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SUMMARY

Taste perception plays a fundamental role in human well-being, influencing appetite, nutri-
tion, and overall quality of life. However, quantifying how individuals perceive flavor remains
challenging, as taste is inherently subjective and influenced by a complex interaction of biologi-
cal, psychological, and cultural factors. This challenge becomes particularly relevant in clinical
contexts such as head and neck cancer, where taste loss (dysgeusia) is a frequent and persistent
side effect of radiotherapy. Patients often struggle to describe the changes in their percep-
tion of food, and clinicians lack standardized data to interpret these symptoms and complaints
effectively.

This thesis presents FlavorCharter, a data-driven research framework designed to quan-
tify and visually analyze the multidimensional perception of flavor. The project establishes
the technological and methodological foundations for collecting, organizing, and interpreting
sensory data at scale, with the goal of supporting clinical studies on taste loss.

The framework focuses on data collection from healthy individuals to establish a normative
baseline of flavor perception. It integrates two complementary components: a mobile application
for large-scale, crowd-sourced sensory data collection, and an interactive visualization tool for
exploratory analysis.

The mobile platform allows users to rate everyday foods across ten sensory dimensions.

Alongside these ratings, the application collects key demographic and dietary information en-
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SUMMARY (continued)

abling stratified and population-level analysis. The collected data are stored in a structured
cloud database and processed for visualization.

The visualization environment enables clinicians to explore aggregated patterns, compare
demographic groups, detect outliers, and investigate variability in flavor perception across pop-
ulations. The design focuses on interpretability and scalability, providing an effective link
between data acquisition and visual reasoning.

By providing a standardized framework for collecting and interpreting sensory data, Flavor-
Charter contributes to the development of precise, data-driven methodologies for characterizing
flavor perception and its alteration in disease. Ultimately, this work aims to support more ef-
fective communication between clinicians and patients and to establish a foundation for future
clinical and nutritional studies focused on sensory recovery, personalized nutrition, and quality-

of-life improvement.



CHAPTER 1

INTRODUCTION

Food enjoyment is a fundamental component of human quality of life, and most people take
the ability to perceive food flavor for granted. However, not everyone is that fortunate. Taste
loss, also known as dysgeusia, is a common and often long-term side effect among head and
neck cancer (HNC) patients, particularly after radiotherapy. Clinical studies have reported that
dysgeusia affects between 51% and 100% of patients at the end of treatment, and 23% to 50%
even one to two years later with no clear end date [1].

This dysfunction arises from radiation-induced damage to soft tissues, taste buds, and nerves
in the oral cavity [2-5], and is recognized as a significant toxicity impacting patients’ quality of
life [6-8]. Those affected may experience food as dull, distorted, or even unpleasant. Over time,
these changes can lead to reduced appetite and altered eating behavior, ultimately contributing
to malnutrition and sarcopenia [9,10], conditions that correlate with poorer treatment outcomes
and increased mortality [11-13].

Beyond oncology, taste loss can also manifest as a symptom of infections (such as COVID-
19 or sinusitis), neurodegenerative diseases (e.g., Alzheimer’s, Parkinson’s, multiple sclerosis),
medication side effects, or simply aging. Yet, despite its broad clinical relevance, dysgeusia has
been primarily studied in head and neck cancer [14,15], where its prevalence and consequences

are most severe.



1.1 Problem Statement

Efforts to mitigate taste dysfunction typically involve multidisciplinary interventions be-
tween oncologists, nutritionists, and dietitians [16,17]. However, these strategies are often

impaired by two main limitations:

1. The absence of a standardized language that allows patients and clinicians to describe

and compare sensory alterations in a precise and quantifiable way.

2. The lack of large-scale, structured data describing how flavor is perceived in healthy
individuals, clinicians currently lack any quantitative reference to interpret patients’ taste-

related complaints.

Patients frequently report vague descriptions such as “things taste different” or “food tastes
like cardboard,” which offer little actionable information to clinicians. This communication
gap reflects a deeper scientific limitation: the difficulty of quantifying the inherently subjective
experience of flavor.

1.2 Vision

The FlavorCharter project aims to build a comprehensive, data-driven foundation for the

study of human flavor perception. The vision is:
1. to define a standardized language that enables both clinicians and patients to communi-
cate taste experiences in a consistent and quantifiable way; and

2. to establish a normative baseline describing how healthy individuals perceive the flavor

of common foods.



Developing a standardized language is a crucial step toward building this baseline. It ensures
that sensory descriptions are consistent across participants and interpretable by clinicians and
researchers alike. The resulting healthy participant baseline provides population-level context
and demographic-level tends. It allows researchers and clinicians to identify deviations from
typical perception patterns, supporting more informed interpretation of patient reports.

This thesis focuses on designing and implementing the digital infrastructure required to

collect, organize, and analyze large-scale sensory data in healthy populations.

1.3 Approach

To develop this framework, we adopted an activity-centered design methodology, engaging
directly with oncologists from the MD Anderson Cancer Center to understand their analytical
needs and the challenges involved in interpreting sensory data. This iterative process helped
define the system requirements and guided the design of both data collection and visualization
components.

The core components of the framework are:

e a mobile application for large-scale sensory data acquisition; and

e an interactive visualization tool for exploratory data analysis.

The mobile application serves as the primary tool for large-scale, crowd-sourced sensory
data collection. Through a clear and accessible interface, participants can evaluate familiar

foods across a set of predefined sensory dimensions, while also providing demographic and di-

etary information. Each dimension is accompanied by a concise textual description within the



app, ensuring consistent interpretation among users with different cultural or linguistic back-
grounds. All data are securely stored in a structured cloud database, designed for modularity,
scalability, and privacy. This architecture enables population-level aggregation and the creation
of a robust, queryable baseline.

Complementing the mobile app, the visualization tool transforms the collected data into
interpretable, multivariate visual representations. It allows researchers to explore aggregated
patterns, compare demographic groups, identify outliers, and examine the variability of fla-
vor perception across populations. The visualization environment was designed with a focus
oninterpretability and scalability, enabling a seamless transition from raw data to analytical
insight.

Together, these two components bring to life the methodological core of FlavorCharter:
connecting quantitative sensory data collection with interactive visual analysis.

1.4 Research Goals

The overarching goal of this thesis is to establish the technological and methodological
foundations of the FlavorCharter framework, enabling the quantitative study of human flavor

perception through data collection and visualization. The work focuses on four main objectives:

e Define a standardized language: Develop a structured and consistent way to de-
scribe flavor perception, enabling both researchers and clinicians to communicate sensory

experiences in a quantifiable and comparable form.

e Develop a mobile data collection platform: Design and implement a scalable mo-

bile application that applies this standardized language to collect crowd-sourced sensory



data. The app allows participants to evaluate familiar foods across the defined dimen-
sions while also providing demographic and dietary information, ensuring consistency and

reproducibility in the collected data.

e Design an interactive visualization environment: Create a visual analytics tool that
enables exploratory data analysis, supporting the identification of aggregated patterns,

variability across demographic groups, and potential outliers.

e Build a baseline for future clinical applications: Collect and organize sensory data
from healthy individuals to establish a normative dataset of flavor perception, which
will serve as a reference point for future comparisons with patients experiencing taste

dysfunction.

By achieving these objectives, FlavorCharter lays the groundwork for a new, data-driven
methodology in sensory science, transforming subjective taste experiences into measurable in-

formation and providing the basis for future research in clinical and nutritional contexts.



CHAPTER 2

STATE OF THE ART

Flavor perception is a complex sensory process that integrates gustatory, olfactory, and
textural cues. While this multidimensional nature is widely recognized across culinary, biomed-
ical, and sensory-science domains, current research still lacks a unified and standardized way
to describe how individuals perceive the flavor of everyday foods. As highlighted in recent in-
terdisciplinary studies, most existing approaches either focus on isolated taste qualities or rely
on context-specific testing protocols, making it difficult to compare results across populations,
studies, or clinical settings [18,19].

A major limitation emerging from both clinical and sensory literature is the scarcity of
quantitative data describing how healthy individuals typically perceive flavor. Without such a
baseline, clinicians and researchers have limited support for interpreting individual variability,
demographic differences, or pathological taste alterations. Moreover, the methods traditionally
used to study taste tend to capture only narrow aspects of flavor, are not scalable to large
populations, and are rarely deployed in everyday environments.

This chapter reviews the main approaches currently used to measure taste and flavor per-
ception, highlights the methodological constraints that limit their comparability and scalability,
and identifies the lack of standardized, multidimensional baseline data as a critical gap in the
literature. These limitations motivate the development of new frameworks capable of capturing

flavor perception in a structured, interpretable, and population-wide manner.
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2.1 Related Work

Research on taste and flavor perception spans biomedical assessment, sensory science, and
culinary studies, yet these domains provide only partial and often incompatible views of how in-
dividuals experience flavor. Existing approaches differ substantially in their goals, measurement
conventions, and scalability, which complicates cross-study comparison and limits the develop-
ment of standardized, population-wide baselines. The following subsections review three major
groups of methods that dominate the current literature and highlight the constraints that mo-

tivate new frameworks for multidimensional flavor quantification.

2.1.1 Clinical Assessments of Taste Function

Clinical assessment of taste loss, particularly in head and neck cancer (HNC), relies on a
combination of patient-reported outcomes, psychophysical tests, and coarse sensory disturbance
scales. These tools are widely used in oncology and supportive care but provide only partial
insight into the multidimensional nature of flavor perception.

The M.D. Anderson Symptom Inventory Head and Neck Module (MDASI-HN) is the com-
monly used to monitor taste dysfunction in HNC patients [19]. It includes a single symptom

i

item on “problems with tasting,” scored from 0 to 10 based on the patient’s experience over the
previous 24 hours. While clinically practical and routinely administered throughout radiother-
apy, this measure captures only the severity of taste impairment and does not distinguish which
sensory qualities are affected. As noted in clinical reports, patients often struggle to describe

their symptoms beyond general statements such as “food tastes different” or “it tastes bland,”

limiting the interpretability of MDASI-HN data.



Objective psychophysical assessments, such as taste strips, liquid tastants, and edible films,
aim to measure detection thresholds for the five classical tastes (sweet, sour, salty, bitter,
umami) under controlled clinical conditions [18]. These tests can help identify basic taste
deficits, but they evaluate only one taste at a time and do not account for higher-order compo-
nents of flavor such as aroma, texture, and other trigeminal components. Moreover, they require
standardized preparation and in-clinic administration, making them unsuitable for large-scale
or at-home assessment.

Additional tools, including Likert-based disturbance scales such as CiTAS, attempt to cat-
egorize gustatory dysfunction along dimensions such as intensity reduction, discomfort, phan-
togeusia, and parageusia [20]. Although these scales allow finer symptom characterization than
single-item PROs, their categories remain broad and do not map cleanly onto recognized sen-
sory dimensions. As a result, they offer limited resolution for identifying which aspects of flavor
perception are affected or how these changes evolve over time.

Overall, clinical assessments tend to prioritize feasibility and symptom monitoring over
detailed perceptual characterization. They provide valuable information about the presence
and severity of taste dysfunction but do not capture the multidimensional sensory structure of

flavor, nor do they scale to population-level baselines of healthy individuals.

2.1.2 Sensory Science and Psychophysics

Within sensory science, one of the few structured instruments relevant to flavor-related
research is the Taste Liking Questionnaire (TasteLQ), a validated tool developed to measure

liking for foods associated with specific taste and oral sensations [21]. The questionnaire includes



items representing basic tastes (sweet, sour, salty, bitter, umami) as well as additional sensations
such as fat sensation, pungency, and astringency, allowing researchers to capture preference
patterns across multiple taste-related qualities.

However, despite its broader coverage of taste-associated sensations, Tastel.() measures
liking rather than perception. It does not quantify how individuals actually experience the
sensory attributes of foods, nor does it capture dimensions such as aroma and texture, or the
trigeminal components that contribute to flavor. Moreover, the instrument is designed for use in
controlled survey contexts and has been validated only within the Danish population, limiting

its applicability for large, diverse, or internationally representative studies.

2.1.3 Culinary Literature and Qualitative Frameworks

Culinary literature offers intuitive and culturally grounded frameworks for describing flavor,
though these remain qualitative and non-standardized. The Flavor Bible organizes ingredients
by associated aromatic notes, complementary pairings, and sensory impressions, reflecting how
chefs conceptualize flavor synergies and balance [22]. Similarly, Nosrat’s Salt, Fat, Acid, Heat
identifies four core levers that shape the sensory experience of food preparation, saltiness,
richness, acidity, and heat/spiciness, serving as a practical guide for modifying flavor rather
than measuring perception [23]. Online guides and visual heuristics, such as crowd-sourced
“everyday taste profile” diagrams, further illustrate common intuitions about flavor categories

but lack empirical grounding or demographic generalizability [24].
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Although these sources provide rich descriptive vocabularies, they do not offer quantita-
tive scales, standardized descriptors, or population-level data suitable for scientific or clinical

interpretation.

2.1.4 Sensor-Based Taste Measurement

A separate line of work investigates taste through sensor-based systems, most notably elec-
tronic tongues. These devices analyze the chemical properties of foods, rather capturing the
flavor perception, using sensor arrays and are typically applied to specific products such as beer
or vacuum-packed minced beef [25,26]. This type of analysis is largely driven by food producers
and manufacturers, who use electronic sensing to monitor product quality or predict sensory
attributes.

While useful for chemical characterization, these systems measure objective physicochemical
signals rather than human perception. As a result, sensor-based approaches do not capture the
multidimensional sensory experience of flavor and cannot provide population-level insight into

how individuals perceive everyday foods.

2.2 Limitations of Existing Approaches

Despite contributions from clinical assessment, sensory science, and culinary literature, the
current body of research presents several structural limitations that hinder the development of
a standardized and scalable understanding of flavor perception.

A first major limitation concerns the lack of a multidimensional and interpretable vocab-
ulary for describing flavor. Clinical tools typically measure symptom severity or basic taste

detection, focusing on broad constructs such as “problems with tasting” or unspecific distur-
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bances. Sensory-science instruments such as TasteLLQQ capture liking for foods associated with
specific taste qualities, but do not characterize how individuals perceive these sensory dimen-
sions [19-21]. Culinary frameworks, while rich in descriptive terminology, rely on qualitative
heuristics that are not standardized across populations. As a result, the literature lacks a unified
descriptive language capable of capturing the full complexity of flavor perception [22,23].

A second limitation is methodological: most existing protocols are designed for controlled
laboratory or clinical environments and cannot be deployed at scale. Taste-function assessments
such as taste strips, liquid stimuli, and edible films require standardized preparation and in-clinic
administration, which limits both accessibility and ecological validity [18]. Consumer-based
instruments, including the Taste Liking Questionnaire (Tastel.QQ), are easier to administer but
measure liking or preference rather than the perceptual structure of flavor [21]. As a result,
current methods do not support large, distributed, or real-world data collection capable of
capturing how individuals perceive the flavor of everyday foods.

A third limitation concerns the absence of normative, population-level datasets describing
flavor perception in healthy individuals. Clinical studies on dysgeusia highlight substantial
variability in how patients articulate taste changes, but lack reference distributions against
which individual deviations can be interpreted. Sensor-based approaches such as electronic
tongue systems provide only chemical or quality-control measurements and offer little insight
into human sensory experience; moreover, objective taste documentation remains sparse, as this

work is typically driven by food producers rather than perceptual research [25,26]. The resulting
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landscape is fragmented, with no large-scale datasets integrating demographic, cultural, and

dietary factors known to influence taste sensitivity.

2.3 Gap Analysis and Motivation for This Work

The review of existing literature reveals that current approaches provide only fragmented
and domain-specific views of flavor perception. Clinical tools reduce taste to a coarse symptom
score, consumer instruments capture preference rather than perception, culinary frameworks
offer rich but qualitative descriptors, and sensor-based methods quantify chemical properties
without addressing human experience. None of these approaches offers a unified, scalable, or
interpretable way to describe how people perceive the flavor of everyday foods.

What emerges is a clear and persistent gap: the field lacks a comprehensive framework that
bridges subjective sensory experience, standardized descriptors, and population-level variabil-
ity. Despite the clinical relevance of taste dysfunction and the widespread interest in sensory
evaluation across disciplines, no existing method provides the foundational data needed to es-
tablish normative patterns of flavor perception or to contextualize individual differences within
a broader population.

This gap motivates the need for a new paradigm—one that treats flavor perception as a
multidimensional phenomenon that can be measured consistently, collected at scale, and ex-
plored through interpretable visual representations. Such a framework must be able to operate
outside laboratory environments, reach diverse populations, and produce data that support

both scientific inquiry and future clinical translation.
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The work presented in this thesis responds directly to this need. By addressing the absence
of standardized descriptors, scalable data-collection methods, and population-level baselines,
it lays the groundwork for a unified, data-driven approach to understanding human flavor
perception. This approach seeks not only to fill a methodological void but also to enable future
research on taste dysfunction, demographic variability, and the sensory determinants of food
experience.

In the longer term, the framework introduced here has the potential to support both patients
and clinicians in head and neck cancer care. A standardized perceptual language can empower
patients to articulate their sensory changes more clearly and consistently, reducing the ambi-
guity that currently characterizes taste-related symptom reports. At the same time, structured
reference data provide clinicians with an objective context through which these descriptions
can be interpreted, facilitating more informed conversations and offering a quantitative foun-
dation for monitoring taste alterations over the course of treatment. In this way, the system
contributes not only to methodological innovation but also to improving communication and

understanding within clinical practice.



CHAPTER 3

SYSTEM DESIGN

This chapter presents the overall design of the FlavorCharter framework, outlining the archi-
tecture, data model, and design principles that connect the mobile data collection application
with the visualization tool. The goal of this phase is to translate the conceptual vision in-
troduced in the previous chapter into a coherent system architecture capable of supporting

large-scale data acquisition and interactive visual analysis.

3.1 Overview of the Framework

The FlavorCharter framework is composed of two main components: a mobile application
and a web-based visualization tool. These modules operate in synergy to enable the collection,
storage, and analysis of sensory perception data. While each component can function inde-
pendently, their integration ensures a continuous flow of information from user input to visual
interpretation.

The framework is designed to collect large-scale, structured data describing how individu-
als perceive the flavor of everyday foods and to make this information visually explorable by
researchers and clinicians. FlavorCharter follows a distributed client—server architecture built
around a cloud-based backend. The mobile application constitutes the primary data acquisition

interface and is supported by a Backend—as—a—Service (BaaS) infrastructure based on Firebase

14
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(Firestore and Auth). The visualization tool functions as an analytical front-end that retrieves
and processes the stored data through the same backend interface.

At a high level, the system workflow proceeds as follows:

1. Participant recruitment: participants are invited to join the study through institu-

tional or public channels and install the FlavorCharter mobile application.

2. Data acquisition: within the app, users provide demographic and dietary information

and evaluate a predefined set of foods across several perceptual dimensions.

3. Data transmission: each evaluation is securely transmitted to the cloud database using

the Firebase SDK. All communications are authenticated and encrypted.

4. Data storage and organization: collected data are stored in Firestore following a

structured schema that separates user metadata and sensory ratings.

5. Data visualization and analysis: the visualization tool accesses the aggregated dataset
to generate interactive visual representations that support filtering, comparison, and ex-

ploratory analysis.

This end-to-end workflow connects data generation and visual reasoning within a unified
infrastructure. New submissions from the mobile client are synchronized in real time with the

cloud and immediately available to the visualization environment.

3.2 Design Methodology

The design of the FlavorCharter framework followed an activity-centered design approach,

grounded in the observation of real user needs and analytical workflows rather than abstract
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system requirements [27]. The objective was to develop a platform that could simultaneously
support two distinct user groups: participants, who provide sensory evaluations through an
intuitive mobile interface, and clinicians or researchers, who interpret the resulting data through
a visual analytics environment. This approach ensured that the system was designed around
actual usage contexts, bridging the gap between technical feasibility and practical applicability.

A key aspect of this process was the direct collaboration with clinicians and oncologists
from the MD Anderson Cancer Center. These collaborations provided valuable insights into
the clinical challenges associated with taste dysfunction, particularly in head and neck cancer
patients, and highlighted the need for standardized, quantifiable descriptors of flavor perception.
Through a series of iterative discussions and design reviews, the clinical partners contributed to
defining the type of data to be collected, the desired level of granularity, and the essential criteria
for interpretability in medical and nutritional contexts. Their feedback directly influenced
several design decisions, including the definition of the perceptual dimensions, the organization
of the food list, and the metadata structure used for stratified analysis.

The following sections describe the data model and system architecture that emerged from

this collaborative design process.

3.3 Data Model

The data model of FlavorCharter defines the core entities captured by the system and their
relationships. The model ensures that data collected through the mobile application can be
easily queried, aggregated, and visualized to support exploratory analysis and future clinical

comparisons.
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The design of the data schema was informed by both clinical expertise and literature in sen-
sory science and culinary theory, and includes the definition of perceptual dimensions, metadata
categories, and the food list aimed at creating a model that could capture the complexity of
human flavor perception.

3.3.1 Sensory Dimensions

A central design decision in FlavorCharter concerned the definition of the sensory dimensions
used to characterize flavor perception. The goal was to create a perceptual model that was at
once scientifically grounded, clinically meaningful, and intuitive enough to be understood by a
general population of participants.

The definition process combined insights from multiple disciplines and sources. Initial ref-
erence was taken from biomedical literature addressing taste alteration and loss, as well as
from the Taste Liking Questionnaire (TasteL.Q) [21,28]. Complementary inspiration was taken
from culinary frameworks to ensure that the perceptual model remained both comprehensive
and intuitive for non-specialist participants [22,23]. To adapt these scientific taxonomies to
a digital, crowd-sourced setting, the team engaged in a series of iterative design sessions with
clinicians and oncologists from the MD Anderson Cancer Center. The discussions focused on
identifying a minimal but comprehensive set of perceptual dimensions that could capture the
most relevant aspects of flavor experience while remaining usable in a mobile interface.

Three main criteria guided the selection:

1. Perceptual relevance: each dimension should correspond to a distinct and widely rec-

ognizable sensory quality, supported by physiological or neural evidence.
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2. Clinical interpretability: the dimensions must be relatable to known alterations in

dysgeusia and usable as standardized descriptors in clinical communication.

3. Cognitive simplicity: participants with no sensory training must be able to understand

and consistently apply each term with minimal instruction.

After different phases of refinement, the final model converged on ten core dimensions that

jointly span the sensory space of flavor:

e Sweet — the sensation of sugars and sweet foods.

e Salty — the taste of salt and mineral-rich foods.

e Sour — the sharp, acidic sensation found in citrus or vinegar.

e Bitter — the taste often found in dark chocolate, coffee, or leafy greens.

e Umami (Savory) — the “meaty” or broth-like taste present in cheese, mushrooms, and

cured meats.
e Fatty — the mouth-coating sensation linked to foods rich in oils or fats.
e Astringent — the dry, puckering feeling caused by foods like tea, wine, or unripe fruit.
e Aromatic — the smell and aroma of food sensed through the nose.
e Texture — how food feels in the mouth, such as creamy, crunchy, or soft.

e Piquancy — the spicy “heat” felt when eating chili peppers or pepper.
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The final set of ten dimensions represents a synthesis of sensory, clinical, and cognitive
considerations, forming the core vocabulary through which participants describe their flavor
perception.

During the early design stages, a broader range of candidate descriptors was also exam-
ined, some attributes were progressively excluded after iterative evaluation and discussion with
clinicians. Terms such as metallic and mouth-coating were judged to be redundant or strongly
correlated with other existing categories, such as bitterness, astringency, or fattiness, and thus
offered limited additional interpretive value. Conversely, temperature and heat were excluded
because they primarily relate to the physical or culinary context of food preparation rather
than to intrinsic gustatory or trigeminal stimuli, making them difficult to standardize and less
relevant to taste dysfunction [23]. The X factor, term occasionally used in sensory analysis to
refer to the holistic, emotional, or even spiritual dimension of eating, was omitted as it lacked
operational clarity and cross-cultural consistency [22].

Each dimension is rated by participants on a five-point Likert scale (0 = not perceived, 5 =
strongly perceived). During the design stage, special attention was given to linguistic clarity:
each label was accompanied by a short description to ensure consistent interpretation across
languages and cultural contexts.

The final set of ten dimensions provides a standardized yet flexible language for describing
human flavor perception and serves as the core semantic model linking data collection and

visual analysis within the FlavorCharter ecosystem.
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3.3.2 Demographic and Dietary Metadata

To contextualize sensory data and support stratified analysis, each participant provides a set
of demographic and dietary descriptors. These attributes were chosen based on known clinical
and cultural factors that influence taste perception, as well as the need for population-level

grouping in statistical and visual analyses. The collected metadata include:

e Age group — grouped to account for age-related decline in taste sensitivity.
e Gender

e Nationality and Ethnicity /Race — to investigate cross-cultural variability and genetic

influences on taste.

e Regional Cuisine — a categorical variable capturing the participant’s typical culinary

exposure (e.g., Indian, Mexican, Chinese, Thai, other).

e Diet type — self-reported information on dietary habits (e.g., balanced, vegetarian,

vegan, low-carb, gluten-free).

e Typical foods consumed — an open-ended field used to capture habitual food prefer-

ences.

3.3.3 Food List

The food list defines the items participants evaluate within the mobile app. It was curated
through a structured selection process combining culinary reasoning, clinical usability, and data

consistency requirements. The selection was informed by the Danish Taste Liking Question-
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naire (TasteL.Q) and refined through discussions with MD Anderson clinicians [1]. Four main

principles guided the curation process:

e Familiarity: items must be widely recognized and easily available to the target popula-

tion.

e Clear taste profile: each food should have a clear, dominant taste profile corresponding

to one primary sensory dimension.
e Ease of evaluation: foods must be ready-to-eat, requiring minimal or no preparation.

e Balanced representation: each sensory dimension is represented by at least three food

items.

Items with high variability (e.g., dependent on brand, ripeness, or preparation method) were
excluded or standardized through explicit labeling (e.g., “plain unsweetened yogurt”, “yellow
ripe banana”). The final set includes 36 food items grouped by their dominant dimension
(Table I), providing a consistent, easy-to-evaluate, and taste-specific foundation for reliable

Sensory assessment.
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TABLE I: Foods grouped by dominant flavor dimension.

Sweet Sweet Potato, Strawberry, Nutella, Brownie, Honey,

Yellow Banana, Orange Juice, Milk Chocolate, Pear, Syrup

Salty Soy Sauce, French Fries, Potato Chips, Parmesan

Sour Yogurt, White Vinegar, Pickles, Lemon Slice, Orange Juice
Bitter Dark Coffee, Dark Chocolate, Tonic Water

Umami Soy Sauce, Parmesan, Salami, Garlic, Bacon

Fatty Olive Oil, Avocado, Milk, Almonds, Eggs, Dark Chocolate,

Parmesan, Bacon

Astringent Red Wine, Black Tea, Walnuts, Dark Coffee

Aromatic  Strawberry, Garlic, Parmesan, Dark Coffee, Dark Chocolate,
Black Tea, Yellow Onion

Piquancy Black Pepper, Chili, Ginger, Yellow Onion

3.4 System Architecture

The FlavorCharter system follows a modular client—server architecture designed to enable
scalable data collection, secure storage, and interactive analysis of sensory perception data. At
a high level, FlavorCharter connects participants who contribute sensory evaluations through

a mobile application with a centralized cloud backend and a web-based visualization tool. The
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system operates as a continuous pipeline: data collected from users are securely stored and
synchronized in the backend, then accessed in read-only mode for visualization and exploratory
analysis.

The two-layer structure ensures a clear separation of concerns:

e The Data Collection System focuses on data input, validation, authentication, and

secure transmission.

e The Visual Analysis System focuses on data aggregation, interpretation, and visual

reasoning.

This separation enhances scalability (each layer can evolve independently), security (write
vs. read-only access), and modularity (the visualization environment can be extended or re-
placed without affecting data collection). Figure 1 illustrates the overall system architecture,

showing the interaction between data collection and visualization layers.
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Figure 1: High-level overview of the FlavorCharter architecture

3.4.1 Data Collection System

The Data Collection System is responsible for acquiring, validating, and securely storing
user-generated data. It comprises the mobile client, backend infrastructure, and user approval
pipeline. While this layer is discussed in greater depth in Data Collection System chapter, this

section provides a structural overview of its components and internal data flow.
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e Mobile Application (Expo/React Native) Serves as the primary interface for par-
ticipants to evaluate foods, submit sensory ratings, and provide demographic and dietary
information. It includes client-side validation, offline caching, and secure data submission

through Firebase SDKs.

e Firebase Authentication Handles user identity management and session control. Au-
thentication tokens issued by Firebase Auth are used to validate and secure all write

operations in Firestore.

e Firebase Firestore Acts as the structured database for storing all collected data, in-
cluding users, foods, and sensory ratings. Its document-oriented schema enables real-time
synchronization and scalability, allowing new submissions to be immediately available to

the visualization tool.

e Participant Approval Workflow Participant registration and approval are managed
through an automated workflow that integrates Qualtrics and a secure Render webhook.
This process ensures that only verified and consented participants gain access to the

FlavorCharter mobile application.

3.4.2 Visual Analysis System

The Visual Analysis System provides an analytical environment for researchers and
clinicians to explore the aggregated data collected through FlavorCharter. This component is
described in greater detail in Visual Analysis System chapter, but an architectural overview

is provided below.
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e Visualization Tool (React.js) A web-based application developed using React frame-
work and D3.js for data-driven visualization. The tool enables users to filter, compare,
and explore aggregated flavor perception data through interactive charts and coordinated
visual views. It communicates with the backend through REST APIs, retrieving prepro-

cessed analytical data while maintaining a responsive and user-friendly interface.

e Backend (Node.js + Express) Acts as an intermediary layer between the visualization
client and Firestore. This service handles authenticated queries, performs lightweight
data transformations such as aggregation, normalization, and statistical computation,
and returns the processed data to the client. Centralizing analytical logic within the
backend ensures consistency across users, optimizes query efficiency, and prevents direct

client access to the database.

e Data Source (Firestore) Serves as the central data repository shared across both the
collection and visualization layers. The backend retrieves data from Firestore in read-
only mode, applying query filters that aggregate and anonymize records before sending
them to the visualization tool. This approach preserves data integrity and privacy while

maintaining real-time synchronization with new entries from the mobile application.

3.4.3 Cross-layer Data Flow

The two layers of FlavorCharter are linked through a continuous and secure data pipeline
that connects participant input to analytical visualization. This architecture enables near real-
time propagation of new data from the point of collection to the visualization environment,

ensuring that analytical results always reflect the most recent submissions.
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The end-to-end process can be summarized as follows:

1. Participant Approval (Qualtrics and Webhook Integration) Participant onboard-
ing is managed through an approval workflow that connects a Qualtrics survey with a
secure webhook service. Upon completing the survey, Qualtrics communicates the partic-
ipant’s information to the webhook, which grants the user permission to create an account

within the FlavorCharter mobile application.

2. Data Collection (Mobile App — Firebase) Once approved, the participant signs in
via Firebase Authentication and gains access to the mobile application. The app allows

users to submit sensory evaluations and demographic metadata.

3. Data Access and Processing (Firestore — Backend) The visualization backend
operates in read-only mode, retrieving aggregated and anonymized data from Firestore.
It performs lightweight analytical processing—such as computing averages, standard de-
viations, and demographic distributions—and exposes the results through secure REST

API endpoints.

4. Exploration and Visualization (Backend — Client) The visualization client re-
quests preprocessed data from the backend and renders it using interactive D3-based
components. Researchers can filter, compare, and explore the data across sensory dimen-
sions or demographic groups. Because the pipeline is synchronized with Firestore, any new
submission or update from the mobile app becomes instantly visible in the visualization

environment.
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3.5 Summary

The FlavorCharter system provides a modular and scalable framework for the structured
collection, storage, and visualization of sensory perception data. By clearly separating data
acquisition from analytical exploration, the architecture ensures maintainability, flexibility, and
real-time consistency across components. Secure authentication, controlled data access, and a
unified data model guarantee integrity throughout the entire workflow. The following chapters
present the two core components of this architecture in detail: the Data Collection Sys-
tem chapter outlines the structure and operation of the mobile application, while the Visual
Analysis System chapter examines the design principles and interactive functionalities of the

visualization tool.



CHAPTER 4

DATA COLLECTION SYSTEM

The mobile application represents the core component of the FlavorCharter framework’s
Data Collection System. It provides the primary interface through which participants contribute
sensory evaluations, demographic information, and dietary metadata. As the system’s entry
point, the app plays a crucial role in translating subjective flavor experiences into structured,

analyzable data that feed the broader FlavorCharter ecosystem.

4.1 Overview and Objectives

The application was designed to support large-scale, crowd-sourced data collection while
maintaining scientific rigor, usability, and security. It bridges human—computer interaction
principles with technical infrastructure, enabling users from diverse backgrounds to participate
in flavor perception research with minimal friction. Through a combination of an intuitive in-
terface, real-time data synchronization, and robust authentication, the app ensures data quality
and participant trust throughout the collection process.

In addition to technical and usability considerations, the development of the mobile appli-
cation followed Institutional Review Board (IRB) guidelines to ensure ethical data collection
and participant protection. All procedures, including informed consent, data anonymization,

and secure data handling, were designed in accordance with approved research protocols.

29
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In summary, the FlavorCharter mobile app serves as both a research instrument and a
digital infrastructure component, designed to transform individual sensory experiences into
standardized data suitable for large-scale analysis. The following sections describe its system

design, technologies, and user experience in greater detail.

4.2 System Architecture and Technologies

The FlavorCharter mobile application was developed as a cross-platform client built with
React Native and the Fxpo SDK, connected to a cloud-based backend powered by Firebase. This
architecture enables scalable deployment across iOS and Android devices while maintaining a
unified codebase and native performance. The overall design follows a client—cloud model
where the app acts as the data acquisition interface, Firebase functions as a Backend-as-a-
Service (BaaS), and additional middleware components support user approval and data flow
integration with external research tools, Figure 2 shows the overall architecture of the Data

Collection System.
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Figure 2: Data Collection System architecture.

4.2.1 Technology Stack

31

The FlavorCharter data collection ecosystem is composed of three primary layers that in-

teract seamlessly to manage authentication, data submission, and real-time synchronization:

e Client-side architecture: The mobile app is built using React Native with the Ezpo

SDK, which simplifies development, testing, and deployment through a single codebase.

The app uses a modular, component-based structure, allowing each feature, such as au-
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thentication, sensory rating, or demographic forms, to be encapsulated within reusable UI
and logic components. Application logic and persistent state are managed via the Con-
text API, providing lightweight global state sharing without introducing the complexity

of Redux.

e Backend-as-a-Service (BaaS): Firebase provides all essential backend functionalities,
including Authentication and Firestore. Firebase Authentication manages secure user
identity and session persistence. Firestore, a real-time NoSQL document database, han-
dles structured storage for users, foods, and sensory ratings. By using Firebase as a BaaS,
the system eliminates the need for a custom backend while maintaining scalability, low

latency, and real-time data propagation between devices.

e External services: The app integrates with external services used for participant re-
cruitment and access control. Qualtrics is employed as the initial survey external platform
to gather participant consent and eligibility data. Once a participant completes the sur-
vey, a secure webhook hosted on Render transmits the approval information to Firestore,
where it is stored in the list of approved users . When the user attempts to register in

the app, this record is verified to determine whether access should be granted.

4.2.2 Component Architecture

The mobile app follows a modular file and component structure designed for scalability and
code reusability. Each functional area is isolated into distinct directories to separate concerns
between presentation, logic, and state management. The high-level organization of the project

is as follows:
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e screens/ — Contains the main application screens that define navigation flow and user in-
teraction logic (e.g., LoginScreen. js, SignupScreen. js, FormPage. js, RadarPage. js).

Each screen orchestrates interactions between Ul components and shared state.

e components/ — Includes reusable interface elements grouped by functionality: auth/
for authentication forms and consent screens, form/ for demographic and dietary input
fields, radar/ for sensory rating widgets (radar charts and sliders), and Ul/ for general-
purpose elements like buttons, modals, and progress indicators. This separation promotes

reusability and visual consistency across the app.

e store/context/ — Implements global state management using the Context API Dedi-
cated contexts manage user data, selected foods, radar chart values, and authentication
state (user-context.js, foods-context.js, radar-context.js, auth-context.js).
This structure provides centralized but lightweight state management, reducing prop

drilling and improving maintainability.

e store/data/ — Contains static data definitions and configuration files, such as the list of
available foods (foods-options.js, form-options.js), form field options, and shared

styles.

e util/ — Contains helper functions for HTTP communication and utility logic (http.js),

which facilitate modular integration with external APIs, including the approval webhook.
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4.2.3 State Management and Navigation

State management in FlavorCharter relies on React’s built-in Context API combined with
hooks such as useState and useContext. This approach provides a simple yet effective mech-
anism to share data between components and preserve user input during navigation without
introducing external dependencies. Each functional context (e.g., authentication, user demo-
graphics, rating values) maintains a synchronized copy of the current application state. When
a user interacts with an interface element, for instance, modifying a demographic field or ad-
justing a flavor dimension, the change is immediately propagated both to the local component
state and to the corresponding global context. This design improves responsiveness and ensures
that data remain consistent across screens and can be accessed or restored at any point in the
navigation flow.

The navigation flow is implemented using the React Navigation library, structured as a
stack-based navigator that organizes screens in a linear hierarchy (Figure 3). This hierarchical
design mirrors the logical progression of the study protocol, ensuring that key steps, such as
onboarding, demographic entry, and sensory evaluations, are presented in a fixed and guided
sequence. This prevents users from skipping mandatory tasks or navigating back into incomplete
sections, thereby preserving the integrity of the data-collection process.

Once authentication is completed, the user gains access to the full application context. At
this point, the bottom-tab navigator provides stable and persistent entry points to the main
sections of the app (Home, Ratings, Profile), enabling repeated participation and seamless

re-entry across sessions. Modal screens are employed for focused, high-priority tasks such as
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completing the demographic form or rating a food item, maintaining a clear separation between

general navigation and task-specific workflows.
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4.3 User Experience and Interaction Flow

The user experience design of the FlavorCharter mobile application placed significant em-
phasis on visual clarity, intuitive navigation, and the accurate representation of sensory dimen-
sions. Given the scientific nature of the study, the interface was designed to make complex
perceptual evaluations accessible to a non-specialist audience while preserving experimental
rigor. Each interaction was developed to reduce cognitive effort and guide participants through

the process with clear feedback and minimal visual clutter.

4.3.1 User Journey

The user journey was structured as a guided, multi-session process designed to ensure proper
consent, controlled access, and consistent data collection. Unlike a single-session survey, Fla-
vorCharter allows participants to contribute multiple ratings over time, progressively enriching
the dataset until the required quota is reached. The complete flow—from recruitment to sub-

mission—is illustrated in

1. Recruitment and App Download: Participants are first invited through institutional
recruitment channels. They receive a link to download the FlavorCharter mobile appli-

cation, which serves as the primary entry point to the study.

2. Consent and Approval: Before registration, participants are required to review and
sign a digital informed consent form accessed through an external link. Upon submission,
the consent information is processed and approval is granted, enabling the participant to

proceed with account creation and authentication within the application.
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3. Authentication and Onboarding: Following approval, participants create an account
through Firebase Authentication, which establishes a secure and unique identity within
the system. This step initiates the onboarding sequence, a guided process that requires
participants to complete all preliminary steps before beginning the study. The onboarding
flow ensures that users provide the necessary demographic and dietary information, review
the study guidelines, and gain a clear understanding of how to navigate and use the

application correctly.

4. Demographic and Dietary Information: The onboarding process begins with a struc-
tured form that collects demographic and dietary metadata, including age, gender, eth-
nicity, race, cuisine preferences, diet type, and eating habits. Completing this step is
mandatory, and participants are prompted to provide all required information before

proceeding to the next phase of the study.

5. App Guide: Before starting the first evaluation, participants are guided through an in-
app tutorial that outlines the overall flow of participation and explains how to complete
the study. The tutorial introduces each step of the process and provides clear instructions

on how to evaluate items accurately.

6. Food Selection and Sensory Rating Sessions: After completing the onboarding and
tutorial, participants can begin their first sensory evaluation session. In each session, they
select a food item from a categorized list organized by dominant flavor dimension (e.g.,
Sweet, Salty, Bitter, Umami). Each selected food is evaluated across the ten perceptual

dimensions using selector-based inputs.
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7. Iterative Participation and Data Update: Participants can re-enter the application
at any time to continue contributing new data or to refine existing entries. The app allows
users to select and rate additional foods, update previously submitted ratings, and modify
demographic or dietary information when necessary. This flexibility supports an iterative
participation model in which users progressively complete their evaluations over multiple
sessions. To ensure sufficient sampling across flavor categories, participants are required

to rate at least three foods per dominant dimension before final submission is enabled.

8. Submission and Completion: Once the participant has completed the required number
of ratings, the app prompts submission. A confirmation screen marks the end of the

contribution, while additional sessions remain available for voluntary further input.

4.4  Core Functionalities

The core functionalities of the FlavorCharter mobile application were designed to support
the complete cycle of participant interaction. Each functionality is tightly integrated into
the system’s architecture, ensuring consistency between user experience, data structure, and
backend synchronization. Together, these components allow the application to serve as a robust
instrument for collecting structured sensory data at scale.

At a high level, the mobile platform performs six primary functions:

1. Approval and Registration: Ensures that only eligible participants can access the

study.
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2. Sensory Dimensions Rating: Enables participants to evaluate foods across ten per-
ceptual dimensions using an intuitive graphical interface based on radar and selector

components.

3. Demographic and Dietary Form: Captures key participant attributes, including de-

mographic and dietary factors, through a structured, validated form.

4. Food List Management: Manages a locally stored list of foods organized by dominant

flavor dimension.

5. Conclusion of the Study: Handles completion logic, including validation of the mini-

mum required ratings per category and final submission confirmation.

6. Account Deletion: Allows participants to request the permanent removal of their data.

The following modules describe the individual modules in detail, outlining their design

rationale, technical implementation, and integration within the overall system architecture.

4.4.1 Approval and Registration

Before participants can register or access the application, they must complete an approval
workflow designed to guarantee that only individuals who have provided informed consent can
participate in the study, as required by IRB guidelines. This workflow integrates external and
internal services into a secure pipeline that connects the Qualtrics survey platform, a webhook
hosted on Render, and the Firebase backend.

From the registration page of the mobile application, users are first prompted to open

an external link to the consent form. This step is mandatory: the app prevents opening of
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registration form until the consent form has been opened. The form, hosted on Qualtrics,
collects the participant’s email address, screening information and consent agreement, which
serve as the identifiers for subsequent approval.

Upon submission of the consent form, Qualtrics triggers an automated Workflow that sends
a secure POST request to a custom webhook hosted on Render. This webhook, implemented in
Node. js and Express, verifies the request’s authenticity through an API key and writes a new
record to Firebase Firestore under the approved_users collection, marking the participant as
approved: true. This approval step effectively bridges the external consent process and the
internal authentication mechanism.

To mitigate delays caused by Render’s cold-start latency (which may reach up to 50 seconds
in the free tier), the application sends a preliminary GET /ping request to the webhook as soon
as the consent link is opened. This “pre-warming” strategy ensures that the server is active
and ready to process the subsequent approval request almost immediately after the participant
submits the form.

Once the user starts the registration process, the mobile application enters a short polling
cycle that periodically checks the participant’s approval status in Firestore. This mechanism
compensates for the brief synchronization delay between the webhook update and database
propagation, ensuring a seamless transition to the registration phase.

After the approval record (approved: true) is detected, the participant is authorized to
proceed with account creation using Firebase Authentication. At this stage, the user provides

an email and password, which are securely validated through Firebase SDKs. The resulting
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account is linked to the previously approved record, creating a verified and traceable identity
associated with all subsequent data stored in Firestore.

This dual-step design, approval followed by authentication, ensures that every participant
has explicitly provided informed consent before any data collection occurs. It aligns the system
with ethical research practices and IRB requirements, while maintaining data integrity and

participant verification throughout the study lifecycle.

4.4.2 Sensory Dimensions Rating

The sensory rating interface constitutes the core of the FlavorCharter mobile application,
enabling participants to evaluate foods across ten perceptual dimensions — Sweet, Sour, Salty,
Bitter, Umami, Fatty, Astringent, Aromatic, Texture, and Piquancy. The design of this inter-
face combines visual expressiveness and simplicity of interaction, ensuring that complex sensory
judgments can be captured in a standardized and accessible way.

The evaluation screen integrates two primary components: a graphical radar chart pro-
viding a visual overview of the participant’s ratings, and a series of interactive selectors used
to input individual dimension values. Each selector presents the dimension name with its de-
scriptive extremes (e.g., “Mild” to “Hot”) and a row of discrete numeric options ranging from 0
(“NA”) to 5. The selectors are designed for clarity and precision, employing large, high-contrast
touch targets and consistent color codes drawn from the global style palette. Color consistency
is maintained throughout the application by referencing a shared color dictionary, ensuring

perceptual coherence between the radar visualization, selectors, and other interface elements.
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The radar chart serves as a dynamic visual summary, instantly reflecting the participant’s
input across all ten dimensions. It uses a D3-based rendering pipeline to generate wedge-
shaped arcs proportional to the intensity of each rating, with labels distributed evenly around
the circumference. The chart is intentionally minimal, focusing on clarity and proportional
representation rather than decorative graphics. A more detailed discussion of its visual encoding
design is provided in the Visual Analysis System chapter.

The process for saving ratings follows a unified logic that handles both new entries and
updates within the same workflow. When a participant submits an evaluation, the application
checks whether the selected food already exists in the local context. If so, the record is revised
locally and synchronized with the remote database; otherwise, a new entry is created and stored.
The RadarContext functions as a local data layer that mirrors the user’s Firestore records,
enabling immediate access to rated foods and real-time updates to the radar chart without
redundant network requests. By combining local caching with asynchronous synchronization to
Firestore, this design ensures a smooth and reliable experience even under unstable connectivity,
while maintaining consistency between local and remote data across sessions.

Figure 4 illustrates the sensory dimension rating interface for two foods.
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Figure 4: Two views of the food rating interface.
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4.4.3 Demographic and Dietary Form

The demographic and dietary metadata form is designed to capture essential participant
information before any sensory data submission. It provides a structured interface divided into

three sequential sections, each focusing on a different aspect of the participant’s background:

e Step 1 — Personal Information: collects basic personal details such as name and
surname (collected for administrative completeness but not used in the analysis), along

with age and gender.

e Step 2 — Cultural and Geographic Background: records nationality, race, and

ethnicity to provide cultural and contextual information.

e Step 3 — Dietary Habits: gathers data on diet type, preferred cuisine, and includes

an open-ended field for describing typical eating patterns.

To improve usability, a progress indicator at the top visually communicates advancement
across the three steps, and each section must be completed and validated before the next
becomes accessible.

The selectable options for categorical fields such as gender, nationality, race, ethnicity, diet,
and cuisine are defined in a dedicated configuration module (store/data/form-options. js).
This centralized approach ensures consistency across the form, facilitates future updates, and
allows the addition or localization of new values without modifying the form logic itself. Each set
of options is exported as a structured array of {label, value} objects, which are dynamically

rendered by the corresponding dropdown components.



45

Validation occurs locally within the client application. At each step, the system checks both
completeness and data type consistency—ensuring. profile Invalid entries are visually flagged
in real time, and progression to the next section is blocked until all required inputs are valid.
Once the final step is complete, the data are aggregated into a structured object and passed to
the application’s UserContext, which acts as a local store for user metadata. This local state is
then asynchronously synchronized with Firebase Firestore through a secure API call, ensuring
that updates are propagated to the cloud while maintaining a responsive user experience.

Participants can access and modify their demographic and dietary information at any time
through the profile section of the application. Any changes are validated locally and syn-
chronized with Firestore, ensuring that updates are consistently reflected across sessions and
analyses.

This form is integrated into the onboarding process. When a user logs in or registers, the
system verifies whether demographic data already exist in the local context or in Firestore.
If none are found, the participant is automatically redirected to the demographic form before
accessing the main study interface. This mechanism guarantees that no sensory data can be
collected without a complete set of participant metadata, reinforcing both methodological rigor
and IRB compliance.

Figure 5 illustrates the three steps of the demographic and dietary form interface.
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About what you eat

Diet (all that apply)

Balanced Diet (X Mediterranean Diet (X

Regional Cuisine

Italian v

What do you usually eat?

Pasta
Pizza
Meat
Vegetables

(c) Third form page

Figure 5: Three steps of the demographic and dietary form

4.4.4 Food List Management

The food list constitutes as the reference dataset for sensory evaluations. Unlike other

information stored dynamically in the backend, this list is implemented locally within the mobile

application, ensuring immediate accessibility, uniform presentation, and consistent operation

even under limited network connectivity.
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Each food entry is defined in a dedicated configuration file (store/data/foods-options. js),

structured as a collection of JavaScript objects containing key attributes such as:

e name: the label of the food item (e.g., Strawberry, Soy Sauce);

e category: a general classification describing the type of food (e.g., Fruit, Condiment,

Dairy);

e group: an array of dominant flavor dimensions (e.g., ["Sweet", "Aromatic"]), allowing

a single item to belong to multiple sensory categories;

e image: a local visual asset ensuring that each item is displayed with a consistent and

recognizable illustration;

e comment (optional): additional contextual information used to standardize tasting

conditions (e.g., "Unflavored, unsweetened, full fat” for yogurt).

At runtime, the food list is dynamically filtered according to the sensory dimension selected
by the participant. This allows focused evaluation within one taste category while also sup-
porting multi-category foods that express more than one dominant flavor quality. The filtered
results are rendered through reusable components that form a responsive grid layout. When
a participant completes the evaluation of a food, the interface updates in real time to display
a checkmark overlay on that item, clearly distinguishing completed evaluations from pending
ones.

The category navigation bar enables quick switching between flavor dimensions, while the

current progress for each dimension is computed in real time through the FoodsContext. The
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FoodsContext returns, for each flavor category, the total number of foods already rated by
the participant. This information is then used by the food list component to compute progress
relative to the study’s target of three foods per category. Based on this comparison, the interface
dynamically displays a contextual message—such as “You still need two foods” or “Category
completed!”—providing participants with immediate feedback on their advancement within each
category. Although the detailed logic behind category completion is discussed in the following
section, this real-time progress tracking encourages user engagement and ensures structured
data acquisition across all sensory categories.

Figure 6 illustrates the foods list interface in two conditions: when a category is fully

completed and when some foods are still missing.
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Figure 6: View of the food list of two dimensions.

4.4.5 Conclusion of the Study

The conclusion of the study is determined through a structured completion logic that en-

sures each participant provides sufficient and balanced data across all sensory dimensions. The
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system defines a threshold of three foods per category as the minimum requirement for study
completion. This number was selected to balance the participant’s effort with statistical robust-
ness, ensuring that the dataset captures intra-individual consistency while remaining feasible
for untrained users. Foods associated with multiple categories (e.g., Parmesan, classified as
Salty, Umami, Fatty, and Aromatic) contribute simultaneously to each corresponding category,
thereby reflecting the multidimensional nature of real flavor experiences.

Progress tracking and completion validation are handled through the FoodsContext compo-
nent, which aggregates rating data retrieved from the RadarContext. For every sensory dimen-
sion, the context computes the number of completed items by comparing the participant’s rated
foods with the static list of all available foods. Each category’s completion status is updated in
real time and stored in the local state as an array of objects containing the category name, the
number of completed items, and the total available. Once all nine categories reach the required
threshold, the system updates both its internal state and the participant’s record in the cloud
database to reflect study completion. This update adds the all_categories_completed flag
to the user’s data structure, indicating that all required evaluations have been performed and
that the study has been successfully completed.

The participant’s progress is visually represented in the application’s home interface. Each
flavor category is displayed as a tile within the CategoryGrid, which dynamically adjusts its
label based on the number of rated foods per category. Once all categories are complete, the
home screen overlays a semi-transparent confirmation view displaying a congratulatory message

and a “Save and Quit” button, as shown in
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When the participant confirms the end of the study, the application performs a final update
to record the completion status. Instead of resubmitting data, this operation adds a completion
flag to the participant’s record in the cloud database, marking the study as finalized. At the
same time, the user’s approval is revoked through a secure backend process, preventing any
subsequent access to the application. Once these updates are confirmed, the participant is
redirected to the ThankYouScreen, which acknowledges the successful conclusion of the study
and informs the user that their session is permanently closed.

Figure 7 illustrates the interfaces involved in the conclusion of the study process.
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Figure 7: Conclusion of the study interface

The account deletion feature is implemented to comply with both platform policies and

research ethics requirements. App stores such as Google Play and Apple App Store mandate

that all published applications offer users a permanent account removal option. In addition,

the Institutional Review Board (IRB) overseeing this study requires that participants be able
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to withdraw from the research at any time. This functionality therefore serves a dual purpose:
ensuring regulatory compliance and safeguarding participant autonomy.

When a participant initiates the account deletion process, the application first displays a
secure confirmation modal requiring password re-entry to verify the user’s identity. This step
is mandatory because Firebase enforces a re-authentication procedure before performing any
sensitive operation, such as deleting an account. The participant’s credentials are re-validated
to ensure that the request originates from an authenticated session rather than from an expired
or compromised token. Once the password is successfully confirmed, the system proceeds with

two coordinated backend actions:

1. A deletion flag (deleted = true) is written to the user’s document in the Firestore

database, marking the account as withdrawn from the study.

2. The user’s authentication record is permanently removed from Firebase Authentication,

effectively disabling any future login.

In accordance with IRB policy, data that have been anonymized and cannot be traced back
to individual participants may be retained for aggregate analysis. Conversely, any personally
identifiable information (PII) linked to the deleted account is removed or irreversibly dissociated
from the dataset during this process.

The account deletion interface is accessible directly from the App Guide page, where partic-
ipants can confirm their decision through an in-app modal dialogue. This ensures transparency,
ease of access, and adherence to both ethical and technical standards governing human-subject

research in digital environments.
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4.5 Database architecture and Data Handling

The database architecture of FlavorCharter provides the technological backbone that en-
ables secure, scalable, and synchronized data management across the system’s components.
This layer connects the mobile front-end, where data are generated, with the backend infras-
tructure responsible for storage, authentication, and access control.

At the core of this architecture lies Firebase, a cloud-based Backend-as-a-Service (BaaS)
developed by Google. Unlike traditional server-based backends, a BaaS abstracts the complexity
of managing servers, APIs, and databases by providing pre-built cloud services that handle these
tasks automatically. This approach allows developers to focus on data logic and user experience
rather than infrastructure maintenance.

For this implementation, the system relies on Firebase’s free-tier plan, which provides suf-
ficient performance for the means of this study.

Within the FlavorCharter framework, Firebase underpins two essential cloud services:

e Firestore, a NoSQL document-oriented database that stores user metadata, sensory

ratings, and study completion states;

e Firebase Authentication, which securely handles user registration, login, and session

management;

The mobile application connects to Firebase through the official client SDKs. This direct
integration allows the front-end to read and write data securely without the need for a custom

server, while all access is governed by authentication tokens and Firestore Security Rules. Each
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interaction is transmitted through authenticated API calls that operate under the user’s session

identity, ensuring data integrity and privacy compliance.

4.5.1 Firestore Schema and Collections

The FlavorCharter framework relies on a document-oriented data model implemented through
Firebase Firestore. Firestore’s design aligns with the system’s requirements for scalability,
modularity, and secure user-level data isolation, making it particularly suited for a multi-user
research platform such as FlavorCharter.

At the root level, the Firestore database is organized into two primary collections that

separate participant authorization from study data storage (Figure 8):

e approved_ users: This collection contains one document per participant who has com-
pleted the consent procedure. Each document is indexed by the participant’s email and
includes a Boolean field approved, which determines whether the user is authorized
to access the mobile application. The collection is automatically updated through the
Qualtrics—Render webhook pipeline, ensuring that only participants who have signed the

informed consent form can proceed with registration and data submission.

e users: This collection contains one document per registered participant, identified by
their unique Firebase Authentication ID (uid). It stores all user-specific data and study
progress indicators, serving as the central repository for both sensory evaluations and

participant metadata.

Within each users document, data are organized into three main logical components:
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e radarData (subcollection): Contains one document per food evaluated by the partici-
pant. Each entry stores the food identifier, its sensory ratings across the ten perceptual
dimensions, and optional user comments. The subcollection design allows the system to
efficiently scale to multiple evaluations per participant while maintaining clean separation

between users.

e demographics (subcollection): Holds static personal, cultural, and dietary metadata
collected during onboarding. These values are grouped under a nested object named
profile (document), which contains fields such as age, gender, ethnicity, dietType,
and preferredCuisine. Since these attributes are collected once and rarely modified,

they are stored as a single structured document rather than as a subcollection.

e System-level metadata fields: Several attributes are stored directly within the root

of the user document to track study and account states:

— email — used to link authentication credentials with the database record.

— hasSeenInfo — marks completion of the initial app guide during onboarding.

— all_categories_completed — indicates that the participant has rated at least three
foods in each flavor category.

— save_and_quit — signals that the participant has explicitly exited the study after
completing all evaluations.

— deleted — marks withdrawn or permanently deleted accounts while preserving data

integrity.
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This hierarchical schema provides several advantages:

e Scalability and Performance: Each user has an independent document, minimizing

conflicts and ensuring efficient read and write operations even under concurrent access.

e Efficient Queries and Cost Optimization: The separation between user-level meta-
data and food ratings enables selective data retrieval, avoiding unnecessary network or

billing overhead.
e Separation of Concerns: Each user’s data are logically and physically isolated, simpli-

fying maintenance, debugging, and compliance management.

The resulting structure balances flexibility and rigor, supporting both large-scale crowd-

sourced data collection and controlled clinical research environments.



Users
(collection)
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(document)
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(string if not specified)

Approved_Users
(collection)

email
(document)

approved (boolean)

Figure 8: Firebase Firestore structure.
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4.5.2 Firebase Authentication

User authentication within the FlavorCharter system is managed through Firebase Au-
thentication. This module provides a secure and scalable mechanism to manage user identities,
handle session persistence, and enforce access control across the mobile client and the Firestore
database.

FlavorCharter employs a standard email-password authentication flow. When a participant
registers through the mobile app, their credentials are securely transmitted to Firebase Auth,
which issues a unique user identifier (uid). This uid acts as the primary key linking the user’s
authentication record to all related data in Firestore, ensuring a one-to-one correspondence
between identity and stored information.

Access to the database is mediated entirely through Firebase’s SDKs, which enforce au-
thentication tokens for all read and write operations. Only authenticated sessions are allowed
to access user-specific documents under the users/{uid} path, and all backend rules are de-
signed to prevent cross-user data exposure. This security model eliminates the need for a
custom authentication server, while maintaining compliance with institutional data protection
requirements.

Finally, Firebase Authentication provides automatic token refresh and session persistence

across app restarts, ensuring a seamless user experience while preserving data integrity.

4.5.3 API Specifications

The following list summarizes the core API functions implemented in the util/http. js

module. Each endpoint or function interacts directly with Firebase Firestore or Authentication
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through the SDK. All operations are asynchronous, authenticated, and scoped by user identity

(uid).

e postRadarData(radarData) Creates a new sensory evaluation document under the

authenticated user’s radarData subcollection.

— Request Body:{ Food, Sweetness, Sourness, Saltiness, Bitterness, Umami,

Fatness, Astringency, Aromaticity, Texture, Piquancy }
— Response: { id }

— Access: Authenticated user only.

¢ updateRadarData(id, radarData) Updates an existing sensory record under

users/{uid}/radarData.

— Request Body: { Food, Sweetness, Sourness, Saltiness, Bitterness, Umami,

Fatness, Astringency, Aromaticity, Texture, Piquancy }

— Response: { status }

e getRadarData() Retrieves all sensory evaluations for the authenticated participant.

— Response: [ { Food, Sweetness, Sourness, Saltiness, ...}, { Food,

Sweetness, Sourness, Saltiness, } ]

e postDemographics(demographicsData) Saves or updates the user’s demographic and

dietary metadata under users/{uid}/demographics/profile.
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— Request Body:{ name, surname, age, gender, nationality, ethnicity, race,
diet, cuisine, description }

— Response: { status }

markAllCategoriesCompleted() Sets the flag all_categories_completed = true in

the user document.

— Response: { status }

markSaveAndQuit() Marks the study as concluded by setting save_and_quit = true.

— Response: { status }

checkApprovedUser(email) Verifies whether an email is authorized in the

approved_users collection.

— Response: { approved }

revokeUserApproval(email) Revokes a participant’s approval after completion or with-

drawal by setting approved = false.

— Response: { status }

deleteAccount(password) Deletes the Firebase Authentication account and flags the

Firestore record with deleted = true.

— Request Body: { password }

— Response: { status }
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— Access: Requires re-authentication.

e createUserWithEmailAndPassword(email, password) Registers a new participant

once their consent has been approved.

— Request Body: { email, password }
— Response: { uid }

e signInWithEmailAndPassword (email, password) Authenticates an approved par-

ticipant and retrieves a valid session token.

— Request Body: { email, password }

— Response: { uid, accessToken }

e sendPasswordResetEmail(email) Sends a password reset link to the participant’s reg-

istered email.
— Request Body: { email }
— Response: { status }

e POST /webhook Handles participant approval upon completion of the Qualtrics con-

sent form.

— Request Body: { email }
— Response: { status, code }
— Access: Restricted to trusted Qualtrics workflows authenticated via a secret key. The

endpoint validates the x-api-key header against the server’s environment variable
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SECRET_KEY. If the key and email are valid, the server writes a record to Firestore

under approved_users/{email} with the following structure: { email, approved

}.

e GET /ping Keeps the Render webhook service active by sending a lightweight request

at the beginning of the Qualtrics survey.

— Response: { status }

— Access: Public endpoint triggered automatically by the Qualtrics workflow (Fire and

Forget mode), without requiring authentication or response handling.

e POST /webhook Called automatically by Qualtrics after a participant completes the

consent form.

Request Headers: { API-KEY}

Request Body: { email }
— Response: { status, code}

— Access: Restricted to trusted Qualtrics workflows authenticated via a secure api-key.
4.5.4 Data Flow

The FlavorCharter data flow connects external services, Firebase backend, and the mobile
client into a secure end-to-end system for user approval, authentication, data collection, and
withdrawal. All interactions occur through asynchronous, authenticated API calls—either via
the Firebase SDK on the client side or HI'TPS requests handled by the Render webhook

middleware.
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e Approval Workflow (Qualtrics — Render — Firebase) The data flow begins when
a participant completes the consent form hosted on Qualtrics. A POST /webhook request
is automatically sent to the Render server, which validates the request through a se-
cret key and writes a record to Firestore under approved users/{email}. Before this,
a lightweight GET /ping request is triggered to pre-warm the Render instance and pre-
vent latency due to cold starts. On the client side, the application periodically calls

checkApprovedUser (email) to confirm that the user has been authorized to proceed.

¢ Registration and Authentication (Firebase Auth) Before account creation or login,
the system verifies that the participant’s email address appears in the Firestore collec-
tion approved_users, confirming that informed consent has been recorded and approved
through the external workflow. During registration, the application calls the funcion
checkApprovedUser (email) before invoking createUserWithEmailAndPassword (email,
password). If the approval record is not yet present, a polling mechanism automatically
rechecks the collection at regular intervals (every five seconds, up to 30 seconds total)
to account for latency between Qualtrics submission and backend update. Only once
approval is confirmed can the participant proceed to account creation, at which point a
Firebase Authentication record is generated and a unique user ID (uid) is created as the

root document in Firestore (users/{uid}).

Subsequent logins follow the same logic: the app first validates approval status in the
approved_users collection through checkApprovedUser(email), then authenticates the

user via the function signInWithEmailAndPassword(email, password). This double-
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layer validation ensures that only users with valid consent and active approval can access
the system. If credentials are lost, participants can recover access using the function
sendPasswordResetEmail (email), which triggers Firebase’s built-in password recovery

flow.

Onboarding and Demographic Data Collection After registration, the user is auto-
matically directed to the onboarding phase, which ensures that all required information
is provided before beginning the study. At login, the app verifies whether demographic
data exist under users/{uid}/demographics/profile using the getDemographics()
API If no record is found, a mandatory modal appears on the Home Page, prompting
the participant to complete the demographic and dietary form. This modal cannot be
dismissed until valid data are submitted, ensuring that every participant provides the re-
quired personal information before accessing the study interface. The demographic form
itself is submitted through postDemographics(demographicsData), which saves struc-
tured metadata to Firestore and links the participant’s email at the root of their user
document. Once submitted, the data are stored locally in context and synchronized with

Firestore, allowing future edits through the profile section.

In addition to demographic data, the onboarding sequence includes an informational
step that verifies whether the user has already viewed the study instructions. This is
managed through the hasSeenInfo flag stored in the user’s Firestore document. At
the first access, the app calls checkUserHasSeenInfo(), and if the flag is absent or

false, a guide modal appears prompting the user to open the instruction page. Once
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the participant reads the guide, the app records this event using markHasSeenInfo(),
ensuring that the informational step is not shown again in subsequent sessions. Together,
these mechanisms guarantee that every participant has both completed their demographic

data and reviewed the study guidelines before providing sensory evaluations.

Rating Collection and Synchronization During active participation, sensory evalua-
tions are stored and updated using postRadarData(radarData) and updateRadarData(id,
radarData). Each record is saved within the subcollection users/{uid}/radarData. All
submissions are first added to the local context (for real-time reactivity) and then syn-
chronized asynchronously with Firestore. The data model ensures that local and remote

copies remain consistent, even in cases of temporary offline access.

Study Completion The completion status of each participant is monitored locally and
in the database. When all categories reach the minimum number of rated foods, the flag
all_categories_completed = true is written viamarkAllCategoriesCompleted(). Upon
the participant’s decision to finish, the study is closed by invoking markSaveAndQuit (),
which adds the field save_and_quit = true to the user document. This marks the dataset

as finalized and disables further data entry.

Approval Revocation and Account Deletion After study completion or withdrawal,
the app calls revokeUserApproval (email), setting approved = false in approved_users.
This revocation prevents future logins through Firebase Authentication. If the participant
requests full account removal, deleteAccount (password) is executed. Firebase requires

password re-entry for reauthentication before deletion; once confirmed, the account is re-



67

moved from Authentication and the Firestore document is flagged with deleted = true.
This ensures that the identity is anonymized, while de-identified sensory data remain

preserved for research integrity under IRB compliance.

4.5.5 Data Validation and Security Rules

Data validation and access control in FlavorCharter are implemented through a combination
of client-side checks and backend constraints enforced by Firestore Security Rules. On the client
side, every input field is validated locally before any database operation is triggered, preventing
incomplete or malformed submissions from being uploaded. On the backend, Firestore applies
strict authentication-based policies that restrict all reads and writes to the authenticated user’s
own documents, ensuring that no participant can access or modify another user’s data.

In the client-side, all input fields undergo local validation before any write or authentication
operation is permitted. During demographic submission, each step of the form checks com-
pleteness, type correctness, and formatting constraints. Age must be numeric; categorical fields
such as gender, race, ethnicity, and cuisine must be non-empty strings; and multi-select fields
such as diet must contain at least one element. Invalid inputs are visually highlighted and the
user is prevented from continuing until the errors are resolved.

A similar validation strategy is applied during authentication. Before issuing any Firebase
Auth request, the app verifies that the email contains a valid structure, that passwords meet
minimum length requirements, and, during registration, that confirmation fields match their

originals. If these conditions are not met, the authentication call is not triggered and the user
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is shown context-aware error messages. This ensures that malformed credentials never reach
the backend and prevents unnecessary failed authentication attempts.

For sensory evaluations, data validation is handled primarily at the UI level. Users can only
input values through constrained interface components (sliders or radar controls), guaranteeing
that all submitted ratings fall within the expected ranges and maintain the correct structure.
Since the food list is fully controlled and locally defined within the app, the interface only allows
selection of predefined items, preventing the creation of inconsistent or undefined entries. Both
updates and new records follow the same internal checks, ensuring consistent handling of every
submission.

Server-side protection is implemented through Firestore Rules, a strict ruleset that governs
all reads and writes in the database. Access to the approved_users collection is public for reads,
enabling the app to verify participant eligibility even before authentication. Write permissions
for this collection are restricted to authenticated requests, such as those issued by the webhook.
The users/{userId} namespace is fully protected: both read and write operations require a
valid Firebase Authentication session, and access is permitted only if the authenticated user’s
UID matches the document path. These constraints automatically cascade to all subcollections,
including radarData and demographics, preventing horizontal access across accounts.

Certain fields are intentionally controlled only through system-level API calls rather than
through client writes. These include all_categories_completed, save_and _quit, deleted,
and hasSeenInfo. The app never writes these values directly during standard user interaction.

Instead, they are modified exclusively through dedicated, authenticated API functions such as
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markAllCategoriesCompleted(), markSaveAndQuit (), and deleteAccount (), ensuring that
participants cannot manipulate study-completion status or privacy flags.

Because every Firestore operation is tied to Firebase Authentication, no anonymous or
cross-user access is possible. Even if a malicious user acquires an internal document path,
Firestore Rules deny all reads and writes unless the UID matches. All communication with

Firebase occurs over encrypted HTTPS channels, further protecting data during transmission.

4.5.6 IRB Compliance and Privacy Protocols

The design and implementation of the FlavorCharter mobile application strictly adhere
to the requirements established by the Institutional Review Board (IRB) for the approved
study (StudyID: STUDY?2025-0477). All procedures for consent, data collection, storage, access
control, and participant rights follow the ethical safeguards mandated by the protocol and by
the UIC Office for the Protection of Research Subjects.

Participation in the study is entirely voluntary, and no user may access the application
before providing informed consent. Consent is obtained externally through Qualtrics, where
participants review the IRB-approved document and electronically sign the consent form. Only
after this step is completed does the approval workflow authorize account creation within the
mobile application, ensuring that no data are collected from individuals who have not formally
agreed to participate, in full compliance with the protocol’s requirements.

The application collects only the fields explicitly approved by the IRB: name, surname, age,

gender, nationality, race, ethnicity, diet, regional cuisine, eating habits, and self-reported flavor
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ratings. No medical records, health identifiers, or diagnostic information are stored, and the
interface does not allow submission of any data beyond what is listed in the protocol.

All data are stored in Firebase, which provides encryption both in transit and at rest. Access
to identifiable data is restricted to authorized study personnel; no external developers, auto-
mated scripts, or third-party processors have access to participant information. In accordance
with the IRB’s data management plan, exported datasets are de-identified prior to analysis:
identifiers such as name and email remain only in Firebase and are excluded from any research
dataset shared outside the secure backend.

Participants retain the right to withdraw at any time, consistent with IRB guidelines and
Stores constraints. If a subject requests withdrawal, their account can be deleted directly from
the app interface. This operation removes the Firebase Authentication record and updates
the corresponding Firestore document with a deleted = true flag, preventing further login
attempts and marking the account as withdrawn from the study. In accordance with IRB
policy, any data already exported and de-identified for aggregate analysis cannot be retroactively
withdrawn.

The study poses minimal risk to participants, limited primarily to the potential loss of con-
fidentiality. To mitigate this risk, the system enforces strict authentication, Firestore security

rules, controlled data flow, encrypted storage, and restricted researcher access.

4.6 Testing and Feasibility Study

The testing and feasibility assessment of the FlavorCharter system was conducted through

a two-stage evaluation strategy designed to validate usability, technical robustness, and the
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scientific plausibility of the sensory data collected. The goal of this evaluation was to ensure
that both the mobile application and the visualization workflow could support a real study
before broader deployment.

Two complementary forms of evaluation were employed:

Alpha Testing (At—Home Evaluation). This phase was conducted internally by three
members of the research team, who used the mobile application autonomously from their homes,
rating foods they already had available in their everyday environment.

Hallway Testing (Controlled Environment). A second evaluation was conducted with
twelve participants in a supervised setting, where testers rated standardized food samples under
direct observation.

Together, these two evaluation modes provide a comprehensive view of both technical per-
formance and scientific feasibility, demonstrating that the system is usable, reliable, and capable

of generating interpretable sensory data in both naturalistic and controlled conditions.

4.6.1 Alpha Testing (At—-Home Evaluation)

The at—home evaluation was conducted internally by members of the research team, who
used the mobile application autonomously in their everyday environment. This phase provided
the first complete technical validation of the end-to—end data collection workflow, as well as
early insights into the usability and robustness of the interface under naturalistic conditions.

The goal of the alpha testing phase was to validate the stability of the early application,
verify that the onboarding and rating flow worked correctly across devices, and identify usability

issues that emerge during unsupervised, at—home usage. Three members of the research team
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tested the app on their personal devices, providing rapid qualitative feedback that guided the
next iteration.

The main issues identified were:

e authentication improvements (password reset, clearer error messages, cold-start delays);
e cross—platform Ul inconsistencies (blur fallback, button rendering, press feedback);

e terminology and form clarity (labels, clearer food descriptors);

e navigation and interaction improvements (category progress clarity, post-rating prompts);
e rating interface refinements (N/A option, clearer dimension visibility);

e general usability enhancements (guide page, improved text readability, conclusion of the

study).

This early internal evaluation ensured that major usability and workflow issues were resolved
before proceeding to hallway testing.

Beyond usability testing, the at—home phase also served as a preliminary feasibility study.
Since participants evaluated foods they already had available, only a small subset of items
overlapped across the three responders. The items shared by the entire group were Yogurt,
Strawberry, Dark Chocolate, and Tonic Water. Despite the limited overlap, these common
foods allowed for an initial assessment of whether the mobile collection pipeline could capture
coherent perceptual patterns under real domestic conditions.

Figure 9 shows the flavor—profile ratings for Strawberry, the food that exhibited the clear-

est cross—participant consistency. All three respondents identified sweetness as the dominant
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dimension, confirming a stable perceptual baseline. Some variability emerged in secondary at-
tributes: one participant did not report any aromatic note, while another indicated the presence
of a mild umami component.

Even with these natural variations, which may or not be due to variability in the food,
the overall multivariate profile of Strawberry remained highly consistent across individuals,
supporting the feasibility of collecting reliable sensory data outside of controlled environments.

A similar pattern was observed for Tonic Water, where all participants identified bitterness
as the dominant attribute, with mild disagreement on secondary notes such as astringency or

umami. These results further suggest that the FlavorCharter mobile workflow is capable of cap-

turing stable, interpretable flavor—perception patterns even in small samples and uncontrolled

at—home settings.
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Figure 9: At—home ratings for Strawberry
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4.6.2 Hallway Testing (Controlled Environment)

After the at—home phase, a second evaluation was conducted in a controlled environment
(“hallway testing”) with twelve participants. Unlike the autonomous at—home setting, this
phase allowed direct observation of user interactions, enabling rapid identification of usability
issues and more consistent comparison across participants, as all individuals tasted the same
set of foods under identical conditions.

During the hallway testing sessions, participants were asked to register, navigate the on-
boarding flow, and complete at least one rating session while thinking aloud. This setup enabled
real-time observation of user behavior and revealed issues that do not typically emerge during
remote or unsupervised evaluation.

The main observations included:
e Participants frequently attempted to create an account before opening the consent link,
suggesting that its placement and role were not immediately clear.

e Several users did not open the consent document at all, assuming it was optional or a

non-interactive element of the consent form.

e Some users clicked form buttons multiple times, expecting faster visual feedback or as-

suming the first interaction had not registered.

e Users often forgot the meaning of certain sensory dimensions during rating.

In addition to usability observations, the controlled environment sessions provided an oppor-

tunity to conduct a second feasibility assessment using foods that were served directly during the
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session. All participants evaluated the same set of items, enabling a more controlled comparison
of their flavor profiles and revealing whether the system could capture consistent perceptual
patterns across individuals.

Three foods were overlapping between all twelve paricipants: Dark Chocolate, Tonic Water,
and Strawberry. Despite expected individual variability, all three items produced stable and
interpretable profiles across participants.

For Dark Chocolate, showed at Figure 10 and Table II, all respondents consistently identified
high bitterness, minor secondary notes such as fatness and aroma were detected with moderate
variability.

Almond, see Figure 11 and Table III, showed the strongest agreement on texture: all partic-
ipants identified the characteristic crunchy component. Fatness was also rated with moderately
high intensity, though with noticeably greater variability across respondents.

For Strawberry, see Figure 12 and Table IV, all participants identified sweetness as the
dominant attribute, while variations appeared in aromaticity and texture, but the overall profile

remained coherent across users, mirroring patterns observed in the at—home phase.
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4.7 Summary

The Data Collection System establishes the technical and methodological foundation through
which FlavorCharter acquires structured sensory data at scale. This chapter detailed how the
mobile application integrates cross-platform development technologies (React Native + Expo),
Firebase services for authentication and data storage, and an externally managed approval
workflow to enforce IRB-compliant access control.

Through a guided onboarding process, including informed consent verification, demographic
and dietary metadata collection, and an instructional walkthrough, the application ensures

that all participants enter the study with consistent knowledge and complete prerequisite in-
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formation. The core rating interface combines an intuitive selector—based input system with
a real-time radar visualization, enabling participants to evaluate foods across the ten percep-
tual dimensions in a standardized and repeatable manner. Local context storage and real-time
synchronization with Firestore guarantee reliability even under intermittent connectivity, while
strict validation and security rules preserve data integrity and confidentiality across the entire
pipeline.

The chapter also described the structured Firestore schema, the separation of approval and
user data, the role of Firebase Authentication in enforcing identity-bound access, and the API
abstractions connecting the mobile client, backend workflows, and external services. Together,
these components form a secure and scalable infrastructure that supports continuous data
acquisition while remaining aligned with IRB protocols and platform requirements.

Finally, the chapter introduced the validation process conducted through internal alpha
testing and a two—phase feasibility study, demonstrating that the system is both usable in
real-world conditions and capable of producing consistent, interpretable sensory data across
participants.

With the Data Collection System fully implemented and validated, the FlavorCharter
ecosystem is equipped to collect high-quality, standardized sensory data and to support the

visualization and analytical methods introduced in the following chapter.



CHAPTER 5

VISUAL ANALYSIS SYSTEM

The Visual Analysis System is the analytical component of the FlavorCharter framework.
While the mobile application is responsible for acquiring structured sensory data, this sys-
tem provides the tools needed to interpret those data through interactive, multivariate visual
representations. Its purpose is to transform raw ratings and demographic metadata into inter-
pretable patterns, comparisons, and summaries that would not be accessible through numerical
inspection alone.

This chapter describes the requirements guiding the design of the visualization tool, the
abstractions applied to the underlying dataset, and the visual encodings selected to represent
multidimensional flavor information. Beyond its technical role, the visualization layer also
establishes the interpretive foundation upon which future clinical analyses can be built, linking
the population baseline collected in this study to the sense-making processes clinicians and

researchers rely on when evaluating flavor perception data.

5.1 Design Process

The design process for the visualization system was guided by a structured approach aimed
at defining how flavor-perception data should be explored and interpreted. Before selecting spe-

cific visual encodings, the development focused on clarifying the analytical tasks, the constraints

79
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of the dataset, and the needs that emerged in collaboration with clinicians and researchers. The
following sections outline the methods and principles that shaped this design workflow.

5.1.1 Design Approach

The project followed an activity—centered design methodology, grounded in the concrete
analytical actions clinicians must perform when interpreting sensory data [27]. These activities
were not inferred abstractly but emerged through direct discussions and iterative review sessions
with clinicians and researchers at MD Anderson Cancer Center and the University of lowa. From
these sessions, a set of core interpretive tasks was identified, such as comparing demographic
groups, evaluating deviations from expected patterns, exploring relationships among sensory
dimensions, and interpreting variability at both individual and population levels. These real
analytical activities shaped the structure of the system, determining which views were necessary,
how they should be coordinated, and which interactions were essential for clinical sense—making.

5.1.2  Visualization Design Principles

The selection of visual encodings followed Munzner’s Why—What-How framework [29].
High-level analytical goals ( Why) were translated into task abstractions ( What) including com-
parison, summarization, trend identification, and anomaly detection. These abstractions guided
the choice of visualization and interaction strategies (How), ensuring that each design choice
supported interpretability and analytical clarity rather than aesthetic preference.

5.1.3 Prototyping Workflow

The development process employed the 5-Sheets Design Process, used to iterate rapidly

through conceptual alternatives before implementation [30]. The five sheetsi, brainstorm, initial
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designs, and realization, served as a structured scaffold for exploring multiple design paths,
validating assumptions with clinicians, and refining the interface before building high—fidelity
prototypes.

This combined approach grounded the visualization system in real clinical activities, formal
design principles, and iterative prototyping. The following sections illustrate how these methods
informed the structure and interaction patterns of the FlavorCharter visualization tool.

5.2 Requirements Analysis

The design of the Data Visualization System is guided by the analytical needs of clinicians
and researchers who must interpret multivariate sensory data collected through the Flavor-
Charter framework. The following requirements define the capabilities that the visualization

tool must support.

5.2.1 Users

The visualization tool is primarily intended for clinicians working in oncology, especially
those treating Head and Neck Cancer (HNC) patients. These clinicians must interpret per-
ception profiles, explore foods and compare demographic-specific data against population-level
baselines. The system is therefore designed to support quick comparisons, low cognitive load,

and intuitive exploration.

5.2.2 Tasks

The system must enable the following analytical tasks:

e Inspect the complete flavor profile of a food, displaying mean, standard deviation and

dimension-level distributions.
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Evaluate the reliability and accuracy of ratings for a selected food.

Identify the dominant sensory dimension(s).

Sort foods by number of ratings and accuracy.

Group foods based on the dominant dimension(s) and combine it with sorting.
Identify outliers at the level of individual food and sensory dimension.

Compare the flavor profile of a food between a demographic group and the baseline pop-

ulation.
Analyze how a dimension is perceived across different demographic groups.
Determine which foods score highest on a specific dimension with lowest variability.

Examine the demographic composition of the dataset and understand its influence on

aggregated results.

Data Requirements

To support the tasks described above, the visualization layer operates on the baseline dataset

collected from healthy individuals and stored in Firebase Firestore. Each participant record

includes demographic metadata and a set of food evaluations, each containing intensity ratings

for all sensory dimensions on a numerical scale. From this raw data, the system derives the

abstractions required for visual analysis:

e food-level summaries such as mean ratings, variability measures, and dimension dis-

tributions;
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e rating volume and agreement indicators used to assess reliability and interpretabil-
ity;
e demographic group structures enabling stratified comparisons across subpopulations;

e dimension-level outlier flags to support data quality control.

Together, these elements allow the visualization layer to transform individual sensory ratings
into structured, interpretable representations aligned with the analytical needs of clinicians and

researchers.

5.2.4 Flow

The exploration process supported by the visualization tool follows a workflow centered on
food selection rather than dimension-first navigation. A typical clinician workflow begins by
browsing the list of available foods and selecting an item of interest. Once a food is chosen, the
system presents its complete multivariate flavor profile, including mean intensities, variability,
and rating counts.

From this view, the clinician may explore the distribution of ratings for each sensory di-
mension, inspect possible outliers, and identify the dominant perceptual attributes of the food.
The workflow then extends to comparison tasks: users can contrast the selected food’s profile
across demographic groups or examine the overall trends of a chosen subgroup.

The flow is intentionally non-linear. Clinicians may begin from any food, switch to another,
apply demographic filters, or broaden the analysis to examine patterns across the full set of
foods. This flexibility supports open-ended inquiry and aligns with the exploratory nature of

clinical interpretation.
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5.2.5 Nonfunctional Requirements

Beyond functional capabilities, the visualization environment must satisfy several nonfunc-
tional constraints essential for clinical adoption. Visual encodings must support users with
varying levels of visualization literacy. Regarding performance requirements: filters, compar-
isons, and view updates must occur within milliseconds to maintain fluid interaction and avoid
disrupting analytical reasoning. The system must also remain scalable as additional participants
are added to the baseline dataset.

5.3 Data and Task Abstraction

This section formalizes the structure of the dataset and the analytical tasks the visual-
ization layer must support. The organization follows the framework proposed by Munzner,
which defines data abstraction and task abstraction as two complementary steps for mapping
raw information to appropriate visual encodings [29]. By characterizing the dataset through
structured taxonomies and identifying the operations users must perform on it, we establish
the conceptual foundation that guides both the visual and interactive design of the system.

5.3.1 Data Abstraction

The dataset collected through the FlavorCharter application consists of multivariate sensory
evaluations provided by healthy individuals. Following Munzner’s framework, the data can
be characterized through three taxonomic perspectives that define its type, structure, and
analytical implications.

Taxonomy 1: Data and Dataset Types. The dataset consists of individual rating

events, where each user evaluates a specific food across all sensory dimensions defined in the



85

FlavorCharter framework. Each of these events constitutes a single item in the dataset, resulting
in a multidimensional table in which rows represent rating instances and columns correspond
to the attributes associated with the user and the evaluated food. The attribute space is het-
erogeneous and combines perceptual intensity values with demographic descriptors. In detail,

the dataset includes the following attribute types:

e ordinal numerical variables for the intensity ratings of each flavor dimension,

e categorical variables for demographic metadata such as gender, race, ethnicity, diet, and

cuisine background,

e a sequential numerical variable representing the participant’s age.

Table V shows all the attribute types and data characteristics.

The dataset is static, as all records come from a baseline collection of healthy individuals.
There are no temporal components, and items do not maintain explicit relational links to one
another. Each rating event remains independent, resulting in a flat, multidimensional structure

consistent with the abstraction described for multivariate tabular datasets in the workbook.



86

Attribute Attribute Type Attribute Nature | Range
Flavor Dimension | Ordinal (Ordered) Sequential [0, 5]
Age Quantitative (Ordered) | Sequential [18, 99]
Gender Categorical Nominal

Ethnicity Categorical Nominal

Race Categorical Nominal

Nationality Categorical Nominal

Diet Categorical Nominal

Regional Cuisine | Categorical Nominal

TABLE V: Attribute types and data characteristics.

Taxonomy 2: Spatial vs. Abstract. The dataset is entirely abstract, with no inherent
spatial or geographic embedding. Sensory dimensions represent perceptual attributes rather
than physical coordinates, and foods or users do not possess spatial relationships. As a conse-
quence, visualization techniques must operate on abstract attribute spaces rather than spatial
layouts.

Taxonomy 3: Dimensionality and Attribute Count. The dataset is multivariate and
heterogeneous, combining ten sensory dimensions with multiple demographic attributes. All

foods share the same sensory schema, forming an ensemble of comparable multivariate profiles.
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The data contain no temporal component, and the attribute structure requires visualizations
capable of handling high-dimensional, non-spatial information. In summary, the dataset can be
defined as an abstract, multivariate, multidimensional table of items with sequential attribute

values.

5.3.2 Task Abstraction

The analytical operations supported by the visualization tool can be described through a
task abstraction process that identifies the types of questions users must answer and the actions
they must perform on the data. Following Munzner’s framework, tasks are characterized by
their intent (such as querying, comparing, or summarizing) and by the target attributes or
items they operate on. These abstractions clarify how the visualization layer should structure
information and which views or interactions are required to support effective analysis.

Query. Query tasks focus on identifying specific properties or extracting direct summaries

from the data. They operate primarily on individual attributes or subsets.

Flavor profile: Inspect the complete multivariate profile of a food (Action: Query —

Summarize) (Target: Attributes — Distribution, All Data — Trends)

Dominant dimension: Identify the strongest perceptual attribute(s) of a food (Action:

Query — Identify) (Target: Attributes — Extremes)

Outliers: Detect anomalous ratings at food or dimension level (Action: Query — Identify)

(Target: All Data — Outliers)

Compare dimension: Compare the intensity of a single dimension across groups (Action:

Query — Compare) (Target: Attributes—One)
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Search. Search tasks involve locating foods or subsets that satisfy predefined criteria. They

rely on sorting, filtering and browsing operations.

e Sort: Order foods by number of ratings or accuracy (Action: Search — Lookup) (Target:

Attributes — Many)

e Grouping: Organize foods by dominant dimension(s) (Action: Search — Browse) (Target:

Attributes — Many — Similarity)

e Sort dimension: Rank foods by intensity and variability within a dimension (Action:

Search — Locate) (Target: Attributes — Extremes)

Analyze. Analyze tasks involve discovering patterns, relationships, or differences across

groups. They operate on aggregated or multi-attribute structures.

e Accuracy: Assess the reliability of ratings for a food (Action: Analyze — Derive) (Target:

Attributes — Many)

e Compare profile: Compare a food’s multivariate profile between groups and baseline

(Action: Analyze — Discover) (Target: Attributes — Many)

e Population: Examine demographic composition and its effect on aggregated patterns

(Action: Analyze — Discover) (Target: All Data — Trends, Attributes — Distributions)

These task types map naturally to the hierarchical structure of analytical activities involved

in exploring the dataset. The process includes:
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e Exploring the overall flavor landscape: inspecting global distributions, understand-

ing population composition, and gaining an overview of how flavors are perceived. This
includes activities such as examining aggregated multivariate profiles, exploring how indi-
vidual dimensions vary across the population, and understanding large-scale demographic

trends.

Organizing and structuring food profiles: sorting and grouping foods based on per-
ceptual attributes, dominant dimensions, or consistency metrics. This covers operations
such as ordering foods by statistical properties, categorizing them by their prevailing

sensory characteristics, and identifying groups of items with similar perceptual patterns.

Analyzing individual food profiles: examining multivariate ratings, variability, dis-
tribution shapes, and potential outliers for a specific item. This involves evaluating the
reliability of ratings, inspecting dimension-level distributions, and detecting anomalous

or inconsistent evaluations.

Comparing demographic groups: evaluating shifts in perception across subsets and
determining how subgroup characteristics influence flavor evaluations. This includes com-
paring multivariate profiles between groups and baseline, or assessing how a single flavor

dimension differs across demographic categories.

Visual Encoding

The visualization layer of the FlavorCharter system relies on a coordinated set of visual en-

codings designed to represent multivariate sensory data, population-level patterns, and group-
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specific differences in a clear and interpretable manner. Since the dataset is abstract, heteroge-
neous, and intrinsically multivariate, the visual design must support both high-level exploration
and detailed comparison across foods, dimensions, and demographic groups.

The encodings adopted in this system follow a mapping between data attributes and visual
channels that aligns with the analytical tasks identified in the previous section. Each view is
tailored to a specific subset of these tasks, such as summarizing a food’s flavor profile, inspecting
variability, detecting outliers, or comparing demographic groups.

The following modules describe the visual encodings used in the system, outlining the ratio-
nale behind each representation and clarifying how it supports the analytical goals of clinicians

and researchers.

5.4.1 Radar Chart

The radar chart (Figure 13) provides a compact representation of a food’s flavor profile
by arranging sensory dimensions along fixed angular axes and encoding perceived intensity
through radial distance. Its purpose is to offer an immediate, shape-based overview of how a
food is perceived across all taste attributes, enabling users to recognize dominant notes, weak
dimensions, and the overall balance of the profile at a glance.

The encoding relies on a circular layout in which each sensory dimension is assigned a
constant angular position (mark: wedge), while intensity is mapped to radial extent (channel:
position). Color is used only as a categorical differentiator between dimensions, and no area is
computed or interpreted, avoiding misleading associations between surface size and magnitude.

Unlike traditional spider or polygonal radar charts, where connected lines can imply correlations
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between adjacent attributes, this design uses independent wedges to emphasize that the flavor
dimensions in this dataset are not inherently ordered and bear no topological relationship to
one another.

The data displayed in this encoding consist of the aggregated mean intensity ratings for each
of the ten sensory dimensions. Each wedge corresponds to the average value computed across
all participants who evaluated the food, rounded up to match the simplified representation used
in the application interface.

Analytically, this visualization supports early-stage exploration and inspection tasks, in-
cluding Query — Identify for recognizing dominant attributes and Search — Locate for quickly
scanning the relative strengths of multiple taste dimensions. Its limited quantitative precision
is compensated by its high perceptual salience, making it effective for rapid comparisons across
many foods.

The choice of this encoding is motivated by the need for an intuitive, compact, and multivari-
ate representation that remains visually interpretable at small sizes. Alternative visualizations
such as bar charts or line-based spider plots either require more space or risk implying false
correlations among dimensions. The independent wedge design provides a clear overview of
intensity distributions without suggesting structural relationships not present in the data.

Within the system, this radar chart is used exclusively in the food overview panel, where
each food is represented by a small icon summarizing its perceptual signature. To maximize

recognizability at this reduced scale, the encoding is simplified: axis labels and gridlines are
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omitted, preserving only the wedge geometry and color coding. This minimalist variant ensures

that flavor profiles remain legible even when many food items are displayed simultaneously.
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Figure 13: Radar chart encoding.

5.4.2 Distribution Radar Chart

The distribution radar chart (Figure 14) extends the basic radial representation to convey

not only the average flavor profile of a food but also its underlying variability and the presence

of outliers. Its purpose is to provide a more complete characterization of how participants

perceive each sensory dimension, enabling clinicians and researchers to understand the stability,

consensus, and dispersion of ratings beyond the aggregated mean.
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The visual encoding combines multiple channels: angular position encodes the sensory di-
mension, radial position encodes rating magnitude, and shaded bands represent the distribution
of observed values across participants. The outer line represents the aggregated mean profile.
Individual outliers, ratings that deviate substantially from the majority, are drawn as distinct
marks, emphasizing extreme or inconsistent evaluations that may reflect unusual perceptual
responses.

The data feeding this encoding include, for each sensory dimension, the mean rating, the
full distribution of observed values, and the set of outlier ratings, defined as values lying more
than two standard deviations from the mean. This threshold ensures that only substantial
deviations are marked visually in the chart.

From an analytical perspective, the distribution radar chart supports tasks such as Query — Sum-
marize by presenting the multivariate pattern of intensity and variability, and Query — Identify
by highlighting anomalous or extreme values. It also aids Analyze — Discover when users in-
terpret variability patterns to assess the reliability of perception across the population.

The choice of this encoding stems from the need to represent multivariate distributions in a
compact, holistic view. Alternatives such as per-dimension histograms or small multiples would
require substantially more space and reduce the ability to perceive cross-dimensional patterns.
The radial layout maintains comparability across dimensions while enabling the integration of
variability and outlier information in a single visual form.

Within the system, the distribution radar chart is used in the food detail panel to provide

a comprehensive representation of how a selected food is perceived. It serves as the detailed
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counterpart to the simplified radar glyphs shown in the food list, offering a richer depiction.

The inclusion of outliers makes this view particularly relevant when assessing the consistency

of ratings and identifying potential measurement anomalies.
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Figure 14: The two views of the distribution radar chart.

5.4.3 Z-Score Radar Chart

The Z-Score Radar Chart (Figure 15) provides a comparative view of how a demographic

group’s mean perceptions differ from the baseline population across all sensory dimensions [31].

Its purpose is to reveal systematic upward or downward shifts in flavor intensity, enabling

clinicians to identify whether a specific group tends to over-perceive or under-perceive certain

tastes relative to the reference population.
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The encoding places each sensory dimension on a fixed angular axis, as in a standard
radar chart, but the radial position does not represent raw intensity. Instead, it encodes the
standardized deviation from the baseline. For each dimension, a point is positioned along the
axis according to how the group’s mean rating compares to the baseline mean: points lie on
a central baseline ring when there is no difference, move outward for positive deviations, and
shift inward for negative deviations. Color serves as an additional channel, with red indicating
dimensions where the group scores above the baseline and blue indicating lower perception.
The points are connected with a smooth closed curve, and the regions where the curve lies
consistently above or below the baseline are filled in red or blue respectively, highlighting
contiguous ranges of deviation.

The data required for this encoding include, for each sensory dimension, the mean rating
of the baseline population, the mean rating of the selected group, and the baseline standard

deviation. Deviations are computed as standardized differences:

7. - compareMean|[d] — baselineMean|[d]
4 baselineStDev|[d] ’

which are then normalized into discrete radial levels used to build the glyph. This produces a
compact representation of relative differences rather than absolute intensities.

From the perspective of task abstraction, this visualization supports Query — Compare
and Analyze — Discover, enabling users to inspect group-to-baseline deviations across multiple

dimensions simultaneously and to identify patterns of over-perception or under-perception.
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The glyph makes directional differences salient and facilitates reasoning about demographic
contrasts at the multivariate level.

The choice of this encoding is motivated by the need to represent deviations in a way
that is both holistic and directionally interpretable. Traditional radar charts capture absolute
profiles but do not convey whether a group differs meaningfully from a reference. An alternative
approach would be to overlay two radar charts—one for the baseline and one for the selected
group—but such a design quickly becomes visually cluttered, makes overlapping regions difficult
to interpret, and shifts the focus toward absolute values rather than differences. Since the
analytical interest lies in how the group deviates from the baseline, not in the exact magnitude of
each raw intensity, the Z-Score Radar Chart provides a more effective and concise representation.
It preserves the compactness of the radial layout while repurposing it to encode relative rather
than absolute values, making deviations immediately visible without requiring users to compare
two overlaid shapes.

Within the system, this visualization is used in two complementary contexts. At the food
level, it appears in the group comparison panel, where it provides an immediate and inter-
pretable depiction of how a selected demographic group deviates from the baseline profile for
the currently selected item. At the dimension level, the same encoding is used to summarize

how the group differs from the baseline across all foods. In this case, the standardized deviation
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is first computed separately for each food evaluated by the group, using the food-level formula

already introduced,

(food) _ CompafeMean((ijOd) — baselineMean&f ood)
¢ baselineStDevElf ood) ’

and these food-specific deviations are then aggregated across all foods in which the group has

provided ratings. The global deviation for each dimension is obtained by averaging these values,
LA (oody)
lobal 00
Z[(igoa) - fZZd i
d s

yielding a population-wide deviation profile that reflects how the selected demographic group
differs from the baseline in its overall perception of each sensory attribute. In both settings,
the chart complements the heat map representation by providing a shape-based summary of

deviations and by making contiguous regions of over- or under-perception visually salient.
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Figure 15: Z-score radar chart encoding.

5.4.4 Heat Map

The heat map (Figure 16) encodes deviations between a selected demographic group and
the baseline population across sensory dimensions using a tabular, color-based representation.
Its purpose is to provide a compact and immediately interpretable view of how perceptions
differ across taste attributes, enabling users to identify dimension-level patterns and contrasts
between demographic groups.

The encoding uses a matrix layout in which rows represent demographic groups and columns
represent sensory dimensions. Each cell is filled with a color that reflects the direction and mag-
nitude of deviation: warmer hues indicate that the group perceives the dimension more intensely

than the baseline, while cooler hues indicate lower perception. Color hue and saturation there-
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fore serve as the primary visual channels, while the spatial organization of rows and columns
supports structured, cross-dimensional comparison.

The data used in this encoding are derived from the same standardized deviation logic
employed in the Z-Score Radar Chart. At the food level, deviations reflect how a group’s
perception of a specific item differs from the baseline across each dimension. At the dimension
level, the same per-food deviations are aggregated across all foods evaluated by the group,
producing a population-wide summary of perceptual shifts. Using a consistent deviation metric
across both contexts ensures interpretive continuity between the two views.

From a task abstraction perspective, the heat map supports Query — Compare and An-
alyze — Discover by enabling users to examine deviation patterns across multiple dimensions
simultaneously and to identify systematic perceptual differences across demographic groups. Its
structured grid layout facilitates efficient scanning along both dimensions and group categories.

The choice of this encoding is motivated primarily by its ability to provide an immediate
overview of deviation patterns across all sensory dimensions, allowing users to quickly iden-
tify where perceptual differences between demographic groups are concentrated. This broad,
dimension-by-dimension summary acts as an entry point for more detailed inspection, which is
then supported by the Z-Score Radar Chart. While the radial encoding offers a holistic, shape-
based representation of deviations, it is less effective for precise per-dimension analysis. The
heat map complements it by presenting a dense yet readable grid of localized deviations, re-

ducing cognitive load when scanning for specific attributes. Alternative solutions such as small
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multiples or parallel coordinates were considered, but proved less suitable for the fine-grained
comparisons required by clinical users.

Within the system, the heat map appears in two locations. At the food level, it is used
in the group comparison panel to show how the selected group differs from the baseline for
the current item. At the dimension level, it aggregates deviations across all foods, offering a
broader view of how the group’s overall perception deviates from the baseline across the full
set of sensory dimensions. In both contexts, the heat map operates in tandem with the Z-Score

Radar Chart to support both detailed and holistic comparison tasks.
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Figure 16: Heatmap encoding.

5.4.5 Scatter Plot

The scatter plot (Figure 17, Figure 18) addresses the need to evaluate pairwise relationships

between quantitative attributes that characterize rating quality and dimensional stability. Its
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purpose in the FlavorCharter system is to reveal general trends in rating consistency and
to identify foods that best represent a specific sensory dimension by combining high average
intensity with low variability.

The encoding uses a set of points positioned along two orthogonal axes, mapping each item
to a pair of quantitative attributes. No additional channels are introduced, allowing users to
focus purely on spatial relationships such as clustering, separation, and distance from the origin.
Depending on the analytical context, the scatter plot displays either agreement versus number
of ratings or mean versus standard deviation for a selected sensory dimension.

The underlying data consist of aggregated food-level statistics. For agreement analysis,
each point represents a food characterised by its number of collected ratings and its agreement
score, which reflects how consistently participants evaluated it. For dimension-level analysis,
each point encodes the mean intensity and standard deviation of a specific dimension across
foods, enabling assessment of both central tendency and variability.

From the perspective of task abstraction, the scatter plot supports Query — Identify by
making extreme or distinctive items immediately visible, and Analyze — Discover by enabling
users to detect overall trends in consistency or stability. Its two-axis layout facilitates recogni-
tion of foods that deviate substantially from expected patterns or fall into desirable regions of
high intensity and low variance.

The choice of this visualization is motivated by its effectiveness in capturing second-order
relationships that cannot be inferred from univariate summaries. Alternative encodings such as

bar charts or aggregated glyphs would obscure the joint behaviour of the attributes and limit
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the ability to reason about generalization trends or dimensional representativeness. The scatter
plot, by contrast, preserves the structure of the joint distribution while remaining lightweight
and easy to interpret.

Within the system, a single scatter plot component adapts its displayed attributes depending
on whether a sensory dimension is selected. In the default overview, it visualizes the relationship
between agreement and number of ratings to indicate whether additional sampling improves
consensus or increases dispersion. When a dimension is selected, the plot automatically switches
to mapping mean intensity against standard deviation, enabling users to identify foods that best

represent that attribute through high intensity and low variability.
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Figure 17: Scatter plot agreement/number of ratings.
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Figure 18: Scatter plot mean/standard deviation.

5.4.6 Pie Ring

The pie ring (Figure 19) provides a compact summary of demographic composition, help-
ing clinicians interpret flavor—perception patterns in relation to how strongly each subgroup
is represented in the dataset. Its purpose is not to analyze sensory ratings directly but to
contextualize comparisons by showing whether observed deviations arise from well-sampled or
sparsely represented groups.

The encoding uses a circular ring divided into colored angular sectors. Each arc corresponds
to a demographic subgroup (mark), and its angle encodes the subgroup’s percentage within
the selected population (channel). Color encodes subgroup identity, while the hollow center
improves readability at small sizes. Hover interactions reveal absolute counts and percentages.

The input data consist exclusively of aggregated demographic frequencies, either:

e globally across all participants, or
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e restricted to users who rated the selected food.

From a task—abstraction perspective, the Pie Ring supports Query — Summarize by re-
vealing distribution proportions, and Analyze — Discover by exposing demographic imbalance
that may influence perceptual differences.

The choice of this encoding is motivated by its low cognitive load, strong part—to—whole
semantics, and compact spatial footprint. Alternative representations such as bar charts offer
higher precision but require more space and visual attention. For quick demographic awareness,
the ring form provides intuitive interpretability without burdening the clinician.

Within the system, Pie Rings appear in two locations: the food—specific Pie Ring, showing
the composition of users who rated the selected food, and the population—level Pie Ring, which

contextualizes global Z—Score and heatmap analyses.
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Figure 19: The two views of the pie ring encoding.

5.4.7 Agreement Ring

The Agreement Ring (Figure 20) provides a compact visual summary of how consistently
a food is perceived across participants. Its purpose is to indicate, at a glance, whether the
underlying sensory evaluations are reliable enough to support meaningful comparison or whether
substantial variability is present in the data.

The encoding consists of a circular ring divided into two angular segments: one segment
represents the proportion of agreement and is colored according to its reliability level, while the

remaining segment is rendered in a neutral grey to indicate the distance from full consensus.
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The visualization uses angle to encode the agreement percentage, color to convey qualitative
thresholds, and central text to report both the agreement value and the number of ratings
available for the food. Color serves as a strong perceptual cue: green marks high reliability
(75% or higher), orange indicates moderate agreement(50% or higher), and red signals low
consistency among participants.

The agreement score displayed in the ring is derived directly from the variability of the
ratings. For each sensory dimension d, agreement is computed from its standard deviation g4

using:
~ 100
140y

d

The overall food-level agreement is then obtained by averaging the ten dimension-specific scores:

10

1 100
Afood = — .
food 10 ; 1+ 0y

This final value, shown in the ring alongside the total number of ratings, provides a concise
indicator of the stability and reliability of the food’s multivariate sensory profile.

From an analytical perspective, the Agreement Ring supports rapid summarization and
helps clinicians determine whether a food’s profile is sufficiently stable before examining more
detailed.

The design was chosen for its compactness, perceptual clarity, and visual harmony with the

radial encodings used elsewhere in the interface.
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Within the system, the Agreement Ring is located in the upper area of the right panel,
next to the distribution radar chart and the scatter plot. It serves as an immediate reliability
indicator that contextualizes the food’s sensory profile and informs interpretation of subsequent

analytical views.

58% agreement
based on 22 ratings

Figure 20: Agreement ring encoding.

5.5 Interaction Design

The interaction design of the visualization interface enables fluid exploration, comparison,

and interpretation of multidimensional flavor—perception data. The system is organized as a
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coordinated collection of linked visual views, where user actions performed on one component

propagate across the entire layout, ensuring a coherent analytical workflow.

5.5.1 Sorting and Grouping

The food list supports structured navigation through:

e Sorting options, allowing items to be ranked by agreement score or number of ratings;

e a dominant—dimension filter, restricting the list to foods whose strongest perceptual

attribute corresponds to a selected flavor dimension (e.g., Sweet, Salty, Bitter).

5.5.2 Demographic Filters

Demographic filtering operates through two distinct controls that affect the interface in
different ways.

1. Grouping variable. The first selector determines how the population is partitioned
(e.g., by gender, age, nationality, diet). Changing this variable restructures all population—level
views: the heatmap rows are regenerated according to the chosen demographic attribute, and
the population distribution charts are re-computed using the corresponding groups.

2. Group value. Once a grouping variable is selected, the second selector chooses a specific
subgroup (e.g., male within gender, or american within nationality). This value determines
which subgroup is highlighted in the distribution charts and is used to compute subgroup-

specific z-scores and mean for the comparative views (Z-Score Radar Charts and Heat Maps).
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5.5.3 Comparison Views

The interface presents a coordinated set of side-by-side comparison views designed to con-
trast both food-specific and population-level trends. For each selected food, the system displays

three complementary components:

e Heat Map: compares the overall population averages with the mean profile of each
demographic group, allowing users to assess how a specific subgroup deviates from the

normative baseline.

e Z—Score View: highlights normalized differences for the selected demographic subgroup,

emphasizing which sensory dimensions are most atypical relative to the global mean.

e Population Distribution: shows how the selected subgroup is represented within the

entire participant pool, grounding the comparison in demographic context.

5.5.4 Details on Demand

Hover-based tooltips provide contextual, fine-grained information without adding visual
clutter to the interface. Each visualization exposes different details depending on its analytical

role:

e Distribution Radar Chart: tooltips display the full empirical distribution for each

flavor dimension, including counts per rating level and the computed mean.

e Heat Maps (food—specific and dimension—level): hovering reveals the exact z—score

associated with each cell, enabling immediate interpretation of group—level deviations.
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e Population Pie Charts: tooltips show both the absolute number of users in the selected

demographic group and their percentage relative to the population.
e Mean—Stdev Scatter Plot: hovering a point displays the food name along with its

precise mean and standard deviation values.

5.5.5 Multiple Coordinated Views

The visualization interface operates as a system of multiple coordinated views, in which all
components share the same global application state. Any interaction performed by the user,
selecting a food, changing a demographic grouping, choosing a specific subgroup, or activating
a flavor dimension—immediately propagates across all visual modules.

Food selection. Choosing a food from the list updates all food—specific views: the dis-
tribution radar shows its sensory profile, the mean-stdev plot highlights it, the heatmap and
-Score Radar Charts recompute group differences for that item, and the population chart shows
how the selected demographic group is distributed among those who rated that food.

Demographic grouping variable. When the user selects a demographic category (e.g.,
gender, age, nationality), all comparison views reorganize according to that grouping: heatmaps
reorder their rows, -Score Radar Charts show group—level deviations, and population distribu-
tions update to reflect the selected variable.

Demographic group value. Selecting a specific subgroup (e.g., “Female”, “25-34”, “Ital-
ian”) controls which group is used for Z-Score comparison. The interface highlights this sub-
group in the population chart and updates both Heat Maps and Z-Score Radar Charts to display

differences between the global baseline and the chosen demographic segment.
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Flavor dimension switching. Activating a flavor dimension changes the analytical con-
text of several views. The scatter plot transitions from the global agreement vs. number of
ratings overview to a mean vs. standard deviation layout, showing only foods associated with
that dimension. Simultaneously, radar charts, heatmaps, and z—glyphs update to reflect the

chosen attribute, allowing focused exploration of dimension—specific perceptual patterns.

5.6 System Architecture

The visualization system adopts a lightweight client—server architecture that enables real-
time exploration of the multidimensional flavor—perception dataset gathered through the mobile
application (Figure 21). Its design separates analytical computation from interactive rendering,
ensuring both performance and clarity. The backend is implemented as a Node.js server using
Express and the Firebase Admin SDK. The frontend is a React single—page application that
uses D3.js to render coordinated visualizations. Communication between the two components
occurs through a set of lightweight HT'TP API endpoints, each providing the aggregated metrics

and demographic summaries required by the visualization system.
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The visualization system is implemented as a two—layer architecture composed of a React

frontend and a Node.js backend.

The client interface is built using:

React for component—based UI design and state management.

D3.js for all custom visualizations, including radar charts, heatmaps, Z—Score, pie charts,

and scatter plots.

Axios for HTTP communication with the backend API.

React Bootstrap for lightweight layout utilities and responsive grid structure.

The analytical backend is implemented using:

e Node.js + Express to expose a lightweight REST API consumed by the frontend.
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e Firebase Admin SDK for secure server—side access to Firestore.

e In—memory caching of all user data to avoid repeated Firestore reads and ensure fast

computation of group statistics.

5.6.2 Data Source and Memory Caching

All backend computations rely on the data stored in Firebase Firestore, which serves as the
authoritative source for both user demographics and sensory ratings. Access to Firestore occurs
through the Firebase Admin SDK, authenticated via a service account key stored securely in
the backend environment.

To ensure consistency across requests, the backend performs an initial synchronization step
on startup: it retrieves all documents from the users collection, loads each user’s demographic
profile, and aggregates all rating records found in the corresponding radarData subcollection.
As part of this process, personally identifiable fields such as name, surname, and email are ex-
plicitly removed before caching, ensuring that the backend operates exclusively on de—identified
data in accordance with IRB privacy requirements.

The resulting dataset is stored in memory as a unified structure mapping each user ID to
its demographics and complete rating history. Once this initial synchronization is complete,
the backend does not continuously query Firestore; instead, all analytical endpoints operate
directly on the cached dataset.

This in—memory caching strategy provides two key advantages:

e it eliminates redundant Firestore reads during interactive use, significantly reducing la-

tency and database load;
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e it ensures that all statistical summaries, comparisons, and group—level computations are

derived from a stable and coherent snapshot of the dataset.

5.6.3 Data Processing

All analytical computations required by the visualization layer are performed server—side
by the Node.js backend. Rather than storing pre-computed summaries, the system derives all
statistical measures on demand from the in—-memory dataset populated during the synchroniza-
tion stage. This approach ensures that every request reflects a coherent snapshot of the data
while remaining computationally efficient.

The backend exposes a set of processing routines that implement the core analytical logic:

e computeAveragesAndStdevs Computes the mean and population standard deviation for
each flavor dimension. Values are aggregated over all ratings in the input set, and the

output includes one pair (mean, stdev) per dimension.

e computeDistribution Computes the frequency of each rating value (0-5) for every flavor
dimension and derives percentage distributions and an agreement score based on the
dimension’s variability. The output includes counts, percentages, and agreement metrics

for each dimension.

e detectOutliers Identifies outlier ratings using a fixed—threshold rule based on standard

deviation. A rating is marked as an outlier for a dimension whenever

v —p|>k-o
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where k£ = 2 in the deployed system. Output is organized per dimension and lists all

values exceeding the threshold.

computeCharacterization Determines which dimensions most characterize a food by

evaluating both intensity and contrast. For each dimension d, the function computes:

Kd
140y

scoreg =

and the contrast with the mean of the other dimensions. The final score is:

FinalScorey = scoreg X (uqg — fing)

A dimension is marked as characterizing if FinalScoreg > 2.0. The function returns both

per—dimension scores and the ranked list of characterizing dimensions.

These computations collectively enable all visual encodings used in the frontend

API Specifications

The visualization frontend communicates with the backend through a set of lightweight

REST endpoints. Each endpoint performs a specific analytical operation over the in—memory

dataset and returns a JSON response optimized for visual rendering.

e /api/summary/:foodName Returns all computed statistics for a specific food: means,

standard deviations, distributions, agreement scores, and outliers.

— Query Parameters: filterKey, filterValue (optional demographic filters)
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— Response:{ food, count, averages, stdevs, distribution, agreementScoreAvg,

outliers }

— Access: Internal.

e /api/stats Returns global statistics about the dataset.

— Response: { totalUsers, totalRatings, distinctFoods }

— Access: Internal.

e /api/group-distribution Returns demographic distributions globally or for a specific

food.

— Query Parameters: foodName (optional)
— Response: { demographicKey: { group: {count, percent} } }

— Access: Internal.

e /api/foodList Returns the complete list of foods with aggregated statistics.

— Response: { food, count, averages, agreementScoreAvg, dominantDimensions

}

— Access: Internal.

e /api/group-means/:foodName Computes per—group mean values for a selected de-

mographic variable.

— Query Parameters: filterKey (e.g., gender, nationality, diet, age)
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— Response: { groupValue: {dimension: mean} }

— Access: Internal.

e /api/group-dimension-zscores Computes demographic Z—Scores by first computing
food-specific standardized deviations relative to each food’s baseline, and then aggregating
these per-food deviations into a global dimension-level deviation profile for the selected

demographic group.

— Query Parameters: filterKey
— Response: { groupValue: {dimension: zScore} }

— Access: Internal.

5.6.5 Frontend Layout and Components

The frontend (Figure 22) is organized into a structured three—column layout that distributes
the analytical workspace into four functional regions: a navigation panel on the left and three
stacked analytical areas on the right (upper, central, and lower). Each region hosts a co-
ordinated set of React components whose purpose is to support navigation, food-level in-
spection, demographic comparison, and population—level analysis. Each of the visual compo-
nents receives updated data via props derived from the global application state maintained in
FlavorAnalyzer. jsx.

Left Panel — Food Navigation. This region provides access to the full food catalogue
and contains all controls for sorting, grouping, and searching. At the top, the interface includes

a sorting selector (agreement or number of ratings), a search bar, and a dominant—-dimension
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filter. Below these controls, the FoodList. jsx component displays foods as a responsive grid
of tiles; each tile updates its appearance when selected and drives the content of all views in
the right panel. This panel acts as the primary navigation mechanism of the interface.

Right Panel (Upper Area) — Food Profile. This region shows the population—level
sensory profile of the selected food. It combines three components: OutlierRadarChart.jsx
showing means, distributions, and optional outliers enabled by a checkbox; PlotChart. jsx that
positions the food relative to others using either agreement—based or dimension—specific metrics
depending on the current context; and AgreementRing.jsx summarizing overall agreement
and rating count. Together, these views establish a detailed overview of the food prior to
demographic comparison.

Right Panel (Central Area) — Group Comparison. Below the profile area, a dedi-
cated control bar allows users to choose a demographic grouping variable (e.g. gender, age, na-
tionality) and a corresponding subgroup. The selected values drive a coordinated set of compar-
ison views displayed side by side. This block includes: ZGlyph. jsx showing subgroup-specific
standardized differences; food—specific HeatMap. jsx comparing group means with population
averages; and PieChart. jsx illustrating how the selected subgroup is represented among par-
ticipants who rated the chosen food. This region supports food—level demographic inspection.

Right Panel (Lower Area) — Population Trends. The bottom portion extends
the analysis from the selected food to global trends across all foods. This block includes
ZGlyph2. jsx visualizing dimension-level Z—Scores for the chosen demographic subgroup, HeatMap2. jsx

showing group means across all foods for the current grouping variable, and the second PieChart. jsx
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representing how the demographic groups are distributed in the overall population. A distinc-
tion exists between the components ZGlyph and ZGlyph2, and similarly between HeatMap and
HeatMap2. The food-specific components (ZGlyph, HeatMap) receive raw population means
and subgroup means directly from the backend and compute Z—Scores internally, since the
baseline depends on the selected food. In contrast, the population—level components (ZGlyph2,
HeatMap2) operate on Z—Scores that are precomputed by the backend across all foods. Because
these Z—Scores rely on aggregated statistics derived from the entire dataset, they cannot be
recomputed locally within the components; instead, they must be provided explicitly as input.
This separation ensures that food—specific and population—level analyses remain consistent with

their respective statistical baselines.
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The data flow of the visualization interface follows a unidirectional, state—driven architec-

ture in which all information originates from the analytical backend and is retrieved through a

fixed set of REST API endpoints.

The frontend coordinates when each endpoint is called

based on changes in the global application state (selectedFood, groupType, groupValue,

dominantDimension).

On startup, the client loads three global datasets through the following APT calls:
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e GET /api/foodList/ retrieves the full food list with agreement scores and rating counts;

these data populate the FoodList component and the PlotChart overview.

e GET /api/group-distribution/ retrieves the population-level demographic distribution

(across all foods); used by the population—level PieChart.

e GET /api/stats/ retrieves aggregate statistics such as total users and total ratings; dis-

played in the footer of the left panel.

These datasets remain constant during the entire session and support sorting, filtering, and
high—level demographic analysis.

Food selection. When the user selects a food, two food—specific endpoints are triggered:

e GET /api/summary/{foodName}/ returns the complete statistical summary of the food,
including means, standard deviations, distribution profiles, and outliers; this dataset feeds

OutlierRadarChart, PlotChart, and the AgreementRing.

e GET /api/group-distribution/?foodName={foodName} returns the demographic break-

down of users who rated that food; used by the food—specific PieChart.

Changing the demographic grouping variable (groupType). Selecting a new demo-

graphic axis (e.g. gender, nationality, age) triggers two additional backend requests:

e GET /api/group-means/{foodName}/?filterKey={groupType} returns the mean values
of the selected food for every subgroup belonging to the chosen demographic axis; passed

to the food—specific HeatMap and ZGlyph.
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e GET /api/group-dimension-zscores/?filterKey={groupType} returns dimension—-wise
Z—Scores computed across all foods for each subgroup within the chosen axis; used by the

population-level ZGlyph2 and the population HeatMap2.

These endpoints reorganize comparison views, update the food—specific heatmap, and re-
generate the dimension—level heatmap and Z—Glyphs.

Changing the demographic subgroup (groupValue). Selecting a specific subgroup
(e.g. “female”, “25-34”, “italian”) does not trigger new backend calls. Instead, the frontend

extracts the relevant subgroup values from the previously retrieved datasets:

e the subgroup row in the food-specific group means (for HeatMap and ZGlyph),

e the subgroup row in the Z—Scores returned by group-dimension-zscores (for population

ZGlyph2 and HeatMap2),

e the subgroup slice in the population distribution data (for PieChart).

Flavor dimension switching. Changing the active flavor dimension affects only the local
state. It reorganizes the PlotChart into its mean—stdev mode and highlights relevant foods,
but does not trigger any backend request. Radar charts, heatmaps and Z—Glyphs also update

locally to emphasize the selected dimension.
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React’s useEffect hooks ensure that each API is called strictly when its dependencies
change. All D3 visualizations receive updated information exclusively through props, maintain-

ing a stable unidirectional flow:

User Interaction — State Update — API Request — New Data — Visual Update.

5.7 Usage Scenarios

The visualization system is designed to support clinicians and researchers in interpreting
deviations from normative flavor perception. Because the mobile application collects detailed
sensory ratings from healthy individuals, the interface allows users to contrast a patient’s com-
plaint with population—level baselines, demographic subgroups, and dimension—specific trends.
The following usage scenarios illustrate how the system can be applied in clinical and research
contexts, highlighting its relevance for head and neck cancer care and sensory—function moni-
toring.

5.7.1 Scenario 1

Evaluating altered perception of a specific food after treatment. A head and neck
cancer clinician meets with a patient undergoing radiotherapy who reports that banana tastes
significantly less sweet than before treatment. To determine whether this change is clinically
meaningful, the clinician opens the system (Figure 23) and selects Strawberry from the food
list.

The interface immediately displays:
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e the healthy—population profile via the distribution radar chart,

e the mean—standard deviation position of banana among all foods,

e the group comparison views showing sweetness deviations across demographic groups.

The clinician filters the data by the patient’s demographic characteristics, setting nationality
to american. The heatmap and Z—Glyph show that healthy individuals in matching demograph-
ics consistently rate banana as above—average in sweetness.

Since the patient now reports abnormally low intensity relative to this normative pattern,
the clinician concludes that the alteration is likely treatment-related rather than a typical per-
ceptual variation. This supports clinical decision—making regarding taste—function monitoring

and rehabilitation planning.
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Assessing whether a patient’s sensory complaint reflects a demographic trend. A

nutrition specialist collaborating with an oncology rehabilitation team monitors a patient who

states: “Sweet foods taste flat; I barely perceive any sweetness anymore.” To determine whether

this reduced sensitivity is common within the patient’s dietary habits group, the clinician uses

the demographic filters in the interface (Figure 24).

She selects:

e Grouping variable: race,
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e Group value: hispanic or latino.

The system recomputes:

e population—level Z—scores across all foods for the selected subgroup,

e subgroup—specific mean profiles for each food,

e demographic distributions contextualizing representation.

The sweetness Z—scores demonstrate that this demographic group does not exhibit lower

sweetness perception than the global baseline. Thus, the clinician interprets the patient’s re-

duced perception as an individual impairment rather than a demographic trend. This distinction

guides further assessment of taste dysfunction and supports appropriate clinical follow—up.
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Selecting reference foods for sweetness assessment in clinical evaluations.
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A

clinician designing a simplified sensory test aims to select foods that strongly and consistently

express Sweetness for use in patient follow—up sessions.

Using the dominant-dimension filter in the tool (Figure 25), she restricts the food list to

items where sourness is the strongest perceptual attribute. The scatter plot transitions to a

mean—vs.—standard—deviation view specific to this dimension. From this plot, the clinician can

immediately identify which foods exhibit the highest mean sourness while maintaining a low
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standard deviation, ensuring that the selected reference items are both intense and consistent
across participants.

Foods such as Honey and Syrup emerge with consistently high sourness ratings and min-
imal inter—participant variance. These become suitable reference stimuli for clinical sensory

evaluations because they offer:

e clear sensory expectations,

e low variability in the healthy population,

e stable comparison points for assessing recovery.
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5.7.4 Clinical Relevance

These usage scenarios illustrate how the visualization system functions as a decision—support
layer. By grounding patient reports in quantitative population data, the interface helps clini-
cians distinguish between individual sensory changes and patterns that are typical for specific
demographic groups.

The system is particularly valuable in three recurring clinical situations:

e Evaluating perceived sensory loss: clinicians can compare a patient’s self-reported

alteration with the expected intensity ranges observed in healthy individuals.

e Understanding demographic context: demographic filters reveal whether a sensory
attribute is normally weaker or stronger within the patient’s group, preventing misinter-

pretation of naturally occurring variability.

e Selecting controlled stimuli: foods with high intensity and low variability in a specific

dimension can be identified as reliable reference items for monitoring sensory recovery.

5.8 Summary

The Visual Analysis System provides the interpretive layer of the FlavorCharter frame-
work, transforming raw sensory ratings and demographic metadata into clinically meaning-
ful multivariate patterns. This chapter presented the conceptual foundations of the system,
beginning with the activity—centered design approach and the analytical requirements that
emerged through collaboration with clinicians and researchers [27]. Through the application

of Munzner’s data and task abstraction framework, the visualization design was structured to
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support essential clinical activities such as comparing demographic subgroups, detecting devia-
tions from population baselines, and evaluating the stability of flavor perception across sensory
dimensions [29].

A coordinated set of visual encodings was introduced to represent the heterogeneous, mul-
tidimensional dataset in a structured and interpretable way. These encodings, combined with
the interaction mechanisms enable users to fluidly transition between food-level inspection,
dimension—specific exploration, demographic comparison, and population—level analysis.

The system architecture further supports these analytical workflows by separating compu-
tation from rendering. A Node.js backend performs all statistical processing on a synchronized,
de-identified, in-memory dataset, while a React/D3.js frontend provides responsive, coordi-
nated views driven by a unidirectional state model. Usage scenarios demonstrated how the
system supports real clinical reasoning, from evaluating potential treatment-related sensory
impairments to selecting reference foods for rehabilitation protocols.

The first functional prototype of the visualization system was reviewed by the clinical and
research team involved in the FlavorCharter project, including collaborators from the MD An-
derson Cancer Center and the University of Iowa. During these review sessions, clinicians
provided qualitative feedback that guided both the refinement of the interface and the priori-
tization of analytical features, ensuring that the final design aligns with real clinical reasoning

patterns and practical decision—support needs.



CHAPTER 6

DISCUSSION AND FUTURE WORK

The work presented in this thesis establishes the foundations of FlavorCharter, a unified
framework for quantifying and interpreting human flavor perception through a combination of
standardized descriptors, structured food-based stimuli, a mobile data-collection protocol, and
a visual analysis system. Across its components, the project addresses a long-standing gap in
both clinical and sensory research: the absence of a common, scalable, and data-driven language
and baseline data for describing taste and flavor.

First, this work defines a ten-dimensional flavor schema grounded in culinary literature,
biomedical research, and the clinical insights provided by head and neck cancer specialists.
The resulting structure captures not only the classical taste qualities but also aroma, texture,
and mouthfeel attributes that patients frequently report yet are rarely measured. Following
on the same clinician-informed perspective, the schema is paired with a carefully curated food
list designed to provide clear and controllable exemplars of each sensory dimension. Together
with the collection of demographic and dietary data, these components enable the study of
how factors such as age, nationality, and habitual diet shape flavor perception, supporting
population-level comparisons and the analysis of group-specific patterns.

Building on this foundation, the FlavorCharter mobile application operationalizes the proto-
col into a reproducible and population-scale data-collection pipeline. Through this system, we

collected preliminary real-world data from 55 users, yielding over 400 structured flavor ratings
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enriched with demographic and dietary information. The preliminary results demonstrate that
individuals can reliably provide multidimensional flavor descriptions when guided by a shared
vocabulary and consistent evaluation process.

Finally, the development of the visual analysis system illustrates how these data can be ana-
lyzed, compared, and contextualized through interactive multivariate representations, enabling
both population-level summaries and the identification of individual variability.

6.1 Clinical and Scientific Implications

The FlavorCharter framework presented in this thesis has implications that extend beyond
the immediate scope of data collection in healthy individuals. By defining a structured sensory
language, establishing the foundations for population-level baselines, and introducing tools for
visual analysis, this work lays the groundwork for future clinical, nutritional, and research

applications. The main implications can be summarized as follows:

e Improving Clinical Communication Through a Standardized Language. The
ten-dimensional schema provides a consistent vocabulary for describing flavor, addressing
the long-standing issue of vague and subjective patient descriptions. Even though cur-
rently tested only in healthy individuals, this standardized language has the potential to

support clearer, more actionable communication between patients and clinicians.

e Providing the Foundations for Baselines That Empower Clinicians to Interpret
Complaints. The preliminary dataset from healthy users establishes early population-
level baselines. These baselines, while not yet clinical references, demonstrate how struc-

tured sensory ratings may serve as quantitative anchors for interpreting deviations in
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future patient-reported symptoms. This shift from subjective complaints to dimension-
specific comparisons lays the foundation for more objective evaluations of taste dysfunc-

tion.

e Supporting Dietary and Sensory Interventions Through a Visual Interface.
The visual analysis interface offers practical and clinically relevant value by enabling the
exploration of how different foods and sensory dimensions behave across the healthy pop-
ulation. It allows researchers to identify which foods are most representative of specific
flavor attributes, to observe global trends in sensory ratings, and to examine how these
patterns vary across demographic groups. Although currently focused on healthy indi-
viduals, the visualization system establishes the analytical foundation required for later

clinical comparisons.

e Laying the Groundwork for Remote Monitoring and Longitudinal Assessment.
While the current implementation of the application focuses on healthy users, the under-
lying protocol, sensory schema, and visual tools provide a natural foundation for remote
and repeated assessments over time. Such an extension could allow researchers and clini-
cians to monitor individual sensory changes, compare them against baselines, and support

telehealth-oriented approaches to studying taste dysfunction and recovery.

6.2 Limitations

While the FlavorCharter framework demonstrates strong potential, the current stage of

development comes with several limitations that should be acknowledged. These limitations
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highlight the challenges inherent to large-scale sensory data collection and outline important

directions for future refinement.

e Sample Size and Population Bias. The preliminary dataset includes 55 healthy par-
ticipants, which limits the representativeness and generalizability of the current findings.
The planned expansion to approximately 2,000 users will be essential for constructing
robust population-level baselines and for capturing greater demographic and sensory di-
versity.

e Lack of Controlled Tasting Conditions. Because the study relies on participants
evaluating foods in their everyday environments, the tasting conditions cannot be stan-
dardized. Variability in factors such as ingredient brands, ripeness, temperature, portion
size, or context of consumption is inherent to the crowd-sourced nature of the protocol

and introduces noise into the data.

e No Validation Against Existing Clinical Tools. The current framework has not
yet been compared against established clinical instruments such as the MDASI-HN, taste
strips, or objective gustatory assessments. Future validation studies will be necessary to
assess the concordance between FlavorCharter ratings and existing clinical or psychophys-

ical benchmarks.

e No Longitudinal Component. The present deployment captures only single-time-
point evaluations from healthy individuals. The system does not yet track changes over
time, limiting its ability to model sensory trajectories or identify temporal patterns in

flavor perception.
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6.3 Future Work

Building on the foundations established by this work, several directions can further expand
the scope and impact of the FlavorCharter framework. These avenues aim to strengthen the
robustness of the baseline, extend the framework into clinical settings, and enable actionable,

patient-centered applications.

e Expand Baseline. Increasing the size and demographic diversity of the healthy popula-
tion dataset is essential for constructing robust, reliable baselines of flavor perception. A
larger cohort will improve statistical power, allow subgroup analyses, and better represent

natural variability across age, dietary patterns, and cultural backgrounds.

e Clinical Comparison and Longitudinal Tracking in HNC Patients. A natural
next step is to apply the framework to HNC patients, enabling the comparison of their
sensory profiles against the healthy baseline. Repeated assessments during and after radio-
therapy would allow researchers and clinicians to characterize the temporal trajectories of
taste dysfunction, quantify recovery patterns, and study how specific sensory dimensions

are affected over the course of treatment.

e Enhance the Visualization System. The visual analysis interface can be extended
to support clinical use by enabling the visualization of individual patient profiles and
their evolution over time. A redesigned system would allow clinicians to track changes in
flavor perception longitudinally, highlight deviations from healthy baselines, and identify

emerging trajectories of taste dysfunction throughout and after treatment.



136

e Develop Nutritional Guidelines and a Decision Support Tool. Using insights
from population-level data and longitudinal patient tracking, future work may develop
data-driven nutritional guidelines and a clinical decision support tool. Such a system
could help clinicians identify appropriate foods for sensory evaluations, guide dietary
strategies, and support personalized interventions aimed at improving quality of life for

patients experiencing taste dysfunction.



CHAPTER 7

CONCLUSION

Taste and flavor play a central role in quality of life, yet remain difficult to measure, describe,
and interpret in both clinical and everyday contexts. Current tools provide limited granularity,
and patients experiencing taste dysfunction often struggle to articulate their symptoms in ways
that clinicians can interpret and act upon. This thesis addressed these challenges by introduc-
ing a unified, data-driven framework for characterizing flavor perception through a structured
vocabulary, a reproducible tasting protocol, and a visual analysis system designed to interpret
population-level patterns.

This work makes several contributions. First, it defines a ten-dimensional schema of flavor
grounded in culinary and biomedical literature and informed by clinical experience in head
and neck cancer care. Second, it presents a smartphone-based protocol that enables scalable,
crowd-sourced data collection. Third, it reports the acquisition of real-world data from 55
healthy users and more than 400 flavor ratings, demonstrating the feasibility and consistency
of this approach. Finally, it introduces a visual analysis interface that organizes these data into
interpretable patterns and supports the exploration of trends, variability, and demographic
influences within the baseline population.

Taken together, these components establish the foundations of FlavorCharter as a stan-
dardized framework for describing flavor perception and for building quantitative baselines of

taste and flavor in healthy individuals. These baselines are a necessary prerequisite for studying
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deviation patterns in clinical populations and for interpreting patient complaints with greater
precision. The framework also opens opportunities for scientific inquiry into demographic ef-
fects, dietary influences, and population-level flavor trends.

Several limitations remain. The dataset is preliminary and limited in size, tasting conditions
are not controlled, and clinical validation against established instruments has not yet been
performed. The current deployment also lacks longitudinal tracking, preventing an analysis of
temporal changes in taste perception.

Looking ahead, future work will expand the baseline to a larger and more diverse popula-
tion, compare healthy patterns with those of head and neck cancer patients, and track flavor
perception longitudinally during radiotherapy to characterize trajectories of taste dysfunction.
The visual analysis system will be extended to support patient-focused use cases, including in-
dividual trend visualization and comparisons against healthy baselines. Finally, the framework
can evolve into a nutritional decision support tool that assists clinicians in selecting evalua-
tion foods, designing sensory interventions, and guiding dietary strategies to improve patient
well-being.

Taken together, these contributions establish FlavorCharter as the foundation for a stan-
dardized, data-driven understanding of flavor perception, one that can ultimately support im-
proved communication, better nutritional strategies, and clinically meaningful monitoring of

taste dysfunction in Head and Neck Cancer patients.
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