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Abstract

In this thesis the stability and control of HORUS2B, a winged hypersonic re-entry
vehicle, are analysed along a nominal trajectory reconstructed by digitalising a
reference mission profile. The full nonlinear 6-DOF model is linearised along the
trajectory and represented as a sequence of LTI systems; pitch equilibrium is
ensured by a trim law based on the body flap and, when required, symmetric
elevon deflection. Open-loop eigenvalue and eigenvector analysis is used to track
the evolution of the characteristic modes (short period, phugoid, lateral oscillation
and aperiodic modes) and shows good qualitative and quantitative agreement with
classical reference results.

A central, original contribution of this work is the application of literal (closed-
form) approximations to this type of hypersonic lifting vehicle and flight regime.
These approximations are used to interpret the parametric dependence of the
longitudinal and lateral–directional modes, and in particular to demonstrate that
the dynamics can be captured with good accuracy even when aerodynamic damping
derivatives are set to zero, so that the modal damping can be used to back
out the missing damping derivatives. For the lateral–directional dynamics, the
Bihrle–Weissman diagram is constructed by computing the dynamic directional
stability parameter and the LCDP along the trajectory. The resulting loci indicate
lateral instability over significant flight segments and are consistent with the need
to employ the reaction-control system (RCS) to initiate and complete the required
manoeuvres.

In the final part of the thesis a LQR attitude controller is designed along the
reference trajectory to stabilise the critical modes and improve lateral–directional
coordination. Although the controller is synthesised for attitude and angular-rate
regulation, its impact on the full 6-DOF motion is assessed through nonlinear
simulations. The resulting vehicle ground track shows that the controlled vehicle
reaches the vicinity of Kourou, meeting the end-of-mission objective of the adopted
reference scenario.
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Sommario

In questa tesi si studiano la stabilità e il controllo di HORUS2B, un velivolo alato
per il rientro ipersonico, lungo una traiettoria nominale ottenuta digitalizzando
(OCR) un profilo di missione di riferimento. Il modello non lineare completo a
sei gradi di libertà viene linearizzato lungo la traiettoria e descritto come una
sequenza di sistemi LTI; l’equilibrio in beccheggio è garantito da una legge di
trim che utilizza il body flap e, quando necessario (saturazione bodyflap), una
deflessione simmetrica degli elevon. L’analisi in open loop degli autovalori e degli
autovettori consente di seguire l’evoluzione dei modi caratteristici (short period,
phugoid, oscillazione laterale e modi aperiodici), mostrando una buona coerenza
qualitativa e quantitativa con i risultati classici disponibili in letteratura.

L’aspetto più originale del lavoro è l’impiego di approssimazioni letterali (in
forma chiusa) per descrivere il comportamento dinamico di un velivolo ipersonico
alare in questo specifico regime di volo. Tali approssimazioni vengono sfruttate per
interpretare la dipendenza parametrica dei modi longitudinali e latero–direzionali
e, in particolare, per mostrare che la dinamica può essere ricostruita con buona
accuratezza anche ponendo a zero le derivate aerodinamiche di smorzamento, uti-
lizzando lo smorzamento modale per ricavare a posteriori le derivate mancanti.
Per la dinamica latero–direzionale viene inoltre costruito il diagramma di Bihr-
le–Weissman, calcolando lungo la traiettoria il parametro di stabilità direzionale
dinamica e l’LCDP. I risultati ottenuti evidenziano instabilità laterale in porzioni
significative del volo e risultano coerenti con la necessità di impiegare il Reaction
Control System (RCS) per avviare e completare le manovre richieste.

Nella parte finale della tesi viene progettato un controllore LQR d’assetto,
schedulato lungo la traiettoria di riferimento, con l’obiettivo di stabilizzare i modi
critici e migliorare la coordinazione latero–direzionale. Sebbene il controllore sia
progettato per la regolazione dell’assetto e delle velocità angolari, il suo effetto
sull’intero moto a sei gradi di libertà viene analizzato tramite simulazioni non
lineari. Il ground track risultante mostra che il velivolo controllato raggiunge le
vicinanze di Kourou, soddisfacendo l’obiettivo finale di missione dello scenario di
riferimento adottato.
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Capitolo 1

Introduction

Hypersonic flight refers to atmospheric flight at extremely high speeds, conven-
tionally defined as Mach 5 or higher, i.e. more than five times the local speed of
sound around (1,225–1,235 km/h at sea level under standard conditions). Although
this threshold is somewhat arbitrary, it marks the onset of a regime in which
strong shock waves, extreme aerodynamic heating, and real-gas effects domina-
te the physics of flight. In this regime, the flow becomes highly compressible,
boundary-layer transition and separation play a crucial role, and the aerodynamic
forces are strongly coupled with the thermal and structural response of the vehicle.

This type of flight is being actively developed both to drastically reduce global
travel times—through concepts such as hypersonic transport and reusable spa-
ceplanes—and for military applications, including hypersonic cruise missiles and
boost-glide vehicles. The main technical challenges go far beyond simply “flying
faster”: they include the development of suitable propulsion systems (e.g. rocket
engines, air-breathing scramjets) and the management of the very high temperatu-
res generated by aerodynamic heating, which can severely affect both the internal
structure and the external thermal protection system (TPS).

From a systems point of view, hypersonic vehicles require a genuinely integrated
design approach. Aerothermodynamics, flight mechanics, guidance and control,
and TPS design cannot be treated as independent disciplines, because design
choices in one area have immediate consequences in the others. For example,
the shaping of the re-entry trajectory to satisfy flight-mechanics and guidance
requirements directly determines the heat load on the structure; the layout and
sizing of control surfaces must ensure not only sufficient control authority, but also
acceptable thermal and mechanical loads; TPS thickness and materials, in turn,
influence the mass distribution and thus the vehicle’s stability characteristics. This
tight coupling makes the analysis, design, and operation of hypersonic vehicles
particularly challenging and motivates the development of unified frameworks
capable of capturing these interactions.
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Introduction

1.1 Reference vehicles
The development of hypersonic vehicles has a long history. Early experimental
programmes such as the X-15 provided the first systematic exploration of controlled,
crewed flight at hypersonic speeds. The X-15, a rocket-powered research aircraft,
routinely flew above Mach 6 and reached altitudes at the edge of space, generating
invaluable data on aerothermodynamics, stability and control, and structural
loads in extreme flight conditions.[1] «In general, the X-15 (Fig.1.1) had solid
aerodynamic stability and control. The aircraft had positive directional stability
at all speeds and attitudes; it also always had a stable Dutch Roll mode; pilot
comments were all favorable. At high true airspeed, aerodynamic damping would
diminish; making the use of a “stability augmentation system” to provide synthetic
damping desirable. On Flight 191, where that system failed in a manner where it
destabilized the aircraft, the aircraft lost control, overstressed its structure, and
disintegrated mid-air killing pilot Michael Adams.»[1]

Figura 1.1: North American X-15

A major step change came with the Space Shuttle Orbiter (Fig.1.2), the first
operational reusable hypersonic vehicle. The Shuttle was designed to perform an
orbital mission, survive atmospheric re-entry, and execute a precision landing on a
runway. Its mission profile involved de-orbit from low Earth orbit, hypersonic entry
with large cross-range capability to reach alternate landing sites, a long supersonic
and transonic glide, and a final flare and touchdown. Despite its success, the Shuttle
also highlighted several limitations of first-generation reusable hypersonic design.
The aerodynamic configuration exhibited strong coupling between longitudinal and
lateral-directional dynamics, making the design and validation of guidance and
control laws particularly demanding. The need to rely on RCS jets deep into the
atmosphere, where their use is undesirable from both operational and structural-
load perspectives, reflected the challenges of maintaining sufficient control authority
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Figura 1.2: Space Shuttle

and stability margins over the full entry trajectory.[1]
In the last two decades, the focus has therefore shifted from Shuttle-era concepts

to a new generation of reusable hypersonic vehicles and lifting re-entry demon-
strators. Programmes such as Space Rider (Fig.1.3) embody a different design
philosophy: smaller, uncrewed, with more integrated and automated guidance,
navigation, and control (GNC), and with a stronger emphasis on operability and
cost-effective reusability.

Figura 1.3: Space Rider

In this thesis, the HORUS-2B configuration is adopted as the reference hyperso-
nic vehicle.[2] Building on the work carried out of Prof. Erwin Mooij, HORUS-2B
is documented by an extensive benchmark data set, including aerodynamics, mass
properties, nominal re-entry trajectory and GNC architecture, which provides suffi-
cient fidelity and coverage to support detailed analyses and numerical simulations.
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Figura 1.4: The Horus2B reference vehicle

1.2 Thesis objectives and contributions
In this thesis, the first step is the analysis of the open-loop stability of the referen-
ce vehicle, in line with previous studies by Mooij[3][4]. The objective is to identify
and characterise the main dynamic modes along the reference re-entry trajectory and
to determine the flight conditions at which the vehicle becomes dynamically critical.

The original contribution of this work is the implementation and assessment of
literal (closed-form) approximations of the dynamic modes available in the
literature, tailored to this specific configuration and hypersonic flight regime. These
approximations are derived, adapted and compared against the “exact” linearised
models along the trajectory in order to evaluate their accuracy, range of validity
and practical usefulness for the preliminary design and stability assessment of
Shuttle-class, Space-Rider-class vehicles such as HORUS-2B.

In the final part of the thesis, an LQR-based attitude controller is designed for
the reference vehicle, following the general control architecture already proposed
by Mooij[3] but adopting an alternative tuning and scheduling of the controller
gains. Although the controller explicitly acts only on the attitude dynamics, its
effects are analysed within a full 6-DOF simulation framework. In particular,
the resulting vehicle ground track is examined, showing that the controlled vehicle
reaches the vicinity of Kourou, which is the terminal objective of the reference
mission. This allows the attitude-control study to be consistently interpreted in
terms of its implications for the overall trajectory and mission performance.

4



Capitolo 2

Mathematical Model

This chapter presents the flight-mechanics framework adopted in this work. First,
the reference frames and associated kinematic quantities used to describe the
vehicle motion are introduced, together with the notation and sign conventions.
On this basis, the complete set of nonlinear equations of motion is formulated in
a consistent manner and expressed in a form suitable for subsequent trajectory,
stability, and control analyses. All the frames definitions are referred to Mooij[3].

2.1 Reference Frames
Inertial Planetocentric Reference Frame, Index I

The inertial reference frame FI is defined with its origin at the centre of mass of
the central body. Its XIYI plane coincides with the equatorial plane, while the
ZI-axis is aligned with the rotation axis of the central body and oriented north.
The XI-axis is fixed by the reference meridian at zero longitude and zero time, and
the YI-axis is chosen so that the triad forms a right-handed coordinate system.

Rotating Planetocentric Reference Frame, Index R

The rotating planetocentric frame, FR, is attached to the central body and coincides
with FI at the initial time (and again after each complete revolution of the body).
The ZR-axis points towards the north, the XR-axis lies on the equator at zero
longitude, and the YR-axis is chosen to complete a right-handed triad.

Body Reference Frame, Index B

The body frame, FB, is rigidly attached to the vehicle. The XB-axis lies in

5



Mathematical Model

the symmetry plane and points forward, while the ZB-axis also lies in the symmetry
plane and points downward. The YB-axis is chosen such that the triad forms a
right-handed coordinate system.

Trajectory Reference Frame (Groundspeed Based), Index TG

The axes of FT G are defined as follows: the XT G-axis is aligned with the ve-
locity vector relative to FR; the ZT G-axis lies in the vertical plane and is directed
downward; the YT G-axis is chosen to complete a right-handed coordinate system.

Trajectory Reference Frame (Airspeed Based), Index TA

The axes of the airspeed-based trajectory frame, FT A, are defined analogously
to those of FT G, with a single essential difference. The XT A-axis is now aligned
with the velocity vector relative to the atmosphere (airspeed) instead of the ground-
speed. Consequently, the absolute orientation of the YT A- and ZT A-axes changes,
although their definition remains unchanged: the ZT A-axis lies in the vertical
plane and points downward, and the YT A-axis completes a right-handed coordinate
system.

2.2 State-Variable Definitions

2.2.1 Position and Velocity
The state of the vehicle is described by its position and velocity vectors, which
in principle may be expressed in different coordinate systems. Although classical
orbital elements are widely used in orbital mechanics, they are not employed in the
present work. Instead, position and velocity are represented exclusively in spherical
coordinates, so that the state is written in terms of radius and angular components
within the previously and following reference frames.

Spherical Components

With spherical components, position and velocity (here defined with respect to FR)
are written as (Fig.2.1):

Position : R, τ, δ, Velocity : Vg, γg, χg.

The longitude τ is measured positively to the east, with 0◦ ≤ τ < 360◦. The
latitude δ is measured along the meridian starting at the equator, positive towards
the north and negative towards the south, so that −90◦ ≤ δ ≤ 90◦. The distance R

6



Mathematical Model

denotes the separation between the centre of mass of the central body and that of
the vehicle. The groundspeed Vg is the magnitude of the velocity vector V⃗ relative
to the rotating planetocentric frame. The flight–path angle γg is the angle between
V⃗ and the local horizontal plane; it ranges from −90◦ to +90◦ and is negative
when V⃗ is below the local horizon. The heading χg specifies the direction of the
projection of V⃗ onto the local horizontal plane with respect to the local north and
ranges from −180◦ to +180◦. For χg = +90◦, the vehicle moves parallel to the
equator towards the east.

2.2.2 Attitude and angular rates
Attitude

The attitude of a vehicle, or in more mathematical terms, the orientation of
a body fixed reference frame with respect to another one, can be expressed in
several ways. Here, we restrict ourselves to one definition, which will be used along
the thesis (Fig.2.2):

Aerodynamic angles are defined as the angle of attack α, the sideslip angle β,
and the bank angle σ. The angle of attack α satisfies −180◦ ≤ α < 180◦ and is
positive for a nose–up attitude. The sideslip angle β satisfies −90◦ ≤ β ≤ 90◦ and
is positive for a nose–left attitude. The bank angle σ satisfies −180◦ ≤ σ < 180◦

and is positive for a bank to the right. When these angles are used in the equations
of motion, they describe the attitude of the vehicle with respect to the groundspeed
and carry the subscript g. Alternatively, they may be defined with respect to the
airspeed, in which case the subscript a is used. The triplet α, β, and σ forms a
set of Euler angles corresponding to a Type–1 rotation sequence[3] with order 2–3–1.

Angular rates

The body angular rate is defined as the angular velocity of the body frame with
respect to the inertial frame, expressed in components along the body axes. The
angular–velocity vector ω is therefore composed of the roll rate p, the pitch rate q,
and the yaw rate r (see Fig.2.3).
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Figura 2.1: Definition of the six spherical flight parameters, the position (R, τ , δ)
and velocity (Vg, γg, χg). Here, both τ , δ, γg and χg are positive[3]

Figura 2.2: Definition of the aerodynamic attitude angles α, β and σ. The three
related reference frames are the body frame (index B), the aerodynamic frame
(index A) and the trajectory frame (index T ). Here, both α, β and σ are positive.[3]
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Figura 2.3: Definition of the angular rate of the vehicle, ω = (p, q, r)T . Relevant
frames are FI , which has its origin in the c.o.m. of the central body, and the
body-fixed frame FB, with its origin in the c.o.m. of the vehicle[3]
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2.3 Equations of motion
At this point the equations of motion can be formulated. A complete derivation
is beyond the scope of this thesis, and the interested reader is referred to [3][5]
for details. The first step is the choice of state variables, which may be taken, for
example, as Cartesian or spherical position and velocity components, or a suitable
combination of both. In re-entry studies it is common to employ either inertial
Cartesian position and velocity, or spherical position and velocity components in
the rotating planetocentric frame FR. Since the latter choice greatly facilitates
the physical interpretation of the results, it is adopted here as the basis for the
subsequent linearisation, although its full derivation is rather lengthy and will not
be repeated.

In the previous section the translational state variables have been introduced.
The position is given by the distance R, longitude τ and latitude δ, while the
velocity is described by its magnitude V and two direction angles, namely the
flight–path angle γ and the heading χ. Because wind is neglected, no distinction
between airspeed- and groundspeed-based quantities is required.

For the rotational motion, the Euler equations are employed. The vehicle is assumed
to possess a plane of mass symmetry (the XBYB-plane), implying Ixy = Iyz = 0.
Instead of the classical Euler angles ϕ, θ and ψ, the attitude is parameterised by
the aerodynamic angles: angle of attack α, sideslip angle β, and bank angle σ.
These are, in principle, defined with respect to the groundspeed direction, but
in the absence of wind they coincide with their airspeed-based counterparts (no
subscript is added to differentiate between air- and groundspeed). The angular
rate of the body is defined as the angular velocity of the body frame with respect
to the inertial frame, resolved along the body axes; its components are the roll rate
p, pitch rate q, and yaw rate r.

Summarising, the nonlinear dynamic equations of translational motion can be
written as

V̇ = −D

m
− g sin γ + ω2

cbR cos δ (sin γ cos δ − cos γ sin δ cosχ) , (2.1)

V γ̇ = L cosσ
m

− g cos γ + +2ωcbV cos δ sinχ+ V 2

R
cos γ

+ ω2
cbR cos δ (cos δ cos γ + sin γ sin δ cosχ) , (2.2)

V cos γ χ̇ = L sin σ
m

+ 2ωcbV (sin δ cos γ − cos δ sin γ cosχ) + V 2

R
cos2 γ tan δ sinχ

+ ω2
cbR cos δ sin δ sinχ. (2.3)
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whereas the kinematic position equations are given by

Ṙ = ḣ = V sin γ, (2.4)

τ̇ = V sinχ cos γ
R cos δ , (2.5)

δ̇ = V cosχ cos γ
R

. (2.6)

The Euler equations of rotational motion are defined by:

ω̇ = I−1
1
M̃cm − ω × Iω

2
, (2.7)

with
M̃cm = (Mx, My, Mz)T

sum of external, Coriolis and relative moments about the c.o.m.,

I =

 Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz


inertia tensor of the re-entry vehicle, referenced to the body frame,

ω = (p, q, r)T

rotation vector of the body frame w.r.t. the inertial frame, expressed in components
along the body axes.
Solving the above equations formally requires the inversion of the inertia tensor.
Writing the solution explicitly in terms of the body–rate derivatives, e.g. ṗ = . . ., is
algebraically tedious. Closed-form analytical expressions for ṗ, q̇ and ṙ can be found
in the literature. In many practical cases, however, Eq.2.7 can be simplified so that
the resulting equations are straightforward to use. This is true, for instance, for a
mass-symmetric vehicle, which is the case for the winged re-entry configuration
considered here, where two of the three products of inertia vanish. If the plane of
symmetry is the XBZB-plane, one has Ixy = Iyz = 0, and Eq.2.7 simplifies to

 Ixx 0 −Ixz

0 Iyy 0
−Ixz 0 Izz



ṗ

q̇

ṙ

 =


Mx

My

Mz

−


p

q

r

×

 Ixx 0 −Ixz

0 Iyy 0
−Ixz 0 Izz



p

q

r

 (2.8)
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Solving this system of equations for ṗ, q̇ and ṙ leads to

ṗ = Izz

I∗ Mx + Ixz

I∗ Mz + (Ixx − Iyy + Izz)Ixz

I∗ pq + (Iyy − Izz)Izz − I2
xz

I∗ qr, (2.9)

q̇ = My

Iyy

+ Ixz

Iyy

1
r2 − p2

2
+ Izz − Ixx

Iyy

pr, (2.10)

ṙ = Ixz

I∗ Mx + Ixx

I∗ Mz + (Ixx − Iyy)Ixx + I2
xz

I∗ pq + (−Ixx + Iyy − Izz)Ixz

I∗ qr (2.11)

with I∗ = IxxIzz − I2
xz.

Finally, the kinematic attitude equations are given by[3]

α̇ cos β = −p cosα sin β + q cos β − r sinα sin β
+ sin σ

è
χ̇ cos γ − δ̇ sinχ sin γ + (τ̇ + ωcb)(cos δ cosχ sin γ − sin δ cos γ)

é
− cosσ

è
γ̇ − δ̇ cosχ− (τ̇ + ωcb) cos δ sinχ

é
, (2.12)

β̇ = p sinα− r cosα
+ sin σ

è
γ̇ − δ̇ cosχ− (τ̇ + ωcb) cos δ sinχ

é
+ cosσ

è
χ̇ cos γ − δ̇ sinχ sin γ + (τ̇ + ωcb)(cos δ cosχ sin γ − sin δ cos γ)

é
,

(2.13)

σ̇ = −p cosα cos β − q sin β − r sinα cos β
+ α̇ sin β − χ̇ sin γ − δ̇ sinχ cos γ + (τ̇ + ωcb)(cos δ cosχ cos γ + sin δ sin γ).

(2.14)

At this stage, the equations of motion relevant to this thesis have been established.
In the next chapter they will be subjected to suitable assumptions and simplifications
and used as the basis for the linearisation and eigenmotion analysis. The complete
nonlinear set, without any simplifications, will instead be employed in Chapter 5
for the numerical simulations and for the validation of the obtained results.
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Capitolo 3

Open-loop behaviour of the
re-entry vehicle

An important reference for the study of re-entry vehicle dynamics and control is
the work of E. Mooij at Delft University of Technology[3]. This framework provides
the foundation for interpreting the dynamic response of the vehicle in terms of
physically meaningful motions.

3.1 Introduction
The open-loop analysis characterizes the vehicle’s free response about a nominal
trajectory. In this section, we aim to reproduce the results reported by Mooij
[3] to validate our numerical methodology. Minor discrepancies are expected
because the reference trajectory available to us was reconstructed via OCR, which
introduces small perturbations that can propagate into the computed eigenvalues
and eigenvectors.

Despite these differences, we recover the same qualitative trends in the principal
motion characteristics. Moreover, the observed deviations provide insight into
the parameter sensitivities that shape the vehicle’s response. To isolate and
interpret the most influential parameters, the next chapter employs analytical
(literal) approximations for the dominant dynamic modes.

3.2 Eigenvalues and eigenmotion
Before analyzing in detail the stability of the vehicle, it is useful to recall the relation
between eigenvalues and eigenmotions. The dynamics of a re-entry configuration
can be interpreted in analogy with conventional subsonic aircraft, since the system
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exhibits characteristic motions in certain flight regimes. These eigenmotions can be
studied at discrete time points along the trajectory, and their behavior illustrates
the open-loop stability properties of the vehicle.

Once the eigenvalues and corresponding eigenvectors are computed, they can be
directly related to the physical motion of the vehicle. In fact, while the eigenvalue
describes the temporal behavior of a mode (whether it is stable, unstable, oscillatory,
or aperiodic), the eigenvector provides the spatial structure of that mode. Each
eigenvector specifies the relative contribution of the state variables (e.g., angle of
attack, sideslip, angular rates, Euler angles) to the eigenmotion. In other words, the
eigenvector indicates how the different states participate in a given mode,
and therefore which physical variables dominate the motion. This information
is essential to identify, for example, whether an instability is primarily due to
lateral-directional dynamics (yaw/roll) or longitudinal dynamics (pitch/angle of
attack).

• Complex eigenvalues occurring as conjugate pairs, represent oscillatory
modes such as the Dutch roll or phugoid, typically associated with periodic
motion.

• Real eigenvalues on the other hand, indicate aperiodic modes, corresponding
to motions such as spiral divergence or roll subsidence.

Figura 3.1: Impulse responses for various eigenvalue locations in the complex
plane, where the con jugate eigenvalues are omitted[3]

Looking at figure 3.1 the real part of an eigenvalue defines the stability of the
motion: a negative real part implies a decaying (stable) mode, while a positive real
part indicates a growing (unstable) disturbance. If the real part is exactly zero,
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the oscillation persists with constant amplitude. The imaginary part defines the
oscillation frequency of periodic modes.

According to Mooij[4], the dynamics of a re-entry vehicle can be expressed as
a set of time-varying differential equations. To apply classical stability and control
theory, the nominal trajectory is discretized into a sequence of time intervals.
Within each interval, the vehicle states and system parameters are considered
constant, so that the dynamics can be approximated by a Linear Time-Invariant
(LTI) system.
The homogeneous part of the state equation can be written as

ẋ = Ax (3.1)

where x is the state vector and A is the system matrix. The eigenvalues λ and the
eigenvectors µ of the system are obtained by solving the eigenvalue problem

Aµ = λµ (3.2)

This leads to
(Aλ− I)µ = 0 (3.3)

which admits non-trivial solutions if the determinant condition

|A− λI| = 0 (3.4)

is satisfied.
Once the eigenvalues and eigenvectors are determined, the corresponding eigen-
motions can be described. For each mode, the solution is given by

xλ(t) = eλtµλ , (3.5)

while the general solution for an n-state system is a linear combination of all
eigenmodes:

x(t) =
nØ

i=1
cie

λitµi (3.6)

The constants ci are determined by the initial conditions, for example by a pertur-
bation of the nominal trajectory. This formulation allows for the decomposition of
vehicle dynamics into distinct eigenmotions, each associated with a specific pair of
eigenvalues - eigenvectors.
To characterise the eigenmotion we compute some specific coefticients, i.e., the
period P , when a pair of complex conjugate eigenvalues represents a periodic
motion, defined as[4]

P = 2π
Im(λ) (3.7)
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An aperiodic motion does not have a period, which also follows from the fact that
the imaginary part of the eigenvalue is zero.
Next, we define the halving time[4] T1/2, indicating the time interval when the
amplitude of the motion has become half its original value,

T1/2 = ln(1/2)
Re(λ) (3.8)

However, when the real part of the eigenvalue is positive, the halving time becomes
negative. In that case it is better to speak of the doubling time of the (diverging)
eigenmotion[4]:

T2 = ln(2)
Re(λ) (3.9)

The damping ratio ζ for periodic eigenmotion (complex eigenvalues) can be
computed with

ζ = − Re(λ)ñ
Re(λ)2 + Im(λ)2

(3.10)

In the case of damped eigenmotion, ζ is positive (a negative damping ratio is in
principle an amplification ratio). For aperiodic motion, ζ is not defined.
Finally, the natural frequency ωn for periodic eigenmotion is defined to be

ωn =
ñ
Re(λ)2 + Im(λ)2 (3.11)

The natural frequency is the theoretical frequency of the eigenmotion when the
energy of the system is constant during that motion, which means that the amplitude
is constant. Again, for aperiodic motion ωn is not defined. It should be noted that
the natural frequency is more a mathematical notion rather than a physical one[4].
The relation between the period, the damping ratio and the natural frequency is

P = 2π
ωn

√
1 − ζ2 (3.12)

Up to this point, we have only examined the stability characteristics of the ei-
genmotions, without addressing in which state variables these motions actually
manifest. To answer this question, it is necessary to study the eigenvectors. By
computing the magnitude of each (complex) component of an eigenvector, one can
readily identify the dominant states involved in the motion. Moreover, evaluating
the argument (phase) of each component provides insight into the relative phase
relationships among the contributing variables.
In mathematical terms, the modulus z of a complex number λ is defined to be

z =
ñ
Re(λ)2 + Im(λ)2 (3.13)

16



Open-loop behaviour of the re-entry vehicle

and the argument θ is

θ = arctan
A
Im(λ)
Re(λ)

B
(3.14)

Note that the argument of a real number is always 0 or π (λ < 0).

3.3 Linearisation of Equations of Motion
«However, the eigenvalues and eigenvectors can only be obtained when the time
derivatives of the states are given as a linear combination of the states. In other
words: the equations of motion have to be linearised.»[3]. Following the literature
tow assumptions are made:

• We will considering a non-rotating Earth (ωcb = 0 rad/s. This assumption is
allowed since the rotation of the local horizontal plane is of a much higher
frequency than the Earth’s one

• The vehicle is assumed to be rotationally symmetric (with respect to mass)
around the XB-axis. This means all the products of inertia are zero.

At this point the equations of Chapter 2 become

V̇ = −D

m
− g sin γ,

γ̇ =
3
V

R
− g

V

4
cos γ + L cosσ − S sin σ

mV
,

χ̇ = V

R
cos γ tan δ sinχ− L sin σ + S cosσ

mV cos γ ,

Ṙ = V sin γ,

τ̇ = V cos γ sinχ
R cos δ ,

δ̇ = V

R
cos γ cosχ,

ṗ = Mx

Ixx

+ (Iyy − Izz) qr,

q̇ = My

Iyy

+ (Izz − Ixx) pr,

ṙ = Mz

Izz

+ (Ixx − Iyy) pq.
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In order to further simplify the kinematic attitude equations, the vehicle is assumed
to follow a trajectory parallel to the equator, that is (δ = 0 ° and χ = 90 °), and
remains this way (δ̇ = 0 °/s):

α̇ = q − (p cosα + r sinα) tan β − L−mg cos γ cosσ
mV cos β ,

β̇ = p sinα− r cosα− S +mg cos γ sin σ
mV

,

σ̇ = −p cosα + r sinα
cos β − L−mg cos γ cosσ

mV
tan β + L sin σ + S cosσ

mV
tan γ.

As we can see the equation for χ, τ and δ are no longer coupled with the other
equaitons, so 9-degrees-of-freedom linearised model can be derived. To clarify
the linearisation procedure, we introduce small perturbations about a steady
reference condition. Each state variable is written as the sum of an equilibrium
value and a small deviation . The vehicle is assumed to be unpowered (no fuel
consumption), so that the mass properties remain constant during the motion.
Hence, the states are expressed as

V = V0 + ∆V, γ = γ0 + ∆γ, R = R0 + ∆R,
p = p0 + ∆p, q = q0 + ∆q, r = r0 + ∆r,
α = α0 + ∆α, β = β0 + ∆β = ∆β, σ = σ0 + ∆σ.

The equilibrium points follow from the nominal mission explained in the next
sections, which leave us with three unknown parameters: p0, q0 an r0 that can be
derived from the attitude kinematics with the condition

α̇ = β̇ = σ̇ = 0.
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For all the mathematical detail we refer to Mooij[3]. By neglecting small terms of
higher order the final form of the equations is:

∆V̇ = − ∆D
m

+ 2 g0

R0
sin γ0 ∆R − g0 cos γ0 ∆γ,

∆γ̇ =
3

−γ̇0 + 2 V0

R0
cos γ0

4 ∆V
V0

+
A

2 g0

R0
− V 2

0
R2

0

B
cos γ0

V0
∆R −

A
V 2

0
R0

− g0

B
sin γ0

V0
∆γ

− L0

mV0
sin σ0 ∆σ + cosσ0

mV0
∆L− sin σ0

mV0
∆S,

∆Ṙ = sin γ0 ∆V + V0 cos γ0 ∆γ,

∆ṗ = ∆Mx

Ixx

,

∆q̇ = ∆My

Iyy

,

∆ṙ = ∆Mz

Izz

,

∆α̇ = ∆q − 1
mV0

∆L− g0

V0
cos γ0 sin σ0 ∆σ +

A
L0

mV 2
0

− g0

V 2
0

cos γ0 cosσ0

B
∆V

− g0

V0
sin γ0 cosσ0 ∆γ − 2 g0

R0V0
cos γ0 cosσ0 ∆R,

∆β̇ = sinα0 ∆p− cosα0 ∆r − ∆S
mV0

− g0

V0
cos γ0 cosσ0 ∆σ + g0

V 2
0

cos γ0 sin σ0 ∆V

+ 2 g0

R0V0
cos γ0 sin σ0 ∆R + g0

V0
sin γ0 sin σ0 ∆γ,

∆σ̇ = − cosα0 ∆p− sinα0 ∆r −
3
L0

mV0
− g0

V0
cos γ0 cosσ0

4
∆β + L0

mV0
sin σ0 ∆γ

+ tan γ0

mV0

3
sin σ0 ∆L+ cosσ0L0 ∆σ + cosσ0 ∆S − L0

V0
sin σ0 ∆V

4
.

3.4 Eigenmotion of Winged Entry Vehicles

Before we can study the open-loop eigenmotion of the winged re-entry vehicle
HORUS, the linearised equations obtained in the previous section has to be put
into state-space form.
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3.4.1 State-space model
In order to analyze the eigenvalues of the dynamic system we want the equation in
the state-space form:

ẋ = Ax + Bu (3.15)
where A is the n × n state matrix, x is the n × 1 state vector, B is the n × m
control matrix and u is the m× 1 control vector. The state vector is obvious and
comes from the above sections

x = (∆V,∆γ,∆R,∆p,∆q,∆r,∆α,∆β,∆σ)T (3.16)

while for the control vector we use the aerodynamic surface and the thrusthers of
Horus2B

u = (∆δe,∆δa,∆δr,∆MT,x,∆MT,y,∆MT,z)T (3.17)
Where δe is the elevon deflection used for the longitudinal control, δa is the aileron
deflection for the lateral control, δr is the rudder deflection for the lateral control
and MT,i is the torque generated by the thrusters around the i-axis.
With the above definitions the state space form will be

∆V̇
∆γ̇
∆Ṙ
∆ṗ
∆q̇
∆ṙ
∆α̇
∆β̇
∆σ̇


=



aV V aV γ aV R aV p aV q aV r aV α aV β aV σ

aγV aγγ aγR aγp aγq aγr aγα aγβ aγσ

aRV aRγ aRR aRp aRq aRr aRα aRβ aRσ

apV apγ apR app apq apr apα apβ apσ

aqV aqγ aqR aqp aqq aqr aqα aqβ aqσ

arV arγ arR arp arq arr arα arβ arσ

aαV aαγ aαR aαp aαq aαr aαα aαβ aασ

aβV aβγ aβR aβp aβq aβr aβα aββ aβσ

aσV aσγ aσR aσp aσq aσr aσα aσβ aσσ





∆V
∆γ
∆R
∆p
∆q
∆r
∆α
∆β
∆σ



+



bV e bV a bV r bV x bV y bV z

bγe bγa bγr bγx bγy bγz

bRe bRa bRr bRx bRy bRz

bpe bpa bpr bpx bpy bpz

bqe bqa bqr bqx bqy bqz

bre bra brr brx bry brz

bαe bαa bαr bαx bαy bαz

bβe bβa bβr bβx bβy bβz

bσe bσa bσr bσx bσy bσz





∆δe

∆δa

∆δr

∆MT,x

∆MT,y

∆MT,z


.

(3.18)

Now in order to get every single coefficient of the matrices A and B we must to
analyze the dependencies of each state from every states and of each state from
every commands.
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All the mathematical details are skipped and we refer to Mooij[3][4] for details.
The final form of the equations is



∆V̇
∆γ̇
∆Ṙ
∆ṗ
∆q̇
∆ṙ
∆α̇
∆β̇
∆σ̇


=



aV V aV γ aV R 0 0 0 aV α 0 0
aγV aγγ aγR 0 0 0 aγα aγβ aγσ

aRV aRγ aRR 0 0 0 0 0 0
0 0 0 0 0 0 apα apβ 0
aqV 0 aqR 0 0 0 aqα 0 0
0 0 0 0 0 0 arα arβ 0
aαV aαγ aαR 0 aαq 0 aαα 0 aασ

aβV aβγ aβR aβp 0 aβr 0 aββ aβσ

aσV aσγ aσR aσp 0 aσr aσα aσβ aσσ





∆V
∆γ
∆R
∆p
∆q
∆r
∆α
∆β
∆σ



+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 bpa 0 bpx 0 0
bqe 0 0 0 bqy 0
0 bra brr 0 0 brz

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





∆δe

∆δa

∆δr

∆MT,x

∆MT,y

∆MT,z


.

(3.19)

The coefficients of the matrix A are:
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aV V = − 1
mV0

A
M0

∂CD

∂M
q̄0Sref + 2D0

B
,

aV γ = −g0 cos γ0,

aV R = 2 g0

R0
sin γ0 − ∂CD

∂M

M2
0

mV0

da
dh q̄0Sref + 1

2 CD,0Sref
V 2

0
m

dρ
dh,

aV α = − 1
m

∂CD

∂α
q̄0Sref,
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aσγ = L0

mV0
sin σ0,

aσR = tan γ0 sin σ0

mV0

A
1
2CL,0SrefV

2
0

dρ
dh − ∂CL
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B
,
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L0
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,

aσq = 0.

Since we are interested in the open-loop behaviour of the dynamic system, the
input matrix B is not used in this chapter, but in Chapter 5 for the computing of
the controller’s gain by the LQR. Its coefficients are nevertheless reported here for
completeness:

bV e = bV a = bV r = bV x = bV y = bV z = 0,

bγe = bγa = bγr = bγx = bγy = bγz = 0,

bRe = bRa = bRr = bRx = bRy = bRz = 0,

bpa = 1
Ixx

∂Cl

∂δa

q̄0Srefbref,

bpx = 1
Ixx

,

bpe = bpr = bpy = bpz = 0,

bqe = 1
Iyy

∂Cm

∂δe

q̄0Srefcref,

bqy = 1
Iyy

,

bqa = bqr = bqx = bqz = 0,
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bra = 1
Izz

∂Cn

∂δa

q̄0Srefbref,

brr = 1
Izz

∂Cn

∂δr

q̄0Srefbref,

brz = 1
Izz

,

bre = brx = bry = 0,
bαe = bαa = bαr = bαx = bαy = bαz = 0,

bβe = bβa = bβr = bβx = bβy = bβz = 0,

bσe = bσa = bσr = bσx = bσy = bσz = 0.

Furthermore, in the following analysis all dependencies on air density and speed of
sound are neglected.

3.4.2 Nominal mission

The nominal re-entry trajectory used in this work was reconstructed from plots by
means of OCR/digitization. As a consequence, small discrepancies with respect to
Mooij’s reference trajectory are unavoidable (e.g., due to finite image resolution, axis
scaling, and the smoothing/interpolation required to obtain a uniformly sampled
time history). In line with Mooij’s approach, the trajectory is then discretized
into short time windows, within which the vehicle and atmospheric parameters
are frozen and the dynamics are treated as a sequence of LTI systems. This
“frozen-time” representation is sufficient for the purposes of modal analysis.
The reference mission of HORUS begins in low Earth orbit with a de-orbit burn
followed by a ballistic coasting arc. The hypersonic re-entry phase is assumed to
start at the atmospheric entry interface, taken here at an altitude of h = 122 km.
At this point the initial conditions of the point-mass trajectory are

V = 7435.5 m/s,
γ = −1.43◦,

χ = 70.75◦,

h = 122 km,
τ = −106.58◦,

δ = −22.3◦,
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where V is the inertial velocity magnitude, γ the flight–path angle, χ the heading
angle, h the geodetic altitude, and τ and δ denote longitude and latitude, respecti-
vely. These conditions are used as the initial state for the numerical integration
of the full non-linear 6-DOF model in the final chapter, in order to simulate the
complete re-entry and analyse the resulting vehicle ground track with respect to
the targeted landing site near Kourou.
Because eigenvalue/eigenvector trends depend primarily on the qualitative evolu-
tion of the flight conditions (mach number, dynamic pressure, bank angle, angle of
attack), the digitization noise may slightly shift numerical values (e.g. frequencies
and damping ratios) but does not alter the identity and ordering of the characteri-
stic modes nor their qualitative behavior across the trajectory. In other words, the
conclusions drawn from the eigenstructure—such as the emergence, disappearance,
or strengthening/weakening of specific modes—remain valid.

Finally, any residual trajectory uncertainty is explicitly addressed at the control-
design level. The controller is scheduled along the nominal trajectory and tuned
for robustness, so that bounded perturbations in the reconstructed states and
parameters are accommodated without loss of stability or performance. Hence,
while the OCR process introduces modest quantitative deviations, the qualitative
modal insights used to guide design remain reliable, and the controller’s robustness
margins cover the remaining uncertainty.

In the following images (from fig.3.2 to fig.5.5), the original trajectory and the
interpolated one are reported.
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Figura 3.2: Angle of attack along the trajectory
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Figura 3.3: Bank angle along the trajectory
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Figura 3.4: Height along the trajectory
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Figura 3.6: Gravitational acceleration along the trajectory
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Figura 3.7: Velocity along the trajectory
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Figura 3.8: Flight path angle along the trajectory
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Figura 3.9: Mach number along the trajectory
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Figura 3.10: Dynamic pressure along the trajectory

31



Open-loop behaviour of the re-entry vehicle

As we can see for the gravitational acceleration (Fig.3.6) there is no original
raw data. This is because the interpolated point came directly from the height
along the trajectory (Fig.3.4) and the height along the gravitational acceleration
(Fig.3.5).

• All data are interpolated by using pchip in MATLAB. This function generates
a cubic spline in order to preserve the shape and trend of the raw data.

• The angle of attack (AOA) and the bank angle (σ) are interpolated using the
linear shape. This is because the angle of attack is constant for most of the
trajectory and then decreases linearly. The bank angle changes instantaneously,
so the linear interpolation fits best.

3.4.3 Trim law
In order to analyze the open-loop behaviour of the vehicle, we need to ensure the
equilibrium point for the linearization of the equations. This equilibrium is reached
only by the pitch equilibrium [4]. So, the task is to first find the body-flap deflection
that nulls the moment coefficient (Cm). If and when the body flap is saturated,
the elevon compensates for the remaining pitching moment. The algorithm that
provides equilibrium is very simple:

1. With M0 and α0 we find the function Cm(α0,M0, δbf) with δbf varying from
−20◦ to 30◦.

2. With Newton-tangent method (fzero in MATLAB) we find the δ⋆
bf solution of

Cm(α0,M0, δ
⋆
bf ) = 0, with δbf,0 = 0◦ as starting point.

3. Finally the following trajectory point generates new M0 and new α0 so the
algorithm return to the point 1

Furthermore the pressure dynamic condition[3] is met:

• while q̄ ≤ 100 N/m2 the aerodynamic surfaces are de-activated

In figure 3.11 the bodyflap deflection range between 15◦ and −20◦. The lasts
two seconds the bodyflap reaches its boundary level and the elevon is activated
(Fig.3.12). In figure 3.13 the pitch equilibrium is guaranteed.
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Figura 3.11: Body-flap deflection along the trajectory
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Figura 3.13: Pitch coefficient along the trajectory
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3.4.4 HORUS Characteristic Motion
In order to properly interpret the open-loop behaviour of HORUS, it is first
necessary to recall the classical dynamic modes of a conventional subsonic aircraft.
These canonical eigenmotions provide the natural framework against which the
eigenvalues and eigenvectors of HORUS can be compared, since in certain flight
regimes we expect at least partial similarity between the two [3]. The purpose of
the following discussion is to outline the fundamental relation between eigenvalues
and eigenmotions and to establish a reference set of well-known aircraft modes that
will serve as a benchmark for the subsequent results.
For a conventional subsonic aircraft in steady flight, five characteristic modes can
be identified: two longitudinal and three lateral [3].

• Longitudinal modes

– Short period: a fast, usually well-damped oscillation dominated by pitch
rate, with large aerodynamic forces and nearly straight flight path; speed
variations are negligible.

– Phugoid: a very slow, lightly damped oscillation; gradual speed and
altitude variations lead to small changes in dynamic pressure and aero-
dynamic forces; it can be interpreted as a continuous exchange between
kinetic and potential energy, with negligible pitch rotation.

• Lateral Modes

– Lateral oscillation (Dutch roll): a relatively fast, generally well-
damped oscillation, primarily due to yawing motion, accompanied by
significant roll rate; the flight path and velocity remain essentially constant.

– Roll convergence (aperiodic roll): a strongly damped, aperiodic
motion consisting of pure rolling about the longitudinal axis; the roll angle
does not generate restoring moments, hence no oscillation occurs.

– Spiral mode: mainly a yawing motion with some roll and nearly zero
sideslip; aerodynamic forces are very small, leading to a large time constant;
it is an aperiodic mode which can be either stable or unstable.

In conventional aircraft these longitudinal and lateral modes are weakly coupled and
can typically be analysed as decoupled: symmetric perturbations do not significantly
excite asymmetric motions, and vice versa [3]. For HORUS, the system matrix
A ∈ R9x9 yields nine eigenvalues and associated eigenvectors. Inspection of A shows
that there are non-negligible coupling terms between the so called symmetric
variables (∆V,∆γ,∆R,∆q,∆α) and asymmetric variables (∆p,∆r,∆β,∆σ). Thus,
longitudinal and lateral motions are not perfectly decoupled, though decoupling
may be a good approximation when these terms remain small[3].
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Figura 3.14: Eigenvalues along the trajectory

Figura 3.15: Eignevalues zoom around the origin
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Figura 3.16: Imaginary parts along the trajectory
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Along the nominal trajectory, the eigenvalue diagrams (Fig.3.14, Fig.3.15,
Fig.3.16, Fig.3.17) reveal a mixture of complex and real roots, indicating that
both oscillatory and aperiodic modes are present. Maximum imaginary parts of
about 1.5 rad/s imply rather short periods, while real parts between approximately
−1 and 1 suggest that the modes can be either convergent or divergent. Two
dominant oscillatory families emerge clearly, corresponding later to the lateral oscil-
lation and the short-period oscillation. Discontinuities visible in some curves came
from the linearisation of aerodynamic coefficients and table interpolation, which
introduce jumps when changing database ranges [3]. For most of the trajectory
the eigenmotions appear very lightly damped or undamped; only toward the end
strong divergences or convergences arise because of the strong aerodynamic forces
[3].

To study the eigenmotion of HORUS in more detail, we have selected several
time points for which we will compute the characteristic values and for which we
will try to identify the modes by studying the eigenvectors. The selected time
points are 1 (t = 5 s), 50 (t= 196 s), 100 (t= 396 s), 150 (t= 596 s), 200 (t= 796 s),
250 (t = 996 s), 300 (t = 1196 s) and 314 (t = 1252 s). The numerical results are
presented in Appendix A.
«In principle, we can trace the five motions, which we discussed before for conventio-
nal aircraft. However, due to the larger speed regime and due to the distinct nature
of the nominal trajectory (large bank angles as compared with the steady cruise
flight of subsonic aircraft), we find some differences. [...] Whereas in the aircraft
case the height and velocity remained constant, it seems that here this is not the
case, basically because of the much slower character of the re-entry short-period
mode.»[3]. Here a comparison with Mooij’s results:

• At start point all the results match with reference[3], except for the phugoid
which is stable in this simulation.

• The period of longitudinal mode short period decreases as well. In the last
phase of the trajectory the short period becomes aperiodic with two real
eigenvalues, one stable and the other one unstable

• The phugoid damping ration increases and the period decreases

• The lateral motion is unstable for all the trajectory. The period decrease
rapidly and there is coupling in the final part because the presence of the
(large) bank angle

• The aperiodic roll mode changes into a single unstable periodic roll mode. At
the next time point it changes in an aperiodic one dominated by the height
variable. Later it returns to a stable periodic roll.
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To demonstrate convergence, the time histories of key modal metrics as period, na-
tural frequency, damping ratio, and halving time—between between this numerical
solution and Mooij’s reference results are compared. The overlaid curves are nearly
coincident across the trajectory, confirming both the qualitative trends and the
quantitative agreement which are reported in the following figures.
Moreover, a discrepancy was identified in the tabulated values reported by Mooij[3].
In particular, at (t = 396 s) and (t = 596 s) the damping ratio given in the table
is not consistent with the value obtained from the corresponding real part and
natural frequency. This is most likely a typographical error; in the following, the
corrected damping values are used directly.
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Figura 3.18: Periods along the trajectory
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Figura 3.21: Damping along the trajectory
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Figura 3.22: Natural frequency along the trajectory

41



Open-loop behaviour of the re-entry vehicle

Furthermore, the same eigenvalue pairs undergo a real–to–complex transition at
coincident time points. In particular:

• From time point 50 (Tab.A.2) to time point 100 (Tab.A.3) the aperiodic-
roll roots move from two distinct real values to a complex-conjugate pair,
indicating the onset of a periodic roll divergence.

• From time point 150 (Tab.A.4) to time point 200 (Tab.A.5) the height/spiral
mode exhibits an analogous real-to-complex transition, consistent with the
emergence of a periodic roll mode.

3.5 Summary
Inspection of the matrix A shows that there are non-zero cross-coupling terms
between the so-called symmetric variables V, γ, q, R, α and the asymmetric variables
p, r, β, σ, implying that the corresponding motions are not fully decoupled. In
chapter 5 we’ll see decoupling is possible. In the present chapter, however, all
coupling terms have been explicitly retained during the analysis and treated as
non-zero, so that their influence on the dynamic behaviour is properly accounted for.

At this point, the qualitative behaviour of the modes matches the discussion
given by Mooij[3][4], so the numerical implementation and the subsequent analysis
can be considered reliable.

The short–period oscillation gradually changes character and becomes more
similar to the short–period mode of a conventional aircraft. As the vehicle descends
and aerodynamic forces grow, the mode becomes more heavily damped, while its
period steadily decreases. Later along the trajectory, this oscillatory mode splits
into two real (aperiodic) modes: one strongly damped and one strongly unstable.
Towards the end of the flight, the influence of the bank angle on the short–period
dynamics becomes increasingly pronounced, a trend that will also appear in the
analysis of the phugoid mode.
The phugoid mode becomes progressively more damped along the trajectory,
eventually behaving as a strongly damped oscillation, while its period steadily
decreases. At the same time, the increasing use of bank angle for lateral-directional
control causes its influence on the phugoid dynamics to become non-negligible. As a
result, a small but appreciable coupling develops between the nominally symmetric
phugoid motion and the asymmetric degrees of freedom.
The lateral oscillation is an unstable periodic mode, and it remains unstable
over the entire trajectory. However, its characteristics evolve with time. At an
intermediate stage the (negative) damping magnitude decreases, so the motion
becomes less unstable for a while; later, the damping becomes more negative again
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and the instability strengthens. Over the same interval, the oscillation period also
undergoes a marked reduction.
The aperiodic roll modes switches into a single unstable periodic roll mode, wea-
kly coupled to the angle of attack, and the perturbation in altitude becomes the
dominant component. This transition occurs as soon as the vehicle starts banking.
At the following analysis point, the mode splits again into two aperiodic modes,
whose characteristics are very similar to those of the aperiodic height mode.

In this chapter, we analyzed the vehicle’s open-loop dynamics. Our results repro-
duce those reported in the literature [4][3], with only minor differences attributable
to trajectory uncertainty; the qualitative behavior remains unchanged. The next
chapter examines the principal dynamic modes using literal approximations from
the literature. This analysis is expected to corroborate the present results while
clarifying which parameters most strongly influence the modes.
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Capitolo 4

Model Approximations

This chapter develops literal (closed-form) approximations for the vehicle’s principal
dynamic modes, aiming to obtain analytical expressions for natural frequencies, dam-
ping ratios, and instability conditions. The approach relies on small-perturbation
linearization and a frozen-time LTI representation along the trajectory, enabling
transparent parameter dependencies on aerodynamic derivatives, inertial properties,
and flight condition. After stating assumptions and the domain of validity, we
derive approximations for the longitudinal and lateral–directional modes, identify
the dominant terms, and assess the sensitivity to key parameters. A quantitative
comparison with the numerical results of the previous chapter is then provided to
evaluate accuracy, limitations, and predictive capability of the literal formulas.

First, the aerodynamic derivatives are scaled to ensure consistency with the
equations of motion (EOM) adopted in the reference [6]. Throughout this chapter
we employ the second-order formulation of the linearized EOM.
The resulting longitudinal equationsin second-order form appears as follows:

∆̈V −Xu∆̇V − (Xα − g) ∆̇α− (gZu/V0) ∆V − (gZα/V0) ∆α = 0
∆̈α− (Zu/V0) ∆̇V − (Mq + Zα/V0) ∆̇α− [Mu −Mq (Zu/V0)] ∆V
− [Mα −Mq (Zα/V0)] ∆α = 0

(4.1)

The second-order equation for the lateral dynamics can be similarly derived as
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r cosα0 −N ′
p sinα0

2
− Yβ

V0

6
∆̇β

+
51
N ′

r sinα0 +N ′
p cosα0

2
− g

V0

6
∆̇µ

+
5
N ′

β + Yβ

V0

1
N ′

r cosα0 −N ′
p sinα0

26
∆β

+
5
g

V0

1
N ′

r cosα0 −N ′
p sinα0

26
∆µ = 0

∆̈µ +
51
L′

r cosα0 − L′
p sinα0

26
∆̇β −

51
L′

r sinα0 + L′
p cosα0

26
∆̇µ

−
5
L′

β + Yβ

V0

1
L′

r cosα0 − L′
p sinα0

26
∆β

−
5
g

V0

1
L′

r cosα0 − L′
p sinα0

26
∆µ = 0

(4.2)

where

N ′
β = Nβ cosα0 − Lβ sinα0, L′

β = Lβ cosα0 +Nβ sinα0,

N ′
p = Np cosα0 − Lp sinα0, L′

p = Lp cosα0 +Np sinα0,

N ′
r = Nr cosα0 − Lr sinα0, L′

r = Lr cosα0 +Nr sinα0.

(4.3)

Once the governing equations are established, the next step is to obtain the required
aerodynamic derivatives by mapping the database coefficients into the coefficients
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appearing in the EOM[7].

CX,0 = −CD,0

CXu = −M · CDM

CXα = −CDα

CZ,0 = −CL,0

CZu = −M · CLM

CZα = −CLα

Cmu = M · CmM

Xu = qdynS

mV0
(2CX,0 + CXu)

Xw = qdynS

mV0
CXα

Xα = qdynS

m
CXα

Zu = qdynS

mV0
(2CZ,0 + CZu)

Zw = qdynS

mV0
CZα

Zα = qdynS

m
CZα

Mu = qdynSc

IyV0
Cmu

Mw = qdynSc

IyV0
Cmα

Mα = qdynSc

Iy

CMα

(4.4)
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Yv = qdynS

mV0
CSβ

Lv = qdynSb

IxV0
Clβ

Nv = qdynSb

IzV0
CNβ

All remaining derivatives vanish because, by assumption, the rate-damping coeffi-
cients are set to zero:

Clp = 0
Cmq = 0
Cnr = 0

(4.5)

4.1 Stability criteria
We can observe the longitudinal static instability condition[6] Slon during the
trajectory.

(g/V0)(ZuMα − ZαMu) = 0 (4.6)
As shown in Fig.4.1, the static-instability indicator never crosses zero; hence no

0 200 400 600 800 1000 1200 1400
t	[s]

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

S l
on
g

Figura 4.1: Static instability condition along the trajectory

onset of longitudinal static instability is predicted. Consistently, the eigenmotion
analysis shows that both the short-period and phugoid modes remain dynamically
stable (negative real parts). The small initial peak—approaching but not reaching
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zero—coincides with the early segment where the phugoid exhibits a positive real
part, i.e., a brief dynamic instability.
From the same reference[6], two static-instability criteria are available for the lateral
dynamics.

S1
lat = (g/V0)[(L′

βN
′
r −N ′

βL
′
r) cosα0 − (L′

βN
′
p −N ′

βL
′
p) sinα0] = 0

S2
lat = (N ′

βL
′
p − L′

βN
′
p) cosα0 − (L′

βN
′
r −N ′

βL
′
r) sinα0

+ gL′
β/V0 + (Yβ/V0)(N ′

rL
′
p − L′

rN
′
p) = 0

(4.7)

However, they cannot be applied here because, by hypothesis, all rate-damping
derivatives are set to zero. (Under this assumption S1

lat is always zero, while S2
lat

collapses to the trivial condition gL′
β/V0 = 0).

4.2 Longitudinal modes
In this section, the principal features of the longitudinal motion are evaluated using
literal approximations. Along the trajectory, some of the underlying assumptions
are violated; where this occurs, discrepancies are expected and are discussed at the
corresponding points.

• «It is next assumed that because the velocity varies per the slower phugoid
mode, the rate of change of the perturbed velocity ∆̇V during the short-period
motion is negligible, that is, ∆̇V ≃ 0»[6]

• «However, if these two pairs of eigen- values (SP and P) approach each other
in the complex plane,the assumption of zero rate of change of perturbed
velocity will progressively worsen, and so will the accuracy of the literal
approximation.»[6]

The short period damping and frequencies are given by:
ω2

SP = −[Mα −Mq(Zα/V0)], 2ζSPωSP = −(Mq + Zα/V0) (4.8)
Under our assumptions they become

ωSP =
ñ

−Mα, ζSP = −Zα/V0

2ωSP

(4.9)

As we can observe in Fig.4.5 and Fig.4.6 the literal approximations reproduce the
short-period behavior well, despite some violations of the above assumptions.
We now apply the same literal-approximation framework to the phugoid mode

ω2
P = g(MuZα −MαZu)

MαV0 −MqZα

2ζPωP = −Xu + (Xα − g)MuV0 −MqZu

MαV0 −MqZα

(4.10)
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Under our assumptions they become

ω2
P = g(MuZα −MαZu)

MαV0

2ζPωP = −Xu + (Xα − g)MuV0

MαV0

(4.11)

As we can observe in Fig.4.7 and Fig.4.8 the literal approximations capture the
phugoid behavior over most of the trajectory, with the exception of localized
peaks in both the natural frequency and the damping ratio. For an oscillatory
mode, the damping ratio must satisfy 0 ≤ ζ ≤ 1. The observed peaks likely
stem from the absence of the damping derivatives, and their effect becomes more
pronounced in the final portion of the trajectory, where aerodynamic forces increase.

At this point, since the literal approximation reproduces the short–period be-
haviour well even in the absence of an explicit damping coefficient, one may use the
literal formula to determine the damping, taking as reference the results obtained
from the modal analysis and from the inspection of matrix A. The idea is therefore
to use ωSP,eig in place of ωSP so that from Eq.4.8 we obtain:

Mq = −2ζSP,eigωSP,eig − Zα/V0 (4.12)
The damping relation is chosen because it does not contain Zα in the denominator;
at the beginning of the trajectory is small and would make the result diverge. The
evolution of this coefficient is shown in Fig.4.9.

4.3 Lateral Modes
For the lateral modes, the literal approximations are not used, since in this thesis
the damping derivatives are assumed to be zero; however, these derivatives appear
frequently in the literal formulae and would therefore lead to indeterminate or trivial
solutions. Lateral stability is instead assessed by following the approach proposed
by Connor S. Hoopes and Timothy T. Takahashi (Arizona State University, Tempe,
AZ 85287)[1]. In that work, the so-called Evolved Bihrle–Weissman Chart (Fig.4.2)
is employed, that is, a diagram in which the horizontal axis represents Cnβ,dyn

and the vertical axis represents the quantity LCDP . The former represents the
dynamic directional stability, whereas the latter, the Lateral Control Departure
Parameter (LCDP), is a measure of the effectiveness of the aerodynamic surfaces
in providing lateral–directional control:

CnβDY N
= dCn

dβ
cosα− dCl

dβ

3
IZZ

IXX

4
sinα

LCDP = dCn

dβ
− dCl

dβ
·

dCn

d aileron
dCl

d aileron

(4.13)
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An aircraft with positive directional static stability, dCn/dβ > 0, tends to cancel a
lateral gust disturbance by generating a yawing moment. However, this response
takes the aircraft away from straight-and-level flight. Therefore, the vehicle must
also exhibit positive dynamic directional stability, CnβDY N

> 0 , producing a coupled
roll–yaw response that slowly oscillates and brings the aircraft back to straight-and-
level flight, thereby eliminating the lateral wind disturbance. Aircraft can exhibit

Figura 4.2: Evolved Bihrle–Weissman stability criteria screening chart. Red
represents unfavorable flying qualities. Green represents favorable flying qualities.
Yellow represents a region where secondary factors govern flying qualities.[1]

positive static but negative dynamic stability; this occurs when dCl/dβ >> 0.
Conversely, they may have negative static but positive dynamic stability, i.e.
dCl/dβ << 0, meaning that the dihedral effect is very strong. Since directional
stability decreases with increasing Mach number, hypersonic configurations typically
exploit a pronounced dihedral effect, characteristic of highly swept wings and high
angle-of-attack flight.
To investigate the two coefficients, and in particular the LCDP, it is necessary to
evaluate the derivatives of yawing and rolling moments with respect to aileron
deflection. For the reference vehicle (HORUS2B), the elevons are used as ailerons.
In the last part of the trajectory, however, the elevons are actually deflected
symmetrically to compensate for trim that the body flap can no longer provide
because it has reached its mechanical limit. For the present analysis the elevons are
therefore assumed inactive (δe = 0◦) , and the derivatives are computed about this
condition using the same procedure adopted in the previous chapter. Specifically,
for each angle of attack and Mach number, a central difference is taken between
δe = 10◦ and δe = −10◦. Figure 4.3 shows the results obtained from Space Shuttle
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Figura 4.3: Evolved-Bihrle-Weissman Chart based on Shuttle Flight Test[1]
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Figura 4.4: Evolved Bihrle-Weissman Chart based on HORUS2B

flight tests, whereas 4.4 presents the results derived in this thesis for the Horus2B
vehicle. The qualitative behaviour is essentially the same and the same regions of
the chart are traversed. This supports the validity of the present results, given the
similarity between the two configurations (Space Shuttle and Horus2B):

• Iz/Ix = 8.01 for Space Shuttle [1]

51



Model Approximations

• Iz/Ix = 6.8 for Horus2B

As we can see we find the same results of the reference[8]:

• At the highest Mach numbers, in the early part of re-entry when the dynamic
pressure is low and the Orbiter is flown at a high nose-up attitude, the
operating point lies close to the boundary between the stable region “A” and
the unstable regions “B” and “C”. In this regime Cnβ,DYN is strongly positive,
whereas the open–loop (LCDP) is almost zero, indicating that closed–loop
RCS control is required to maintain coordinated turns.

• As the vehicle decelerates and lowers its nose to enter the supersonic gliding
phase, Cnβ,DYN decreases while (LCDP) remains close to zero. The operating
point then moves along the boundary between the unfavourable regions “C”
and “F”, where large roll reversals can lead to control–induced departure or,
at best, to only marginal departure and spin resistance.

The results obtained in this chapter are consistent with those presented in the
previous and in the following chapters. In Chapter 3 a divergent lateral mode was
observed along the entire trajectory. In the next chapter it will be shown that, for
lateral control, the RCS thrusters must remain active throughout the trajectory in
order to maintain adequate control of the vehicle.
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Figura 4.5: Short period frequency along the trajectory
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Figura 4.6: Short period damping along the trajectory
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Figura 4.7: Phugoid frequency along the trajectory
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Figura 4.8: Phugoid frequency along the trajectory
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Figura 4.9: Pitch damping coefficient along the trajectory
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Capitolo 5

LQR Control design

In this chapter, the vehicle controller will be analysed. First, the linearized
and decoupled equations of the longitudinal and lateral–directional subsystems
are derived and examined, and the feedback gains are computed by means of a
Linear Quadratic Regulator (LQR). The response of the resulting linearized system
is then analysed. Finally, the complete six-degree-of-freedom nonlinear model
is implemented to investigate the behaviour of the vehicle along the reference
trajectory.

5.1 Linear Quadratic Regulator (LQR)
Suppose[4], we have a state-space system given by

ẋ = Ax +Bu
y = Cx +Du

(5.1)

In case of state-feedback, the control law is given by
u = −Kx (5.2)

where K is a time independent feedback or gain matrix. This equations yields to
ẋ = (A−BK) x (5.3)

The characteristic equation, which gives the eigenvalues and corresponding eigen-
motion of the closed loop system is given by

det|A−BK − λI| = 0 (5.4)
As becomes obvious while studying the above equation, we can change the eigenva-
lues of the closed loop system by varying the gain matrix K. Whether the system
will be controllable, however is not only depending on the values of these gains[4].
Let’s break down two definitions:
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• Controllability: Given a linear time-invariant system, the state x(t) is said
to be controllable at t = t0 if there exists a piece-wise continuous (and finite)
input u(t) that will drive the state to any final state x(tf) for a finite time
tf ≥ t0. If every state x(t0) of the system is controllable in a finite time
interval, the system is said to be completely state controllable or simply state
controllable.

• Observability: Given a linear time-invariant system , the state x(t) is said to
be observable if given any input u(t), there exist a finite time tf ≥ t0 such
that the knowledge of (i) u(t) for t0 ≤ t < tf (ii) the matrices A, B, C and
D and (iii) the output y(t) for t0 ≤ t < tf , are sufficient to determine x(t0).
If every state of the system is observable for a finite time tf , we say that the
system is completely observable, or simply observable.

To check whether a system is controllable and observable, it is necessary and
sufficient that the controllability matrix

[B,AB,A2B, ..., An−1B] (5.5)

and observability matrix

[CT , ATCT , (AT )2CT , ..., (AT )n−1CT ] (5.6)

have a rank n, i.e., the dimension of the state vector x. When not all of the
eigenmotions are part of the observable and controllable state space, then only
those eigenmotions that are part of it can be influenced by state feedback.
The gain matrix can be computed either by a direct method called pole placement,
where the matrix K is computed such that closed loop performances are reached,
or by an indirect method called Quadratic Optimal Control where a criterion cost
matrix is minimised. In this thesis the last one is used.
The cost matrix is defined by

J =
Ú ∞

0
(xTQx + uTRu) dt (5.7)

where the first term represents the control deviation end the second term represent
the control effort. By varying Q and R more weight can be given to the control
deviation, resulting in a faster response, or the control effort, giving smaller control
signals. A good first choice is given by the Bryson’s Rule:

Q = diag

C
1

∆x2
1max

+ 1
∆x2

2max

+ ...+ 1
∆x2

nmax

D

R = diag

C
1

∆u2
1max

+ 1
∆u2

2max

+ ...+ 1
∆u2

nmax

D (5.8)
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where ∆xi is the maximum allowable amplitude of the i-th element of the state
vector and ∆ui is the maximum allowable value of the j-th control.
To find an expression for K we substitute eq.5.2 in eq.5.7, which yields to

J =
Ú ∞

0
xT (Q+KTRK)x dt (5.9)

To solve the above equation we treat the integrand as a fictious energy like

V (x) = xTPx (5.10)

Now by substituing and differentiating the above equations we get the final equation
to get the matrix P , also known as the Riccati equation (all the mathematical
details are reffered to [4]):

ATP + PA− PBR−1BP +Q = 0 (5.11)

Once we get P , the matrix K follows from

P = Q+KTRK (5.12)

Fortunately, several software tools, such as MATLAB, can compute this equation
once the matrices A, B, Q, and R are specified.
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5.2 Longitudinal controller
To decouple the pitch motion from the lateral motion, the perturbations ∆β and
∆σ are set to zero. In addition, only the rotational dynamics are considered, so
the contributions of ∆V , ∆γ and ∆R are neglected. This is justified because the
translational dynamics evolve at much lower frequencies than the high-frequency
rotational dynamics. Under these approximations, the following system is obtained

∆q̇ = 1
Iy

A
∂Cm

∂α
∆α + ∂Cm

∂δe

∆δe

B
qdynSc+ ∆My

Iy

∆α̇ = ∆q − 1
mV

∂CL

∂α
qdynS∆α

(5.13)

The elevon deflection angle δe is defined as the symmetric combination of the left
and right elevon, i.e.,

δe = δe,l + δe,r

2 (5.14)

In the state-space form the above system can be written as

C
∆q̇
∆α̇

D
=


0 1

Iyy

∂Cm

∂α
qdynSrefcref

1 − 1
mV0

∂CL

∂α
qdynSref


C

∆q
∆α

D
+

 1
Iyy

∂Cm

∂δe

qdynSrefcref
1
Iyy

0 0

 C∆δe

∆Ty

D
.

(5.15)
so the matrices A and B are equal to

A =


0 1

Iyy

∂Cm

∂α
qdynSrefcref

1 − 1
mV0

∂CL

∂α
qdynSref



B =

 1
Iyy

∂Cm

∂δe

qdynSrefcref
1
Iyy

0 0


(5.16)

Recalling Chapter 3, where the eigenvalues of the homogeneous state equation
were computed, the same analysis is now carried out for the simplified system ,
flying along the nominal trajectory. The results are reported in Figs.5.1-5.4. A
comparison with the corresponding plots in chapter 3 reveals a similar behaviour
of the eigenvalues, confirming that the decoupling of the two types of motion is
justified. The eigenmotion shown in Fig. 5.1 corresponds to the short-period mode.
Neglecting the translational motion has therefore not affected this mode, and the
assumption of frequency separation is validated.
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Figura 5.1: Variation of the eignevalues of longitudinal motion along the trajectory

Figura 5.2: Details around the origin of the eignevalues of longitudinal motion
along the trajectory
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Figura 5.3: Variation of the imaginary parts of the eignevalues of longitudinal
motion along the trajectory
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Figura 5.4: Variation of the real parts of the eignevalues of longitudinal motion
along the trajectory
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The selection of the control mode follows from dynamic pressure and Mach
constraints (Fig.5.5). As we can see the yaw thrusters will always be avaible since
in this thesis we never reach M < 1. Furthermore we use the cost criterion in table
5.1. We can individuate three phases for the control mode:

1. Only RCS control mode

2. Hybrid control mode

3. Only surfaces control mode

Figura 5.5: Entry control modes for HORUS[3]

RCS Hybrid Aero
∆qmax 1.5 °/s 1.5 °/s 4 °/s
∆αmax 1 ° 2.5 ° 2 °

Tabella 5.1: Cost criterion longitudinal controller

At this point we can compute the gains along the trajectory. This gains we’ll be
used for a simple proportional law of the form:

∆u = −K∆x (5.17)

in particular
∆δe = −Ke1∆q −Ke2∆α

∆MT,y = −Ky1∆q −Ky2∆α
(5.18)
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where

∆q = q − qc (rad/s),
∆α = α− αc (rad),

with qc = commanded pitch rate and αc = commanded angle of attack.

At this point, the gains can be computed along the trajectory. As shown in
Figs. 5.6 and 5.7, these gains vary significantly due to the large variation in
dynamic pressure. Therefore, the gain interpolation must be carried out carefully
in order to avoid actuator command spikes and a potentially divergent control
response.
To examine the behaviour of the linearized system, the vehicle is commanded to per-
form a 1° step increase in angle of attack at two different time instants, (t1 = 50 s)
and (t2 = 900 s). The feedback gains are set to K(t1) and K(t2), respectively. As
can be seen in Figs.5.8,5.9 the system responds very well, with a steady-state error
of only 0.2 ° and 0.1 ° for time t1 and t2 respectively.
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Figura 5.7: Jet gains along the trajectory

64



LQR Control design

t	[s]
0 2 4 6 8 10 12 14 16 18 20

Ao
A	
[°]

40

40.2

40.4

40.6

40.8

41

41.2

41.4

Figura 5.8: Step response at t = 50 s

t	[s]
0 2 4 6 8 10 12 14 16 18 20

Ao
A	
[°]

40

40.2

40.4

40.6

40.8

41

41.2

41.4

41.6

41.8

42
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5.3 Lateral controller

As for the longitudinal controller, the same type of analysis is now carried out for
the lateral controller. To investigate the lateral rotational dynamics, i.e. the time
evolution of β and σ, the symmetric motion (variation of α with time) is excluded
by setting ∆α = 0 and neglecting the translational motion. The resulting system is

∆ṗ = 1
Ixx

A
∂Cl

∂β
∆β + ∂Cl

∂δa

∆δa

B
q̄eSrefbref + ∆MT,x

Ixx

, (5.19)

∆ṙ = 1
Izz

A
∂Cn

∂β
∆β + ∂Cn

∂δa

∆δa + ∂Cn

∂δr

∆δr

B
q̄eSrefbref + ∆MT,z

Izz

, (5.20)

∆β̇ = sinαe ∆p− cosαe ∆r − ge

Ve

cos γe cosσe ∆σ, (5.21)

∆σ̇ = − cosαe ∆p− sinαe ∆r +
3
ge

Ve

cos γe cosσe − Le

mVe

4
∆β + tan γe

mVe

cosσeLe ∆σ.

(5.22)

Since damping derivatives such as Clp and Cnr are not included in the present aero-
dynamic model, the corresponding terms are absent from the equations, therefore
there is no natural damping. The available controls consist of the aileron, rudder,
roll jets and yaw jets.
The aileron deflection angle δa is defined as the asymmetric combination of the left
and right elevon, i.e.,

δa = δe,l − δe,r

2 (5.23)

The rudder deflection angle δr is modelled such that only one of the two rudders
can move at a time, and only outward, corresponding to a positive deflection. In
particular if δr < 0, δr = δr,r

else δr > 0, δr = δr,l

(5.24)

In the state-space form, the above equations are written as


∆ṗ
∆ṙ
∆β̇
∆σ̇

 = A


∆p
∆r
∆β
∆σ

+ B


∆δa

∆δr

∆Tx

∆Tz

 . (5.25)
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with

A =



0 0 1
Ixx

∂Cl

∂β
qdynSrefbref 0

0 0 1
Izz

∂Cn

∂β
qdynSrefbref 0

sinα0 − cosα0 0 − g0

V0
cos γ0 cosσ0

− cosα0 − sinα0
g0

V0
cos γ0 cosσ0 − L0

mV0

tan γ0

mV0
cosσ0L0


. (5.26)

and

B =



1
Ixx

∂Cl

∂δa

qdynSrefbref 0 1
Ixx

0

1
Izz

∂Cn

∂δa

qdynSrefbref
1
Izz

∂Cn

∂δr

qdynSrefbref 0 1
Izz

0 0 0 0

0 0 0 0


. (5.27)

As done for the longitudinal motion, the eigenvalues of the lateral reduced system
are now examined along the trajectory to see whether their evolution changes
significantly. By comparing these eigenvalue histories with those of the full model,
the assumption of decoupled symmetric and asymmetric motion can be validated.
The differences between the corresponding eigenplots should be found in an absence
of the symmetric motion and the neglected terms of the translational motion. The
resulst are shown in figs.5.10-5.13.
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Figura 5.10: Variation of the eignevalues of lateral motion along the trajectory

Figura 5.11: Details around the origin of the eignevalues of lateral motion along
the trajectory
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As we did for the longitudinal controller we can choose some constraints for
the weigth matrices of the LQR (based on the literature[3]) Once the matrices

Tabella 5.2: Definition of weighting terms for the HORUS lateral controller

Roll control Yaw control
∆pmax (◦/s) ∆σmax (◦) ∆rmax (◦) ∆βmax (◦)

RCS 1.5 4 0.5 2
Hybrid 4 4 5 2
Aero 10 10 5 2

A, B, Q, R have been defined, the LQR feedback gains can be computed. As
shown in Figs. 5.14–5.17, these gains vary significantly along the trajectory, both
because of the different control modes (RCS only, hybrid, and purely aerodynamic)
and because of the strong variation in dynamic pressure. As in the longitudinal
case, the interpolation of the controller gains must therefore be carried out carefully
when selecting the gains to be used.
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Figura 5.14: Ailerons gains along the trajectory
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Figura 5.15: Rudders gains along the trajectory
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t[s]
0 200 400 600 800 1000 1200 1400

-2

0

2

4

6

8

10

12

Ya
w
	je
ts
	g
ai
ns

#105

Kzp
Kzr
Kz-
Kz<

Figura 5.17: Yaw jets gains along the trajectory
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Then we can implement a simple proportional control law like:

∆δa = −Kap∆p−Kar∆r −Kaβ∆β −Kaσ∆σ
∆δr = −Krp∆p−Krr∆r −Krβ∆β −Krσ∆σ

∆MT,x = −Kxp∆p−Kxr∆r −Kxβ∆β −Kxσ∆σ
∆MT,z = −Kzp∆p−Kzr∆r −Kzβ∆β −Kzσ∆σ

(5.28)

or in matrix form 
∆δa

∆δr

∆MT,x

∆MT,y

 = −


Kap Kar Kaβ Kaσ

Krp Krr Krβ Krσ

Kxp Kxr Kxβ Kxσ

Kzp Kzr Kzβ Kzσ




∆p
∆r
∆β
∆σ

 (5.29)

where

• ∆p = p− pc, with pc commanded pitch rate

• ∆r = r − rc, with rc commanded yaw rate

• ∆β = β − βc, with βc commanded sideslip angle (nominally zero)

• ∆σ = σ − σc, with σc commanded bank angle

As for the longitudinal controller, we now analyse the response of the lateral system
to a step command of ∆σ = 1 °. As shown in Figs. 5.18 and 5.19, the overshoot is
reduced and the commanded bank angle is tracked accurately. However, a small
steady-state error in β, remains, due to the low dynamic pressure and the weak
aerodynamic damping. Conversely, in Figs. 5.20 and 5.21 a larger overshoot and
a longer settling time are observed, although the commanded angle is eventually
reached and the disturbance in β is eliminated.
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5.4 Results
In these sections, the complete nonlinear dynamic model of the vehicle is imple-
mented. The full six–degree-of-freedom equations of motion are integrated, so that
the closed-loop behaviour can be assessed along the entire reference trajectory.
This allows one to verify the validity of the simplifying assumptions adopted in
the linear analysis and to identify possible nonlinear effects, couplings, or actuator
limitations that may degrade performance.

5.4.1 Constant control gains
It was observed that the gains taken directly from the linear analysis cannot be used
as such for a gain-scheduled controller. In fact, the resulting control commands
would be excessively aggressive, driving the system into the nonlinear regime that
was intentionally neglected in the linear model, and causing the controller to diverge.
In this first assessment, the gains were therefore fixed to constant values tuned by
trial and error, while in the following section a variable-gain (scheduled) controller
will be implemented, which provides superior performance. Consequently, the
constant-gain controller presented in this section is included mainly to demonstrate
that closed-loop control is feasible, although clearly not optimal.
The tuning process was iterative. As an initial guess, all gains were set equal to
their values at the beginning of the trajectory. While this configuration provided
acceptable performance in the early, high-altitude phase, it caused divergence in the
final segment, where aerodynamic effects become dominant and the aerodynamic
control surfaces can no longer be kept effectively inactive. The gains were then
progressively modified, focusing on those values that triggered divergence in the
first trials, until a compromise was found between stability, tracking performance,
and control effort. The resulting gain configuration adopted in the following
nonlinear simulations is reported in the table below. These are the gains selected
for the controller; they are kept constant at these values over the entire trajectory.
The corresponding time instants and dynamic pressures are reported only for
completeness. Hence, as can be seen, a hybrid control strategy is adopted along
the entire trajectory: throughout re-entry the aerodynamic surfaces and the RCS
thrusters are used in synergy, in contrast with the approach adopted by Mooij. [3]
(Fig.5.5)
The time histories reported in Figs. 3.2 and 5.23 show that the commanded angle
of attack is tracked very closely and remains essentially equal to its nominal profile.
Small spikes can be observed in the angle of attack; these are most likely associated
with the instants in which a bank reversal is commanded. During these manoeuvres
the elevons switch from a symmetric (elevator–like) to an asymmetric (aileron–like)
configuration, so that the longitudinal control authority is temporarily reduced
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before being rapidly recovered by the controller. Overall, we observe that the
error in angle of attack ranges approximately between +3◦ and −1◦ (Fig.5.24).
Moreover, we observe spikes in β as well, but the controller succeeds in cancelling
the disturbance and driving the vehicle back to β = 0. Similar spikes are visible
in the bank angle response, but their effect on the overall trajectory is limited, as
evidenced by the ground track in Fig. 5.26, which closely follows the reference
path. We also analyse the actuation of the aerodynamic surfaces and the RCS
(Figs.5.27-5.28). Overall, the system is not subjected to persistently demanding
commands but we have large oscillations; instead, the response is characterised by
relatively steady behaviour with some peaks. In a more refined implementation, the
continuous RCS torque commands should be shaped by an appropriate modulation
scheme, such as Pulse-Width Pulse-Frequency (PWPF) modulation, while the
sudden deflections of the aerodynamic surfaces should be passed through suitable
actuator and command filters. This would smooth the control inputs and yield
a more realistic representation of both jet firing patterns and surface motion, as
expected in an actual flight control system.
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Tabella 5.3: Controller gains and corresponding operating points.

Gain Value t (s) qdyn (N/m2)
Ke1 −12.711 1000 4324.2
Ke2 −19.507 1000 4324.2
Ky1 1.02 × 106 50 19.01
Ky2 5.88 × 105 50 19.01
Kap −0.47481 1000 4324.2
Kar −14.416 1000 4324.2
Kab 28.159 1000 4324.2
Kas 30.894 1000 4324.2
Krp −0.5524 1180 7329.4
Krr 0.13557 1180 7329.4
Krb 0.38057 1180 7329.4
Krs 0.28242 1180 7329.4
Kxp 1.04 × 105 50 19.01
Kxr 11581 50 19.01
Kxb 27107 50 19.01
Kxs −17231 50 19.01
Kzp −40575 50 19.01
Kzr 1.01 × 106 50 19.01
Kzb 1.49 × 105 50 19.01
Kzs −78755 50 19.01
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5.4.2 Gain scheduling
As discussed in the previous section, the use of constant feedback gains may provide
acceptable performance, but it leads to overly aggressive control commands and
does not yield an optimal solution. In particular, keeping the gains constant would
require the RCS thrusters to be employed along the entire trajectory, resulting in
an increased propellant requirement. In this section, trajectory-dependent gains
computed a priori from the linearized model (gain scheduling) are implemented.

First, the weighting matrices Q and R had to be modified. For the longitudi-
nal channel they were left unchanged, so the corresponding gains exhibit the same
trends as in the previous section (Fig.5.6-5.7). Conversely, for the lateral–directional
control a larger weight was assigned to the control-effort matrix R. Since the initial
divergence of the controller was mainly caused by overly aggressive commands, the
most natural place to intervene is precisely in R, by penalizing surface deflections
more strongly so as to limit actuator activity and keep the response closer to the
regime assumed in the linear model.
In particular, the R matrix of the lateral–directional controller takes the form

R = diag(1 × 107 · [1/∆δ2
a,max, 1/∆δ2

r,max, 1/∆M2
x,max, 1/∆M2

z,max]) (5.30)

where all the coefficients have been scaled by a factor of 1 × 107.
Subsequently, it was found that this modification alone was sufficient to drive the
vehicle along the desired commands; however, the response exhibited excessive
jitter. This was mainly due to the aileron command still being somewhat too weak,
while the rudder contribution was almost negligible and the RCS thrusters were
effectively unused. The control inputs were therefore further rescaled, by trial and
error, by the following factors:

Ka,i = 50 ·Ka,i

Kr,i = 1 × 104 ·Kr,i

Kx,i = 1 × 105 ·Kx,i

Kz,i = 1 × 105 ·Kz.i

with i = [p, r, β, σ]. As can be seen, the first step was to force the LQR controller
to be very conservative with the control effort by scaling the R matrix by a large
factor (Eq.5.30). The resulting gains were then increased again, since the initial
penalization had effectively made the commands too “cheap” to be useful. A
more balanced choice would probably have been to adopt slightly more aggressive
commands from the outset, for instance by scaling R by a smaller factor, which
might have avoided the need for this additional manual rescaling of the gains.
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Nevertheless, this is the tuning process adopted in the present work, and since it
leads to satisfactory performance (as shown in the following results), it has been
retained in this form.
Finally, the resulting gains were parameterized with respect to the dynamic pressure.
Since the trajectory provides the dynamic pressure as a function of time and the
LQR design yields the gains as a function of time, the gains can be stored as
functions of dynamic pressure and subsequently used for gain scheduling (Fig.5.29).
To make the simulation more realistic, the aerodynamic control surfaces were
modeled with both rate limiting (20◦/s) and saturation, in accordance with the
guidelines suggested by Mooij[3].
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Figura 5.29: Lateral controller gains as function of dynamic pressure
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As shown in Fig.5.30, the angle of attack is accurately tracked, while the bank
angle exhibits a slight delay. Nevertheless, Fig.5.31 indicates that the errors remain
small, on the order of 1.2◦ for the angle of attack, while for the bank angle we can
see an error of higher magnitude (120◦) because the reversals are made with some
delay, but this won’t affect the trajectory.
As can also be observed here, small spikes appear in the angle of attack, although
with a smaller amplitude than in the constant–gain case. These spikes occur in
correspondence with the bank reversals. The sideslip angle β is kept close to zero
for most of the trajectory and is excited only during the bank reversals, after
which it is driven back to zero with some oscillations. In terms of magnitude, the
disturbance in β is reduced with respect to the constant–gain controller.

We also observe that the commanded surface deflections now have a smaller magni-
tude, which results in a smoother and more stable vehicle response. The moments
generated by the RCS thrusters are likewise less aggressive, except in the initial
phase, where the thrusters about the y- and z-axes briefly reach saturation. Further-
more, the roll and pitch thrusters are switched off in accordance with the scheduled
gains and the evolution of the dynamic pressure, whereas the yaw thrusters remain
available throughout the trajectory, since the Mach number never drops below unity.

Finally, Fig. 5.36 shows that the final destination, Kourou, is reached without
difficulty.
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Figura 5.30: Angle of Attack and bank angle along the trajectory
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Figura 5.31: Angle of Attack error and bank angle error along the trajectory
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Figura 5.32: Angle of sideslip along the trajectory
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Figura 5.33: Elevons deflection along the trajectory
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Figura 5.34: Rudders deflection along the trajectory
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Figura 5.35: RCS Thrusters along the trajectory
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Figura 5.36: Vehicle ground tracking
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Capitolo 6

Conclusions

This thesis has investigated the lateral–directional stability and control of a hyper-
sonic re-entry vehicle, using the HORUS-2B configuration as reference. Starting
from a well-established mission profile towards Kourou, a comprehensive analysis
framework has been developed, ranging from open-loop mode identification to the
implementation of literal approximations and the design of an LQR-based attitude
controller embedded in a full 6-DOF simulation.

In the first part of the work, the open-loop dynamic behaviour of HORUS-2B has
been characterised along the reference re-entry trajectory. The evolution of the
main longitudinal and lateral–directional modes has been analysed, highlighting
those regions where the vehicle approaches critical stability margins or exhibits
strong coupling between roll, yaw, and sideslip dynamics.

The central contribution of this thesis has been the implementation and eva-
luation of literal (closed-form) approximations of the lateral-directional modes and
longitudinal modes originally developed for aircraft operating in more conventional
flight regimes. These approximations have been adapted to the specific geome-
try and hypersonic operating conditions of HORUS-2B, and then quantitatively
compared with the "exact" eigenstructure obtained from the linearised 6-DOF
model along the trajectory. Within the range of conditions where their underlying
assumptions remain valid, the literal models have shown a good capability to
reproduce the qualitative behaviour and, in many cases, the quantitative trends of
the full system. This suggests that, when used carefully, such approximations can
serve as useful tools for preliminary design, parametric studies, and the formulation
of departure criteria for Shuttle-class and Space-Rider-class vehicles. At the same
time, the analysis has also clarified their limitations, in particular in those regions
where strong cross-coupling and rapid parameter variations violate the simplifying
hypotheses.
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In the final part of the thesis, an LQR-based attitude controller has been de-
signed for the reference vehicle, following the general control architecture previously
proposed in the literature but adopting an alternative tuning and scheduling of
the feedback gains. Although the controller explicitly targets attitude variables, its
performance has been assessed within a fully non-linear 6-DOF simulation. The
resulting vehicle ground track confirms that, under the adopted assumptions and
modelling choices, the controlled vehicle is able to follow the reference mission and
reach the vicinity of Kourou, thereby linking the attitude-control design to tangible
trajectory- and mission-level outcomes.

Overall, the work carried out in this thesis demonstrates that literal approxima-
tions, when properly adapted and validated, can provide a compact and insightful
representation of hypersonic lateral-directional and longitudinal dynamics, com-
plementing more detailed numerical models. The LQR-based attitude control
study shows that relatively simple linear techniques, embedded in a suitable gain-
scheduling framework, can still play a significant role in the guidance and control
of modern reusable re-entry vehicles. Nonetheless, the results should be interpre-
ted in the light of the simplifying assumptions adopted, in particular regarding
aerodynamic modelling, actuator dynamics, and the absence of model uncertainty
and disturbances in the control design.

6.1 Future works

Future work should first address the main limitation of the present analysis, namely
the lack of reliable aerodynamic damping derivatives in the model. In this thesis
these derivatives were set to zero, which is acceptable for a first-order assessment but
becomes critical when applying literal approximations to the dynamic modes and to
departure criteria, where damping terms play a central role in determining modal
damping and wing–rock onset.[6] A natural extension would therefore be to obtain
consistent estimates of the damping derivatives—either from high-fidelity CFD and
forced-oscillation wind-tunnel campaigns to re-evaluate the literal approximations
and stability margins for HORUS-2B in the relevant hypersonic regime. In parallel,
the LQR attitude controller should be exercised in a more realistic environment by
introducing actuator and surface-deflection dynamics (rate limits, position limits
and appropriate filters such as PWPF for the RCS), as well as sensor noise and
trajectory perturbations modelled through Monte-Carlo campaigns; this would
allow a statistical assessment of robustness and a more faithful representation
of the closed-loop 6-DOF behaviour. Finally, a systematic parametric study of
mass properties, with particular emphasis on centre-of-gravity location, should be
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Conclusions

performed to quantify its impact on trim, body-flap deflection and available control
authority. Since trim strategy directly modifies the effective flight condition on
the Bihrle–Weissman diagram[8] and can introduce non-trivial lateral–directional
control-coupling effects, as recently highlighted for the Space Shuttle Orbiter,
an analogous analysis for HORUS-2B would clarify how sensitive its departure
boundaries and handling qualities are to CG shifts and alternative pitch-trim
solutions.
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Appendice A

Eigenmotion results

In the following tables the eigenmotion main characteristics of the vehicle are
reported.
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1 (t = 5 s).
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Tabella A.2: HORUS eigenvalues and corresponding characteristic values for time point
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Tabella A.3: HORUS eigenvalues and corresponding characteristic values for time point
100 (t = 396 s).
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Tabella A.4: HORUS eigenvalues and corresponding characteristic values for time point
150 (t = 596 s).

97



Eigenmotion results

λ
i

Sh
or

t-
pe

rio
d

os
ci

lla
tio

n
Ph

ug
oi

d
La

te
ra

lo
sc

ill
at

io
n

Pe
rio

di
c

R
ol

l
H

ei
gh

t/
Sp

ira
lM

od
e

R
e

−
1.

21
03
e

−
03

−
2.

63
60
e

−
03

3.
86

13
e

−
04

−
7.

19
01
e

−
05

9.
03

16
e

−
16

Im
0.

73
21

4
2.

07
02
e

−
03

1.
47

99
1.

07
71
e

−
03

–
P

(s
)

8.
58

19
30

35
4.

24
56

58
33
.5

∞
T

1/
2

(s
)

57
2.

73
26

2.
95

−
17

95
.1

96
40
.3

−
7.

67
47
e

+
14

ζ
(–

)
0.

00
16

53
0.

78
64

5
−

2.
60

92
e

−
04

0.
06

66
07

–
ω

n
(r

ad
/s

)
0.

73
21

4
0.

00
33

51
8

1.
47

99
0.

00
10

79
5

–
µ

i
z

θ
(◦ )

z
θ

(◦ )
z

θ
(◦ )

z
θ

(◦ )
z

∆
V

0.
92

20
0

0.
00

25
86

.6
20

1
0.

00
82

0.
33

62
0.

00
05

78
.2

10
6

0.
00

00
∆
γ

0.
00

01
0.

69
39

0.
00

00
-3

7.
90

75
0.

00
02

89
.9

87
6

0.
00

00
-8

6.
13

35
0.

00
00

∆
R

0.
38

58
-8

9.
41

61
1.

00
00

0
0.

82
93

0
1.

00
00

0
1.

00
00

∆
p

0.
00

00
0.

20
12

0.
00

00
-6

0.
23

73
0.

46
14

-8
9.

92
08

0.
00

00
6.

94
12

0.
00

00
∆
q

0.
01

88
-0

.2
73

9
0.

00
00

-7
9.

27
81

0.
00

01
0.

22
04

0.
00

00
-3

5.
43

05
0.

00
00

∆
r

0.
00

00
0.

20
12

0.
00

00
-6

0.
23

73
0.

03
80

-8
9.

92
08

0.
00

00
6.

94
12

0.
00

00
∆
α

0.
02

57
89

.8
73

9
0.

00
00

86
.6

17
8

0.
00

04
-8

9.
76

21
0.

00
00

78
.2

07
5

0.
00

00
∆
β

0.
00

00
-8

9.
70

41
0.

00
00

81
.6

17
8

0.
18

07
0.

06
43

0.
00

00
-7

9.
23

96
0.

00
00

∆
σ

0.
00

00
-4

4.
80

41
0.

00
00

-6
1.

38
29

0.
25

53
0.

06
51

0.
00

00
-2

7.
50

94
0.

00
00

Tabella A.5: HORUS eigenvalues and corresponding characteristic values for time point
200 (t = 796 s).
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Tabella A.6: HORUS eigenvalues and corresponding characteristic values for time point
250 (t = 996 s).
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Tabella A.7: HORUS eigenvalues and corresponding characteristic values for time point
300 (t = 1,196 s).
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Tabella A.8: HORUS eigenvalues and corresponding characteristic values for time point
350 (t = 1,250 s).
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