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Abstract

The growing interest in low-altitude operations for scientific and commercial appli-
cations has strengthened the relevance of orbit-lowering campaigns in Low Earth
Orbit (LEO). Operating in this environment offers substantial advantages, including
enhanced spatial resolution for Earth observation and natural compliance with
space debris mitigation guidelines. However, the significant atmospheric drag
and strong coupling between orbital and aerodynamic dynamics make trajectory
optimization a complex task.

This work addresses the problem of optimizing a low-thrust orbital descent using
an indirect approach based on Optimal Control Theory (OCT). The governing
equations are formulated as a Two-Point Boundary Value Problem (TPBVP),
derived from the necessary conditions of optimality given by Pontryagin’s Maximum
Principle. The resulting nonlinear system is solved iteratively through a Differential
Correction (DC) procedure, which updates the initial conditions until the prescribed
terminal constraints are satisfied.

The dynamical model is based on a medium-fidelity Two-Body Problem (2BP)
formulation including atmospheric drag effects, evaluated through a one-dimensional
interpolation of precomputed atmospheric density data. The numerical implemen-
tation has been developed in Python with particular attention to convergence
stability and sensitivity to initial conditions.

The results confirm that the indirect optimization framework effectively identifies
minimum-propellant trajectories for controlled orbit lowering under low-thrust
propulsion. The methodology developed in this thesis provides a robust foundation
for future studies focused on guidance, control, and end-of-life operations in LEO
and Very Low Earth Orbit (VLEO) regimes.
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Chapter 1

Introduction

1.1 Preface
Space missions have always been constrained by one fundamental limitation: the
finite amount of propellant that can be carried onboard. Propellant availability
directly affects both the payload mass that can be delivered into orbit and the
duration or versatility of the mission itself. The relationship between payload,
propellant, and velocity change is governed by the Tsiolkovsky rocket equation,
which reveals the exponential penalty associated with propellant mass. Even modest
reductions in propellant requirements can therefore translate into substantial gains
in payload capacity or mission lifetime.

mp

m0
= 1 − exp

A
− ∆V

Ispg0

B
(1.1)

In this equation, ∆V denotes the total velocity variation required by the mission,
Isp is the specific impulse of the propulsion system, and g0 is the standard gravity.
The equation highlights a key challenge in astronautics: achieving the necessary
orbital maneuvers while minimizing fuel consumption. This consideration has
guided space system design since the earliest days of space exploration and remains
a cornerstone of modern mission planning.

In recent decades, the aerospace sector has experienced rapid evolution, driven
by both scientific ambitions and commercial opportunities. On the scientific front,
increasingly precise Earth observation and geophysical missions demand finely
optimized orbits to enhance the accuracy of their measurements. Examples include
ESA’s GOCE and Swarm missions, which operated in low and very low Earth
orbits to maximize sensitivity to gravitational and geomagnetic variations. Such
missions demonstrate how orbital altitude directly influences data resolution and
scientific return.
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At the same time, the commercial space industry has undergone a profound
transformation. The proliferation of private operators and the advent of large
satellite constellations in Low Earth Orbit (LEO) have intensified the demand for
efficient, low-cost orbital maneuvers. Operators now routinely consider controlled
orbit lowering not only as a means of improving imaging resolution and communi-
cations performance, but also as a strategy for end-of-life disposal and compliance
with international debris mitigation policies. The transition from traditional high-
altitude operation to Very Low Earth Orbit (VLEO) regimes represents both a
technical challenge and an opportunity for innovation.

A pivotal technological enabler of these developments is the advent of low-
thrust electric propulsion (EP) systems, such as ion and Hall-effect thrusters.
Unlike conventional chemical engines, which provide short but powerful thrust
impulses, EP systems deliver continuous low accelerations over long durations,
achieving far higher specific impulses. This allows for efficient propellant use during
gradual orbital changes such as altitude lowering, inclination correction, or drag
compensation. The combination of EP and precise numerical optimization enables
new mission profiles that were previously impractical with chemical propulsion.

In parallel, the field of trajectory optimization has advanced significantly. Mod-
ern mission analysis now routinely employs a wide range of optimization tech-
niques—direct, indirect, and evolutionary methods—to determine control laws
that minimize propellant consumption or transfer time. Among these, the Indirect
Methods (IM) based on Optimal Control Theory (OCT) are particularly effective in
identifying theoretically optimal trajectories by solving boundary value problems
derived from first-order necessary conditions of optimality.

In this framework, the study of low-thrust orbital maneuvers has gained renewed
importance, especially for missions operating in the lower layers of LEO and in
VLEO. The combined use of high-efficiency propulsion and indirect optimization
techniques provides an analytical foundation for designing orbital transfers that
balance energy efficiency, mission robustness, and operational constraints.

This thesis builds upon these concepts by focusing on the optimization of
a low-thrust orbit-lowering maneuver in LEO, representative of contemporary
trends in both scientific and commercial spaceflight. The objective is to identify
minimum-propellant trajectories through the application of indirect optimization
methods, demonstrating how the integration of advanced control theory and electric
propulsion can enhance the overall efficiency of space missions, enabling greater
payload capacity and extending the scope of achievable operations.
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1.2 Field of study

Orbit lowering campaigns in Low Earth Orbit (LEO) are increasingly regarded
as a strategic and enabling tool in both scientific and commercial space missions.
Recent operational practices illustrate how lowering a spacecraft’s altitude after
initial deployment or during its operational life can deliver significant performance
enhancements.

Figure 1.1: Altitude evolution of CHAMP, GRACE, GOCE, and Swarm satellites.
Figure reproduced from March et al. [2] for academic and illustrative purposes only.
© 2018 Elsevier Ltd.

For example, the European Space Agency (ESA) reports that the Earth-
observation company Planet Labs lowered its SkySat constellation from approxi-
mately 500 km to 450 km in early 2020, enabling native optical resolution of about
50 cm. This demonstrates how a modest reduction in altitude can directly improve
imaging capability [3, 4]. Similarly, ESA’s GOCE mission was injected at around
295 km, subsequently operated near 270 km and in its final phase descended further
to about 229 km in order to maximise gravity-field mapping precision [5]. These
cases underscore the growing use of altitudinal manoeuvres to exploit proximity to
Earth in order to enhance mission metrics.

3
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Satellite CHAMP GRACE-A, -B GOCE Swarm-A, -C Swarm-B
Operator DLR NASA/DLR ESA ESA ESA
Launch date Jul. 2000 Mar. 2002 Mar. 2009 Nov. 2013 Nov. 2013
End of mission Sept. 2010 Oct. 2017 Oct. 2013 – –
Initial altitude 460 km 505 km 270 km 470 km 530 km
Inclination 87.3° 89.0° 96.7° 87.4° 87.8°

Table 1.1: Mission characteristics for the CHAMP, GRACE, GOCE, and Swarm
satellites [2].

More broadly, the concept of Very Low Earth Orbit (VLEO)—typically con-
sidered as orbital altitudes from about 200 km to 450 km—is gaining traction in
the space community. Investigations by Crisp et al. [6] indicate that operations in
VLEO enable better spatial resolution for a given optical payload (or conversely
reduced payload mass for the same performance), improved signal-to-noise ratio
for radar and lidar sensors, enhanced communications link budgets, and potentially
shorter latency in data transmission. ESA further emphasises that VLEO offers
lower launch cost per unit of capability, a more benign radiation environment
(permitting the use of terrestrial-grade electronics) and a self-cleaning feature due
to natural atmospheric drag, which contributes to post-mission disposal compliance.
Additional research corroborates these benefits, showing that for Earth-observation
missions, descending from higher LEO to altitudes below 400 km could reduce
platform mass by up to 75 % and lower development or manufacturing cost by
roughly 50 % when enabled by appropriate VLEO-tailored technologies [7].

The attractiveness of VLEO is particularly relevant for modern Earth-observation
constellations, telecommunications networks and sensing platforms seeking higher
performance with lower cost. For instance, the European Defence Agency (EDA)
recently launched the LEO2VLEO project—a manoeuvrable constellation capable
of operating between LEO and VLEO—targeting altitudes in the 250–350 km range
for high-resolution military and dual-use applications [8]. Commercial operators
share this interest: Planet’s aforementioned SkySat campaign exemplifies how a
small altitude adjustment can directly translate into competitive advantage and
improved market value for imaging services. Industry analyses have also pointed
out that altitude is one of the key cost drivers in satellite imaging, where operating
closer to Earth can enable simpler optics, lighter spacecraft and higher-quality data
products at reduced mission cost [6, 7].

However, operating in VLEO or executing orbit-lowering manoeuvres imposes
notable engineering and operational challenges. The denser residual atmosphere
at those altitudes increases aerodynamic drag, leading to greater fuel expenditure
for station-keeping or faster orbital decay if left uncompensated. Atomic-oxygen
erosion progressively degrades surfaces and optical coatings, requiring dedicated
protection or materials specifically designed for low-altitude environments [9].
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Thermal cycling and aerodynamic torques also affect attitude stability, while
the denser environment modifies surface charging and aerodynamic moments [6].
From the propulsion standpoint, long-duration low-thrust systems—such as electric
propulsion (EP)—are well suited for gradual lowering and drag compensation, but
their limited thrust levels impose extended manoeuvre durations that must be
traded against mission timelines [10, 11].

Novel concepts such as atmosphere-breathing electric propulsion (ABEP) propose
to sustain thrust using the rarefied atmospheric particles as propellant, potentially
enabling continuous operation in VLEO without carrying large fuel reserves. Al-
though still in the experimental phase, such concepts are expected to make future
long-duration VLEO missions feasible and sustainable [11]. These advances high-
light that electric propulsion remains the key technological enabler for orbit-lowering
and drag-compensation campaigns, particularly when combined with high-fidelity
aerodynamic modelling and adaptive control techniques.

From a regulatory and sustainability perspective, orbit lowering and VLEO
operations deliver significant contributions. Spacecraft operating in this regime
naturally comply with most debris-mitigation requirements, since the elevated
drag ensures deorbit within months or a few years after mission completion. This
aligns with the IADC Space Debris Mitigation Guidelines, which recommend a
post-mission lifetime shorter than 25 years [12]. Moreover, reducing the number
of long-lived objects in high LEO helps alleviate congestion and enhances the
long-term sustainability of satellite operations. The synergy between improved
observation performance and responsible orbital management is one of the main
reasons behind the renewed interest in orbit-lowering campaigns.

Scientific missions have also demonstrated the feasibility and scientific return of
very-low orbits. GOCE’s drag-free control system and aerodynamic design allowed
continuous operation near 250 km, producing gravity-field data with unprecedented
spatial resolution [5].
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Figure 1.2: Evolution of GOCE satellite mean altitude from commissioning to
re-entry (2009–2013). Source: European Space Agency [13].

ESA’s Swarm constellation employed a differential-altitude strategy—one satel-
lite near 530 km and two at 460 km, later descending toward 300 km—to improve
the sensitivity of geomagnetic measurements [14]. Such missions provide opera-
tional templates for future low-altitude campaigns, showing how coordinated orbit
lowering can enhance the quality of scientific data.

In parallel, commercial and defence entities are exploring similar strategies.
Planet Labs, Maxar and other Earth-observation companies now routinely anal-
yse the trade-off between optical performance, drag, and propulsion cost when
defining operational altitudes. ESA’s and EDA’s recent initiatives, including the
LEO2VLEO demonstrator, confirm a wider institutional effort to mature technolo-
gies and standards for sustainable operations in this emerging orbital band [8].
These trends suggest that orbit lowering is no longer merely an end-of-life strategy,
but an integral part of active mission optimisation and value generation.

Within this framework, the scenario examined in this thesis—a lowering ma-
noeuvre from 500 km to 490 km altitude—occupies a relevant position at the
interface between conventional LEO operations and VLEO-enabled performance.
By targeting the upper limit of the VLEO regime, the present work seeks to harness
the benefits of proximity (higher imaging resolution, improved signal-to-noise ratio,
better communication geometry, and enhanced disposal behaviour) while mitigating
the most severe environmental and operational constraints associated with very
low altitudes. The ultimate goal of this research is to identify minimum-propellant
descent trajectories using low-thrust electric propulsion, via indirect optimisation

6



Introduction

methods. This approach combines the physical insight of Optimal Control Theory
with modern numerical techniques, providing a framework capable of balancing
performance, efficiency and sustainability in future orbit-lowering missions.

1.3 Dissertation overview
The following provides a brief overview of the chapters that constitute this disser-
tation.

– Chapter 2 outlines the dynamical framework adopted for the study. It first
introduces the reference systems and the essential coordinate transformations,
then presents the structure of the dynamic model. Finally, it summarizes the
perturbative effects considered in the simulations.

– Chapter 3 presents the theoretical and computational framework of Optimal
Control Theory applied to trajectory optimization. After introducing direct,
indirect, and heuristic approaches, the fundamental equations for optimality
and control are derived. The formulation is extended to multi-point problems
and solved via a single-shooting differential correction scheme. The developed
methodology is then applied to a Low Earth Orbit (LEO) descent trajectory
optimization case study.

– Chapter 4 presents the application of the developed optimal control framework
to a set of representative orbit-lowering scenarios in Low Earth Orbit. The
analysis includes both ideal and drag-perturbed cases, allowing the impact of
atmospheric drag on the optimal solution to be assessed. Different thrusting
strategies are investigated and compared in terms of propellant consumption,
mission duration, and orbital evolution.

– Chapter 5 concludes the thesis by summarising the achieved results and
evaluating the effectiveness of the proposed approach. Possible methodological
and modelling extensions are finally discussed as directions for future work.

7



Chapter 2

Dynamic models

This chapter introduces the dynamic context within which the optimization process
takes place. The first part provides a brief description of the reference systems
involved in the analysis together with the main coordinate transformation required,
while the subsequent segment delves into the actual dynamic model. The chapter
concludes with a description of the perturbing effect included in the simulation.

2.1 Reference systems
The set of an origin, a fundamental plain and an orthonormal right-handed triad,
called reference frame (RF), constitutes a Reference System (RS). The choice of
an inertial or non-inertial RS depends on the specific scenario. In this analysis,
it is not necessary to take into account pseudo-accelerations that make a system
non-inertial, such as the Coriolis force or the centrifugal force in rotating RFs. The
motion of a satellite relative to the earth is easily described in an inertial RS in
different types of coordinates, such as Cartesian or polar. In the present thesis, the
geocentric-equatorial RS coincides with the Earth Mean Equator and Equinox of
Epoch J2000 (EME2000) and is the one generally used for a 2BP. It constitutes
a specific case of the Earth-Centered-Inertial (ECI) RF, where the nutation and
libration effects of the planet Earth are taken into account. This fact, strictly
speaking, makes the EME2000 RF a quasi-inertial reference system. The choiche
to neglect these effects, due to the limitated rotational offset between the two RF,
allow us to use the EME2000 RF as an inertial RS. Such RF is presented in Figure
2.1; it’s origin is at the Earth’s center, the reference plane is the equatorial plane,
and its unit vectors {Î, Ĵ, K̂} have Î aligned towards the direction of the Vernal
equinox, K̂ normal to the reference plane, and Ĵ completing the triad.

For what concerns the satellite motion, on of the most suitable coordinate frames
is the perifocal coordinate system [1] . Here the fundamental plane is the plane

8
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Figure 2.1: EME2000 {Î, Ĵ, K̂}, perifocal {p̂SC , q̂SC , ŵSC}, and ZEN {û, v̂, ŵ}
RSs

of the satellite’s orbit and its origin is centered in the gravitational body. It’s
unit vectors are {p̂SC , q̂SC , ŵSC}, where the p̂SC unit vector coincides with the
eccentricity vector direction ê, ŵSC is normal to the orbital plane and lies in the
direction of the specific angular momentum vector ĥ, and q̂SC completes the triad.

According to Kepler’s First Law, in this RF a SC moves along a conic as long as
it is not afflicted by external perturbations. Five quantities are needed to describe
the size, shape and orientation of an orbit, and a sixth element is required to locate
the position of the satellite along the orbit at a specific time [15]. These are the
"orbital elements": a, e, i, Ω, ω, ν. It is possible to draw the orbit within the
perifocal reference system using the semi-major axis a, and the eccentricity e, via
the conic equation:

r = a (1 − e2)
1 + e cos(ν) (2.1)

The semi-major axis and the eccentricity are respectively connected to the size
and shape of the orbit. The true anomaly ν, is the angular position of SC with
respect to the periapsis in the perifocal RF. The other three Keplerian elements
are needed to orient the perifocal RF in the tridimensional space with respect to
J2000. The inclination i, is the angle between the equatorial and orbit planes, and
the intersection between them is called line of nodes n̂. The right ascension of
ascending node (RAAN) Ω, is the angle between Î and n̂. The argument of the
periapsis w, quantifies the angle between the line of nodes and the periapsis, for
non-circular orbits.

9
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The Zenith-East-North (ZEN) is a non-inertial RF centered in the SC’s center
of mass. The choice of the triad {û, v̂, ŵ} allows one to easily describe the SC’s
velocity components in the radial, tangential, and normal directions, respectively.
Once the position vector of the SC from Earth’s center has been identified, the
radial direction is obtained by extending it. The tangential and normal directions
follow the directions of a parallel and a meridian of the celestial sphere.

2.2 Time-invariant coordinate transformation
Several reference systems are used to perform this analysis , and with these the
need to transform the vectors from one basis to another arises. This is achieved
through elementary rotation matrices, composed of a series of Direction Cosine
Matrices (DCMs). For a generic positive rotation of θ, the DCMs are defined in
this form:

R1 =

1 0 0
0 c(θ) s(θ)
0 −s(θ) c(θ)

 R2 =

 c(θ) 0 s(θ)
0 1 0

−s(θ) 0 c(θ)

 R3 =

 c(θ) s(θ) 0
−s(θ) c(θ) 0

0 0 1



Figure 2.2: Coordinates transformation from J2000 RF to ZEN RF

The transformation of a vector in the {Î, Ĵ, K̂} basis into a vector expressed
in the {û, v̂, ŵ} basis, conceptually corresponds in aligning the two RFs. In
the following, it is shown how to realize this transformation through a series of
geometrical rotations. The first step is to perform a rotation of θ about the K̂ axis:

rÎ′,Ĵ′,K̂ = R3(θ)rÎ,Ĵ,K̂ (2.2)

10
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A second rotation of ϕ about the Ĵ′ axis allows to make the two frames coincident:

rû,v̂,ŵ = R2(ϕ)rÎ′,Ĵ′,K̂ (2.3)
If we group the two rotation matrices R3 and R2, we can achieve the transfor-

mation in a single step:

R32(θ, ϕ) = R2(ϕ)R3(θ) (2.4)

rû,v̂,ŵ = R32(θ, ϕ)rÎ,Ĵ,K̂ (2.5)

2.3 Two body problem
The dynamic model within which the simulation takes place is a particular case
of the N-body problem, where only two bodies are involved. The dominant force
acting on bodies in LEO is the Earth’s gravity, due to the relatively small distance
that separates them. The gravitational effects of the other celestial bodies like
the Sun, the Moon and the other planets of the Solar System have a smaller
magnitude and are therefore neglected. The two-body problem (2BP) is therefore
a good approximation of the motion of two mutually attracting objects according
to Newton’s law of universal gravitation. It rests on two assumptions:

1. The bodies are spherically symmetric and their masses are concentrated at
their centers.

2. The system is subjected to the only gravitational forces that act along the line
joining the centers of the two bodies.

Moreover, adopting an inertial coordinate system facilitates the derivation of the
following two-body equation, under the assumption that the mass of the smaller
body is negligible with respect to that of the larger one:

r̈ = − µ

r2
r
r

(2.6)

These assumptions ensure that certain quantities characterizing the system
remain constant; these are known as invariants of motion. The conservation of
specific angular momentum:

h = r × v = cost (2.7)
confines the spacecraft within a planar orbit. As a consequence, the spacecraft

moves faster in the points of the orbit characterized by a small radius, with its
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maximum in the periapsis. The opposite happens close to apoapsis. The two
terms that make up the specific mechanical energy behave in the same way as the
two terms of h: as one increases, the other decreases, so that their sum remains
constant. These terms are the specific kinetic energy and the specific potential
energy:

E = V 2

2 − µ

r
= c (2.8)

where c is a constant with an arbitrary value. The vis-viva equation enables the
definition of the shape of an orbit through the value of E . Negative values indicate
that the orbit is a closed conic section, which can be circular or elliptical, whereas
a zero specific mechanical energy results in a parabolic trajectory. Positive values
correspond to open orbits with a hyperbolic shape.

2.3.1 Two-body problem governing equations
The following differential equations describe the time evolution of a satellite’s state
in an inertial reference frame centered on the primary body, e.g., J2000:

dr
dt

= V (2.9)

dV
dt

= g + T
m

+ ap (2.10)

dm

dt
= −T

c
(2.11)

Equations (2.9) and (2.10) illustrate how the various contributions influence
the spacecraft’s acceleration and position. Besides the thrust T, the model also
accounts for potential external perturbations ap. Equation (2.11) gives the fuel
mass rate as a function of the thrust and the propulsion system’s effective exhaust
velocity c.

In the 2BP model, analytical integration is possible only when the satellite is
influenced solely by the central gravitational force of the primary body g, without
thrust or external perturbations:

g = − µ

r2
r
r

(2.12)

with µ being the gravitational parameter of the central body, and r the vector
pointing from the central body’s center of mass to that of the satellite. Under these
conditions, the equations of motion reduce to the classical 2BP ODEs, which can

12



Dynamic models

be solved explicitly using Kepler’s laws to obtain the position and velocity of the
satellite over time.

2.4 Perturbing forces and perturbed satellite or-
bits

The motion of a satellite around the Earth, or of a spacecraft around the Sun,
is governed primarily by the gravitational field of the central body. A radially
symmetric mass distribution leads to a conic trajectory, known as a Keplerian orbit.
In practice, however, celestial bodies are not perfectly symmetric, and spacecraft are
also subject to additional forces. For example, many satellites orbiting the Earth at
low altitudes experience a significant influence from the atmosphere. In addition,
they are affected by other perturbing forces, such as the gravitational attraction of
other celestial bodies — in particular the Sun and the Moon — radiation pressure
due to direct sunlight, Earth-reflected sunlight (albedo), Earth’s infrared emission,
and electromagnetic forces. These perturbations, including those arising from
the non-spherical components of the gravitational field, cause deviations from
the ideal Keplerian trajectory. Such deviations are generally small, confirming
that Keplerian orbits provide a valid and widely used approximation of the actual
motion of satellites and spacecraft. These additional forces are called perturbing
forces, and the resulting trajectories are referred to as perturbed Keplerian orbits.
The choice of which perturbations to include in orbit determination depends on the
level of accuracy required for the computed trajectory [16]. The model accounts
for atmospheric drag in this analysis:

ap = aDRAG (2.13)

This perturbation is discussed in detail in the following section.

2.4.1 Atmospheric drag
The different layers of the Earth’s atmosphere become increasingly rarefied with
altitude. Up to about 1000 km, i.e., throughout the entire LEO region, atmospheric
particles are still present and can collide with the satellite, reducing its momen-
tum. In the 600–1000 km range, atmospheric drag can generally be neglected
when the mission duration does not exceed a certain threshold. Below 600 km,
however—namely at the altitude of interest for the present simulation—a detailed
analysis of the satellite’s state must necessarily account for this perturbation. In
analogy with common practice in aeronautics, the acceleration of a satellite due to
atmospheric drag is [16] :
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aD = −1
2ρ

CDA

m
v2

rel

vrel

∥vrel∥
(2.14)

where, ρ is the atmospheric density, vrel is the velocity of the satellite relative
to the Earth’s atmosphere, m is the mass of the satellite and CD is the drag
coefficient related to a reference surface A. The term CDA

m
is referred to as the

ballistic coefficient and quantifies the satellite’s susceptibility to atmospheric drag.
In general, the motion through the upper atmosphere will also generate a force
component perpendicular to the velocity vector. In most cases, this component is
small when compared to the drag component and we will therefore neglect it [16].
The mass of the satellite is precisely known. Furthermore, if certain assumptions
are introduced about atmospheric rotation and about the speed and direction of
high-altitude horizontal winds, it becomes possible to determine the velocity of the
satellite relative to the atmosphere:

vrel,IJK = vSC,IJK − ω⃗⊕ · rIJK (2.15)

The drag coefficient mainly depends on the type of atmospheric particles colliding
with the satellite, their kinetic energy, the satellite’s velocity, as well as the nature
and properties of its surface and its surface temperature. By accounting for all
these factors, the drag coefficient can, in principle, be computed for different
satellite geometries. Typically, values of CD range between 2 and 3, with lower
altitudes yielding values closer to 2 and higher altitudes tending toward 3. The
atmospheric density is obtained from a predefined data set derived from an empirical
atmospheric model, providing estimates of the neutral atmosphere from the ground
up to approximately 1000 km in altitude.

2.4.2 Validation of the Atmospheric Drag Model
The implemented atmospheric drag model was validated through a numerical
propagation starting from an initial circular orbit at an altitude of 200 km. The
simulation employed the U.S. Standard Atmosphere 1976 density profile (extracted
from PDAS Table 1) and the dynamic formulation described in Section 2.4.1. The
spacecraft was characterized by a drag coefficient CD = 2.2, a cross-sectional
area A = 1 m2, and a mass m = 500 kg, corresponding to a ballistic coefficient
CDA/m = 4.4 × 10−3 m2/kg.

The propagation results, summarized in Table 2.1, show a progressive decay
of altitude that accelerates with time, as expected for drag-dominated low-Earth
orbits. During the first 50 revolutions, the altitude decreases almost linearly, with
an average loss of about 0.3 km per orbit. After approximately 80 orbits, the effect
of atmospheric density growth becomes dominant, and the descent rate increases
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exponentially. Re-entry occurs after roughly 91 orbits, corresponding to a few days
of orbital lifetime, in excellent agreement with physical expectations and literature
data for comparable ballistic coefficients.

The exponential-like behavior of the final decay phase confirms the correct
coupling between the drag model and the atmospheric density interpolation, thus
validating the implemented approach.

Table 2.1: Altitude decay during propagation starting from 200 km.

Revolutions Final Altitude [km] ∆h [km] Mean Loss [km/orbit]

0 200.000 0.000 –
10 197.194 -2.806 -0.281
20 194.099 -5.901 -0.295
30 190.629 -9.371 -0.312
50 182.042 -17.958 -0.359
80 158.206 -41.794 -0.522
90 129.036 -70.964 -0.788
91 110.057 -89.943 -0.989

91.1 103.083 -96.917 -0.983
91.2 85.739 -114.261 -0.950
91.25 43.911 -156.089 -1.710
91.28 8.946 -191.054 -6.820
91.3 0.754 -199.246 -6.640
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Figure 2.3: Orbital decay under atmospheric drag
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Chapter 3

Optimal Control Theory

Maximizing the effectiveness of a space mission requires the efficient use of every
available resource. In the design phase, not only the total mass of the satellite is a
critical parameter, but also its distribution among the various systems. Optimizing
the mass allocation across subsystems increases flexibility in payload selection,
ultimately enhancing the scientific return of the mission. This consideration applies
to all satellite systems and subsystems, including the fuel stored on board.

A satellite can move from an initial to a final state through multiple possible
trajectories. Among these, the one that consumes the least fuel while satisfying
all boundary conditions is the optimal solution. Optimal Control Theory (OCT)
provides the framework to identify such solutions by defining the conditions that
distinguish them from suboptimal ones. An Optimal Control Problem (OCP) seeks
the control law that extremizes a chosen performance index. In this thesis, the
index is the satellite’s final mass—equivalent to minimizing the propellant required
for the transfer. The term "optimal control law" refers to the set of control variables
that govern the mission’s evolution. The objective is to regulate these variables so
as to meet all constraints while maximizing the chosen index of merit.

3.1 Introduction to direct, indirect, and genetic
algorithm approaches

Numerical methods can be broadly divided into two main categories: direct and
indirect. Both aim at transforming a complex problem into a sequence of smaller
and more tractable subproblems. The scientific community has employed both
approaches successfully, particularly in the context of trajectory optimization for
space missions. Continuous comparison between the two has made it possible to
clearly identify their respective strengths and weaknesses. More recently, a third
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class of methods — Genetic Algorithms (GAs) — has also gained attention. A
brief overview of this approach will be provided in the final part of this section.

In recent years, direct numerical methods have been more widely adopted. These
approaches approximate a generic time-continuous problem by discretizing the
state and control variables. The accuracy of the resulting solution improves as the
discretization grid becomes finer. This was once a limiting factor, but the advent of
modern computers, with their increased computational power, has made it feasible
to handle problems of this scale. The main drawback of this approach lies in the
limited accuracy of the solutions, even with very fine discretization meshes, making
post-processing or refinement techniques necessary. Another important limitation
is that direct methods provide little theoretical insight: it is difficult to assess
whether a solution is truly optimal, or how far it lies from the optimum.

Solutions obtained through indirect methods are undeniably more accurate and
require lower computational cost; however, achieving convergence is considerably
more challenging. This difficulty arises from the need to select a set of problem-
dependent parameters that must be derived from OCT. Convergence to the solution
is highly sensitive to the choice of initial conditions, making it necessary for the
user to develop a certain familiarity with the specific problem. On the other hand,
indirect methods provide a wealth of theoretical information that enables the
assessment of solution optimality. Even when the obtained solution is not optimal,
these theoretical insights remain available and can be exploited to improve the
result [1].

Alongside direct and indirect methods, genetic algorithms (GAs) provide a
heuristic alternative, drawing inspiration from the mechanisms of natural evolution.
They operate by evolving a population of candidate solutions through iterative
processes of selection, crossover, and mutation, progressively converging toward
improved solutions. Unlike direct and indirect methods, GAs do not require gradient
information or an explicit formulation of the necessary optimality conditions, which
makes them particularly suitable for highly nonlinear or discontinuous problems.
However, this flexibility comes at the cost of higher computational effort and the
absence of guarantees regarding convergence to the global optimum. Finite-thrust
mission optimization is best modeled within the framework of a continuous-time
optimal control problem [18].

3.2 Fundamentals of optimal control theory
Optimal Control Theory (OCT) provides a mathematical framework for determining
the control laws that optimize the behavior of dynamical systems subject to physical
or operational constraints. Originating from the calculus of variations, OCT extends
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its principles to systems described by differential equations, where the objective is
to identify control inputs that maximize or minimize a given performance measure.
This framework has found extensive applications in aerospace engineering, robotics,
and economics, among other fields, due to its ability to handle both dynamic and
boundary constraints in a unified manner.

Within this theoretical context, an Optimal Control Problem (OCP) seeks
to determine an admissible control law that maximizes (or minimizes) a chosen
performance index, while ensuring that the dynamical system satisfies all prescribed
constraints as it evolves from an initial to a final state over a specified time interval.

The system dynamics are described by a set of n first-order differential equations
involving the state vector x(t) ∈ Rn and the control vector u(t) ∈ Rm, where m
denotes the number of control variables. The system can therefore be expressed as:

ẋ(t) = f
1
x(t), u(t), t

2
(3.1)

The optimal solution of the problem defines the trajectory x∗(t) and the corre-
sponding control u∗(t) that optimize the selected merit index, while satisfying all
system and boundary constraints. When these constraints involve only the values
of the state and time variables at the beginning and at the end of the time interval,
the problem of Eq. (3.1) becomes a Two-Point Boundary Value Problem (TPBVP).
The boundary conditions imposed at t = t0 and t = tf are referred to as external
boundaries, and can be expressed as a set of homogeneous algebraic equations:

χ(x0, xf , t0, tf ) = 0 (3.2)

where χ : [Rn,Rn,R,R] → Rq collects the q boundary constraints, and x0 and xf

denote x(t0) and x(tf ), respectively.
In addition to boundary conditions, constraints may also be imposed directly

on the control variables, so that u(t) ∈ U , where U represents the set of admissible
controls.

The quantity that drives the optimization process is the performance index (or
cost functional) J , which is to be either maximized or minimized. In its most
general form, J can be expressed as:

J = φ(x0, xf , t0, tf ) +
Ú tf

t0
Φ(x(t), u(t), t) dt (3.3)

where:

• φ depends solely on the boundary values of the state and time variables,
quantifying the cost associated with reaching the desired final state;

• the integral term accounts for the contributions accumulated along the tra-
jectory, representing the overall performance of the system throughout its
evolution.
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Equation (3.3) is known as the Bolza formulation of the optimal control problem.
Depending on the choice of φ and Φ, the problem can also be expressed in the
Lagrange form (by setting φ = 0) or in the Mayer form (by setting Φ = 0 and
introducing auxiliary variables). The Mayer formulation is typically preferred for
numerical optimization, as it allows the cost functional to be expressed explicitly
in terms of the boundary variables only—an approach adopted in this work.

The general structure of the Bolza problem can therefore be summarized as:

PBolza =


maximize J = φ(x0, xf , t0, tf )
subject to:
ẋ(t) = f(x(t), u(t), t)
χ(x0, xf , t0, tf ) = 0

(3.4)

A minimization problem can be obtained equivalently by changing the sign of φ.
In the present work, the OCP is formulated as a maximization problem.

A key step in deriving the necessary conditions for optimality consists in intro-
ducing the principles of the Indirect Method (IM). This is achieved through the
definition of an augmented performance index, denoted as J∗, which incorporates
a measure of how accurately the state dynamics and boundary constraints are
satisfied.

To accomplish this, two additional sets of variables are introduced:

• the adjoint variables, collected in the vector λ(t), associated with the state
variables x(t);

• the Lagrange multipliers, gathered in the vector µ, associated with the bound-
ary conditions.

Hence, one has λ ∈ Rn and µ ∈ Rm. The augmented performance index can
therefore be written as:

J∗ = φ + µT χ +
Ú tf

t0

è
Φ + λT (f − ẋ)

é
dt (3.5)

where the following notation has been introduced for brevity:

φ ≜ φ(x0, xf , t0, tf ) (3.6)

χ ≜ χ(x0, xf , t0, tf ) (3.7)

Both the original and augmented performance indices depend on the state
variables x(t), their time derivatives ẋ(t), and the control variables u(t). For a
non-converged trajectory, when the boundary conditions are not satisfied (χ /= 0) or
the dynamic model is not respected (ẋ /= f), the two functionals differ. Conversely,
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if both constraints are fulfilled — i.e., χ = 0 and ẋ = f — then J = J∗. Thus,
solving the augmented problem is mathematically equivalent to solving the original
one, provided that all constraints are enforced.

During the trajectory optimization process, the state derivatives ẋ are integrated
numerically and are not explicitly known. It is therefore convenient to eliminate
their dependence by integrating the term −λT ẋ by parts:Ú tf

t0

1
−λT ẋ

2
dt = −λT

f xf + λT
0 x0 +

Ú tf

t0
λ̇T x dt (3.8)

Substituting Equation (3.8) into Equation (3.5) yields:

J∗ = φ + µT χ +
1
λT

0 x0 − λT
f xf

2
+
Ú tf

t0

è
Φ + λT f − λ̇T x

é
dt (3.9)

At this point, a useful quantity naturally arises — the Hamiltonian function of
the system, defined as:

H ≜ Φ + λT f (3.10)

The necessary conditions for optimality require the first variation of the aug-
mented index to vanish, i.e. δJ∗ = 0. After standard manipulations, one obtains:

δJ∗ =
A

∂φ

∂t0
+ µT ∂χ

∂t0
− H0

B
δt0 (3.11a)

+
A

∂φ

∂tf

+ µT ∂χ

∂tf

+ Hf

B
δtf (3.11b)

+
A

∂φ

∂x0
+ µT ∂χ

∂x0
+ λT

0

B
δx0 (3.11c)

+
A

∂φ

∂xf

+ µT ∂χ

∂xf

− λT
f

B
δxf (3.11d)

+
Ú tf

t0

CA
∂H

∂x
+ λ̇T

B
δx + ∂H

∂u
δu
D

dt (3.11e)

By suitably defining the adjoint variables λ(t) and multipliers µ, one can make
δJ∗ = 0 for arbitrary variations δt0, δtf , δx0, δxf , δx, and δu. The vanishing
of the coefficients multiplying each variation leads to a complete set of necessary
conditions for optimality:

• the coefficients of δt0 and δtf yield the transversality conditions;
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• the coefficients of δx0 and δxf yield 2n algebraic boundary optimality condi-
tions;

• the remaining coefficients provide n Euler–Lagrange differential equations for
the adjoint variables and m algebraic equations defining the optimal control.

3.2.1 Boundary conditions for optimality

The boundary conditions associated with the optimality of an Optimal Control
Problem arise from the requirement that the first-order variation of the augmented
merit function be null for any admissible perturbation of time and state variables.
By imposing that the coefficients multiplying δt0, δtf , δx0, and δxf in Eq. (3.11)
vanish, one obtains the following set of algebraic relations:

∂φ

∂t0
+ µT ∂χ

∂t0
− H0 = 0, (3.12a)

∂φ

∂tf

+ µT ∂χ

∂tf

+ Hf = 0, (3.12b)

∂φ

∂x0
+ µT ∂χ

∂x0
− λT

0 = 0, (3.12c)

∂φ

∂xf

+ µT ∂χ

∂xf

+ λT
f = 0. (3.12d)

Equations (3.12a)–(3.12b) represent the transversality conditions and describe
how the initial and final times must behave in order to ensure optimality. If the
time variable does not explicitly appear in the function φ and is not constrained
through χ, then the corresponding Hamiltonian must vanish at that point, i.e.
H0 = Hf = 0. In this case, both t0 and tf are free and their values are determined
through the optimization process. Conversely, when time is constrained — for
instance, if χ includes relations such as t0 = a and/or tf = b — the Hamiltonian
at that boundary is free to assume any value. An illustrative case is that of a
mission with a fixed duration ∆t, for which both the initial epoch t0 and the final
epoch tf = t0 + ∆t are imposed; consequently, H0 /= 0 and Hf /= 0. In contrast, for
problems with a free final time, t0 is fixed while tf is unbounded and subject to
optimization, thus implying H0 /= 0 and Hf = 0.

The optimality conditions in Eqs. (3.12c)–(3.12d) apply analogously to the state
variables. If a given state component xi does not explicitly appear in the boundary
function φ and is not involved in any constraint within χ, its corresponding adjoint
variable vanishes at that boundary, i.e. λxi

= 0. Conversely, when the value of xi

is prescribed, the associated adjoint variable is free.
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3.2.2 Equations for adjoint and control variables
The set of ODEs obtained by setting to zero the coefficients multiplying the
variations in the last line (3.11e) of equation (3.11) describes the temporal evolution
of both the adjoint variables and the control vector. In particular, by nullifying the
coefficient of δx, one obtains the Euler–Lagrange equations governing the adjoint
variables:

λ̇ = −
A

∂H
∂x

BT

, (3.13)

where λ ∈ Rn represents the vector of adjoint variables, each of which is uniquely
associated with a corresponding state variable.

Conversely, by nullifying the coefficient of δu, one obtains m algebraic relations
that define the optimal control conditions:A

∂H
∂u

BT

= 0. (3.14)

In general, one or more components of the control vector u may be subject to
explicit bounds, denoted as U . The control can depend on both the state and
time, i.e. u = u(x(t), t), but in this work only explicit admissibility constraints are
considered. For instance, a specific control variable u may be constrained within
the limits Umin ≤ u ≤ Umax.

When explicit bounds are present, the optimal control u∗ ∈ U at any given time
instant is the one that extremizes the Hamiltonian H in equation (3.10). This
statement corresponds to the Pontryagin’s Maximum Principle (PMP) for a maxi-
mization problem (or the Pontryagin’s Minimum Principle, PmP, for minimization
problems). The PMP implies that the optimal control may lie either within the
admissible interval or on its boundary. Specifically, when Umin < u < Umax, the
optimal value satisfies equation (3.14); otherwise, it takes one of the boundary
values of U .

However, equation (3.14) cannot be satisfied if the Hamiltonian is linear (or
affine) with respect to the control variable. In such a case, the following condition
arises:

∂H
∂ui

=


kui

, if H is affine in ui,

f(ui), otherwise,
(3.15)

where kui
is a constant coefficient.

When H is affine in ui, equation (3.15) cannot be fulfilled (except for kui
= 0),

since ui does not appear explicitly in the partial derivative. In this scenario,
the optimal strategy depends on the sign of kui

: if kui
> 0, the Hamiltonian is

maximized by setting ui = Ui,max; if kui
< 0, then ui = Ui,min. This type of solution

is known as bang-bang control.
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In the present problem, this is precisely the situation that occurs: the Hamilto-
nian is linear with respect to the selected control variable — the thrust magnitude
T — under specific assumptions that will be detailed later in this work. Moreover,
the switching behaviour between the two admissible limits, Tmin (typically zero)
and Tmax, plays a crucial role in determining the optimal trajectory.

If kui
= 0 for a finite time interval, the control is said to be in a singular arc,

and a different optimization strategy must be adopted. Such a case does not occur
in the present work and is therefore omitted for brevity.

Finally, once the m boundary conditions χ = 0 are imposed, the problem
can be formulated as a two-point boundary value problem (TPBVP) consisting
of 2 + 2n + m equations. These equations arise respectively from transversality
conditions (equations (4.10a)–(4.10b)), optimality conditions (equations (4.10c)–
(4.10d)), and control relations (equation (3.14)). They implicitly determine the
two time instants (t0, tf), the initial conditions for the 2n differential equations
governing x and λ, and the m adjoint constants µ.

3.3 Multi-point optimal control problem
A Multi-Point Boundary Value Problem (MPBVP) arises when additional con-
straints are imposed at internal points along the trajectory, for instance when a
flyby occurs during an interplanetary mission. In such cases, the entire trajectory
can be divided into np subintervals, referred to as phases or arcs. This segmentation
not only allows the imposition of internal constraints but also enhances numerical
robustness and convergence properties.

Each arc is continuous in its state evolution, while discontinuities may occur at
the internal boundaries, i.e., at the junctions between adjacent arcs. As a result,
the general formulation introduced in equations (3.1)–(3.3) extends naturally to
the MPBVP framework.

Figure 3.1: Schematic representation of the multi-point boundary value problem
with np arcs, [1].
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Let each j-th arc start at t+
(j−1) and terminate at t−

j , with corresponding state
vectors x+

(j−1) and x−
j . For brevity, the notation x(tj) ≡ xj is introduced. Each

j-th arc spans a time interval ∆tj, which is in general unknown and treated as an
optimization variable.

The boundary conditions (BCs) for the MPBVP are typically nonlinear and
mixed. They can be imposed not only at the external boundaries but also at
internal junctions between arcs, and are expressed as:

χ
1
x+

(j−1), x−
j , t+

(j−1), t−
j

2
= 0, j = 1, . . . , np. (3.16)

The performance index of the optimal control MPBVP is therefore written as:

J = φ
1
x+

(j−1), x−
j , t+

(j−1), t−
j

2
+

npØ
j=1

Ú t−
j

t+
(j−1)

Φ(x(t), u(t), t) dt. (3.17)

The terminal function φ depends on the boundary values of the state and time
variables, while the summation of the integrals of Φ accounts for the evolution of
the system along each arc.

The augmented merit index becomes:

J∗ = φ + µT χ +
npØ

j=1

Ú t−
j

t+
(j−1)

è
Φ + λT (f − ẋ)

é
dt, (3.18)

which, after integrating by parts, becomes:

J∗ = φ + µT χ +
npØ

j=1

è
λ+T

(j−1)x
+
(j−1) − λ−T

j x−
j

é

+
npØ

j=1

Ú t−
j

t+
(j−1)

è
Φ + λT f − λ̇T x

é
dt. (3.19)
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The first-order variation δJ∗ for each arc can then be expressed as:

δJ∗ =
 ∂φ

∂t+
(j−1)

+ µT ∂χ

∂t+
(j−1)

− H+
(j−1)

 δt+
(j−1) (3.20a)

+
A

∂φ

∂t−
j

+ µT ∂χ

∂t−
j

+ H−
j

B
δt−

j (3.20b)

+
 ∂φ

∂x+
(j−1)

+ µT ∂χ

∂x+
(j−1)

+ λ+T
(j−1)

 δx+
(j−1) (3.20c)

+
A

∂φ

∂x−
j

+ µT ∂χ

∂x−
j

− λ−T
j

B
δx−

j (3.20d)

+
npØ

j=1

Ú t−
j

t+
(j−1)

CA
∂H

∂x
+ λ̇T

B
δx + ∂H

∂u
δu
D

dt, (3.20e)

where H denotes the Hamiltonian of the system.
Finally, the optimality and transversality conditions for the MPBVP can be

conveniently expressed in terms of the j-th boundary itself:

∂φ

∂t+
j

+ µT ∂χ

∂t+
j

− H+
j = 0, j = 0, . . . , np − 1, (3.21a)

∂φ

∂t−
j

+ µT ∂χ

∂t−
j

+ H−
j = 0, j = 1, . . . , np, (3.21b)

∂φ

∂x+
j

+ µT ∂χ

∂x+
j

+ λ+T
j = 0, j = 0, . . . , np − 1, (3.21c)

∂φ

∂x−
j

+ µT ∂χ

∂x−
j

− λ−T
j = 0, j = 1, . . . , np. (3.21d)

The same considerations previously derived for the Euler–Lagrange equations
of the adjoint variables and the control equations remain valid in the MPBVP
framework.

3.4 Formulation and single-shooting implementa-
tion of the two-point boundary value problem

This section presents the implementation of the Boundary Value Problem (BVP)
within the framework of Optimal Control Theory (OCT). The primary objective is
to optimise the descent trajectory of a spacecraft operating in Low Earth Orbit
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(LEO), subject to the gravitational influence of the central body and modelled
within a medium-fidelity Two-Body Problem (2BP). The formulation aims to
determine the optimal control history that maximizes the selected performance
index while ensuring adherence to the prescribed boundary conditions and system
dynamics. The formulation of a BVP in this context requires accurate control
and optimization procedures capable of addressing potential numerical challenges
that may hinder convergence, due to the inherently nonlinear nature of the system.
When adopting an Indirect Method (IM), particular attention must be devoted to
the robustness of the numerical scheme and to the sensitivity of the solution with
respect to small perturbations in the initial conditions.

To tackle this challenge, a Two-Point Boundary Value Problem (TPBVP)
approach is adopted. This formulation is appropriate since OCT increases the
dimensionality of the problem compared to the original 2BP, as previously discussed.
In this framework, the initial state vector includes both the physical state variables
(some of which may be unknown) and their associated adjoint variables:

y0 =
è
xT λT

éT
(3.22)

The goal of the BVP is to determine the optimal initial conditions y∗
0 that yield

the desired final state y∗
f , while satisfying all boundary conditions (BCs), including

both constrained and optimality-related ones. Among the available strategies, the
single-shooting method is preferred for its simplicity and moderate computational
requirements. This method iteratively adjusts the initial conditions until the desired
terminal constraints are met, as detailed in [1]. Such a procedure aligns with the
objective of developing a robust IM-based algorithm for the dynamics of the 2BP.

The general form of the ODE system for the IM can be expressed as:

ẏ(t) = f(y(t), t) (3.23)

Introducing a new vector z defined as:

z =
è
yT cT

éT
(3.24)

where c is a constant vector, the system can be rewritten as:

ż = f(z(t), t) (3.25)

with
ċ = 0. (3.26)

The corresponding boundary conditions, including both imposed and optimal
ones, must satisfy:

χ(z) = 0, (3.27)
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where z collects the variable values at the internal and external boundaries.
The purpose of this analysis is to find the optimal initial design vector q∗

0 that
leads to the desired final state while satisfying all constraints. This is achieved via
a single-shooting procedure, in which the initial guess qr = z0 is iteratively refined.
At each iteration r, the boundary condition deviation is denoted as χr = χ(qr).
The relationship between successive iterations is approximated using a first-order
Taylor expansion:

χ(qr+1) = χ(qr) + ∂χ(qr)
∂qr+1

(qr+1 − qr) (3.28)

If a solution exists such that χr+1 = 0, the iterative correction can be expressed
as:

χr + [J (χr)](qr+1 − qr) = 0 (3.29)

where J (χr) is the Jacobian matrix of the constraint vector. Hence, the design
vector is updated according to:

qr+1 = qr − [J (χr)]−1χr (3.30)

The Jacobian matrix is computed through a forward finite difference scheme:

J (χr) = χp
r − χr

∆ (3.31)

where χp
r = χ(qp

r) represents the constraint vector obtained after perturbing the
variable vector by a small increment ∆ = 10−7:

χp
r ≡ χ(qp

r) (3.32a)
qp

r ≡ qr + ∆ (3.32b)

Although this approach introduces a certain approximation, it greatly improves
the stability of the algorithm against perturbations in the initial guess.

The resulting Optimal Control Problem (OCP) within the TPBVP framework
thus seeks the optimal initial state z∗

0 that drives the system to the desired final
state z∗

f(t) while fulfilling all boundary conditions. This is achieved through the
simultaneous integration of the system of ODEs and the associated State Transition
Matrix (STM) equations:

ż = f(z(t), t) (3.33)

In practice, the iterative Differential Corrector (DC) process based on the STM
can introduce numerical errors that may compromise convergence. To mitigate
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this, two stabilization strategies are employed. First, a relaxation parameter κ1 is
introduced in the correction equation to enhance convergence:

zr+1 = zr − κ1 [J (χr)]−1χr (3.34)

where κ1 ranges between 0.1 and 1. Lower values are typically used during the
early iterations (to ensure stability), whereas higher values are preferable once the
solution approaches convergence.

Second, the maximum boundary condition error, defined as Emax = maxi(∥χi∥),
is monitored across iterations according to:

Emax,r+1 < κ2 Emax,r (3.35)

with κ2 typically between 2 and 3. If the inequality in Eq. (3.35) is not satisfied,
the relaxation factor κ1 is reduced to restore convergence.

3.5 OCP for LEO Descent Trajectory Optimiza-
tion

The present section illustrates the application of the Optimal Control Theory (OCT)
to the selected case study. The adopted objective consists in the maximization of the
final mass, which is equivalent to the minimization of the propellant consumption.
This goal can be expressed through a merit index, which depends on the control
law vector u⃗ = T⃗ and on the following state vector:

x⃗ = {r, ϑ, ϕ, u, v, w, m}T (3.36)

where x⃗ ∈ Rn. Each of these state variables is associated with a corresponding
adjoint, or costate, variable, forming together the augmented vector y⃗ ∈ R2n defined
as:

y⃗ = {r, ϑ, ϕ, u, v, w, m, λr, λϑ, λϕ, λu, λv, λw, λm}T (3.37)

The equations governing the satellite’s dynamics can be expressed through the
following system of ordinary differential equations:
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

dr

dt
= u

dϑ

dt
= v

r cos ϕ
dϕ

dt
= w

r
du

dt
= − µ

r2 + v2

r
+ w2

r
+ Tu

m
+ (ap)u

dv

dt
= −uv

r
+ vw

r
tan ϕ + Tv

m
+ (ap)v

dw

dt
= −uw

r
− v2

r
tan ϕ + Tw

m
+ (ap)w

dm

dt
= −T

c

(3.38)

From this system, the Hamiltonian function can be formulated as:

H = λ⃗T f⃗ =
2nØ
i=1

λifi (3.39)

Once expanded, and highlighting the terms depending on the thrust magnitude
T , the Hamiltonian becomes:

H = λru + λϑ
v

r cos ϕ
+ λϕ

w

r
+ λu

A
− µ

r2 + v2

r
+ w2

r
+ (ap)u

B

+ λv

3
−uv

r
+ wv

r
tan ϕ + (ap)v

4
+ λw

A
−uw

r
− v2

r
tan ϕ + (ap)w

B

+ T

m

λ⃗T
V

T⃗

T
− λm

m

c

 ,

(3.40)

where λ⃗V is known as the primer vector, defined as λV =
ñ

λ2
u + λ2

v + λ2
w.

From this expression, the so-called switching function can be derived as:

SF = λ⃗T
V

T⃗

T
− λm

m

c
(3.41)

According to the bang–bang control theory (see Section 3.2.2), the optimal thrust
magnitude can then be obtained as:

T =

0 if SF < 0
Tmax if SF > 0

(3.42)
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The thrust vector T⃗ is defined through the thrust elevation angle αT and heading
angle βT , which respectively control the in-plane and out-of-plane components:

T⃗ =


Tu

Tv

Tw

 = T


sin αT

cos αT cos βT

cos αT sin βT

 (3.43)

To determine the optimal direction of the thrust vector, the Hamiltonian (3.40)
is differentiated with respect to the thrust angles:

∂H

∂αT

= 0 = λv cos αT − (λu cos βT + λw sin βT ) sin αT (3.44a)

∂H

∂βT

= 0 = −λu sin βT + λw cos βT (3.44b)

Solving the above system yields the following relations:

sin αT = λu

λv

(3.45a)

cos αT cos βT = λv

λV

(3.45b)

cos αT sin βT = λw

λV

(3.45c)

These quantities correspond to the direction cosines of the primer vector and are
therefore consistent with the thrust components already defined in equation (3.43).
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Chapter 4

Results of the orbit lowering
optimization

4.1 Mission configuration and numerical frame-
work

In this chapter, the configuration adopted for the mission scenario under investiga-
tion is presented, with particular attention to the characteristics of the satellite and
the electric propulsion system. The results of the numerical simulations, performed
in a Python environment, are also discussed. The objective is to achieve an orbital
lowering of 10 km starting from the nominal deployment altitude of 500 km.

Two case studies are considered:

• Ideal scenario: the satellite dynamics are propagated under the sole effect
of the central gravitational field, neglecting all orbital perturbations.

• Perturbed scenario: atmospheric drag is included, modelled through the
interpolation of a previously collected dataset.

The first simulation step consists of a 300 m altitude reduction starting from
500 km. Once the initial conditions yielding a convergent solution are obtained,
the trajectory is propagated until the target orbital altitude is reached.

The main parameters of the satellite and the electric propulsion system adopted
in this study are reported in Table 4.1.

The initial scenario considers the satellite deployed at an altitude of 500 km
on a circular and equatorial orbit. The orbital lowering manoeuvre is performed
without altering the orbital plane inclination and follows a two-arc strategy. In
the first arc, the engine ignition generates a radial velocity component that drives
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Table 4.1: Main parameters of the satellite and electric propulsion system.

Vehicle

Mass M 500 kg
Drag coefficient Cd 2.2
Cross-sectional area A 1 m2

Ion Thruster

Thrust T 0.025 N
Specific impulse Isp 2000 s

the spacecraft towards lower altitudes. During the subsequent coasting arc, the
tangential velocity increases while the radial velocity approaches zero.

The engine ignition and shutdown are governed by the Switching Function (SF):
when the function is positive, the thrust is set to its maximum value, whereas for
negative values the thrust is set to zero, as no thrust modulation is considered in
this study.

A second strategy based on a three-arc profile is also analysed. In this case, a
final thrusting phase is employed after the lowering manoeuvre to circularise the
arrival orbit. At the end of the first manoeuvre, the final state of the spacecraft is
stored and used as the initial condition for the subsequent propagation. In this
phase, the engine remains switched off, and the same numerical integrator and
atmospheric drag model employed during the manoeuvre are used.

To simplify the numerical analysis and avoid handling very large quantities, a
dimensionless formulation was adopted. The orbital radius was normalised using
the Earth’s mean radius R⊕ = 6371 km, while the velocity components u, v, and
w, as well as the effective exhaust velocity, were scaled by the orbital velocity at
the Earth’s surface, defined as

v⊕ =
ó

µ⊕

R⊕
= 7.909 km/s.

Time was non-dimensionalised using the characteristic parameter

T = R⊕

v⊕
,

and the satellite mass was selected as the reference mass unit.
A characteristic acceleration,

a = v2
⊕

R⊕
,
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was introduced to render derived quantities dimensionless, such as the thrust,
which was expressed relative to the product between the satellite mass and the
characteristic acceleration. All other physical quantities were made dimensionless
through suitable combinations of the fundamental scaling parameters defined above,
ensuring consistency and simplifying the interpretation of the results.

4.1.1 The OCULUS interface

Figure 4.1: Graphical user interface

The algorithms developed in the Python environment were accessed through a
graphical user interface (GUI). The availability of such a tool is fundamental when
dealing with indirect methods for solving optimal-control problems: the simulation
process requires the selection of numerical values for a set of initial parameters,
namely the adjoint variables or costates, which are uniquely associated with the
parameters comprising the satellite state. The appropriateness of the selected
costate values determines the success of the simulation and the attainment of a
valid solution. Having a GUI that allows convenient real-time visualisation of the
evolution of states and costates with respect to the choice of initial guesses signifi-
cantly optimises and accelerates the process, thereby enabling efficient investigation
of multiple operational scenarios.
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In addition to the initial parameters mentioned above, it is necessary to set
the switching times between arcs and the overall mission duration. Among the
functionalities provided by the GUI is the option to choose between a fixed-time
simulation, where the mission duration is prescribed a priori, and a variable-time
simulation, in which the duration is optimised within the simulation process. When
selecting the latter, the Hamiltonian H emerges as the costate associated with
time, and the optimisation process also includes this variable in order to maximise
the performance index, ultimately yielding minimum propellant consumption.

Figure 4.2: Choice between fixed-time and free-final-time simulation

Figure 4.3: Hamiltonian evolution along the trajectory

Through the interface, several parameters regulating the differential-correction
process can also be configured. By selecting higher or lower values of the relaxation
parameter α, the magnitude of the correction applied at each simulation step may
be adjusted. Higher values of α may lead to faster convergence when the initial
costate guess is near the optimum; however, they also increase the risk that the
simulation undertakes incorrect correction strategies, causing errors to diverge. One
of the functions implemented in the GUI enables adaptive control of the correction
process, removing this risk by adjusting the value of α based on the error history
of previous steps.

This tool evolved continuously throughout the thesis work, adapting to the
challenges and requirements encountered during the various simulation phases, even-
tually leading to the final version named OCULUS, [19]. Developed and presented
by supervisor Luigi Mascolo at the 76th International Astronautical Congress (IAC)
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Figure 4.4: Selection of the differential-correction relaxation parameter

in Sydney, Australia, in October 2025 , this latest release significantly improved
the robustness of the differential-correction process, enabling smoother convergence
and reducing the likelihood of error divergence. As a result, larger relaxation
parameters could be employed to reach the solution in fewer simulation steps.
The most recent version also introduced the capability to individually override
costates between successive steps, allowing selective intervention on specific mission
components. Although the user’s ability to identify appropriate initial guesses
for the adjoint variables remains essential, the improvements implemented in this
latest GUI version have substantially enhanced its usability.

4.2 Ideal dynamics: gravity-only scenario
As a reference scenario, the optimal control problem was initially solved in an ideal
two-body environment, neglecting atmospheric drag. Under these assumptions,
the spacecraft dynamics are governed solely by Earth’s central gravitational field
and a continuous low-thrust acceleration of constant magnitude Tmax. The thrust
direction is determined according to the Pontryagin Minimum Principle, introduced
in Section 3.2.2 and applied to the thrust direction formulation in Section 3.5.

Table 4.2: Initial state of the spacecraft expressed in dimensionless form.

Variable Value

r 1.0784806152880237
θ 0.0
ϕ 0.0
u 0.0
v 0.9629280287694013
w 0.0
m 1.0
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Table 4.2 reports the dimensionless initial conditions of the state variables, while
Table 4.3 lists the initial values of the costates together with the switching times
and the final time required to ensure convergence of the solution.

Table 4.3: Initial values of costates and switching times.

Variable Value

λr −0.321760
λθ 0.149470
λϕ 0.0
λu −0.032028
λv −0.396070
λw 0.0
λm 0.999540

t1 1.97
t2 3.37
tf 5.40

Figure 4.5 illustrates the behaviour of the state variables and their corresponding
costates during the manoeuvre. The plots distinguish the thrust phase from the
coasting phase: the orange segments indicate intervals in which the electric thruster
is active, whereas the blue segments represent periods of unforced motion with zero
thrust. Each manoeuvre performed using the electric propulsion system follows
this recurring structure, characterised by alternating thrust-on and thrust-off arcs.

The manoeuvre is performed using a three-arc strategy of the form [1, 0, 1],
where 1 denotes an active thrust phase and 0 indicates a coasting phase. Dividing
the manoeuvre into thrusting and coasting arcs allows propellant savings in portions
of the trajectory where thrust is not required; additionally, this strategy provides
thermal benefits, as the interruption of thrusting between successive ignition phases
allows the propulsion system to cool down, preventing overheating due to prolonged
continuous operation.

The inverted bell-shaped profile of the switching function observed in the
Figure 4.6 results from a tailored selection of the initial costate values, and is
consistent with the adopted control strategy.

The values of the initial costates also provide additional insight into the mission.
The costates associated with the radial position, λr, and with the tangential velocity,
λv, exhibit larger magnitudes compared to the other components. This behaviour
reflects the nature of the manoeuvre, in which the orbital lowering and subsequent
circularisation are primarily achieved through significant variations in r and v. By
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Figure 4.5: Evolution of states and costates in an ideal two-body environment

setting λϕ and λw equal to zero, the manoeuvre is confined to the initial orbital
plane, as confirmed by the behaviour of ϕ and w shown in the Figure 4.7.

Figure 4.6: Evolution of the switching function along the trajectory

The type of manoeuvre to be performed is defined through the choice of the
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(a) ϕ (b) w

Figure 4.7: Out-of-plane components ϕ and w remain zero throughout the
manoeuvre, confirming coplanarity.

boundary conditions, shown in the Table 4.4. The prescribed value of the orbital
radius enables a 300 m altitude reduction, whereas the boundary conditions imposed
on the radial and tangential velocities ensure the circularisation of the orbit at
the desired altitude. Setting the costate values in the boundary conditions to
zero leaves the optimisation process free to determine the corresponding variables,
subject solely to the objective of maximising the performance index. Conversely,
assigning a value of one to a costate in the boundary conditions indicates that the
associated variable is to be maximised.

Table 4.4: Boundary conditions of the spacecraft (dimensionless).

Variable Value

r 1.078433526918851
λθ 0.0
λϕ 0.0
u 0.0
v 0.9629490510273464

λw 0.0
λm 1.0

The boundary condition (BC) residuals are reported in Table 4.5. All components
exhibit magnitudes on the order of 10−7–10−8, which are well within the adopted
numerical tolerance. In particular, the residuals associated with λϕ and λw vanish
identically, while those of the remaining variables remain negligible. The computed
error norm is 2.74 × 10−7, below the convergence threshold of 10−6, thus satisfying
the required criterion. These results confirm that the boundary conditions are met
with high accuracy and that the resulting numerical solution is consistent.

Finally, the Table 4.6 presents the final state reached by the spacecraft at
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Table 4.5: Residual boundary condition errors at convergence.

Variable Value

∆SF1 1.22416332 × 10−7

∆SF2 2.17321542 × 10−7

∆r 1.66890695 × 10−8

∆λθ −2.73698367 × 10−7

∆λϕ 6.04199748 × 10−17

∆u −6.65842874 × 10−8

∆v 2.45572555 × 10−8

∆λw −1.13686506 × 10−16

∆λm 1.80738313 × 10−10

∥err∥ 2.72944209 × 10−7

max_err 2.73698367 × 10−7

the end of the manoeuvre, summarising the resulting orbital configuration. This
representation is useful to assess the effectiveness of the manoeuvre and to quantify
the variations induced with respect to the initial conditions.

Table 4.6: Final state of the spacecraft at the end of the manoeuvre (dimension-
less).

Variable Value

r 1.0784335436079162
θ 4.797825739006499
ϕ 0.0
u −6.658428837814118 × 10−8

v 0.9629490755846027
w 0.0
m 0.9999915074055511

4.3 Perturbed dynamics: atmospheric drag sce-
nario

In this section, the orbit-lowering manoeuvre is analysed in a perturbed environment
where the effects of atmospheric drag are taken into account. Unlike the gravity-
only scenario discussed in the previous section, the spacecraft is now subject to
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a dissipative force that continuously reduces its orbital energy, resulting in a
gradual decay of the orbital radius. The atmospheric density is obtained through
interpolation from a precomputed dataset, and the drag acceleration is evaluated
using the aerodynamic model described in Section 2.4.1.

The presence of atmospheric drag significantly alters the structure of the optimal
trajectory: in addition to the control-driven decrease in altitude, a portion of the
orbital decay is achieved passively through dissipative effects, reducing the required
propellant consumption. The following analysis highlights these differences and
quantifies the contribution of drag to the overall manoeuvre performance.

To characterise the effects of drag on the orbital decay, the following subsection
presents the resulting trajectory and compares it with the ideal scenario.

Two different cases are analysed. In the first part, a comparison is carried out
for a 300 m orbit-lowering manoeuvre using the three-arc strategy, highlighting the
lower propellant consumption observed in the perturbed case, where atmospheric
drag contributes passively to the reduction of orbital energy.

In the second part, a different manoeuvre strategy is considered. A two-arc
profile of the type [1,0] is adopted: the spacecraft is first lowered to an altitude
of 499.7 km, after which the resulting state is propagated until the orbital radius
reaches the target altitude of 490 km. This analysis highlights how modifying the
optimal strategy affects propellant consumption.

4.3.1 Three-arc strategy and comparison with ideal case
This section reports the simulation results for the perturbed environment. The
adopted manoeuvre retains the three-arc structure used in the ideal case, but the
spacecraft dynamics have been extended to account for atmospheric drag. The
initial state of the spacecraft and the boundary conditions are the same as in the
ideal case and are omitted here for conciseness. The Table 4.7 presents the initial
costate values that enabled convergence, along with their corresponding values at
the end of the simulation. To allow a direct comparison with the ideal scenario,
the final state of the spacecraft at the end of the manoeuvre is also reported.

By comparing Table 4.6 with Table 4.8, a reduction in propellant consumption
can be observed. The limited magnitude of this saving is primarily due to the
relatively weak effect of atmospheric drag at the considered altitude, as well as to
the short duration of the manoeuvre.

For the same reasons, the overall dynamical behaviour of the spacecraft remains
largely unchanged, as can be observed in Figure 4.8. The first thrust arc is
required to induce a non-zero radial velocity component, steering the spacecraft
towards lower orbital radii. At the beginning of the first arc, the tangential velocity
undergoes a slight decrease, followed by an increase towards the end of the burn.
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Table 4.7: Initial and converged values of costates and switching times (dimen-
sionless).

Variable Initial guess Updated values at convergence

λr −0.62523 −0.624869065
λθ −9.94 × 10−7 9.95 × 10−7

λϕ 0.0 0.0
λu −0.083881 −0.083907281
λv −0.79387 −0.79342063
λw 0.0 0.0
λm 0.99999 0.999987255

t1 2.09 2.099027361
t2 3.29 3.300683081
tf 5.39 5.399756464

Figure 4.8: State and costate evolution during the manoeuvre

During the coast phase, v continues to increase, while the magnitude of u reverses
trend and progressively decreases.

The final thrust arc performs orbit circularisation: the radial component u is
driven back to zero, whereas v converges to the value associated with a circular
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orbit at the final altitude. The persistence of the adopted strategy is also evident
from the switching function, whose shape remains essentially unchanged.

Table 4.8: Final state of the spacecraft at the end of the manoeuvre (dimension-
less).

Variable Value

r 1.0784335268092544
θ 4.821363545812885
ϕ 0.0
u 5.228997207043773 × 10−11

v 0.9629490508684441
w 0.0
m 0.9999915465181319

During each burn, the spacecraft mass exhibits a linear decrease, in accordance
with the mass flow rate formulation of Eq.3.38, which results from operating the
thruster at constant maximum thrust. This trend can be observed in Figure 4.9.

Figure 4.9: Mass depletion profile during the orbit-lowering manoeuvre.

Although atmospheric drag is typically regarded as a detrimental perturbation in
orbit maintenance problems, its effect in an orbit-lowering manoeuvre is fundamen-
tally different. In the present case, drag contributes passively to the reduction of
orbital energy and therefore reduces the thrust effort required to achieve the target
altitude. As a result, a slight reduction in propellant consumption is observed in
the drag-perturbed scenario compared to the ideal case.
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4.3.2 Orbit-lowering manoeuvre under atmospheric drag:
two-arc strategy

This section presents the full orbit-lowering manoeuvre down to the target altitude
of 490 km. The mission begins with a 300-meter descent manoeuvre, followed by
an unforced propagation phase that brings the spacecraft to its final orbit. The
first phase adopts a revised thrusting strategy, primarily aimed at further reducing
propellant consumption.

In this configuration, the terminal state of the first manoeuvre serves as the
initial condition for the propagation phase. Since intermediate orbit circularisation
is no longer required, the second burn is omitted and a two-arc strategy [1,0] is
adopted.

Table 4.9: Initial state of the spacecraft at the beginning of the manoeuvre
(dimensionless).

Variable Value

r 1.0784806152880237
θ 0.0
ϕ 0.0
u 0.0
v 0.9629280287694013
w 0.0
m 1.0

Table 4.10: Initial and converged values of costates and switching times (dimen-
sionless).

Variable Initial guess Updated values at convergence

λr −0.3057 −0.312141997
λθ 0.0 −2.97 × 10−7

λϕ 0.0 0.0
λu 0.1069 0.099652286
λv −0.3853 −0.435752218
λw 0.0 0.0
λm 0.99999 0.999994462

t1 1.5 2.220044122
tf 4.25 4.479334115
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The manoeuvre starts from a circular orbit at an altitude of 500 km. The
initial spacecraft state is provided in Table 4.9, whereas the set of initial costates
leading to the converged solution is reported in Table 4.10. The costates λr and
λv exhibit substantially higher magnitudes compared to the remaining costates,
implying that the optimisation places greater emphasis on modifying the associated
state variables. The table also illustrates the evolution of the costate values. As
the simulation was carried out with a free final time, the mission duration was
optimised together with the other parameters to maximise propellant savings. The
two-arc manoeuvre has a total duration of approximately 60 minutes, making it
faster than the three-arc strategy, which requires 72 minutes.

Figure 4.10: State and costate evolution during the drag-perturbed orbit-lowering
manoeuvre

Figure 4.10 illustrates the final results of the simulation, whereas Table 4.11
reports the spacecraft’s final state at the end of the manoeuvre.

The mass evolution associated with the two-arc strategy, shown in Figure 4.11,
clearly highlights a reduction in propellant consumption compared to the three-arc
manoeuvre. This improvement is significantly more pronounced than the difference
observed between the ideal and drag-perturbed scenarios, as the manoeuvre duration
is relatively short and the effect of atmospheric drag at the considered operative
altitude remains limited. Consequently, the choice of the thrusting strategy plays
a dominant role in determining the overall propellant expenditure.
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Table 4.11: Final state of the spacecraft at the end of the manoeuvre (dimension-
less).

Variable Value

r 1.0784335310150008
θ 3.9995020477835443
ϕ 0.0
u −2.252019802390247 × 10−6

v 0.962958871940314
w 0.0
m 0.9999955296206842

Figure 4.11: Spacecraft mass evolution during the two-arc orbit-lowering ma-
noeuvre.

Propagation and orbital decay
At the end of the first phase, the final state is extracted and used as the initial
condition for the second phase. The propagation is performed in a Python environ-
ment using a dedicated script. The same numerical integrator adopted in the first
phase is employed, with the thrust set to zero throughout the propagation. The
results of the propagation phase are shown in Figure 4.12, illustrating the evolution
of the orbital radius down to the target altitude.

A more detailed inspection of the dimensionless radius reveals oscillations
between a minimum and a maximum value, reflecting the fact that the spacecraft
no longer follows a perfectly circular orbit as in the initial condition. By evaluating
the radii at apogee and perigee, the orbital eccentricity can be computed, yielding
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Figure 4.12: Unforced propagation phase following the initial 300 m descent,
showing the gradual lowering to the target altitude of 490 km.

a value of e = 1.5299 × 10−5.
The results of the propagation phase are shown below in Figure 4.14, and the

corresponding final state of the spacecraft is listed in Table 4.12.

Table 4.12: Final state of the spacecraft upon reaching the target altitude
(dimensionless).

Variable Value

r 1.0769132769103629
θ 2.0108913350598954
ϕ 0.0
u −1.5698854224782358 × 10−5

v 0.9636239021884728
w 0.0
m 0.9999955296206842
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Figure 4.13: Oscillation of the orbital radius during the unforced propagation
phase.

Figure 4.14: Result of the propagation phase.

4.4 Overview

This section provides an overview of the main results obtained throughout the
orbit-lowering analysis. The study investigated different strategies for reducing the
orbital altitude of a spacecraft starting from a circular orbit at 500 km, comparing
ideal and drag-perturbed scenarios as well as three-arc and two-arc thrusting
profiles.

The inclusion of atmospheric drag leads to a limited but consistent reduction in
propellant consumption, reflecting the relatively weak aerodynamic effects at the
considered altitude and the short duration of the manoeuvres. Although the overall
structure of the optimal solution remains similar to the ideal case, the presence of
drag contributes passively to the orbital decay, particularly during coasting and
propagation phases.
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A comparison between thrusting strategies shows that reducing the number
of thrust arcs can improve efficiency when orbit circularisation is not required at
intermediate altitudes. In this context, the combination of an optimal control-
driven descent and an unforced propagation phase proves effective in achieving the
target altitude while limiting propellant usage.

Overall, the results highlight the importance of jointly considering control strat-
egy and dynamical environment when designing orbit-lowering manoeuvres. The
adopted framework demonstrates flexibility and robustness, providing a foundation
for further extensions to lower altitudes, longer mission phases, and more complex
dynamical models.
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Chapter 5

Conclusions and future
research

This thesis presented the formulation, numerical solution, and analysis of an optimal
control problem for low-thrust satellite operations in Low Earth Orbit (LEO),
with particular emphasis on atmosphere-induced perturbations and orbit-lowering
manoeuvres. The work combines detailed dynamical modelling, indirect optimal
control techniques, and a fully integrated numerical implementation developed in a
Python environment and supported by a dedicated graphical user interface.

The main contributions and findings of this work can be summarised as follows:

• A comprehensive dynamical model was developed in spherical coordinates,
accounting for the central gravitational attraction of the Earth and the effects
of atmospheric drag. The aerodynamic perturbation was obtained through
a one-dimensional interpolation of precomputed atmospheric density data,
enabling an efficient yet physically consistent representation of drag effects at
the considered orbital altitudes.

• The optimal control problem was formulated using Pontryagin’s Minimum
Principle, leading to a two-point boundary value problem. The resulting
system was solved through an indirect shooting method combined with Newton
iteration, providing high-accuracy solutions and valuable insight into the
structure of the optimal thrusting strategy.

• A progressive set of simulations was carried out, starting from an ideal two-
body scenario and extending to a drag-perturbed environment. This approach
allowed a clear assessment of the role of atmospheric drag on the optimal
solution, highlighting its influence on propellant consumption, mission duration,
and orbital evolution.
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• Different thrusting strategies were analysed and compared, including three-arc
and two-arc profiles combined with unforced propagation phases. The results
demonstrated that an appropriate combination of optimal control and passive
orbital decay can lead to improved propellant efficiency, particularly when
intermediate orbit circularisation is not required.

• A modular and extensible software framework was developed to support the
modelling and optimisation process. The inclusion of a graphical user interface
enhances usability, facilitates the tuning of initial guesses for the indirect
method, and supports efficient visualisation and analysis of simulation results.

Overall, the results show that atmospheric drag plays a non-negligible role in
low-thrust orbit-lowering manoeuvres in LEO and must be properly accounted for
to obtain realistic performance estimates. Even at relatively high altitudes, drag
contributes to orbital decay and affects the optimal control structure, propellant
budget, and achievable mission timelines.

The methodology developed in this thesis provides a rigorous and flexible
framework for preliminary mission analysis and optimisation. It constitutes a
solid foundation for further extensions, including longer mission durations, lower
operational altitudes, and the inclusion of additional perturbative effects relevant
to realistic spacecraft operations.

5.1 Limitations and future developments
Despite the encouraging results obtained, the analysis presented in this thesis
is subject to a number of modelling and methodological limitations that define
possible directions for future improvements.

From a dynamical standpoint, the current formulation accounts only for the
central gravitational attraction of the Earth and aerodynamic drag. Higher-order
gravitational perturbations, such as the oblateness effect represented by the J2
harmonic, are neglected. While this assumption is acceptable for short-duration
manoeuvres and preliminary analyses, the inclusion of J2 would improve the
accuracy of the orbital evolution, particularly for longer simulations and lower
orbital altitudes, where secular effects on the orbital elements become increasingly
relevant. Similarly, the adoption of a more complex gravitational model, such as a
three-body formulation including third-body perturbations, could further enhance
the fidelity of the simulations and provide a more realistic representation of the
operational environment.

With regard to atmospheric drag modelling, the current approach relies on a one-
dimensional interpolation of precomputed atmospheric density data. Although this
choice represents a reasonable compromise between accuracy and computational
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efficiency, it neglects the explicit dependence of atmospheric density on epoch, solar
activity, and geomagnetic conditions. The integration of a time-dependent drag
model that accounts for solar flux variations, such as the NRLMSISE-00 model [17],
would allow the investigation of seasonal and short-term variability in aerodynamic
perturbations, leading to more robust and realistic mission analyses.

From a methodological perspective, the optimisation framework developed in
this thesis focuses on single manoeuvre segments, in which a propulsive orbit-
lowering phase is followed by either orbit circularisation or unforced propagation.
A significant improvement would consist in the development of an automated multi-
phase tool capable of alternately managing active thrusting phases (with non-zero
thrust) and passive propagation phases. By iteratively repeating this sequence, it
would be possible to progressively reach the target altitude with improved efficiency
and reduced overall mission duration.

The key idea behind this approach is to exploit the continuity of the optimal
solution: after obtaining convergence for an initial lowering manoeuvre of limited
magnitude (e.g. a 300 m altitude reduction), the final state of the spacecraft would
be used as the initial condition for a short unforced propagation, typically lasting
a few orbital periods. At the end of the propagation, a new propulsive lowering
phase would be initiated, using as initial guesses for the costates the updated values
obtained at the end of the previous phase. In this way, the costates would evolve
gradually through a sequence of small corrections, ensuring numerical convergence
as long as the differences between consecutive phases remain sufficiently small.

Such an automated framework would effectively transform a complex long-
duration orbit-lowering problem into a sequence of simpler, locally convergent
subproblems. This strategy would significantly enhance the robustness of the
indirect method, reduce the sensitivity to initial guesses, and enable the efficient
simulation of long-term orbit decay scenarios. Ultimately, this extension would
provide a powerful tool for the optimal planning of low-thrust orbit-lowering
missions in realistic operational conditions.
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Appendix A

Euler–Lagrange equations
for the adjoint variables

In this appendix, the Euler–Lagrange equations governing the evolution of the
adjoint variables are reported in both compact and component-wise form. These
relations are derived from the optimal control formulation presented in Chapter 3
and follow directly from the Pontryagin Maximum Principle.

A.1 Compact form
The adjoint dynamics can be written in compact form as:

λ̇ = −∂H

∂x
(A.1)

A.2 Component-wise equations

λ̇r = 1
r2

5
λθv cos ϕ + λϕw + λu

3
−2u

r
+ v2 + w2

4 6
+ 1

r2

5
λv(−uv + vw tan ϕ) + λw(−uv − v2 tan ϕ)

6
− λu

∂(ap)u

∂r
− λv

∂(ap)v

∂r
− λw

∂(ap)w

∂r
− SF∂T

∂r
(A.2)

λ̇θ = −λu
∂(ap)u

∂θ
− λv

∂(ap)v

∂θ
− λw

∂(ap)w

∂θ
+ SF∂T

∂θ
(A.3)
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λ̇ϕ = 1
r cos2 ϕ

3
− λθv sin ϕ − λuvw + λvw + λwv2

4
− λu

∂(ap)u

∂ϕ
− λv

∂(ap)v

∂ϕ
− λw

∂(ap)w

∂ϕ
+ SF∂T

∂ϕ
(A.4)

λ̇u = 1
r

3
− λrr + λuv + λww

4
(A.5)

λ̇v = 1
r

3
− λθ

cos ϕ
− 2λuv + λu(u − w tan ϕ) + 2λwv tan ϕ

4
(A.6)

λ̇w = 1
r

3
− λϕ − 2λuw − λvv tan ϕ + λwu

4
(A.7)

λ̇m = T

m2 λv − λu
∂(ap)u

∂m
− λv

∂(ap)v

∂m
− λw

∂(ap)w

∂m
(A.8)
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