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Abstract

The increasing demand for reliability, safety, and efficiency across complex engi-
neering systems has placed Prognostics and Health Management (PHM) at the
centre of industrial innovation. In particular, accurately estimating Remaining
Useful Life (RUL) is crucial for predicting failures and extending system lifecycles.
The progressive integration of Artificial Intelligence (AI) into PHM has reshaped
the way reliability and maintenance are addressed in engineering systems emerging
as a key enabler of advanced prognostic methods and complementing or surpassing
traditional physics-based models.

This thesis presents a systematic literature review (SLR) on emerging approaches
for Al-based prognostics, analysing fifty-four peer-reviewed studies across multiple
engineering domains including aerospace, mechanical equipment, manufacturing,
wind energy, and automotive. The review identifies clear trajectories ranging from
physics-based and model-driven approaches, based on deterministic equations, to
data-driven approaches based on machine learning and deep learning architectures,
and finally toward hybrid solutions in which physical knowledge and Al models
are integrated. Deep Learning techniques such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM)
networks, autoencoders, Echo State Networks (ESN), and more recently Trans-
formers, are compared in terms of their methodological principles, applications,
strengths, and limitations. Particular attention is devoted to macrotrends such
as the widespread adoption of deep architectures and the growing emphasis on
uncertainty quantification, explainability, and trustability.

By mapping the state of the art and reflecting on their limitations, this paper
contributes to a deeper understanding of how Al can be effectively integrated into
PHM and sketches the direction in which future research and industrial adoption
are expected to move.
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Chapter 1

Introduction

In the contemporary industrial context, PHM has been established as a pivotal
element in ensuring the reliability and efficiency of complex systems. The implemen-
tation of prognostic techniques facilitates the adoption of predictive maintenance
methodologies, a strategy that has been demonstrated to engender a reduction
in unplanned downtime, whilst concomitantly extending the operational life of
components and enhancing overall system performance. In particular, predictive
maintenance supported by accurate prognostic methods is now widely recognised
as a decisive strategy for reducing maintenance costs and preventing catastrophic
failures, especially in highly critical or high-value sectors [1, 2.

Recent advances in Al, and particularly ML and DL, have given rise to a set of
data-driven methodologies that are rapidly gaining ground compared to traditional
models based exclusively on physical knowledge. The use of data-driven techniques
has demonstrated great effectiveness in predicting failures, monitoring system
health, and estimating RUL. These solutions have found widespread application
in the manufacturing, aerospace, and automotive sectors, where automation and
continuous analysis of field data are now integral to production processes [3, 4].

Historically, prognostic methods were primarily based on physical-mathematical
or statistical models. Despite the interpretability and theoretical coherence offered
by these approaches, they were frequently constrained in terms of scalability
and adaptability to dynamic and nonlinear scenarios. The advent of Al has
precipitated a paradigm shift within this domain. Data-driven methodologies exhibit
enhanced flexibility, adeptness in the management of intricate signals, the capacity
to withstand noise, and the ability to accommodate variable operating conditions
and phenomena that are intractable to model with deterministic equations [5, 6].

The increasing amount of data provided by sensors, combined with the de-
velopment of increasingly sophisticated learning algorithms, has accelerated the
progress of new prognostic solutions. However, the current literature presents a
highly heterogeneous landscape: profoundly different models, applications in widely
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Introduction

divergent domains, and a lack of common standards for performance evaluation.
This diversity makes it difficult to understand how effective, transferable, and
applicable the developed solutions are to real-world industrial systems.

In light of this scenario, the primary objective of this thesis is to conduct a SLR
aimed at critically synthesizing the most recent Al-based prognostic approaches.
The work aims to compare the performance of data-driven techniques with that of
traditional methods, highlighting their strengths, limitations, and potential critical
issues. Furthermore, the analysis aims to identify the industrial sectors in which
AT has already been most successfully integrated and highlight the barriers that
still hinder the widespread adoption of these solutions in industrial practice [7].

The thesis therefore offers a structured and critical overview of the state of
the art, with the aim of clarifying the maturity of the field, identifying research
gaps, and providing useful insights for future developments, both theoretically and
in practice. The SLR methodology ensures scientific rigour through predefined
inclusion criteria, replicable selection procedures and a systematic comparative
analysis of relevant contributions [8].

In an industry that is progressively reliant on real-time data and intelligent
automation, the integration of Al into prognostics has become a strategic imperative.
The present paper thus seeks to provide an evidence-based synthesis, with a view
to highlighting the areas in which Al is effective, the areas in which it encounters
difficulties, and the future directions that may facilitate the true operationalisation
of these technologies in complex real-world systems.

1.1 Systematic Literature Review

In recent decades, the volume of scientific publications has grown at an astonishing
rate. In any field of research, and particularly in engineering and computer science,
the challenge is no longer just to find information, but also to distinguish, organise
and critically evaluate what has already been produced. This is where the SLR
comes in: a methodology that has progressively acquired a central role in ensuring
rigour, transparency and replicability in bibliographic research.

Unlike traditional narrative reviews, which often reflect the author’s subjective
perspective and selection, the SLR aims to minimise bias by following a structured,
transparent process. As Carrera-Rivera et al.[9] have observed, conducting an SLR
involves the establishment of a clear and traceable process that commences with
the formulation of research questions, progresses to the establishment of inclusion
and exclusion criteria, and culminates in a critical synthesis of the findings. In this
sense, SLR does not merely represent a “literature summary”; rather, it constitutes
a genuine methodological experiment, the replication of which and subsequent
verification by other researchers is essential.
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The value of this approach primarily lies in its ability to provide a coherent
framework in fields where research is fragmented or excessively broad. Kitchenham
and Charters [8], who popularised the use of SLRs in software engineering, emphasise
how SLRs allow evidence to be mapped, knowledge gaps to be identified, and a
solid foundation to be provided for new lines of inquiry. Similarly, Brereton et al.
[10] demonstrate that a well-conducted systematic analysis not only summarises
the state of the art, but also constitutes a scientific contribution in its own right,
providing guidance for researchers, practitioners and decision-makers. In the
context of this thesis, the adoption of SLR is motivated by specific factors. The
aim is to collect articles on the use of artificial intelligence in PHM and to create a
comprehensive overview of emerging trends and applications across various sectors,
as well as the most promising methodologies. Due to the multidisciplinary nature
of the topic, which encompasses machine learning, deep learning, mechanical
engineering, aerospace, energy and manufacturing, it is impossible to rely on a
simple narrative overview. Only a systematic approach can ensure that important
contributions are not overlooked and that the analysis remains consistent.

In this particular instance, the methodological dimension does not represent
an incidental detail, but rather constitutes an integral component of the research
endeavour. An SLR requires the researcher to declare their choices in advance:
which databases were consulted, which keywords were used, which time periods
were covered, and which criteria were used to select or exclude documents. This
level of transparency not only makes the research more robust, but also more useful
to the scientific community, as other scholars will be able to replicate, update or
critique the process on objective grounds [11].

A further advantage of SLR is the ability to categorise collected data, facili-
tating systematic comparisons of approaches and results. In the context of PHM,
this capability enables differentiation between not only application sectors (e.g.
aerospace, automotive, wind energy and manufacturing), but also algorithm types
(e.g. Recurrent Neural Networks, autoencoders and Bayesian models) and specific
objectives (e.g. diagnostics, prognostics and system health management). This com-
parative classification facilitates the identification of cross-cutting trends and areas
of overlap between apparently disparate fields. It demonstrates the adaptability of
approaches developed in one sector for utilisation in others [4, 12].

The choice of SLR responds to two needs: firstly, to ensure the scientific
soundness of the thesis and, secondly, to provide the reader with a reliable, critical
overview. In an era when artificial intelligence is discussed with great enthusiasm
and sometimes without critical analysis, adopting a methodology that minimises
the risk of arbitrary selection is crucial for grounding the discussion in concrete
and verifiable facts. This is therefore not merely a formal requirement, but an act
of scientific responsibility [8].

Finally, it is worth emphasising that an SLR should not be viewed as a static tool.
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While it was originally created to “bring order to the chaos” of scientific production,
today its value also lies in its ability to adapt to dynamic and interdisciplinary
contexts. In this case, the systematic review not only provides a snapshot of the
current state of affairs, but also serves as a basis for reflecting on future directions.
Which Al approaches are emerging most strongly? In which sectors are there
already mature applications? Where are the grey areas or areas of embryonic
experimentation? [13]

In conclusion, this research adopted SLR not only because it represents the
most established methodological standard, but also because it is the most suitable
tool for a broad, rigorous investigation with an innovation focus. Its purpose is not
to replace the researcher’s creativity, but to guide it through a transparent process
that distinguishes between well-founded and uncertain ideas and clarifies the path
for future Al-based PHM developments.

1.2 Al

1.2.1 Definition

Artificial intelligence (Al) is a branch of computer science that involves the study
of methods and techniques for designing systems that can perform tasks requiring
human-like intelligence. Unlike traditional software programmed to execute fixed
commands, Al systems learn, reason, and adapt.

In their seminal textbook [14], Stuart Russell and Peter Norvig define Al through
the lens of rational agents, based on two key components:

« Agent, entity that perceives its environment (via sensors, data stream, etc.)
and acts upon environment (through actuators, decisions, predictions)

o Rationality: The agent chooses actions that optimally achieve its goals given
available perceptual evidence or computational constraints

The rational-agent approach, favoured by the author, has two advantages over
competing approaches. Firstly, the present approach is more general than the
“laws of thought” approach, since correct inference is merely one component of this
broader framework. The paper posits that there are several possible mechanisms
for achieving rationality. Secondly, it is more conducive to scientific development
than approaches that are based on human behaviour or human thought.
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“Artificial Intelligence is the study of agents that receive percepts from
the environment and perform actions. A rational agent acts to mazximize
its expected performance measure based on its percept sequence and
built-in knowledge ”[14]

The conceptual foundations of this field can be traced back to a provocative
question posed by Alan Turing in 1950 [15], which served as a catalyst for further
research in this area. The question of whether machines are capable of thought is a
compelling one. The following query initiated a period of research and philosophical
debate that lasted for decades.

It is imperative to define the term “intelligence” in this particular context.
Pioneering figures such as John McCarthy conceptualised Al as “the science and
engineering of making intelligent machines”, systems endowed with the capacity for
perception, learning, problem-solving, and decision-making [16]. This development
represents a significant advance beyond the mere automation of processes; true
AT is characterised by its capacity to understand context, recognise patterns in
complex data, and make informed decisions in uncertain circumstances.

In order to comprehend the process through which human beings assimilate
knowledge, it is first necessary to consider how this process occurs. A child is
capable of recognizing a cat without explicit programming; rather, this ability
is developed through repeated exposure to the subject and subsequent positive
or negative feedback [17]. In a similar manner, contemporary Al systems, such
as deep neural networks, evolve their competencies through the accumulation of
experience. These systems are capable of ingesting vast quantities of data, detecting
subtle correlations that are imperceptible to human analysts, and refining their
internal models through iterative processes. This data-driven approach signifies a
paradigm shift from the rigid, rule-based systems that characterised the early era
of computing.

The field has evolved through distinct philosophical approaches. In the field of
artificial intelligence, a subset of researchers have been motivated by the seminal
work of Alan Turing on the imitation game to concentrate on the development
of machines that can perform tasks in a manner that is indistinguishable from
that of humans [15]. In the field of cognitive science, there exists a school of
thought that aligns with the physical symbol system hypothesis proposed by Allen
Newell and Herbert Simon [18]. This hypothesis posits that human cognitive
processes can be modelled using physical symbols. The aim of this approach is to
replicate human thought processes in a manner analogous to the way they utilise
physical symbols. In contrast, the rationalist school, championed by Stuart Russell,
prioritises practical utility, with agents capable of perceiving their environment
and taking optimal actions to achieve goals [14].

At an operational level, Al encompasses a variety of interconnected disciplines.
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Machine learning constitutes its dynamic core: algorithms that improve auto-
matically through experience, in a similar way to how a medical diagnostician
hones their skills over years of practice. The concept of knowledge representation
offers a structural framework for encoding the complexities of the real world into
computable formats. Natural language processing acts as a bridge between human
communication and digital understanding, while automated reasoning enables
logical inference from incomplete information.

The practical ramifications of these definitions are of particular significance
for prognostics. In the context of industrial maintenance, conventional methods
relied on predetermined thresholds and scheduled inspections. Conversely, Al
systems utilise continuous monitoring through vibration sensors, thermal cameras,
and acoustic monitors, providing a more comprehensive and real-time approach
to machine condition monitoring. These systems are capable of detecting subtle
anomalies, such as a faint harmonic resonance or a gradual temperature drift,
which indicate impending failures that would not be detected by human operators
for several months. This behaviour results from the model’s ability to extract
latent features and to capture nonlinear relationships that are not easily identifiable
through traditional analytical methods. More specifically, it is the outcome of
pattern recognition refined through exposure to large numbers of failure scenarios,
combined with probabilistic reasoning about the RUL.

7

Despite its advanced capabilities, contemporary Al remains “narrow” in its
expertise, with a focus on specific tasks, while lacking the human capacity for
general understanding. While smartphones’ voice assistants can flawlessly set
reminders, they are incapable of reasoning about abstract concepts. This limitation
assumes particular significance in safety-critical prognostic applications, where
there is a need to balance predictive power with interpretability.

It can be posited that, at the present moment, the most efficacious definition of
AT would be as follows:

“A suite of technologies that transform data into contextual
understanding, thereby enabling decisions that extend beyond the confines
of programmed instructions.”

For those engaged in prognostics, this signifies systems that do not merely
respond to failures, but rather anticipate them, thereby transforming raw sensor
streams into actionable foresight. In the following chapters, an exploration will
be conducted of the manifestation of these theoretical foundations in concrete
prognostic techniques.
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1.2.2 Al techniques

Al is not a single school of thought but is an overall domain that comprises a huge
set of techniques for simulating human intelligence. There are two broad paradigms
to be recognized across history: symbolic Al, which relies upon logical reasoning
and rule-based systems, and statistical Al, which focuses on data-driven learning
methods. Although earlier AI work was dominated by symbolic approaches, most
recent advances have in fact been achieved with statistical methods, particularly in
machine learning.

Of the most relevant of such approaches, the following deserve specific mention:

o Machine Learning (ML): Machine Learning can be defined as algorithms
that allow a system to improve at accomplishing a task by learning from data
as opposed to relying on explicit programming. Depending on the nature of
the data that is available, ML can be classified into three distinct categories:
supervised learning, unsupervised learning and reinforcement learning. These
paradigms have the capacity to facilitate the resolution of a wide range of
problems, encompassing classification and prediction, as well as clustering and
pattern recognition[19].

o Deep Learning (DL): Deep Learning is a subset of ML that employs
multi-layered artificial neural networks with the capacity to learn hierarchi-
cal representations of data. The field of deep learning has demonstrated
remarkable proficiency in image classification, speech processing, and natu-
ral language understanding tasks. Convolutional Neural Networks (CNNs)
are widely applied to vision-related tasks, while Recurrent Neural Networks
(RNNs) and their extensions (e.g., Transformers) have dominated the sequence
modelling and language modelling domains [12].

+ Reinforcement Learning (RL): RL is defined as the process by which an
agent learns to interact with an environment, taking actions and receiving
feedback in the form of reward or penalty. The objective is to ascertain an op-
timal policy that maximises the cumulative reward. The field of reinforcement
learning has been applied in various domains, including robotics, autonomous
agents, and decision-making problems. A notable achievement in this area is
AlphaGo, which has demonstrated significant progress in the field of Go [20].

Beyond these prevailing models, new methods are emerging that aim to combine
the advantages of symbolic reasoning and statistical learning. This hybrid field,
often referred to as neuro-symbolic Al, is attracting increasing attention due to its
potential to overcome the limitations of data-driven systems in isolation, particularly
with regard to interpretability and explainability.

8
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The ensuing discourse will focus on the aforementioned three methods with
meticulous scrutiny.

1.2.3 Machine Learning

Machine learning is one of the cornerstones of modern artificial intelligence and is
based on the idea that a system can learn from data, rather than being explicitly
programmed through rigid rules. In summary, the model is not only endowed with
a set of instructions regarding its behavioural parameters, but is also capable of au-
tonomous learning through the recognition of patterns, regularities and correlations
in the observed signals. This approach is particularly effective in contexts where
physical phenomena are difficult to model deterministically, or when the volume
and variability of data exceed the descriptive capabilities of traditional techniques.

In the prognostic domain, machine learning allows us to identify anomalous
signals, estimate the health of a component, and predict its future evolution by
leveraging historical information provided by sensors. The ability to update models
as operating conditions change makes these tools more adaptable than methods
based solely on physics, especially in dynamic and real-world environments. Despite
its wide variety of algorithms, the common denominator of machine learning is
the centrality of data: it is data that drives learning, models relationships, and
provides the knowledge needed to make increasingly reliable predictive decisions.

Among the diverse array of Al techniques, ML stands as a preeminent and
pervasive approach. ML can be defined as the study of algorithms that enable
computers to learn from data and improve their performance on a given task without
being explicitly programmed [17]. Rather than being dependent on handcrafted
rules, ML systems are capable of deriving patterns and relationships directly from
examples. This renders them particularly effective in domains where explicit
modelling is either impractical or excessively complex.

The fundamental components of ML can be categorised as follows:

o Data: the source of knowledge from which the algorithm extracts patterns.

e Model: the mathematical or statistical representation employed to map
inputs to outputs.

o Learning algorithm: the optimisation process that adjusts the model’s
parameters in order to minimise prediction errors.
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Depending on the availability and type of data, ML can be categorised into
three major paradigms:

e Supervised Learning: The algorithm is designed to learn from labelled
datasets, where each input is associated with a specific target output. The
objective is to approximate the mapping function so that the model can
predict outcomes for unseen inputs. This approach is commonly applied in
classification problems (e.g., medical diagnosis, spam detection) and regression
problems (e.g., stock price prediction, energy consumption forecasting).

o Unsupervised Learning: In this case, the training data is unlabelled, and
the system’s objective is to identify latent structures or patterns. Clustering
algorithms (e.g., k-means, hierarchical clustering) are employed to group
similar data points together, while dimensionality reduction techniques (e.g.,
PCA, t-SNE) are utilised to extract meaningful representations from high-
dimensional data. Applications include customer segmentation, anomaly
detection, and data compression.

o Reinforcement Learning: Although often considered its own domain, RL
can be regarded as a form of learning where an agent interacts with an
environment, receiving feedback in the form of rewards or penalties. The
objective is to maximize long-term cumulative reward. RL has achieved
remarkable success in robotics, control systems, and game-playing Al.

It is evident that, over time, ML has evolved to encompass a diverse array of
models and methodologies. These encompass a range of approaches, including
linear regression, decision trees, and ensemble methods such as random forests and
gradient boosting. In recent times, the field has been dominated by deep learning,
a subarea of machine learning based on neural networks with multiple layers, which
has revolutionised fields such as computer vision and natural language processing.

The strength of ML lies in its ability to generalise from past experiences to
future scenarios, making it a cornerstone of predictive analytics and a fundamental
enabler for prognostics. Nevertheless, Machine Learning systems are also subject
to limitations, including the requirement of substantial, high-quality datasets,
vulnerability to bias, and challenges in interpretability. Addressing these issues
remains an active area of research and development.

1.2.4 Deep Learning

Deep Learning (DL) is a subfield of Machine Learning that focuses on the use of
artificial neural networks with multiple layers to automatically learn hierarchical
representations of data. In contradistinction to conventional machine learning
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techniques, which frequently depend on handcrafted features, DL systems possess
the capacity to extract complex and abstract features directly from raw data [21].
This ability renders DL particularly effective in domains such as computer vision,
speech recognition, and natural language processing, where data is high-dimensional
and difficult to model explicitly.

At the core of deep learning is the concept of Artificial Neural Networks (ANNs),
which draw inspiration from the structure and functionality of the human brain. A
neural network consists of interconnected layers of nodes, or “neurons,” with each
connection possessing an associated weight that undergoes adjustment during the
learning process. By employing iterative optimisation methods, such as gradient
descent and backpropagation, the network is able to progressively learn to map
inputs to outputs with increasing accuracy [22].

A range of deep learning architectures have been developed to address specific
types of problems:

» Feedforward Neural Networks (FNNs): The most elementary form
of neural network is characterised by unidirectional information flow, with
information progressing from the input to the output. These tools are primarily
employed for basic classification and regression tasks.

« Convolutional Neural Networks (CNNs): Designed for grid-structured
data such as images, they are used in PHM to analyse one-dimensional
vibration signals or two-dimensional time-frequency representations (e.g.,
spectrograms), excelling in the identification of specific local fault patterns.
[21].

« Recurrent Neural Networks (RINNs): Being equipped with connections
that capture sequential dependencies over time, variants such as Long Short-
Term Memory (LSTM) and Gated Recurrent Units (GRU) are fundamental
architectures for modelling progressive degradation and predicting time series,
such as RUL estimation[22].

o Transformers: A novel family of architectures based on the self-attention
mechanism. Transformers have brought about a paradigm shift in the field
of natural language processing, serving as the foundational element of large
language models such as BERT and GPT.

The success of deep learning can be attributed to three primary factors: the
availability of large-scale datasets, the rapid growth of computational power (par-
ticularly GPUs and TPUs), and advancements in optimisation algorithms [21].
Nevertheless, deep learning models are also confronted with considerable challenges.
These models generally require substantial amounts of labelled data, are computa-
tionally expensive, and often exhibit behaviour that can be considered a “black
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box,” which gives rise to concerns regarding interpretability and trustworthiness
[22].

Despite these limitations, deep learning has become a cornerstone of modern
AT research and applications. Its influence is expanding rapidly across scientific,
industrial and societal domains, and it is becoming one of the driving forces behind
the current wave of artificial intelligence.

1.2.5 Reinforcement Learning

Reinforcement Learning (RL) is a distinct paradigm of Machine Learning that
focuses on how agents learn to make decisions by interacting with an environment
in order to maximise cumulative reward [20]. In contrast to supervised and
unsupervised learning methods, which depend on labelled or unlabelled datasets,
RL is founded on a trial-and-error process. The agent explores a range of actions,
receives feedback in the form of rewards or penalties, and uses this feedback to
improve its decision-making strategy over time.

The RL framework is commonly described through a Markov Decision Process
(MDP), which consists of five key components:

« States (S5): The representation of the environment at a given moment.
« Actions (A): The set of possible decisions or moves available to the agent.

» Transition function (P): The probabilistic rules that determine how the
environment evolves after the execution of an action.

« Reward function (R): The feedback signal that evaluates the immediate
utility of a given state-action pair.

« Policy (7): The strategy or mapping that the agent follows to choose actions
based on states, which can be deterministic or stochastic.

The objective of RL is to identify an optimal policy that maximises the expected
cumulative reward, frequently referred to as the return. This is typically accom-
plished by balancing exploration, defined as undertaking novel actions to ascertain
their consequences, and exploitation, which is the selection of the best-known action
to maximise reward.

There are several main categories of RL algorithms:

o Model-free methods: Algorithms such as Q-learning and SARSA that
directly estimate value functions or policies without building a model of the
environment.

12



Introduction

e Model-based methods: Approaches that attempt to learn an explicit model
of the environment and use it for planning.

« Policy gradient methods: Techniques such as REINFORCE and Actor-
Critic methods that optimise the policy directly through gradient-based up-
dates.

In recent years, the integration of RL with DL, known as Deep Reinforcement
Learning, has achieved groundbreaking results. For instance, the DeepMind pro-
gramme AlphaGo defeated world champions in the game of Go [23], a feat previously
considered unattainable for machines. RL has also found applications in robotics,
autonomous driving, resource management, and recommendation systems.

Despite these achievements, RL faces significant challenges. Training frequently
necessitates a considerable number of interactions with the environment, which can
be inefficient and costly in real-world applications. Furthermore, the instability
of RL algorithms, their sensitivity to hyperparameters, and the difficulty of inter-
pretation represent important limitations that preclude their use in safety-critical
domains. Nevertheless, RL continues to be identified as one of the most promising
areas of Al research, with the potential to drive significant progress in autonomous
decision-making systems.

1.3 Prognostics and Health Management

The concept of industrial asset maintenance has undergone a radical evolution over
the past decades. The paradigm shift can be described as follows: firstly, from a
reactive approach, which might be summarised as “repair when broken”; secondly,
to a preventive approach; and finally, to a proactive and predictive paradigm,
known as PHM. The PHM does not merely serve to prevent failures; rather, its
objective is to predict such failures by quantifying the remaining time within which
a component or system will be able to function safely and efficiently. This remaining
time is referred to as the RUL of the component or system [24].

The overarching objective is unambiguous: to maximise plant uptime, optimise
maintenance costs, reduce waste, and, above all, ensure safety. The Internet of
Things (IoT) and smart sensors, in conjunction with the capabilities of contemporary
AT techniques, have effectively transformed the realm of PHM from a theoretical
concept to a tangible and increasingly pervasive reality.

1.3.1 Diagnostics

The PHM framework is based on three fundamental pillars: diagnostics, prognostics,
and health management. These components together provide a comprehensive
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approach to monitoring the condition of engineered systems, enabling predictive
maintenance strategies.

Diagnostics answer the question, “What is wrong?” By analysing sensor data
(e.g., vibration, temperature, sound, and current), algorithms can identify faults,
determine their type, and locate their source. This process recognises and classifies
the system’s current health status.

Diagnostics is responsible for interpreting the present. In essence, data analysis
provides plant operators with the capability to address fundamental questions in
real time. In order to ascertain the machine’s condition and identify any potential
malfunctions, it is imperative to inquire about the presence of a fault, the nature
of the fault, and its location [24].

Diagnostics is the first step of a PHM strategy: without it, any RUL estimate
would rely on incorrect assumptions of an accurate and timely diagnosis, any
attempt to predict the remaining useful life of the equipment would be based on
incorrect assumptions, risking the generation of false alarms or, worse still, the
failure to identify imminent failures. Diagnostics act as an early-warning layer in
PHM, isolating anomalies before they evolve into failures.

The diagnostic process can be structured into three consecutive rational steps:

e Detection: identifying the occurrence of an event that deviates from standard
operating conditions. This deviation can be conceptualised as a warning sign,
suggesting the existence of an underlying root cause.

o Identification or Isolation: the determination of the nature and location
of the fault. Merely detecting the presence of a problem is insufficient; the
system must ascertain whether the issue is, for instance, a bearing defect, an
imbalance, a misalignment, a lubrication fault, or an electrical malfunction.

o Severity Assessment: quantifying the severity of the fault. This phase de-
termines whether a crack has merely initiated or whether a failure is imminent,
and is therefore essential for prioritising maintenance actions.

The advent of Machine Learning and Deep Learning has precipitated an epis-
temological revolution in diagnostic techniques, thereby superseding the inherent
limitations of conventional methods predicated on fixed thresholds and human
interpretation. Contemporary data-driven models learn to recognise the character-
istic signatures of each type of failure directly from raw data, thus obviating the
need for preliminary analytical modelling of the system [6].

A review of the extant literature reveals a complex and specialised algorith-
mic landscape. Convolutional Neural Networks, although originally designed for
image processing, have demonstrated extraordinary effectiveness in the analysis
of vibration signals. The employment of time—frequency representations, such as
spectrograms derived from the Short Time Fourier Transform (STFT), enables
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these architectures to discern intricate and nuanced patterns indicative of particular
failures. This capacity, for instance, encompasses the identification of characteristic
frequencies emanating from a damaged bearing, a feat which often surpasses the
limits of human perception.

Concurrently, the advent of architectures predicated on attention mechanisms
and Transformer-type models is ushering in a new era of diagnostic sophistication.
The utilisation of these models, derived from natural language processing, empowers
the system to selectively prioritise the most informative segments of a signal, even
when they are temporally distant. Consequently, the capability to detect subtle
anomalies amidst substantial background noise is significantly enhanced.

Transfer Learning and Unsupervised Learning techniques address additional
practical issues. Transfer Learning enables a model to be trained on a reference
machine, typically in a controlled environment, and subsequently adapted with
limited data to similar machines operating in the field. Unsupervised learning,
conversely, is indispensable in the absence of labelled data: by learning the “normal
behaviour” of a system, deviations can be flagged as anomalies without requiring
prior knowledge of the failure phenomenology [25].

The validity of any advanced diagnostic system is inextricably linked to the
quality and comprehensiveness of the underlying data. Sensor placement, selection,
and integration are therefore critical design steps. Established data acquisition
methods include vibration measurements (the gold standard for rotating machinery),
Motor Current Signature Analysis (MCSA), thermal and pressure monitoring for
hydraulic and combustion systems, and acoustic or ultrasonic sensing for inaccessible
components.

A significant current trend is multimodal data fusion. The synergistic integration
of heterogeneous signals, such as vibration, current, and temperature, within a
single AI model provides a holistic and contextual view of system health, thereby
conferring greater robustness and accuracy than analysis performed on individual
signals.

Advanced diagnostic methods are applied across a wide range of industrial
use cases. In manufacturing, they enable wear detection in CNC tools, health
monitoring of collaborative robots, and acoustic quality control of machining. In
the energy sector, they support imbalance and misalignment detection in wind
turbines, cavitation monitoring in pumps, and condition monitoring of transformers
and generators. In the transportation sector, systems such as the Aircraft Condition
Monitoring System (ACMS) identify faults in key aircraft and train components.
In process plants, diagnostic models help detect anomalies in heat exchangers,
compressors, and valves, where failure may have severe safety or environmental
repercussions.

Last but not least, fault diagnosis, as revolutionised by artificial intelligence,
is the conceptual and functional cornerstone of an effective PHM system. It

15



Introduction

transforms a raw stream of sensor data into actionable insight, enabling real-time
visibility of asset health. Despite challenges linked to data availability and model
transparency, the field continues to progress, pushing industry towards a predictive
and intelligent maintenance paradigm in which failure is not a random event, but
a foreseeable and manageable outcome [26].

1.3.2 Prognostics

While diagnostics focuses on identifying current conditions, prognostics addresses
the fundamental issue of temporal projection of degradation and answers the
question, “How long can it continue to function?” This is the most advanced and
challenging aspect. In particular, using historical and current data, prognostic
models estimate how a component will degrade until it fails completely, thus
predicting its RUL. It is a prediction of the future based on an understanding of
the present and past.

This interdisciplinary approach combines engineering principles, physical models
and advanced artificial intelligence algorithms to track the progression of degrada-
tion over time and transform raw data into quantitative temporal forecasts. This
approach is significant because it can convert technical information into operational
decisions, facilitating maintenance planning that optimises asset utilisation while
minimising the risk of sudden failure [2].

The contemporary prognostic approach is predicated on three fundamental
methodological paradigms, each of which possesses distinctive characteristics and
specific fields of application.

Data-driven approaches represent the most innovative frontier, relying on the
automatic learning of degradation patterns from historical series of sensory data.
It has been demonstrated that recurrent neural networks, and in particular LSTM
(Long Short-Term Memory) architectures, have proven to be remarkably efficacious
in the capture of temporal dependencies within degradation processes. Recently,
transformer models have been developed that possess even more advanced temporal
sequence processing capabilities, thanks to attention mechanisms that allow selective
weighting of the most significant inputs.

Conversely, model-based approaches maintain their pertinence in applications
where the physics of degradation is comprehensively understood and modelable. The
aforementioned methodologies are contingent upon mathematical representations
of deterioration processes, frequently implemented through Bayesian filters that
recursively revise estimates in view of novel observations. The efficacy of these
approaches is rooted in their interpretive transparency and reduced reliance on
extensive historical data sets.

The emerging trend towards hybrid approaches seeks to synthesise the advantages
of the two previous methods, combining the generalisability of data-driven models

16



Introduction

with the theoretical robustness of physical models. These hybrid architectures have
the capacity to utilise neural networks in order to learn the parameters of simplified
physical models, or vice versa, employ physical models to generate meaningful
features for machine learning algorithms.

A fundamental distinction between advanced prognostics and simple forecasting
lies in the capacity to quantify and communicate the uncertainty associated with
estimates of RUL. The utilisation of point estimate forecasts, which provide a single
numerical value, is being superseded by probabilistic distributions that express the
confidence interval of the forecast.

The shift towards probabilistic models represents a significant advancement in
the practical implementation of prognostic systems, providing decision-makers with
a time estimate and a measure of its reliability. Recent developments in the field
have revealed techniques such as ensemble methods and Gaussian processes to be
powerful tools for modelling uncertainty. These techniques distinguish between
epistemic uncertainty, which is derived from limited knowledge of the system, and
aleatory uncertainty, which is inherent in the variability of the process itself [27].

The future trajectory of prognostics involves greater integration with digital
twin technologies to create cyber-physical spaces in which predictive models can be
updated and validated recursively with real-time data. This will enable RUL pre-
dictions to be refined, what-if scenarios to be explored, and maintenance strategies
to be optimised within the virtual space prior to physical execution.

Digital twin technology is indeed one of the most promising tools for the industrial
implementation of PHM. A Digital Twin is a virtual replica of a physical system
that is continuously updated through real-time sensor data. By synchronising the
behaviour of the asset and its numerical model, it becomes possible to simulate
degradation, evaluate what-if scenarios, and refine RUL estimation during operation.
In contrast to conventional prognostic approaches, which rely on static models,
Digital Twins allow the prediction to evolve as the physical machine evolves. This
provides higher accuracy, improved interpretability, and a more reliable basis for
decision-making, especially in safety-critical environments.

The confluence of prognostics, industrial IoT and edge computing is also enabling
the deployment of predictive models in the field itself, reducing decision latency
and enabling autonomous response to signs of imminent degradation.

In conclusion, prognostics is coming of age as a discipline that is critical to the
transition to truly predictive maintenance paradigms. The capacity to convert
operating data to quantitative temporal information is a revolutionary advancement
in industrial asset management with implications that reach beyond the practice of
maintenance to the overall economics of life-cycle management of critical assets [4].
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1.3.3 Health Management

Health management involves integrating diagnostics and prognostics into decision-
making processes to ensure systems operate at their best. Its main purpose is to
convert condition monitoring and prediction results into practical maintenance
strategies.

The Health Management paradigm is the decision-making and operational part
of the PHM paradigm. It provides the intrinsic connection between predictive
analytics and real action on the ground. Diagnostics and prognostics generate
data on asset health, and Health Management converts the data into optimised
maintenance approach, operation plan, and economical decision.

This discipline integrates engineering, economic, and organisational capabilities,
marrying technical analysis and operating management. The overriding theme of the
approach is the capacity to transfer predictive insight through actionable plans to
deliver greater plant availability, improved resource utilisation, and reduced lifecycle
costs. This is founded on a basis of guaranteed safety and reliability at all points.
Health Management’s success is inherently tied to the quality and timeliness of its
interaction with the remaining two pillars of PHM. Diagnostic models have been
shown to provide early warning and correct indication of failures, and prognostic
models provide the key temporal component through RUL estimation.

Such a combination makes possible a transition from planned maintenance,
normally inefficient due to being based on conservative estimates, to condition-
based maintenance that only acts as needed, and ultimately to real predictive
maintenance, with interventions programmed with exact timing based on the actual
state of degradation.

The crux of Health Management lies in the decision-making mechanisms that
integrate multiple dimensions. Risk assessment integrates the probability of failure,
derived from prognostic models, with the potential impact in terms of safety, costs,
and production disruption. Risk matrix models facilitate the prioritisation of
interventions based on actual criticality.

Concurrently, economic analysis entails a cost-benefit analysis of the trade-
off between the costs of preventative maintenance and the potential costs of
sudden failure, utilising life-cycle cost analysis techniques to inform replacement or
repair decisions. This analysis is integrated with resource planning, ensuring the
availability of spare parts, technical expertise, and optimised time slots.

The effectiveness of Health Management is assessed through a balanced set of
indicators. Operational metrics, such as MTBF (Mean Time Between Failures) and
MTTR (Mean Time To Repair), have been utilised to measure the enhancement of
plant availability. Economic indicators, on the other hand, have been employed to
quantify the Return On Investment (ROI) of PHM investments and the reduction
in maintenance costs.
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The final piece of the puzzle is the consideration of safety and environmental
aspects, which are measured by the reduction in accidents and environmental
impacts. This set of indicators helps quantify the value generated in terms of cost,
safety, and sustainability.

In conclusion, Health Management signifies the culmination of the PHM journey,
with predictive analytics being transformed into tangible operational value. The
implementation of such a system necessitates a holistic approach, integrating tech-
nology, processes, and people to create ecosystems in which technical information,
economic decisions, and operational execution converge towards the common goal
of maximising asset value throughout their entire life cycle.
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Chapter 2

Research Macroareas

The application of AI to PHM is not confined to a single industrial sector, but
extends to domains differing in scale, safety requirements, and operational con-
straints. For the purpose of this systematic literature review, five macro-areas were
selected for investigation: aerospace, manufacturing, mechanical equipment, wind
turbines, and the automotive sector. This choice was not arbitrary, but rather
informed by three principal criteria: historical relevance, industrial importance,
and the richness of the available scientific landscape.

The aerospace sector is widely regarded as the starting point and one of the
most advanced areas of PHM. Driven by extremely stringent safety requirements
and the high costs of failure, it has historically represented a privileged testing
ground for the development of new models, datasets, and evaluation metrics. It is
noteworthy that numerous Al techniques which have become pervasive in other
fields were initially evaluated through their application to aviation-related data
sets.

The manufacturing sector is distinguished by its predominant adoption of PHM,
primarily for economic reasons, with the objectives of reducing downtime, enhancing
productivity, and ensuring consistent product quality. In this context, the concept of
predictive maintenance is directly linked to enhanced efficiency and competitiveness.
This renders the sector particularly conducive to the implementation of data-driven
methodologies.

The category of mechanical equipment represents a cross-cutting field, encom-
passing components such as bearings, gears, pumps, and compressors. These
elements are ubiquitous in almost all industrial sectors and are frequently subject
to complex and nonlinear degradation processes. The ubiquity and criticality of
these systems renders them a central topic for prognostics research, with results
easily transferable to other contexts.

As representatives of a rapidly expanding sector of the global energy transition,
wind turbines have become a prominent feature in the realm of renewable energy
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systems. The upkeep of these facilities, most notably those situated offshore, is
both expensive and logistically complex. Consequently, the application of PHM
is of particular pertinence in this context. Moreover, this sector exemplifies the
potential of Al to enhance sustainability by ensuring the reliability of clean energy
production infrastructure.

The automotive sector was selected for investigation due to its present phase
of transformation, characterised by the emergence of electric and autonomous
vehicles. In this context, prognostics assumes a pivotal role not only for traditional
mechanical systems, but also for emerging components such as high-voltage batteries
and advanced sensor platforms.

The five macro-areas under consideration, when taken together, offer a represen-
tative overview of the state of the art in Al-based PHM. The disciplines in question
encompass both sectors in which the discipline has already reached a satisfactory
level of maturity and areas where research is rapidly developing and continually
evolving. A comparison of these cases illuminates the methodological trends that
are shared, while also highlighting the distinct challenges posed by each context.
This approach serves to address one of the research questions posed in this study.
Consequently, the analysis assists in delineating the potential future trajectories
of Al-based PHM, emphasising areas of convergence and identifying areas that
necessitate further progress.

2.1 Aerospace

The aerospace sector is a notable and pioneering context for the development of
PHM methodologies and this is attributable to the inherently safety-critical nature
of the systems in question. Engine malfunctions, avionics failures or structural
anomalies have the potential to result in catastrophic consequences with regard to
safety and costs. Consequently, the capacity to anticipate and evaluate degradation
in advance is regarded as a strategic imperative [28, 29].

The complexity of aviation and space systems is remarkable. The operation of
these systems occurs within extreme environmental conditions, subject to high load
cycles, and characterised by the necessity of component reliability over extended
periods.

Moreover, the financial implications of unanticipated aircraft maintenance are
substantial, primarily attributable to the direct impact on fleet operations and
the intricate logistics involved. The adoption of PHM strategies within this sector
has been demonstrated to result in a substantial reduction in costs, concurrently
enhancing system reliability and availability [30, 5].

The introduction of Al has had a profound impact on the aerospace Health,
Maintenance, and Management domains. Historically, predictive methods were
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predominantly reliant upon physical models or classical statistical analyses. These
methods, in fact, were often characterised by rigidity and an inability to adequately
capture the intricacies inherent in real-world data. The increased deployment of
sensors and the advancement of data acquisition capabilities in modern aircraft
has resulted in the generation of substantial amounts of information pertaining to
engine operation, structural vibrations and avionics systems and, for this purpose,
the advent of Artificial Intelligence has led to the development of sophisticated
tools capable of effectively processing data, identifying latent patterns and, above
all, providing more accurate estimations of the RUL of components.

Deep neural networks have been shown to be highly effective in analysing complex
signals, which are prevalent in the aerospace industry. The employment of CNNs,
RNNs, and LSTMs has facilitated the identification of nascent degradation signals
in turbine engines, well in advance of their detection by conventional methodologies
(6, 12]. Concurrently, methodologies that are more interpretable and lightweight,
such as probabilistic regression models or Bayesian approaches, maintain a central
role. These methodologies ensure transparency and traceability, which are essential
elements for integration into certification processes [31, 32].

Accordingly, the aerospace sector can be regarded as an advanced laboratory for
PHM. A significant proportion of the techniques currently employed in domains
such as energy or industrial mechanics were originally conceptualised and validated
in the aeronautical and space sectors. The study of this macro-area necessitates a
meticulous examination of the most intricate challenges of prognostics, namely the
necessity to strike a balance between accuracy and explainability, the management
of uncertainty, the integration of data-driven models with physics-based approaches,
the quality of available datasets, and the computational costs of implemented
solutions.

The examples of applications are numerous and concrete: in aerospace engineer-
ing, the capacity to anticipate the deterioration of turbine blades or the progression
of material fatigue in advance enables the implementation of targeted interven-
tions and a subsequent reduction in downtime. For avionics systems, instead, the
implementation of predictive analytics facilitates the identification of emerging
electronic anomalies that could compromise navigation or communication functions.
Furthermore, in composite materials, which are increasingly prevalent in modern
aircraft structures, Al-based models facilitate more precise evaluation of internal
damage phenomena that are challenging to discern with the unaided eye [2].

Finally, in the context of space missions, where maintenance is not feasible,
Al-supported PHM systems become imperative instruments for autonomous vehicle
health management [5, 28].

For all these reasons, aerospace was chosen as the first macro-area of analysis in
this systematic literature review. This represents one of the most advanced contexts
for the application of Al in prognostics, and it also provides a paradigm against
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which other sectors can be compared. Moreover, aerospace offers a prime illustration
of the potential of Al in enhancing predictive performance, addressing the challenge
of explainability, and ensuring the confidence necessary for implementation in
real-world scenarios. In this sense, the study of PHM in the aerospace sector offers
a valuable perspective on future research and industrial implementation directions,
thereby providing a privileged lens through which to observe the evolution of the
entire discipline.

2.2 Mechanical systems

Mechanical systems represent a significant and practically relevant sector for the
application of PHM. In contrast to the highly specialised and extreme conditions
prevalent in the aerospace sector, mechanical systems are ubiquitous from an
engineering perspective. They include rotating machinery in manufacturing plants,
pumps and compressors in power plants, gearboxes and bearings in transportation,
and turbines in hydroelectric facilities, among numerous other systems. These
systems form the backbone of modern industry. Their failures, whether minor or
catastrophic, have direct economic consequences and indirect impacts on safety,
productivity, and reliability. It is precisely this ubiquity and centrality that makes
the study of PHM in mechanical systems a fundamental pillar for research and
application [30, 1].

Conventional maintenance strategies within this sector have historically been
predicated on two methodologies: scheduled maintenance, irrespective of the
component’s actual condition, and reactive maintenance, initiated only in the
aftermath of a failure. It is evident that both of these solutions have clear limitations:
the former results in excessive maintenance and wasted resources, while the latter
exposes organisations to unplanned downtime and safety risks. The adoption
of PHM methodologies signifies a paradigm shift. The integration of operating
condition monitoring with predictive algorithms is a key aspect of PHM, facilitating
the estimation of the RUL and the precise scheduling of interventions. The
implications of this are significant, as evidenced by the findings of [4, 33|, which
demonstrate that optimised spare parts management, drastically reduced unplanned
downtime, and more sustainable use of resources can be achieved.

AT has revolutionized this landscape. Mechanical systems now naturally generate
large amounts of complex data, such as vibration signals from rotating components,
acoustic emissions from gearboxes, thermal profiles from engines, and oil analysis
in compressors. Each of these signals contains subtle traces of degradation, which
are often invisible to the naked eye or to traditional statistical models. Machine
Learning, and in particular Deep Learning, have demonstrated a remarkable ability
to extract hidden patterns, offering far superior predictive capabilities compared to
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conventional thresholding systems. Convolutional Neural Networks (CNNs) have
been successfully applied to vibrational spectral analysis, with the capability of
automatically learning discriminant features without the requirement of manual
preprocessing. Recurrent Neural Networks (RNNs) and Long Short-Term Memory
(LSTMs) have been shown to excel at modelling the sequential nature of temporal
data, a key element for identifying anomalies at an early stage. These approaches
have enabled the anticipation of degradation phenomena, which were previously
observable only retroactively, thus facilitating proactive and informed decision-
making [6, 12].

However, the role of Al in this field is not limited to the realm of predictive
accuracy. The ability to interpret models and the trustworthiness of the system are
two of the most important aspects for the industrial adoption of PHM. Lightweight
and more explainable models, such as probabilistic regression, Bayesian networks,
support vector machines, or ensemble methods, continue to be central, especially in
safety-critical contexts where every decision must be justified and validated against
consolidated engineering knowledge. The future of PHM in mechanical systems
therefore appears to be oriented toward hybrid paradigms, combining physics-based
models that incorporate domain knowledge with data-driven algorithms exploiting
the wealth of sensory data. This convergence ensures not only accurate predictions,
but also reliability, transparency and acceptance by operators and regulators alike
[31].

Applications of PHM in mechanical systems are numerous and concrete. In
rotating machines, the detection of an incipient bearing defect has avoided the failure
of entire production lines. In gearboxes, the prediction of damage progression
through acoustic signals and torque monitoring has enabled the estimation of
wear and crack propagation, ensuring the continued operation of heavy industry
and transport. Pumps and compressors, which find wide application in the oil
and gas industry, have Al-assisted monitoring systems that avoid downtime that
can be extremely expensive and failures that can be catastrophic. Even in the
renewable energy domain, such as the hydro sector, mechanical PHM allows for
longer operating life and improved economy, proving that predictive maintenance
is not only reactive but also geared towards sustainable objectives [4, 33].

The decision to contemplate mechanical systems as a macro-area in this re-
view is predicated on the premise that, firstly, as previously stated, they embody
the industrial milieu with the most pervasive dissemination of PHM applications,
thereby rendering it a conducive environment for the evaluation of methodologies,
the comparison of approaches, and the assessment of the scalability of solutions.
Conversely, they emphasise the challenges associated with the transition from con-
trolled laboratory environments to noisy, heterogeneous, and frequently incomplete
data collected in the field. In contrast to the aerospace sector, where sensors are
more standardised, the mechanical domain imposes constraints on Al, compelling
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it to function in conditions characterised by uncertainty and variable data quality.
It is precisely due to these challenges that advances in this area act as a testing
ground for the robustness and adaptability of prognostic algorithms.

In contemplating the future, the integration of AI with mechanical PHM is
anticipated to evolve through three distinct trajectories. The first concerns the
progression towards hybrid models, wherein Machine Learning integrates and
enhances engineering physics knowledge. The second pertains to interpretability
and trust: industrial operators will increasingly demand systems that not only
predict, but also explain the rationale behind their decisions. The third trajectory is
scalability, with predictive maintenance extending from isolated machines to entire
interconnected production ecosystems, requiring models capable of generalising
across different contexts. These perspectives indicate that the mechanical sector,
often perceived as traditional and conservative, is destined to become one of the
main stages of the industrial revolution driven by Artificial Intelligence.

2.3 Manufacturing

The manufacturing sector is widely regarded as one of the most complex and
dynamic domains for the application of Prognostics and Health Management
(PHM). In contrast to highly specialised aerospace or mechanical systems, which
are ubiquitous, manufacturing can be regarded as a true living ecosystem, in
which machines, processes, materials, and human operators coexist in tightly
interconnected networks. It is not merely a matter of ensuring the functionality
of individual components; rather, it is a matter of orchestrating entire production
lines, where the sudden stoppage of a machine can generate ripple effects of delays,
inefficiencies, and significant economic losses. In this sense, manufacturing systems
constitute a privileged testing ground for PHM, as they embody the real challenge
of integrating predictive intelligence into heterogeneous, fast-paced, and constantly
optimised environments for productivity [34, 35].

Historically, maintenance in manufacturing has been based on rigid schedules or
reactive interventions, resulting in high costs due to both excessive maintenance
and unplanned downtime. Nevertheless, the advent of data-driven methods has
radically transformed the landscape. In contemporary industrial settings, a perva-
sive integration of sensors has become the norm. This is evident in the utilisation
of accelerometers on robotic arms, acoustic sensors on Computer Numerical Con-
trol (CNC) machines, vision systems employed for quality inspection, and the
proliferation of Internet of Things (IoT) devices that continuously monitor thermal
and vibration parameters. This abundance of data is both an opportunity and a
challenge: it provides the raw material for PHM, but requires algorithms capable
of extracting useful signals from noisy, multidimensional flows. This is precisely
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where Artificial Intelligence (AI) has emerged, not as an accessory tool, but as an
essential requirement [36, 37].

It is evident that deep learning has led to the emergence of novel prospects in
the domain of predictive diagnostics. CNNs have been shown to be capable of in-
terpreting vibration maps or thermal images, automatically learning discriminative
features without the necessity of manual preprocessing. RNNs and LSTMs have
been shown to be particularly effective in the analysis of temporal data, with the
capacity to detect subtle variations in machine behaviour even over extended time
periods. One such example is the utilisation of LSTM networks in the context
of machine tool monitoring, particularly with regard to spindle motor vibrations.
Their application enables the detection of tool wear well in advance of the conven-
tional thresholds that would otherwise be applicable. Reinforcement Learning also
holds particular promise, as it has the potential to facilitate the development of
adaptive strategies, involving both the prediction of degradation and the dynamic
adjustment of operating parameters with the aim of reducing stress and extending
service life [38, 19].

Notwithstanding the advances that have been made, the manufacturing sector
continues to present a number of distinctive challenges. Production environments
are characterised by noise, datasets are frequently incomplete, and machine types
exhibit significant variation across different manufacturing facilities. This hetero-
geneity indicates that models trained in one context may not be applicable to
another. Moreover, the financial implications of false positives are of particular sig-
nificance: the premature closure of a production line due to an erroneous prediction
can result in losses that exceed those of an actual failure. For this reason, explain-
ability, reliability, and human-machine collaboration are not secondary aspects, but
central requirements for adoption. A growing body of research is proposing the
integration of physics-based models with data-driven algorithms, with the objective
of ensuring engineering robustness and leveraging the full potential of sensory data
1, 31].

Numerous and concrete examples of PHM applications in manufacturing are
extant. In the context of additive manufacturing, the utilisation of predictive
models facilitates the identification of defects during the printing process, thereby
minimising scrap and material wastage. In the semiconductor industry, PHM
algorithms detect micro-anomalies in etching or deposition processes, safeguarding
yield in one of the most quality-sensitive sectors. Even in traditional machining,
PHM helps reduce tool wear, optimize cutting parameters, and improve product
quality, demonstrating how predictive intelligence has a direct impact on both
efficiency and sustainability [36, 37].

The choice to include manufacturing as a macro-area in this review stems from
strategic motivations. On the one hand, it represents the industrial context in which
PHM demonstrates the greatest potential for scalability, but it also underscores
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the necessity to strike a balance between predictive accuracy, explainability, and
integration with existing legacy systems. In addition, the manufacturing sector
offers a unique perspective on the future of PHM as an enabling technology for the
fourth industrial revolution, which is characterised by intelligent and interconnected
systems that autonomously coordinate production flows. The analysis of this sector
entails not only the evaluation of the performance of algorithms but also the broader
question of how intelligence can be integrated into the very heart of production
systems [35, 19].

Looking ahead, the path of PHM in manufacturing will likely follow three main
directions. The first is the convergence with digital twins, virtual representations
that constantly reflect the real-world conditions of machines and processes, in
which AI will act as a predictive brain capable of providing real-time insights.
The second issue pertains to scalability across factory networks: techniques such
as federated learning and PHM cloud platforms will facilitate knowledge transfer
between disparate sites without compromising data confidentiality. The third,
and arguably most transformative, is the alignment of PHM with sustainability
objectives: namely, the reduction of energy consumption, the minimisation of waste,
and the extension of machine lifecycles.

The rationale underpinning the selection of manufacturing as the macro-area
of study in this thesis is precisely this strategic dimension. While the aerospace
and mechanical domains offer insights limited to highly specialised components or
contexts, the manufacturing domain highlights the systemic challenge of integrating
Al-based PHM into daily industrial operations. A comprehensive analysis of this
sector is therefore recommended in order to gain insight into the potential reconfig-
uration of future production models by artificial intelligence. This reconfiguration
has the capacity to render manufacturing processes not only smarter, but also more
sustainable and human-centric.

2.4 Automotive and Wind Turbines

In the fourth and final macro-area, the SLR has opted to integrate automotive and
wind turbines, which are conceptually disparate. On the one hand, there is the
mobility of people and goods; on the other, the production of renewable energy.
However, an examination through the lens of Prognostics and Health Management
(PHM) reveals notable parallels between the two sectors. Both are characterised
by reliance on intricate electromechanical systems, operation under conditions
of persistent stress and environmental variability, and stringent requirements for
safety, reliability, and efficiency. The rationale for the combined analysis of these
two fields is rooted in the shared necessity to address the challenges posed by the
utilisation of Artificial Intelligence (AI) in the context of predicting, preventing
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and mitigating failures in critical systems that are of paramount importance to
contemporary society [39, 40].

In the automotive sector, the transition to electrification and the spread of
connected vehicles have amplified the importance of PHM. The utilisation of pre-
dictive strategies has already become imperative within the domain of internal
combustion engines, with the objective being the anticipation of component degra-
dation. Such components include, but are not limited to, gearboxes, bearings, and
thermal systems. The advent of electric vehicles has led to a significant increase
in the complexity of the challenges faced. Lithium-ion batteries exhibit nonlinear
degradation phenomena that are difficult to model, thermal management is crucial
for safety, and electronic control units must maintain reliable performance over very
long timescales. The advent of artificial intelligence has enabled the development of
sophisticated prognostic tools that facilitate the estimation of the residual lifespan
of batteries, the monitoring of the health status of motors and inverters, and the
optimisation of maintenance procedures across entire vehicle fleets [41, 7].

Wind turbines present a range of challenges that are equally as significant. These
systems are characterised by their substantial size and the fact that they function
in challenging environments, including variable wind speeds, humidity, temperature
fluctuations, and, in the case of offshore installations, exposure to salt spray. Failures
in blades, gearboxes, or generators can result in significant economic losses, with
long periods of downtime and high maintenance costs, compounded by the difficulty
of servicing offshore. The PHM has been extensively implemented in this sector
through the utilisation of vibration analysis techniques, acoustic emissions, and
SCADA data. The integration of Al into these methodologies has been shown to
enhance their precision in fault diagnosis, facilitate the estimation of the Remaining
Useful Life (RUL) of components, and facilitate condition-based maintenance,
thereby reducing the necessity for costly and unanticipated interventions [24, 42].

In the automotive sector, CNNs are utilised for multi-sensor analysis in au-
tonomous vehicles, with the capacity to detect anomalies in real time across multiple
subsystems, while Recurrent Neural Networks (RNNs) and Long Short-Term Mem-
ory (LSTMs) have been demonstrated to be effective in predicting the progression
of battery degradation, thereby capturing the intricate and temporal nature of
electrochemical processes. Furthermore, reinforcement learning-based approaches
are paving the way for adaptive fleet-level maintenance strategies, with the potential
to balance costs with reliability [7]. In the field of wind energy, the integration of
physical aerodynamics with data analytics has demonstrated efficacy, particularly
in the domain of gearbox diagnostics. The utilisation of data-driven models in this
context is often hindered by limited or imbalanced datasets [43].

However, data heterogeneity remains a significant impediment in both sectors.
Within the context of vehicles, sensors exhibit variability across models and man-
ufacturers. Similarly, in the domain of wind farms, turbines of varying ages and
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sizes generate inconsistent information flows. The issue of explainability and trust
is also crucial: in the automotive industry, models must be transparent enough to
be integrated into certification processes; in wind power, operators require systems
that justify predictions before initiating costly maintenance interventions. These
challenges serve to reinforce the notion that hybrid approaches, which are based on
a synergy between physical models and data-driven algorithms, represent the most
robust path [31, 40].

The existence of concrete examples demonstrates the direct impact of these
technologies. In the context of electric vehicles, the accurate prediction of battery
degradation not only enhances safety but also ensures more reliable range estimates,
thereby directly influencing consumer trust. In the context of car-sharing fleets,
the implementation of predictive PHM for braking and steering systems has been
shown to reduce downtime and enhance operational efficiency. In the field of wind
energy, the timely identification of blade cracks or generator anomalies enables
the implementation of timely interventions, thus averting catastrophic failures and
extending the operational lifespan of turbines. In both cases, PHM also contributes
to sustainability goals by reducing waste, extending life cycles, and optimising
energy efficiency [41, 42].

Moreover, these are the areas in which the efficacy of AI must be demonstrated,
not within the confines of a laboratory setting, but rather in the dynamic and
unpredictable conditions of the road and the open sky. From this standpoint,
the comparison emphasises the universality of the challenge, which is evident in
the common features of complex systems, regardless of whether these systems are
batteries or wind turbines. The fundamental question that remains unanswered is
how to enhance the intelligence, resilience, and reliability of complex systems.

Even when considering the future, the trajectory of PHM in these sectors appears
to be converging. Digital twins are set to assume a pivotal function: vehicles and
turbines will be supported by virtual replicas updated in real time, capable of
reflecting the health of the systems. The utilisation of federated learning will
facilitate the dissemination of knowledge among automotive manufacturers and
wind farm operators without the disclosure of proprietary data, thereby expediting
the development of algorithms. Finally, sustainability will remain a driving force:
in the automotive industry, PHM will support circular economy strategies such as
battery reuse; in wind power, it will help extend the life of systems and optimise
renewable energy production.

For these reasons, the decision was taken to designate automotive and wind
turbines as the joint macro-areas in this review. These initiatives not only symbolise
technological advancements but also social imperatives, including safe mobility,
clean energy, and sustainable development.
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2.5 Cross-Sectoral Insights

The comparative analysis of the selected macro-areas provides a comprehensive
overview of the heterogeneous contexts in which Prognostics and Health Manage-
ment (PHM), supported by Artificial Intelligence (Al), is being actively developed
and implemented. Each sector is characterised by a unique set of challenges and op-
portunities, which collectively demonstrate the maturity, versatility, and limitations
of current approaches.

As previously stated, in the domain of aerospace, the critical nature of operations
and the presence of extreme operating conditions render PHM a necessity. The
utilisation of Al facilitates the provision of more accurate and timely prognostics
for systems whose failure would result in catastrophic consequences. Mechanical
systems, by contrast, represent ubiquity: they are omnipresent in industry and
everyday life, offering a testing ground for the scalability of PHM methodologies
and for their transition from controlled laboratory settings to noisy and incomplete
real-world data. Manufacturing introduces an additional layer of complexity, with
entire ecosystems of machines and processes interconnected; in this context, PHM
is not only a matter of component-level prediction but also of ensuring the resilience
and efficiency of entire production flows, thus positioning Al at the heart of Industry
4.0. Finally, the utilisation of artificial intelligence (AI) in automotive and wind
turbines underscores its pivotal function in facilitating condition-based maintenance
and sustainability-oriented strategies, encompassing battery reuse and the extension
of turbine lifecycles.

When considered collectively, these macro-areas illustrate that PHM is not
limited to a specific engineering discipline, but rather signifies a unifying paradigm
across various industries. This reveals the dual nature of Al in prognostics: firstly,
its capacity to enhance predictive accuracy and predict degradation phenomena;
secondly, its propensity to raise novel inquiries concerning explainability, trust, and
integration with physics-based knowledge. The result is a dynamic landscape in
which different sectors act as complementary laboratories: the aerospace sector for
safety and reliability, mechanical engineering for ubiquity and robustness, manufac-
turing for system integration, and automotive/wind energy for sustainability and
social impact.

It is possible to draw two conclusions from this cross-sector perspective. Firstly,
the adoption of PHM is no longer an option, but rather a strategic imperative, as
it has the capacity to simultaneously reduce costs, improve safety, and contribute
to sustainability. Secondly, Al-based PHM will not evolve along a single trajectory,
but through hybrid and sector-specific paths, converging towards a future in which
predictive intelligence is integrated into the fabric of industrial systems. This
convergence underscores the rationale behind the analysis of these macro-areas: by
examining them together, this review highlights both the diversity of the challenges
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and the universality of the goal of constructing intelligent, resilient, and reliable
systems that support the technological and societal transitions of the 21st century.
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Chapter 3

Methodological Framework

3.1 Guidelines

Any research that aspires to be scientifically credible must be based on a solid,
transparent methodological framework. Simply collecting articles and reporting
their results is not enough: the value of a review lies in the clarity of the process by
which the sources were selected, filtered and analysed, not in the quantity of sources.
In this sense, the methodological framework is the backbone of the entire thesis.
It is here that the rules of the game are established: how research questions are
formulated, what criteria are used to decide what to include and what to exclude,
what tools are chosen to ensure replicability and bias reduction.

Over the past twenty years, the systematic approach to literature reviews
has gained increasing acceptance within the scientific community. For example,
Kitchenham and Charters (2007) helped introduce systematic literature reviews
(SLRs) to software engineering as a more rigorous alternative to narrative reviews,
and Tranfield et al. (2003) demonstrated their potential for management sciences.
More recently, Carrera-Rivera et al. (2022) reiterated that an SLR should be
understood not as a compilation, but rather as a true "methodological experiment,"
designed to be replicable, verifiable, and improvable by other researchers. [8] [9]
[11]

This thesis followed the guidelines established by Carrera-Rivera et al. (2022),
responding to the need to bring coherence to an extremely diverse field: the
application of Artificial Intelligence to Prognostics and Health Management (PHM).
The complexity of the topic requires a process that goes beyond simply listing
studies, but rather allows for tracing connections, identifying convergences, and
accurately distinguishing between consolidated evidence and hypotheses that are
still being explored.
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3.2 PICOT

One of the most challenging aspects of conducting a systematic review is establishing
the methodological framework that will guide the entire process. As Carrera-Rivera
et al. [9] point out, developing a protocol is not merely a technical exercise; it
is also a declaration of intent that establishes the research’s boundaries, criteria,
and priorities. From this perspective, the PICOT (Population, Intervention, Com-
parison, Outcome, Time) model is an essential starting point, as it enables the
transparent and replicable articulation of the key variables that inform document
selection.
The PICOT elements were defined as follows:

Table 3.1: PICOT Framework Breakdown

Element Definition Example

Aerospace components
P (Population)  Industrial systems Wind turbines
Mechanical equipment

Artificial Intelligence
I (Intervention) Al prognostic models Deep Learning
Machine Learning

Traditional

prognostics methods Physics-Based models

C (Comparison)

RMSE (Root Mean Square

O (Outcome) Performance evaluation Frror) for RUL
T (Time) Publication years (2000- Recent advances
2025)

When applied to the topic of Al-supported PHM, PICOT first and foremost
clarifies the Population, i.e. the set of systems and industrial sectors to which
it refers. In this case, the population under consideration includes a number
of heterogeneous fields, including aerospace, mechanical systems, manufacturing,
automotive, and wind energy. These fields share the need to ensure reliability,
efficiency, and safety through the implementation of predictive maintenance.

The term Intervention is employed to denote the application of artificial
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intelligence techniques, with a particular emphasis on machine learning and deep
learning, to the domains of diagnosis and prognostics. The focus of this review is
on these methodologies, which are intended to replace or complement traditional
approaches based on physical models or statistical methods.

The Comparison dimension is defined as the process of comparing these
established approaches. The protocol stipulates that selected contributions evaluate
the advantages, limitations, and commonalities between different paradigms: data-
driven, model-based, and hybrid solutions.

The Outcome, or expected outcome, concerns the methodologies” ability to
accurately estimate the RUL of components, improve early detection of anomalies,
reduce maintenance costs, and increase system safety. These objectives are not
uniform across all sectors, but this very heterogeneity allows us to observe how the
same techniques can produce different impacts depending on the context.

Finally, Time defines the time frame of interest. In this work, the focus is
primarily on studies published in the last twentyfive years, a period in which Al
has experienced exponential growth and sensor and data acquisition technologies
have enabled the development of large-scale PHM applications.

The PICOT protocol, therefore, is not a bureaucratic exercise, but rather an
epistemic filter: it establishes the subjects to be observed, the manner in which the
results are to be compared, and the objectives to be considered central to answering
research questions.

3.3 Research Questions (RQs)

Starting from the framework outlined by PICOT, the Research Questions (RQs)
emerge, formulated as the compass that will guide the review. Far from being
mere exploratory curiosities, the RQs represent true methodological constraints
that define the type of evidence to be collected and how to interpret it.

1. RQ1: What are the predominant approaches, namely data-driven, model-
based, and hybrid methods, employed for prognosis?

2. RQ2: What are the accuracy gains and limitations of AI methods compared
to traditional prognostics approaches?

3. RQ3: Which sectors have most successfully deployed Al-based prognostics,
and what barriers persist in real-world implementation?

These questions allow for a multi-dimensional exploration: methodological (RQ1),
performance-oriented (RQ2), and application-specific (RQ3). Their formulation
ensures that the review not only catalogues existing literature but also synthesises
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insights across disciplines, thus contributing to the advancement of Al-supported
PHM.

The integration of PICOT and RQ facilitates the establishment of a robust
methodological framework, thereby reducing subjectivity and enhancing trans-
parency. The protocol, in fact, transforms a broad and multidisciplinary topic, such
as the use of Al in PHM, into a set of narrow, verifiable, and reproducible questions.
As Carrera-Rivera et al. [9] argue, the distinguishing feature of a systematic review
is its clarity of purpose, which differentiates it from a narrative review. The former
does not merely involve the reading and summarising of existing literature; rather,
it involves the construction of a methodological experiment that has the potential
to be replicated, expanded, or contested by other researchers.

3.4 Search Strategy and Selection Criteria

Translating research questions into a query string is a vital part of any systematic
review. Without a robust and well-structured query, results may be incomplete
or, conversely, excessively scattered. In this research project, the prompt was
developed through an iterative process to maximise relevance and minimise false
positives.

The final query string, which was used in major scientific databases such as
Scopus, Web of Science and IEEE Xplore, is as follows:

("Industr*" OR "liot" OR "mechanic*" OR "engin*")
AND ("prognos*" OR "Remaining Useful Life" OR "PHM")

AND ("artificial intelligence" OR "Deep Learning" OR "Machine Learning")
AND NOT ("Medical" OR "Disease" OR "Agriculture®)

Figure 3.1: Prompt

This formulation is divided into three main blocks, each corresponding to one
of the central dimensions of the analysis. The first block narrows the scope of
application to industrial and engineering sectors, including mechanics, engineering,
and the Industrial Internet of Things (IIoT). The second block introduces the topic
of PHM, with explicit reference to the concept of RUL. Finally, the third block
identifies the technological element, namely artificial intelligence in its machine
learning and deep learning forms.

The explicit exclusion of terms such as "Medical” or "Disease” was necessary
to limit the corpus to industrial contexts and avoid the inclusion of biomedical

35



Methodological Framework

literature, which, while sharing similar prognostic concepts, belongs to a radically
different epistemic domain.

The overall structure of the prompt is therefore the result of a methodological
compromise: on the one hand, the need to be sufficiently broad to include the
variety of relevant application sectors; on the other, the rigor required to clearly
define the review’s boundaries.

The definition of selection criteria represents the second methodological pillar
after the prompt’s construction. As Kitchenham and Charters [8] emphasize,
transparency at this stage is essential to ensure replicability and rigor, since every
systematic review necessarily involves choices that can influence the final results.

In this study, the criteria were divided into several categories:

o Time period: contributions published from 2000 to the present were included.
This threshold was chosen because it coincides with the spread of the first
digital monitoring systems and the pioneering applications of machine learning
in industry. Articles published before 2000 were excluded, as they were not
relevant to the modern Al-based PHM paradigm.

o Literature type: included peer-reviewed articles published in internationally
renowned journals and conference proceedings, as well as some notable doctoral
theses. Technical reports, policy papers, working papers, newsletters, speeches,
and contributions published solely in book chapters were excluded, as they
lacked the same guarantee of peer review.

o Language: the selection was limited to contributions in English, to ensure
terminological consistency and maximum scientific dissemination. Publications
in other languages were excluded.

o Accessibility: only articles available in full-text were considered. Paywalled
contributions for which institutional access was not available were excluded.

o Content: the most stringent and decisive criterion, which requires the in-
clusion only of studies in which artificial intelligence is explicitly applied to
the domain of industrial PHM. Contributions involving non-Al-based meth-
ods, works focusing on irrelevant fields (e.g., medicine or agriculture), and
articles dealing exclusively with diagnostics without prognostic elements were
excluded.

This selection framework, combined with the search string, allowed us to build
a bibliographic corpus consistent with the objectives of the thesis. The explicit
criteria, in addition to ensuring transparency, allow other researchers to replicate
the study, verify the choices made, or update them in the future with any new
evidence.
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Table 3.2: Inclusion and Exclusion Criteria

Criteria type Inclusion Exclusion
Time period Publications from 2000 to Publications before 2000
present
Reports
Peer-reviewed Policy literature
. Journal articles Working papers
Literature type Conference proceedings Newsletters
PhD theses Speeches
Articles from books
Language English Non-English publications
Accessibility Full-text available Paywalled articles without

institutional access

AT applications in
industrial PHM Non-Al methods

Content Non-prognostic studies

P ti . .
R%)Enos s Domains outside scope

3.5 Screening process

After defining the search string and selection criteria, the next step was to screen
the articles. This process aims to progressively reduce the set of documents initially
identified, isolating those that are truly consistent with the review objectives.
To ensure transparency and replicability, the process was represented using the
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
workflow, which is now considered the international standard for documenting the
steps of a systematic review [13].

During the identification phase, searches of the Scopus, Web of Science and
IEEE Xplore databases yielded a total of 519 contributions. An initial removal of
duplicates excluded 83 entries, leaving 436 unique articles to be screened.

The next phase, screening, involved analysing titles and abstracts. At this
stage, 245 articles were excluded because, despite containing similar keywords,
they did not meet the established criteria (for example, studies in the medical or
agricultural fields, or purely theoretical works without PHM applications). This
left 191 contributions for further analysis, 12 of which could not be retrieved in full
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due to access limitations.

During the eligibility phase, articles were checked for relevance and systematically
evaluated using a scoring grid, in line with recommendations on rigorous SLR
protocols [11, 8]. Each contribution was assigned:

 a score from 1 to 5 for methodological quality (scientific rigour, clarity of
objectives, appropriateness of methodology and robustness of results);

« a score from 1 to 5 for impact (relevance to the field of PHM, degree of
innovation and potential for concrete industrial applications).

The sum of these two scores generated an overall score between 2 and 10. In
line with the protocol, only articles with a final score higher than 8.5 were included
in the final review corpus.

This evaluation phase enabled a transition from a basic inclusion/exclusion
process to a comprehensive ranking system, ensuring that the final material not
only aligned with the research questions, but also exemplified the highest standards
of quality and scientific impact.

Figure 3.2 shows the distribution of scores, suggesting a bell-shaped curve: most
articles are clustered between 7.5 and 9 points, while only a few reach the maximum
score of 10.
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Figure 3.2: Distribution of quality and impact scores assigned to the articles.

The final phase, resulted in a final corpus of 54 articles, forming the empirical
basis of the review. While these contributions varied in terms of application sector,
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methodology and level of technological maturity, they all met the quality and
relevance criteria established in the protocol.

PRISMA flow diagram
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Figure 3.3: PRISMA flow diagram: the overall review process selected a total of
54 records [13].

The PRISMA diagram (Figure 3.3) summarises this process graphically: starting
from over five hundred initial records, the selection process resulted in a small but
robust set of works representing the state of the art in the application of artificial
intelligence to prognostics and health management. This process is not only an
exercise in formal rigour; it is also a fundamental methodological requirement, as
it enables other researchers to replicate the procedure, verify its consistency and
update it with new evidence in the future if necessary.
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3.6 Final Articles and Macro-Area Distribution

The selection process encompassed all stages of the PRISMA protocol, from identifi-
cation to qualitative assessment. This resulted in the inclusion of 54 articles. These
form the core of the systematic review, the product of methodical filtering and
evaluation that transformed an initial set of more than five hundred contributions
into a coherent, analytically manageable body of work.

The distribution of these works, as shown in the macro-area graph (Figure 3.4),
reveals a research geography that is far from random. The largest share belongs
to mechanical systems, accounting for around one-third of the articles (33.3%).
Aerospace follows with 27.8%, while manufacturing represents 22.2%. The smallest,
yet still significant, macro-area is that integrating automotive and wind turbines,
which together account for 16.7% of the total.

Automotive =
Wind Turbines &

Mechanical Systems

Manufacturing

Aerospace

Figure 3.4: Distribution of the final corpus

As previously mentioned, the prevalence of mechanical systems can be explained
by their ubiquity; they are present in every industrial sector and constitute an
ideal testing ground for scalable PHM methodologies. Aerospace, on the other
hand, appears to be the discipline’s “pilot” sector, where the need for absolute
safety and reliability has driven the immediate development of advanced prognostic
tools. Manufacturing takes a different approach: here, PHM is systemic and
extends beyond individual components to the entire production chain. The aim
is to maintain the efficiency and resilience of industrial processes in line with the
principles of Industry 4.0.

Finally, the integrated automotive—wind turbine macro-area is notable for its
experimental and innovative nature. Although it is less well represented numerically,
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it contains some of the most interesting contributions in terms of future prospects,
ranging from battery life prediction in electric vehicles to algorithms for fault
prognosis using high-frequency SCADA data in wind turbines. In both cases, Al is
required to operate in non-ideal contexts characterised by noisy, heterogeneous, and
sometimes incomplete data, which makes these applications particularly valuable
for testing the robustness of prognostic approaches.

Therefore, the distribution of areas should not be understood as a mere quantita-
tive count, but rather as a reflection of the development trajectories of Al-supported
PHM. The differences in weight between sectors demonstrate their varying stages
of technological maturity, ranging from the excellence of the aerospace sector to the
exploration of integrated processes in manufacturing and the sustainability frontier
represented by emerging sectors.

From a methodological perspective, this chapter serves as a point of connection.
It concludes the process of constructing the framework, from queries to filtering and
screening to quality scoring, and paves the way for the subsequent analysis of results.
Readers now have a well-defined corpus obtained through explicit, replicable, and
transparent criteria. The adoption of evaluation thresholds (such as a minimum
score of 8.5, resulting from the sum of quality and impact) has further strengthened
the selection process by limiting subjectivity and clarifying decision-making.
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Table 3.3: Summary of articles

Citation Authors Year Type Area

[44] Baptista & Henriques 2022  Article Aerospace

[27] Kim & Liu 2020  Article Manufacturing

[45] Asif et al. 2022 Article Aerospace

[46] Dhananjay et al. 2024 Article Automotive

[47] Nguyen & Medjaher 2019  Article Manufacturing

[48] Jiang et al. 2024 Article Mechanical Sys-
tems

[49] Chen 2024 Article Aerospace

[50] Bai & Zhao 2023 Article Manufacturing

[51] Caceres et al. 2021  Article Manufacturing

[52] Najdi et al. 2025  Article Mechanical Sys-
tems

[53] Krishna et al. 2024 Article Automotive

[54] Bala et al. 2020  Article Aerospace

[55] Zhang et al. 2024 Article Mechanical Sys-
tems

[56] Zhao & Zou 2022  Conference Aerospace

paper
[57] Boujamza & Lissane 2022  Conference Aerospace
paper

[58] Safavi et al. 2024  Article Automotive

[59] Mazaev et al. 2021  Article Mechanical Sys-
tems

[60] Ochella et al. 2024  Article Mechanical Sys-
tems

[61] Mishra et al. 2021  Article Mechanical Sys-
tems

[62] Pandit et al. 2024 Article Wind Turbines

[63] Zhao & Liu 2022 Article Manufacturing

[64] Wen et al. 2021  Article Manufacturing

[25] Liu et al. 2022 Article Mechanical Sys-
tems

[65] Wang et al. 2021  Article Mechanical Sys-
tems

[66] Deng et al. 2021  Article Manufacturing

[67] Berghout & Benbouzid 2023  Article Aerospace

Continued on next page
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Citation Authors Year Type Area
[68] Liu et al. 2020  Conference Mechanical Sys-
paper tems
[69] Yuan et al. 2024  Article Aerospace
[70] Zhang et al. 2025  Article Wind Turbines
[26] Zhang et al. 2020  Article Mechanical Sys-
tems
[71] Boos et al. 2024  Conference Mechanical Sys-
paper tems
[72] Jaenal et al. 2024 Article Manufacturing
[73] Liu et al. 2025  Article Mechanical Sys-
tems
[74] Moros et al. 2024  Conference Wind Turbines
paper
[75] Solis-Martin et al. 2023 Article Manufacturing
[76] Boujamza & Elhaq 2024  Conference Aerospace
paper
[77] Berghout et al. 2023  Article Aerospace
[78] Desai et al. 2020  Conference Wind Turbines
paper
[79] Mansouri et al. 2017  Conference Mechanical Sys-
paper tems
[80] Ma et al. 2021  Conference Aerospace
paper
[81] Hu et al. 2023 Article Manufacturing
[82] Soualhi et al. 2022  Conference Aerospace
paper
[83] Ensarioglu et al. 2023  Article Aerospace
[84] Zhou et al. 2023  Article Automotive
3] Wang et al. 2023 Article Mechanical Sys-
tems
[85] Wu et al. 2023  Article Manufacturing
[86] Listou et al. 2019  Article Aerospace
[87] Li et al. 2023 Article Mechanical Sys-
tems
[88] Magadan et al. 2024  Article Mechanical Sys-
tems
[89] Alomari & Andé 2024 Article Aerospace

Continued on next page
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Citation Authors Year Type Area
[90] Chen et al. 2022 Article Mechanical Sys-
tems
[91] Schwendemann & 2023 Article Mechanical Sys-
Sikora tems
[92] De et al. 2022  Conference Manufacturing
paper
[93] Verma et al. 2022  Conference Wind Turbines
paper
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Chapter 4
Interaction and comparison

The analysis conducted thus far has enabled us to outline the theoretical, method-
ological, and applicative aspects of Artificial Intelligence in the context of Prognos-
tics and Health Management (PHM). Having explored the main techniques and use
cases in various macro-areas, the next step is to correlate, compare, and critically
discuss the findings.

The aim of this chapter is to intertwine the threads of analysis, observing how
different approaches behave in specific contexts, assessing which metrics are truly
comparable, and understanding the extent to which the choice of algorithm depends
on factors such as accuracy, trust generation, computational costs, and data quality.
The goal is to create a map of interactions where sectoral differences are not seen as
obstacles, but as complementary viewpoints that enhance the broader conversation
on PHM.

We will therefore transition from analysing macro-areas to identifying general
trends (Macrotrends), and from comparing Deep Neural Networks with shallower
approaches to reflecting on explainability, uncertainty, and reliability. Datasets, data
quality, implementation limitations, and the most popular development platforms
will also be discussed in a comparative exercise that aims to convey the complexity
of the landscape without oversimplifying it.

4.1 Comparative Analysis of Macro-Areas

Comparing the various macro-areas of Al application in prognostics highlights the
decisive influence of the industrial context on both methodological choices and
research priorities. Each sector accentuates specific dimensions,safety, robustness,
integration, sustainability, producing a mosaic of approaches that resists reduction
to a single linear trajectory.
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4.1.1 Aerospace

In this field, safety and certifiability remain the dominant imperatives. Studies
employing the C-MAPSS benchmark to estimate the RUL of turbofans reveal a
marked preference for deep architectures such as LSTM networks and CNNs [45,
76], often augmented with attention mechanisms [57] or transformer modules [71].
Alongside accuracy, researchers show increasing interest in uncertainty quantifi-
cation, with probabilistic and ensemble models producing predictions framed by
confidence intervals [67]. Interpretability also plays a crucial role: for example,
[89] employ SHAP values to clarify links between sensor signals and degradation
phenomena. The overall trend suggests a shift toward hybrid solutions where
data-driven architectures and physics-based models converge to meet requirements
of trust and transparency.

4.1.2 Manufacturing

In manufacturing, the main challenge lies in the complexity of multi-machine
systems and their integration into the Industry 4.0 ecosystem. Multivariate Trans-
formers have recently been applied to model intricate chemical processes and
forecast multi-step failures [50], showing their ability to capture long-term depen-
dencies among process variables. Other works propose GAN-based denoising to
synthetically generate realistic data and mitigate the lack of large, high-quality
datasets [44]. More than sparsity, the sector struggles with heterogeneity and
uneven data quality, issues that stimulate the development of data-fusion pipelines
and advanced normalization techniques.

4.1.3 Automotive

In the automotive domain, attention concentrates on energy storage and powertrain
systems. Lithium-ion battery prognostics dominate research, with deep learning
models estimating state of health and forecasting residual cycles under quantified
uncertainty. Growing pressure for explainability reflects the needs of both manufac-
turers and end users, who demand not only accurate but also transparent models.
The objective is a delicate balance: maintaining high predictive accuracy while
addressing safety standards and sustainability goals.

4.1.4 Wind Energy

Wind turbines pose specific challenges: fluctuating operating conditions, harsh
environments, and the difficulty of accessing remote plants. Research in this
field often applies CNNs and autoencoders to detect anomalies in turbine signals
[77]. Transfer learning emerges as a practical solution, allowing models trained
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in one wind farm to be adapted to others. The digital twin concept, integrating
aerodynamic simulations with real-time sensor data, appears particularly promising
in enhancing the robustness of degradation forecasts.

Ultimately, macro-areas differ not only in assets but also in their guiding
values. Aerospace highlights safety and certification, mechanical systems emphasise
robustness, manufacturing focuses on scalability and deployability, automotive
research centres on sustainability, and wind power stresses long-term resilience.
This diversity enriches the field, fostering methodological cross-pollination: SHAP
applications in aerospace echo in battery diagnostics; transformers developed for
industrial processes migrate to wind turbines; Echo State Networks originally used
for bearings are repurposed to monitor lightweight embedded systems. Rather
than fragmentation, this interplay reveals the creative exchange of methods across
boundaries, driving the evolution of PHM towards a plural and adaptive discipline.

4.2 Macrotrends

When the collected works are considered in their totality, an evolutionary trajectory
becomes evident. This trajectory concerns not only the technique but also the
mindset with which artificial intelligence is applied to prognostics. In the early
studies, the scene was dominated by models based on physical knowledge, built
around thermodynamic equations or structural dynamics. The field of aerospace
serves as a paradigmatic example. For an extended period, the estimation of the
residual life of turbofans was predicated on engineering simulations to a considerable
extent. The advent of datasets such as C-MAPSS, in conjunction with the seminal
contributions of Asif et al. [45], which exemplified the superior performance of
deep networks in comparison to conventional physics models, has precipitated a
paradigm shift towards data-driven methodologies. This movement has not erased
the past, but rather redefined it. Physics does not disappear; rather, it becomes
a constraint, a framework, or a source of synthetic data. For instance, one may
consider the utilisation of denoising GANs to generate degradation signals that
are consistent with reality, yet based on simulations [44], or optimised Echo State
Networks that balance engineering information and statistical learning [54].
Concurrent with this transition, the era of deep learning has emerged. In
the space of a few years, CNNs, LSTMs, and, more recently, Transformers have
become pervasive in almost all macro-areas. In the field of aerospace engineering,
convolutions have demonstrated remarkable efficacy in the analysis of vibrational
and acoustic signals [67], while recurrent architectures have been shown to be
effective tools for capturing complex temporal dependencies, as evidenced by
Boujamza and Elhaq [76]. It is evident that there is a plethora of work that extends
beyond this scope: Boujamza and Elhaq [57] introduce attention mechanisms
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in LSTM models, while Boos et al. [71] explore alternative attention modules
in Transformers to optimise RUL prediction. In the field of manufacturing, Bai
and Zhao [50] demonstrate the capacity of a multivariate Transformer to manage
intricate chemical processes, predicting both the present state and the subsequent
progression of multiple variables in unison. It is noteworthy that the enhancement
in accuracy is accompanied by the flexibility of these architectures, whereby each
sector adapts them to its specific requirements. This adaptation involves the
integration of convolutions and sequences, attention mechanisms and dimensional
reduction, resulting in the emergence of authentic local dialects within the domain
of deep learning.

However, while the enthusiasm for deep networks is palpable, there is a growing
awareness of their limitations. The opacity of the models, the necessity for sub-
stantial amounts of data, and computational costs have directed the community
towards a third direction: hybrid integration, or, to utilise the more prevalent label,
physics-informed machine learning. In the field of aerospace engineering, Berghout
et al. [77] have proposed ProgNet, a model that not only predicts degradation
but also enforces its limits to feasible physical curves. In a similar vein, Alomari
and Andé [89] have demonstrated the efficacy of SHAP techniques in enhancing
transparency within complex models by assigning importance to sensory variables
and thereby rendering the predictive process more comprehensible. In the field of
wind energy, the integration of aerodynamic simulations with SCADA data has been
shown to enhance the robustness of models that might otherwise be susceptible to
overfitting limited datasets [67]. The underlying message is unambiguous: artificial
intelligence should not be employed to substitute for physics, but rather to augment
it, thereby expanding its scope.

Another strong signal that has emerged across the board is the growth of
digital twins and, in parallel, federated learning. Digital twins are now more
than just an evocative concept: in automotive batteries, they allow the simulation
of extreme charge and discharge cycles without risking actual damage; in wind
farms, they allow the testing of rare but potentially catastrophic failure scenarios.
The idea that a model can exist in a parallel virtual environment, constantly fed
by real data, has changed the way we think about prognostics, transforming it
from a precise prediction to a continuous process of simulation and validation.
At the same time, federated learning is emerging as a response to companies’
growing reluctance to share sensitive data. Although still in its infancy, several
studies discuss the possibility of training models distributed across vehicle fleets or
turbine networks, maintaining the data at their source sites but exchanging only
updated parameters. Looking ahead, this solution could become the cornerstone
for overcoming the problem of accessing industrial data, a frequent topic in the
literature yet a frustrating one for researchers.

The overarching question concerning all these trajectories is that of trust. The
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concepts of explainability and trustworthiness have become pivotal across the entire
landscape. In order to be considered adequate, a model must not only predict
accurately, but also provide a rationale for why it does so. Furthermore, it is
essential that the model is capable of quantifying its uncertainty, demonstrating
resilience to noise, and being replicable with external data. In the field of aerospace
engineering, Alomari and Andé [89] emphasise the crucial role of explainability in
predictive models, asserting that the absence of explainability renders predictions
unfit for industrial application. In the field of manufacturing, Bai and Zhao
[50] underscore the significance of process complexity in the context of algorithm
utilisation. They contend that the utilisation of numerical output algorithms alone
is insufficient, emphasising the necessity of providing legible justifications to ensure
the effective adoption of such algorithms. As Berghout et al. [67] observe, in the
absence of well-calibrated confidence intervals, a RUL model risks introducing
uncertainty rather than reducing it. Similarly, Bala et al. [54] caution against the
pitfall of overly complex models for edge scenarios, emphasising that confidence
also hinges on computational efficiency.

A comprehensive analysis of the emerging macrotrends reveals a dynamic land-
scape. The discipline of prognostics is moving in multiple directions simultaneously,
from physical models to neural networks, from CNNs to Transformer architectures,
from real datasets to digital twins, and from “black box” algorithms to explain-
ability practices. The fundamental question guiding research in this field is no
longer simply “how accurate is the prediction?” but rather, “how much can it be
trusted, what is the cost of its training and integration, and how compatible is it
with the rules and constraints of my industry?” Consequently, the field of artificial
intelligence for PHM cannot be regarded as a monolithic entity; rather, it is a
dynamic domain in which technical innovations and industrial needs intertwine
and transform each other.

4.2.1 From Physics-Based Modelling to Data-Driven Prog-
nostics

One of the most obvious macrotrends to emerge from the literature review is the
progressive abandonment of model-based approaches, which are rooted in a physical
and deterministic description of phenomena, in favour of data-driven methods. To
fully understand the significance of this shift, it is important to clarify the nature
of the latter paradigm.

Data-driven methodologies rely on data rather than a predefined theoretical
model to reveal regularities. Put simply, while the model-based approach starts from
known physical laws (e.g. differential equations, thermodynamic and electrochemical
models) and uses them to simulate a system’s behaviour, the data-driven approach
assumes that the observed data already contains the necessary information to

49



Interaction and comparison

predict a system’s future state or estimate its remaining life. The algorithm does
not know the degradation equations a priori, but rather learns them implicitly
through statistical correlations and latent structures that emerge during training.

This approach is made possible by the growing availability of large amounts of
sensory data: vibrations, temperatures, pressures and electrical signals collected
from complex systems in operation. Machine learning and deep learning algorithms,
from artificial neural networks to autoencoders, CNNs, LSTMs and transformers,
build abstract representations of system behaviour, capable of capturing temporal
dependencies and nonlinear relationships that escape classical modelling. Unlike a
physical model, which necessarily simplifies reality, the underlying idea is that a
data-driven model can adapt to the complexity of raw data and uncover hidden
patterns that are not immediately apparent to engineers.

In critical contexts such as aerospace, physical models have long been the pre-
ferred solution. Turbofan thermodynamic equations and mechanical fatigue models,
for example, were considered irreplaceable tools for making reliable predictions.
However, benchmark datasets such as C-MAPSS have made it possible to train
complex neural networks that can outperform traditional deterministic models. Asif
et al. [45] demonstrate how a deep neural network can more accurately estimate
the RUL of motors, while Boujamza and Elhaq [57, 76] use LSTM architectures
enriched with attention mechanisms to improve their networks’ ability to capture
long-term dependencies in multichannel signals.

A similar shift is evident in rotating mechanics, where datasets such as PRONOS-
TIA and XJTU-SY provide a basis for comparison. Here, physical modelling of
fatigue degradation still provides a framework, but its applicability is limited by
variable operating conditions and high data noise. Data-driven approaches allow
robust information to be extracted even in the presence of complex signals: Baptista
and Henriques [44] use autoencoders and CNNs to detect latent vibration patterns,
while Bala et al. [54] propose an optimised echo state network that combines
predictability and low computational cost.

In manufacturing, this transition is even more pronounced: multivariate chemical
processes cannot be fully described by deterministic equations because they involve
complex interactions and emergent phenomena. Bai and Zhao [50] demonstrate how
a multivariate transformer can model nonlinear dynamics and perform multi-step
predictions with superior accuracy. They emphasise that the data-driven approach
is not merely an alternative, but the only viable strategy for such complex systems.

A similar argument can be found in the automotive and wind energy sectors.
While electrochemical models of lithium batteries are rigorous, they are inflexible
when it comes to representing real-world degradation under variable operating
conditions. Using LSTMs and networks with attention mechanisms, Berghout et
al. [67] enable us to anticipate ageing phenomena that cannot be predicted by
equations alone. Secondly, wind turbines present further challenges as traditional
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aerodynamic models cannot capture the variability of wind and weather conditions.
However, the use of SCADA data has enabled the training of CNN and autoencoder
models capable of estimating RUL with greater reliability, as shown by Berghout
and Benbouzid [67].

The picture emerging from the fifty-four articles analysed shows that the data-
driven approach is not a transitory trend, but a structural shift. Although physical
models remain essential for providing theoretical constraints, generating synthetic
data, and validating models, reliable prediction increasingly relies on learning from
data. Examples such as ProgNet by Berghout et al. [77], which integrates physical
curves within a deep network, and the explainability applications proposed by
Alomari and Andé [89] confirm that physics will not be abandoned in the future,
but rather that hybrid architectures combining scientific rigour and predictive
capacity will be constructed.

4.2.2 Physics-informed hybridisation

The transition from deterministic, model-based approaches to the current era of
purely data-driven methods in prognostics is neither linear nor definitive. Instead,
the trajectory of research in recent years indicates a resurgence of physics, which is
no longer perceived as a cage, but rather as an ally. This represents the paradigm
of physics-informed hybridisation, whereby established laws, thermodynamic con-
straints and engineering knowledge are not disregarded, but rather integrated into
neural networks. The concept is not a recent innovation; however, its execution
has undergone a radical transformation, evolving from a rudimentary juxtaposition
of independent components to a genuine integration of training methodologies.

Physics-Based Data-driven Physics-Al

models model hybridisation

Figure 4.1: From physics to hybrid models

In the early stages of this story, hybrid approaches were rather rudimentary.
A number of works have exploited simulations based on physics models in order
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to generate synthetic data with which to train machine learning algorithms. One
example of this is aerospace applications, where simulators such as C-MAPSS were
used as 'surrogates’ to feed networks [87]. Hybridisation was therefore more of a
statistical artefact than a genuine intertwining. The data was produced by a digital
twin or a differential equation model, and the network passively learned from what
it received.

However, as time progressed, a discernible shift in the prevailing literature
became evident. As demonstrated by Baptista and Henriques [44], researchers
operating within the domain of rotating systems have established that the mere
existence of simulated data is insufficient in and of itself. Rather, it is imperative
that physical constraints are incorporated directly into the cost function, thereby
providing a framework for learning and ensuring predictions that are in accordance
with conservation laws. In a similar vein, Zheng et al. [55], working in the field of
batteries, have incorporated regularisation functions into their RUL models that
penalise results that are incompatible with experimentally observed electrochemical
cycles.

A particularly fruitful chapter concerns the use of Bayesian filters. In the present
context, the fusion is characterised by a heightened degree of subtlety, which cannot
be attributed merely to the imposition of constraints. Rather, it is imperative
to recognise uncertainty as an integral component of the prediction process. In
the work of Berghout and Benbouzid [67] on wind turbines, the combination of
unscented Kalman filters with LSTM networks allows not only to estimate residual
life but also to provide confidence intervals aligned with aerodynamic models. In
a related study, Chen et al. [90] proposed the utilisation of regularised recurrent
neural networks with particle filters, demonstrating their capacity to facilitate the
dynamic updating of estimates based on probabilistic constraints derived from
failure physics. This use of filters is indicative of a conceptual maturation, whereby
hybridisation is no longer regarded as a mere sum, but rather as a dialogue between
engineering epistemology and statistical learning.

In parallel, another trend has emerged: neural networks with integrated physical
constraints. Berghout et al. [77] have demonstrated how to integrate theoretical
degradation curves directly into the ProgNet model’s layers so that it cannot learn
implausible behaviours. Boujamza and Elhaq [76] extended the LSTM paradigm
by introducing attention mechanisms that respect constraints derived from the
mechanical properties of materials, thereby reducing false alarms and inconsistent
predictions. In the context of complex manufacturing sectors, Bai and Zhao [50]
demonstrated that the efficacy of multivariate transformers is contingent upon the
incorporation of loss functions augmented with regularisations pertaining to energy
balances.

Another element marking the transition to the current phase is the role of digital
twins. Initially conceptualised as autonomous virtual replicas, digital twins are
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progressively integrating into hybridised architectures. Asif et al. [45] demonstrate
how, in the aeronautical context, the digital twin provides rare or extreme scenarios,
while the neural network bridges the gap with real operating conditions. In this
sense, hybridisation is no longer static but dynamic: a continuous exchange of data
between the physical model and the neural model.

The most recent literature, for instance that of Boos et al. [71], also signals a
convergence towards forms of physics-guided attention. To illustrate this point,
consider the Transformers model. These models are no longer trained as tabula
rasa; their self-attention modules are constrained to respect predefined structural
relationships, thereby improving the consistency of results. The focus has shifted
from rectifying deep learning errors after they have occurred to the proactive
shaping of the architecture to ensure adherence to the established principles from
the very beginning.

A thorough examination of the 54 contributions reveals a discernible transition:
initially, a "block-based" approach dominated, with physics on one side and net-
work on the other; subsequently, a more mature phase characterised by physics
being directly embedded in the algorithms, the objective functions, and the layers
themselves. This transformation also reflects an epistemic tension: the need to
reconcile the predictive power of deep models with the need to maintain engineering
plausibility, trust, and transparency.

What is emerging today is therefore not a convenient compromise, but a new
grammar of prognostics. In aeronautical systems, CNN-LSTM fusion with ther-
modynamic constraints is becoming a de facto standard. In rotating systems,
autoencoders and CNNs are regularised with fatigue laws [44]. In the context
of batteries, attention models are trained within the physical constraints of elec-
trochemical cycles [55]. In manufacturing processes, transformers constrained
by energy balances are showing their first convincing applications [50]. In wind
turbines, the combination of Bayesian filters with neural networks has been shown
to produce not only values, but reliable probabilistic predictions [67].

Ultimately, physics-informed hybridisation represents the third major evolution-
ary phase of prognostics. After the eras of purely physical models and entirely
data-driven methods, a new paradigm is emerging in which laws and data coexist
within hybrid architectures. This is not a return to the past, but a leap forward:
physical constraints no longer suffocate the network; they guide it. Rather than
ignoring consolidated science, deep learning incorporates it to offer predictions that
are accurate, plausible and credible. The most recent contributions clearly signal
this direction, which appears destined to set the standard for the next generation
of prognostic systems.
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4.2.3 Deep Learning

A second macrotrend that clearly emerges from the literature is the increasingly
widespread adoption of deep learning approaches. While the first turning point
involved the gradual abandonment of purely physical models in favour of data-
driven approaches or, most recently, of hybrid approaches, the second relates to
the growing prevalence of architectures such as CNNs, LSTMs and, more recently,
transformers. Not only does the literature demonstrate the adoption of these
models, it also shows their ongoing hybridisation. This is in contrast to what are
commonly referred to as shallow methods that have been the standard for years.

The early applications of PHM were fundamentally based on shallow models,
which included support vector machines, random forests and one or two layer
neural networks. They ensured robustness, reduced computation times and offered
a degree of interpretability. In work on bearing failures, for instance, methods
such as SVM or advanced linear regression produced comparable results when the
datasets were small or the features had been manually extracted (e.g. vibration
indices, Fourier transforms, statistical moments). However, with the increasing
complexity of systems and the amount of available data, these approaches have
shown clear limitations, including excessive reliance on feature engineering, poor
adaptability to multichannel signals and difficulty representing complex nonlinear
phenomena [26] [87].

At the same time, LSTM networks and their derivatives (such as Gated Recurrent
Units (GRUs)) have transformed tasks where temporal dependencies are crucial.
For example, predicting the remaining useful life of aircraft engines (C-MAPSS
dataset) or estimating the degradation of lithium-ion batteries greatly benefits
from the ability of LSTMs to store long-term information. Studies by Wu et al.
[85] and Kim et al. [27] demonstrate that LSTMs outperform simpler recurrent
networks. Furthermore, variants such as bidirectional or dilated RNNs [76] [90]
have been shown to further extend predictive capabilities.

In recent years, the field has been enriched by the arrival of transformers, which
have introduced self-attention mechanisms already established in natural language
to prognostics. In contrast to recurrent networks, transformers are capable of
capturing dependencies even over very long sequences without the necessity of
temporal loops. In their 2023 article, Bai and Zhao [50] demonstrate the potential
of multivariate transformers in modelling complex chemical processes, thereby
achieving multi-step predictions of a higher degree of accuracy than is typical of
traditional approaches. In contrast, Boos et al. [71] experimented with customised
attention modules for RUL prediction, achieving results that surpassed those of
CNNs and LSTMs. This observation suggests that transformers are not merely
a passing fad, but rather a foundational element that is poised to consolidate
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its position, particularly in contexts characterised by heterogeneous and high-
dimensional data.

The comparison between shallow and deep approaches is therefore a matter of
balancing predictive power and cost. In scenarios where data is limited and critical
variables are well understood, shallow models have been shown to be advantageous
[54]. Conversely, deep approaches predominate in contexts characterised by an
abundance of datasets and the presence of intricate failure phenomena. However,
this augmentation of power is accompanied by certain drawbacks, namely protracted
training periods, elevated resource utilisation and diminished transparency.

It is important to note that a number of authors have emphasised that the
frontier is not characterised by total replacement, but rather by integration. Hybrid
pipelines have been developed in which a CNN extracts features from the signals
and a shallow regressor (e.g. random forest or gradient boosting) performs the final
prediction [63]. In other studies, unsupervised autoencoders have been utilised for
the purpose of compressing the data. Thereafter, the compact representation is
passed to traditional models. This finding serves to substantiate the notion that
the so-called “shallow vs. deep” dichotomy is not without its ambiguities, but
rather represents a methodological continuum.

The existing literature also demonstrates how deep learning is being adapted
in divergent ways according to the sector. In the aerospace sector, for instance,
hybrid CNN-LSTM architectures dominate [45] [67]. In rotating mechanics, one-
dimensional CNNs and autoencoders prevail [44]. In the field of batteries, recurrent
and attention-based approaches are the most promising [55]. In manufacturing,
transformers for complex multivariate processes are beginning to gain ground [50].
This adaptability, rather than accuracy alone, is indicative of the sophistication of
deep learning: rather than a monolithic building block, it is a set of tools tailored
to the specific requirements of the domain.

In summary, the emergence of deep learning signifies not only a technological
advancement, but also a cultural transformation. The field of prognostics has
evolved from the utilisation of manual descriptors and rudimentary models to a
paradigm in which networks autonomously learn multilayer structures. CNNs,
LSTMs and transformers are no longer considered experimental tools, but rather
they have become well-established methods within the field of PHM. In the context
of specialised applications where efficiency and interpretability are paramount,
shallow approaches will persist. However, the prevailing trend in mainstream
applications is towards greater complexity and depth. The imminent challenge
is not merely one of precision, but rather, the capacity to harmonise predictive
efficacy with transparency, trust, and industrial applicability.
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4.3 Approches

The world of Al-based prognostic methodologies is not uniform, but a diverse
range of approaches that have become popular at various times and in different
contexts. These approaches often reflect the complexity of the available data and
the needs of different industrial sectors. This section takes you on a journey through
the main architectural families that have emerged in recent literature, including
recurrent neural networks (RNNs and LSTMs), convolutional neural networks
(CNNs), autoencoders, echo state networks, transformers and hybrid models. Each
class has its own advantages and limitations and is used for specific applications
in areas ranging from aerospace and wind energy to lithium-ion batteries and
industrial machinery.

4.3.1 Recurrent Neural Networks

Recurrent neural networks were among the first tools introduced in Al-based
prognostics due to their ability to model temporal sequences. The basic principle
is to update a hidden state at every instant that incorporates past information,
allowing us to capture dependencies along the temporal evolution of the data. This
mechanism makes them particularly suited to processing signals that characterise
industrial and aerospace systems, such as vibrations, pressure or temperature.
However, classical RNNs quickly revealed their limitations; the difficulty of prop-
agating the gradient over long sequences results in a loss of long-term memory,
reducing predictive capacity in complex scenarios. Consequently, they are now
more commonly used as an experimental baseline than as a practical solution, as
evidenced by numerous comparative studies with more advanced architectures [45,
83, 87].

The real breakthrough came with the introduction of Long Short-Term Memory
(LSTM) architecture, which features a gating mechanism that can regulate the input,
retention and output of information in a memory cell. This architecture overcomes
the vanishing gradient problem and enables the learning of long-term correlations
in data. The rapid and widespread adoption of these models in prognostics
and health management is evident. In turbofans, for instance, Asif et al. [45]
demonstrated that a deep LSTM model, applied to the NASA C-MAPSS dataset,
surpasses conventional physics models in terms of accuracy. Similarly, Boujamza
and Lissane Elhaq [57] enhanced LSTMs with attention mechanisms, enabling
dynamic weighting of contributions from diverse sensory channels. Boujamza
and Elhaq [76] subsequently proposed a further evolution, introducing dilated
recurrent networks that can extend the time horizon without incurring excessive
computational costs.

Applications are not limited to aerospace. In the lithium-ion battery sector,
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for example, Dhananjay Rao et al. [46] developed an optimised multilayer LSTM
with hyperparameter tuning techniques to predict the RUL of batteries under
variable operating conditions. Meanwhile, Zhou et al. [84] demonstrated how
multiscale health indicators can be integrated with sequential models to reliably
estimate both RUL and health status. In bearings, Najdi et al. [52] proposed a
carefully tuned Res-LSTM capable of adapting to changing operating conditions.
Li et al. [87], meanwhile, combined multi-branch CNNs and bidirectional long
short-term memory (BiLSTM) networks to simultaneously capture local patterns
and long-term dynamics. LSTMs have also found widespread use in the wind
energy sector. Verma et al. [93] used recurrent networks to analyse high-frequency
SCADA data, and Zhang et al. [70] employed LSTMs in integrated models for
pump prognostics in offshore turbines.

A distinctive aspect emerging from the literature is the tendency to not use
LSTMs as isolated models, but rather to integrate them into hybrid architectures.
The CNN-LSTM combination, in particular, has become almost standard in domains
where integrating the CNNs’ ability to extract local patterns from time-frequency
representations with the LSTMs’ sequential memory is crucial. Examples of this
approach are found in Wang et al. [65, 3] and Liu et al. [25], who demonstrated
how merging the two techniques improves performance in estimating the RUL of
bearings. In other cases, such as in the work of Chen et al. [90, 49], LSTMs have
been combined with hierarchical attention modules and transformative components,
demonstrating their ability to integrate into increasingly complex architectures.

Equally relevant is the issue of scarcity of labelled data and variability of oper-
ating conditions. To address these limitations, several studies have experimented
with semi-supervised and transfer learning approaches. Listou Ellefsen et al. [86]
showed how semi-supervised training improves LSTM performance by reducing the
need for complete labels, while Schwendemann and Sikora [91] demonstrated the
effectiveness of transfer learning in bearings by adapting CNN-LSTM models to
different types with limited data. Wen et al. [64] and Zhao and Liu [63] instead
adopted domain adaptation strategies, which allow for maintaining predictive
accuracy across platforms and conditions.

The growing maturity of LSTMs is accompanied by interest in uncertainty
quantification, which is crucial in critical fields such as aerospace and energy.
Kim and Liu [27] developed a Bayesian framework based on LSTMs to estimate
confidence intervals, while Caceres et al. [51] introduced probabilistic RNNs capable
of modelling the randomness of degradation processes. Other works, such as those
by Mazaev et al. [59] and Ochella et al. [60], have expanded the discussion to the
entire Bayesian ecosystem, emphasising the need to combine predictive accuracy
with reliability measures.

The picture that emerges from the fifty-four articles considered is that of a
technology that has now reached a state of consolidation: LSTMs have established
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themselves as one of the most robust and versatile tools for data-driven prognostics,
with applications ranging from aerospace to batteries, from bearings to wind power,
and even complex industrial processes. They are not without limitations: high
computational costs, sensitivity to hyperparameters, and the need for explainability
strategies [89, 75] remain critical factors. Nevertheless, even in the Transformer
era, LSTMs remain central, serving as both a baseline and an integral component
of hybrid architectures combining temporal memory, local feature extraction, and
global attention. In other words, they are a necessary step in the evolutionary
trajectory of Al-based prognostics: a memory grammar that has enabled the
modelling of complex phenomena and which continues to be invaluable in real-
world and industrial scenarios.

4.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), developed for image recognition, are based
on a simple yet powerful principle: rather than connecting each neuron to all
inputs as in a fully connected network, they utilise convolutional filters that run
locally over the data. Each filter is a small matrix of weights that calculates local
linear combinations and produces activation maps when applied to portions of the
signal. These filters are learnt during training and become specialised in detecting
characteristic patterns, such as regular oscillations, sudden changes and degradation
transients.

In the case of one-dimensional signals, typical of mechanical or aerospace systems,
the convolution runs over time and captures local patterns in the time series. This
means that a CNN can recognise, for example, the characteristic oscillation of a
faulty bearing or an anomalous variation in the airflow of a turbofan. When the
data is transformed into two-dimensional representations, such as spectrograms
or scalograms, CNNs work exactly as they do with images, identifying geometric
structures in the time-frequency planes.

Alongside convolutional layers, the architecture includes pooling layers, which
reduce dimensionality while retaining essential information, and fully connected
layers, which translate the learned features into final outputs, such as the estimated
RUL. A crucial aspect of this approach is weight sharing, whereby the same filter
is applied at all positions. This has two main benefits. Firstly, it drastically
reduces the number of parameters. Secondly, it makes the network less prone to
overfitting than dense networks. Moreover, the hierarchical configuration of CNNs
enables the initial layers to acquire rudimentary features (e.g. minor variations,
local harmonics), while progressively more sophisticated layers develop abstract
representations of intricate phenomena.

This layered capability is evident in many prognostic applications. In turbofans,
Baptista and Henriques [44] demonstrated that 1D CNNs can isolate hidden
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vibrational patterns and clean data from noise thanks to an integration with
GAN denoising. In the field of bearings, Wang et al. [65, 3] employed CNNs to
capture intricate spatiotemporal patterns, even introducing convolutional attention
mechanisms that enable them to weight the most pertinent contributions from
diverse sensors. In the domain of manufacturing, Deng et al. [66] developed dilated
multiscale CNNs, which have been shown to expand the receptive field of filters
and capture both rapid details and slow trends in signals.

The efficacy of CNNs is not solely attributable to their precision; their robustness
is equally noteworthy. Local filters have been shown to acquire the capability to
identify structures that remain valid despite the presence of noise or moderate
variations in operating conditions. In the context of high-speed aeronautical
systems, Berghout and Benbouzid [67] demonstrated that combining CNNs with
collaborative feature selection strategies enhances prognostics when compared to
purely recurrent networks. In the field of battery research, Zhou et al. [84] utilised
CNNs to extract multiscale indicators from charge and discharge cycles. These
indicators are then fed into more complex machine learning models.

Of course, there are limitations: CNNs excel at identifying local patterns, but
lack intrinsic temporal memory. For this reason, they are often combined with
LSTMs or GRUs, which add the ability to model long-term dynamics. An example
is provided by Liu et al. [25], who integrated CNNs and LSTMs with time-frequency
representations to improve RUL estimates of bearings, or the CALAP model by Wu
et al. [85], which fuses CNNs and LSTMs with dual attention modules. Adaptation
to new conditions has also been addressed using CNNs: Wen et al. [64] and Zhao
and Liu [63] used convolution-based domain adaptation approaches to transfer
knowledge from one platform to another or from one operating regime to another.

In short, CNNs function as hierarchical local pattern extractors, capable of
transforming raw, noisy data into stable, predictive representations. In prognostics,
this translates into the ability to identify early signs of degradation hidden in
vibrations, pressures, or electrochemical signals. It is precisely this modular and
interpretable nature that makes them one of the fundamental building blocks of
almost all PHM architectures today, rarely used alone but almost always as part
of a hybrid ecosystem with recurrent networks, attention mechanisms, or physical
constraints.

4.3.3 Autoencoders

Autoencoder networks have gradually gained significant traction in prognostics, not
so much for their ability to directly predict a component’s RUL, but for their role as
tools for unsupervised learning and the construction of robust latent representations.
The idea of compressing data into a low-dimensional space and then reconstructing
it dates back to established traditions in signal processing, but with the advent of
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deep learning, this principle has found new vitality. Pioneering work in PHM, such
as that of Listou Ellefsen et al. [86] on semi-supervised architectures for turbofans,
highlighted the use of latent encoders to reduce label dependence. In parallel,
comparative studies on data-driven methodologies [47] highlighted the need for
algorithms capable of extracting robust features even when degradation is not yet
evident.

An autoencoder consists of two parts: an encoder, which progressively reduces
data until it reaches a bottleneck, and a decoder, which attempts to reconstruct
the original input. The model is trained by minimising the difference between
input and reconstruction, and the quality of the resulting latent code depends
on the trade-off between representational capacity and reduction constraints. In
engineering systems, this mechanism is particularly useful because it allows for the
automatic distinction between variations due to noise and patterns that correspond
to actual degradation trajectories. It is no coincidence that, already in early studies
on batteries [26], it was observed that compressing electrochemical signals through
dimensionality reduction allowed for the highlighting of latent ageing patterns,
difficult to capture with traditional techniques.

Baptista and Henriques [44] provided a concrete example of how autoencoders
can be used in conjunction with generative techniques in turbofans. Their 1D-
DGAN model combines a denoising autoencoder with a generative adversarial
network in order to isolate hidden vibrational signals and produce more robust
predictions in the presence of noise. This approach highlights an important point:
the autoencoder is not only useful for compression, but can also act as an intelligent
filter to improve the quality of downstream features. In the bearing domain,
Magadan et al. [88] used denoising variational autoencoders on multiple datasets
(IMS, FEMTO and XJTU-SY) and obtained models that could maintain high
performance even in cross-domain conditions. De Beaulieu et al. [92], on the other
hand, emphasised the usefulness of AEs in unsupervised contexts. They used an
LSTM-based encoder-decoder to estimate a long-term health index, from which
the RUL was subsequently inferred.

More recent developments have led to regularised versions of autoencoders, in
which the latent code is constrained or filtered. Zhang et al. [55] introduced a
residual shrinkage encoder to construct robust health indices in bearings, limiting
the impact of noise and producing a smoother, more interpretable degradation
curve. In the battery sector, Zhou et al. [84] also exploited AEs integrated with
multiscale indicators. They showed that using health indicators derived from
compressed electrochemical signals allows for more reliable predictions of both the
state of health and the RUL.

The role of autoencoders is not limited to diagnostics. They are increasingly
being applied in the generation of synthetic data, a crucial aspect when real
datasets are unbalanced or lacking in fault examples. Variational autoencoder
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(VAE) models and hybrid GANs are moving in this direction, allowing for the
simulation of plausible degradation signals, improving the training of predictive
networks. This theme also appears in more general works on model robustness
and transferability, such as those by Wen et al. [64] and Zhao and Liu [63], who
show how a good latent representation facilitates domain adaptation and reduces
dependence on the original dataset.

These approaches also demonstrate their potential when integrated with hybrid
architectures. For example, CNNs and LSTMs benefit from features preprocessed
by autoencoders. Liu et al. [25] combined convolutions and latent representations
to estimate the RUL of bearings, and Li et al. [87] combined BiLSTMs and
multibranch CNNs with dimensionality reduction modules. This demonstrates
that creating well-structured latent codes is key to achieving high performance. In
more advanced contexts, such as those described by Chen [49] and Boos et al. [71],
Transformers can be fed features generated by an autoencoder, reducing the risk of
overfitting and making the network more stable.

Naturally, limitations and cautions remain. Reconstruction error, while useful,
does not always directly correlate with the probability of imminent failure, and
the interpretation of latent representations often remains opaque. The need for
greater transparency has led to the integration of AEs with explainability tools:
Alomari and Andé [89], for example, discussed the use of SHAP to interpret
temporal features in aerospace PHM models, highlighting how even compressed
representations must be made readable to increase operator confidence.

Looking at the fifty-four articles considered overall, a clear trajectory emerges.
It begins with simple autoencoders, useful for reducing data dimensionality; it
moves on to variational autoencoders and denoising models, capable of improving
robustness; and it ends with penalised encoders and hybrid GANs, which expand
their use to synthetic data generation and cross-domain adaptation. In all cases,
AFEs emerge as intermediate, not final, tools: microscopes capable of delving into
data and producing representations that make subsequent predictive steps more
reliable. This is what makes them an integral part of the PHM ecosystem today, on
a par with CNNs, LSTMs, and Transformers, playing a complementary yet crucial
role in building reliable and transferable predictive models.

4.3.4 FEcho State Networks

Echo State Networks (ESNs), although less widespread than CNNs, LSTMs, or
Transformers, represent a significant step in the evolution of architectures for
prognostics and predictive maintenance. The underlying idea stems from the
reservoir computing paradigm, developed in the early 2000s and revived in recent
years in light Al applications. In a field like PHM, where increasingly complex
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and deep models have taken centre stage [45, 57, 50], ESNs offer a counter-
current approach, which focuses not on extreme depth but on computational
parsimony. This characteristic has emerged strongly when compared to more
complex architectures: comparative studies demonstrate that, despite slightly lower
accuracies, ESNs maintain an ideal efficiency profile for distributed computing
scenarios and embedded applications [62, 58].

An ESN is composed of three fundamental blocks: the input layer that receives
the data, the reservoir, a recurrent network with sparse connections and randomly
initialised weights, and the output layer, the only one actually trained. Unlike
RNNs or LSTMSs, in which gradient backpropagation involves the entire network
(resulting in high costs and the risk of a vanishing gradient), in ESNs the reservoir
remains static and acts as a high-dimensional nonlinear map. Its function is to
transform the input sequence into internal dynamic trajectories, from which the
output layer extracts the prediction using linear regression methods. This means
that the training cost is dramatically reduced, a crucial aspect for real-world
industrial applications, where complex models such as Transformers [49, 71] or
multi-branch CNNs [87] can be too costly to implement on edge devices.

The work of Bala et al. [54] represents a paradigmatic demonstration of the
potential of ESNs in aeronautical contexts. The authors used an ESN enriched with
a metaheuristic optimisation algorithm, the Grasshopper Optimisation Algorithm,
to improve the reservoir configuration and better fit it to the prognostic data. This
approach reduced the variability of results, often related to the random choice
of initial parameters, and achieved competitive performance in failure prediction.
This is a particularly interesting result when compared to more traditional models
such as LSTMSs [45, 83] or hybrid CNN-LSTMs [65, 85], which, while more accurate,
require much greater training time and computational resources.

ESNs have primarily been applied in domains where computational lightness
is a strategic advantage. In the field of aerospace systems, datasets such as C-
MAPSS provide a valuable basis for comparison, and the work of Bala et al. [54]
demonstrates the effectiveness of ESNs even in scenarios that are usually dominated
by LSTMs and Transformers. In rotating systems where vibration data requires
real-time processing, ESNs show particular promise: reservoir computing can be
implemented directly on board, reducing the need to send large amounts of data to
central servers [3, 48]. In the wind energy sector and distributed energy applications,
having lightweight models that can be periodically updated in edge computing
provides a competitive advantage, as discussed in comparisons between deep models
and lighter solutions [62, 74].

Another attractive feature of ESNs is their ability to work with small datasets.
Unlike Transformers, which require large amounts of data to generalise without
overtraining [80, 50], ESNs exploit the dynamic richness of the reservoir to extract
useful information from relatively short sequences. This is a clear advantage in
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sectors such as batteries, where obtaining comprehensive end-of-life degradation
data is expensive and time-consuming [84, 58]. Of course, there are limitations.
The reservoir’s initial configuration — its size, degree of sparsity, and the so-called
spectral radius that governs its stability — is crucial to performance. Poorly
chosen parameters can turn the reservoir into a noise generator, negating the
architecture’s benefits. For this reason, evolutionary optimisation methods have
been introduced in recent years to improve performance, such as the aforementioned
Grasshopper Optimisation Algorithm [54] or similar strategies adopted in other
meta-optimisation contexts [46, 69].

A growing trend in the field is the utilisation of ESNs in hybrid architectures.
These modules can be integrated with convolutional modules for local feature
extraction, or with LSTM and GRU models to incorporate sequential long-term
memory. In consideration of future prospects, these findings position them as
optimal candidates for industrial edge computing scenarios, wherein the challenges
encompass not only accuracy but also the sustainability of models in terms of
latency and resources. A comparison with more compute-intensive approaches, such
as attention-based CNNs [90, 3] and Transformer models [71, 49], is particularly
instructive. Although ESNs do not always achieve the same accuracy metrics,
their energy efficiency and ease of implementation can prove decisive in real-world
scenarios.

In conclusion, Echo State Networks can be regarded as a concrete and promising
alternative to the unstoppable growth of deep models. As demonstrated in the
literature [54, 62, 58], the findings indicate that, while they cannot substitute CNNs
or LSTMs in scenarios where maximum accuracy is paramount, they constitute
an optimal solution when practical constraints necessitate lightweight, rapid, and
adaptable systems that can function with limited data. In a landscape that is
increasingly oriented towards edge computing and the Industrial Internet of Things,
reservoir computing has the potential to once again assume a leading role, thereby
serving as a crucial bridge between cutting-edge academic research and practical
field implementation.

4.3.5 Transformers

Transformers represent a significant turning point for Al-based prognostics methods.
In contradistinction to recurrent networks, which process data sequentially, these
models rely on the self-attention mechanism, which facilitates the calculation of
interactions between each element of the sequence and all the others, irrespective of
temporal distance. Mathematically, the representation of each instant is updated
through a weighted combination of information from the entire sequence, with
weights learned during training. This eliminates the step-by-step propagation
constraint typical of LSTMs and mitigates vanishing gradient problems [80].
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The consequence of this is an enhanced ability to capture long-term dependencies,
a crucial feature in engineering systems subject to progressive degradation. In the
field of aerospace engineering, Ma et al. [80] demonstrated that a Transformer
architecture applied to the C-MAPSS dataset outperforms LSTM networks in
estimating the RUL of turbofans. This is due to the Transformer’s ability to
model patterns distributed over large time intervals. In a similar vein, Chen et
al. [90] proposed a spatial attention-based convolutional Transformer model for
bearings, integrating local convolutions and global attention mechanisms, which
are advantageous for processing high-dimensional and noisy signals.

This innovation is not confined to the aeronautics sector. In complex chemical
processes, where state variables are numerous and interconnected, Bai and Zhao
[50] proposed a multivariate Transformer for multi-step prediction. This model
is capable of capturing nonlinear correlations between dozens of variables, and
has been shown to outperform convolutional networks and LSTMs. In the field
of energy, Transformers have been employed in lithium-ion batteries, with models
demonstrating the capacity to estimate State of Health (SoH) and RUL with greater
precision than conventional electrochemical methodologies [84, 69]. In the field
of wind energy, research conducted by Pandit et al. [62] and Zhang et al. [70]
has demonstrated that attention-based architectures possess the capacity to more
accurately model high-frequency SCADA signals. These architectures are able to
capture temporal and seasonal patterns that prove elusive to more conventional
networks.

In recent years, interest has grown in attention variants designed to reduce
computational complexity without sacrificing performance. Boos et al. [71] analysed
several alternative attention modules, while Chen [49] proposed positional and
hierarchical solutions. These attempts address one of the most critical issues: the
quadratic cost O(L?) of attention with respect to the length of the sequence. In
real-world scenarios, such as aircraft engines or wind turbines, where signals can
contain millions of samples, the computational burden becomes difficult to support
for direct industrial use.

Another limitation concerns temporal representation. Self-attention is, by
construction, permutation-invariant: it does not possess an intrinsic notion of order.
To address this deficit, positional encoding is introduced, but in several cases it
has been observed that, without preliminary convolutional modules, the model
struggles to effectively capture local dynamics [90, 50].

The third issue is data dependence. To fully exploit their potential, Transformers
require large, balanced datasets. In public benchmarks such as C-MAPSS, this is
possible, but in more specific domains, the data is often sparse or noisy. Listou
Ellefsen et al. [86] showed that, under semi-supervised conditions, the predictive
performance of deep networks drops significantly, while Liu et al. [73] highlighted
the difficulties in cross-condition generalisation. To mitigate these limitations, the
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literature proposes transfer learning [91] and domain adaptation [64, 63] strategies,
aimed at transferring knowledge from rich domains to poorer contexts.

A further issue that must be addressed is that of interpretability. Transformers
are networks characterised by millions of parameters, which pose significant chal-
lenges in terms of transparency. In critical applications such as aerospace, accuracy
alone is insufficient; it is necessary to understand the underlying reasons behind a
predictive decision. Attempts such as that of Alomari and Andé [89], who used
SHAP, an Explainable AI (XAI) method that serves to quantify the contribution of
each input variable to a complex prediction, to highlight the temporal importance
of features, represent steps forward, but the problem of trustworthiness remains
unresolved.

In the field of PHM, Alomari and Andé [89] applied SHAP to turbofan models,
highlighting how the contribution of features varies over time and changes with
operating regime. This means that not only can we know how much a variable
matters on average, but we can also observe when it becomes decisive. For example,
vibration on a specific channel may be of little importance in the early stages of a
component’s life, but become increasingly important as degradation progresses.

Finally, the issue of industrial scalability remains to be addressed. The imple-
mentation of a Transformer in a laboratory setting or on public datasets differs
from its integration within embedded systems, remote turbines, or operational
engines. Edge computing imposes lightweight and upgradeability requirements that
these architectures, in their original form, do not always satisfy [82, 85].

In conclusion, Transformers have created new opportunities in the field of
prognostics, enabling the capture of complex and nonlinear relationships between
heterogeneous signals. However, extant literature emphasises that the judicious
use of these techniques requires a balance between accuracy and computational
cost, between predictive power and interpretive confidence. Consequently, the
most robust perspectives do not appear to indicate the exclusive utilisation of
Transformers. Instead, there is a tendency towards hybrid architectures, in which
CNN modules extract local features, Transformer blocks capture global relationships,
autoencoders compress information, and Bayesian filters quantify uncertainty [51,
60]. It is in the coexistence of these approaches, rather than in a single model, that
we discern the future trajectory of PHM.

4.4 Explainability

In recent years, the use of deep neural networks in PHM has led to a leap in
performance in terms of accuracy and predictive capacity. However, this progress
has also generated a downside: models have become increasingly complex, opaque,
and difficult to interpret. While in the early stages of the discipline’s development,
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RUL prediction was based on transparent physical models, grounded in known
equations and laws, the advent of neural architectures has made it difficult to
understand the underlying reasons behind a prediction. In critical sectors such
as aerospace or energy, accuracy alone is not enough: trust, justification, and
accountability of algorithmic decisions are required [75].

This is where the issue of explainability comes in, namely the set of techniques
that seek to make the functioning of models otherwise perceived as black boxes
more understandable. The goal is not merely academic: a maintenance engineer
must be able to justify a decision based on an Al algorithm, a regulatory agency
must be able to certify the system’s reliability, and an industrial operator must
be confident that the predictions are consistent with the physics of component
degradation.

Physics-based models, however simplified, always allow for the tracing of a cause-
and-effect chain: a temperature change, an anomalous vibration, an accelerated fuel
consumption, all elements that can be traced back to known equations. With the
advent of purely data-driven models, this connection has weakened. An LSTM or
Transformer network, while providing highly accurate estimates of RUL, operates
in a space of internal representations that are difficult for a technician to interpret.
This opacity breeds mistrust, especially when a predictive decision has economic or
safety implications.

A first line of research focuses on feature attribution methods and, more generally,
on making the functioning of attention modules visible. Alomari and Andé [89]
provide the most obvious example: the use of SHAP to analyse prognostic models
on turbofans, producing temporal maps of importance and dependence between
variables. The idea is to transform the opaque behaviour of a neural network
into a sequence of signals readable by the engineer: which sensors are crucial
in the early stages of the life cycle, which become more relevant as degradation
accelerates. In parallel, numerous studies exploit attention itself as an explanatory
tool. In bearings, Chen et al. [90] show that the fusion of local convolutions and
Transformer modules with spatial attention not only improves accuracy, but also
allows attention weights to be read as indicators of informative regions in vibrational
signals. Similarly, Wang et al. [3] integrate convolutional attention mechanisms
to highlight which portions of temporal data contribute most to the estimation of
residual life. In the aeronautical field, Zhao and Zou [56] use dual-channel networks
with parallel attention, allowing them to distinguish the contribution of short-term
components from long-term trends. In all these cases, explainability coincides with
the ability to give an engineering sense to the weights of a network.

A second development axis concerns health indices and latent representations.
Here, explainability is not entrusted to post-processing, but to the construction of
interpretable intermediate variables. De Beaulieu et al. [92] propose a health index
calculated in an unsupervised manner using autoencoders and LSTMs, and use it
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as a synthetic representation of degradation. The added value is not only predictive,
but also communicative: the HI becomes a tool readable by a maintenance engineer.
Zhang et al. [55] push in the same direction by introducing an encoder with
residual shrinkage, capable of generating noise-robust indices that regularly track
the component’s decay. In batteries, Zhou et al. [84] use multiscale indicators
derived from current and voltage signals: these are not mere inputs to the grid, but
indicators capable of linking the prediction to the physics of electrochemical ageing.
The explanation, in these cases, is obtained by anchoring the learned representation
to observable and known phenomena.

A third, increasingly relevant, approach consists in quantifying uncertainty as
a form of practical explainability. The logic is simple: a model that provides a
predictive point without indicating how confident it is risks being useless in critical
contexts. Kim and Liu [27] develop a Bayesian framework capable of producing
credible intervals on the RUL; Céceres et al. [51] introduce Bayesian RNNs that
distinguish between epistemic and aleatory uncertainty; Mazaev et al. [59] use
Bayesian CNNs to estimate the residual life of solenoid valves, offering not only a
prediction but also a confidence bar; Ochella et al. [60] consolidate this perspective
by showing the effectiveness of Bayesian networks in quantifying uncertainty in
industrial applications. In all these cases, explainability manifests itself not so
much as the openness of the model, but as a communication of the confidence that
the model itself places in its prediction. It is a form of “algorithmic honesty” that
integrates and complements feature attribution techniques.

No less important is the issue of cross-domain robustness, which can be viewed
as an indirect form of explainability. If a model works only in a specific context, its
interpretation is fragile; if, on the other hand, it maintains predictive stability across
different domains, it means it has captured genuine regularities. Schwendemann
and Sikora [91] demonstrate that transfer learning, applied to bearings of different
types, reduces dependence on data from a single test rig and makes the network’s
decisions more interpretable. Similarly, Wen et al. [64] and Zhao and Liu [63]
develop domain adaptation techniques to estimate the residual life of heterogeneous
systems: the goal is not only to improve accuracy, but also to eliminate spurious
dependencies that would make predictions unintelligible. This is a different, more
subtle idea of explainability: not directly showing “why” a network makes decisions,
but ensuring that its reasons are not tied to irrelevant details or artefacts.

In many cases, explainability is achieved by combining different approaches. In
turbofans, Asif et al. [45] use deep networks on C-MAPSS and report sensitivity
analyses to highlight which variables dominate in different phases of the cycle;
Ma et al. [80], in proposing a Transformer for the same dataset, emphasise that
attention allows for the highlighting of otherwise invisible long-term correlations.
Boujamza and Lissane Elhaq [57] and Boujamza and Elhaq [76] adopt LSTMs with
dilated attention modules, allowing for the observation of the relative weight of
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instants and variables along very long sequences. In rotating mechanical systems,
Ensarioglu et al. [83] present change-point detection mechanisms that identify
transitions that can be interpreted as maintenance events. In chemical processes,
Bai and Zhao [50] demonstrate that multivariate Transformers can separate the
contributions of different state variables, providing greater transparency into the
complex interactions between quantities. In the context of batteries, Dhananjay
Rao et al. [46] and Krishna et al. [53] have developed predictive architectures that
can also explain degradation in terms consistent with electrochemical phenomena.
In the context of wind power, Verma et al. [93] and Pandit et al. [62] utilise
SCADA data to identify the sensors and environmental conditions that are critical
for gearbox failures. Alongside these positive practices, however, limitations emerge.
Solis-Martin et al. [75] emphasise the problem of the soundness of explanations:
not all attention maps or SHAP estimates truly reflect the internal workings of the
model, and they are not always stable under small data perturbations. In a critical
field like aerospace, this risk is unacceptable. This opens a new research avenue
aimed not only at producing explanations, but also at verifying their validity, for
example through sanity checks, weight randomisation, and controlled sensitivity
studies. This is an important conceptual shift: explainability is no longer an
optional extra, but a design requirement, subject to quality standards equal to
accuracy metrics.

Looking ahead, it seems that the literature is converging towards a hybrid model
comprising explanations based on feature attribution and attention, enriched with
interpretable indicators (health index), supported by uncertainty measures and
constrained by physical rules. It is in this combination that the most promising
trajectory is seen. The work of Berghout et al. [77] on ProgNet, which integrates
physical curves into neural models, and that of Liu et al. [68] on digital twins
and domain adaptation, demonstrate that explainability can be incorporated into
the model structure as well as being applied post-hoc. Similarly, using denoising
autoencoders [44] or variational autoencoders [88] enables the creation of compact
representations in which distance from the healthy manifold becomes a readable
anomaly index.

Ultimately, analysis of the fifty-four articles clearly demonstrates that explain-
ability is necessary for turning accurate models into reliable tools. This can involve
using SHAPs to highlight temporal contributions [89]; attention maps in bearings
[90, 3]; robust health indices [92, 55]; uncertainty quantification [27, 51, 60]; or
integrated physical constraints [77, 68]. The direction is clear: to build predictive
models that are powerful, understandable, and justifiable.
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Table 4.1: Explainability approaches in PHM literature

Approach

Example paper

Contribution to Explainabil-
ity

Feature attribution
(SHAP)

Attention mecha-

nisms

Health indices (HI)

Uncertainty quan-
tification

Domain adaptation

Physics-informed
models

&  Andé

Alomari
(2024) [89]

Chen et al. (2022) [90];
Wang et al. (2023) [3]

De Beaulieu et al.
(2022) [92]; Zhang et
al. (2024) [55]

Kim & Liu (2020) [27];
Caceres et al. (2021)
[51];  Ochella et al.
(2024) [60]

Wen et al. (2021) [64];
Zhao & Liu (2022) [63]

Berghout et al. (2023)
[77]; Liu et al. (2020)
[68]

Temporal importance maps for
turbofan prognostics, showing
variable relevance across life cycle
stages.

Attention weights interpreted as
indicators of informative regions
in vibration/time-series signals.

Construction of interpretable
degradation curves and robust
synthetic health indices.

Bayesian methods providing con-
fidence intervals and distinction
between epistemic and aleatory
uncertainty.

Increased robustness across do-
mains, reducing reliance on
context-specific artefacts.

Integration of physical laws and
digital twins to constrain models
and improve interpretability.

4.5 Metrics for Prognostics Models Evaluation

In any field of applied science, measurement is the process by which intuitive ideas
are distinguished from empirical evidence. In Prognostics and Health Management
(PHM), metrics are not a marginal detail but fundamental instruments: they
establish the usefulness of a model, enable comparison across approaches, and define
the distance between algorithmic outputs and the decisions of maintenance engineers.
The discourse surrounding metrics is inevitably linked to the notion of credibility.
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As Saxena et al. [28] observed, “prognostic technologies lack standard definitions,
and therefore performance evaluation suffers from ambiguity and inconsistency.”
This lack of consensus has complicated the comparison of prognostic methods for
years, producing results that are difficult to interpret on a larger scale.

In this context, the selection of metrics assumes a strategic dimension, as it
not only determines the evaluation of a model but also defines the nature of the
variables being measured. Consequently, this choice influences both optimisation
processes and operational outcomes.

Metrics in PHM are stratified across multiple levels depending on the type of
evaluation. Some studies focus on the quantification of numerical error, others on
the timeliness of prediction, while more recent works measure the probabilistic
reliability of models that output distributions rather than point estimates. In
addition, cost-sensitive approaches highlight pragmatic considerations, such as the
financial implications of false alarms or the operational impact of overestimating the
RUL. The intricacies of this subject are best clarified by examining these categories
in detail.

Pointwise Error Metrics

The most widely used category comprises pointwise error metrics, including Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE):

1 X
RMSE = J ~ ST (0 — w)?
=1

1 N
MAE = — A,L' — Y;
N ;:1: |9 — yil

100 X |4
MAPE_WZ

These measures dominate in benchmark studies, such as those based on the
C-MAPSS dataset for turbofan engines [45, 83]. Their main advantage is simplicity
and comparability, but they remain blind to aspects such as uncertainty, variance,
and decision-making implications [27]. In bearings and gearboxes, for instance,
RMSE and MAE are often combined with temporal performance metrics to better
capture degradation dynamics [90, 93].
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Time-Dependent Metrics

PHM has a distinctive temporal nature: the value of a prediction depends on
when it becomes accurate. For this reason, metrics such as Prognostic Horizon
(PH), Relative Accuracy (RA), and Cumulative Relative Accuracy (CRA) were
introduced [94]. PH, for example, defines the earliest point at which predictions
remain within an acceptable error bound until failure. These indices are particularly
relevant in contexts such as wind energy, where early and stable predictions can
yield significant operational savings [62, 70]. Other works confirm that temporal
stability is as critical as raw accuracy, especially when planning maintenance across
distributed assets [82, 85].

Probabilistic Metrics and Uncertainty Quantification

Recent studies have emphasised probabilistic assessment, in which predictions are
expressed as distributions rather than single values. One prominent metric is the

Continuous Ranked Probability Score (CRPS):

CRPS(F.y) = [ [F(:) - Uy < 2} dz

where F'(z) is the predictive cumulative distribution and y the observed value.
Another widely used index is the Prediction Interval Coverage Probability
(PICP):
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These metrics, applied in turbofan and battery studies [51, 60, 84|, highlight
that reliability depends not only on predictive accuracy but also on the confidence
intervals surrounding estimates. This is crucial in aerospace and energy applications,
where decision-makers need to know both the expected RUL and the likelihood of
failure within a given time frame.

otherwise

Asymmetric Scoring Functions

In safety-critical systems, the costs of early and late predictions are not equivalent.
To capture this asymmetry, the NASA scoring function is widely adopted:
A S B
S=20 uw e
=1 le 7 -1, Ug<wy
where o and (3 regulate the severity of penalties. This function, extensively used
in NASA benchmarks and in subsequent aerospace studies [89], strongly penalises
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late predictions, reflecting the low tolerance for unexpected failures in real-world
scenarios.

Cost-Oriented and Operational Metrics

Beyond accuracy, modern PHM requires cost-sensitive evaluation. Metrics such as
expected maintenance cost, avoided downtime, and false alarm rate are increasingly
reported, particularly in Industry 4.0 and IoT-enabled maintenance contexts [53,
72]. Wu et al. [85] also stress that in edge-computing environments, computational
overhead must be included in the evaluation, making lightweight models preferable
even when slightly less accurate.

Composite and Recent Metrics: a—A, NMSE, and XAI-
Linked Scores

While pointwise and probabilistic scores cover fundamental aspects, recent PHM
literature increasingly adopts composite metrics that better reflect operational
needs and governance requirements[89, 75]. Three families stand out:

e the a—\ performance metric for time-to-failure utility
o the Normalized Mean Square Error (NMSE) for scale-robust comparison

o explainability-linked metrics (fidelity and stability) to assess the consistency
and robustness of interpretability tools

The a—\ metric formalises the intuition that a RUL predictor is only useful
if it becomes accurate early enough and stays accurate until end-of-life. Let
e(t) = 7(t) — r(t) denote the RUL error at time ¢ for a run-to-failure trajectory,
with 7(¢) the true remaining life. Given a relative error bound « € (0,1) and a
persistence window A > 0, define the earliest time ¢* such that

le(T)| < ar(r) forall T € [t*, ty],

where t; is the failure time. The prognostic horizon is PH, y =t* — (t; — A), and
a prediction is considered operationally valid if PH, y > 0. In practice one reports
the proportion of runs meeting the criterion for selected («, A) pairs, or aggregates
PH, ) across runs [94]. This metric complements RMSE/MAE by rewarding models
that stabilise early and remain within a tolerable cone as the asset approaches
failure; it is particularly relevant in aerospace and wind applications where late
accuracy is of limited value [62, 70].
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To compare performance across units, operating conditions, or datasets with
different scales and variances, the NMSE normalises the MSE by a scale of the
target. Two common definitions are:

L SN hs )2 N (522
1\Ih/ISE}1 — N Z’L:l(yl yl) : NMSE2 _ Zz;l(yl yj) )
Var(y) ie1 (Vi — )2

Both yield a dimensionless quantity; NMSE, = 1 — R? for linear least-squares.
NMSE is increasingly reported in comparative studies on bearings and wind SCADA
where cross-dataset benchmarking is central [87, 62, 3|, and in deep architectures
for RUL under multiple regimes [80, 90]. Its advantage over RMSE/MAE is scale
invariance; its limitation is the dependence on the chosen normaliser (variance vs.
total sum of squares), which must be stated explicitly to ensure comparability.

Finally, as explainability becomes a prerequisite in safety-critical PHM, the
quality of explanations must itself be evaluated. Two practical, model-agnostic
notions are widely used:

o Fidelity measures how well an explanation (e.g., SHAP attributions, attention
weights, or a local surrogate) preserves the predictive behaviour of the original
model in the neighbourhood of an instance. A simple fidelity score is the
local R? or correlation between the model output under perturbations and a
constrained surrogate fitted in the same neighbourhood; in turbofan settings,
SHAP-based analyses stress the need for faithful, additive decompositions
aligned with the model output [89].

» Stability assesses whether explanations are robust to small, label-preserving
perturbations or to re-sampling. Low stability flags brittle explanations.
This concern is central in soundness analyses of XAl for PHM [75], and is
particularly pertinent for attention maps in CNN/Transformer pipelines [90,
71, 3].

The review of the 54 analysed articles reveals three macrotrends. First, pointwise
error metrics remain ubiquitous but are progressively integrated with temporal and
probabilistic indices. Second, standardisation is lacking: PH, CRPS, and PICP
are applied inconsistently, limiting comparability across studies [86, 73]. Third,
a persistent gap remains between metrics and actual operational value. A model
with lower RMSE is not necessarily the one that produces more useful predictions
for maintenance decision-making.

In addition, the growing adoption of explainability and trust related indices [89,
75] marks a shift: metrics are no longer confined to performance evaluation but
also function as instruments of credibility. This reflects the evolution of PHM from
a purely predictive science to a decision-support discipline.
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Metrics are no longer secondary tools. In support of this, the literature indicates a
clear transition: from simple error indices towards uncertainty-aware, time-sensitive,
cost-oriented, and explainability-driven measures. Yet a lack of harmonisation
persists, and no universally accepted benchmark framework exists. Future research
must integrate predictive accuracy with operational impact to ensure that metrics
reflect the realities of industrial deployment.

4.6 Uncertainty

One of the fundamental issues to address when discussing prognostics is uncertainty:.
While in the previous chapter, metrics provided the toolbox for evaluating models
and performance, here the focus shifts to what these metrics seek to measure in
depth: a model’s ability to state not only the “how much is left” before failure,
but also the level of doubt that accompanies this statement. Uncertainty thus
becomes a structural dimension of prognostics, an indicator of epistemic as well as
operational reliability.

Recent literature demonstrates that deterministic models, irrespective of their
sophistication, are no longer adequate. In their 2020 publication, Kim and Liu [27]
presented a Bayesian deep learning framework for interval estimation of Remaining
Useful Life (RUL). The authors emphasised that point-by-point prediction can
induce a false sense of security [27]. The architecture of these systems provides
predictive distributions, thereby paving the way for decisions based not only on
the expected value but also on the probability that the component will exceed
certain thresholds. In a similar vein, Mazaev et al. [59] demonstrated that the
implementation of Bayesian CNNs for solenoid valves engenders estimates of RUL
that, when accompanied by uncertainty bands, exhibit enhanced robustness to
noise and unobserved conditions. This aspect is also evident in turbofans, where
Ochella et al. [60] demonstrated that the distinction between epistemic and aleatory
uncertainty becomes essential: the former is reduced with more data and better
models, while the latter remains unavoidable and must be managed as an intrinsic
characteristic of the system.

It is therefore not surprising that in reference benchmarks, model evaluation is
no longer based solely on point metrics (RMSE, MAE) but also on probabilistic
indicators such as the Continuous Ranked Probability Score (CRPS) and the
Prediction Interval Coverage Probability (PICP). Ensarioglu et al. [83] have shown,
for example, that in turbofans, the combination of deep networks and change point
detection techniques improves the coverage of the prediction ranges, as measured
by PICP, more than it reduces the mean error. Similarly, Zhou et al. [84], working
on lithium-ion batteries, have shown that CRPS offers a more sensitive assessment
of the predictive distribution, rewarding models that not only center the mean but
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also accurately describe the variability of electrochemical degradation. This is a
clear shift: the focus is no longer simply on “how close” the predicted value is, but
on “how well-designed” its probability distribution is.

A recurring theme in the most cited works concerns data sparsity and variability.
Listou Ellefsen et al. [86] have observed that under semi-supervised conditions,
deep models tend to lose not only accuracy but also consistency in quantifying
uncertainty. In other words, the predictive range becomes uninformative precisely
when it is most needed. To address this limitation, several studies have explored
transfer learning and domain adaptation strategies. Schwendemann and Sikora
[91], for example, transferred knowledge between different bearing types, reducing
not only the mean error but also the predictive spread. Similarly, Wen et al. [64]
and Zhao and Liu [63] showed how domain adaptation techniques allow for better
uncertainty control when a model trained on a data-rich domain is applied to
real-world scenarios with few observations.

The link between uncertainty and explainability is perhaps the most relevant
development in recent years. Alomari and Andé [89], using SHAP to analyze
turbofans, showed that the stability of importance maps is closely linked to the
epistemic variance of the model: inconsistent explanations often coincide with
high levels of uncertainty. On a more theoretical level, Solis-Martin et al. [75]
have warned about the risk of “fragile” explanations, proposing the concept of
soundness as a criterion for assessing the robustness of explanations themselves.
From this perspective, new metrics such as the fidelity and stability of attention
maps or SHAP attributions become tools for measuring uncertainty, broadening
the perspective that traditionally limited it to prediction intervals.

The application implications are transversal. For instance, in the context of
turbofans, Transformer models, such as the one proposed by Ma et al. [80], have been
demonstrated to generate more consistent predictive distributions over extended
sequences in comparison to classical LSTMs, thereby enhancing forecast stability.
In the field of bearings, Chen et al. [90] pioneered a novel approach by integrating
spatial attention and convolutions, thereby demonstrating that noise reduction
leads to not only reduced average errors but also more precise and informative
uncertainty ranges. In the wind sector, Pandit et al. [62] and Zhang et al. [70]
highlighted that the use of hybrid architectures allows for forecast stabilisation even
under extreme weather conditions, reducing false alarms. For batteries, studies
such as those by Safavi et al. [58] and Dhananjay Rao et al. [46] showed that
probabilistic approaches can distinguish between physiological degradation and
anomalous phenomena precisely through a careful use of uncertainty.

The impression that emerges from the analysis of all fifty-four articles is that
uncertainty has become the true language through which models communicate
the degree of reliability of their predictions. While traditional metrics (RMSE,
MAE, NASA score) provide useful numbers for comparing performance, quantifying
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uncertainty adds an epistemic and operational layer without which prognostics
would risk remaining confined to academia. Today, however, the focus is on models
that do not pretend to be infallible, but rather declare their own margin of doubt,
thus offering decision makers not just a number, but a probability map within
which to plan costs, safety, and operational continuity. In this sense, uncertainty
is no longer a flaw to be minimized, but rather an attribute to be cultivated and
made explicit, an integral part of the trust we can place in artificial intelligence
systems for predictive maintenance.

4.7 Trustability

If Al-based prognostics wants to break free from the reassuring confines of public
datasets and research laboratories, it must address a more subtle and complex
obstacle than mean error or predictive variance: trustworthiness. The notion of
trustability in a model encompasses not only the question of its functionality, but
also the extent to which its users, such as an engineer can place their trust in its
predictions. This concept encompasses accuracy, uncertainty, explainability and
robustness, and is situated at the intersection of technology and human perception.
It is important to note that a model may exhibit excellent RMSE, calibrated
prediction intervals, and even plausible explanations; however, if it fails to inspire
trust, it remains confined to publication.

The literature reviewed clearly shows that trust in PHM models has become
a research field of its own. Alomari and Andé [89], for example, tackled the
issue by integrating SHAP with prognostic networks for turbofans, showing that
transparency into the temporal trends of features can increase the model’s credibility
in the eyes of practitioners. Solis-Martin et al. [75] openly discussed the “soundness”
of XAl introducing the problem that simply providing an attribution is not enough:
it must be ensured that the attribution is stable and consistent. In other words,
trustability is not synonymous with explainability, but includes it along with other
dimensions.

The first component is robustness. Reliable models must be able to operate not
only on clean data, but also in the presence of noise and under variable operating
conditions and in situations that were not observed during training. Berghout
and Benbouzid [77] illustrated in their study of high-speed aircraft bearings that
collaborative feature selection can enhance the reliability of predictions in the
presence of noisy signals. Similarly, Soualhi et al. [82] showed that adapting to
different operating conditions in turbofans requires resilience to sudden changes as
well as accuracy, which directly impacts operator confidence. In the field of wind
energy, Verma et al. [93] and Pandit et al. [62] highlighted that models able to
maintain stable performance in extreme weather conditions are considered more

76



Interaction and comparison

reliable, regardless of average error.

A second pillar of trustability is the quantification of uncertainty. Previous
chapters have demonstrated how metrics such as CRPS and PICP [51, 60] enable
us to assess how accurately a model represents variability. The key here is that
uncertainty becomes an act of honesty: declaring how much we “do not know”
is paradoxically what makes a model more trustworthy. Not surprisingly, in
critical applications such as lithium-ion batteries, Zhou et al. [84] and Safavi et
al. [58] underlined the need for models that provide reliable ranges, because an
imprecise estimate accompanied by a calibrated interval is often more useful than
an unjustified point prediction.

trustability is also linked to a model’s ability to generalise beyond the domain
in which it was trained. This is where transfer learning and domain adaptation
strategies become essential. Schwendemann and Sikora [91] showed that predictive
models can be transferred between different bearing types while maintaining robust
performance and consistent confidence intervals. Similarly, Wen et al. [64] and
Zhao and Liu [63] demonstrated the transferability of models across platforms
and operating conditions using adaptation approaches, thereby reducing the risk
of catastrophic errors resulting from misplaced overconfidence. Increasingly, the
literature emphasises that trustability is not a static attribute of the model, but
rather a property that builds over time through generalisation tests, stress tests
and validation in real domains.

Another key element is the understandability of decisions. If a model predicts
that an engine will fail after 25 cycles, confidence in this prediction increases if it is
possible to identify the variables that drove this conclusion, and if these variables
are consistent with engineering knowledge. Alomari and Andé [89] showed that
SHAP-based explanations applied to turbofans can generate temporal importance
maps that align with vibration and temperature signals recognised by experts. This
type of consistency fosters trust by creating a bridge between the algorithm and
the engineer. Conversely, when explanations are based on obscure or implausible
features, the model’s perceived reliability plummets, even if the error metrics are
strong.

trustability is also intertwined with the issues of costs and implementability.
As emphasised by Wu et al. [85], in edge computing and distributed maintenance
scenarios, trust concerns not only the accuracy of predictions but also the computa-
tional sustainability of the model. An algorithm that demands excessive computing
power or long response times may be perceived as unusable, irrespective of its
precision. Jaenal et al. [72] highlighted that trust in machine learning systems
can be enhanced by ensuring a balance between accuracy and implementability.
This is achieved through the integration of models into real-world contexts without
technical friction.

Finally, a consideration of social and organisational perception is warranted.
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The requirement for a model to be accurate, uncertain in a calibrated way, and
explainable is insufficient in itself; it must also be accepted by those who use it.
This point is illustrated by studies on batteries and aeronautical systems, where
the adoption of PHM models is often contingent on the ability to transparently
communicate their limitations and advantages [53, 89]. trustability, therefore, is
not merely a technical attribute, but also a matter of communication between those
who develop models and those who must make operational decisions.

A review of the literature shows that trustability has become the true currency
with which prognostics gains acceptance in industry. Traditional metrics measure
accuracy, uncertainty quantifies the margins of doubt, and explainability offers a
window into the “black box.” Trustability, on the other hand, is the synthesis, that
is the ability of a model to be trusted, accepted, and used. It is a concept that,
far from being purely technical, touches on the epistemic and cultural dimensions
of predictive maintenance. Ultimately, a reliable model is not one that makes the
fewest mistakes, but one that can build a relationship of trust with the engineer
who must decide whether to stop an engine, replace a bearing, or postpone a
repair. And it is this trust, even more than mathematical accuracy, that determines
whether Al-based prognostics will remain confined to the pages of scientific journals
or become an everyday engineering tool.

4.8 Datasets in AI-Based Prognostics

The topic of datasets represents one of the most delicate yet, at the same time,
most overlooked issues in the debate on Al-based prognostics. A model, no matter
how sophisticated, cannot ignore its fuelling factor: data. Data is never neutral,
but reflects acquisition conditions, sensor limitations, the availability of failure
scenarios, and industry’s willingness or otherwise to share it. Recent literature
clearly confirms that the availability of adequate datasets is not a technical detail,
but rather a factor that influences the entire development process of predictive
systems [45, 44].

A first element to consider concerns the type of dataset. In the aerospace sector,
the almost obligatory reference is the renowned C-MAPSS (Commercial Modular
Aero-Propulsion System Simulation), a tool developed by NASA for the simulation
of realistic large commercial turbofan engine data, which constitutes the preferred
testbed for most studies on turbofan engines. Asif et al. [45] demonstrate in their
work that deep neural networks trained on C-MAPSS can outperform traditional
physics models when it comes to estimating RUL. However, several authors point
out that, although valuable, this dataset has significant limitations, including
simplified scenarios, simulated flight conditions and reduced noise levels compared
to the real operating environment [83, 82]. This paradox highlights a constant

78



Interaction and comparison

tension between the need for standardisation, which C-MAPSS guarantees, and
adherence to real-world complexity, which it cannot fully capture.

A similar scenario can be observed in the context of rotating bearings, where
datasets such as PRONOSTIA or XJTU-SY have emerged as de facto standards,
thereby establishing themselves as the accepted benchmark for research and analysis
in this field. Here, studies such as those by Liu et al. [25, 73] and De Beaulieu et
al. [92] underscore a critical aspect: the duration of the sequences is frequently
brief, yet the operating conditions replicated in the laboratory exhibit substantial
divergence from their industrial counterparts. Consequently, a model that has
been trained on these datasets may exhibit excellent performance in a controlled
environment, but rapidly degrade in the field. The emergence of unsupervised
approaches based on latent health indices, as exemplified by the methodology
proposed by De Beaulieu et al. [92], can be attributed to the necessity to extract
robust information from data that is characterised by noise and incompleteness.

The scenario of wind turbines is even more complex, where the availability of
data is abundant, also due to SCADA systems, but problematic from a qualitative
point of view. Desai et al. [78] and Verma et al. [93] show that high-frequency
signals are characterised by strong noise and a very low incidence of real failures,
which makes it difficult to train deep networks without resorting to balancing
or simulation strategies. Subsequent studies, such as those by Pandit et al. [62]
and Zhang et al. [70], demonstrated that attention-based architectures are able
to partially handle the heterogeneity of SCADA data, but even in this case the
problem remains structural: abundance does not coincide with quality.

Lithium-ion batteries offer another interesting insight. Here, the availability of
public datasets, such as those from NASA, is less than in aerospace, and most studies
rely on experimental data collected in the laboratory. Mansouri et al. [79] and Zhou
et al. [84] highlighted the high variability of charge-discharge cycles, while Zhang
et al. [26], using impedance spectroscopy, demonstrated how laboratory datasets
can offer high-quality signals but are difficult to transfer to real-world scenarios.
The main challenge, as noted by Krishna et al. [53], is therefore representativeness:
a model that operates under controlled conditions struggles to replicate the same
performance in complex operating environments, subject to variable temperatures
and unpredictable stress conditions.

The issue of data quality, however, is not limited to sparsity or noise, since
there is also the structural problem of imbalance: in real datasets, data relating
to normal conditions significantly outweigh fault data. Listou Ellefsen et al. [86]
showed how, in semi-supervised contexts, the scarcity of fault labels compromises
the generalisation ability of deep networks. Precisely for this reason, interest has
begun to spread in data augmentation techniques, such as the GAN-based approach
proposed by Baptista and Henriques [44], capable of generating synthetic signals
consistent with the underlying physics.
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A number of strategies have been proposed in the extant literature as a means
of mitigating the limitations of datasets. These include domain adaptation and
transfer learning approaches, which are emerging as essential tools for transferring
models from data-rich to data-poor domains. As posited by Wen et al. [64] and Zhao
and Liu [63], models have been proposed that are capable of learning representations
that remain invariant under operating conditions. In contrast, Schwendemann and
Sikora [91] have experimented with transfer learning techniques to generalise from
one bearing type to another. In parallel, physics-informed models [77, 60] offer
the possibility of integrating synthetic data generated by physics simulations with
observed data, thus increasing the variety and robustness of available datasets. A
more recent, but rapidly growing, trajectory concerns federated learning, discussed
for industrial PHM pipelines by Jaenal et al. [72], which allows models to be trained
on distributed datasets without centralising data, preserving industrial privacy and
expanding the information base.

The common thread that emerges is that dataset quality is not an ancillary
aspect, but a truly critical design variable. Seemingly brilliant performance metrics
can prove misleading if the reference dataset is overly simplified or unrepresentative.
What emerges is that data quality analysis is inseparable from metrics analysis (see
the Metrics chapter) and, in turn, affects the very ability to ensure explainability
and trustability in predictive models.

In conclusion, the datasets available today have been a fundamental catalyst for
the evolution of Al-based prognostics, but their partial and often artificial nature
requires caution. The literature converges on one point: without rich, heterogeneous,
and high-quality data, even the most refined algorithm risks remaining confined to
the academic realm. Future prospects seem to focus on a combination of techniques
ranging from augmentation to transfer learning, from physical simulations to
federated learning, to overcome the chronic scarcity of real-world failure data and
bring prognostic models closer to the most challenging yet most relevant testbed:
that of the operational industrial world.

4.9 Implementability and Computational Cost

When moving from academic prototypes to operational implementation, Al-based
prognostics encounters a less fascinating but much more concrete challenge than
theory: computational cost. Accurately predicting the Remaining Useful Life is not
enough, nor is providing an elegant explanation or a well-calibrated uncertainty
range. In industrial settings, Al must be lightweight, fast, stable, and integrable
into systems that often have limited resources. It is in this transition from research
to field deployment that many sophisticated architectures lose ground.

The reviewed literature highlights a recurring phenomenon. While many models
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that emerge as “state of the art” on datasets such as C-MAPSS or PRONOSTIA
work well in theory, they often become impractical when implemented on edge
devices, embedded systems, or distributed SCADA platforms. Soualhi et al. [82]
observed, in turbofan applications, that training deep architectures was not only
computationally expensive, but also inflexible when updating the model with new
data. The dynamic nature of industrial systems requires algorithms that can be
retrained or adapted without disrupting the infrastructure.

The situation is even more evident with Transformers, currently a major focus
of the literature but often at odds with real-world hardware limitations. Boos et
al. [71] show that the self-attention operator has a quadratic cost with respect to
sequence length. On aeronautical or wind-turbine data, where signals can exceed
millions of samples, this implies hundreds of megabytes of memory and inference
times incompatible with online maintenance. To mitigate the problem, their study
proposes lighter attention modules that reduce the number of operations while
maintaining performance close to standard Transformers. Chen [90] introduces a
variant with positional and hierarchical attention, where signals are first compressed
by convolutional layers, reducing dimensionality before global analysis: an effective
trade-off between accuracy and computational sustainability.

Another recurring strategy in the literature is reducing reliance on full retraining.
Ensarioglu et al. [83] combine deep networks with change-point detection so that
the model is updated only when significant changes in system behaviour emerge.
This avoids continuous reprocessing of the entire dataset; the model intervenes only
when necessary, saving resources and accelerating deployment. In wind energy,
Pandit et al. [62] demonstrate that lightweight models with incremental updates
enable execution on SCADA platforms without transferring large data volumes to
central servers.

Edge computing is a constant topic. Wu et al. [85] developed the CALAP
fusion model specifically to perform inference and real-time updates on low-power
devices and avoid cloud latency. Jaenal et al. [72] took a similar approach with
MachNet, a unified architecture for industrial predictive maintenance designed with
computational limitations and ease of deployment in mind. The result is reduced
inference time and improved compatibility with legacy infrastructures—an aspect
often overlooked in purely theoretical literature.

Some works attack the problem from the opposite side: reducing the data rather
than the model. Baptista and Henriques [44] demonstrate how GAN-based denoising
can generate clean synthetic degradation signals prior to analysis, resulting in more
compact features and faster training. De Beaulieu et al. [92] exploit autoencoders to
build a long-term health index that compresses thousands of vibration samples into
a compact vector; less data also implies faster inference. In turbofans, Berghout
et al. [77] introduce ProgNet, a hybrid model incorporating physical knowledge
to reduce the required number of parameters and improve training and execution
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efficiency.

Regarding batteries, Safavi et al. [58] and Dhananjay Rao et al. [46] high-
light that, while offline training can be expensive, inference becomes rapid if the
model is designed with compressed layers or pruning. Using optimised LSTMs or
reduced-attention variants enables response times compatible with IoT and battery
management systems, where available power is minimal.

Computational cost is closely linked to industrial scalability. Verma et al. [93]
and Zhang et al. [70] show that, for wind turbines, the challenge is not only
model accuracy, but the ability to analyse terabytes of SCADA data without
collapsing the infrastructure. Hybrid solutions-convolution to filter noise, attention
for global correlation-have become common practice. A similar idea emerges from
Liu et al. [73], who propose a mixture-of-encoders architecture: instead of a single
massive network, multiple specialised encoders handle different regimes, reducing
computational load and the risk of overfitting.

In this context, it is clear that implementability and computational cost are
not only a matter of algorithm choice, but also of digital infrastructure. Federated
learning, discussed by Jaenal et al. [72], is emerging as a natural response: models
learn from multiple sites without centralising data, reducing transfer costs and
privacy concerns. Bayesian models, on the other hand, are more expensive to train
[51, 60], but they offer uncertainty quantification that can drastically reduce the
cost of incorrect or premature maintenance. A slower but more reliable model may
be preferable in safety-critical sectors such as aerospace or rail.

The emerging picture is that accuracy is no longer the only important factor.
Recent papers converge on concepts such as deployability, real-time feasibility,
and computational sustainability. Research is moving toward hybrid and adaptive
architectures capable of balancing predictive power with operational lightness.
If the first wave of Al-based prognostics models was built to show that “it was
possible,” the current wave aims to show that “it is actually usable.”

Industrial systems do not require perfect models; they require reliable, stable,
and lightweight models. Prognostics should not exist in the laboratory: it must
function in the field, within the limits of network, memory, and real time. The
direction indicated by the literature is clear: fewer monolithic architectures, more
modular pipelines; less centralised computing, more edge; less complexity for its
own sake, more engineering robustness. If the first revolution in prognostics was
mathematical, the second will be architectural.

4.10 Software Platforms

In the context of Al-based prognostics, the focus is predominantly on models,
signals, and algorithms. The role of the software platforms on which these models
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are developed and, more importantly, on which they are intended to be deployed
once they leave the laboratory is less obvious. However, the selection of the platform
has a significant impact on the reproducibility, transferability, upgradeability, and
compatibility of the model with existing infrastructure. In summary, the platform
serves as the conduit between the realm of modelling and the tangible world.

A comprehensive review of the existing literature provides a fairly clear picture.
Python dominates the academic scene, particularly due to the machine learning
ecosystem centred on TensorFlow, PyTorch, Keras and Scikit-learn. Asif et al. [45],
working with C-MAPSS to predict the RUL of turbofans, use TensorFlow/Keras
to implement deep networks and compare them with physical models. Berghout et
al. [77] build ProgNet in PyTorch, leveraging the flexibility of hybrid models and the
ability to easily integrate physical and data-driven layers. Chen et al. [90] and Bai
and Zhao [50] also implement transformers and multivariable convolutional networks
with Python frameworks, demonstrating that code portability and the availability
of specialized libraries make Python a natural environment for experimenting with
new models.

The situation changes, however, when looking at industrial contexts. While
Python is ideal for research, prototyping, and experimentation, the transition
to production is not always straightforward. Some studies show that directly
integrating Python models into SCADA environments or embedded systems is
non-trivial. Verma et al. [93], in the wind energy sector, emphasize the need to
migrate part of the model to lighter platforms to avoid latency and compatibility
issues. For this reason, research still relies on MATLAB in several cases, especially
when combining control algorithms, real-world signals, and rapid prototyping.
Zhang et al. [26], for example, develop models for lithium-ion batteries based on
impedance spectroscopy using MATLAB, leveraging its robust signal processing and
engineering prototyping. Despite its perceived conservatism, the aerospace industry
continues to utilise MATLAB, acknowledging its role in ensuring certification,
traceability, and pipeline stability.

Alongside Python and MATLAB, the literature identifies a third, less prominent
but significant area: proprietary platforms. Wu et al. [85], with the CALAP model,
highlight the use of custom frameworks to perform online inference and reduce cloud
dependence. Jaenal et al. [72] also propose MachNet as an architecture designed for
direct integration into industrial systems, without having to use complex external
libraries. This is indicative of a clear signal: not all models are intended to exist in
open-source environments, with many companies preferring proprietary pipelines
for reasons pertaining to privacy, security, or certification.

The issue of platforms also relates to hardware resources. A Transformer
may be elegant on paper, but if it requires dedicated GPUs or remote servers to
operate, its industrial adoption becomes unlikely. Boos et al. [71] clearly show
that the self-attention operator has a quadratic cost with respect to the sequence
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length. Chen [90] introduces a variant with positional and hierarchical attention, in
which signals are first compressed by convolutional layers, reducing dimensionality
before global analysis: an effective tradeoff between accuracy and computational
sustainability.

Some works take a different approach to the problem, focusing on reducing
the data rather than the model. Baptista and Henriques [44] demonstrate how
GANSs can be utilised to generate degradation signals and ’clean’ noisy data prior
to analysis. This results in more compact features and faster models for training.
De Beaulieu et al. [92] exploit autoencoders to build a long-term health index that
synthesises thousands of vibration samples into a compact vector; less data also
means faster inference.

Edge computing is a constant topic of discussion. Wu et al. [85] developed the
CALAP fusion model for this very purpose: to perform inference and real-time
updates on low-power devices and avoid cloud latency. Jaenal et al. [72] took a
similar approach with MachNet, a unified architecture for industrial predictive
maintenance that was designed with computational limitations, model transfer,
and ease of implementation in mind. The result is reduced inference times and
improved compatibility with legacy infrastructures.

Some works address the challenge of retraining. Ensarioglu et al. [83] combine
deep networks with change-point detection to update the model only when signifi-
cant shifts in behaviour appear. In wind energy, Pandit et al. [62] also demonstrate
how lightweight models and incremental updates enable execution on SCADA
platforms without transferring large data volumes.

Regarding batteries, Safavi et al. [58] and Dhananjay Rao et al. [46] highlight
that, while offline training is costly, inference can be rapid if the model is designed
with compressed layers or pruning. Furthermore, using optimised LSTMs or lighter
versions with reduced attention enables response times compatible with IoT and
Battery Management Systems (BMS), where available power is minimal. crps
Computational cost is closely linked to industrial scalability. Verma et al. [93]
and Zhang et al. [70] show that, in wind turbines, the challenge is not only model
accuracy, but the ability to analyse terabytes of SCADA data without collapsing
the infrastructure. Adopting hybrid models, such as convolution to filter noise
and attention for global correlation, is a popular solution: it reduces complexity
without sacrificing predictive power.

Federated learning, discussed by Jaenal et al. [72], is emerging as a natural
response to the need to distribute the load: models learn from multiple sites without
centralizing data, reducing transfer costs and privacy concerns.

The emerging picture is that accuracy is no longer the only important factor.
Recent papers recur on concepts such as deployability, real-time feasibility, and
computational sustainability. Research is converging toward hybrid and adaptive
architectures, capable of balancing predictive power with operational lightness.
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In short, industrial systems do not require perfect models; they require reliable,
stable, and lightweight models. Prognostics must function in the field, within
the limits of network, memory, and real-time. The direction indicated by the
literature is unequivocal: fewer monolithic algorithms, more modular solutions; less

centralized processing, more edge; less complexity for its own sake, more engineering
robustness.
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Table 4.2: Comparison of software platforms for Al-based prognostics

Platform Advantages Limitations

Python Open-source and flexible Not always suitable for real-
ecosystem with rich machine time or embedded applica-
and deep learning libraries tions; deployment on indus-
(TensorFlow, PyTorch, trial systems often requires
Keras); ideal for prototyp- conversion or optimisation
ing and research; strong (e.g. ONNX, C++).
community support and
cross-platform compatibility.

MATLAB Comprehensive signal pro- Closed-source and costly

cessing and control tool-
boxes; certified and stable
environment widely used in
aerospace and manufacturing;
strong integration with data
acquisition and hardware.

licensing; limited support
for large-scale deep learning
training; less adaptable for
distributed or edge environ-
ments.

Proprietary /
Custom Plat-
forms

High compatibility with in-
dustrial assets; real-time ex-
ecution; enhanced cybersecu-
rity and intellectual property
protection; tailored integra-
tion with existing infrastruc-
tures

Low transparency; poor re-
producibility of academic re-
sults; high development and
maintenance effort.

Cloud and
Distributed
Frameworks

High scalability and compu-
tational power; suitable for
big data processing and con-
tinuous monitoring;simplifies
model updates and version
control.

High latency and bandwidth
consumption; potential pri-
vacy issues; requires reli-
able networkand cybersecu-
rity management.

Edge / Feder-
ated Environ-
ments

Low latency and reduced
data transmission;processing
close to the sensor; supports
privacy-preserving learning;
scalable across device fleets.

Resource-constrained hard-
ware; model compression and
optimisation required; lim-
ited by energy and memory
constraints.
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Chapter 5

Conclusions

The dynamics of industrial maintenance are undergoing a historic transition: from
the concept of failure as a sudden and inevitable event to the ability to anticipate,
measure, and manage it. In this process, PHM is assuming a central role, and this
thesis aimed to investigate how the introduction of Artificial Intelligence is effecting
a transformation in the methods by which the reliability of engineering systems
is predicted. Through a systematic literature review based on fifty-four recent
studies, the work analyzed approaches, results, evaluation metrics, and real-world
application cases, with the aim of understanding the maturity of the transition to
AT and the challenges that remain.

The first question (RQ1) addressed concerns which methodologies currently
dominate industrial prognostics. A clear trend emerges from the works analyzed:
the use of data-driven methods is no longer an experimental element, but an
established practice. Architectures such as Convolutional Neural Networks, LSTMs,
autoencoders, and, more recently, Transformers, allow degradation patterns to be
learned directly from sensory data, even in noisy and non-stationary conditions [41,
6, 80]. At the other end of the spectrum, model-based approaches continue to play
a significant role when the physics of failure is known and modelable, especially
through Bayesian filters, thermodynamic and mechanical models, or numerical
simulators. However, the literature reveals an increasingly clear convergence: hybrid
architectures, in which neural networks, physical constraints, and degradation
models coexist, represent a concrete and promising direction for development. They
integrate the flexibility of machine learning with the engineering consistency of
modeling, mitigating limitations such as data scarcity and the risk of overfitting.

The second question (RQ2) concerns the actual advantage of Al over traditional
methods. The picture that emerges is clear: in most cases, machine learning-based
techniques achieve superior accuracy in Remaining Useful Life estimates, fault
classification, and the ability to generalize to variable operating conditions. However,
these improvements come at a price: increased computational complexity, the need
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for large, high-quality datasets, and a loss of decision-making transparency. This
has led the scientific community to develop techniques for explainability, uncertainty
quantification, and predictive reliability, topics that now appear essential for mature
industrial use. In other words, Al is measured not only in terms of accuracy, but
also in terms of its technical “credibility.”

The third question (RQ3) of the thesis focuses on the areas in which Al for
PHM has actually been applied. The most mature sectors are aerospace, manu-
facturing, mechanical systems, wind turbines, and the automotive sector [93, 70].
In turbofans, data-driven PHM is now an integral part of maintenance strategies
and shows consolidated results thanks to datasets such as C-MAPSS [28]. In wind
turbines, SCADA data analysis has allowed us to anticipate gearbox failures and
optimize interventions on field-installed machinery. Adoption is also growing in
manufacturing, primarily thanks to Industry 4.0 and the increased availability of
Sensors.

These results allow us to draw some critical conclusions. Al-based PHM is
no longer just a scientific possibility, but a concrete technological path. The
integration of data, physical models, edge computing, and cloud solutions opens up
scenarios that make maintenance truly predictive, rather than preventive. However,
industrial adoption cannot ignore issues such as the reliability of forecasts, the
explainability of algorithmic decisions, robustness to noisy data, and the economic
impact of deploying complex networks. In other words, Al is proving to work, but
it must prove to be reliable.

The work is not without limitations, and recognizing them is an essential part of
a scientific thesis. The choice to focus on recent years allows us to grasp the state
of the art, but excludes historical techniques that laid the theoretical foundations
of the field. Furthermore, some industrial sectors remain poorly documented, and
several studies report results on experimental datasets rather than on real machines,
making it difficult to assess the transferability of the methods.

Future prospects show a clear evolutionary path: hybrid physics-Al models,
digital twins, federated learning to preserve data privacy, explainability integrated
into diagnostic and prognostic tools, lightweight networks for edge computing, and
standard metrics shared by the scientific community. It is likely that the industrial
maturity of Al-based PHM will depend not only on predictive accuracy, but also on
its integration with operational processes, risk management, and asset economics.

In conclusion, the analysis conducted shows that Artificial Intelligence is not
replacing traditional prognostics: it is transforming it. Maintenance is no longer a
sequence of scheduled interventions, but an informed, anticipatory, and adaptive
system. The vision we are moving toward is that of industrial infrastructures
capable of knowing themselves, predicting their operational future, and optimizing
their decisions. This is a technological, but above all a cultural, shift, and represents
one of the most significant steps towards the maintenance of the future.
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The systematic mapping we have conducted, while defining a solid state of the
art, is by its very nature a starting point. The critical challenges resisting the
industrial assimilation of Al in PHM outline an extremely fertile research horizon,
structured around three main directions that deserve immediate and targeted
exploration.

The future cannot be satisfied with post-hoc hybrid models, where physics acts
as a mere corrective filter. The next frontier lies in the development of intrinsically
physics-informed architectures, where the fundamental degradation equations are
not external constraints, but an integral part of the neural network’s learning
structure. This requires deeper research into how sensor data and thermodynamic
or mechanical knowledge can be fused at the feature and loss function levels with
greater refinement, ensuring not only more accurate prediction but also domain-
based explainability (XAI).

Furthermore, while LSTMs have been the workhorse for sequences, the latent
potential of Transformers for multivariable and multiscale systems, such as a
turbofan, requires rigorous validation. Systematic benchmarking is imperative to
assess whether the self-attention mechanism can provide a sufficient computational
and explanatory advantage to justify its complexity of edge implementation.

The problem of failure data scarcity cannot be solved by simply waiting. Research
must focus on the development of synthetic data generation techniques (using
Generative Adversarial Networks or Variational Autoencoders) that go beyond
statistical replication and realistically model the final degradation trajectories,
which are often not represented in real datasets.

At the same time, true implementation at the Industrial IoT level is undermined
by computational costs. Future research should focus on developing quantization
and pruning techniques for deep models to make them compatible with the Edge
Computing environment, where latency is critical and resources are limited. This
includes exploring advanced lightweight architectures, such as binarized neural
networks, that can ensure trustworthiness without overloading the hardware.

Finally, widespread adoption is inextricably linked to standardization. The sci-
entific community is challenged to define universal metrics and validation protocols
for trustworthiness. These standards should include not only UQ metrics (CRPS,
PICP) but also evaluation of the explanatory robustness of XAI techniques [89,
60].

The culmination of these research directions is their functional integration
into the concept of the Digital Twin. The Al-based PHM model, armed with
explainability and uncertainty awareness, is poised to become the "predictive
brain" of every digital twin. The final challenge is to ensure that RUL prediction
translates into self-regulating decision input for the twin, enabling true real-time
system lifecycle management, thus closing the loop between predictive science and
operational practice.
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