assignment (core 0 initializes neuron 0, core
1 initializes neuron 1, and so on, after the seventh, the 0 is assigned to the
eighth... until all the neurons are initialized). As previously mentioned, the
init phase of layers is on L1, so a pi_cl_team_barrier() is called to wait here
until all neurons are initialized. Now the L1 initialized buffer is moved using
the DMA to the L2 respective variables. This is done in a parallelized way
similar to before, but in a one-only operation, the core that has initialized the
specific neurons is also the one that here performs the DMA transfer to keep
the data coherent, and without using for loops, the DMA transfer is called
independently by each core in a parallelized way. A barrier is present after
DMA functions to stall ready cores until all of them end their operations. In
the end also the layer is also sent to the respective L2 variable only using core
0, so the operations are safe.

52

3.5 – SNN for GAP8 processor

• Following a similar approach, the cluster_weights_instanziation_opt()
function is called; here, the initialization of the weights is done only using core
0, the initialization is done in flash memory because the data is huge, but then
a transfer to L1 buffer is done in the initialize_weights_opt_L1 function. A
DMA transfer is performed to store the weights in L2, as the weight data is
typically too large to fit entirely in the L1 buffers. This process is carried out
in parallel, following the approach of initialising the neurons, whereby each
core is assigned specific weights and sends them independently to L2.

• After the entire network is initialized, a function to reset all the neuron states
could be useful, so cluster_reset_neurons_opt() is called by only using
core 0, and here L2 data is moved to L1, then the state is reset, then again
moved to L2.

• So now the network is ready, only core 0 each timestep gives to the network the
inputs using cluster_load_input_dma(). In a first implementation, also here
the data is managed by DMA, but, because the input data could be made by
huge datasets which could not fit in L1 or L2 memories, just straightforward
accesses to the input data are made.

• With the input data loaded, the execution of the network is done using clus-
ter_simulation_opt() function. This function behaves almost like the
other, but the operations are controlled in a way to parallelize safe operation
and to keep the execution only on core 0 if there could be unsafe operations
to keep data coherent. Here, core 0 first of all transfers neuron states from
L2 to L1, here in a wise way from the weight matrices from L2, seeing active
neurons using global variables, only the weights that came from active inputs
are stored in the L1 buffer, so, on weights, only necessary data from L2 is
taken each timestep to perform actions on neurons. After a barrier, all the
neurons are now executed in a parallelized way using all the 8 cores, buffers
on L1 are used to speed up the operations with the prefiltered weights. The
neuron assignment to perform the actions is done as the other pre-described
functions. So, the accumulation of weights is done, and the LIF dynamics
are applied like in the other network implementations. Then the threshold
checking is done to determine whether to generate spikes or not. If there is a
recurrence in the weights accumulation phase before the LIF update dynam-
ics, the recurrent buffer is also used with the other default one.

• This is all the execution of the network, eventually it could be performed
classification recordings or other types of output management accordingly to
the specific implementation. In the end, the cluster is closed, and the exit
function is called.

53

Materials and methods

3.6 NIR-to-C translator
In the end, after all the network implementations among different platforms, a
Python program capable of taking as input a .NIR description of the network and
giving as output the full working .c/.h network compatible with the ST device is
realised.
The process of making the translator has been done in two steps:

• Translation of a known model into a NIR description from SNNTorch.

• Developement of the NIR-to-C translator.

3.6.1 From SNNTorch to NIR
First of all, the SNNTorch of the previously described network is taken.
Theoretically, by just using an export function from the NIR Python library the
translation of the network is straightforward. But in this specific case, using the
recurrent connections, the RLeaky neuron is not compatible with the export tool,
as that specific neuron is not supported by now. So, a manual implementation of
the SNNTorch network in NIR has been described.

• Weights, betas and thresholds are taken from the SNNTorch description, a nir
dictionary of nodes has been made to set all the network characteristics, input
using nir.Input, Output using nir.Output, the connections between layers
using nir.Affine (even though no bias, for easier further improvements) and
the layer neurons are described using the primitive nir.LIF.

• The parameters for the LIF are specified, from the standard, the tau from
the beta is used to describe the decay behaviour, V threshold is inserted
as the other networks, V leak is set as zero because we don’t use it in our
implementations, V reset to zero, and membrane resistance to 1, to mimic
other network behaviour.

• The recurrent layer is made as an affine, which is inserted between the outputs
of the layer and connected back again to the same layer.

• This is a custom implementation, a way to describe the recurrency, and the
matrix of the affine is here a diagonal one to mimic the one-to-one recurrency.

• The edges are described using input, output, lifx (x, the number of the layer),
fcx (to determine the connections among layers) and recx inserted on the edge
graph like before to determine a recurrency in a specific layer.

• So the nir graph has been made using the specific primitive and the nodes
dictionary, and the edges graph is passed as arguments, and consequently a
.nir file is generated.

54

3.6 – NIR-to-C translator

• The names of the edges are important; indeed, they are used to generate the
C code later in the translator.

3.6.2 From NIR to C
The translator supports only LIF neurons; one-to-one or full connections between
layers are also supported. The recurrency is supported on the layers, but only the
one-to-one implementations; bias is not supported, v leak is not used, and the r
must be 1 (in any case, the translator ignores this value). So, a list of supported
characteristics has been made.
The nir description could be given by modifying the code or as an argument from
the command line. If something is not supported, an error message is shown during
code generation.

• As the class of the generator is initialised, the input nir graph is read, an
output prefix for the name is inserted as a variable and a scaling factor is
inserted (60 by default).

• Then, the nir network is analysed, exploring the edges, and an adjacency list
is made. After that, as the first thing, the input node in the node dictionary
is searched, and the value is put into a variable.

• From Input, the number of inputs is extracted.

• From input, all the edges are explored, and a tracking of the visiting nodes is
also performed to prevent infinite loops (important for the recurrent nodes).

• So using adjacency list, each node is explored, and an affine node variable is
assigned if a node is an affine, or a lif node variable is assigned if a node is a
lif layer. In this first phase recurrency is ignored, and the node is marked as
visited.

• In the end of the current node analysis, if a rec is found on the next node,
recurrent weights are stored, a flag is set to true, and a checking on if it is
diagonal has been made. If it’s diagonal, then the description is accepted; if
not, an error is raised.

• Then info from the layer is extracted, also if it is one-to-one connected or not,
for normal Affines, biases different from 0 are just ignored, and layer info is
stored as a dictionary style.

• Then, if all the values across the layer are the same for all the neurons in
the layer, a flag is set to true so the code generation is optimised for uniform

55

Materials and methods

values; if not, later the code is realised to generate values for each neuron,
increasing the lines of code generated in the C file.

• From now on, checking on the written dictionary, C code is generated in a
wise way by appending strings.

• The .h is firstly generated and is always the same; the code checks the network
characteristics to adapt the generated C code to the network behaviour.

• The output here is pretty similar to the one previously described for the
specific implementation and dynamic number of outputs, inputs, neurons and
layers are allowed, but, in the end, only similar architectures are allowed to
be generated directly from NIR.

• It is important that the NIR structure uses the specific structure present in
the previous subsection because only with that format, the translator is able
to translate.

• The last thing generated is an example C code to run the network, which
must be embedded in the main code for the ST board.

56

3.7 – Used tools

3.7 Used tools
The development part of this work has been realized by using professional tools
that are widely used. In particular:

• Firmware Development: STMcubeMX to generate base .h/.c code firmware,
STM32CubeIDE

• Python framework snnTorch and NIR library.

• GAP8 implementation using GVSOC simulator for Ubuntu Local Fossa.

• Version Control System: GIT

57

58

Chapter 4

Results and discussion

Ultimately, I ran tests and experiments using all available tools to evaluate the
impact of the optimisations on various SNN models.

Firstly, I measured the accuracy of the aforementioned Braille model on the
same dataset using three different platforms: SNNtorch, ST Board, and GAP8, to
compare the performance of the different architectures.

Then, using the NIR to C parser I had previously created, I reproduced an
existing SNN model used to recognize images from MNIST Dataset for training,
model definition, and later I deployed it on the board, passing through NIR and
analyzing execution speed and energy consumption. The energy and time per
inference of this implementation have been compared to a similar implementation
on FPGA.

4.1 Braille Model Results
This first section will present all the results of measurements made using this model
across the three different platforms. All of these models’ characteristics are fully
described in Chapter 3.
Firstly, two examples of the behaviour of the output layer will be shown, with
a comparison between the snnTorch model and the ST Board implementation.
Secondly, a comparison has been made between the three platforms to emphasise
the differences when running a dataset of 140 samples named ds_test on all the
platforms.

4.1.1 LIF neuron Behaviour: snnTorch VS Board
As previously mentioned, two different sets of spikes were given to the ST model
and SNNTorch to test the LIF neuron behaviour, mainly to observe the effects of
quantisation, performing random operations on the two models.
As mentioned in Chapter 3, the ST model uses weights trained in snnTorch and

59

Results and discussion

exploits the same SNN behaviour to maintain coherent results at the output.
The first spike pattern has ten timesteps. For each timestep, a new input value is
given to the input layer to analyse the membrane behaviour in the output layer.
The inputs are essentially arrays that form a matrix when the dimension T of the
timesteps is included. The values are as follows:

Table 4.1: Input1 Pattern Across Timesteps (Neurons 0 to 11)

Timestep n0in n1in n2in n3in n4in n5in n6in n7in n8in n9in n10in n11in
1 1 0 1 0 0 0 0 0 0 0 1 0
2 0 0 0 1 0 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 1 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 1 0 0 0 0
7 0 0 0 1 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 0 0 0 1 0 0
9 0 1 0 0 0 0 1 0 0 0 1 0
10 0 0 0 1 1 0 0 0 0 0 0 1

Now, graphs will be displayed showing the differences in membrane values be-
tween the two implementations, giving also reasons behind this specific behaviour.

Figure 4.1: N0 behaviour for Input1 pattern across the timesteps.

Figure 4.2: N1 behaviour for Input1 pattern across the timesteps.

60

4.1 – Braille Model Results

Figure 4.3: N2 behaviour for Input1 pattern across the timesteps.

Figure 4.4: N3 behaviour for Input1 pattern across the timesteps.

Figure 4.5: N4 behaviour for Input1 pattern across the timesteps.

Figure 4.6: N5 behaviour for Input1 pattern across the timesteps.

Analysing the graphs shown in Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4,
Figure 4.5, Figure 4.6, Figure 4.7, it can easily be seen that, even though the values
in the ST Board are quantised, the results in terms of membrane values are almost
the same. Indeed, the only difference is that the values from snnTorch are slightly

61

Results and discussion

Figure 4.7: N6 behaviour for Input1 pattern across the timesteps.

higher. This is because the fixed-point type exploited by the board introduces er-
rors when quantising due to the use of less precise values; the values are 16-bit
rather than 32-bit. However, the results are very good: slightly less precise values,
but for models that exploit spike patterns instead of precise membrane values, the
results are usually the same. This can also be seen by analysing the other pattern.
The second input pattern is always 10 timesteps long, but the number of ones given
to the input is increased to observe how the model behaves when a spike pattern
forces more dynamics onto the neurons. The values are as follows:

Table 4.2: Input2 Pattern Across Timesteps (Neurons 0 to 11)

Timestep n0in n1in n2in n3in n4in n5in n6in n7in n8in n9in n10in n11in
1 1 1 1 0 1 0 1 1 1 0 1 1
2 1 0 1 1 1 0 1 0 1 0 1 1
3 0 1 1 0 1 1 0 1 1 0 1 0
4 1 0 1 1 0 1 0 1 0 0 0 0
5 0 1 0 1 1 1 1 0 1 0 0 1
6 1 0 1 0 1 1 1 0 1 1 0 1
7 1 1 1 1 0 1 0 1 1 0 1 0
8 1 0 1 0 1 0 1 1 1 1 0 1
9 0 1 1 1 1 1 1 0 1 0 1 0
10 1 1 0 1 1 0 1 1 0 1 0 1

The dynamics of each neuron with Input2 as input are then represented in
Figure 4.8, Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.12, Figure 4.13 and Fig-
ure 4.14

It can then be observed that, even though the spiking input pattern introduces
more dynamics, the behaviour follows the same approach as the previous input pat-
tern. This makes the ST Board implementation both cheaper and highly reliable.

62

4.1 – Braille Model Results

Figure 4.8: N0 behaviour for Input2 pattern across the timesteps.

Figure 4.9: N1 behaviour for Input2 pattern across the timesteps.

Figure 4.10: N2 behaviour for Input2 pattern across the timesteps.

Figure 4.11: N3 behaviour for Input2 pattern across the timesteps.

4.1.2 ds_test across different platforms
Once it has been confirmed that the ST Board model is usable, a formal test is
carried out using a dataset comprising 140 samples.
On this dataset, each sample is formed by 256 timesteps; in other words, a sample

63

Results and discussion

Figure 4.12: N4 behaviour for Input2 pattern across the timesteps.

Figure 4.13: N5 behaviour for Input2 pattern across the timesteps.

Figure 4.14: N6 behaviour for Input2 pattern across the timesteps.

is ready when 256 different input spike arrays have been received. To recognise
the correct class, the spikes are accumulated into a classification array for each
timestep. After executing the 256 timesteps and accumulating the output spikes
for each timestep, the class value is the neuron that has spiked the most during
all 256 timesteps. After classifying a single sample, the state of the SNN is reset
so that the next classification is independent and unbiased from the previous one.
The dataset also contains the expected class value, enabling the accuracy of the
network to be computed and the performance of the models to be assessed.
The results of all the 140 samples analyzed are written in the Table A.1:

After executing on all three platforms, the accuracy of the models can be ex-
tracted as a ratio of matches to total samples. The overall result is 91.43%. The
reliability of the ST Board implementation can be seen in this result, even though
the match pattern is not the same as the GAP 8 and snnTorch models. Indeed,

64

4.1 – Braille Model Results

the failed tests in these two models are 2, 4, 13, 15, 35, 55, 56, 60, 86, 95, 113
and 138. However, in the ST model, tests 13 and 113 are correct, while tests 23
and 79 are missed only in this implementation. This is because the spike patterns
of GAP 8 and snnTorch are identical; they perform the same actions on 32 bits
without error. The uniform quantisation errors turn two matches into misses and
vice versa because the spike patterns are slightly different. This can be seen in
the Figure 4.15, Figure 4.16, Figure 4.17, Figure 4.18, Figure 4.19, Figure 4.20 and
Figure 4.21 graphs, which compare the spike accumulation of a specific neuron for
each sample.

Figure 4.15: N0 spike accumulation ds_test

Small analyses were performed to demonstrate that the spike pattern is un-
doubtedly different, with a maximum of seven spikes present in the N6 neuron
(Figure 4.21) and a minimum of two spikes for the N0 and N3 neurons (Figure 4.15
and Figure 4.18). The average spike variation is the mean of all variations across
all 140 samples; this value is consistently below 1. The correlation factor, on the
other hand, is:

rX,Y =
∑︁n

i=1(xi − x̄)(yi − ȳ)√︂∑︁n
i=1(xi − x̄)2

√︂∑︁n
i=1(yi − ȳ)2

where:

• xi: The i-th element of the spikeset X (first array).

• yi: The i-th element of the spikeset Y (second array).

• x̄: The mean (average) value of all elements in X, calculated as x̄ = 1
n

∑︁n
i=1 xi.

65

Results and discussion

Figure 4.16: N1 spike accumulation ds_test

Figure 4.17: N2 spike accumulation ds_test

• ȳ: The mean (average) value of all elements in Y , calculated as ȳ = 1
n

∑︁n
i=1 yi.

• n: The total number of elements in each spikeset.

• ∑︁n
i=1(xi − x̄)(yi − ȳ): The sum of the products of deviations of xi and yi from

their respective means.

• ∑︁n
i=1(xi − x̄)2 and ∑︁n

i=1(yi − ȳ)2: The sum of squared deviations, representing
the variance for each spikeset.

66

4.1 – Braille Model Results

Figure 4.18: N3 spike accumulation ds_test

Figure 4.19: N4 spike accumulation ds_test

•
√︂∑︁n

i=1(xi − x̄)2 and
√︂∑︁n

i=1(yi − ȳ)2: The standard deviation for each spike-
set.

This factor is used to determine whether the spike values are correlated. The
result is 1 if the values are equal. Across all neurons, the value is almost 1, which
guarantees the reliability of the model.
For the GAP 8 model, I used the GVSOC simulator, so the execution time is
meaningless because real hardware must be used to see the real values. Therefore,

67

Results and discussion

Figure 4.20: N5 spike accumulation ds_test

Figure 4.21: N6 spike accumulation ds_test

only the execution times of snnTorch and Board are analysed. The total execu-
tion time in milliseconds is measured using the HAL_GetTick() function on the
ST Board and the average is then calculated over 140 samples. For snnTorch,
the time.perf_counter() function from the time library is used to calculate the
execution time and mean time per sample in the same way. The results were an ex-
ecution time of 2.216 seconds on the Board versus 18.213964 seconds on snnTorch,
with an average time per sample of 15.83 ms on the Board versus 0.130100 seconds
on snnTorch. These results emphasise the power of an optimised hardware model

68

4.1 – Braille Model Results

over a standard snnTorch model, which is extremely slower.
Ultimately, these results are printed directly onto the LCD mounted over the board.
A first screen is shown during execution (Figure 4.22) and a second screen provides
a recap of the test execution results (Figure 4.23).

Figure 4.22: Startup screen LCD

Figure 4.23: Results over LCD

69

Results and discussion

4.2 MNIST Benchmark using Spiker+ and NIR
generator

This section describes how the NIR-to-C, as described in Chapter 3, could be used
to implement larger SNN architectures in practice.
All the steps required to make the system work are described:

• Using the Spiker+ framework [16], which was originally designed to perform
SNN inference on FPGAs, a definition and training has been developed for a
MNIST-adapted SNN model.

• The NIR-described model has been extracted using the export_nir function
from the standard NIR Python library. Then, using the NIR-to-C translator
with minimal changes, the model has been made deployable on board.

• Then, due to memory limitations, five random samples from the MNIST
dataset were used to perform benchmarks, including those for execution time
and energy consumption.

4.2.1 Spiker+ SNN description and training
The Spiker+ framework has already implemented an example LIF model for per-
forming MNIST classification for FPGA inferences.
The framework uses snnTorch for model definition and training, so the only mod-
ification I made was to the synchronous loading of data from the MNIST dataset
using the pre-defined functions in the framework, which relies on the Torch Python
library.
The conversion of MNIST images to spike trains is achieved in several structured
steps, producing a time-varying representation suitable for spiking neural networks.

• Preprocessing

– Start with a 28 × 28 grayscale MNIST image.
– Normalise all pixel values to the interval [0, 1], so 0 is darkest, and 1 is

brightest.
– Flatten the image into a one-dimensional vector of length 784, preserving

spatial order.

• Rate-based Spike Encoding
For each time step in a simulation window of T = 100 steps:

– Each vector element (pixel) determines the firing probability of its cor-
responding input neuron.

70

4.2 – MNIST Benchmark using Spiker+ and NIR generator

– Spike generation uses a Bernoulli process:
∗ Probability equals the normalised pixel value.
∗ For example, a value of 1.0 produces a spike at each time step; 0.5

spikes about half the time; 0 produces no spikes.

• Spike Train Representation

– The outcome is a binary matrix (tensor) of size 100 × 784.
– Each entry is 1 if a spike occurred at that time for that pixel, 0 otherwise.
– Higher original pixel intensities produce more frequent spikes; lower in-

tensities produce fewer or none.

• Functional Significance
This method achieves several advantages:

– Encodes spatial intensity patterns as temporally distributed spike rates.
– Provides input compatible with biological and artificial spiking neural

networks.
– Closely follows rate coding as observed in biological sensory systems,

where information is represented by neurons’ average firing rate over a
window of time.

Then, the automatic network builder of the Spiker+ framework was used and
the network was left almost the same, with only minor changes, such as resetting to
zero and spike accumulation for classification, in order to maintain the same struc-
ture as the previously defined models. The SNN is a fully connected two-layer LIF
with 728 inputs, a hidden layer of 128 neurons and an output layer of 10 neurons
(numbers from 0 to 9). After defining the network, the SNNTorch network builder
was used to build it. The training tool of the same framework was also used to
perform training through back-propagation in a manner similar to that described
in Chapter 3, relying on the Adam optimiser and the default surrogate gradient
ATan to perform back-propagative updates to the weights. After training over 20
epochs using the MNIST dataset, the accuracy was 97.42% over the 10,000 MNIST
test samples.

4.2.2 extract_nir and translation to C
The model in snnTorch is now trained and ready to use. In Chapter 3, there was
a problem with the RLeaky, which is not supported by the extract_nir function
of the Python NIR library. This problem does not arise here, as the SNN model

71

Results and discussion

only uses classical LIF and has full connectivity between layers. The NIR-to-C
generator has been updated to support the primitive Linear, as well as the Affine
(which has the same full connection, but without bias, which is ignored as before).
Some minor changes have been made, as the Beta-to-Tau conversion is linear for
the extract_nir function, and is performed as follows:

dt = 1e − 4

tau_mem = dt/(1 − β)

r = tau_mem/dt.

There is no problem with r; it has simply been ignored, as the behaviour of both
snnTorch and snn2mcu does not rely on it. Just an adaptation has been made,
coherently with this tau calculation, to extract the correct beta from snnTorch
when passing from NIR. The new NIR-to-C parser has also been updated to define
static constants when defining weights, in order to define static values in FLASH
memory, which makes the system compatible with memory limitations. Using the
parser, the respective .c and .h code has been generated and a small Python program
has been written to extract five random samples from the 10,000-sample dataset
for further benchmarking on the board.

4.2.3 Benchmark over ST Board
In the end, the system is now ready to be used. Firstly, it was checked that the
system worked as expected with five random values. It classified all five random
values correctly, which is only meaningful in showing that the system actually works
because the memory is too small to perform an accuracy benchmark.
So, the focus of this implementation was on energy consumption and execution
time per sample. To make the benchmark meaningful, the same five samples were
iterated 100 times to see the results clearly. Then, all the unnecessary peripherals
and the M4 processor were deactivated, as only the M7 is used by the SNN.
Figure 4.24 shows the voltage of the chip while executing a C program. It is 3.3 V
and remains constant. Figure 4.25 shows a sample of current consumption during
the Benchmark execution period. The UART output when running the classifier is
shown in Figure 4.26. The average current consumption is close to this value, as
it fluctuates slightly with each sample. For simplicity, the average value of 17 mA
has been used here. In terms of execution time, an average of 187.82 ms per sample
was recorded during execution, enabling the energy consumption per sample to be
calculated.

P = V × I = 56.1mW

72

4.2 – MNIST Benchmark using Spiker+ and NIR generator

Figure 4.24: Tension of the board while executing.

IA = 17
1000 = 0.017 A

ts = 187.82
1000 = 0.18782 s

E = P × ts

E = 3.3 × 0.017 × 0.18782

E ≈ 0.01054 J

EmJ = E × 1000

73

Results and discussion

Figure 4.25: One sample of the current value when executing MNIST

Figure 4.26: Output UART MNIST classifier

EmJ ≈ 10.54 mJ

74

4.2 – MNIST Benchmark using Spiker+ and NIR generator

This is the energy consumed per sample by the system.
These are great results, given that only commonly available MCU ST libraries have
been exploited here, and that the M7 processor is not optimised for neuromorphic
implementations.

4.2.4 Comparison against FPGA
The results achieved here are then compared with the FPGA implementation for
MNIST classification present in [16]. The results are compared in Table 4.3. Com-
paring these results, we can surely tell that an FPGA implementation has faster
execution time per inference and also less energy consumption because the system
developed on FPGA has specific architectures designed to implement that specific
SNN at its best, and uses less bit bandwidth, which also justifies such results. The
commercial ST Board could not compete in those fields because there is no specific
hardware designed to optimise the SNN execution, but the proposed one, with only
firmware adjustment, is sufficient to efficiently execute inferences of real-time ap-
plications with MCU low power platforms. Indeed, in terms of power, the proposed
custom implementation has a slightly lower value compared to Spiker+.

snn2mcu implementation Spiker +
Tlat/img [ms] 187.82 0.78
E/img [mJ] 10.54 0.14
Power [W] 0.0561 0.18

Table 4.3: Comparison of snn2mcu and spiker+

75

76

Chapter 5

Conclusion

This thesis addresses the challenge of deploying Spiking Neural Networks (SNNs)
on commercial, low-power Microcontroller Units (MCUs), thereby bridging the gap
between neuromorphic computing research and practical edge applications. In Fig-
ure 5.1, there is a summary of the system realized. The work demonstrates that
SNNs, despite their biological inspiration and event-driven nature, can be efficiently
implemented on widely available hardware processors such as the ARM Cortex-M7
and the RISC-V of the GAP-8 SoC. By leveraging hardware acceleration features
(DSP extensions, multi-level memory, and parallelism), the custom snn2mcu li-
brary enables the execution of advanced neuron models (Leaky-Integrate-and-Fire
and Izhikevich) and supports multiple connectivity patterns (fully connected, recur-
rent, one-by-one). This approach makes SNNs accessible for real-world applications,
including embedded robotics, wearable sensors, and IoT devices, without requiring
expensive or proprietary neuromorphic hardware.

A key achievement is the developement of a systematic workflow for SNN de-
ployment. The thesis introduces a pipeline that starts with high-level SNN design
in Python(using snnTorch), proceeds through quantization and optimization, and
culminates in automated code generation for embedded targets. The integration of
the Neuromorphic Intermediate Representation (NIR) framework enables portable,
hardware-agnostic model descriptions, which are then translated into optimized C
code for the target MCU. This automation streamlines the translation from research
prototypes to deployable firmware, reducing mabnual coding effort and minimizing
the risk of implementation errors. The result is a flexible, extensible framework
that can be adapted to new neuron models, network architectures, and hardware
platforms with minimal overhead.

77

Conclusion

Figure 5.1: Summary of the complete System

5.1 Validation and Performance Analysis
The experimental campaign provides robust validation of the proposed method-
ology. Two distinct SNN models were implemented and benchmarked: a Braille
character classifier for robotic tactile sensing and a handwritten digit classifier us-
ing the MNIST dataset. The Braille classifier, based on a three-layer recurrent SNN
with LIF neurons, achieved a classification accuracy of 91.43% on a 140-sample test
set when deployed on the STM32H757I-EVAL board. This performance matches
that of the reference snnTorch simulation, confirming the fidelity of the embedded
implementation. The execution time was reduced by a factor of six compared to
floating-point software execution, highlighting the effectiveness of quantization and
DSP optimizations. The model’s energy consumption per sample was also mea-
sured, demonstrating its suitability for battery-powered edge devices.
The MNIST classifier, a two-layer fully connected SNN with LIF neurons, achieved
an accuracy of 97.42% on the standard test set using snnTorch. When deployed
on the ARM Cortex-M7, the system consumed an average of 10.54 mJ per sample,
with an execution time of 187.82 ms per sample. These results are comparable with
those of specialized FPGA accelerators [16], underscoring the potential of commer-
cial MCUs for SNN inference. The energy efficiency and computational perfor-
mance are further enhanced by the use of fixed-point arithmetic, vectorized DSP
operations, and efficient memory management. The thesis also demonstrates the
feasibility of deploying SNNs on the GAP-8 RISC-V SoC, leveraging its multi-core
architecture and hardware convolution engine to achieve near-linear speedup for
parallelizable tasks, as stated in their research papers introduced in chapter 2.5.2.

78

5.2 – Challenges and Limitations

5.2 Challenges and Limitations
Despite these results, the thesis identifies several challenges and limitations that
must be addressed in future work. One major challenge is the trade-off between
accuracy and efficiency when quantizing SNN parameters. While aggressive quan-
tization can significantly reduce memory footprint and computational cost, it may
introduce quantization errors that degrade classification accuracy. The thesis shows
that careful, smart quantization techniques can mitigate and, in some specific cases,
erase degradation effects, so further research is needed to develop robust, automated
quantization strategies for SNNs.
Another limitation is the lack of support for advanced learning algorithms on em-
bedded platforms. Most SNNs are trained offline using GPU-accelerated frame-
works, and the resulting models are then deployed on MCUs for inference. How-
ever, the ability to perform online learning, adapting network weights in response
to new data or changing environments, would greatly enhance the practical util-
ity of SNNs for edge applications. Implementing local learning rules on resource-
constrained hardware remains a significant challenge, requiring efficient algorithms
and hardware support for dynamic weight updates.
The thesis also highlights the importance of hardware-software co-design. While
the snn2mcu library is optimized for the ARM Cortex M7 and GAP-8, its per-
formance may vary when using such optimizations on other MCUs. Future work
should focus on extending the library to support a broader range of hardware plat-
forms, including those with specialized AI accelerators or novel memory hierarchies.
Additionally, the integration of SNNs with other edge AI technologies could enable
more complex, multimodal applications.

5.3 Future Research Directions
The findings of this thesis pave the way for several promising research directions,
such as:

• Development of more sophisticated neuron models, like Hodgkin-Huxley or
Synaptic, could enhance the biological realism and computational power of
SNNs. These models are computationally expensive, but advances in numeri-
cal methods and hardware acceleration may make them feasible for embedded
deployment. The thesis demonstrates that the Izhikevich model can be par-
tially optimized for the ARM Cortex-M7, suggesting that further optimiza-
tions could enable full support for advanced neuron dynamics.

• Integration of online learning algorithms into the snn2mcu framework would
enable SNNs to adapt to changing environments and learn from streaming

79

Conclusion

data. This could be achieved by implementing local learning rules or by
leveraging hardware features such as dedicated memory for synaptic weights.
The ability to perform continuous learning on edge devices would open up new
applications in robotics, autonomous systems, and personalized healthcare.

• Extension of the NIR-to-C translator to support additional network architec-
tures and hardware platforms would facilitate broader adoption of SNNs in
the embedded domain. This could include support for recurrent neural net-
works (all-to-all connections), convolutional SNNs, and hybrid architectures
that combine SNNs with traditional deep learning models. The development
of a standardized, open-source ecosystem for SNN deployment would encour-
age collaboration and innovation in the field.

• This thesis suggests that future work should focus on real-world applications
of SNNs in edge computing. This could include the deployment of SNNs in
wearable sensors, autonomous robots, and smart home devices, where low
power consumption and real-time performance are critical. The integration
of SNNs with other edge AI technologies, such as computer vision, natural
language processing, and reinforcement learning, could enable more intelli-
gent, adaptive systems that operate efficiently in resource-constrained envi-
ronments.

• At this moment, the snn2mcu library is able only to support optimized LIF
neuron with fully connected layers, one-to-one connections, and one-to-one
recurrence. The system could be improved to support other and more com-
plex neuron models and could also be improved to support all-to-all con-
nections in recurrent layers and convolutional SNN over hardware boards.
Convolutions replace fully connected or one-to-one connections by using lo-
cal, weight-shared filters that slide over the input, instead of giving each
output neuron its own separate weight to every input neuron. This drasti-
cally reduces parameters and enforces that the same feature (e.g., an edge
or texture) can be detected anywhere in the input, which is ideal for spatial
data like images or event maps in spiking networks.

5.4 Final Reflections
In summary, this thesis demonstrates that SNNs can be efficiently deployed on
commercial, low-power microcontrollers, enabling a new generation of intelligent
edge devices. The snn2mcu library and the associated workflow provide a robust
foundation for SNN research and development, bridging the gap between neuro-
morphic computing and practical applications. The experimental results validate
the effectiveness of quantization, DSP optimizations, and hardware acceleration for

80

5.4 – Final Reflections

SNN inference, while also highlighting the challenges and opportunities for future
work. By addressing these challenges and exploring new research directions, the
field of neuromorphic computing can continue to advance, bringing the benefits of
brain-inspired intelligence to a wider range of applications and users.

81

82

Appendix A

Inference Results tables

Test Expected T Results (T) B Results (B) G Results (G)
0 1 1 Match 1 Match 1 Match
1 3 3 Match 3 Match 3 Match
2 2 3 Miss 3 Miss 3 Miss
3 2 2 Match 2 Match 2 Match
4 6 5 Miss 5 Miss 5 Miss
5 1 1 Match 1 Match 1 Match
6 1 1 Match 1 Match 1 Match
7 3 3 Match 3 Match 3 Match
8 4 4 Match 4 Match 4 Match
9 5 5 Match 5 Match 5 Match
10 4 4 Match 4 Match 4 Match
11 0 0 Match 0 Match 0 Match
12 5 5 Match 5 Match 5 Match
13 5 6 Miss 5 Match 6 Miss
14 0 0 Match 0 Match 0 Match
15 2 1 Miss 1 Miss 1 Miss
16 4 4 Match 4 Match 4 Match
17 3 3 Match 3 Match 3 Match
18 1 1 Match 1 Match 1 Match
19 2 2 Match 2 Match 2 Match
20 5 5 Match 5 Match 5 Match
21 2 2 Match 2 Match 2 Match
22 4 4 Match 4 Match 4 Match
23 6 6 Match 0 Miss 6 Match
24 2 2 Match 2 Match 2 Match
25 2 2 Match 2 Match 2 Match
26 4 4 Match 4 Match 4 Match
27 1 1 Match 1 Match 1 Match
28 4 4 Match 4 Match 4 Match

83

Conclusion

29 4 4 Match 4 Match 4 Match
30 1 1 Match 1 Match 1 Match
31 3 3 Match 3 Match 3 Match
32 2 2 Match 2 Match 2 Match
33 0 0 Match 0 Match 0 Match
34 4 4 Match 4 Match 4 Match
35 5 6 Miss 6 Miss 6 Miss
36 1 1 Match 1 Match 1 Match
37 0 0 Match 0 Match 0 Match
38 3 3 Match 3 Match 3 Match
39 5 5 Match 5 Match 5 Match
40 1 1 Match 1 Match 1 Match
41 2 2 Match 2 Match 2 Match
42 0 0 Match 0 Match 0 Match
43 4 4 Match 4 Match 4 Match
44 5 5 Match 5 Match 5 Match
45 4 4 Match 4 Match 4 Match
46 5 5 Match 5 Match 5 Match
47 6 6 Match 6 Match 6 Match
48 6 6 Match 6 Match 6 Match
49 1 1 Match 1 Match 1 Match
50 4 4 Match 4 Match 4 Match
51 5 5 Match 5 Match 5 Match
52 0 0 Match 0 Match 0 Match
53 2 2 Match 2 Match 2 Match
54 3 3 Match 3 Match 3 Match
55 4 3 Miss 3 Miss 3 Miss
56 5 6 Miss 6 Miss 6 Miss
57 0 0 Match 0 Match 0 Match
58 2 2 Match 2 Match 2 Match
59 5 5 Match 5 Match 5 Match
60 5 6 Miss 6 Miss 6 Miss
61 5 5 Match 5 Match 5 Match
62 6 6 Match 6 Match 6 Match
63 5 5 Match 5 Match 5 Match
64 6 6 Match 6 Match 6 Match
65 4 4 Match 4 Match 4 Match
66 1 1 Match 1 Match 1 Match
67 2 2 Match 2 Match 2 Match
68 6 6 Match 6 Match 6 Match
69 1 1 Match 1 Match 1 Match
70 0 0 Match 0 Match 0 Match
71 0 0 Match 0 Match 0 Match
72 6 6 Match 6 Match 6 Match

84

5.4 – Final Reflections

73 4 4 Match 4 Match 4 Match
74 0 0 Match 0 Match 0 Match
75 3 3 Match 3 Match 3 Match
76 3 3 Match 3 Match 3 Match
77 0 0 Match 0 Match 0 Match
78 1 1 Match 1 Match 1 Match
79 6 6 Match 4 Miss 6 Match
80 2 2 Match 2 Match 2 Match
81 0 0 Match 0 Match 0 Match
82 3 3 Match 3 Match 3 Match
83 1 1 Match 1 Match 1 Match
84 0 0 Match 0 Match 0 Match
85 1 1 Match 1 Match 1 Match
86 2 1 Miss 1 Miss 1 Miss
87 0 0 Match 0 Match 0 Match
88 3 3 Match 3 Match 3 Match
89 0 0 Match 0 Match 0 Match
90 0 0 Match 0 Match 0 Match
91 0 0 Match 0 Match 0 Match
92 4 4 Match 4 Match 4 Match
93 6 6 Match 6 Match 6 Match
94 1 1 Match 1 Match 1 Match
95 3 2 Miss 2 Miss 2 Miss
96 2 2 Match 2 Match 2 Match
97 5 5 Match 5 Match 5 Match
98 2 2 Match 2 Match 2 Match
99 6 6 Match 6 Match 6 Match
100 0 0 Match 0 Match 0 Match
101 5 5 Match 5 Match 5 Match
102 5 5 Match 5 Match 5 Match
103 0 0 Match 0 Match 0 Match
104 3 3 Match 3 Match 3 Match
105 1 1 Match 1 Match 1 Match
106 6 6 Match 6 Match 6 Match
107 6 6 Match 6 Match 6 Match
108 3 3 Match 3 Match 3 Match
109 2 2 Match 2 Match 2 Match
110 4 4 Match 4 Match 4 Match
111 4 4 Match 4 Match 4 Match
112 6 6 Match 6 Match 6 Match
113 3 2 Miss 3 Match 2 Miss
114 6 6 Match 6 Match 6 Match
115 2 2 Match 2 Match 2 Match
116 2 2 Match 2 Match 2 Match

85

Conclusion

117 5 5 Match 5 Match 5 Match
118 3 3 Match 3 Match 3 Match
119 6 6 Match 6 Match 6 Match
120 2 2 Match 2 Match 2 Match
121 1 1 Match 1 Match 1 Match
122 3 3 Match 3 Match 3 Match
123 6 6 Match 6 Match 6 Match
124 5 5 Match 5 Match 5 Match
125 4 4 Match 4 Match 4 Match
126 5 5 Match 5 Match 5 Match
127 4 4 Match 4 Match 4 Match
128 1 1 Match 1 Match 1 Match
129 6 6 Match 6 Match 6 Match
130 3 3 Match 3 Match 3 Match
131 0 0 Match 0 Match 0 Match
132 3 3 Match 3 Match 3 Match
133 6 6 Match 6 Match 6 Match
134 3 3 Match 3 Match 3 Match
135 1 1 Match 1 Match 1 Match
136 6 6 Match 6 Match 6 Match
137 4 4 Match 4 Match 4 Match
138 3 2 Miss 2 Miss 2 Miss
139 1 1 Match 1 Match 1 Match

Table A.1: 140 sample ds_test, T stands for snnTorch, B for ST Board, and G for
GAP8 SoC. More details in 4.1

86

Acknowledgements

87

88

Bibliography

[1] Dhireesha Kudithipudi et al. «Neuromorphic computing at scale». In: Nature
637 (2025), pp. 801–812. doi: 10.1038/s41586-024-08253-8.

[2] Duy-Anh Nguyen, Xuan-Tu Tran, and Francesca Iacopi. «A Review of Al-
gorithms and Hardware Implementations for Spiking Neural Networks». In:
Journal of Low Power Electronics and Applications 11.2 (2021), p. 23. doi:
10.3390/jlpea11020023.

[3] Eric Hunsberger and Chris Eliasmith. «Spiking Deep Networks with LIF Neu-
rons». In: arXiv preprint arXiv:1510.08829 (2015).

[4] Vittorio Fra et al. «Neu-BrAuER: A Neuromorphic Braille Letters Audio-
Reader for Commercial Edge Devices». In: ECML PKDD. 2025, pp. 51–60.
doi: 10.1007/978-3-031-74643-7_5.

[5] Vittorio Fra et al. «Natively Neuromorphic LMU Architecture for Encoding-
Free SNN-Based HAR on Commercial Edge Devices». In: Artificial Neural
Networks and Machine Learning – ICANN 2024. Ed. by Michael Wand et
al. Cham: Springer Nature Switzerland, 2024, pp. 377–391. isbn: 978-3-031-
72359-9.

[6] Sebastian Hoppner et al. «The SpiNNaker 2 Processing Element Architecture
for Hybrid Digital Neuromorphic Computing». In: arXiv preprint arXiv:2103.08392v2
(Aug. 2022). url: https://arxiv.org/abs/2103.08392v2.

[7] Intel Labs. Taking Neuromorphic Computing to the Next Level with Loihi 2.
Technology Brief. Accessed: 2025-11-07. Intel Labs, 2021. url: https://www.
intel.com/content/www/us/en/research/neuromorphic- community.
html.

[8] Jason K Eshraghian et al. «Training Spiking Neural Networks Using Lessons
From Deep Learning». In: Proceedings of the IEEE 111.9 (2023), pp. 1016–
1046. doi: 10.1109/JPROC.2023.3308088.

[9] Jens E. Pedersen et al. «Neuromorphic intermediate representation: A uni-
fied instruction set for interoperable brain-inspired computing». In: Nature
Communications 15 (2024), p. 8122. doi: 10.1038/s41467-024-52259-9.

89

https://doi.org/10.1038/s41586-024-08253-8
https://doi.org/10.3390/jlpea11020023
https://doi.org/10.1007/978-3-031-74643-7_5
https://arxiv.org/abs/2103.08392v2
https://www.intel.com/content/www/us/en/research/neuromorphic-community.html
https://www.intel.com/content/www/us/en/research/neuromorphic-community.html
https://www.intel.com/content/www/us/en/research/neuromorphic-community.html
https://doi.org/10.1109/JPROC.2023.3308088
https://doi.org/10.1038/s41467-024-52259-9

BIBLIOGRAPHY

[10] STMicroelectronics. Evaluation boards with STM32H747XI and STM32H757XI
MCUs. UM2525 Rev 6. User manual. STMicroelectronics. Apr. 2023. url:
https://www.st.com/resource/en/user_manual/um2525-evaluation-
boards-with-stm32h747xi-and-stm32h757xi-mcus-stmicroelectronics.
pdf.

[11] Arm Ltd. Arm Cortex-M7 Processor Datasheet. Accessed: November 8, 2025.
Arm Limited. Cambridge, United Kingdom, 2020. url: https : / / www .
arm . com/ - /media / Arm % 20Developer % 20Community / PDF / Processor %
20Datasheets/Arm-Cortex-M7-Processor-Datasheet.pdf.

[12] Thomas Lorenser. «The DSP capabilities of arm cortex-m4 and cortex-m7
processors». In: ARM White Paper 29 (2016), pp. 1–19.

[13] Eric Flamand et al. «GAP-8: A RISC-V SoC for AI at the Edge of the IoT».
In: 2018 IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 2018, pp. 1–4. doi: 10.1109/
ASAP.2018.8445101.

[14] Angelo Garofalo et al. «PULP-NN: accelerating quantized neural networks on
parallel ultra-low-power RISC-V processors». In: Philosophical Transactions
of the Royal Society A 378.2168 (2019), p. 20190155. doi: 10.1098/rsta.
2019.0155.

[15] STMicroelectronics. STEdgeAI-Core: Artificial intelligence AI optimizer tech-
nology for STMicroelectronics products. Data brief DB5290, Rev 2. Accessed
November 2025. 2024. url: https://www.st.com.

[16] Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo. «Spiker: a frame-
work for the generation of efficient Spiking Neural Networks FPGA acceler-
ators for inference at the edge». In: arXiv preprint arXiv:2401.01141 (2024).
url: https://arxiv.org/abs/2401.01141.

[17] Jiawei Liao et al. «A Spiking Neural Network Decoder for Implantable Brain
Machine Interfaces and its Sparsity-aware Deployment on RISC-V Microcon-
trollers». In: arXiv preprint arXiv:2405.02146 (2024). arXiv: 2405.02146
[eess.SP].

90

https://www.st.com/resource/en/user_manual/um2525-evaluation-boards-with-stm32h747xi-and-stm32h757xi-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2525-evaluation-boards-with-stm32h747xi-and-stm32h757xi-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2525-evaluation-boards-with-stm32h747xi-and-stm32h757xi-mcus-stmicroelectronics.pdf
https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm-Cortex-M7-Processor-Datasheet.pdf
https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm-Cortex-M7-Processor-Datasheet.pdf
https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm-Cortex-M7-Processor-Datasheet.pdf
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1098/rsta.2019.0155
https://doi.org/10.1098/rsta.2019.0155
https://www.st.com
https://arxiv.org/abs/2401.01141
https://arxiv.org/abs/2405.02146
https://arxiv.org/abs/2405.02146

	List of Figures
	List of Tables
	Introduction
	Background
	SNN: overview and neuromorphic computing over the Edge
	Use cases of SNNs
	Neu-BrAuER
	SNN-based HAR on Commercial Edge devices

	HW designed for neuromorphic applications
	Spinnaker 2
	Intel Loihi 2

	Frameworks to develop SNNs
	snnTorch
	Neuromorphic Intermediate Representation

	Analysis of low power HW
	STM32H757I-EVAL
	GAP-8

	Tools to support NN at the Edge
	PULP-NN
	ST Edge AI Core

	SNNs for widely available HW platforms
	Spiker+
	SNN decoder for Implantable Brain Machine Interfaces

	Proposed solution

	Materials and methods
	SNN Model Architecture
	The model and its purpose
	LIF neuron structure

	SNNTorch Implementation
	Training and Validation of the model

	SNN for ST Board (snn2mcu)
	Initialisation of the environment
	SNN execution and optimisations
	LCD implementation

	Izhikevich on ST Board
	Izhikevic neuron model
	Izhikevich for ST Board

	SNN for GAP8 processor
	Program flow and Implementation

	NIR-to-C translator
	From SNNTorch to NIR
	From NIR to C

	Used tools

	Results and discussion
	Braille Model Results
	LIF neuron Behaviour: snnTorch VS Board
	ds_test across different platforms

	MNIST Benchmark using Spiker+ and NIR generator
	Spiker+ SNN description and training
	extract_nir and translation to C
	Benchmark over ST Board
	Comparison against FPGA

	Conclusion
	Validation and Performance Analysis
	Challenges and Limitations
	Future Research Directions
	Final Reflections

	Inference Results tables
	Bibliography

