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Abstract

The rapid growth of space exploration industry and the increasing need for debris
mitigation missions have led to rising interest in Active Debris Removal (ADR) and
On-Orbit Servicing (OOS) operations. Among robotic systems, Space Manipulator
Systems (SMS) stand out for their adaptability and versatility, making them
the preferred solution for OOS tasks such as satellite grasping, berthing, repair,
and maintenance. Consequently, the design of proper strategies to control them
have become critical. However, these control laws are often ineffective due to the
strongly coupled dynamics of space systems and the difficulty in estimating the
characteristics of the target. This Master’s thesis aims to find new control strategies
that contribute to address this problem, by proposing a robust control against
the disturbances and perturbations that derive from the capture of an unknown
target. A new dynamics model is proposed, in order to handle the momentum
transfer during post-capture stabilization. Two different control strategies will
be investigated, and their results will be compared. The first one is based on a
combination of Nonlinear Dynamics Inversion (NDI) and Nonlinear Disturbance
Observer (NDO), while the second one consists of NDI and Model Reference
Adaptive Control (MRAC). A gain synthesis is applied to the two strategies.
Overall, both the proposed methods proved capable of efficiently counteracting the
disturbance introduced by the target, allowing to compensate for the perturbation
and achieve a robust control of the system. However, the focus of the thesis will be
on the MRAC strategy, supported by a low-pass filter to suppress high-frequency
MRAC oscillations. Two different options will be provided for NDI formulation, and
MRAC will be adapted accordingly. Finally, a workspace analysis will be conducted
to bound some variables useful for gains synthesis, which is performed exploiting
Linear Matrix Inequalities (LMI). The results achieved show how adaptive control
can significantly improve the performance of space manipulator systems, paving
the way for their increasingly widespread use.
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Introduction

The significant versatility of Space Manipulator Systems (SMS) has made them
suitable for multiple purposes and missions. These are systems based on a robotic
multi-joints arm mounted on a base. They can adapt to accomplish a very wide
range of functions, such as satellite grasping, berthing, repair, and maintenance.
Space exploration increasingly rely on this kind technology, with the goal of extend-
ing the operational capability of spacecrafts beyond their traditional limits. Despite
their growing importance and undoubted utility, the control of these systems in-
troduces unique and tough challenges, primarily due to the complex and strongly
coupled dynamics of space systems [1, 2]. The choice of the most effective control
strategy is strongly dependent on the physical and operational scenario, including
factors such as manipulator flexibility, number of arms, grasping mechanisms, and
the cooperativeness of the target [3, 4].
In order to achieve a smooth capture, the velocity matching between the end-effector
and the target must be ensured. If the target is non-cooperative and tumbling, a
strong coupling effect between the robotic manipulator and the servicer base arises
[5, 6]. Various strategies and methods have been explored to tackle this challenge.
In [7], grasping and detumbling have been formulated as nonlinear optimization
problems, while Aghili [8] proposed a method based on minimum-energy trajectory
tasks to dissipate the angular momentum of the captured target. Furthermore,
reactionless manipulation using nullspace projections was exploited for both ADR
and OOS missions [6, 9, 10].
Improving the trajectory planning algorithms is not enough, since high robustness
is required to compensate for the perturbations due to the capture, such as contact
forces and inertia variations. Synchronizing manipulator and base motions through-
out the approach and the capture maneuver becomes a complex problem and needs
to be tackle in the guidance law [11]. In [9], the problem is addressed through a
multi-phase strategy: bias momentum control for the approach, impedance control
at impact, and distributed momentum control post-capture. Another step forward
in this direction has been taken by the COMRADE project, which ensured high
robustness against perturbations by the introduction of compliance control and
H∞ synthesis [12]. In order to stabilize the servicer base, new techniques based
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on hierarchical task planning and nullspace control have been investigated [10].
In [13], a robust joint-space control method is introduced for rotation-free-floating
SMS with flexible appendages.
More recently, predictive control strategies have gained attention for their ability
to generate optimal interaction trajectories while accounting for dynamic con-
straints and uncertainties. Initial efforts focused on linearized models to reduce
computational load. In particular, Successive Linearization-based MPC (SL-MPC)
methods [14, 15] employ piecewise-affine approximations of the nonlinear dynamics,
enabling faster optimization for real-time feasibility. However, these methods are
constrained by limited prediction horizons, which can degrade both the stability
and performance of the controller [15]. In [16], a linear tube-based MPC was
proposed to enhance robustness against target motion uncertainties.
To address this problem and the inability of conventional controllers to compensate
for varying loads acting on the system end-effector, adaptive control methods were
proposed. They can be divided into three classes: model reference, self-tuning and
gain-scheduled. The characteristic they all share is that they can automatically
adjust their parameters in real time to handle uncertainties or perturbations in the
robot dynamics and environment. These strategies differ from classical controllers
because they learn and adapt while the system is operating. Among them, Model
Reference Adaptive Control (MRAC) approach stands out for its computational
simplicity and ability to reliably follow an ideal reference.
In [17], an overview on MRAC applied to robotics mechanisms is presented, high-
lighting the advantages of this method, but also introducing some related problems,
and how other papers have dealt with them. Yucelen [18] discussed the mathe-
matical fundamentals for MRAC implementation and Lyapunov’s stability proof.
However, classic MRAC can not tolerate large system uncertainties. Dogan et
al. [19] proposed an adaptive robustifying strategy to relax the stability limit
through the introduction of an additional term in MRAC formulation under specific
conditions.
In order to achieve optimal performances and maintain the same system response
to time-varying perturbation and command profile, the concept of scalability can
be introduced. For this purpose, a new adaptive weight update law and a new
Lyapunov’s function can be built, by exploiting a time-varying scalable learning rate
[20]. Non-constant adaptation rates are considered also in [21], where a combination
of MRAC and Integrative Dynamic Regressor Extension and Mixing (I-DREM)
methods is proposed. This allows to replace the manual selection of the adaptation
rate with an automatic online scaling law based on current regressor value, while
ensuring exponential monotonic convergence of the controller error. Another way
of dealing with time-varying command profiles is proposed in [22], by developing
a new term within the MRAC formulation through a gradient descent approach
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and a minimum error criterion. This new term allows to modify both the reference
model and the control signal.
Despite the effectiveness of MRAC methods, it is often difficult to ensure a-priori
clear performance guarantees. This challenge is addressed by Arabi et al. [23]
through the development of a set-theoretic MRAC, which leverages on generalized
restricted potential functions to bound the controller error. This method, also
applicable to nonlinear reference systems, allows to achieve high reliability, by
forcing the system to evolve within specified boundaries. Another cause of deviation
of the system from the ideal reference behavior is due to high-frequency oscillations
caused by the high gains necessary for a fast convergence. In [24], a low-pass filter
is applied to weights update law estimation, in order to dampen the oscillations
while preserving asymptotic stability.
The goal of this thesis is to leverage the knowledge and achievements of all these
papers to propose new innovative control strategies. Those will be applied to the
control of a Space Manipulator System during the phase of capture of an unknown
target, that introduces strong perturbations into the system dynamics.
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Chapter 1

Modeling

In this first chapter, the mathematical models used to describe the dynamics of
the SMS will be explained. First of all, an overview of the utilized robot will
be provided, together with its operational profile. After that, the models that
describe the general SMS dynamcis and the target capture phase will be shown
and the chapter will end with the presentation of the Matlab tools that allow the
implementation in the software environment.

1.1 Robot model and operational context
In this section, the main features of the robot used for all the analysis and sim-
ulations of this chapter will be described and some information about its way of
operating will be provided.
The SMS (Space Manipulator System) consists of a base with a mass of 100 kg, on
which 3 reaction wheels are mounted: these represent 3 DoFs in robot motion. On
the base is also mounted a robotic arm, characterized by 3 revolut joints, which
represent 3 additional DoFs. The manipulator ends with an end effector (EE), that
is the component responsible of directly getting in touch with and grasping the
target. The goal of the proposed control strategy will be to act on the 6 DoFs
through proper control torques in order to make the SMS follow the desired profile
of positions and velocities that lead to a safe target capture.
These profiles are obtained through specific path-following functions that act on
the motion of the joints, since the control strategies presented are designed to work
in the Joint Space.
The capture was initially simulated by suddenly increasing both mass and inertia
of the EE to take into account the addition of the target to the robot model. It is a
simplified way of simulating the target grasping, but it provides acceptable results.
However, a more reliable capture model will be developed further in this chapter.
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Figure 1.1: Simplified representation of the robot

1.2 Pre-capture Dynamics
Prior to capture, the servicer dynamics can be expressed as [5]:C

H0 H0q

HT
0q Hq

D
ü ûú ý

Hs

C
q̈0
q̈

D
+
C

C0 C0q

Cq0 Cq

D
ü ûú ý

Cs

C
q̇0
q̇

D
=
C
06×1
τq

D
(1.1)

where q ∈ Rnq×1 represents the displacements of the DoFs in the kinematic chain,
H ∈ Rnq×nq represents the inertia matrix, C ∈ Rnq×nq represents the convective
matrix that collects Coriolis and centrifugal effects and τq ∈ Rnq×1 represents the
control torque vector. The total number of DoFs is nq = nr + nm, where nr is the
number of reaction wheels and nm is the number of manipulator joints.
Since no external forces or torques are applied to the servicer in this phase, its
momentum is constant and can be considered as zero:

δs = H0q̇0 +H0q q̇ = 0 (1.2)

It follows:
q̇0 = −H−1

0 H0q q̇ (1.3)
Developing the first row of (1.1):

H0q̈0 +H0q q̈ + C0q̇0 + C0q q̇ = 06x1 (1.4)
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Substituting (1.3) in (1.4), an expression for q̈0 can be found:

q̈0 = −H−1
0 H0q q̈ +H−1

0 (C0H
−1
0 H0q − C0q)q̇ (1.5)

Developing the second row of (1.1):

HT
0q q̈0 +Hq q̈ + Cq0q̇0 + Cq q̇ = τq (1.6)

Inserting (1.3) and (1.5) into (1.6), it leads to the general equation for SMS
dynamics in the joint space:

(Hq −HT
0qH

−1
0 H0q)ü ûú ý

H⋄

q̈ + [Cq − (Cq0 −HT
0qH

−1
0 C0)H−1

0 H0q −HT
0qH

−1
0 C0q]ü ûú ý

C⋄

q̇ = τq

(1.7)
This represents the SMS dynamics in the absence of disturbances and it needs to
be properly modified when a perturbation occurs, like the capture of a target.

1.3 Capture Model
The target capture (i.e. the perturbation) can be simulated by increasing the mass
and inertia of the EE of the unperturbed robot model. However, in order to better
reproduce the capture, the simulations were improved by considering a new robot
model, which precisely represents the target. Therefore, 3 different robots are
used within the simulation: one represents the unperturbed system pre-capture
(robot.pre), another one represents the target alone (robot.target) and the final
one represents the assembly of servicer and target after capture (robot.post). By
exploiting these three model, a more precise representation of target capture can
be simulated.
Moreover, the new model will be developed starting from the conservation of
momentum for the global system (robot + target): in fact, since no external
forces or torques act on this system, its momenta (both angular and linear) will
be constant. This consideration allows to have a capture model that results be
physically valid and coherent.
In the following sections, the mathematical formulations that rule the model will
be explained and some simulations will be shown to validate the model.

1.3.1 Post-capture dynamics
In the post-capture dynamics, the internal torques and forces that come from the
interaction between the target and the EE must be taken into account:

Hs

C
q̈0
q̈

D
+ Cs

C
q̇0
q̇

D
=
C
06×1
τq

D
−
è
J0t Jqt

éT
Fe (1.8)
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where []s means that the variables are referred to the servicer and Fe represents
the internal forces and torques considered as applied in the target center of mass.
We can define Jt =

è
J0t Jqt

é
and J̇t =

è
˙J0t J̇qt

é
, where J0t is the Jacobian matrix

from manipulator base to target and Jqt is the one from joint space to target.
The target dynamics after capture is:

Htṫt + Cttt = Fe (1.9)

where []t means that the variables are referred to the target and tt =
C
ωt

vt

D
is the

target twist.
The following relations can be used to link the target twist to joint space velocities:

tt = J0tq̇0 + Jqtq̇ (1.10)

ṫt = ˙J0tq̇0 + J̇qtq̇ + J0tq̈0 + Jqtq̈ (1.11)
Substituting these equations into (1.9):

Fe = (HtJ̇t + CtJt)
C
q̇0
q̇

D
+HtJt

C
q̈0
q̈

D
(1.12)

Substituting this last equation into (1.8):

(Hs + JT
t HtJt)ü ûú ý

H̃

C
q̈0
q̈

D
+ (Cs + JT

t HtJ̇t + JT
t CtJt)ü ûú ý

C̃

C
q̇0
q̇

D
=
C
06×1
τq

D
(1.13)

In this equation, Hs and Cs matrices are computed with reference to robot.pre,
while the Jacobian matrices, Ht and Ct refer to robot.target. In particular, Ht and
Ct represent the target inertia and centrifugal/Coriolis matrices computed in the
target reference frame:

Ht =
C
It 03x3

03x3 mtI3

D
(1.14)

Ct =
C
ωx

t It mtv
x
t

mtv
x
t mtω

x
t

D
(1.15)

where mt and It represent target mass and moment of inertia, []x represents the
skew-symmetric matrix operator and ωt and vt represent target angular and linear
velocities.
Defining H̃ = (Hs + JT

t HtJt) and C̃ = (Cs + JT
t HtJ̇t + JT

t CtJt), the following
equation for the post-capture dynamics of the system consisting of servicer + target
can be defined:

H̃

C
q̈0
q̈

D
+ C̃

C
q̇0
q̇

D
=
C
06×1
τq

D
(1.16)
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1.3.2 Conservation of momentum
To obtain a reliable model throughout the whole capture maneuver, the conservation
of total system momentum (both angular and linear) can be exploited. The process
is based on the following assumptions:

• before capture, the target has constant angular velocities and zero linear
velocities;

• before capture, the servicer momentum can be assumed to be zero;

• before capture, since no external forces are applied, the momenta of the
servicer and the target are constant;

• during and after capture, since the contact forces are applied, the momenta
of both servicer and target vary;

• during and after capture, since the contact forces are internal to the system
consisting of servicer + target, the global system momentum stays constant.

The first assumption derives from operational considerations, since one possible
function of the SMS is to capture and detumble a rotating target. However, the
capture model will be proved to be valid even in presence of target initial linear
velocites in one of the following sections.
Consequently, the momenta of servicer and target before capture in the inertial
reference frame are:

δs = H0q̇0 +H0q q̇ = 0 (1.17)

δt =
C
Itωt

03x1

D
= Mt = constant (1.18)

where the matrices H0 and H0q derives from a block subdivision of Hs:

Hs =
C
H0 H0q

HT
0q Hq

D

The same subdivision is applied to matrix Cs:

Cs =
C
C0 C0q

Cq0 Cq

D

After capture, the momenta can be expressed in the inertial reference frame in the
following forms:

δs = R∗
0(H0q̇0 +H0q q̇) (1.19)
δt = R∗

t tt (1.20)
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where the transformation matrices are defined as:

R∗
0 =

C
R0 03x3
03x3 I3

D
(1.21)

R∗
t =

C
It mtr⃗

x
0t

03x3 mtI3

D
(1.22)

R0 is the rotation matrix of the servicer base with respect to the inertial frame, It

is the target inertia matrix in the inertial frame, mt is the target mass and r⃗0t is
the position of the target CoM with respect to the base CoM.
As a result, the total momentum of the system (servicer + target) in the inertial
reference frame is:

δ = δs + δt = R∗
0(H0q̇0 +H0q q̇) +R∗

t tt = R∗
0(H̃0q̇0 + H̃0q q̇) = Mt (1.23)

Thanks to the conservation of momentum, it results to be equal to the target
momentum before capture.
By substituting (1.10) within (1.23):

q̇0 = −(R∗
0H0 +R∗

tJ0t)−1(R∗
0H0q +R∗

tJqt)ü ûú ý
A

q̇ + (R∗
0H0 +R∗

tJ0t)−1ü ûú ý
B

Mt (1.24)

Since no external forces or torques are applied to the system, its total momentum
stays constant, that means that its time-derivative is equal to 0:

Ṙ∗
0(H0q̇0 +H0q q̇) +R∗

0(Ḣ0q̇0 +H0q̈0 + Ḣ0q q̇ +H0q q̈) + Ṙ∗
t tt +R∗

t ṫt = 0 (1.25)

where
Ṙ∗

0 =
C
ω⃗0

xR0 03x3
03x3 03x3

D

Ṙ∗
t =

C
İt mt[v⃗t − v⃗0]x

03x3 03x3

D
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By substituting (1.10), (1.11) and (1.24) within (1.25):

q̈0 = −(R∗
0H0 +R∗

tJ0t)−1(R∗
0H0q +R∗

tJqt)ü ûú ý
D

q̈

− (R∗
0H0 +R∗

tJ0t)−1[(Ṙ∗
0H0 +R∗

0Ḣ0 + Ṙ∗
tJ0t +R∗

t
˙J0t)Aü ûú ý

E1

+ (Ṙ∗
0H0q +R∗

0Ḣ0q + Ṙ∗
tJqt +R∗

t J̇qt)ü ûú ý
E2

]q̇

−(R∗
0H0 +R∗

tJ0t)−1(Ṙ∗
0H0 +R∗

0Ḣ0 + Ṙ∗
tJ0t +R∗

t
˙J0t)Bü ûú ý

F

Mt =

=Dq̈−(R∗
0H0 +R∗

tJ0t)−1[E1 + E2]ü ûú ý
E

q̇ + FMt =

=Dq̈ + Eq̇ + FMt

(1.26)

Developing the first row of (1.16):

H̃0q̈0 + H̃0q q̈ + C̃0q̇0 + C̃0q q̇ = 06x1

Substituting the equations (1.24) and (1.26) within that, an expression for Mt can
be obtained:

Mt = −(H̃0F + C̃0B)−1(H̃0D + H̃0q)ü ûú ý
G

q̈−(H̃0F + C̃0B)−1(H̃0E + C̃0A+ C̃0q)ü ûú ý
K

q̇

(1.27)
Exploiting (1.27) inside (1.24) and (1.26), the dynamics of the base can be repre-
sented as a function of only joints velocities and accelerations:

q̇0 = (A+BK)q̇ +BGq̈ (1.28)

q̈0 = (D + FG)q̈ + (E + FK)q̇ (1.29)
Developing this time the second row of (1.16):

H̃q0q̈0 + H̃q q̈ + C̃q0q̇0 + C̃q q̇ = τq

By substituting (1.28) and (1.29) into this equation, the dynamics of the system
can be expressed as a function of joints motion, removing any explicit reference to
the base:

[H̃q0(D + FG) + C̃q0BG+ H̃q]ü ûú ý
H̃⋄

q̈ + [H̃q0(E + FK) + C̃q0(A+BK) + C̃q]ü ûú ý
C̃⋄

q̇ = τq

(1.30)
The equation obtained results to be in the same form of the general pre-capture
dynamics equation (1.7).
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1.3.3 Validation in open-loop
In order to prove the validity of the capture model, an open-loop simulation was
performed: a simple step control was applied to the robot (Figure 1.2) and the
evolution of the system dynamics was observed, aiming at coherence in motion and
conservation of momenta. The capture occurs after 1000 seconds and the target is
characterized by a mass of 8 kg (small with respect to 100 kg of the base), zero
initial linear velocities and initial angular velocities of 5e-5 along all the three axes.
Since a random control was applied, without any kind of reference motion, the
joints and the EE do not follow a particular profile, but still result to be physically
coherent, as shown in Figures 1.3 and 1.4.

Figure 1.2: Capture validation: control torque

Figure 1.3: Capture validation: joints displacements
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Figure 1.4: Capture validation: EE velocities

The moment of capture can be clearly identified looking at EE velocities, charac-
terized by a step in all the components. Outside of this disturbance, the motion
results to be physically acceptable and coherent with the applied control torques.
In order to validate the model, the conservation of global system momentum needs
to be verified. As shown in the graphs below, all the assumptions and conditions
related to momentum conservation are respected: before capture, the servicer has
constant zero momenta and the target has constant angular momenta and zero
linear momenta; after capture, both servicer and target momenta vary, but the
global system momenta given by their sum stay constant throughout the whole
simulation.

Figure 1.5: Capture validation: target momenta

It is evident how the target momenta before capture are much smaller than
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after capture, when the interaction between robot and target determines a big
variation of all the momenta. In future simulations, one of the goals will be to
reduce these variations in order to have a smoother capture, by trying to reach the
capture moment with EE velocities closer to the target ones.

Figure 1.6: Capture validation: servicer momenta

Figure 1.7: Capture validation: global system momenta

1.3.4 Validation with target initial linear velocities
The capture model was created considering a rotating target with no initial linear
velocities. However, it can be proved that the model is still valid when this
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hypothesis fails.
In order to do so, another simulation in open-loop was performed, with all the same
parameters of the previous one, except for target initial velocity. This results to be
equal 5e-5 in all its components, both angular and linear along the three axes.

Figure 1.8: Capture validation with target linear velocites: target momenta

Figure 1.9: Capture validation with target linear velocites: servicer momenta

As shown in the graph below, the model is still perfectly valid, since the conservation
of momentum is totally respected. Unlike the previous scenario, it can be seen
how the linear momenta of the global system are now different from zero, but still
constant throughout the whole simulation.
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Figure 1.10: Capture validation with target linear velocites: global system momenta

1.4 Matlab Tools
All the simulations were performed in Matlab and Simulink, by exploiting some
specific tools for space robotics. In particular, a Matlab open-source modeling
and control toolkit for orbiting spacecraft with robotic manipulators was used. It
is called SPART and it contains a lot of key functions for robot definition and
dynamics evolution.
These functions support .urdf format for robot characteristics and specifications and
allow to derive important information in several domains: kinematics, differential
kinematics, dynamics and so on.
In addition, there are specific functions that help in the transition and conversion
from quaternions to Euler’s angles and vice-versa, so that the variables to provide
in input can be expressed in the proper form.
The toolbox has been exploited basically in all the codes, from dynamics to control
computation, by a careful integration with the functions created ad hoc for our
purposes.
The Simulink codes are organized in 3 main blocks, each responsible for a specific
task: reference motion, dynamics and control.
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Chapter 2

NDI-NDO Control Strategy

In this chapter, a control strategy based on a combination of NDI and NDO will
be presented. This will be used as benchmark to prove the efficiency of another
control strategy based on NDI and MRAC, that will be introduced in Chapter 3.
First of all, the new robot model used within all the simulations of the chapter
will be described. After that, the control strategy will be deeply analyzed with all
the related equations. Finally, some simulations will be performed to validate the
model and the main results will be discussed.

Figure 2.1: Block diagram of the proposed control strategy

2.1 Robot model
A new servicer robot is used within the simulations of this chapter, more complex
than the one described in 1.1. It is characterized by a base with a mass of 2000 kg,
to which are attached 2 solar panels and a VISPA arm, that consists of 6 revolute
joints and end with an end-effector. Finally, 3 reaction wheels are mounted on the
base, bringing the total number of DoFs to 9. However, since the joint closest to
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the EE results very hard to control, it is turned from revolut to fixed, reducing the
DoFs to 8. These DoFs can be used to control the 3 angular velocities of the base
(through the RWs) and the 3 linear velocities and 2 angular velocities of the EE
(through the manipulator joints).
Another specific model is used to represent the target. It is characterized by a mass
of 620 kg, approximately a third of the base mass. The model is created starting
from the base urdf file, by setting to 0 all the masses and inertia of both the base
and the arm and by adding a new body, that represents the target itself.
Finally, after capture, a third model is used to represent the assembly of servicer
and target. The urdf file is built as described for the target ones, but without
modifying the servicer masses and inertia.

Figure 2.2: Simplified representation of the robot

2.2 NDI-NDO Control Strategy
In this section, a control strategy based on a combination of NDI (Nonlinear
Dynamic Inversion) and NDO (Nonlinear Disturbance Observer) will be presented.
This strategy is chosen with the goal of counteracting the strong nonlinearities that
characterize the SMS dynamics.
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2.2.1 NDI control
NDI is a nonlinear control technique that cancels the system nonlinearities by
applying an inversion of the system dynamics. The main idea is to use the nonlinear
dynamics of the system and invert it, so that the closed-loop system behaves like a
linear system, which becomes easier to control.
Starting from the general equation for SMS dynamics in the joint space (1.7), in
order to have a complete NDI control, its formulation should be:

τNDI = H⋄K(q̇d − q̇) + C⋄q̇ (2.1)

where K is a diagonal matrix and qd is derived from the desired motion. By
substituting this expression in (1.7), it leads to the reference model equation:

q̈ = K(q̇d − q̇) (2.2)

Since K is a diagonal matrix, the above system results to be perfectly decoupled.

2.3 NDO control
NDI control works well with the unperturbed system, but it is not enough when
we introduce some unkown perturbations to the system, as the target capture. To
compensate for this kind of perturbations, a new control technique needs to be
introduced. In this case, NDO is chosen.
NDO is a method that introduces a disturbance observer to estimate and compensate
for external perturbations and model uncertainties in real time. NDO provides
robustness, compensating for unmodeled effects and disturbances.
With the introduction of momenta and disturbances after the capture, equation
(1.7) can be modified as follows:

Ĥ⋄q̈ + Ĉ⋄q̇ = τq (2.3)

where [̂] represents the perturbed version after capture of system matrices.
Each perturbed matrix can be written as the sum of the unperturbed one and a
disturbance:

X̂ = X + ∆X
Consequently, we can rewrite equation (2.3) by isolating in the left side the
unperturbed terms in common with (1.7):

H⋄q̈ + C⋄q̇ = τq − ∆H⋄q̈ − ∆C⋄q̇

= τq + τd

(2.4)
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where τq is the NDI control and τd represents the disturbance torque.
Since the NDI was built starting from the unperturbed equation (1.7), the modeling
uncertainties need to be rejected in order to have an effective control [13]. This
can be achieved by estimating the disturbance torque (τ̂d) through a Nonlinear
Disturbance Observer, which is developed capitalizing on the structure of the
system dynamics by introducing a gain Ld [25]:

˙̂τd = −Ldτ̂d + Ld(H⋄q̈ + C⋄q̇ − τq) (2.5)

A new variable λ can be introduced, such that:

λ = τ̂d − p(q, q̇, q̇0) (2.6)

where the vector p can be computed from Ld as follows:

d

dt
p(q, q̇, q̇0) = LdH

⋄q̈ (2.7)

Therefore, the NDO is totally defined thorugh the following equations:
λ̇ = −Ldλ+ Ld(C⋄q̇ − τq − p)
τ̂d = λ+ p
d
dt
p = LdH

⋄q̈

(2.8)

Once the disturbance torque is computed by exploiting this method, the adaptive
control can be defined as the opposite of this quantity (τa = −τd), in order to
compensate for it and allow the NDI to act on a system closer to the unperturbed
one.

2.4 Model Validation
Several simulations were performed to validate the control strategy explained in
the previous sections. The robot model used is the one described in Section 2.1
and 6 different simulations were carried out, each one with a different perturbation
obtained by randomly varying the target initial rotational velocities in the range
[5e-6 : 2e-4] rad/s (the initial linear velocities are always considered as zero).
The performance of NDI-NDO control are evaluated by computing different variables
representative of the system behavior for each simulation and comparing their
values. Some considerations about the simulation scenario and the most relevant
results are collected in the following pages.
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Simulation ID ωx ωy ωz

Sim 1 6.5687e-05 4.9651e-05 5.9037e-06
Sim 2 3.7302e-05 3.4714e-05 1.6437e-04
Sim 3 1.3940e-04 2.0244e-05 5.5675e-05
Sim 4 1.5089e-04 9.1322e-05 1.6101e-04
Sim 5 9.2856e-05 2.5797e-05 8.9126e-05
Sim 6 2.1345e-05 1.9257e-04 1.8258e-04

Table 2.1: Target initial velocities for each simulation

2.4.1 Base stabilization
As written previously, the proposed control strategy is built to work in the joint
space. However, some goals of the task space can be achieved by computing the
corresponding motion of robot DoFs that generates the desired velocity or position
profile in the task space.
In this perspective, the task space objective of stabilizing the servicer by imposing
zero angular velocities to its base was implemented within the proposed simulations.
The strategy followed to achieve this goal by imposing a specific velocity profile to
RWs will be explained in this section.
First of all, since the objective is to have a non-rotational base, its desired orientation
around all the three spatial directions is supposed constant and imposed equal to 0
for simplicity. In addition, the real-time orientation of the base is derived from the
system dynamics by integrating the base angular velocity starting from zero initial
orientation. Doing so, the angular error between the real and the desired base
orientation can be computed and a simple proportional control can be exploited to
calculate the desired angular velocity profile of the base:

ω0des
= kω(θ0des

− θ0) (2.9)

At this stage, the reference velocities that the RWs need to follow to guarantee
the desired base velocity profile can be computed by leveraging the equations
derived from the conservation of momentum. Specifically, in the pre-capture phase,
we can compute q̇r from equation (1.17), in which we consider only the angular
components of the momentum and we distinguish the RWs contribute from the
joints one. After defining H0qr = H0q(1 : 3, 1 : nr), H0qm = H0q(1 : 3, nr +1 : nr +nq)
and H00 = H0(1 : 3, 1 : 3), it follows:

q̇rref
= −H−1

0qr
· (H0qm q̇m +H00ω0des

) (2.10)

By analogy, in the post-capture phase, we apply the same procedure to equation
(1.19):

q̇rref
= H−1

0qr
· (R−1

0 δs −H0qm q̇m −H00ω0des
) (2.11)
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Therefore, the control is applied in the joint space with the goal of making the
RWs follow the reference velocity profiles defined above.

2.4.2 Joints motion
While the RWs velocities are computed so that the base will stay stable, the
reference motion followed by the joints has no connections with the task space, but
it is directly defined in the joint space by exploiting a path-following approach.
Specifically, given the joints initial positions and the desired final ones, a smooth
motion with zero initial and final velocities is imposed to each joint and the
correspondent velocity profiles are used as reference for the control strategy. By
doing so, similar profiles are obtained for all the joints, with the same shape but
scaled differently.
The capture happens after 780 s, when all the joints velocities are very close to
zero. Therefore, the main goal of the control strategy is to be able of capturing the
target while keeping the joints stable and driving their velocities to zero after a
short transitory.

2.4.3 Tuning and gain synthesis
Since observer and controller dynamics are coupled, it becomes crucial to simulta-
neously design a gain synthesis. Observer and control gains are computed through
the resolution of the following LMI problem:

(AzQz + BzWz)s BzdQd Bzw QzCT
z

∗ −(Qd)s + Ḣ⋄ 0 0
∗ ∗ −γI 0
∗ ∗ ∗ −γI

 < 0 (2.12)

where Xs = X + XT , Qz and Pd are positive definite matrices, Qd = P−1
d , Wz and

Wd are matrices of appropriate dimensions, γ0 is a positive scalar and the following
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auxiliary matrices are defined:

Az =
C
0 I
0 ∆C⋄

D

Bz =
C

0
−(H⋄ + ∆H⋄)

D

Bzd =
C

0
−I

D

Bzw =
C

0
−∆C⋄

D
Cz =

è
I 0

é

(2.13a)

(2.13b)

(2.13c)

(2.13d)

(2.13e)

The LMI problem defined in (2.12) is solved by implementing it on YALMIP, a
Matlab toolbox for modeling and optimization. The outputs of the optimization
process are the matrix K used inside the NDI control and the matrix Pd = Q−1

d

exploited in the NDO control.

2.4.4 Results
As shown in Fig.2.3, the angular velocity of the servicer base is affected by a strong
increase at the capture time, due to the momentum transfer between target and
servicer. However, the stabilization strategy described in Section 2.4.1 allows to
quickly dampen this effect, driving the base angular velocity back to 0 after a short
time interval.

Figure 2.3: Angular velocity of the servicer base
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Figure 2.4: Angular displacement of the servicer base

The NDO control (Fig.2.5) becomes significant only after capture, since perturba-
tions and disturbances are negligible before that moment, when NDI is perfectly
able to control the system. Moreover, since the perturbation introduced by the
target capture acts far stronger on joints than on RWs, the components of NDO
control related to joints are higher than the ones correspondent to RWs.

Figure 2.5: NDO control torque

As expected, all the joints velocities (Fig.2.6) stay stable and close to zero after
capture. However, while the joints closest to the base quickly converge to zero,
the control is not equally effective on the most distant ones. Consequently, the
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velocities of the fourth and fifth joints do not diverge, but at the same time their
convergence is extremely slow.

Figure 2.6: Joints velocities

On the other hand, RWs velocities (Fig.2.7) rapidly converge to the values required
to stabilize the servicer base, that are strongly different as initial target conditions
change.

Figure 2.7: RWs velocities
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Figure 2.8: Joints displacements

Since the control strategy is developed in the joints space, the EE motion is not
directly controlled. However, the stop of motion imposed to all the joints induced
an analog effect on the EE (Fig.2.9), that follows a smooth reference motion similar
to the joints one. Due to its proximity to the target, it is strongly influenced
by the perturbations it introduces, resulting again in an imperfect and very slow
convergence to zero.

Figure 2.9: EE velocity
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2.4.5 Conclusions
Overall, the combination of NDI and NDO controls show satisfactory results,
allowing to properly stabilize the base and achieve the expected velocity profile
for joints. However, the complexity of the robot (characterized by a high number
of DoFs) and the significant mass of the target (resulting in strong perturbations)
make the convergence to the desired profile slower than expected.
For this reason, in the next section a new study case will be presented, that results
to be more representative of the effectiveness of the control strategy. The same
study case will be utilized in the next chapter to analyze the MRAC control strategy,
so that some comparisons between the two methods can be conducted.

2.5 Study case
To illustrate the efficiency of the proposed method, the following study case is
presented: a rotation-free floating SMS is used to capture a tumbling target. The
servicer is composed of a 100kg base, on which are mounted 3 reaction wheels and
a 3-DoFs robotic manipulator (see Section 1.1). The control torques are computed
with the goal of stabilizing the base (zero angular velocities) and making the robotic
joints follow a desired step motion profile, that ends with zero desired velocities for
all the joints. The capture happens at tc = 1500s, basically at the end of the first
step. The objective is to be able to compensate for the unknown perturbations
introduced by the target, in order to stabilize the system after capture. The chosen
MRAC formulation is the one described in Section 3.3.3, with an online tuning of
parameters γi.
Firstly, 10 different simulations were performed, by randomly varying target angular
velocities between 5e-6 and 2e-4 rad/s, with a constant target mass of 8 kg. Finally,
4 more simulations were conducted, with a constant target angular velocity of 5e-5
rad/s along all the directions and a varying target mass of 8, 24, 40 and 80 kg
respectively. Since the perturbations introduced by varying the target velocities
and mass resulted to have approximately the same effects on the system, only
simulations showing variations in speed will be reported for simplicity.
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Simulation ID ωx ωy ωz

Sim 1 9.0555e-05 5.8825e-05 1.5150e-04
Sim 2 7.9404e-05 1.3754e-04 5.4744e-05
Sim 3 1.5428e-04 1.3274e-04 1.0366e-04
Sim 4 1.6006e-04 3.6709e-05 1.4132e-04
Sim 5 4.1440e-05 2.8205e-05 1.7873e-04
Sim 6 1.0050e-04 1.0218e-04 1.9206e-04
Sim 7 9.1889e-05 1.9215e-04 1.1171e-04
Sim 8 1.3103e-04 7.1375e-05 3.2032e-05
Sim 9 1.4333e-04 1.1913e-04 3.4112e-05
Sim 10 1.5216e-04 4.8643e-05 5.5214e-05

Table 2.2: Target initial velocities for each simulation

2.5.1 Simulation results
One the main goal of the control strategy is to be able of stabilizing the base. That
means to bring base angular velocities down to zero after the perturbation and
to keep them stable around this value. As shown in Fig.2.10, this objective was
perfectly achieved, since in all the simulations the base angular velocity is strongly
perturbed by the capture, but immediately dampened and brought back to zero by
the control torques.

Figure 2.10: Base angular velocities for each run

In Fig.2.11 and Fig.2.12, it is clear the difference in joints motion control perfor-
mance with and without using NDO control. The first figure is characterized by
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the utilization of only NDI: the convergence is imperfect and slow and the velocities
can not reach their reference values within the time duration of the step. On the
other hand, as shown in the second figure, the combination of NDI and NDO allows
to fasten the convergence and improve the overall performance, so that all the
joints velocities reach their desired final values by the end of simulation.

Figure 2.11: Joints velocities without NDO for each run

Figure 2.12: Joints velocities with NDO for each run

By comparing NDI and NDO torques in Fig.2.13 and Fig.2.14, a similar behavior
can be observed, with the highest peaks right after the capture and secondary peaks
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corresponding to each step. Overall, NDO control torques result be approximately
one order of magnitude lower than NDI ones.

Figure 2.13: NDI control torques for each run

Figure 2.14: NDO control torques for each run

2.5.2 Conclusions
Despite the difficulties in adapting to the sudden, rapid and strong variations im-
posed by the step motion, the proposed control strategy results to act on the system
effectively: the base is well stabilized and the joints velocities converge rapidly to
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the reference values. The NDO control effectively estimates and counteracts the
disturbance introduced by the target capture, allowing the NDI to acts on a system
very close to the unperturbed one.
To quantify the improvements brought by the new method, the table Tab.2.3
compares for each simulation the mean squared errors (MSEs) in the computation
of joints velocities with just NDI control and with the combination of NDI and
NDO. For our purpose, the MSE can be computed as follows:

MSE = 1
Tsim

Ú Tsim

0
||q̇m − q̇mr ||2 dt (2.14)

where Tsim is the simulation time, q̇m is the real joints velocities vector and q̇mr is
the reference joints velocities vector.
As shown in the table, the addition of NDO control to NDI allows the error to be
reduced by half. Overall, both the strategies are characterized by very low error
values, meaning that the control is effective.

Simulation ID Without NDO With NDO
Sim 1 1.0034e-09 5.1862e-10
Sim 2 9.5732e-10 5.0352e-10
Sim 3 9.8275e-10 5.1492e-10
Sim 4 1.0017e-09 5.2036e-10
Sim 5 1.0157e-09 5.2079e-10
Sim 6 1.0230e-09 5.2634e-10
Sim 7 9.8285e-10 5.1330e-10
Sim 8 9.5120e-10 5.0267e-10
Sim 9 9.5172e-10 5.0389e-10
Sim 10 9.6251e-10 5.0696e-10

Table 2.3: Mean squared errors in joints velocities with NDO

In Chapter 3, the same comparison will be conducted between NDO and MRAC,
in order to assess the most effective control strategy for the proposed study case.
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Chapter 3

MRAC-NDI Control Strategy

In this chapter, a control strategy based on the combination of NDI and MRAC
will be presented. All the fundamental equations will be deeply explained and the
model will be validated through multiple simulations on Matlab and Simulink. In
first place, the simulations will be performed with a simple robot and a simplified
dynamics, in which the target capture is reproduced by increasing the EE mass
and inertia, in order to validate the control. A comparison between a classical
complete version of NDI control and a simplified one will be shown, highlighting
differences and similarities. After that, new simulations will be performed with the
complete model, characterized by the capture dynamics described in Chapter 1. In
addition, a workspace analysis will be performed to define the boundaries within
which the inertia matrix may vary.

Figure 3.1: Block diagram of the proposed control strategy

The goal of this chapter is to show how efficiently MRAC can compensate for
the perturbations derived by the capture of a target through the robotic arm.
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In addition, it helps NDI control in linearizing the system dynamics, in order to
achieve the decoupling of actuators motion.
Finally, to prove the efficiency of this control strategy, a comparison with NDI-NDO
will be made, highlighting the main differences in terms of performance and results.

3.1 Control strategy with a simplified NDI
The first presented strategy of the two mentioned above is the one including a
simplified version of NDI.
As shown in Section 2.2.1, the complete NDI control formulation is:

τNDI = H⋄K(q̇d − q̇) + C⋄q̇ (3.1)

This leads to the reference model:

q̈ = K(q̇d − q̇) (3.2)

However, from simulations it can be argued that the centrifugal term is negligible
with respect to the inertial one in NDI control. As a consequence, a modification to
the previous model is proposed, where the NDI is applied in the following simplified
form:

τNDI = H⋄K(q̇d − q̇) (3.3)
All the equations that rule the behavior of this new model will be explored in the
following sections.

3.1.1 Perturbed system
Assuming of adding some unknown perturbations to the system (given for example
by the capture of the target), the goal becomes to express the system dynamics in
the following general form [18]:

ẋ = Ax+BW Tσ +BΛu (3.4)

where A and B are the unperturbed system matrices, x is the state vector, u is the
control vector, Λ represents the uncertainties in control effectiveness and ∆ = W Tσ
represents the non-linear system uncertainties, modeled as the product between
an unknown weight matrix W and a known basis functions vector σ, also called
regressor.
Starting from the unperturbed system in equation (1.7), we consider a perturbation
in both H⋄ and C⋄ matrices:

Ĥ⋄q̈ + Ĉ⋄q̇ = τq (3.5)
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The perturbation in inertia matrix can be expressed as Ĥ⋄ = αH⋄. Isolating q̈ and
adding a null term:

q̈ = 0nq×nq q̇ −H⋄−1α−1Ĉ⋄q̇ +H⋄−1α−1τq (3.6)

The system is now written in the general reference form: x = q̇, A = 0nq×nq , B =
H⋄−1, W T = −α−1Ĉ⋄, σ = q̇, Λ = α−1 and u = τq.

3.1.2 Reference model and nominal control
To obtain the nominal behavior of the new model, i.e. the behavior in absence of
perturbations, we need to impose ∆ = W Tσ = 0, Λ = I and τq = τNDI . It follows
that:

q̈ = 0nq×nq q̇ +H⋄−1τNDI (3.7)
This corresponds to the unperturbed system equation: ẋ = Ax+ Bu. Matrix A
results to be null as a consequence of neglecting the centrifugal term in NDI control.
Basically, we evaluate the cetrifugal-Coriolis term as an additional perturbation to
compensate for through MRAC. At this point, a NDI control able to decouple the
system dynamics must be designed:

τNDI = H⋄(K2q̇d −K1q̇) = −K̂1q̇ + K̂2q̇d (3.8)

where K̂i = H⋄Ki.
By substituting this expression in (3.7), the reference model dynamics is obtained:

q̈r = (0nq×nq −H⋄−1K̂1)q̇r +H⋄−1K̂2q̇d = Arq̇r +Brq̇d (3.9)

where the reference model matrices are Ar = A − BK̂1 = −H⋄−1K̂1 = −K1 and
Br = BK̂2 = H⋄−1K̂2 = K2. Since these matrices are diagonal, the reference
dynamics results to be decoupled.
We can now define the matrix Ep as a selector matrix of the components of the
state vector we want to control: z = Epx, where z is the vector containing the
controlled state components. Since in our case we want to control all the velocities,
z = x and then Ep = I. Ar and Br need to satisfy the equation:

−EpAr
−1Br = I → Br = −Ar → K2 = K1 = K (3.10)

In conclusion, the reference model dynamics and the NDI control result to be:

q̈r = −K(q̇r − q̇d) = Arϵr (3.11)

τNDI = H⋄K(q̇d − q̇) = K̂(q̇d − q̇) (3.12)
where ϵr = q̇r − q̇d represents the error between reference and desired motions.
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3.1.3 Perturbed dynamics
We can manipulate equation (3.6) by adding and subtracting two couples of equal
terms:

q̈ = 0nq×nq q̇ −H⋄−1α−1Ĉ⋄q̇ +H⋄−1α−1τq +H⋄−1(K̂q̇d − K̂q̇d + K̂q̇ − K̂q̇)

q̈ = (0nq×nq −H⋄−1K̂)q̇+H⋄−1K̂q̇d +H⋄−1α−1τq +H⋄−1[(−α−1Ĉ⋄)q̇+ K̂q̇− K̂q̇d]

q̈ = −Kq̇ +Kq̇d +H⋄−1α−1[τq − Ĉ⋄q̇ + αK̂q̇ − αK̂q̇d]

q̈ = −Kq̇ +Kq̇d +H⋄−1α−1[τNDI + τa − Ĉ⋄q̇ − ατNDI ]
q̈ = −Kq̇ +Kq̇d +H⋄−1α−1[(I − α)τNDI + τa − Ĉ⋄q̇] (3.13)

We managed to get an equation in the form [18]:

ẋ = Arx+Brxd +BΛ[(I − Λ−1)un + ua + Λ−1W Tσ]

where un represents the nominal control (NDI) and ua the adaptive one (MRAC).
Defining σ̄ = [σ;un] = [q̇; τNDI ] and W̄ T = [Λ−1W T , I − Λ−1] = [−Ĉ⋄, I − α]:

q̈ = −Kq̇ +Kq̇d +H⋄−1α−1[W̄ T σ̄ + τa] (3.14)

That corresponds to the general form:

ẋ = Arx+Brxd +BΛ[W̄ T σ̄ + ua]

Since K matrix is diagonal, the first part of equation (3.14) can be easily decoupled
for the different components of q:

q̈i = −Ki(q̇i − ˙qdi
) +H⋄−1(i, :) α−1[W̄ T σ̄ + τa] (3.15)

3.1.4 MRAC
To compensate for perturbations, we need to add an adaptive component to our
control strategy (τa), and we design that through MRAC.
MRAC is an adaptive control strategy where the system is required to follow
the behavior of a predefined reference model that specifies the desired dynamics.
While a reference model describes the ideal closed-loop response, an adaptive law
continuously updates the controller parameters so that the system output tracks
the reference model output, even in the presence of uncertainties or parameter
variations. By exploiting the stability theory (e.g. Lyapunov-equation), it can be
ensured that the closed-loop system remains stable while the controller parameters
are updating.
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Looking at equation (3.14), the ideal solution to cancel the disturbances would
be τa = −W̄ T σ̄. It would lead to a system behavior exactly equal to the nominal
one, with a perfectly decoupled dynamics: ẋ = −K(x− xd). However, since the
weight matrix W̄ is unknown, that is not possible. As a consequence, we model our
adaptive control as τa = −Ŵ T σ̄, where Ŵ is an estimation of W̄ obtained through
a parameter adjustment mechanism, and we define W̃ = Ŵ − W̄ . Equation (3.14)
becomes then:

q̈ = −Kq̇ +Kq̇d +H⋄−1α−1[W̄ T σ̄ − Ŵ T σ̄] = −Kq̇ +Kq̇d −H⋄−1α−1W̃ T σ̄ (3.16)

Error Computation

e = x− xr

ė = ẋ− ẋr

ė = Arx+Brxd −BΛW̃ T σ̄ − Arxr −Brxd

ė = Are−BΛW̃ T σ̄ = −Ke−H⋄−1α−1W̃ T [q̇; τNDI ] (3.17)
By leveraging this equation and through some considerations on Lyapunov’s equa-
tion, it can be stated that e → 0 asymptotically if the update law for Ŵ that will
be computed in the next section is satisfied.

Weight matrix update law

MRAC aims to estimate Ŵ in a way such that W̃ will be as near to zero as possible.
In order to do so, we can leverage Lyapunov’s function [18]:

V = eTPe+ γ−1tr(W̃Λ 1
2 )T (W̃Λ 1

2 ) (3.18)

V̇ = 2eTP (Are−BΛW̃ σ̄) + 2γ−1tr(ΛW̃ T ˙̂
W )

V̇ = 2eTPAre− 2eTPBΛW̃ σ̄ + 2γ−1tr(ΛW̃ T ˙̂
W )

V̇ = −||e||22 − 2tr(ΛW̃ T σ̄eTPB) + 2γ−1tr(ΛW̃ T ˙̂
W )

V̇ = −||e||22 − 2γ−1tr(ΛW̃ T [γσ̄eTPB − ˙̂
W ])

If ˙̂
W = γσ̄eTPB (3.19)

then
V̇ = −||e||22 ≤ 0 → Lyapunov’s stability

35



Chapter 3. MRAC-NDI Control Strategy Politecnico di Torino

We have obtained the updating law for the weight matrix, where γ is an adaptive
adjustment gain that needs to be determined and P is the Lyapunov matrix,
obtained by solving the Lyapunov equation:

Ar
TP + PAr +R = 0

where we can assume R = I.
It was decided to create nq different canals for MRAC, one for each component
of τa, in order to better control the system by using different gains for each of its
DoF. As a result, the update law for each canal becomes:

˙̂
Wi = γiσ̄e

TPB(:, i) (3.20)

in which we take into account only the i-th column of B matrix.
Finally, since the manipulator joints motion results to be poorly influenced by reac-
tion wheels behavior, it was decided to substitute σ̄ with σ̄m = [q̇(nr +1 : nq); τNDI ]
in the last nm channels of MRAC. Basically, we are using just the components of
state vector related to manipulator joints to determine the components of τa that
should closely control the manipulator motion. Since MRAC is not decoupled, the
effectiveness of this solution will be investigated.

3.1.5 Model validation
To validate the model, the above control strategy has been applied to different
types of motion of the given robot. The system dynamics was perturbed at a
certain time during simulation by changing the robot model with another one
characterized by an increase in end-effector mass and inertia by a factor of 5.

Step motion of last manipulator joint (Motion 1)

The first motion investigated is a step motion between positive and negative values
of equal amplitude for the last manipulator joint (the closest one to EE), while the
other joints stay stable at null velocity. The perturbation occurs during the first
step.
By imposing τa = −W̄ T σ̄, we find that only the 5th and 6th components of τa

need to have significant values in order to compensate for the disturbances. As
a consequence, we set γ1,2,3,4 at very low values and we iterate on the values of
just γ5 and γ6 until we get satisfying results. Although MRAC is not decoupled, a
strong correspondence between control components and joints motions have been
observed. From the following graphs, it can be argued that keeping γ5 = constant
and increasing γ6 the errors relative to the motion of the first and second joints
stay constant, while the error on the third joint strongly decreases. This results is
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particularly relevant since in a perfectly decoupled model the adjustment parameter
γ6 is exactly the one that would control the motion of the third joint. The same
considerations hold when γ6 = constant and γ5 is increased. In this case, a small
increase in the error on Joint 3 motion is observed, but it is far smaller than the
reduction of the error on Joint 2.

Figure 3.2: Errors as a function of γ6

Figure 3.3: Errors as a function of γ5

The best results have been obtained for γ5 = 2e5 and γ6 = 7e5, that lead to a
strong reduction in the total root mean square error related to the manipulator
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joints motion from a value of 3.7652e-05 without MRAC to a value of 7.4973e-06
with MRAC. Here are reported the joints motion graphs with and without MRAC.

Figure 3.4: Motion1: Joints motion without MRAC

Figure 3.5: Motion1: Joints motion with MRAC

Step motion of all the joints (Motion 2)

The second motion investigated is again a step motion, but involving this time all
the manipulator joints. The perturbation occurs again during the first step.
Since all the joints are involved in motion, even the parameter γ4 is subjected to
an iterative refinement process, with considerations analogue to the previous case:
by increasing γ4, the error on the correspondent joint (Joint 1) strongly decreases,
while the errors on the other joints remain quite constant.
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Figure 3.6: Errors as a function of γ4

Figure 3.7: Motion2: Joints motion without MRAC

Figure 3.8: Motion2: Joints motion with MRAC
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The best results have been obtained for γ4 = 8e5, γ5 = 2e5 and γ6 = 4e5, that lead
to a strong reduction in the total root mean square error related to the manipulator
joints motion from a value of 4.5853e-05 without MRAC to a value of 8.1884e-06
with MRAC.

Step motion of all the joints followed by motion stop (Motion 3)

The third motion used for validation is analogue to the previous one, but with the
addiction of final desired zero velocities, in order to evaluate if MRAC control is
able to properly stop the system motion even in presence of perturbations, that
occur again during the first step.
By using the same γ4,5,6 parameters of the previous case, it can be observed a
strong reduction in total error, from 3.6885e-05 without MRAC to 7.4302e-06 with
MRAC.

Figure 3.9: Motion3: Joints motion without MRAC

Figure 3.10: Motion3: Joints motion with MRAC
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Looking at the errors, it can be seen how MRAC is able to progressively reduce
their amplitude, reaching a final value of about 0 for all the joints velocities, which
means a good adaptation to the reference model.

Figure 3.11: Errors on joints motion

Finally, the magnitudes of NDI and MRAC controls can be compared, with the
latter that results to be an order of magnitude lower than the first one (e-6 against
e-5). The MRAC peaks correspond to the steps of velocity signals and the first peak
occurs when the system is not perturbed yet, to compensate for the innacuracies
of NDI derived from the mathematical model.
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Figure 3.12: MRAC control torques

Figure 3.13: NDI control torques

Step motion of all the joints followed by motion stop and perturbations
(Motion 4)

This motion is basically the same of the previous one, the only difference is the
moment when the perturbation occurs: not during the first step anymore, but at
the same moment of the signal of stopping motion. In this way, we can evaluate if
MRAC is able to compensate for NDI inaccuracies when there are no perturbations
and if it is able to stop the motion immediately after the perturbations occur.
The best results have been obtained for γ4 = 1e6, γ5 = 1e4 and γ6 = 3e5, that lead
to a strong reduction in the total root mean square error related to the manipulator
joints motion from a value of 1.5775e-05 without MRAC to a value of 5.8039e-06
with MRAC.
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Figure 3.14: Motion4: Joints motion without
MRAC

Figure 3.15: Motion4: Joints motion with MRAC

Smooth motion (Motion 5)

Finally, the last motion used to validate the model is a smooth motion where the
velocities of all the joints increase, reach a peak and then go to 0. The perturbation
occurs during the increase.
This motion results to be the one in which MRAC is most effective: by using the
parameters γ4 = 1e5, γ5 = 1e5 and γ6 = 1e4, it can be observed a reduction in
error from 4.9259e-05 without MRAC to 9.0777e-07 with MRAC.
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Figure 3.16: Motion5: Joints motion without
MRAC

Figure 3.17: Motion5: Joints motion with MRAC

Smooth motion with different σ

As written previously, in the last nm channels of MRAC σ̄m = [q̇(nr + 1 : nq); τNDI ]
was used instead of σ̄. To evaluate the effectiveness of this solution, a MRAC
strategy that utilizes σ̄ in all its channels have been applied to the smooth motion
test case and its results will be compared to the ones reported in the previous
sub-section.
The best result was obtained for much lower values of γ4,5,6: γ4 = 1e3, γ5 = 1e2
and γ6 = 1e2. The total error is strongly reduced from 9.0777e-07 to 5.8623e-07,
resulting in a better adaptation to the reference model.
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Figure 3.18: Joints motion with σ̄ instead of σ̄m

However, the decoupling effect observed with σ̄m is weakened: for example, by
acting on γ6 (and so on τa6) we do not modify just the error on the 3rd joint motion,
but also the error related to the 2nd one, resulting in a worse decoupling action
and a harder fine-tuning.

Figure 3.19: Errors as a function of γ6

Step motion with different σ

By applying the same procedure to some types of step motion previously investi-
gated, the following results were obtained, summarized in a table:
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Type of motion γ4 γ5 γ6 Old error New error
Motion 2 3e2 2e2 1e2 8.1884e-06 1.7113e-05
Motion 3 3e2 2e2 1e2 7.4302e-06 1.2223e-05

Table 3.1: Step motions errors with complete σ

Overall, using the complete σ̄ instead of σ̄m appears to improve the results for the
smooth motion, but it worsens the ones for step motions. In addition, it weakens the
decoupling effect between the components of adaptive control and joints motions
previously observed. Finally, the optimal adjustment gain parameters γi result to
be strongly reduced.

3.1.6 Modeling of momentum change
The equation (1.7) derives from considering a zero system momentum δ in the
complete equation:

H⋄q̈ + C⋄q̇ + C⋄
δ δ = τq (3.21)

This assumption is perfectly valid before capture, when we can consider the system
momentum as constant and equal to 0, since no external forces or torques are
acting. However, it is no longer true after applying the perturbation, seen as the
capture of an unknown target. As a consequence, the mathematical model of the
perturbed system (equation 3.5) needs to be modified:

Ĥ⋄q̈ + Ĉ⋄q̇ + Ĉ⋄
δ δ = τq (3.22)

The system momentum after capture can be expressed as δ = Ĥ0q̇0 + Ĥ0q q̇. This is
equal to the target momentum before capture δt. It follows that:

q̈ = 0nq×nq q̇ −H⋄−1α−1[(Ĉ⋄ + Ĉ⋄
δ Ĥ0q)q̇ + Ĉ⋄

δ Ĥ0q̇0] +H⋄−1α−1τq (3.23)

The momentum that appears in consequence of the capture is considered as an
additional perturbation to compensate for through the MRAC. By comparing this
equation with (3.6), we can see that only W T and σ change: W T = [−α−1(Ĉ⋄

δ Ĥ0),
−α−1(Ĉ⋄ + Ĉ⋄

δ Ĥ0q)], σ = [q̇0; q̇].
Equation (3.26) becomes then:

q̈ = −Kq̇ +Kq̇d +H⋄−1α−1[(I − α)τNDI + τa − Ĉ⋄
δ Ĥ0q̇0 − (Ĉ⋄ + Ĉ⋄

δ Ĥ0q)q̇] (3.24)

By defining W̄ T = [−Ĉ⋄
δ Ĥ0,−Ĉ⋄ −Ĉ⋄

δ Ĥ0q, I−α] and σ̄ = [q̇0; q̇; τNDI ], we achieve to
express the system in the same form of equation (3.14). Practically, to compensate
for the momentum change through MRAC, we just need to change the σ̄ vector
within the model, to take into account also the base velocity vector q̇0.
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By applying the new model to the smooth motion with the complete σ̄ and using
the same values of γ4,5,6 used for the old model, we obtain a total error on joints
motion of 5.7949e-07, that is slightly lower than the value of 5.8623e-07 registered
with the previous model.

Figure 3.20: Joints motion modeling the momentum change

By applying the same procedure to two different types of step motion with σ̄m

previously investigated (again with the same values of γi), the following results
were obtained, summarized in a table:

Type of motion γ4 γ5 γ6 Old error New error
Motion 2 1e6 2e5 4e5 8.1884e-06 8.1679e-06
Motion 3 1e6 2e5 4e5 7.4302e-06 6.8938e-06

Table 3.2: Step motions errors with momentum change adjustment

It can be stated that modeling the system momentum change slightly improves
the performance, especially in motion 3, where it reduces the oscillations in the
adaptation to the last velocity step (compare Figure 3.21 with Figure 3.10).
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Figure 3.21: Momentum change modeling in Motion 3

In order to emphasize the effects of momentum change, the comparison regarding
Motion 3 has been repeated considering bigger velocity steps (5x). Again, the total
error decreases if we model the system momentum change (from 3.4269e-05 to
3.1332e-05), but the percentage decrease is not much bigger with respect to the case
with minor momentum change (from 7.22% to 8.57%). That probably means that
in these simulations the perturbation introduced by momentum change is quite
negligible with respect to the others. Certainly, different results may be obtained by
changing significantly the target mass, inertia and/or motion. The following graphs
compare the two models (with and without modeling the momentum change) by
overlapping each component of joints motion.

Figure 3.22: Comparison about momentum modeling: Joint 1
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Figure 3.23: Comparison about momentum modeling: Joint 2

Figure 3.24: Comparison about momentum modeling: Joint 3

For each joint, the modeling of momentum change reduces oscillations and slightly
improves overall performance.
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3.2 Control strategy with a complete NDI
The second proposed version is the one with a complete NDI, that includes also a
centrifugal/Coriolis term, which was instead compensated by the MRAC in the
previous version.

3.2.1 Perturbed system
Assuming of adding some unknown perturbations to the system (given again by
the capture of the target), the goal becomes to express the system dynamics in the
following general form:

ẋ = Ax+BW Tσ +BΛu (3.25)
where A and B are the unperturbed system matrices, x is the state vector, u is the
control vector, Λ represents the uncertainties in control effectiveness and ∆ = W Tσ
represents the non-linear system uncertainties, modeled as the product between an
unknown weight matrix W and a known basis functions vector σ.
Starting again from the unperturbed system in equation (1.7), this time we consider
a perturbation in both H⋄ e C⋄ matrices:

Ĥ⋄q̈ + Ĉ⋄q̇ = τq (3.26)

The perturbation in inertia matrix can be expressed as Ĥ⋄ = αH⋄, while the one
in centrifugal matrix is expressed as Ĉ⋄ = C⋄ + ∆C⋄. The perturbations acting on
the C matrix are now computed within the NDI and are no longer compensated
for by the MRAC.
Isolating q̈:

q̈ = −H⋄−1α−1C⋄q̇ −H⋄−1α−1∆C⋄q̇ +H⋄−1α−1τq

q̈ = −H⋄−1(α−1 − I + I)C⋄q̇ −H⋄−1α−1∆C⋄q̇ +H⋄−1α−1τq

q̈ = −H⋄−1C⋄q̇ +H⋄−1[−(α−1 − I)C⋄ − α−1∆C⋄]q̇ +H⋄−1α−1τq (3.27)
The system is now written in the general reference form: x = q̇, A = −H⋄−1C⋄, B
= H⋄−1, W T = −(α−1 − I)C⋄ − α−1∆C⋄, σ = q̇, Λ = α−1 and u = τq.

3.2.2 Reference model and nominal control
To obtain the nominal behaviour of the new model, we need to impose ∆ = W Tσ =
0, Λ = I and τq = τNDI . Doing so, we get the equation:

q̈ = −H⋄−1C⋄q̇ +H⋄−1τNDI (3.28)

50



Chapter 3. MRAC-NDI Control Strategy Politecnico di Torino

This corresponds to ẋ = Ax+Bu. We need now to design an NDI control able to
decouple the system dynamics:

τNDI = H⋄(K2q̇d −K1q̇) + C⋄q̇ = −K̂1q̇ + K̂2q̇d + C⋄q̇ (3.29)

where K̂i = H⋄Ki.
By substituting this expression in (3.28), we obtain the reference model dynamics:

q̈r = −K1q̇r +K2q̇d = Arq̇r +Brq̇d (3.30)

where the reference model matrices are Ar = −K1 and Br = K2.
We can define once again the matrix Ep as a selector matrix of the components of
the state vector we want to control: z = Epx, where z is the vector containing the
controlled state components. Since in our case we want to control all the velocities,
z = x and then Ep = I. Ar and Br need to satisfy the equation:

−EpAr
−1Br = I → Br = −Ar → K2 = K1 = K (3.31)

In conclusion, the reference model dynamics and the NDI control result to be:

q̈r = −K(q̇r − q̇d) = Arϵr (3.32)

τNDI = H⋄K(q̇d − q̇) + C⋄q̇ = K̂(q̇d − q̇) + C⋄q̇ (3.33)

3.2.3 Perturbed dynamics
We can manipulate equation (3.27) by adding and subtracting three couples of
equal terms:

q̈ = −H⋄−1C⋄q̇+H⋄−1W T q̇+H⋄−1α−1τq +H⋄−1(K̂q̇d−K̂q̇d+K̂q̇−K̂q̇+C⋄q̇−C⋄q̇)

q̈ = −Kq̇ +Kq̇d +H⋄−1α−1τq +H⋄−1(W T q̇ + K̂q̇ − K̂q̇d − C⋄q̇)

q̈ = −Kq̇ +Kq̇d +H⋄−1α−1[τq + αW T q̇ + α(K̂q̇ − K̂q̇d − C⋄q̇)]
q̈ = −Kq̇ +Kq̇d +H⋄−1α−1[τNDI + τa + αW T q̇ − ατNDI ]
q̈ = −Kq̇ +Kq̇d +H⋄−1α−1[(I − α)τNDI + τa + αW T q̇]

q̈ = −Kq̇ +Kq̇d +H⋄−1α−1{(I − α)τNDI + τa + [(α− I)C⋄ − ∆C⋄]q̇} (3.34)
Defining σ̄ = [σ;un] = [q̇; τNDI ] and W̄ T = [αW T , I−α] = [(α−I)C⋄−∆C⋄, I−α]:

q̈ = −Kq̇ +Kq̇d +H⋄−1α−1[W̄ T σ̄ + τa] (3.35)

That corresponds to the general form:

ẋ = Arx+Brxd +BΛ[W̄ T σ̄ + ua]
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3.2.4 MRAC
The MRAC logic and equations are exactly the same shown previously with
the simplified NDI (3.16, 3.18 and 3.19). The only difference is that here the
NDI includes an unperturbed centrifugal term, so that MRAC does not need to
compensate also for it, but just for its perturbed counterpart. Basically, a little
part of responsibility in the control is transferred from MRAC to NDI.

3.2.5 Modeling of momentum change
The equation (1.7) derived from considering a zero total system momentum δ in
the complete equation:

H⋄q̈ + C⋄q̇ + C⋄
δ δ = τq (3.36)

This assumption is perfectly valid for the unperturbed system, but it is not anymore
after applying the perturbation, seen as the capture of an unknown target. As
a consequence, the mathematical model of the perturbed system (equation 3.26)
needs to be modified:

Ĥ⋄q̈ + Ĉ⋄q̇ + Ĉ⋄
δ δ = τq (3.37)

The system momentum after capture can be expressed as δ = Ĥ0q̇0 + Ĥ0q q̇, leading
to:

q̈ = −H⋄−1C⋄q̇ +H⋄−1{[−(α−1 − I)C⋄ − α−1∆C⋄ − α−1Ĉ⋄
δ Ĥ0q]q̇ − α−1Ĉ⋄

δ Ĥ0q̇0}
+H⋄−1α−1τq

(3.38)

The momentum that appears in consequence of the capture is considered as an
additional perturbation to compensate for through the MRAC. By comparing this
equation with (3.27), we can see that only W T and σ change: W T = [−α−1Ĉ⋄

δ Ĥ0,
−(α−1 − I)C⋄ − α−1∆C⋄ − α−1Ĉ⋄

δ Ĥ0q], σ = [q̇0; q̇].
After some mathematical manipulations, the above equation can be written as:

q̈ = −Kq̇+Kq̇d+H⋄−1α−1{(I−α)τNDI +τa−Ĉ⋄
δ Ĥ0q̇0+[(α−I)C⋄−∆C⋄−Ĉ⋄

δ Ĥ0q]q̇}
(3.39)

By defining W̄ T = [−Ĉ⋄
δ Ĥ0, (α− I)C⋄ − ∆C⋄ − Ĉ⋄

δ Ĥ0q, I − α] and σ̄ = [q̇0; q̇; τNDI ],
we achieve to express the system in the same form of equation (3.14).
Practically, to compensate for the momentum change through MRAC, we just need
to change the σ̄ vector inside the model, to take into account also the base velocity
vector q̇0.
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3.2.6 Model validation
Validation was conducted exactly as explained in subsection 3.1.5 for the model
with the simplified NDI: the robot behavior was tested under the different motions
previously investigated, using the same gains found for the other model. Motion 1
will not be further analyzed, since it represents a simplified version of Motion 2.
Overall, the following results were obtained for joints motion controlled by complete
NDI and MRAC:

Figure 3.25: Motion 2 with complete NDI: Joints motion

Figure 3.26: Motion 3 with complete NDI: Joints motion
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Figure 3.27: Motion 4 with complete NDI: Joints motion

Figure 3.28: Motion 5 with complete NDI: Joints motion

After running several simulations for all the different types of motion previously
investigated, we can conclude that the 2 models with simplified and complete
NDI are basically characterized by the same results and performance: the error is
slightly lower for the model with the complete NDI in the step motions, while the
simplified version is slightly better in the smooth one. However, the differences are
totally negligible. The results are summarized in the following table:
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Type of motion Simplified NDI Complete NDI
Motion 2 8.1905e-06 8.1564e-06
Motion 3 7.4302e-06 7.2167e-06
Motion 4 5.8039e-06 5.8035e-06
Motion 5 9.0777e-07 9.0973e-07

Table 3.3: Joints motion errors comparison

This is due to the fact that in the expression τNDI = H⋄K(q̇d − q̇) + C⋄q̇, the
centrifugal/Coriolis term C⋄q̇ is negligible with respect to the inertial one. Therefore,
we can conclude that simplifying the NDI by considering only the inertial term
does not have any relevant effect on final results, but it allows to benefit from a
strong simplification of the mathematical model.

3.3 Tuning and gain synthesis
As discussed previously, MRAC control has been divided into nq different channels,
one for each DoF of the robot. Every channel has its own adaptation gain γi,
that may be different from the others. These gain were originally determined
through a Trial&Error method, which however results to be highly aleatory and
time consuming. Therefore, a new gain synthesis has been elaborated in order to
determine the gains analytically and fasten the model tuning.
At the moment of capture, huge perturbations can affect the system, leading to a
strong increase in both e and σ̄. This in turn results in a sharp rise of ˙̂

W , which
brings instabilities and failures. Consequently, the goal is to adapt the gain γ

so that MRAC adaptation rate ˙̂
W (3.19) will not overcome a limit value as the

perturbation changes (variation in target velocities and/or mass). By achieving
this objective, the robustness of the control strategy will significantly increase.
By following an approach based on scalability notion [26], it can be proved that
modifying the disturbances and the command profile by a scaling factor α, the
adaptation gains need to be multiplied by a factor equal 1

α2 in order to preserve
the adaptation rate. The problem moves to the choice of a factor α representative
of the perturbations change.
An effective solution was found by linking the choice of the scaling factor to the
average excitation of the regressor σ̄ [27], which then represents our pseudo scaling
factor:

ϕ = 1
Tobs

Ú Tobs

0
σ̄T σ̄dt (3.40)

where Tobs is a representative observation time, long enough to properly observe the
effects of perturbations. This choice is effective only if σ̄ = [q̇; τNDI ] is informative
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for system identification and consequently for MRAC computation. After defining
X(t) and U(t) as:

U(t) := [τNDI(0) τNDI(1) ... τNDI(t− 1)]

X(t) := [q̇(0) q̇(1) ... q̇(t− 1)]
It can be proved that σ̄ results to be informative for the system if the following
condition holds [28]:

rank(
C
X(t)
U(t)

D
) = dim(q̇) + dim(τNDI) = 2nq (3.41)

In our simulation, the above condition turns valid much earlier than the moment of
capture. Since MRAC becomes important starting from that moment, the choice
of σ̄ for scaling is allowed.
Furthermore, the persistent excitation (PE) condition needs to be verified [29]:Ú t+T

t
σ̄σ̄Tdt ≥ ζI, ∀ t (3.42)

where T is an arbitrary time interval (equal to the sample time of simulations for
simplicity) and ζ is a constant > 0.
By considering the update law restricted to the single channels (3.20), in order to
have the same adaptation rate in the computation of each control component, a
new scaling factor is defined. This allows to have different gains for the different
channels, by including the i-th column of B within the computation of the scaling
factor for the i-th channel:

si =
ñ

[PB(:, i)]T · ϕ · [PB(:, i)] (3.43)

At this point, the adaptation gain of each channel can be computed by exploiting
its inverse proportionality with respect to si:

γi = 1
Tad · si + ϵγ

(3.44)

where Tad serves as an adaptation period, as a factor that represents the desired
rate of adaptation (the MRAC will be faster the lower Tad is), and ϵγ = 1e− 10 is
a very small correction factor, added to keep the formulation valid even in the case
of si = 0.
Finally, since the RWs are poorly influenced by the perturbations caused by the
target capture, two different adaptation rates are set for them and for the joints.
In particular, the Tad used for the joints results to be 4 or 5 orders of magnitude
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lower than the one used for RWs.
The gains synthesis obtained through this process was validated by running several
simulations with different values of target mass and velocities. In each simulation,
the calculated gains brought satisfying results for the computation of the MRAC,
proving the validity of the method.
However, this tuning strategy still requires an offline estimation of the parameters,
that stay constant throughout the whole simulation and cannot adapt to time-
varying perturbations.

3.3.1 Online tuning
To address the problems introduced above, an online version of the tuning strategy
is proposed in this section. This allows to continuously update the gain parameters
during the simulation, in order to obtain a MRAC that closely adapts to the
dynamical evolution of the system.
The equations are modified as follows:

ϕ(t) = 1
T

Ú t+T

t
σ̄T (t)σ̄(t)dt (3.45)

where T is an arbitrary time interval, considered equal to the sample time of
simulations for simplicity.

si(t) =
ñ

[PB(:, i)]T · ϕ(t) · [PB(:, i)] (3.46)

γi(t) = 1
Tad · si(t) + ϵγ

(3.47)

As a result, MRAC gains γi are not computed offline anymore, but they are
constantly evolving during the simulation to achieve a better adaptation to system
variations and disturbances.

3.3.2 Lyapunov’s Stability
The utilization of online varying adjustment parameters γ(t) requires a new law to
be written to ensure Lyapunov’s stability. The following Lyapunov’s function is
proposed [20], slightly different from the one in (3.18):

V = γ(t)eTPe+ tr(W̃Λ 1
2 )T (W̃Λ 1

2 ) (3.48)

Since γ is not constant anymore, but it is a function of time, its time derivative
needs to be computed within the expression of the derivative of the Lyapunov
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function:

V̇ = γ̇eTPe+ γ2eTP ė+ 2tr(ΛW̃ T ˙̂
W )

= γ̇eTPe+ γ2eTP (Are−BΛW̃ T σ̄) + 2tr(ΛW̃ T ˙̂
W )

= γ̇eTPe+ γ2eTPAre− γ2eTPBΛW̃ T σ̄ + 2tr(ΛW̃ T ˙̂
W )

= γ̇eTPe+ γeT (AT
r P + PAr)e− 2ΛW̃ T (γσ̄eTPB − ˙̂

W )

= −eT (γR − γ̇P )e− 2ΛW̃ T (γσ̄eTPB − ˙̂
W )

(3.49)

By choosing the update law defined in (3.19), the derivative of the Lyapunov
function becomes:

V̇ = −eT (γR − γ̇P )e
= −eTγRe+ eT γ̇P e ≤ 0

(3.50)

Consequently, the Lyapunov stability (V̇ ≤ 0) is ensured if the following condition
is respected in every channel of the MRAC:

eT (t) γi(t) R e(t) − eT (t) γ̇i(t) P e(t) ≥ 0 ∀ t (3.51)

The above condition was verified and resulted to be valid in all the performed
simulations, ensuring Lyapunov’s stability.

3.3.3 Enhanced formulation and stability proof
Although the previous method showed effective results, the choice of the parameter
Tad is still arbitrary and unrelated to system stability. To overcome this problem,
the tuning structure was further improved, as explained below.
The following formulation for time-varying γ is considered:

γ = γ0

||σ̄|| · ||PB|| + ϵ
(3.52)

where || · || represents a short version for || · ||2 and γ0 is a positive scalar to compute
through a proper optimization strategy, with the constraint of satisfying Lyapunov’s
stability. ϵ is a very low positive scalar such that (||σ̄|| · ||PB(:, i)|| + ϵ) > 0 always.
The same expression can be adapted to each MRAC channel:

γi = γ0

||σ̄|| · ||PB(:, i)|| + ϵ
(3.53)

By doing so, since the norm of ϵ is totally negligible, the norm of ˙̂
W results to be:

|| ˙̂
W || = |γ0| · ||e|| (3.54)

This choice of this specific expression for γ is driven by the following reasons:
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• after capture, a strong and sudden increase in both σ̄ and e is observed,
leading to a huge rise in ˙̂

W , with the risk of making the simulation crash.
Using a time-varying γ that is inversely proportional to the norm of σ̄ will
significantly reduce this phenomenon and ensure a proper adaptation rate at
any moment.

• || ˙̂
W || is still proportional to ||e||, so that a faster adaptation is ensured when

the error is bigger, and vice-versa.

• the term ||PB(:, i)|| is added in order to obtain a rate of Ŵ that is as uniform
as possible across all channels of MRAC.

In order to avoid excessively high rates in case of big errors, the error itself can be
included inside γi expression:

γi = γ0

||σ̄|| · ||PB(:, i)|| · e+ ϵ
(3.55)

However, doing so, the adaptation rate results to be almost constant and we are
not able anymore of ensuring a faster convergence when the error is bigger.
To address this problem while avoiding the divergence of || ˙̂

W || in case of excessive
errors, a possible further implementation is considering the following expression of
γi:

γi = γ0 · s(e)
||σ̄|| · ||PB(:, i)|| · e+ ϵ

(3.56)

where s(e) is a saturation function (sigmoid or similar) acting on the error, so that
|| ˙̂
W || will stay proportional to ||e|| only up to a specific bound, in order to avoid

excessively high rates in case of big errors.
By leveraging the Lyapunov’s function and imposing upper boundaries to some
variables, an optimization of γ0 can be provided.
In order to do so, the following Lyapunov’s function is considered:

V = eTPe+ tr(W̃Λ 1
2 )T (W̃Λ 1

2 ) (3.57)

Its time derivative is computed as follows:

V̇ = 2eTP ėü ûú ý
1

+ 2tr(ΛW̃ T ˙̂
W )ü ûú ý

2

(3.58)

The two terms will be analyzed separately, starting from term 1, for which a modified
version of Equation (3.17) will be exploited. By knowing that W̃ = Ŵ − W̄ , we
can assume to apply a proportional control on ˙̂

W in order to make Ŵ tend to W̄ :
˙̂
W = k̂(W̄ − Ŵ ) = −k̂W̃
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W̃ = − 1
k̂üûúý
k

˙̂
W (3.59)

where k ∈ R, k > 0.
Therefore, we can express the derivative of the error as a function of the error itself
and ˙̂

W :
ė = Are−BΛW̃ T σ̄ = Are+BΛk ˙̂

W T σ̄ (3.60)
The term BΛk can be upper-bounded by a scalar k̄, by taking into account the
known λ̄(B), estimating a value for the proportional constant k and conducting a
workspace analysis on Λ = α−1.
We can then write an inequality for error time derivative:

ė ≤ Are+ k̄
˙̂
W T σ̄

ė ≤ Are+ ˙̂
W TG

(3.61)

where G is a vector given by G = k̄σ̄.
The focus can now shift to term 2, where Equation (3.59) is exploited again:

2tr(ΛW̃ T ˙̂
W ) = 2tr(−Λk ˙̂

W T ˙̂
W ) = −2k · tr(Λ ˙̂

W T ˙̂
W ) (3.62)

Using the cyclic property of trace:

−2k · tr(Λ ˙̂
W T ˙̂

W ) = −2k · tr( ˙̂
W T ˙̂

WΛ) (3.63)

It can be proved that ˙̂
W T ˙̂

W is a positive semidefinite symmetric matrix:

( ˙̂
W T ˙̂

W )T = ˙̂
W T ( ˙̂

W T )T = ˙̂
W T ˙̂

W → ˙̂
W T ˙̂

W is symmetric

∀ x, xT ( ˙̂
W T ˙̂

W )x = ( ˙̂
Wx)T ( ˙̂

Wx) = || ˙̂
Wx||2 ≥ 0 →

→ ˙̂
W T ˙̂

W is positive semidefinite
From Von Neumann’s trace inequality, the following relation can be written:

−2k · tr( ˙̂
W T ˙̂

WΛ) ≤ 2k · |tr( ˙̂
W T ˙̂

WΛ)| ≤ 2k
nqØ
i=1

λ̃i( ˙̂
W T ˙̂

W )λ̃i(Λ) (3.64)

where λ̃ represents the matrix singular values. The above expression can be up-
bounded by the maximum singular value of Λ, that coincides with its spectral
norm:

nqØ
i=1

λ̃i( ˙̂
W T ˙̂

W )λ̃i(Λ) ≤ λ̃max(Λ)
nqØ
i=1

λ̃i( ˙̂
W T ˙̂

W ) = ||Λ||
nqØ
i=1

λ̃i( ˙̂
W T ˙̂

W ) (3.65)
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Since ˙̂
W T ˙̂

W is a positive semidefinite symmetric matrix, its singular values coincide
with its eigenvalues:

nqØ
i=1

λ̃i( ˙̂
W T ˙̂

W ) =
nqØ
i=1

λi( ˙̂
W T ˙̂

W ) = tr( ˙̂
W T ˙̂

W )

Substituting this expression in (3.64) and (3.65) and using the definition of Frebenius
norm:

−2k · tr( ˙̂
W T ˙̂

WΛ) ≤ 2k ||Λ|| tr( ˙̂
W T ˙̂

W ) = 2k ||Λ|| || ˙̂
W ||2F (3.66)

where || · ||F represents Frobenius matrix norm.
The following inequality between || · ||F and || · || is valid:

|| ˙̂
W ||2F =

nqØ
i=1

λ̃i( ˙̂
W T ˙̂

W ) =
nqØ
i=1

λ̃2
i (

˙̂
W ) ≤ nqλ̃

2
max( ˙̂

W ) = nq || ˙̂
W ||2

It follows:
2k ||Λ|| || ˙̂

W ||2F ≤ 2k nq ||Λ|| || ˙̂
W ||2 ≤ k̃ || ˙̂

W ||2 (3.67)
where k̃ represents an upper bound of 2knq||Λ||, obtained through a proper
workspace analysis.
Using the expressions (3.61) and (3.67) within (3.58), it follows:

V̇ ≤ 2eTPAreü ûú ý
3

+ 2eTP
˙̂
W TGü ûú ý
4

+k̃ || ˙̂
W ||2 (3.68)

Once again, terms 3 and 4 will be analyzed separately.
The term 3 can be re-written as:

2eTPAre = eT (AT
r P + PAr)e = (AT

r P + PAr)||e||2 (3.69)

Young inequality can be used to further develop the term 4. Its general expression
is:

2xTy ≤ α||x||2 + 1
α

||y||2

where α ∈ R, α > 0.
Applying that to our case:

2eTP
˙̂
WG ≤ α||e||2 + 1

α
||P ˙̂

WG||2 (3.70)

Using (3.69) and (3.70) within (3.68):

V̇ ≤ (AT
r P + PAr)||e||2 + α||e||2 + 1

α
||P ˙̂

WG||2 + k̃ || ˙̂
W ||2
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V̇ ≤ (AT
r P + PAr + αI)||e||2 + 1

α
||P ˙̂

WG||2 + k̃ || ˙̂
W ||2

V̇ ≤ (AT
r P + PAr + αI)||e||2 + 1

α
||P ||2 ||G||2 || ˙̂

W ||2 + k̃ || ˙̂
W ||2

V̇ ≤ (AT
r P + PAr + αI)ü ûú ý

5

||e||2 + ( 1
α

||P ||2 ||G||2 + k̃)ü ûú ý
β

|| ˙̂
W ||2 (3.71)

The expression 5 represents the classical Lyapunov’s equation and the resultant
matrix needs to be negative definite in order to have Lyapunov’s stability. It
follows:

AT
r P + PAr + αI ≤ −ᾱI (3.72)

where ᾱ is an arbitrary parameter such that ᾱ ∈ R, ᾱ > 0.
It follows:

V̇ ≤ −ᾱ ||e||2 + β || ˙̂
W ||2 ≤ 0 (3.73)

Equation (3.73) represents a condition to satisfy in order to have Lyapunov’s
stability. From that, an estimation of |γ0| can be obtained:

|| ˙̂
W ||2 ≤ ᾱ

β
||e||2 (3.74)

Comparing Equations (3.54) and (3.74), it follows:

γ0 =
ó
ᾱ

β
(3.75)

The value of parameter γ0 computed as above allows to always ensure Lyapunov’s
stability, even when γi vary in time.

3.3.4 LMI optimization
An optimization of parameters through a LMI approach can be proposed.
Preliminarily, a workspace analysis on inertia perturbation matrix needs to be
conducted in order to estimate the maximum possible values of Λ and σ̄, from
which the parameters G and k̃ are obtained. After that, the parameter k will be
defined a priori and varied within a specific range of values, in order to refine the
optimization.
Finally, the condition expressed in Equation (3.72) must be imposed and the values
of α, ᾱ and P that maximize the parameter γ0 will be found.
While the Lyapunov’s equation is already linear with respect to the variables to be
optimized, the same does not apply to the optimization condition on γ0. In fact, it
depends on the ratio between the two parameters ᾱ and β. Since ||G|| and k̃ are
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constant, β in turn depends on the ratio between the squared norm of P and α.
Therefore, since γ0 is typically much bigger than one, the following optimization
condition will be imposed:

(γ0)max → (β
ᾱ

)min → ( ||P ||2

α ᾱ
)min

This is a highly nonlinear expression, not implementable in a LMI method. Conse-
quently, a linearization strategy is proposed, where the goal becomes to minimize a
new parameter ζ that satisfies the following inequality:

||P ||2

α ᾱ
≤ ζ (3.76)

||P ||2 ≤ ζ α ᾱ

where ζ ∈ R, ζ ≥ 0.
However, the right hand side of the inequality is still nonlinear, since it is character-
ized by the product between two optimization variables. A Rotated Second-Order
Cone (RSOC) method is implemented to address the problem. It consists to
introduce an additional variable that satisfies the following relation:

α ᾱ ≥ t (3.77)

where t ∈ R, t ≥ 0.
This can be translated in the following matrix expression:C

α t
t ᾱ

D
≥ 0 (3.78)

The above condition is verified when:

αᾱ ≥ t2

Since the inequality (3.77) must be respected, the following additional condition
on t is imposed:

t ≥ 1 → t ≤ t2 ≤ αᾱ

Going back to (3.3.4), it follows:

||P ||2 ≤ ζ t ≤ ζ α ᾱ (3.79)

P TP ≤ ζ t Inq

Leveraging the Schur complement, it can be expressed through the following matrix
inequality: C

ζ Inq P T

P t Inq

D
≥ 0 (3.80)
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Finally, the original nonlinear optimization condition has been translated in a series
of linear constraints that involve the variables α, ᾱ, ζ and t.
These constraints are here summarized:

• α ≥ 0;

• ᾱ ≥ 0;

• ζ ≥ 0;

• t ≥ 1;

• AT
r P + PAr + αI + ᾱI ≤ 0;

•
C
ζ Inq P T

P t Inq

D
≥ 0;

•
C
α t
t ᾱ

D
≥ 0.

The optimization goal is to minimize the parameter ζ, that corresponds to maximize
γ0. Different values of optimal γ0 can be found by varying the parameter k. This is
related to MRAC convergence velocity: the lower k is, the higher γ0 and the faster
the convergence will be. Consequently, k can be varied within a proper range based
on simulation convergence requirements.

3.3.5 Acceptability range definition for γ0

In this section, an alternative strategy to compute γ0 will be presented. Instead of
looking for an optimal exact value as proposed in Eq.(3.75), this method aims to
find an optimal range in which γ0 can vary while ensuring the Lyapunov stability
of the system.
Consider the Lyapunov function:

V = γeTPe+ tr
1
(W̃Λ 1

2 )T (W̃Λ 1
2 )
2
, (3.81)

Taking its derivative, yields:

V̇ = γ̇eTPe+ 2γeTP (Ar −BpΛW̃ T σ̄) + 2 tr(ΛW̃ T ˙̂
W ). (3.82)

As detailed in [20], this can be rewritten as:

V̇ = −eT (γR − γ̇P )e− 2ΛW̃ T (γσ̄eTPBp − ˙̂
W ). (3.83)
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By selecting the update law from Eq.(3.19), Lyapunov stability is ensured if the
following condition holds:

eT γ̇P e− eTγRe ≤ 0. (3.84)
Following [20], this leads to the bound:

V̇MRAC ≤ (γ̇maxλ̄(P ) − γminλ(R))||e||2max, (3.85)

where λ̄(P ) and λ(R) denote the maximum and minimum eigenvalues, respectively.
The derivative of γ is given with (3.52) by:

γ̇ = − σ̄ · ˙̄σ
||σ̄||3 ||PBp||

γ0 = − σ̄ · ˙̄σ
||σ̄||2

γ. (3.86)

Substituting (3.86) in (3.85) and leveraging the Cauchy-Schwarz inequality to
obtain (−σ̄ · ˙̄σ)max = |σ̄ · ˙̄σ|max ≤ ||σ̄||max|| ˙̄σ||max, it follows that:

V̇MRAC ≤
CA

||σ̄||max || ˙̄σ||max

||σ̄||2min

λ̄(P )
B
γmax − γminλ(R)

D
||e||2max (3.87)

Furthermore, to enhance Lyapunov’s stability while ensuring that convergence is
not too fast, which would be a source of oscillations, the following constraint is
considered:

−2||e||2max ≤ V̇MRAC ≤

≤
CA

||σ̄||max || ˙̄σ||max

||σ̄||2min

λ̄(P )
B
γmax − γminλ(R)

D
||e||2max ≤ −||e||2max

(3.88)
Substituting γ from (3.52) yields:

−2||PBp|| ≤ γ0

A
||σ̄||max || ˙̄σ||max

||σ̄||3min

λ̄(P ) − λ(R)
||σ̄||max

B
≤ −||PBp|| (3.89)

Finally, the following range of acceptable values is obtained:

−||PBp|| ||σ̄||max||σ̄||3min

|| ˙̄σ||max||σ̄||2maxλ̄(P ) − λ(R)||σ̄||3min

≤ γ0 ≤ −2||PBp|| ||σ̄||max||σ̄||3min

|| ˙̄σ||max||σ̄||2maxλ̄(P ) − λ(R)||σ̄||3min

(3.90)
where ||x||max and ||x||min are respectively the maximal and minimal values of ||x||,
estimated through a proper workspace analysis.
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3.4 Workspace analysis

3.4.1 α estimation
A workspace analysis has been conducted on the robot described in Section 1.1 to
identify the boundaries within the perturbation on inertia matrix α can vary. In
order to do that, a three-level nested loop was created to explore all the possible
robot configurations between the initial and the final ones: indeed, each of the
three joints displacements was varied between its initial and final positions imposed
within the simulation and the variation of each component of α and of its norm
was investigated. In order to distinguish the effects of perturbation on RWs and
joints, α matrix was subdivided in the following blocks:

α =
C
αr αrm

αmr αm

D
(3.91)

where r stands for reaction wheels and m for manipulator joints. In particular,
the focus will be on matrices αr ∈ Rnrxnr and αm ∈ Rnmxnm . The terms of these
matrices will be numbered from 1 to 9, proceeding in order from the first to the last
row and taking the terms from left to right (α1 = α(1, 1), α2 = α(1, 2), and so on).
Finally, this process was repeated for different target masses and inertia, in order to
see the influence of target characteristics on perturbation magnitude. The results
are collected in the following subsections.

1st scenario

The first simulation is characterized by a target mass of 8 kg, much lower than
spacecraft base mass (100 kg).

Figure 3.29: Simulation
1: αr1 variation

Figure 3.30: Simulation
1: αr2 variation

Figure 3.31: Simulation
1: αr3 variation
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Figure 3.32: Simulation
1: αr4 variation

Figure 3.33: Simulation
1: αr5 variation

Figure 3.34: Simulation
1: αr6 variation

Figure 3.35: Simulation
1: αr7 variation

Figure 3.36: Simulation
1: αr8 variation

Figure 3.37: Simulation
1: αr9 variation

Figure 3.38: Simulation 1: norm(αr)
variation
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Component Max Min Mean
Alpha1 1.0015 1.0012 1.0014
Alpha2 2.6870e-04 1.3960e-04 2.0475e-04
Alpha3 -3.3771e-05 -6.1216e-05 -4.7637e-05
Alpha4 3.8835e-04 1.5587e-04 2.8384e-04
Alpha5 1.00005 0.99998 1.00001
Alpha6 1.8832e-05 3.3284e-06 1.1625e-05
Alpha7 2.0913e-04 -2.5306e-04 -3.5264e-05
Alpha8 3.6061e-05 -3.6345e-05 1.8409e-08
Alpha9 1.00000 0.99999 1.00000

Norm(α,2) 1.0015 1.0013 1.0014

Table 3.4: Simulation 1: αr components

Figure 3.39: Simulation
1: αm1 variation

Figure 3.40: Simulation
1: αm2 variation

Figure 3.41: Simulation
1: αm3 variation

Figure 3.42: Simulation
1: αm4 variation

Figure 3.43: Simulation
1: αm5 variation

Figure 3.44: Simulation
1: αm6 variation
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Figure 3.45: Simulation
1: αm7 variation

Figure 3.46: Simulation
1: αm8 variation

Figure 3.47: Simulation
1: αm9 variation

Figure 3.48: Simulation 1: norm(αm)
variation

Component Max Min Mean
Alpha1 4.2197 3.9894 4.1425
Alpha2 0.0522 0.0354 0.0420
Alpha3 -0.0512 -0.0782 -0.0649
Alpha4 0.1513 0.0858 0.1292
Alpha5 1.7117 1.4894 1.5978
Alpha6 1.3590 1.0351 1.1976
Alpha7 0.0140 -9.1855e-05 0.0093
Alpha8 -0.7082 -0.9482 -0.8268
Alpha9 4.6693 4.2528 4.4561

Norm(α,2) 4.8924 4.3886 4.6343

Table 3.5: Simulation 1: αm components
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2nd scenario

The second simulation is characterized by a target mass of 80 kg, that is close to
spacecraft base mass (100 kg).

Figure 3.49: Simulation
2: αr1 variation

Figure 3.50: Simulation
2: αr2 variation

Figure 3.51: Simulation
2: αr3 variation

Figure 3.52: Simulation
2: αr4 variation

Figure 3.53: Simulation
2: αr5 variation

Figure 3.54: Simulation
2: αr6 variation

Figure 3.55: Simulation
2: αr7 variation

Figure 3.56: Simulation
2: αr8 variation

Figure 3.57: Simulation
2: αr9 variation
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Figure 3.58: Simulation 2: norm(αr)
variation

Component Max Min Mean
Alpha1 1.0028 1.0025 1.0026
Alpha2 5.1074e-04 2.6484e-04 3.8887e-04
Alpha3 -5.6178e-05 -1.0676e-04 -8.1353e-05
Alpha4 0.0011 1.3234e-04 6.2607e-04
Alpha5 1.0001 0.9999 1.0000
Alpha6 5.1111e-05 9.9519e-06 3.3514e-05
Alpha7 0.0017 -0.0012 1.7726e-04
Alpha8 2.9336e-04 -1.8720e-04 3.1837e-05
Alpha9 1.00003 0.99995 0.99999

Norm(α,2) 1.0030 1.0027 1.0028

Table 3.6: Simulation 2: αr components

Figure 3.59: Simulation
2: αm1 variation

Figure 3.60: Simulation
2: αm2 variation

Figure 3.61: Simulation
2: αm3 variation
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Figure 3.62: Simulation
2: αm4 variation

Figure 3.63: Simulation
2: αm5 variation

Figure 3.64: Simulation
2: αm6 variation

Figure 3.65: Simulation
2: αm7 variation

Figure 3.66: Simulation
2: αm8 variation

Figure 3.67: Simulation
2: αm9 variation

Figure 3.68: Simulation 2: norm(αm)
variation
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Component Max Min Mean
Alpha1 19.8578 18.5732 19.3705
Alpha2 1.6858 1.2902 1.4808
Alpha3 -3.0209 -4.0238 -3.5139
Alpha4 0.6263 0.3373 0.5224
Alpha5 -0.3654 -2.2708 -1.3382
Alpha6 15.1431 11.6480 13.4026
Alpha7 -1.8111 -2.0133 -1.9404
Alpha8 -8.7350 -11.3333 -10.0194
Alpha9 35.0060 30.1173 32.5093

Norm(α,2) 40.2166 33.7975 36.9449

Table 3.7: Simulation 2: αm components

3rd scenario

The third simulation is characterized by a target mass of 240 kg, more than double
the spacecraft base mass (100 kg).

Figure 3.69: Simulation
3: αr1 variation

Figure 3.70: Simulation
3: αr2 variation

Figure 3.71: Simulation
3: αr3 variation

Figure 3.72: Simulation
3: αr4 variation

Figure 3.73: Simulation
3: αr5 variation

Figure 3.74: Simulation
3: αr6 variation
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Figure 3.75: Simulation
3: αr7 variation

Figure 3.76: Simulation
3: αr8 variation

Figure 3.77: Simulation
3: αr9 variation

Figure 3.78: Simulation 3: norm(αr)
variation

Component Max Min Mean
Alpha1 1.0031 1.0028 1.0029
Alpha2 5.6147e-04 2.8219e-04 4.2183e-04
Alpha3 -4.6666e-05 -9.7838e-05 -7.1047e-05
Alpha4 0.0013 -4.8781e-05 6.0501e-04
Alpha5 1.0002 0.9999 1.0000
Alpha6 8.6790e-05 2.4019e-05 5.3397e-05
Alpha7 0.0027 -0.0018 3.8716e-04
Alpha8 4.7359e-04 -2.8224e-04 5.8289e-05
Alpha9 1.0000 0.9999 1.0000

Norm(α,2) 1.0036 1.0029 1.0031

Table 3.8: Simulation 3: αr components
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Figure 3.79: Simulation
3: αm1 variation

Figure 3.80: Simulation
3: αm2 variation

Figure 3.81: Simulation
3: αm3 variation

Figure 3.82: Simulation
3: αm4 variation

Figure 3.83: Simulation
3: αm5 variation

Figure 3.84: Simulation
3: αm6 variation

Figure 3.85: Simulation
3: αm7 variation

Figure 3.86: Simulation
3: αm8 variation

Figure 3.87: Simulation
3: αm9 variation
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Figure 3.88: Simulation 3: norm(αm)
variation

Component Max Min Mean
Alpha1 31.8447 29.7661 31.0914
Alpha2 6.1853 4.5263 5.3317
Alpha3 -12.3615 -16.2157 -14.2466
Alpha4 -1.7945 -2.3499 -2.0449
Alpha5 -6.2831 -10.8356 -8.5854
Alpha6 39.7426 30.9946 35.3466
Alpha7 -8.9685 -9.8370 -9.5142
Alpha8 -22.8412 -30.3640 -26.5602
Alpha9 88.5203 73.8966 81.0471

Norm(α,2) 104.6442 86.0617 95.1524

Table 3.9: Simulation 3: αm components

Conclusions

It can be stated that αr matrix shows a common behavior in all the 3 presented
simulations: the diagonal terms oscillate around the unit value, while the non-
diagonal ones are significantly lower. With a few exceptions, no major variations
are observed in all αr components throughout the configuration changes, probably
due to the small motion taken as a use case. As expected, all the components tend
to increase when the target mass is higher, since this implies a stronger perturbation
on the system. However, this increase is not relevant, so that the norm of αr is very
close to the unit value even when the target mass is significantly higher than the
one of the spacecraft. Overall, αr can be basically approximated with the identity
matrix, which means that the perturbation introduced by the target capture has
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poor effects on reaction wheels inertial behavior.
On the other hand, αm matrix presents a more interesting behavior. Once again,
the diagonal terms are the most significant, taking on values well above unity.
Non-diagonal terms are lower, but they can not be neglected, since most of them
are still comparable with the diagonal ones. Actually, in some cases they are even
higher (compare the diagonal term α5 with the non-diagonal α6). αm components
do not vary greatly throughout configuration changes, but they strongly increase
when the target mass grows. This results in a significant increase in the norm of
αm, that rockets from 5 in the first simulation to more than 100 in the last one.
That means that, unlike the reaction wheels, joints inertial behavior is importantly
influenced by the magnitude of the perturbation, resulting in a strong variation of
H matrix.
Since the perturbation of inertia matrix is compensated for by the MRAC, a stronger
adaptive control is required on the joints, while just the NDI control could be
sufficient for RWs. Consequently, a much lower adaptation rate is needed for MRAC
components which act on them. That can be achieved by using different values
of k (3.59) for joints and RWs. Another option is to specialize and differentiate
the MRAC formulation for these two categories, so that control will adapt to their
different needs.

3.4.2 ||σ̄|| and || ˙̄σ|| estimation
Another workspace analysis has been conducted on the same robot (see Section 1.1)
to identify the maximum values of ||σ̄|| and || ˙̄σ|| within a prescribed workspace. A
step motion as the one described in Section 2.5 was taken into account to determine
the maximum allowed velocities and accelerations of the system.
The variables under analysis are computed assuming maximal actuator capability,
with:

τNDImax ≤ H⋄q̈max, (3.92)
The remaining term, || ˙̄σ||max, is approximated as:

|| ˙̄σ||max ≤
...èq̈ τ̇NDI

é...
max

≤
...èq̈ Ḣ⋄q̈

é...
max

(3.93)

These quantities were evaluated for different joints configurations obtained through
a nested loop simulation and their values are represented as a function of EE 3D
position in Figures 3.89 and 3.90.
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Figure 3.89: ||σ̄||max as a function of EE position

Figure 3.90: || ˙̄σ||max as a function of EE position

While ||σ̄||max varies significantly within the considered workspace (Fig. 3.89),
|| ˙̄σ||max remains nearly constant for slow motions typical of on-orbit operations (Fig.
3.90), so that a mean value can be considered for all the possible configurations
without introducing significant errors.
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3.5 High-frequency oscillations suppression
The high gains required within MRAC in order to have fast adaptation may
induce high-frequency oscillations in the system dynamics. These oscillations
may affect system stability and cause dangerous vibrations and mechanical stress.
Consequently, it becomes fundamental to handle them properly.
As shown in [24], a low-pass filter acting on weights estimation update law can be
implemented to address that problem. The filter is characterized by the following
law: ˙̂

Wf = Γf [Ŵ (t) − Ŵf (t)], Ŵf (0) = Ŵ (0) (3.94)

where Γf is a positive-definite gain matrix and Ŵf is the filtered version of the
estimated weights matrix.

Figure 3.91: MRAC controller with filter modifications

Without losing generality, Γf can be considered as diagonal and, as a consequence,
Equation (3.94) can be re-written and adapted to each MRAC channel:

˙̂
Wfi

= Γfi
[Ŵi(t) − Ŵfi

(t)], Ŵfi
(0) = Ŵi(0) (3.95)

A new version of the weights matrix update law (3.19) is proposed as well, including
a new term that takes into account the presence of the filter:

˙̂
W = γ[σ̄eTPB − kf (Ŵ − Ŵf )] (3.96)
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where kf ∈ R is a positive modification gain.
Again, the law can adapted to each MRAC channel:

˙̂
Wi = γi[σ̄eTPB(:, i) − kf (Ŵi − Ŵfi

)] (3.97)

To prove the system stability, the following augmented Lyapunov’s function repre-
sents a good candidate:

V = eTPe+ tr(W̃Λ 1
2 )Tγ−1(W̃Λ 1

2 ) + σ̄tr(W̃ T
f Γ−1

f W̃f ) (3.98)

where W̃f = Ŵf −W . As proved in [24], this new update law ensures Lyapunov’s
stability and asymptotic convergence to zero of the error.
The effectiveness of the method can be seen in Figures 3.92 and 3.93, where a step
reference motion is applied to the joints of the robot described in Section 1.1, and
the results with and without filter are compared.

Figure 3.92: High frequency oscillations control without filter
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Figure 3.93: High frequency oscillations control with filter

It is clear how high-frequency oscillations deriving from high MRAC gains are
strongly dampened through this method, at the expense of a slightly slower conver-
gence to the reference model.

3.6 Study case
The study case chosen to analyze the effectiveness of the strategy is the same one
described in 2.5. This choice derives from the possibility of comparing the results
of the two different control strategies, investigating analogies and differences.

3.6.1 Simulation results
As shown in Fig.3.94, the servicer base is successfully stabilized, since its rotational
velocities are dampened to almost zero values by the end of the simulations. That
means that the momentum transferred by the target to the base during the capture
is effectively compensated by the reaction wheels.
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Figure 3.94: Base angular velocities for each run

Fig.3.95, Fig.3.96 and Fig.3.97 show the comparison between the real joints motion
and the desired one. Fig.3.95 is characterized by only NDI control: the absence of
MRAC results in a less accurate motion, with a slower convergence. In Fig.3.96,
although the joints follow quite well the reference profile, big oscillations are
observed due to high MRAC gains, since the filter described in (3.94) is not
implemented. Its effectiveness is shown in Fig.3.97, where the oscillations are
suppressed, at the expense of a slightly slower convergence.

Figure 3.95: Joints velocities with NDI for each run
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Figure 3.96: Joints velocities with NDI-MRAC for each run

Figure 3.97: Joints velocities with NDI-MRAC+filter for each run

Looking at Fig.3.98, it is clear how the convective term is totally negligible with
respect to the inertial one within NDI formulation. Consequently, this serves as
proof for the choice of a simplified NDI control (Equation 3.3).
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Figure 3.98: Comparison between simplified NDI and convective term

Fig. 3.99 shows the values of MRAC torques for all the simulations. Overall, they
result to be approximately one order of magnitude lower than NDI ones. MRAC
contribution to the global control is totally negligible before capture, when the
perturbations are basically absent. On the contrary, it becomes relevant after
capture, with the goal of compensating for the unknown disturbances introduced
by the target.

Figure 3.99: MRAC torques without filter for each run

Comparing Figures 3.99 and 3.100, it is clear how the filter allows to reduce the
significant oscillations that characterize MRAC torques, resulting in a more stable
dynamics and a more precise movement.
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Figure 3.100: MRAC torques with filter for each run

Finally, Figures 3.101-3.103 show the evolution of momenta throughout the capture
maneuver, proving the conservation of momentum for the global system. In
particular, as previously assumed, the servicer momenta are zero before capture,
they start varying at the capture moment and they finally stabilize to constant
values. On the other hand, target momenta are constant before capture, they start
varying at the capture moment and they finally stabilize to zero. The global system
momenta are given by the sum of servicer and target momenta, and they remain
constant during the whole capture, since the applied forces and torques are internal
to the system.

Figure 3.101: Servicer momenta evolution for each run
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Figure 3.102: Target momenta evolution for each run

Figure 3.103: System momenta evolution for each run

3.6.2 Conclusions
In conclusion, MRAC results to successfully perform its task: it counteracts
effectively the perturbations due to capture, leading to enhanced performances
and faster convergence. As already done in Chapter 2, the MSEs related to joints
velocities can be used as representative indicators of the effectiveness of the control
strategy. Tab 3.10 compares the errors of NDI, NDI-MRAC and NDI-MRAC+filter.
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Simulation ID No MRAC MRAC MRAC + filter
Sim 1 1.0034e-09 2.2959e-10 2.1346e-10
Sim 2 9.5732e-10 2.2368e-10 2.0694e-10
Sim 3 9.8275e-10 2.1783e-10 2.0897e-10
Sim 4 1.0017e-09 2.2312e-10 2.1132e-10
Sim 5 1.0157e-09 2.3605e-10 2.1841e-10
Sim 6 1.0230e-09 2.3470e-10 2.2076e-10
Sim 7 9.8285e-10 2.2950e-10 2.1733e-10
Sim 8 9.5120e-10 2.2512e-10 1.9811e-10
Sim 9 9.5172e-10 2.1323e-10 2.0035e-10
Sim 10 9.6251e-10 2.1753e-10 1.9920e-10

Table 3.10: Mean squared errors in joints velocities with MRAC

Once again, the overall errors result to be very low for all the three strategies, as
proof of the quality of the control. However, MRAC allows to reduce the error
of each simulation by a factor between 4 and 5, demonstrating its effectiveness
in compensating for the disturbance. The implementation of the low-pass filter
inside the MRAC logic allows to further reduce the errors, thanks to its ability of
dampening the MRAC high-frequency oscillations, that cause a deviation of joints
motion from the reference, increasing the error.

3.6.3 Comparison with NDO
Finally, a comparison between NDI-NDO and NDI-MRAC control strategies will be
presented in this section. Although both the methods can be used to compensate
for unknown perturbations and disturbances, NDO and MRAC have important
theoretical differences:

• NDO estimates and compensates unknown disturbances or model uncer-
tainties affecting the system by designing an observer that reconstructs the
disturbance and subtracting it from the control input.

• MRAC aims to make the plant output follow a reference model with unknown
parameters by adapting controller parameters online to make the closed-loop
behave like the reference.

Basically, NDO estimates and cancels the disturbance, while MRAC learns and
adapts the parameters to match a reference model.
As shown in Tab. 3.11 and Fig. 3.104, MRAC strategy results to be clearly the
best one, with errors that are half the ones with NDO, which is still better than
NDI alone.

87



Chapter 3. MRAC-NDI Control Strategy Politecnico di Torino

Simulation ID NDO MRAC
Sim 1 5.1862e-10 2.2959e-10
Sim 2 5.0352e-10 2.2368e-10
Sim 3 5.1492e-10 2.1783e-10
Sim 4 5.2036e-10 2.2312e-10
Sim 5 5.2079e-10 2.3605e-10
Sim 6 5.2634e-10 2.3470e-10
Sim 7 5.1330e-10 2.2950e-10
Sim 8 5.0267e-10 2.2512e-10
Sim 9 5.0389e-10 2.1323e-10
Sim 10 5.0696e-10 2.1753e-10

Table 3.11: Mean squared errors in joints velocities: NDO vs MRAC

Figure 3.104: MSE in joints velocities
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Chapter 4

Conclusions and future
developments

In this final chapter, some possible further developments of the MRAC control
strategy will be proposed and the overall conclusions of the thesis will be presented.

4.1 Adaptation of the strategy to more complex
robots

One of the possible next steps could be the adaptation of MRAC control strategy
to more elaborated robot models, like the one with the VISPA arm presented
in Section 2.1. As seen in Chapter 2, NDI-NDO control strategy is not able to
guarantee a fast convergence when applied to this model. Consequently, it could be
interesting to analyze the performance of MRAC when applied to the same robot.
Some slight modifications will need to be performed in the control logic before
running the simulations.
Overall, MRAC control results to be easily adaptable to different robot models and
operational scenarios, so that multiple simulations can be performed to test and
compare its performances under several real working conditions. Some correlations
might be found between MRAC effectiveness and simulations features, such as
target mass, robot configuration, reference velocities profile, and so on.

4.2 Set-theoretic MRAC
An interesting further development of MRAC control strategy is implementing
a set-theoretic MRAC: instead of estimating the unknown parameters as precise
values, it makes them vary within estimated ranges, in order to guarantee that
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the error between the system and the reference model will stay lower than the one
obtained in an a-priori worst case scenario. The adaptive law and control input are
designed to ensure that the system’s state and parameters always remain inside
pre-defined admissible sets, despite uncertainties and adaptation.
A projection operator needs to be defined [23]:

Proj(θ, y) ≜



y, if ψ(θ) < 0,

y, if ψ(θ) ≥ 0 and ψ′(θ)y ≤ 0,

y − ψ′ T (θ)ψ′(θ)y
ψ′(θ)ψ′T (θ) ψ(θ), if ψ(θ) ≥ 0 and ψ′(θ)y > 0

(4.1)

where ψ : Rn → R is a continously differentiable convex function defined as:

ψ(θ) ≜ (ϵθ + 1)θT θ − θ2
max

ϵθ θ2
max

(4.2)

θmax ∈ R represents a projection bound imposed on the norm of θ ∈ Rn and ϵθ is
a projection tolerance bound.
A generalized restricted potential function must be defined as well. A possible
candidate is the following:

ϕ(||e(t)||P ) = ||e(t)||2P
ϵ2 − ||e(t)||2P

(4.3)

where ||e(t)||P =
ñ
eT (t)Pe(t).

The derivative of this restricted potential function is:

ϕd(||e(t)||P ) = ϵ2

( ϵ2 − ||e(t)||2P )2 (4.4)

Finally, a new weights update law with guaranteed boundedness can be formulated:

˙̂
W = γ Proj(ϕd(||e(t)||P ) σ̄ eT P B) (4.5)

This is in the same form of Equation 3.19, but with the introduction of the projection
operator to bound the error.
Implementing this new approach within the proposed MRAC control strategy
will allow to guarantee at least a pre-defined performance level as the simulation
conditions vary, resulting in a more reliable and robust control. However, the
problem shifts to the definition of boundaries and projection tolerances, that need
to be properly estimated through specific workspace analysis.

90



Chapter 4. Conclusions and future developments Politecnico di Torino

4.3 Implementation of flexible appendages
Another significant MRAC application could be the compensation for the unknown
dynamics and disturbances due to the addition of flexible appendages to the robot
model. In fact, strong dynamics coupling and vibration effects can arise because
of their characteristic geometry and light weight. NDI-MRAC control strategy
can be used to counteract these perturbations, achieving dynamic decoupling and
robustness without requiring an accurate model of the flexible dynamics.
The dynamics of this kind of systems is expressed by the following equation [13]:H0 H0q H0η

⋆ Hq Hqη

⋆ ⋆ Hη


ü ûú ý

H(q0,q)

q̈0
q̈
η̈

+

C0 C0q C0η

Cq0 Cq Cqη

Cη0 Cηq Cη


ü ûú ý

C(q0,q,q̇0,q̇,η̇)

q̇0
q̇
η̇

+

 06×1
0nq×1
Kηη

 =

 06×1
τq

0nη×1

 (4.6)

where η ∈ Rnη×1 is the generalized flexible modal displacement vector, gathering
all modal displacement among the different flexible bodies, and Kη is a diagonal
and positive stiffness matrix.
Manipulating Equation (4.6), the system dynamics can be expressed in the following
joint space equivalent form:

H⋄(q,q0)q̈ + C⋄(q,q0, q̇, q̇0, η̇)q̇ + τη = τq (4.7)

where the equivalent inertia and convective matrices are defined as:

H⋄ = Hq −
è
HT

0q Hqη

é CH0 H0η

HT
0η Hη

D−1 CH0q

HT
qη

D

C⋄ = Cq −
è
HT

0q Hqη

é CH0 H0η

HT
0η Hη

D−1 CC0q

Cηq

D
All the effects of flexible modes are collected in the fictitious torque τn:

τη =
èCq0 Cqη

é
−
è
HT

0q Hqη

é CH0 H0η

HT
0η Hη

D−1 CC0 C0η

Cη0 Cη

DCq̇0
η̇

D

−
è
HT

0q Hqη

é CH0 H0η

HT
0η Hη

D−1 C06×nη

Kη

D
η = D⋄

q̇0
η̇
η


(4.8)

Therefore, the goal of MRAC is to adapt the control parameters in order to
compensate for this additional unknown disturbance τn, allowing the NDI to work
on a classical simpler dynamics, similar to the one defined earlier in Chapter 1.

91



Chapter 4. Conclusions and future developments Politecnico di Torino

This will allow to extend the scope of application of MRAC to a multitude of new
systems and operating scenarios.
Some preliminary simulations were conducted on the robot described in Section
2.1. Fig.4.1 shows the comparison between the desired joints motion profile and
the real one with NDI-MRAC control technique. The evolution of MRAC and
reference errors are also diplayed.

Figure 4.1: MRAC tracking performance with flexibility appendages

The obtained behavior is acceptable, but it is still the result of preliminary analyses.
Additional work is needed to refine the mathematical model and improve the
results.
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4.4 Final conclusions
This thesis presented the development and validation of two robust control strategies
for space manipulator systems operating in uncertain post-capture conditions: an
NDI–NDO scheme and an NDI–MRAC approach. Both methods were thoroughly
designed, implemented, and evaluated through an extensive set of simulations cover-
ing a wide range of scenarios. These included variations in target mass and inertia,
external disturbances, and uncertainties in the manipulator and base dynamics.
The results confirmed the effectiveness and robustness of both control architectures
in compensating for the perturbations induced by the target capture and ensuring
stable post-capture behavior.
Among the two, the NDI–MRAC strategy demonstrated superior performance
in terms of adaptability, convergence speed, tracking accuracy, and disturbance
rejection. The inclusion of a low-pass filter proved particularly beneficial, as it
effectively mitigated the effects of high-frequency oscillations commonly associated
with high-gain adaptive control schemes. This improvement led to smoother tran-
sient responses and enhanced overall system reliability. These findings emphasize
the strong potential of adaptive control techniques in the field of space robotics,
suggesting that MRAC-based methods could play a pivotal role in future Active
Debris Removal (ADR) and On-Orbit Servicing (OOS) missions, where robustness
and adaptability are of critical importance.
In addition to its technical contributions, this research opened several promising
directions for future investigation. However, they could not be fully explored within
the time frame of my internship. Pursuing these directions would further enhance
the autonomy, resilience, and operational safety of space manipulator systems,
bringing us closer to fully autonomous robotic servicing capabilities in orbit.
This work was conducted during an internship at ONERA – The French Aerospace
Lab, whose continuous support, expertise, and scientific excellence were essential
to the success of this project. The guidance and encouragement from ONERA
researchers provided not only a strong foundation for tackling complex control
challenges but also an inspiring research environment that fostered curiosity, cre-
ativity, and scientific rigor. I am deeply grateful for the opportunity to contribute
to ONERA’s ongoing efforts in advancing space robotics. Beyond the technical out-
comes, this experience has been profoundly formative, offering invaluable exposure
to the research process within a world-class institution and strengthening both my
theoretical understanding and practical skills in advanced control systems.
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