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Abstract
The increase in the population of objects in orbit, together with the exponential growth
of mega constellations, is significantly increasing the risk of collisions in Low Earth Orbit
(LEO). This trend makes collision avoidance crucial to prevent the generation of new debris
which, triggering a chain reaction, could lead to what the Kessler syndrome predicted,
compromising future access to Earth orbit. Traditional approaches to collision avoidance
maneuver planning based on ground operations are not scalable to the expected future
traffic volumes and are ineffective in time-critical scenarios, where the time window available
to plan and implement a maneuver can be reduced to just a few hours before the time of
closest approach (TCA).

Due to these challenges, this thesis proposes a framework based on Deep Reinforcement
Learning for the autonomous planning of time-critical collision avoidance maneuvers in
LEO, characterized by decision windows as short as 1− 2 hours before TCA. The problem
is formalized as a fully observable Markov decision process, in which an agent interacts
with a simulated environment through the application of instantaneous ∆v impulses. The
action chosen by the agent is evaluated through a reward function designed to minimize
the probability of collision, keep the satellite within its operational orbit, and optimize
the consumption of the available propulsion budget. The simulated environment with
which the agent interacts is a customized orbital propagator that allows, in addition to an
unperturbed two-body model, the selection of perturbations relevant to the scenario under
consideration, such as atmospheric drag, Earth’s gravitational harmonics, solar radiation
pressure, and third-body gravitational perturbations from the Sun and Moon.

To learn an optimal maneuvering strategy, the agent training is conducted using the
Proximal Policy Optimization algorithm, based on an actor-critic architecture consisting of
two multilayer perceptron neural networks. Moreover, to ensure generalization capability,
a database of collision scenarios was generated to expose the agent to different collision
geometries with space debris during the training phase. The evaluation of the learned
optimal policy demonstrated the effectiveness of the proposed framework. The agent
successfully planned avoidance maneuvers in scenarios never encountered during training
with a total ∆v on the order of 2 m/s ensuring that the satellite remained within its
nominal operational orbit. In addition, a post-maneuvers analysis through the orbital
propagation of the satellite, including most of the perturbations, verifies the absence of
recurrent close approaches with the same debris.

The proposed framework is therefore fully compatible with time-critical scenarios, since
the time required for maneuver planning corresponds to the inference time of the policy
neural network, which is on the order of a few seconds.
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Chapter 1

Introduction

1.1 Space Debris

On October 4, 1957, with the launch of Sputnik 1 by the Soviet Union, the space age
officially began. That milestone, which inaugurated the space race between the United
States and the Soviet Union, also represented the starting point of a process that expressed
the curiosity, ambition, and capacity for innovation of the human species. At the same
time, that historic event gave rise to a chain of consequences that today threatens to
permanently compromise the possibility of accessing and exploiting space in a sustainable
manner. Since the early years of space exploration, human activities in orbit have produced
a growing number of non-functional objects, exceeding the number of operational satellites.
Fragments generated by collisions or explosions, components released during operations,
satellites and rocket stages that are now no longer in use, all of these fall under the definition
of space debris. More precisely, the international standard ISO 24113:2023 defines space
debris as:

"Objects of human origin in Earth orbit or re-entering the atmosphere, including
fragments and elements thereof, that no longer serve a useful purpose" [2].

The problem is far from marginal. Since the 1970s, it has been recognized that the
presence of these objects could evolve into a systemic threat to the sustainability of space
activities [3]. Today, the risk associated with space debris extends far beyond traditional
scientific and institutional missions, and increasingly affect the new space economy. This
sector, characterized by the rapid deployment of large commercial constellations and
satellite services, is critically dependent on the availability of a safe and predictable orbital
environment, a necessary condition for ensuring its long-term sustainable development.
The inherently global nature of the problem lies in the fact that every fragment in orbit,
regardless of the country or operator that generated it, can pose a risk to any other
spacecraft. This international dimension has motivated the creation of shared guidelines
and standards. A decisive milestone was taken in 2002 with the publication of the Space
Debris Mitigation Guidelines by the Inter-Agency Space Debris Coordination Committee
(IADC), which provided the first common framework of reference for space agencies and
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operators. These guidelines have served as the foundation for technical standards and
national legislation, including the international standard ISO 24113 and the European
standards ECSS-U-AS-10C, as well as the specific requirements of the European Space
Agency (ESA). The common goal is to reduce the production of new debris and mitigate
the risks associated with existing ones.

To ensure the safe and sustainable use of orbits, so-called protected regions have been
introduced, within which specific debris mitigation requirements must be applied [4]. In
particular, two main regions have been identified:

• Low Earth Orbit (LEO) Protected Region: a sphere extending from the Earth’s
surface up to an altitude of 2000 km.

• Geosynchronous Earth Orbit (GEO) Protected Region: a toroidal section centered
on the geostationary altitude of 35786 km, bounded vertically by ±200km and
latitudinally by ±15◦.

Despite regulatory efforts and the progressive adoption of international guidelines, the
orbital environment continues to evolve in a critical state. The number of artificial objects
in orbit, together with their cumulative mass and exposed cross-section area, has grown
steadily since the beginning of the space age, as highlighted in ESA’s Annual Space
Environment Report 2025 [5] and shown in Figure 1.1.

Figure 1.1: Evolution of number of object per orbit type

As illustrated in Figure 1.1 (sourced from [5]), LEO is the most congested orbital region,
both in terms of satellite and debris population and in terms of its exposure to increasing
space traffic associated with large telecommunications constellations. According to ESA’s
Meteoroid And Space debris Terrestrial Environment Reference (MASTER) model, as of
August 2024 the estimated population includes approximately 54,000 objects larger than
10 cm (of which approximately 9,300 are active satellites), 1.2 million fragments between 1
and 10 cm, and over 130 million objects in the 1 mm-1 cm range [5].
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The spatial density of objects in LEO, as illustrated in Figure 1.2 (sourced from [5]),
indicates that the highest concentration, particularly for objects larger than 10 cm, occurs
between 500 and 600 km altitude. In this region, the high orbital density increases the
probability of fragmentation events, which are one of the main mechanisms for generating
new debris. These events, referred to in literature and regulations as break-ups, are defined
as the partial or total destruction of an object in orbit, resulting in the production of
space debris [2]. The main causes include collisions with other objects, explosions due to
residual energy that has not been adequately passivated (e.g., propellants or batteries),
and structural deterioration. Statistics from the last two decades show that there have
been an average of about 10–11 unintentional break-ups per year, with varying effects
depending on the orbital lifetime of the fragments generated [6]. These phenomena highlight
a self-sustaining process: as orbital density grows, the likelihood of collisions increases,
and each collision can generate hundreds or thousands of new fragments. This is precisely
the mechanism described by NASA astrophysicist Donald J. Kessler, who in 1978 first
introduced the concept of what is now commonly referred to as the Kessler Syndrome [3].
His study demonstrated that, once a certain critical density in LEO was exceeded, fragments
generated by random collisions between cataloged objects would become a primary source
of new debris, with an exponential increase in the orbital population even in the absence
of further launches.

Figure 1.2: Density profiles in LEO for different space object size ranges from the 01/08/2024
MASTER reference population

More recent simulations conducted by ESA and IADC confirm the validity of this scenario:
even in the extreme case of immediate termination of all future launches, collisions between
objects already in orbit would lead to a further increase in the population in LEO [4]. This
trend is clearly illustrated in Figure 1.3 (sourced from [6]), where the blue curve shows
that, even under the extreme assumption of no further launches after 2024, the number of
catalogued objects larger than 10 cm in LEO is expected to continue increasing due to
collisions among existing debris.
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Figure 1.3: Number of objects larger than 10cm in LEO in the simulated scenarios of
long-term evolution of the environment

1.1.1 Space Debris Mitigation Strategies

The scenario outlined above highlights how the current orbital environment is not sustain-
able in the long term. For this reason, the international community has gradually defined
and adopted a set of mitigation strategies, which now constitute the benchmark for the
design and operation of satellites and launch systems. These strategies can be grouped into
four fundamental objectives: avoiding the release of space debris into Earth’s orbit during
normal operations, reducing the probability of break-up events, ensuring the removal of
spacecraft at the end of their operational life (Post-Mission Disposal), and preventing
on-orbit collisions.

Prevention of Space Debris Generation The first objective of mitigation strate-
gies is to limit the intentional or accidental release of rocket and spacecraft components into
space, for example during separation phases or routine maneuvers. Good design practices
require a debris-aware approach, i.e., a design that considers the potential contribution of
the system to the orbital environment from the earliest stages. This is also the context for
more recent initiatives, such as ESA’s Zero Debris Approach strategy, which aims to pro-
gressively reduce the impact of missions through stricter standards and innovative concepts
such as design for demise (designing components to be completely destroyed upon re-entry
into the atmosphere) and design for removal (design to facilitate post-mission removal
using standardized docking systems or interfaces). In addition to preventing the generation
of new debris, another highly relevant approach is active debris removal (ADR) techniques,
which aim to eliminate objects already in orbit. These include conceptual solutions such as
nets, harpoons, magnets, and robotic arms, often combined with advanced trajectory opti-
mization algorithms that would allow multiple targets to be captured in the same mission.
If implemented on a large scale, these techniques could make a significant contribution to
reducing the population of debris in orbit. However, both design-for-removal solutions and
active debris removal missions are still at an insufficient stage of technological maturity.
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Although several demonstration projects and experimental missions are under development,
no large-scale operational removal campaign has yet been completed, highlighting that
these technologies, while promising, are not yet ready for systematic deployment. Moreover,
the lack of direct economic return discourages investment in such missions.

Reducing the Probability of Break-up A second pillar of debris mitigation strategies
is the prevention of unintentional fragmentation events, which constitute one of the main
sources of new debris generation in orbit. In this context, a central role is played by
passivation, defined in ISO 24113 [2] as: “permanently depleting, irreversibly deactivating,
or making safe all on-board sources of stored energy capable of causing an accidental break-
up.” The primary sources of stored energy that must be safely passivated include propellant
tanks, batteries, high-pressure vessels, pyrotechnic devices, flywheels, and momentum
wheels. These components should preferably be passivated as soon as they are no longer
required for mission operations or disposal maneuvers. Passivation is considered an effective
measure to substantially reduce the likelihood of accidental explosions that could generate
new debris.

Post Mission Disposal At the end of their operational life, satellites and orbital
stages must be removed from protected regions (LEO and GEO) by means of de-orbiting
maneuvers or by exploiting natural decay due to atmospheric drag, or, in case of GEO, by
transferring them to graveyard orbits. International regulations stipulate that satellites in
LEO must not remain in orbit for more than 5 years, after the end of their mission. ESA
was one of the first to implement this regulation and also requires that the cumulative
probability of collision between end of life and re-entry remain below 10−3 [5].

On-Orbit Collision Prevention On-Orbit Collision prevention is the most immediate
and scalable measure to contain the increase in space debris. The Collision Avoidance
(CA) process is based on conjunction assessment, i.e., the systematic analysis of trajectory
predictions based on orbital surveillance data and related uncertainties about the state
of the satellite and the space debris. Through the process of conjuntion risk assessment,
key encounter parameters, time of closest approach, minimum distance, and probability of
collision are estimated. If the estimated probability exceeds the risk thresholds defined
by international standards, the spacecraft operator is required to plan and execute a
collision avoidance maneuver (CAM). Unlike other mitigation techniques, which require
long development cycles or structural modifications, collision avoidance can be implemented
quickly even on satellites already in operation, in many cases through simple software
updates. Furthermore, CA remains indispensable even in the hypothetical scenario of “zero
future launches”: as ESA and IADC simulations show, collisions between objects already
in orbit would still generate new debris (Figure 1.3).
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1.2 Collision Avoidance

In light of the above considerations, collision avoidance is not only an effective measure
for mitigating the growth in orbital debris, but also a fundamental component of space
traffic management and the near-term sustainability of the orbital environment. It should
not, however, be regarded as a single operational intervention, but rather as a structured
process composed of multiple interconnected phases. Several definitions and categorizations
have been proposed in literature, this thesis adopts a classification that integrates the
terminology presented in the NASA Conjunction Assessment and Collision Avoidance
Handbook [7] and by Patnala et al. [8], in order to systematically describe the set of
activities necessary to identify, assess, and mitigate a conjunction event.

As shown in Figure 1.4, spacecraft collision avoidance can be logically decomposed into
two major processes: the Collision Detection Process, which encompasses all activities
related to space surveillance, orbital predictive modeling, and conjunction assessment; and
the Collision Avoidance Process, which covers conjunction risk assessment and the
subsequent mitigation phase. Together, these processes constitute the overall framework of
a Collision Avoidance Operation.

Figure 1.4: Collision Avoidance Framework

1.2.1 Collision Detection Process

Within the collision detection process three main components can be identified:

• Space Surveillance and Object Tracking

• Orbital Predictive Modeling

• Conjunction Assessment

Space surveillance and object tracking is a phase that represents the prerequisite for
any collision avoidance operation. An accurate catalog of objects in orbit, together with
appropriate data management and processing, is a necessary condition for satellite operators
to be rapidly informed on a collision risk and to take the necessary corrective actions [8]. In
this context, Space Situational Awareness (SSA) is defined as the comprehensive knowledge
of the position of objects in near-Earth space, including their past, present, and predicted
future status. The observations supporting SSA are mainly provided by Space Surveillance
Networks (SSN), a global networks of radars and optical telescopes that continuously track
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and catalog orbiting objects. Long-range radars, such as the U.S. Space Force’s Space
Fence or the Space Surveillance Telescope (SST), provide information on the trajectory,
speed, and size of objects, and are particularly effective in characterizing the population of
debris in LEO. At these altitudes, radar systems are able to accurately identify objects
larger than or approximately equal to 10 cm [9]. While these fragments pose the most
destructive threats in the event of impact, they have the advantage of being continuously
tracked by existing space surveillance networks. The 10 cm threshold is explicitly specified
in ESA Space Debris Mitigation Requirement 5.3.3.5 [10], which demands that every object
placed into Earth orbit to be trackable by a space surveillance segment to support collision
avoidance processes. In particular, for the protected LEO region, traceability is guaranteed
if at least one dimension of the object exceeds 10 cm. Object larger than this threshold
can be reliably tracked, making collision avoidance maneuvers become both feasible and
necessary. However, as demonstrated by the ESA MASTER model, the majority of objects
in orbit are smaller than 1 cm. While these fragments represent the largest share of the
population in terms of number, they typically cause only localized or limited damage.
Consequently, they are primarily addressed through passive protection measures, such as
shielding systems and resilient spacecraft design solutions [11].

The detection process also relies on orbital predictive modeling, which provides
the foundation of any reliable conjunction assessment. Once raw tracking data has been
collected, it must be processed and converted into meaningful orbital information, typically
in the form of a state vector that defines the initial conditions for orbit propagation.
In this context, the accuracy of the propagation models becomes a determining factor.
Simplified analytical approaches, such as general perturbation models (e.g., SGP4) used in
the widely adopted Two-Line Elements (TLE) format, are commonly employed to maintain
large-scale catalogs of resident space objects. However, due to their limited accuracy,
these methods are not suitable for detailed conjunction assessment and for supporting
operational decision-making. For this reason, higher fidelity orbit propagation models are
required to achieve the precision necessary to account for all relevant perturbative forces
acting on the object of interest and to determine whether potential intersections with a
protected satellite may occur.

Finally, the conjunction assessment (also referred to as screening [7]) is the process
of systematically comparing the trajectory of the primary object with those of the cataloged
population to identify potential close approaches. This is typically carried out by surveying
a predefined screening volume around the object of interest: any secondary object whose
projected trajectory enters this volume is classified as a potential conjunction threat. The
accuracy of the assessment critically depends on the use of high-precision propagators,
which are required to provide reliable predictions of relative motion. Within this framework,
a conjunction is formally defined as the predicted passage of a secondary object within a
protection volume surrounding the primary spacecraft at a given epoch [10]. The outcome
of the process is the identification of situations where the protection volume of a satellite is
at risk of being violated, thereby triggering the subsequent steps of the collision avoidance
process.
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1.2.2 Collision Avoidance Process

Once a potential conjunction event has been identified through conjunction assessment, a
series of procedures are initiated to analyze the situation in detail and assess whether it is
necessary to plan and execute a collision avoidance maneuver. The Collision Avoidance
Process can be divided into two main phases:

• Conjunction Risk Assessment

• Collision Mitigation

The conjunction risk assessment is the core of collision avoidance process, as it provides
operators with the means to quantify and interpret the associated risk and, consequently, to
determine whether a corrective action is required. To this end, the so-called close approach
analysis is performed to derive, from the available orbital data, the key geometric parameters
of the encounter: the minimum separation distance, the time of closest approach, the
relative velocity, and the conjunction angle. These quantities form the basis for estimating
the collision probability (Pc), which serves as the primary metric for risk evaluation. Pc

is widely regarded as one of the fundamental parameters for classifying the severity of a
conjunction and for supporting decisions on the execution of an avoidance maneuver [12]
and has become the internationally accepted standard for collision risk evaluation. In
literature, several formulations for computing the probablity of collision have been proposed
by Foster and Estes [13], Chan [14], Alfano [15], and Patera [16], reflecting different levels of
approximation and underlying assumptions. The most relevant for the context of this thesis
will be examined in detail in Section 4.1.2, together with its numerical implementations.
From an operational standpoint, the decision to carry out a maneuver is based on comparing
the estimated Pc against predefined thresholds. For spacecraft operating in LEO, the
space industry and major agencies have largely converged on a threshold value of 10−4

per conjunction event, above which mitigation measures are recommended [7, 10, 12].
This threshold reflects a pragmatic compromise between ensuring spacecraft safety and
minimizing the operational impact and resource expenditure associated with frequent
maneuvers.

Once the risk has been quantified, the subsequent step is collision mitigation, referred
to the planning and execution of strategies aimed at reducing the risks associated with
on-orbit conjunctions between operational spacecraft and other resident space objects
[10]. Several approaches are available to achieve this objective, including propulsive
maneuvers (using chemical or electric propulsion), attitude changes to exploit aerodynamic
drag variations or to present a minimal frontal area to the relative velocity vector to
minimize the likelihood of collision [7]. In the present work, however, only propulsive
collision avoidance maneuvers (CAMs) are considered, specifically impulsive maneuvers
performed with chemical propulsion systems, where the risk reduction is obtained through
the application of finite velocity increments (∆v). The feasibility of such maneuvers is
intrinsically linked to the concept of spacecraft maneuverability, i.e., the capability of a
satellite to alter its trajectory through controlled thrusting, which depends on its propulsion
system, attitude control capabilities, and available propellant reserves. CAMs are generally
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planned and executed in a time window preceding the time of closest approach (TCA),
and their effectiveness is strongly influenced by the decision timing. Early maneuvers,
conducted several orbital revolutions before the TCA, are typically less costly in terms of
∆v but carry the risk of being unnecessary if subsequent tracking data reveals a reduced
collision probability. Conversely, maneuvers executed closer to TCA benefit from improved
state knowledge and therefore higher certainty in risk mitigation but demand larger ∆v
to both avoid the threatening object and restore the spacecraft to its nominal orbit [17].
This trade-off between timeliness and propellant expenditure is central to operational
decision making in CA. Both NASA and ESA have defined quantitative requirements to
assess the effectiveness of CAMs. In particular, NASA, based on the work performed by
Hall [18] recommends that a maneuver reduce the Pc by at least 1.5 orders of magnitude,
reflecting the point of diminishing returns in lifetime risk reduction, while ESA requires
a more conservative reduction of two orders of magnitude, which also accounts for orbit
determination uncertainties [7, 10].

1.2.3 Collision Avoidance Operation

In current operational practice, collision avoidance remains a highly structured process
and still largely dependent on human intervention. The standard workflow begins with
continuous monitoring of Conjunction Data Messages (CDMs), standardized notifications
issued by the Combined Space Operations Center (CSpOC) or other space surveillance data
providers. CDMs contain essential information about the predicted conjunction, including
TCA, minimum distance, Pc, and covariance matrices of the objects involved, and are
the primary operational reference for risk assessment [19]. These messages are typically
issued approximately 72 hours before TCA and subsequently updated at regular intervals
of 6–8 hours, allowing for progressively refined risk estimates as new observations are
incorporated. When a conjunction is classified as critical, flight dynamics teams conduct
maneuver analyses to evaluate possible options in terms of timing, thrust direction, and
velocity magnitude, often relying on simplified strategies such as in-track thrusting to
combine effectiveness and operational practicality [20]. These options are then coordinated
with mission planners and operators to ensure compatibility with platform constraints,
communication windows, and mission objectives. The planning phase includes preparing
maneuver commands, reserving multiple ground-station passes for uplink, and validating
that the proposed maneuver will not generate secondary high-risk encounters. To support
this process, a number of specific tools and services have been developed over the years.
Among the most relevant are the Conjunction Assessment Risk Analysis (CARA) [21],
operated by NASA Goddard Space Flight Center to protect non-human missions, and
the Collision Risk Assessment System (CRASS), developed by ESA in collaboration with
GMV, which provides collision risk estimates and generates operational alerts [22]. Also
within ESA, a central role is played by the Collision Risk Assessment and Avoidance
Manoeuvres Computation (CORAM) tool, used by the ESA Space Debris Office for the
analysis and optimization of CAMs, capable of managing scenarios with multiple encounters
and operational constraints [22].

9



1.3. Motivation and Problem Statement

1.3 Motivation and Problem Statement

As discussed in the previous section, the planning and validation of CAMs still remains
strongly dependent on mission operators and requires several hours, or even days, between
the receipt of a CDM and the actual execution of the maneuver. This process, although
effective, is not easily scalable to the growing number of satellites in orbit [8]. With the
continuous expansion of space traffic, operators today must manage an increasing number
of potential conjunctions, involving both other active satellites and space debris, often
under extremely limited time constraints.

This situation has become critical with the rise of mega-constellations. At the start of
2024, the Starlink constellation, which had about 6000 active satellites at the time, was
already doing almost 50000 collision avoidance maneuvers every six months, about 275
maneuvers per day [23]. According to the latest semi-annual report submitted by SpaceX
to the Federal Communications Commission (FCC), this figure rose to approximately
144000 maneuvers between December 2024 and May 2025, an increase of approximately
200%, due to both the adoption of more conservative risk thresholds and the increase in
the number of operational satellites, now exceeding 7000 [24]. Simulations conducted by
Lewis et al. [25] confirm this trend: for a constellation of 36000 satellites, each spacecraft
would need to perform an average of approximately 17 CAMs per year, equating to a
total of approximately 360000 maneuvers per year, a figure that doubles if more restrictive
risk thresholds are applied. Volumes of this order make continuous manual supervision
impractical, highlighting the limitations of CAM planning processes based exclusively on
human intervention.

1.3.1 The Short-Notice Gap in Collision Avoidance

Hobbs and Feron [26] proposed a temporal taxonomy that classifies collision avoidance
systems into four categories, strategic, tactical, detect-and-avoid, and last-instant, based
on the time remaining until the TCA. The first two categories correspond to current
operational practice, respectively for intervals greater than 72 hours and between 24 and
72 hours from TCA. On the other hand, there are no operational systems or systems with
a high technology readiness level for the detect-and-avoid (< 24 h) and last-instant (< 1 h)
categories. This time segment, which is still not covered, represents a critical technological
gap, where decisions must be made in extremely short times, but the planning systems
currently based on the ground segment are too slow to provide an effective response.

It is therefore essential to develop autonomous onboard systems capable of planning
and executing collision avoidance maneuvers in a very short time. Automation allows
each satellite to independently calculate its own maneuver using a minimum set of data
received from the ground, such as Pc, TCA, and the trajectory of the secondary object
involved, without the need for immediate human validation. By transferring decision-
making capacity on board, it is possible to drastically reduce reaction times in the event of
critical encounters and, at the same time, lighten the operational load of mission control
centers, achieving a scalable approach compatible with the future growth of large satellite
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constellations [8,26]. Furthermore, this approach would also offer a significant advantage to
small space companies, which often operate with limited resources and without a dedicated
mission control center, allowing them to efficiently and safely manage collision avoidance
operations and more easily access space through automation.

1.3.2 Limitation of Classical Optimization Approaches

Classical optimization methods have been widely used to address the problem of autonomous
CAM planning. Convex optimization approaches, such as the one proposed by Pavanello
et al. [27], implement a sequential convex programming methodology to generate low-
propellant-consumption maneuvers in scenarios characterized by multiple close encounters.
Similarly, Dutta et al. [28], further explored the convex optimization formulation by
introducing the propagation of orbital uncertainty of debris and analyzing the evolution of
associated uncertainties, with the goal of enabling the satellite to return to its nominal
orbit. Analytical and semi-analytical methods have also been proposed, Palermo et al. [29],
developed an analytical model for the design of low-thrust maneuvers, characterized by
high reliability and the absence of iterative procedures. Analogously, Gonzalo et al. [30]
presented a semi-analytical approach for low thrust for CAM based on proximal motion
equations, expressed in terms averaged Keplerian elements, capable of providing compact
and computationally efficient expressions for large-scale analysis or potential on-board
implementations.

Alongside deterministic methods, global optimization and metaheuristic approaches
have been developed. Kim et al. [31] proposed a genetic algorithm for generating optimal
maneuvers in the presence of energy and probabilistic constraints, while Zhang et al. [32]
introduced a global optimization algorithm called Timeline Club Optimization, developed
within the traditional Ant Colony Optimization framework and applied to multiple debris
removal missions. Finally, Seong et al. [33] compare different heuristic strategies in scenarios
characterized by multiple threatening objects.

Overall, all these studies have contributed significantly to the advancement of avoidance
maneuver planning methodologies, introducing increasingly sophisticated analytical and
numerical tools. However, they share some inherent limitations: heavy dependence on the
accuracy of the reference dynamic model, high computational costs associated with solving
optimization problems, and poor adaptability to changing operating conditions, which
requires the problem to be solved from the ground up for each new conjunction, without the
possibility of reusing previous knowledge. In addition, the long computational time needed
to compute an optimal solution prevents their use in time-critical conjunctions, where
the decision windows before the TCA may be only a few hours. These limitations make
traditional methods less suitable for operational contexts characterized by high orbital
traffic density and extremely narrow decision windows, highlighting the need to develop
more autonomous, adaptive, and computationally efficient approaches.
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1.3.3 Reinforcement Learning for CAM Planning

Reinforcement Learning (RL) and its extension with deep learning techniques, Deep
Reinforcement Learning (DRL), represent an alternative paradigm that directly addresses
the limitations of traditional optimization methods in the context of autonomous CAM
planning. Unlike the approaches mentioned earlier, RL allows an optimal control policy
to be learned through repeated interaction with a simulated environment, without the
need to explicitly know the system equations. This model-free approach is based on a
trial-and-error process, in which the agent explores different sequences of actions and
evaluates their consequences using a reward function, which in the field of CAM can
simultaneously encompass different performance criteria, allowing the balancing of often
conflicting objectives such as minimizing collision risk, propellant consumption, and orbital
deviation. This mechanism allows effective decision-making strategies to be constructed
even in the presence of nonlinear dynamics, time-varying disturbances, real-time decision-
making, and multi-objective constraints, conditions that make explicit modeling in classical
methods complex or prohibitive [34,35].

The representation capabilities of neural networks in DRL formulations also allow the
agent’s behavior to be generalized to scenarios never encountered during training, exploiting
the variety of experiences accumulated in interaction with the environment. Another crucial
advantage of this approach, compared to traditional optimization techniques, lies in the
separation between the training phase and the deployment phase. Once the optimal policy
has been learned, its implementation is reduced to the execution of a function that associates
the observed state with the corresponding action, with extremely low computational cost.
This approach enables a workflow in which the agent is trained in simulation and, once the
optimal policy is learned, it can be implemented on board with minimal computational
effort and memory usage [35]. The clear separation between the computationally expensive
offline training and the extremely fast on-board inference makes DRL methods particularly
attractive for short-notice conjunction events, where time constrains preclude solving a
new optimization problem from scratch.

Building on these considerations, several studies have already demonstrated the ef-
fectiveness of DRL in various space applications. A comprehensive analysis of the state
of the art is presented by Tipaldi et al. [36], which offers a complete overview of the
main studies that have successfully applied reinforcement learning techniques to the space
sector. The applications cover a wide range of domains, from interplanetary trajectory
design [37,38], in which RL is used to plan Earth–Mars transfers in the presence of dynamic
uncertainties, low-thrust constraints, and minimum propellant consumption criteria, to
planning maneuvers in multi-body systems [39,40], where reinforcement learning was used
to design optimal trajectories in the context of the Circular Restricted Three-Body Problem
(CR3BP) up to the field of guidance, rendezvous and docking maneuvers [35] and the
orbital control of satellite constellations [41].
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1.3.4 Problem statement

In light of the considerations presented, this thesis aims to develop and evaluate a DRL
framework for the autonomous planning of CAMs in scenarios characterized by limited
decision time windows, involving an active and maneuverable satellite and a single non-
cooperative space debris. The objective is not to develop a new DRL algorithm or
demonstrate its superiority over existing methods, but rather to evaluate whether such a
framework can effectively address the operational limitations associated with time-critical
CAMs planning, where traditional ground-based processes are not sufficiently rapid. The
work focuses on the time window between one and two hours before the expected TCA.
Within this context, the technical challenge lies in determining, from a minimal set of close-
approach information, a sequence of impulsive maneuvers capable of reducing the collision
probability below operational thresholds, respecting the available propulsive budget, and
maintaining the orbital configuration within limits compatible with a rapid return to
nominal operations. In this perspective, this thesis considers the operational scenario
in which the DRL framework learns a policy during an offline training phase. Once the
training is completed, the resulting policy is used to determine, in real time, the most
appropriate sequence of maneuvers based solely on the observed state, thanks to very short
inference times (on the order of seconds) and without requiring further training cycles.
The work therefore aims to evaluate the extent to which the learned policy is able to
generalize across different conjunction scenarios and to provide response times consistent
with an autonomous, scalable and timely planning of CAMs in a constrained decision time
windows.

13



1.3. Motivation and Problem Statement

14



Chapter 2

Orbital Dynamics and
Perturbation Modeling

This chapter presents the fundamental concepts and mathematical formulation of the
two-body problem, providing a solid theoretical basis for the orbital dynamics framework
adopted in this thesis. The content aims not only to describe the ideal motion of a
satellite subject to Earth’s gravitational attraction alone, but also to clearly define the
main conventions, equations and representations of the orbital state that will be used
throughout the work.

The first part introduces the unperturbed two-body problem, starting with Newton’s
laws and ending with the analytical equation of the orbit. The chapter then focuses on the
constants of motion and the two main ways of representing the orbital state: Cartesian
and classical. A detailed description of the conversion between these two representations is
also given. In the last section, the ideal model is extended through an overview of the main
perturbative forces acting on real satellite orbits, such as atmospheric drag, solar radiation
pressure, third-body effects and Earth’s gravitational irregularities, and concludes with the
implementation of the orbital propagator used throughout this work.

2.1 Unperturbed Two-Body Problem

The unperturbed two-body problem represents a fundamental idealization within orbital
dynamics, widely adopted to describe the relative motion between celestial bodies, such as
planets, natural satellites, and spacecraft. It describes the motion of two point masses, one
primary (M) and one secondary (m), which interact exclusively through Newton’s law of
gravity [42]:

Fg = −GMm

r3 r (2.1)

where G =6.674 30× 10−11 N m2 kg−2 is the gravitational constant.
The geometric configuration of the system is defined by the position vector r, representing
the instantaneous distance between the two bodies. This vector originates at the center of
mass of the primary body and points toward the position of the secondary body. In the
absence of external perturbations, the motion occurs on a fixed plane in three-dimensional
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Figure 2.1: Newton’s Law of Gravity

space, known as the orbital plane, whose existence will be justified in later sections.
This configuration provides the geometric framework on which the subsequent dynamical
formulation is based.

In order to analyze a more specific situation that aligns with the problem delineated in
the thesis, M is considered to be the Earth’s mass (m⊕), and m is designated as the mass
of a satellite (ms) that orbits the Earth.

2.1.1 Assumption and Model Description

To derive the equation of motion of the two-body problem, it is necessary to introduce
some assumptions:

• The mass of the secondary body (ms) is negligible compared to the mass of the
primary (attractive) body (m⊕)

• The reference system used is inertial, or more precisely pseudo-inertial, since in reality
each celestial body is subject to relative motion with respect to an absolute system.

• The bodies involved (primary and secondary) are assumed to be spherically symmetric,
with uniform density. This assumption allows both to be modeled as point masses.

• No additional external forces are present: the only interaction is the gravitational
one, acting along the conjunction between the centers of mass of the two bodies.

Two reference systems are considered:

• An ideal inertial reference frame (RF) XYZ, fixed in space or with constant orientation
and origin in uniform rectilinear motion.

• An inertial RF IJK, centered in the center of the primary body, translated with
respect to the previous one but not rotating with respect to it. In the context of
this thesis, Earth-Centered-Inertial (ECI) RF is considered (a detailed description of
which is provided in Appendix A).

2.1.2 Derivation of the Equation of Motion

In the ECI RF, Newton’s law of gravitation for the Earth’s gravitational force acting on
the satellite can be expressed as follows:

Fg = −Gm⊕ms

r2

3r
r

4
(2.2)
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where r is the position vector of the satellite relative to the center of the Earth.
As shown in Figure 2.2, the position vector of the Earth and the satellite with respect

to the inertial system XYZ are respectively r⊕ and rs, thus r is:

r = rs − r⊕ (2.3)

Since the vectors are expressed with respect to an inertial reference system, it is possible
to determine the relative acceleration of the satellite with respect to the Earth by deriving
twice with respect to time:

r̈ = r̈s − r̈⊕ (2.4)

X

Y

Z

r⊕

Î

Ĵ

K̂

m⊕rs

ms

r

Figure 2.2: Two-body configuration in the IJK inertial frame.

Applying Newton’s second law and the law of gravitation, the forces acting on the two
bodies are:

Fgs = msr̈s = −Gm⊕ms

r2

3r
r

4
(2.5)

Fg⊕ = m⊕r̈⊕ = G
m⊕ms

r2

3r
r

4
(2.6)

After simplifying ms in Eqn. (2.5) and m⊕ in Eqn. (2.6), subtracting Eqn. (2.6) from
Eqn. (2.5) gives:

r̈ = −Gm⊕ +ms

r2

3r
r

4
(2.7)

Given the initial assumptions of the two-body problem, the mass of the second body can
be neglected with respect to the mass of the first body. It is therefore possible to assume
m⊕ +ms ≈ m⊕ and so G(m⊕ +ms) ≈ Gm⊕. It is now convenient to introduce the Earth
gravitational parameter µ △= Gm⊕, which, substituted into Eqn. (2.7) leads to the equation
of motion of the unperturbed two-body problem:

r̈ = − µ
r2

3r
r

4
(2.8)
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This second-degree, nonlinear, vector differential equation is often called relative two-body
EOM because it represents the equation of motion of the secondary body with respect to
the primary body.

2.1.3 Constants of motion

It is useful to introduce two fundamental constants of orbital motion into the two-body
problem, as they provide significant information about the dynamical behavior of the
secondary body and make it possible to predict its position and velocity over time. The
conservation of specific angular momentum allows for the determination of the orbital
plane and the geometry of the trajectory. Additionally, the specific mechanical energy is
utilized to classify the type of orbit and to calculate certain characteristic quantities, such
as the semi-major axis and the orbital period.

Specific Angular Momentum

In the context of the two-body problem, the angular momentum is commonly expressed
in its specific form (per unit mass), as this eliminates the dependence on the satellite’s
mass, assumed negligible, and highlights the purely geometric and kinematic nature of the
motion. The specific angular momentum can then be easily obtained by cross-multiplying
Eqn. (2.8) with the position vector r:

r× r̈ + r× µ

r2

3r
r

4
= 0 (2.9)

Since r × r = 0, the second term of Eqn. (2.9) disappears while the first term can be
written through the following differential:

d

dt
(r× ṙ) = ✘✘✘ṙ× ṙ + r× r̈ = r× r̈ (2.10)

Substituting this differential into Eqn. (2.9), since the derivative results in zero, it follows
that the integrated quantity must remain constant over time. By rearranging the expression
and replacing the derivative of the position vector (r) with velocity (v), it is possible to
obtain:

h = r× v = constant (2.11)

This definition shows that the specific angular momentum (h) is a vector perpendicular to
both the position vector and the velocity vector, and therefore orthogonal to the plane
determined by them, called the orbital plane. This implies that, in the unperturbed
two-body problem, the motion of the satellite is confined to a fixed plane whose orientation
in space remains constant in time.

It is also useful to consider the magnitude of specific angular momentum, as it introduces
an angle of particular relevance to orbital dynamics: the flight path angle (γ), defined as
the angle between the satellite’s velocity vector and the local horizontal (i.e., the direction
perpendicular to the radial vector).
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The magnitude of the specific angular momentum can be expressed as:

h = rv cos γ (2.12)

At periapsis and apoapsis, the flight path angle is zero because the velocity vector is tangent
to the orbit and parallel to the local horizontal. At these points, Eqn. (2.12) simplifies to:

h = rv = rava = rpvp (2.13)

Specific Mechanical Energy

The second constant of motion, the specific mechanical energy, can be obtained by taking
the dot product of both sides of Eqn. (2.8) with the velocity vector ṙ

ṙ · r̈ = −ṙ · µ
r2

3r
r

4
(2.14)

In the orbital motion, the acceleration of the satellite is entirely radial, that is, directed
along the position vector r. This implies that r and r̈ are parallel and that the angle
between r and ṙ remains constant over time. Under these conditions, it is possible to
rewrite Eqn. (2.14) in a scalar form:

vv̇ + µ

r2 ṙ = 0 (2.15)

Two derivatives with respect to time can be recognized in this expression:

d

dt

A
v2

2

B
= vv̇

d

dt

3
−µ
r

4
= µ

r2 ṙ (2.16)

The former represents the derivative of the specific kinetic energy, while the latter represents
the derivative of the specific potential energy. Substituting in Eqn. (2.15), it yields:

d

dt

A
v2

2 −
µ

r

B
= 0

The sum of kinetic energy and specific potential constitutes the specific mechanical energy,
and since its time derivative is zero, it is concluded that this quantity remains constant
along the orbit:

E = v2

2 −
µ

r
+ c (2.17)

The integration constant, often denoted c, depends on the choice of reference level for the
potential energy and can take on an arbitrary value. In astrodynamics, it is conventional
to set c = 0, which is equivalent to considering the gravitational potential energy to be
zero at infinity. With this convention, the specific potential energy is always negative
along the orbit. In the case of a closed orbit (e.g., elliptical), the satellite’s total energy
is conserved, but it is distributed differently along the trajectory: at perigee (the point
closest to the attractive center), the satellite has high kinetic energy and lower potential,
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2.1. Unperturbed Two-Body Problem

at apogee (the farthest point), the opposite happens, with lower kinetic energy and higher
potential. In some cases, it can be useful to define E through the semi-major axis (a) of
the orbit, particularly when the position and velocity vector are not known. Assuming
the position of the satellite is at the perigee of the orbit, the substitution of the specific
angular momentum magnitude, Eqn. (2.13), into Eqn. (2.15) results in:

E = v2

2 −
µ

r
= h2

2r2
p

− µ

rp
(2.18)

Using the equalities rp = a(1− e), and h =
ð
µa(1− e2):

E = µa(1− e2)
2a2(1− e)2 −

µ

a(1− e) (2.19)

After some simplification, this expression (valid for all non parabolic orbits) leads to the
following result:

E = − µ

2a (2.20)

Eqn. (2.17) and (2.20) are sometimes combined giving the traditional form of the vis-viva
equation:

E = v2

2 −
µ

r
= − µ

2a (2.21)

2.1.4 Analytical Orbit Equation

Starting from the equation of motion of the unperturbed two-body problem, Eqn. (2.8), it
is possible to derive an analytical solution in closed form that describes the trajectory of
the secondary body. In particular, by integrating the equation in the orbital plane and
taking advantage of conservation of specific angular momentum, the orbit equation in polar
form is obtained:

r = h2/µ

1 + (B/µ) cos θ = p

1 + e cos θ (2.22)

where the quantities in the equation, depicted in Figure 2.8, are defined as follows:

• B: constant of integration, related to the eccentricity of the orbit;

• θ: true anomaly, the angle between the perigee vector and the instantaneous position
of the satellite along the orbit;

• h2/µ: corresponds to the semilatus rectum (p), the distance from the focus (where
the attractive body is located) to the orbit, measured perpendicular to the major
axis;

• B/µ: represents the eccentricity (e), parameter that determines the geometric shape
of the orbit (“roundness”).

The existence of this analytical solution confirms and generalizes Kepler’s first law, showing
that every orbit subject to a central gravitational force is a conic section.
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Figure 2.3: Geometric Parameters Polar Form Orbit

The value of eccentricity has a central role in the classification of orbits. Together with
the specific mechanical energy, it makes it possible to identify the type of conic section
described by the orbital trajectory and to determine whether the orbit is closed or open.
The combination of these two parameters makes it possible to distinguish circular, elliptical,
parabolic and hyperbolic orbits, as reported in Table 2.1.

Orbit Type Eccentricity e Specific Energy ε Boundedness
Circular e = 0 ε < 0 Closed
Elliptical 0 < e < 1 ε < 0 Closed
Parabolic e = 1 ε = 0 Open (limiting case)

Hyperbolic e > 1 ε > 0 Open

Table 2.1: Classification of conic orbits

2.2 State Representation

In order to completely describe the motion of a satellite in space, six independent quantities
are required, which define the so-called state of the satellite. These quantities can be
expressed in equivalent forms, the two main ones being:

• Cartesian state vector, consisting of three components of the position vector (r)
and three components of the velocity vector (v), expressed in an inertial RF. This
representation is suitable for numerical propagation, since it directly provides the
derivatives needed for integration of the equations of motion, but it has limited
physical interpretability in terms of the size, shape and orientation of the orbit.

• Classical Orbital Elements, six scalar parameters derived from the geometry
of conic sections that clearly describe the shape, size, orientation, and temporal
component of the orbit. They are commonly used for qualitative analysis and
understanding of orbital motion.

Both representations provide a complete set of initial conditions for solving the two-body
problem and must be referenced to a well-defined coordinate system, typically the ECI RF.
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2.2. State Representation

2.2.1 Cartesian Orbital Elements

Although the ECI coordinates of position and velocity do not provide an immediate
understanding of the shape, size and orientation of the orbit in space, they provide a very
effective basis for numerical integration of the equations of motion, as mentioned earlier.
The position of the satellite in the ECI RF can be expressed as:

r = xÎ + yĴ + zK̂ (2.23)

where x, y, and z represent the coordinates of the position vector. The magnitude of the
position vector thus results in:

r =
√

r · r =
ñ
x2 + y2 + z2 (2.24)

Differentiating r with respect to time, the velocity vector is obtained:

v = dx

dt
Î + dy

dt
Ĵ + dz

dt
K̂ (2.25)

The magnitude of the velocity vector is then:

v =
√

v · v =

ó3
dx

dt

42
+
3
dy

dt

42
+
3
dz

dt

42
(2.26)

The three components of Eqn. (2.23) and Eqn. (2.25) constitute the six initial conditions
necessary for numerical integration of the system of coupled second-order differential equa-
tions. Taking the derivative of Eqn. (2.23) twice, and equating the resulting acceleration
to Newton’s Law of Universal Gravitation gives the two-body equation of motion for this
system:

d2r
dt2

= − µ
r3 r (2.27)

The numerical integration of this equations (which is discussed in more detail in Section
2.4) makes it possible to determine the trajectory for any type of orbit. However, to obtain
a more meaningful representation, these Cartesian elements should be converted into the
corresponding classical orbital elements, as discussed in the next section.

2.2.2 Classical Orbital Elements

While Figure 2.4 provides a geometric visualization of the majority of the classical orbital
elements, the formal definitions and physical meaning of each of them are as follow:

• Semi-major axis (a) is a geometric quantity corresponding to half the major axis
of the conic section describing the orbital trajectory. In practical terms, it represents
the average distance between the orbiting body and the focus of the orbit, coincident
with the center of mass of the central body. For elliptical orbits, a provides a direct
measure of the size of the orbit, while in the special case of circular orbits it coincides
with the radius.
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Figure 2.4: Classical Orbital Elements

• Eccentricity (e) is a dimensionless quantity that characterizes the shape of the
orbital trajectory. e is the magnitude of the eccentricity vector e, a vector quantity
that lies in the orbital plane and points toward periapsis. Physically, eccentricity
quantifies the degree to which the orbit deviates from circularity (e=0). As described
in Table 2.1, eccentricity is therefore an essential parameter to classify the conic
types.

• Inclination (i) is the angle between K̂ and the specific angular momentum vector
(h), that describes the orientation of the orbital plane with respect to the Earth’s
equatorial plane. i takes values between 0◦ and 180◦. In particular, an inclination of
0◦ or 180◦ identifies an equatorial orbit, between 0◦ and 90◦ degrees a prograde orbit,
and between 90◦ and 180◦ a retrograde orbit.

• Right Ascension of Ascending Node (RAAN, Ω) is the angle, measured in the
equatorial plane counterclockwise, between Î and the direction of the ascending node
(n̂). The latter is the point at which the satellite crosses the Earth’s equator going
from the Southern to the Northern hemisphere. The descending node, on the other
hand, is the diametrically opposite point where the satellite crosses the equator from
North to South. The union of the two nodes defines the node line, which lies on
the equatorial plane and locates the line of intersection between the orbital and
equatorial planes. The vector associated with this direction is usually denoted by
n and is called the node vector. The RAAN is well defined only for inclined orbits
(i ̸= 0◦, 180◦) and can take values between 0◦ and 360◦.

• Argument of Perigee (ω) is the angle measured in the orbital plane, counterclock-
wise to the direction of the satellite’s motion, between the direction of the ascending
node and the direction of perigee. ω specifies the position of the closest point to the
central body along the orbit, relative to the line of nodes. The value of ω is between
0◦ and 360◦.
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• True Anomaly (θ) is the angle that locates the instantaneous position of the satellite
along the orbit. θ is measured in the orbital plane from the direction of perigee to the
current position of the satellite, following the direction of orbital motion. The value
of θ ranges from 0◦ and 360◦ and, unlike the other orbital elements, is not constant
in time, but changes continuously during motion. True anomaly thus provides the
dynamic information that completes the description of the orbital state at a given
instant.

Singularities

While the use of classical orbital elements provides a meaningful physical understanding of
orbit geometry in space, there are two cases in which they exhibit singularities.
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ΩÎ

Ĵ
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(b) Longitude of periapsis (ϖ)
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(c) True Longitude (l)

Figure 2.5: Singularities in Classical Orbital Elements

The first singularity occurs for an exactly circular orbit (e = 0). In a circular orbit, since
there is no periapsis, the angle ω (argument of the perigee) is not defined. Furthermore, in
the absence of a periapsis, the true anomaly θ, which represents the time evolution of the
satellite position measured from the periapsis, is also not uniquely defined. In this case, an
alternative element called argument of latitude (u) is introduced (see Figure 2.5a), defined
as the angle between the direction of the ascending node n̂ and the instantaneous position
of the satellite along the orbit.

The second singularity occurs in the case of an exactly equatorial orbit ( i = 0◦, 180◦).
Since in such a case the orbital plane coincides with the equatorial plane, a crossing of
the orbital plane in the ascending node never occurs, and therefore Ω is not defined. To
remedy this deficiency, a new parameter is defined, called longitude of periapsis (ϖ) (see
Figure 2.5b), which represents the angle between Î and the eccentricity vector (e).

The situation is further complicated when the orbit is simultaneously circular and
equatorial (e = 0 and i = 0◦, 180◦), as in the case of ideal geosynchronous orbits. In
such a scenario, neither ω nor Ω are defined, and another parameter is defined, the true
longitude (l) (see Figure 2.5c), defined as the angle between Î and the instantaneous
position of the satellite along the orbit. Although the latter case mainly represents a
mathematical occurrence (getting a perfectly circular and equatorial orbit is actually
operationally unfeasible) near-zero values of eccentricity and inclination can still cause
numerical problems in integrating the equations of motion. For this reason, in numerical
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integration it is often preferred to use the Cartesian representation of orbital states, which
has no such structural singularities.

2.2.3 Conversion between Representation

Many initial conditions provided by operational databases, mission analysis tools or
analytical formulations are expressed through classical orbital elements, while numerical
integration of equations of motion typically requires the use of Cartesian coordinates.
Similarly, at the end of the propagation, it may be useful to reconvert the dynamical state
to elemental form to analyze the evolution of physically significant parameters.

In this context, the ability to accurately perform the conversion between representations
is a key step to ensure both proper initialization of simulations and clear interpretation of
the results.

From Classical Orbital Elements to Cartesian Coordinates

Given the set of classical orbital elements {a, e, i,Ω, ω, θ} it is possible to compute the
position and velocity vectors r and v in the ECI RF starting from the definition of semilatus
rectum (p) and the orbit equation in polar form, respectively:

p = a(1− e2) (2.28)

r = p

1 + e cos θ (2.29)

Once the perifocal reference system (PQW ) (a detailed description of which is given in
Appendix A), has been defined, it is possible to express the position and velocity vectors
of the satellite, rP and vP , respectively, within that system according to the following
formulations:

rP =


r cos θ
r sin θ

0

 (2.30)

vP =


−
ñ

µ
p sin θñ

µ
p (e+ cos θ)

0

 (2.31)

Referring now to Figure 2.6, a transformation is made between the ECI RF and the
perifocal RF through the following direction cosine matrix (DCM):

CEP = Rz(Ω)Rx(i)Rz(ω) (2.32)

where the rotation matrices Rz(Ω), Rx(i), and Rz(ω), are respectively:

Rz(Ω) =


cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1

 (2.33)
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Rx(i) =


1 0 0
0 cos i sin i
0 − sin i cos i

 (2.34)

Rz(ω) =


cosω sinω 0
− sinω cosω 0

0 0 1

 (2.35)
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Figure 2.6: Perifocal to ECI RF Transformation

To perform the transformation from the PQW frame to the ECI frame a rotation of Ω is
performed around K̂, followed by a rotation of i about the new Î′, and finally a rotation of
ω about K̂. The position and velocity vectors in the ECI RF (r and v) can therefore be
written as:

r = CEP rP

v = CEP vP
(2.36)

From Cartesian Coordinates to Classical Orbital Elements

Given the state vectors in Cartesian coordinates (r and v), along with their magnitudes, it
is possible to determine the set of classical orbital elements {a, e, i,Ω, ω, θ} by leveraging the
constants of motion and applying purely geometric considerations related to the orientation
of the orbit in space.

The first orbital element, the semimajor axis (a), is obtained from the vis-viva equa-
tion, Eqn. (2.20):

a = 11
2
r −

v2

µ

2 (2.37)

To determine the eccentricity (e), the eccentricity vector e is first computed from its
definition:

e = r× h
µ
− r
r

(2.38)

The eccentricity is then obtained as the magnitude of the eccentricity vector:

e = |e| (2.39)
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Since the inclination (i) is defined as the angle between the unit vector K̂ and the specific
angular momentum vector h (with magnitude h = |h|), it can be computed using the
definition of the dot product:

cos i = K̂ · h
h

(2.40)

As the inclination is conventionally defined within the range [0◦− 180◦], no quadrant check
is required when evaluating the inverse cosine.

The RAAN (Ω) is determined using the node vector n which is defined as the cross
product between K̂ and the specific angular momentum vector h:

n̂ = K̂× h (2.41)

Since Ω is defined as the angle between Î and the nodal vector n, it can be computed using
the definition of the dot product:

cos Ω = Î · n̂
n

(2.42)

However, unlike the inclination, the RAAN can vary from 0◦ to 360◦, so it is necessary to
determine the appropriate quadrant for the resulting angle. This can be done by inspecting
the sign of the y-component of the node vector n:

Ω =

cos−1
1

Î·n̂
n

2
ny ≥ 0

2π − cos−1
1

Î·n̂
n

2
ny < 0

(2.43)

The argument of periapsis (ω) is defined as the angle between the node vector n and the
eccentricity vector e, both of which lie in the orbital plane. It can be computed using the
scalar (dot) product:

cosω = e · n̂
en

(2.44)

Like the RAAN, the argument of periapsis can vary from 0◦ to 360◦. To determine the
appropriate quadrant, the sign of the z-component of the eccentricity vector must be
inspected.

ω =

cos−1
1

e·n̂
en

2
) ez ≥ 0

2π − cos−1
1

e·n̂
en

2
) ez < 0

(2.45)

Finally, true anomaly (θ), defined as the angle between the eccentricity vector (position of
the perigee) and the instantaneous position of the satellite is computed like the last two
elements using the definition of the dot product:

cos θ = e · r
er

(2.46)

Since the true anomaly is defined within the range 0◦ to 360◦, the appropriate quadrant can
be determined by inspecting the sign of the radial component of the velocity (vr = v · r̂):
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θ =

cos−1 !e·r
er

"
vr ≥ 0

2π − cos−1 !e·r
er

"
vr < 0

(2.47)

2.3 Perturbations Modeling

Perturbations represent, in general, all those deviations from the ideal, simplified, undis-
turbed motion typical of the two-body problem. Physical reality does not conform exactly to
the simplifying assumptions underlying Keplerian motion, so the ideal solutions constitute
only an approximation of the observed real motion. Under operational conditions, in fact,
the motion of a satellite is affected by various additional forces and external influences that
alter its trajectory, generating even significant deviations from the theoretical two-body
orbit. Although in many cases perturbative forces are relatively small in magnitude, their
cumulative effect over time can significantly alter the orbital motion of a satellite. In some
scenarios, their long-term influence can become comparable to or even exceed that of the
primary gravitational force. A rigorous dynamical model would require the inclusion of a
wide range of perturbations, including those of modest instantaneous strength, because of
their potentially large integrated impact. Depending on the specific scenario analyzed in
this thesis, different perturbative effects are considered. For short-term scenario, in which
the orbital propagation spans over a few hours, the dominant perturbations in LEO are the
atmospheric drag and the irregularities of the Earth’s gravitational field, due to the Earth’s
non perfect sphericity. For longer propagation periods, spanning several days, additional
perturbations such as the third-body gravitational effects (particularly the Moon and Sun),
and the solar radiation pressure are included, although their magnitude in LEO remains
considerably smaller compared to the previously mentioned ones.

Before describing each perturbation in detail, it is useful to introduce some classifica-
tions generally adopted in literature. A first distinction can be made on the basis of the
nature of the perturbative force, dividing perturbations into two basic categories:

• Conservative forces: these are forces of a gravitational nature that, while changing
the orientation or shape of the orbit, do not alter the total mechanical energy of the
system. This category includes effects due to interaction with third bodies and those
resulting from an accurate representation of the Earth’s gravitational field.

• Non-conservative forces: these are forces that vary the total mechanical energy of
the satellite and act in a dissipative or propulsive manner. These include atmospheric
drag and solar radiation pressure.

A further classification can be made on the basis of the effects produced on the time
evolution of Keplerian orbital elements. Perturbations, in fact, cause these elements to
vary over time in different ways (as depicted in Figure 2.7), resulting in:

• Secular variations: monotonous and cumulative changes in the orbital elements,
typically linear in nature over time.
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• Long-period variations: oscillations of the elements that develop on longer
timescales than the orbital period.

• Short-period variations: rapidly oscillating effects that recur several times within
a single orbital period.

Secular Trend

Short Period

Long Period

Time

Kepler’s Element Variation

Figure 2.7: Periodic Variations due to Perturbations

2.3.1 Atmospheric Drag

Among all the perturbative forces acting on a satellite in LEO, the most significant is
atmospheric drag, generated by the interaction between the spacecraft and particles in
the Earth’s atmosphere. Although at such altitudes the atmospheric density is extremely
low, the satellite’s high orbital velocity, typically on the order of several kilometers per
second, makes impacts with atmospheric molecules non-negligible. These repeated impacts
result in a net force acting in the opposite direction of motion, progressively retarding the
satellite’s motion. Being a non-conservative force, drag causes a loss of mechanical energy
in the system. This results, over time, in a reduction in the semi-major axis and an increase
in orbital eccentricity. As a result, the perigee of the orbit gradually lowers until leading,
in the absence of corrective action, to atmospheric reentry of the satellite. Although this
effect may initially appear to be an operational limitation, if properly considered at the
mission design stage, it can prove beneficial. In particular, for sufficiently low operational
orbits, drag action can ensure natural satellite reentry within the 5-year period established
by the ESA Space Debris Mitigation Requirements [10].

The basic expression for the magnitude of the perturbative acceleration due to aerody-
namic drag originates from the standard drag force formulation:

D = 1
2CDAρv

2 (2.48)

Since drag acts in the direction opposite to the motion, the corresponding perturbative
force is expressed as:

Fdrag = −1
2CDAρv

2
rel

vrel

vrel
(2.49)
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where:

• CD is the dimensionless drag coefficient, which quantifies the susceptibility of the
satellite to aerodynamic forces. CD is often approximated as 2.2 when not precisely
known.

• ρ is the atmospheric density at the satellite’s altitude, which is the most challenging
parameter to estimate accurately.

• A is the projected cross-section area of the satellite perpendicular to the direction of
motion, which depends on the satellite’s orientation and is thus nontrivial to evaluate.

• vrel is the satellite’s velocity relative to the rotating atmosphere, which is not the
velocity vector typically found in the state vector:

vrel = dr
dt
− ω⊕ × r (2.50)

with ω⊕ = 7.292 11 × 10−5 rad s−1 being the angular velocity vector of Earth’s
rotation.

The perturbative acceleration due to drag is then straightforwardly obtained by dividing
the force by the satellite’s mass:

adrag = Fdrag

ms
= −1

2
CDA

ms
ρv2

rel

vrel

vrel
(2.51)

Atmospheric Density

The determination of atmospheric density deserve particular attention, as it represent
one of the main sources of uncertainties in modelling atmospheric drag. As discussed by
Vallando [1], the density of the upper atmosphere varies continuously as a result of the
combined effects of molecular composition, incident solar flux, and geomagnetic activity.
Given the dynamic and complex nature of these interactions, several empirical density
models have been developed (e.g., NRLMSISE-00, Jacchia, and DTM) which require solar
and geomagnetic indices as input. However, due to the computational efficiency required by
the RL training performed in this thesis (as will be discussed in later chapters), a simpler
static approach has been adopted. In particular, the atmospheric density is approximed
with an exponential model that assumes a spherically symmetric distribution of particles
and a density decreasing exponentially with altitude according to:

ρ(h) = ρ0 exp
5
−h− h0

H

6
(2.52)

where h = r − R⊕, with R⊕ = 6378.1366 km Earth’s mean equatorial radius, is the
altitude above Earth’s surface, ρ0 is the reference density at altitude h0, and H is the scale
height. The values of ρ0, h0, and H for different altitude ranges are reported in Table B.1
(Appendix B).
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Chapter 2. Orbital Dynamics and Perturbation Modeling

2.3.2 Earth’s Gravitational Potential

In the framework of the unperturbed two-body problem, Earth is considered a perfectly
spherical body with uniform mass distribution. This assumption leads to a simple ex-
pression for the gravitational potential, U = −µ/r, and generates central, inverse-square
accelerations directed toward the Earth’s center of mass. However, Earth is not a perfect
sphere. It is better approximated as an oblate spheroid, and its internal mass distribution
is far from homogeneous. These deviations from spherical symmetry lead to a gravitational
field that is not uniform and varies with position. As a consequence, satellite motion
is affected by additional accelerations not accounted for in the two-body model. The
actual gravitational potential of the Earth generates a set of equipotential surfaces that
are not spherical. The surface that best represents the Earth’s gravitational “shape” is
the geoid, which is defined as the surface perpendicular at every point to the direction
of the gravitational acceleration. The geoid is affected by local mass concentrations such
as mountain ranges, ocean trenches, and the planet’s overall flattening at the poles. To
model these effects a more accurate representation of the Earth’s gravity field requires an
aspherical potential, where the deviations from the spherical term are expressed through
a hierarchy of correction terms that depend on the internal mass distribution. These
correction terms are classified into three categories of spherical harmonic, each associated
with different symmetries of the mass distribution:

• Zonal harmonics: are symmetric about the Earth’s rotation axis and do not vary
with longitude. The most significant of these is the J2 term, which reflects the
planet’s equatorial bulge and is the dominant source of gravitational perturbation in
LEO.

• Sectoral harmonics: vary with longitude but not with latitude. Sectorial terms
become relevant in regions with repeated patterns in longitude, such as tectonic belts
or oceanic ridges.

• Tesseral harmonics: are the most general class, varying with both latitude and
longitude. They represent localized mass anomalies, such as continental-scale features,
and form a checkerboard-like pattern of gravitational highs and lows over the Earth’s
surface.

A visual representation of these harmonics can be obtained by mapping their associated
potential terms onto a globe: zonal terms appear as horizontal bands (Figure 2.8a), sectorial
as vertical slices (Figure 2.8b), and tesseral as patch-like patterns (Figure 2.8c).

(a) Zonal Harmonics (b) Sectoral Harmonics (c) Tesseral Harmonics

Figure 2.8: Spherical Harmonics Term

31



2.3. Perturbations Modeling

The perturbations arising from the Earth’s gravitational potential produce measurable
effects on satellite motion, especially in LEO. Among these, the most relevant are the secular
perturbation caused by the zonal harmonics (particularly J2) that cause a gradual shift
of the RAAN and argument of perigee. In addition, all harmonic components contribute
to periodic oscillations in the orbital elements. The magnitude of these perturbations
generally increases with orbit eccentricity and decreases with increasing semimajor axis.
Low-altitude and elliptical orbits are particularly sensitive to the Earth’s gravitational
irregularities.

Earth Gravitational Potential Modeling with EGM2008

In order to capture the effects of Earth’s non-spherical mass distribution on satellite
dynamics, the gravitational potential must be expressed in a form that accounts for such
irregularities. This is typically done using global geopotential models derived from spherical
harmonic expansions.

The Earth Gravitational Model 2008 (EGM2008) is one of the most widely used
geopotential reference models to represent the Earth’s gravitational field. It is based
on a spherical harmonic expansion with coefficients computed up to degree and order
nmax = 2190 [43]. According to this model, the Earth’s gravitational potential, expressed
in a geocentric spherical RF is expressed as a sum of fully-normalized spherical harmonic
terms:

U(r, ψ, λ) = µ

r

C
1 +

nmaxØ
n=2

3
R⊕
r

4n nØ
m=0

1
C̄nm cosmλ+ S̄nm sinmλ

2
P̄nm(cosψ)

D
(2.53)

where ψ is the geocentric colatitude, measured from z-axis of the Earth-Centered Earth-
Fixed (ECEF) RF (a detailed description of which is given in Appendix A), λ is the
geocentric longitude, measured in the equatorial plane from the x-axis of ECEF RF,
R⊕ is Earth’s mean equatorial radius, C̄nm and S̄nm are the fully-normalized spherical
harmonic coefficients of degree n and order m in ECEF RF, and finally P̄nm(cos θ) are the
fully-normalized associated Legendre functions.

The µ/r in Eqn. (2.53), represents the spherically symmetric gravitational poten-
tial (equivalent to the classical two-body central potential), while the two summations,qnmax

n=2
qn

m=0(. . . ), model the deviations from spherical symmetry due to Earth oblateness
and local mass anomalies.

To quantify the perturbating acceleration resulting from this aspherical potential, which
directly effects the orbital motion of the satellite, the gradient of U(r, ψ, λ) is computed as:

asph = ∇U(r, ψ, λ) = ∂U

∂r
r̂ + 1

r

∂U

∂ψ
ψ̂ + 1

r sinψ
∂U

∂λ
λ̂ (2.54)

The acceleration obtained must then be transformed into the ECI RF through the interme-
diate ECEF RF, in order to be used within the numerical integration process.

Although truncating the spherical harmonic expansion allows a trade-off between
modeling accuracy and computational efficiency, the explicit evaluation of the potential
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Chapter 2. Orbital Dynamics and Perturbation Modeling

gradient and the subsequent RF transformations makes this approach computationally
expensive for this work. Therefore, the analytical expression for the perturbing accelerations,
in ECI RF, associated with the zonal harmonics up to J6 are adopted in this thesis. Among
these, the contribution of J2 and J3 are reported below, as they represent the dominant
components of the gravitational perturbation in LEO.

aJ2 = −3J2µR
2
⊕

2r5
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(2.55)

with J2 = 1.08262668 · 10−3.

aJ3 = −5J3µR
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(2.56)

with J3 = −2.5324105 · 10−6. The remaining terms up to J6, are provided in Appendix C.

2.3.3 Solar Radiation Pressure

Like atmospheric drag, solar radiation pressure also constitutes a non-conservative per-
turbation, as it alters the mechanical energy of the system. This force is generated by
the interaction between the photons emitted by the Sun and the satellite surface: the
energy carried by the photons, upon impact, can be absorbed or reflected depending on
the optical properties of the surface material, generating a net change in momentum. The
magnitude of the effect depends on the apparent surface exposed to the Sun, i.e., the
portion of the satellite orthogonal to the direction of propagation of the radiation. A
particularly complex aspect of modeling this perturbation lies in the difficulty of accurately
characterizing solar cycles, variations in solar activity and the illuminated geometry of the
satellite. During phases of high activity, such as solar storms, the pressure exerted may
exceed, in terms of instantaneous acceleration, the one due to other perturbative forces,
especially for higher orbits. Conversely, during quiet periods of solar activity, the effect
may be almost negligible.

To derive the formulation for estimating the acceleration caused by solar radiation
pressure, it is necessary to first estimate the energy intensity of the incident radiation from
the Sun. For simplicity, in the context of solar radiation pressure analysis, reference is
often made to the solar radiation constant or solar flux (SF), the average of which is equal
to:

SF = 1367 W m−2 (2.57)
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2.3. Perturbations Modeling

This constant represents the intensity of the power radiated by the Sun reaching, per unit
area, an area placed perpendicular to the Sun’s rays at the average Earth-Sun distance. It
constitutes an estimate of the energy density incident on the Earth system under average
conditions. However, the value of solar flux is not perfectly constant, but undergoes
variations related to solar activity and, to a more regular extent, to the variation of the
Earth-Sun distance during the year. To account for these effects, a time-varying formulation
is proposed in [44], which allows the intensity of solar radiation to be approximated more
accurately as a function of the day of the year:

SF = 1358
1.004 + 0.0034 cosDaphelion

(2.58)

where Daphelion represents the number of days elapsed since aphelion, expressed as a fraction
of the Earth’s period of revolution (365 days).

Now dividing the intensity of incident radiation by the speed of light in vacuum
(c = 299 792.458 km s−1), the value of the pressure exerted by solar radiation is obtained as
the change in momentum per unit time and area:

psrp = SF

c
(2.59)

Subsequently, the force exerted by solar radiation pressure is expressed as:

Fsrp = −psrpcRA⊙
rsat⊙
rsat⊙

(2.60)

where:

• A⊙ represents the area of the satellite directly exposed to solar radiation. A common
approximation is to assume that this surface constantly maintains a perpendicular
attitude with respect to the direction of the solar rays, i.e., ϕinc = 0◦ (see Figure
2.9). Although this assumption is unrealistic in an operational context, it allows for
a preliminary estimate of the effects of solar pressure.

• cR is the reflectivity coefficient, a dimensionless value between 0.0 and 2.0, which
depends on the optical properties of the surface materials and the geometry of the
satellite. Accurate determination of cR is particularly complex: it can vary over
time and is difficult to predict, especially in the case of satellites characterized by
composite surfaces and different materials.

• rsat⊙ = r⊕⊙ − r is the relative position vector between the satellite and the Sun.

Incident Beam
psrp

Sun (⊙)

A⊙

n̂
ϕinc

Figure 2.9: Incident Solar Radiation
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To determine the perturbative acceleration associated with solar radiation pressure, it is
sufficient to divide the calculated force by the mass of the satellite:

asrp = Fsrp

ms
= −psrpcRA⊙

ms

rsat⊙
rsat⊙

(2.61)

Overall, solar radiation pressure induces periodic variations in all orbital elements, which
can surpass the influence of atmospheric drag at altitudes above approximately 800 km.

2.3.4 Third-Body Effects

In the case of LEO satellites, the gravitational influence exerted by external celestial bodies,
such as the Moon and the Sun, is of significantly less magnitude than other perturbative
sources already discussed, such as drag and the irregularity of the Earth’s gravitational field.
However, the effects of these perturbations may become non-negligible when considering
long-term propagation scenarios, as they can induce gradual variations in the orbital
elements of the satellite. The third-body perturbation results from the difference between
the gravitational attraction exerted by the perturbing body on the satellite and that exerted
on the central body (Earth). This effect is purely gravitational, and therefore conservative
in nature, falling into the category of conservative perturbation.

S/C
r⊕sat

r⊕3
rsat3

3rd Body

Î
Ĵ

K̂

Figure 2.10: Three Body Geometry

As shown in Figure 2.10, the geometry of the third-body perturbation is defined by two
position vectors: r⊕3 representing the position of the perturbing body with respect to
Earth, and rsat3 = r⊕3 − r⊕sat representing the position of the same body with respect
to the satellite. The perturbation is obtained as the difference between the gravitational
acceleration exerted by the perturbing body on the satellite and that exerted on the Earth,
and is expressed as:

a3 = µ3

A
rsat3
r3

sat3
− r⊕3
r3

⊕3

B
(2.62)

where µ3 = Gm3 is the gravitational parameter of the third body. For the Sun,
µ⊙ = 1.327 124 400 18× 1011 km3/s2, while for the Moon, µ$ = 4.904 869 5× 103 km3/s2.
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Two contributions can be distinguished in Eqn. (2.62) as proposed by [1]. The di-
rect term, represented by the term rsat3

r3
sat3

, describes the acceleration exerted directly by the
perturbing body on the satellite, and the indirect term , expressed by r⊕3

r3
⊕3

, represents the
acceleration exerted by the same perturbing body on Earth.

Moon and Sun Ephemeredis

The third-body perturbation strongly depends on the quality of the ephemeris data used
to determine the position of the perturbing body with respect to the Earth, r⊕3. The
same applies to the solar radiation pressure, where knowing the Sun’s position relative to
Earth (r⊕⊙)is essential to correctly evaluate the direction of the incident radiation and the
resulting force on the spacecraft. In the context of this thesis, the Moon ephemerides
are determined using the formulation proposed by Simpsons [45], which is based on JPL’s
Development Ephemeris DE200 and represent the Moon’s position through sine and cosine
terms derived from a Fourier transform:

r⊕$ =
NnØ

m=1
anm sin (ωnmTJD + δnm) (2.63)

where r⊕$ is Moon’s center of mass position in ECI RF, Nn is the order of the series,
anm, ωnm, and δnm represent the amplitudes, frequencies, and phase constant of the series,
respectively, and TJD is time measured in Julian centuries since Epoch J2000. In this work,
a seventh-order series is adopted, as reported in [46], where the corresponding numerical
values of the matrices anm, ωnm, and δnm are provided.

To determine the Sun ephemerides the same analytical approximation reported
in [46] is adopted. The computation starts from the definition of the Sun’s mean longitude
in the ecliptic coordinate system referred to the J2000 epoch:

λM⊙ = 280.460◦ + 36,000.771TJD (2.64)

from which the Sun’s mean anomaly is obtained as:

M⊙ = 357.5291092◦ + 35,999.050TJD (2.65)

The true longitude of the Sun, representing the apparent position of the Sun along the
ecliptic, corrected for the effect of Earth’s orbital eccentricity can be approximated as a
function of the Sun’s mean anomaly, yielding:

λ⊙ = λM⊙ + 1.914666471 sin(M⊙) + 0.019994643 sin(2M⊙) (2.66)

The Sun-Earth distance, in astronomical units (AU) is then approximated as:

r⊕⊙ = 1.000140612− 0.016708617 cos(M⊙)− 0.000139589 cos(2M⊙) (2.67)
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Finally, the Earth-Sun position vector in the ECI RF, is obtained as:

r⊕⊙ = rAU


cos(λ⊙)

cos(ε) sin(λ⊙)
sin(ε) sin(λ⊙)

 (2.68)

with ε, mean inclination of the ecliptic, is used to rotate the coordinates from the ecliptic
to the equatorial plane.

2.4 Custom Orbital Propagator

After introducing the main perturbative effects that influence the motion of a satellite
in LEO, it is necessary to define how the orbit evolves over time starting from a given
epoch and initial condition. In the context of this thesis, different scenarios characterized
by different operational needs require the precise determination of the state evolution of a
satellite and/or space debris over time. This information is essential to perform conjunction
risk assessment analyses and evaluate the orbital evolution following the execution of a set
of CAMs . Since these scenarios have different requirements in terms of dynamic accuracy
and computational cost, for example, during the training phase of the RL agent, in the
evaluation of the learned policy, or in the propagation of the post-CAMs, a dedicated
orbital propagator has been developed, capable of integrating the equations of motion
under a customizable set of dynamic models.

2.4.1 Cowell’s Formulation

Given the flexibility needs previously discussed, the orbital propagator developed in this
work is based on Cowell’s formulation, which provides a versatile framework for orbit
integration. In this approach, the motion of the satellite is described by a set of second-order
differential equations expressed in Cartesian coordinates. The total acceleration is defined
as the sum of the central gravitational attraction, i.e. the two-body problem equation of
motion, and all additional perturbative contributions:

d2r
dt2

= − µ
r3 r + ap (2.69)

where ap = q
i ai represents the total perturbing acceleration acting on the satellite,

obtained as the sum of all the individual contributions included in the selected dynamical
models, such as atmospheric drag (adrag), Earth’s gravitational harmonics (aJ2), solar
radiation pressure (asrp), and third-body effects (a3).

One of the main advantages of this formulation, lies in its flexibility, any arbitrary
perturbing acceleration can be directly incorporated into the equations of motion as an
additive term. This property makes Cowell’s formulation particularly well suited for
numerical propagation adopted in this thesis, where each perturbation can be treated
independently and added linearly to the total acceleration.
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2.4.2 Numerical Integration of the Equation of Motion

The numerical integration of the equation of motion is carried out using the explicit
Runge-Kutta method of order 8(5,3), known as DOP853, implemented in the solve_ivp

routine of the Python SciPy library. For numerical integration purpose, the set of second
order differential equation of motion of the Cowell’s formulation, Eqn. (2.69), is rewritten
as an equivalent system of six first-order differential equation:

Ẋ(t) =
C

ṙ(t)
v̇(t)

D
=

 v(t)
− µ
r3 r(t) + ap(t)

 (2.70)

where Ẋ(t) is simply the derivative of the state vector X(t):

X(t) =
C

r(t)
v(t)

D
(2.71)

The initial condition, necessary for the numerical integration, is defined by the state vector
at the reference epoch t0:

X(t0) =
C

r(t0)
v(t0)

D
(2.72)

It can be derived through different approaches, for instance, from Two-Line Elements
(TLEs) or from defined Keplerian orbital elements converted into Cartesian Coordinates
using the procedure described in Section 2.2.3. The integration is then performed with
an adaptive internal time step automatically controlled by DOP853 integrator based on
the specified error tolerances (rtol and atoll). In addition to the internal step control,
the temporal resolution of the stored results is defined by the selected output time grid.
A fine temporal discretizations is adopted, for instance, in conjunction risk assessment
analysis, where a higher time resolution is required to accurately capture the evolution of
the relative distance between the satellite and the debris.

In conclusion, this chapter has presented the theoretical background and numerical formu-
lation required to model the orbital motion of satellite (or any other space objects) under
both ideal and perturbed conditions. The following chapter introduces the fundamentals of
RL, its extension with deep learning techniques, DRL, and the algorithm adopted in this
thesis to train the agent. These elements are later integrated with the orbital dynamics
framework developed in this chapter to enable autonomous CAM planning in LEO.
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Chapter 3

Reinforcement Learning

Reinforcement Learning (RL) is a field of Machine Learning (ML) that focuses on the
problem of how an agent learns to make decisions in a dynamic environment in order
to achieve one or more objectives. The agent interacts with the environment through
actions and receives feedback in response, which can take the form of rewards or penalties,
depending on the effects produced by its choices. This process develops according to trial
and error logic, in which the agent explores different behavioral strategies and evaluates
their consequences, progressively adapting its decisions. The goal is to maximize the
cumulative reward over time, i.e., to identify those sequences of actions that, in the long
run, lead to the most favorable outcomes.

Before addressing the mathematical framework that describes RL, it is necessary to
frame its role within the broader discipline of ML. A brief introduction to the main learning
paradigms, namely supervised and unsupervised learning, allow a better understanding of
why RL is considered a distinct approach with its unique characteristics.

3.1 Introduction to Machine Learning

ML can be defined as the set of methodologies and algorithms that enable a computer
system to progressively improve its performance in executing a task thanks to accumulated
experience. One of the best known and most commonly accepted definitions, proposed by
Tom M. Mitchell [47], states that:

"A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E."

In more practical terms, this definition implies that a system can be considered “capable
of learning”, by repeatedly performing a certain task, when it is able to use data from
previous experiences to refine its future decisions or predictions. The key element is
therefore the presence of past data that serves as experience and drives the process of
continuous improvement. ML is therefore a discipline that allows the development of
algorithms capable of automatically adapting to data, without having to specify all the
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rules of the problem in advance. This feature makes it a particularly powerful tool for
dealing with complex situations, where it is difficult or impractical to formalize every
possible scenario using predefined deterministic rules.

3.1.1 Supervised Learning

Supervised learning is the most commonly used and established ML paradigm. This
approach is based on the idea that an algorithm can learn from a set of labeled data,
consisting of input-output pairs, known as labeled examples. The goal is to build a
predictive model capable of generalizing the knowledge acquired, i.e., providing the correct
answer even when faced with new data that has never been seen before. The supervised
learning process typically consists of two distinct phases. During the training phase, the
algorithm processes the labeled data to identify the underlying relationships between inputs
and outputs, until it builds a model capable of representing them. Subsequently, in the
prediction or inference phase, this model is used to deduce the output corresponding to a
new input, thus replicating the behavior “learned” from the training set. There are two
fundamental tasks that fall within this paradigm:

• Classification: consists in assigning each example to a discrete category, predicting
which class a given sample belongs to. Typical examples are image recognition,
medical diagnosis, or document categorization.

• Regression: consists of predicting a continuous variable, such as a number or quantity.
In this case, the model provides a numerical estimate that is as close as possible to
the actual value.

The main driver behind supervised learning is the use of past experience to improve future
performance. In this context, experience coincides with training data, which forms the
basis of the learning process. The quality and representativeness of this data play a crucial
role, an incomplete or noisy dataset inevitably compromises the accuracy of the model,
reducing its ability to generalize.

3.1.2 Unsupervised Learning

Unsupervised learning is another fundamental paradigm of ML. Unlike supervised learning,
in this case there is no labeled data or input-output pairs from which to learn. The goal
is therefore not to predict a target variable, but rather to directly analyze the raw data
in order to identify underlying structures, patterns, or natural groupings within it. For
this reason, unsupervised learning is often described as a pattern discovery or knowledge
discovery approach. The main tasks of unsupervised learning include:

• Clustering: dividing data into homogeneous groups (clusters), in which elements of
the same group are similar, while those of different groups show significant differences.

• Dimensionality reduction: reducing the number of variables while maintaining the
fundamental properties of the data, such as the distance relationships between
samples.
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• Anomaly detection: identifying examples that deviate from the general behavior of
the data, considered as outliers or rare events of particular interest.

3.1.3 Reinforcement Learning as a ML paradigm

Within the broad field of ML, RL occupies a special position. Unlike supervised methods,
in which models are trained on labeled data sets provided by an external supervisor, RL is
based on a trial and error process. The agent does not know in advance what the correct
actions are, but discovers them progressively thanks to feedback obtained from interactions
with the environment. At first glance, it might seem to be part of unsupervised learning,
because it is not based on labeled examples provided by an external supervisor. However,
as pointed out by Suttun & Barto [48], it also differs from the latter because it does not aim
to identify hidden structures or correlations in the data. RL has such unique characteristics
(interaction, feedback, trial and error) that it is considered a third paradigm in the context
of ML, distinct from both supervised and unsupervised learning. Furthermore, one of the
challenges that emerges in RL, and not in other types of learning, is the trade-off between
exploration and exploitation [48]. To achieve a high level of reward, an RL agent must
prioritize actions that have proven effective in generating positive results in the past. At
the same time, however, it is also necessary for the agent to try new actions that have
never been selected before, in order to discover potentially better alternatives. The agent
must therefore know how to exploit the experience already acquired to continue to obtain
rewards, but at the same time explore new possibilities to improve the quality of its future
decisions.

3.2 Reinforcement Learning Formalism

3.2.1 Markov Decision Process

Reinforcement Learning is formalized through Markov Decision Processes (MDP), which
define the environment in terms of states, actions, and rewards, describing how the agent
interacts with it in a sequential decision-making process, as shown in Figure 3.1. At a
generic discrete time instant t, the agent observes the state st ∈ S and selects an action
at ∈ A. The environment receives this action, updates its dynamics, and moves on to the
next time step. At the same time, it returns the new state st+1 and a reward rt+1 ∈ R
to the agent. The (st, at, rt+1) tuple is commonly called an experience. This interaction
can repeat indefinitely or end when a terminal state or a maximum number of time steps
t = T is reached. The interval from the initial moment t = 0 to the termination of the
environment is defined as an episode. A sequence of experiences observed in an episode
is usually indicated as a trajectory, τ = (s0, a0), (s1, a1, r2), (s2, a2, r3) . . . . To learn the
optimal strategy for solving the proposed problem, an agent typically needs a large number
of episodes, which can range from a few hundred to thousands, depending on the complexity
of the task at hand.

41



3.2. Reinforcement Learning Formalism

Agent

Environment

at

A
ction

rt+1

R
ew

ar
d

rt

st+1

St
at

e

st

Figure 3.1: Agent–Environment interaction in a Markov Decision Process

In addition to this operational description, an MDP can be formalized mathematically as
a tuple (S,A,P,R, γ) [49], where:

• S: set of states representing the environment.

• A: set of actions available to the agent in each state.

• P(st+1|st, at): transition probability function, defines the likelihood of reaching the
state st+1 from st after taking action at.

• R(st|at): reward function assigned to the agent after taking action at in state st

• γ ∈ [0, 1]: discount factor, weighs the importance of future rewards against immediate
ones.

The fundamental characteristic of an MDP is the Markov property, according to which
the future evolution of the system depends exclusively on the current state and action,
resulting in independence from the sequence of past states and actions. In other words,
the future is conditionally independent from the past given the present. Formally:

P(st+1|st, at, st−1, at−1, . . . ) = P(st+1|st, at) (3.1)

To finalize the formulation of the problem, it is necessary to introduce the concept of return
(Gt) which represents the objective that the agent attempts to maximize during interaction
with the environment. Considering a trajectory τ of an episode, the return starting from a
generic instant t is defined as the sum of future rewards discounted appropriately:

Gt=̇rt+1 + γrt+2 + γ2rt+3 + · · · =
∞Ø

k=0
γkrt+k+1 (3.2)

The value of γ determines the relative importance between immediate rewards and future
rewards, such that:

• If γ = 0, the agent is short-sighted, as it exclusively pursues the maximization of the
immediate reward rt+1.
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• If γ ≈ 1, the agent takes a long-term view, attributing significant weight to future
rewards as well.

• For intermediate values of γ, behavior is a compromise between short-term and
long-term optimization.

3.2.2 Policy and Value Functions

After introducing the concept of return as a measure of agent performance, it is natural to
ask how the agent selects its actions to maximize this objective. To this end, the concept of
policy (π) is introduced, which represents the strategy adopted to choose an action based
on the current state. A policy can be:

• Stochastic: when it defines a probability distribution over the possible actions in
state s. In this case, the policy is formally expressed as π(a|s), i.e., the probability
of performing action a ∈ A given the current state s ∈ S.

• Deterministic: when it associates each state s ∈ S with a specific action a = π(s).

Once a policy has been defined, it is essential to assess how effective it is in guiding the
agent towards the goal. This is why value functions are introduced, which estimate the
expected return that the agent can accumulate over time starting from a state and behaving
according to the policy in question. The state-value function vπ(s) is the expected return
starting from state s and following policy π:

vπ(s) = Eπ[Gt|st = s] (3.3)

where Eπ[·] denotes the expected value of a variable given that the agent follows policy π,
and t is any time step. The action-value function qπ(s, a), also called the quality function
represents instead the expected return starting from state s, taking action a, and then
following policy π:

qπ(s, a) = Eπ[Gt|st = s, at = a] (3.4)

One of the fundamental properties of value functions is that they satisfy a recursive relation
known as the Bellman expectation equation. This states that the value of a state (or
state–action pair) can be expressed as the sum of the expected immediate reward and the
discounted future value, assuming that the agent continues to follow policy π. For the
state value function, it is given by:

vπ(s) = Eπ
#
rt+1 + γvπ(st+1) | st = s

$
, (3.5)

while for the action value function:

qπ(s, a) = Eπ
#
rt+1 + γqπ(st+1, at+1) | st = s, at = a

$
. (3.6)
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3.2.3 Optimality

A fundamental objective of reinforcement learning is to determine an optimal policy,
denoted by π∗, i.e., a strategy that maximizes the expected return from each state. More
formally, a policy π is considered optimal if its value function vπ(s) is greater than or equal
to that of any other policy π′ for all states s ∈ S:

vπ∗(s) ≥ vπ′(s), ∀π′, s ∈ S. (3.7)

All optimal policies share the same optimal state value function, v∗(s), and the same
optimal action value function, q∗(s, a), defined respectively as:

v∗(s) = max
π

vπ(s), (3.8)

q∗(s, a) = max
π

qπ(s, a). (3.9)

Analogously to the Bellman expectation equation, the optimal value functions satisfy
a recursive relationship known as the Bellman optimality equation. For the state-value
function, it states that the value of a state under an optimal policy must equal the expected
return obtained by taking the best possible action in that state. Formally, this can be
written as:

v∗(s) = max
a∈A(s)

q∗(s, a). (3.10)

= . . . (3.11)

= max
a

Eπ∗ [rt+1 + γv∗(st+1)|st = s, at = a] (3.12)

Analogously, the Bellman optimality equation can also be formulated for the action-value
function q∗(s, a), relating each state–action pair to the immediate reward and the optimal
value of the successor states.

The explicit resolution of Bellman’s optimality equations represents a possible approach
to determining an optimal policy, and thus to solving the reinforcement learning problem.
In practice, this can be pursued through three main families of methods. Dynamic Pro-
gramming (DP) methods require complete knowledge of the environment model, transition
probabilities and reward functions, and allow value functions to be calculated iteratively and
policies to be improved. Monte Carlo (MC) methods, on the other hand, do not require a
model and estimate value functions as averages of returns obtained from complete episodes
of interaction with the environment. Finally, Temporal Difference (TD) methods combine
elements of both approaches: like Monte Carlo, they learn directly from experience without
an explicit model, but, like dynamic programming, they update bootstrap estimates based
on the values of subsequent states. These three families form the theoretical foundation on
which the various reinforcement learning algorithms are developed.
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3.2.4 Overview of RL Algorithms

Over the theoretical foundations of RL, numerous algorithms have been developed over
time that address the decision-making problem from different perspectives, each with
specific strengths and limitations. To better understand how these approaches fit within
the discipline, it is useful to introduce a classification scheme that highlights the main
conceptual subdivisions based on [50,51] (see Figure 3.2).

RL

Model-free Model-based

Value-based Policy-based Actor-Critic

On-policy

Off-policy

Figure 3.2: Overview of Reinforcement Learning Algorithms

Model-based vs Model-free Methods The main difference concerns the availability
of a model of the environment. In model-based methods, the agent has (or learns) an
explicit representation of the dynamics of the system, including transition probabilities and
the reward function, which can be used to simulate trajectories and plan future actions. In
model-free methods, on the other hand, no model is used: the agent learns directly from
experience gathered through interaction with the environment. This simplicity reduces the
computational costs of modeling, but generally requires a greater number of interactions
to converge towards an effective strategy.

Policy-based vs Value-based Methods In policy-based methods, the agent directly
learns the policy, modeled as a probability distribution on actions conditional on the
state. This type of methods is guaranteed to converge to a locally optimal policy [48] but
suffers of very high variance and sample-inefficiency. Algorithms such as REINFORCE
are examples of this. Value-based methods are based on learning a value function that
estimates the expected return from a state, or a state-action pair. The policy is then
derived by choosing the actions that maximize this estimate. These approaches are typically
more sample-efficient than policy based because they have lower variance and better use
of gathered data but they are not guaranteed to converge to an optimum [52]. Classic
algorithms such as SARSA and Q-learning belong to this category.

Actor-critic Methods Actor-critic methods are an intermediate category that combines
the strengths of the two previous approaches. The actor updates the policy, while the
critic evaluates actions using a value function, providing a low-noise correction signal.
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This architecture reduces the variance of policy-based methods while maintaining their
flexibility, and forms the basis of many modern extensions.

On-policy vs Off-policy Methods A distinction that cuts across all of the above
categories concerns the relationship between the target policy, i.e., the one to be learned,
and the behavior policy, i.e., the one that generates the training data. In On-policy methods,
the two policies coincide: the agent learns directly from the same strategy it adopts to
explore the environment. A typical example is SARSA, in which the update policy is the
same as the one that produces the observed trajectories. In Off-policy methods, on the
other hand, the target policy may differ from the behavior policy. In this scenario, the
agent can learn the optimal strategy even from data generated by another policy, which
may be more exploratory or already available. Q-learning is the canonical example of this
approach.

3.3 Function Approximation & Deep RL

Classical RL algorithms rely on tabular representations of value and policy functions. In
simple or low-dimensional environments, these tabular approaches are effective because
the agent can explicitly store the value associated with each state-action pair. However,
as the dimensionality of the problem increase, the number of possible states and actions
grows exponentially with the number of variables, leading to what is known as the "curse
of dimensionality" [48] and the computational cost increase exponentially.

To overcome this problem, modern RL algorithms employ function approximators to
represent the policy and value functions. Rather than storing explicit values in a table,
the agent learns a parameterized function that generalizes across the state-action space.
This allows the learning process to scale efficiently to problems with high-dimensional or
continuous domains.

Among various types of function approximators, artificial neural network (ANN), or
simply neural network (NN), have become the most widely used due to their demonstrated
ability to model highly nonlinear relationships and to approximate arbitrary functions.
This concept is examined in greater detail by introducing the Multilayer Perceptron (MLP),
a class of NN widely used as general purpose function approximators for modeling complex
nonlinear relationships.

3.3.1 Multilayer Perceptron

An MLP is a feedforward NN in which neurons are fully connected to each other and use
nonlinear activation functions. Its architectural flexibility and ability to approximate any
function, under certain conditions, make this model a fundamental element in the Deep
Learning framework. The MLP consists of an input layer, one or more intermediate layers
(hidden layers), and an output layer. Each layer consists of elementary units, neurons,
which operate as computational nodes fully connected to the next layer.
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Mathematically, the total input to neuron j in the first hidden layer is expressed as [53]:

aj =
DØ

i=1
w

(1)
ji xi + w

(1)
j0 , zj = h(aj) (3.13)

where:

• xi denotes the input variables of the network, with i = 1, . . . , D, D is the input space
dimension.

• w
(1)
ji are the weights connecting input xi to neuron j in the first layer determining

the relative importance.

• w
(1)
j0 represent the bias.

• The superscript (1) indicates that the corresponding parameters belong to the first
layer of the network

It can therefore be stated that Eqn. (3.13) implies that, for each neuron, an activation (aj)
is generated computed as the weighted sum of the neuron’s inputs, to which a bias term is
added. Each activation is then transformed by a nonlinear and differentiable activation
function, h(·), to give:

zj = h(aj) (3.14)

The activation function introduces the nonlinearity necessary for the network to approxi-
mate complex relationships between input and output. Among the most common are the
sigmoid function, h(·) = 1

1+e−(·) , the hyperbolic tangent, h(·) = tanh (·), and the rectified
linear unit, ReLU, h(·) = max (0, (·)).

The operation describing the calculation of the activation for each neuron (Eqn. (3.13))
can, for the l-th layer, be expressed in matrix form as:

a(l) = W(l)z(l−1) + b(l) (3.15)

z(l) = h(l)
1
a(l)

2
(3.16)

Each layer l receives as input the activation vector from the previous layer z(l−1), combines
it linearly using the weight matrix W(l) and the bias vector b(l), and applies an element-by-
element nonlinear transformation h(l). The input layer is simply z(0) = x and the output
layer is y = z(L), where L is the total number of layers in the network. Figure 3.3 shows
an MLP with one input layer, one hidden layer, and one output layer, which, following the
nomenclature proposed in [53], is a two-layer MLP.
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Figure 3.3: Architecture of a Multilayer Perceptron

The overall forward pass process through all layers performs a composition of linear and
nonlinear transformations, which can be expressed as:

y = F (x,θ) (3.17)

where F (·) represents the function calculated by the neural network, parameterized by the
parameter vector θ =

î
W(l),b(l)

ïL

l=1
.

MLP Training

Training an MLP means finding the values of θ that minimize a loss function L, which
measures the error between the target output, and the network-predicted output [52].
Minimizing this function is central to optimizing the performance of the MLP in approx-
imating nonlinear functions. According to the type of problem being solved, there is a
natural choice in the loss function [53]. For a fairly simple regression task, the commonly
used loss function is the sum of squares error. Given a training set consisting of input
vectors xn, with n = 1, . . . , N , and the corresponding target vectors tn, the objective is to
minimize:

L(θ) = 1
2

NØ
n=1
∥y (xn;θ)− tn∥2 (3.18)

Minimization of the loss function is achieved through optimization algorithms. The most
basic and intuitive one is sequential gradient descent, which iteratively adjust the network
parameters in the direction of the steepest decrease of the loss:

θnew = θold − η∇θL(θ) (3.19)
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with η > 0 is the learning rate, which controls the magnitude of the update steps.

Computing the gradient of the loss function can be complex because the output of
each neuron indirectly depends on the parameters of the previous layers. To this end,
the backpropagation algorithm [54] is used, which allows all the required derivatives to
be determined efficiently by recursively applying the chain rule backwards. The itera-
tive process underlying the optimization of neural network parameters can therefore be
summarized in the following steps:

1. Forward pass: inputs are passed through the various layers of the MLP to calculate
the activations of the neurons and get the network output.

2. Loss function calculation: network output is compared with the corresponding target
value to evaluate the current performance of the model. The overall error is quantified
using a loss function (e.g., SSE).

3. Backward pass: the backpropagation algorithm is applied to efficiently compute the
derivatives of the loss function with respect to the network weights and biases.

4. Network parameter update: weights and biases are updated to reduce the loss function.
In addition to gradient descent, which is the simplest method but can be a "poor
algorithm" due to its slow convergence [53], more advanced optimizers are commonly
used, such as Adam [55], which improve numerical stability and training speed.

This cycle of operations forms the core of the supervised learning algorithm for feed-forward
networks, and is repeated iteratively on all examples in the dataset until convergence or a
predefined stopping criterion is reached.

3.3.2 Overview of DRL Algorithms

The introduction of DL techniques, such as MLPs, as function approximators within the
traditional RL framework allows one to overcome its inherent limitations and efficiently
handling high-dimensional and continuous state-action spaces. When such DL architectures
are employed with RL, the resulting approach is referred to as Deep Reinforcement Learning
(DRL) [56]. Taking policy-based algorithms as an example, their extension to the DRL
framework means that the objective is to learn a policy, represented by a feedforward neural
network whose parameters θ1 are adjusted through interaction with the environment. The
policy, commonly referred to as policy network πθ, is parameterized by θ, therefore, the
process of learning an optimal policy corresponds to finding the optimal set of network
parameters θ∗ that maximize the expected cumulative reward [52]. For this reason, in the
context of DRL, such algorithms are referred to as policy gradient methods, as they update
the parameters of the policy network by performing gradient ascent on the expected return.

In general, DRL algorithms can be grouped into the same main families of methods
described in Section 3.2.4, depending on how the policy and value functions are represented

1To simplify the notation, from this point onward, the NNs parameters will be written in regular font,
while still representing vectors or sets of parameters as before, unless otherwise specified.
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and updated. Among them, the actor-critic architecture is the foundation upon which many
modern algorithms have been built, including Trust Region Policy Optimization (TRPO),
Proximal Policy Optimization (PPO), Deep Deterministic Policy Gradients (DDPG), and
Soft Actor-Critic (SAC).

3.4 Proximal Policy Optimization

The Proximal Policy Optimization (PPO) algorithm, introduced by Schulman et al. [57] is
an on-policy actor-critic method belonging to the family of policy gradient algorithms, due
to the way it updates the policy represented by the actor network.

Being of the actor-critic type, PPO relies on two independent NNs with complementary
roles. The actor network, parameterized by θ, represents the stochastic policy πθ(a|s),
which defines the probability of selecting an action at given the current state st. In
continuous action spaces, such as the one considered in this study, πθ(a|s) outputs the
mean and standard deviation of a learned Gaussian distribution from which the actions are
sampled. On the other hand, the critic network, with parameters w, provides an estimate
of the state-value function vw(s), quantifying the expected cumulative reward that can be
obtained from that state under the current policy.

PPO improves upon the basic policy gradient methods by modifying how the policy is
updated. Traditional policy gradient algorithms [58] directly adjust the policy parameters
in the direction of the estimated gradient of expected cumulative reward. The absence
of a constraint on the magnitude of this update often results in abrupt policy changes,
degraded performance, or training instability. To mitigate this issue, Trust Region Policy
Optimization (TRPO) [59] introduced a constraint to limit how much the new policy
can diverge from the previous one, enforcing that updates occur within a so-called trust
region. While TRPO provides more stable learning, it requires computationally expensive
second-order optimization procedures.

3.4.1 Theoretical Formulation

PPO was designed to overcome these limitations by replacing the explicit constraint of
TRPO with a clipping mechanism embedded within the objective of the policy function,
which directly governs the update of the actor’s parameters θ. This clipped surrogate
objective, at timestep t, is formally expressed as:

JCLIP
t (θ) = Êt

è
min

1
rt(θ)Ât , clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

2é
(3.20)

where the expectation Êt[. . . ] indicates the empirical average over a finite batch of samples
collected during the rollout phase. The term Ât = q(st, at) − v(st) is an estimator of
the advantage function at timestep t, which quantifies the relative benefit of executing a
particular action at in a state st compared to the expected value of the state when following
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the current policy. The term rt(θ) represent the probability ratio, defined as:

rt(θ) = πθ(at|st)
πθold(at|st)

(3.21)

which measure how the updated policy modifies the likelihood of selecting the same action
at in state st compared to the previous policy. The clipping operation, the second term
in Eqn. (3.20), constrain this ratio within the interval [1 − ϵ, 1 + ϵ], with ϵ clip ratio,
restricting the magnitude of policy update.

The parameters of the critic network w are updated through a loss function, referred
to as critic loss or value function loss (LV F

t ), which corresponds to a squared error loss
between the predicted and target state values.

LV F
t =

1
vw(st)− vtarg

t

22
(3.22)

The overall PPO objective function, denoted as JP P O
t (θ, w), combine the clipped surrogate

objective of the actor (policy network), the value function loss of the critic (value network),
and an additional entropy term S[πθ](st) that encourage policy exploration and prevents
premature convergence toward deterministic behaviors. It is expressed as:

JP P O
t (θ, w) = Et

è
JCLIP

t (θ)− c1L
V F
t (w) + c2S[πθ](st)

é
(3.23)

where c1 and c2 are scalar coefficient that weight the relative importance of the value loss
and entropy terms, respectively. Using, for example, gradient ascent as the optimizer, the
parameters of the two networks are updated in order to maximize JP P O

t :

θnew = θold + ηθ∇θJ
P P O
t (θ, w) (3.24)

wnew = wold + ηw∇wJ
P P O
t (θ, w) (3.25)

In the case of the actor, the update of the parameters θ is aimed at maximizing the objective
function, improving the quality of the learned policy and, thanks to the entropy term,
favoring the exploration of alternative actions. As for the critic, the objective includes
the loss function of the value LV F

t (w) with a negative sign. Therefore, while formally
maintaining an update for gradient ascent, the resulting effect on the parameters w is
equivalent to a minimization of the value loss. In other words, the update of the critic can
be interpreted as an implicit gradient descent on the error function of the estimated value.

3.4.2 PPO Training Loop

The training process of PPO alternates between two main phases, a data collection phase,
during which the current policy interacts with the environment, and an optimization phase,
during which the gathered data are used to update the parameters of the actor and critic
networks.
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1. Data Collection (Rollout Phase) At the beginning of each iteration, the current
policy πθold interacts with the environment for a fixed number of timesteps T storing
each transition (st, at, rt, st+1) in a dedicated rollout buffer. It contains, for every
timesteps, the observed state st, the chosen action at, the reward rt, the termination
flag, the value estimate vw(st) and the log-probability log πθold . If Nenv environment
instances, running under the same policy, are employed, the experience gathered
corresponds to N · T transition in total. During this phase, the networks parameters
remain fixed, the agent simply samples trajectory on-policy to create a consistent
dataset for optimization. Once the rollout is complete, the information in the buffer
is post-processed to compute the advantage estimates Ât and the corresponding value
targets V targ

t . In most PPO implementations, the advantage is computed through
the Generalized Advantage Estimation (GAE) [60].

2. Optimization Phase The entire buffer, containing Nenv · T transition, forms a
training batch, which is subsequently and randomly divided into smaller mini batches
m of size M < Nenv · T . During each iteration, the optimization proceeds for K
epochs, multiple passes over the same batch to improve data efficiency. During
each epoch for each mini-batch, the PPO objective JP P O

t (θ, w) is computed and the
parameters of both the actor and critic networks are updated via gradient ascent
(typically using the Adam optimizer). After all epochs are complete, the parameters
of the new policy πθ are copied into πθold , the rollout buffer is cleared, and the next
training iteration begins.

This entire cycle is repeated until the total number of iteration Niter is reached. The
complete training procedure of PPO is summarized below in Algorithm 1.

Algorithm 1 PPO Training Loop
1: Initialize: actor parameters θ, critic parameters w, and old policy πθold

2: for iteration = 1, 2, . . . , Niter do
3: for actor n = 1, 2, . . . , Nenv do
4: Run policy πθold in the environment for T timesteps
5: Store each transition (st, at, rt, st+1) in the rollout buffer
6: Save vw(st) and log πθold(at|st) for each step
7: end for
8: Compute advantage estimates Ât and value targets vtarg

t

9: for epoch = 1 to K do
10: for each mini-batch m do
11: Compute the PPO objective JP P O

t (θ, w)
12: Update actor parameters: θ ← θ + ηθ∇θJ

P P O
t

13: Update critic parameters: w ← w + ηw∇wJ
P P O
t

14: end for
15: end for
16: Copy new policy parameters: πθold ← πθ

17: Clear rollout buffer
18: end for
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Chapter 4

Deep Reinforcement Learning
Framework Design

This chapter presents the DRL framework developed in this thesis to autonomously plan
time-critical CAMs in Low Earth Orbit. Its objective is to translate the theoretical principle
of DRL into an operational architecture capable of evaluating conjunction risk, decide
and execute impulsive maneuvers under time constrains, with computational efficiency
compatible with large scale training. The chapter begins with the formulation of the
conjunction risk assessment process, introducing the computation of the collision probability
and the key geometric quantities that characterize close approaches. Then, the CAM
planning problem is formalized as a MDP, detailing the definition of the state and action
spaces, the transition dynamics governed by the orbital propagator, and the reward function
design balancing safety, orbital compliance, and propulsive efficiency. The following section
describes the generation of a large and diverse database of artificial conjunction scenarios
used for training and validation. Finally, the implementation of the complete DRL
framework is presented, illustrating its modular architecture within the training loop,
laying the foundation for the quantitative results discussed in the next chapter.

4.1 Conjunction Risk Assessment

Before addressing the computation of collision probability, it is necessary to define two
key quantities rigorously: the distance of closest approach (dmin) and the time of closest
approach (tT CA). Let r(t) be the position of the active satellite and rd(t) that of the debris,
propagated over a time interval t ∈ [t0, tf ] with constant step ∆t. The distance between
the satellite and the debris is defined as:

d(t) = ||r(t)− rd(t)|| (4.1)

The minimum value of d(t) identifies the distance of closest approach:

dmin = min
t∈[t0,tf ]

d(t) (4.2)
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The time associated with the minimum distance is therefore the so-called time of closest
approach and is defined as:

ttca = arg min
t
d(t) (4.3)

These two quantities, dmin and ttca, provide the geometric foundation for conjunction risk
assessment. However, before addressing the actual computation of the collision probability,
is essential to account for the uncertainties affecting the state of the two objects involved
cause they play a critical role in estimating Pc. These uncertainties are typically modeled as
zero-mean three-dimensional Gaussian distributions and are represented through covariance
matrices. When focusing solely on the positional component, the covariance matrix defines
a three-dimensional uncertainty ellipsoid centered at the estimated position of the object.
This ellipsoid describes a region of equal probability density, characterizing the spatial
dispersion of the object’s likely location at a given confidence level.

4.1.1 Collision Probability

In the most general case (illustrated in Figure 4.1), it is assumed that at initial time t0
the estimated satellite state X(t0), consisting of position and velocity, is known, with
associated initial covariance matrix Σ(t0). Similarly, for the debris, known state Xd(t0) and
associated covariance matrix Σd(t0) is assumed. The orbits and covariances are propagated
to the TCA and the collision probability can be evaluated using the propagated states and
covariances at TCA, i.e., X(ttca), Xd(ttca), Σ(ttca),Σd(ttca).

X(t0)

Σ(t0)

X(ttca)

Σ(ttca)

Xd(t0)

Σd(t0)

Xd(ttca)

Σd(ttca)

Figure 4.1: Pc Calculation Problem Description

It is evident that determining Pc between two orbiting objects is by no means trivial. It is
necessary not only to know precisely the relative states and propagate them consistently
to the TCA, but also to deal correctly with the associated uncertainties, which may evolve
over time. In particular, estimation of the satellite covariance matrix can be obtained from
data provided by the vehicle operator or from independent orbital surveillance sources, but
its determination is not always straightforward. Even more complicated is the estimation
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of the debris covariance matrix and state, which is often not accurately tracked and may be
characterized by tumbling motion, and dynamic uncertainty. This general approach, while
accurate, carries a high computational cost. In particular, in the context of this thesis,
based on RL where the evaluation of Pc is performed thousands of times during agent
training, it is necessary to adopt appropriate simplifications that allow the probability of
collision to be estimated quickly, while maintaining a sufficient level of realism for the
validity of the decision model.

The following simplifications are adopted. The bodies are modeled as rigid spheres of
known radius [15], since it is difficult to know their attitude. The hard-body radius (HBR)
Rs and Rd are thus defined for satellite and debris, respectively (estimation of which is
described in Section 4.2).

It is then assumed that, although the trajectories are actually curved and the covariances
are not constant, during the closest approach phase, the relative motion is rectilinear [61].
This assumption is justified for LEO, where relative velocities between objects in conjunction
often exceed 5 km/s [62]. In this context, trajectories can be approximated as linear
during the encounter, covariances can be considered constant, and velocity uncertainties
are neglected. This implies that the 6×6 covariance matrices, which took into account
uncertainties in both position and velocity, are reduced to 3×3 matrices representing only
position uncertainties.

Finally assuming that the positions of the two objects are unrelated and that the prob-
ability density functions are Gaussian and zero mean, then [13] shows how the covariances
of the two objects can be combined into a single covariance, centered at the center of the
primary body, the satellite, constant over the encounter period. The resulting covariance
matrix is then:

Σ3D = Σ + Σd (4.4)

The probability density function (PDF) of the debris in a relative position rd with respect
to the satellite is defined as:

p(rd) = 1ð
(2π) det(Σ3D)

exp
3
−1

2rT
d Σ−1

3Drd

4
(4.5)

The ellipsoid associated with this distribution is centered on the estimated position of the
satellite and represents the region of three-dimensional uncertainty in which the debris
may be found. During the encounter, the debris, with velocity equal to the relative velocity
(vrel = vs − vd), crosses this ellipsoid along a straight trajectory. The region traversed by
the secondary body is thus a cylindrical tube centered on the secondary (Figure 4.2). The
radius of this tube is given by the sum of the rigid radii of the two bodies, i.e:

R = Rs +Rd (4.6)

This value represents the combined HBR: it incorporates the physical dimensions of the
two bodies into the probability calculation, and is used to determine whether a geometric
overlap occurs.
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vrel
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Figure 4.2: Description of 3D Encounter Geometry

The collision probability then corresponds to the integral of the PDF over the cylindrical
volume:

Pc =
y

V

p(rd) dx dy dz (4.7)

Despite the simplifications introduced, the triple integral of Eqn. (4.7) is quite hard to
compute. However, due to the assumption of rectilinear motion and high relative velocity, a
further simplification can be introduced to reduce the problem from three to two dimensions.
The encounter plane is defined as the plane orthogonal to the relative velocity at TCA.
Both the combined covariance ellipsoid and the transverse section of the tube traversed
by the secondary body are projected onto this plane. In this system, the dimension along
the direction of relative motion can be considered separable and the integral along the
direction of motion approximated to one [15]. As a result, as shown in Figure 4.3, the
three-dimensional tube is reduced to a circle on the encounter plane, of radius R centered
on the debris, and the projected covariance ellipsoid becomes an ellipse centered on the
satellite.

Combined & Projected
Spherical Object (R)

Combined & Projected
Covariance Ellipsoid (Σ2D)

Figure 4.3: Description of 2D Encounter Geometry

The collision probability is thus reduced to a two-dimensional integral on the encounter
plane:

Pc = 1
2π
ð

det(Σ2D)

Ú R

−R

Ú √
R2−x2

−
√

R2−x2
exp

3
−1

2ρ
⊤Σ−1

2Dρ

4
dy dx (4.8)

where Σ2D is the projected combined covariance matrix on the encounter plane, ρ = r2D−rd,
with r2D = [x y]⊤ and rb is the relative position at TCA projected to the two-dimensional
coordinates.
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To be consistent with the analytical formulation discussed in the next section, the diago-
nalized form of the covariance matrix is adopted [15]. In this formulation, the combined
covariance matrix is rotated such that its principal axes align with the local coordinate
system of the encounter plane:

Σ2D =
C
σ2

x 0
0 σ2

y

D
(4.9)

where σ2
x and σ2

y are the variances along the minor and major axes of the covariance
ellipse, respectively. The coordinate system (x, y) is centered at the primary object (the
satellite), with the x-axis aligned with the direction of minimum uncertainty, the ellipse
minor axis, and the y-axis aligned with the ellipse major axis. The projected miss distance
components (xm, ym) are defined in this rotated frame. The probability collision Eqn. (4.8)
then becomes:

Pc = 1
2π σxσy

Ú R

−R

Ú √
R2−x2

−
√

R2−x2
exp

−1
2

3x+ xm

σx

42
+
A
y + ym

σy

B2
 dy dx (4.10)

An alternative formulation can be defined by introducing the aspect ratio (AR), defined as
the ratio between the standard deviations σy and σx:

AR = σy

σx
(4.11)

Eqn. (4.10) can then be rewritten as:

Pc = 1
2π σ2

xAR

Ú R

−R

Ú √
R2−x2

−
√

R2−x2
exp

I
−1

2

C3
x+ xm

σx

42
+
3
y + ym

σxAR

42
DJ

dy dx (4.12)

Despite the various simplifications introduced to reduce the dimensionality and complexity
of the problem, the calculation of the collision probability still requires evaluating a
two-dimensional integral over the encounter plane, Eqn. (4.12).

4.1.2 Alfano’s Maximum Analytical Approximation

In computationally demanding contexts, such as those considered in this work, it becomes
advantageous to replace the explicit evaluation of the integral with an accurate closed-form
approximation.

To this end, the formulation proposed by Alfano [15] is adopted, which allows estimating a
maximum probability of collision (Pmax) through a series of closed-form approximations
based on a small number of parameters: the miss distance (dmin), the combined HBR (R)
and the aspect ratio (AR) of the projected covariance ellipse. As depicted in Figure 4.4, in
the encounter plane, the miss distance vector dmin forms an angle θ with respect to the
major axis of the covariance ellipse. Alfano proposes to determine the orientation of dmin

that maximizes the probability of collision in a two-dimensional formulation.
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Thus taking into account θ, Eqn. (4.12) becomes:

Pc = 1
2π σ2

xAR

Ú R

−R

Ú √
R2−x2

−
√

R2−x2
exp

I
−1

2

C3
x+ dmin sin θ

σx

42
+
3
y + dmin cos θ

σxAR

42DJ
dy dx

(4.13)
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Figure 4.4: Projected Position Relative to θ Angle.

Taking the derivative of Eqn. (4.13) with respect to the angle θ and setting it equal to
zero, the probability is maximized when θ = π/2, that is, when the vector dmin is aligned
with the major axis of the ellipse, thus xm = 0 and ym = dmin. Accordingly, Eqn. (4.13) is
rewritten as:

P =
exp

;5
−1

2

3
d2

min
σ2

xAR2

46<
2πσ2

xAR

Ú R

−R

Ú √
R2−x2

−
√

R2−x2
exp

−1
2

3 x

σx

42
+
A
y2 + 2y dmin

σ2
xAR

2

B2
 dy dx

(4.14)
Since the integral in Eqn. (4.14) still does not admit a closed-form analytical solution,
the exponential term is expanded in a power series, and the derivative of the resulting
expression is taken with respect to σx, in order to determine the value of σx that maximizes
the probability. Since no exact solution exists, suitable analytical approximations are
introduced for both the optimal σx and the corresponding maximum probability Pmax.
Among the various formulations proposed in [15], the approximation Pmax,2(σx1) was
chosen in the present work because it represents an effective compromise between accuracy
and computational cost.

Pmax2 = R2

384[AR5(σx1)6] exp
IC
−1

2

3
dmin

AR(σx1)

42DJ
(aa2 + bb2 + cc2) (4.15)

with:

σx1 =

öõõô(AR2 + 1)R2 + 2 d2
min +

ñ
[(AR2 + 1)R2]2 + 4 d4

min

8AR2 (4.16)

aa2 = 192AR4(σx1)4 (4.17)

bb2 = −(24AR4R2 − 24R2AR2)(σx1)2 (4.18)

cc2 = (3AR4 + 2AR2 + 3)R4 + 24 d2
minR

2 (4.19)
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The approximation adopted gives very accurate results, with a maximum relative error of
approximately 0.31% for thresholds less than Pc < 0,01 and 0.0025% for Pc < 0,001, values
fully compatible with the accuracy requirements in operational applications.
When the combined covariance matrix is not known, as in this study, it is necessary to adopt
a representative value of AR based on statistical analysis. In this regard, [15] suggests the
use of reference values obtained from a study of more than 26,000 simulated conjunctions.
The results show that 99% of the conjunctions have an aspect ratio AR ≤ 40. For this
reason, to remain conservative and to represent the majority of conjunction scenarios
analyzed in this thesis, an aspect ratio of AR = 40 is adopted.

4.2 Geometric and Physical Modeling of Satellite and Debris

This section describes the physical and geometric characterization of both the satellite and
the debris. These parameters are required not only for the computation of the collision
probability, where quantities such as the combined HBR are involved, but also for the
orbital propagation phase, where non-gravitational perturbations such as atmospheric drag
and solar radiation pressure must be modeled accurately. In particular, these effects depend
on the object’s mass and on its effective projected cross-sectional area A for atmospheric
drag, as well as the area directly exposed to solar radiation A⊙ for SRP modeling.

4.2.1 Hard Body Radius

In the calculation of collision probability, the estimate of the combined HBR has a crucial
role because, as can be seen in Eqn. (4.15), the collision probability Pc varies approximately
with

√
R. An overestimation of R can therefore artificially increase the value of Pc by up

to an order of magnitude. It is therefore essential to avoid excessive conservatism, favoring
physically and justified values [7].

Satellite Hard Body Radius - Rs

The estimation of the HBR of the primary object, Rs, can be approached in several ways,
as discussed by Mishiku et al. [62] and in the NASA Conjunction Assessment and Collision
Avoidance Handbook [7]. The simplest approach assumes a fixed combined HBR, accounting
for both bodies rather than the primary alone, historically set to about 20m, however
often resulting in a strong overestimation of Pc. A more refined method define Rs as the
radius of the minimum circumscribing sphere enclosing the entire spacecraft, measured
between the center of mass and the structurally most distant point. Although conservative,
this approach is easily applicable and does not require the information on the satellite’s
attitude or projected geometry. Alternatively, a more realistic approach, that still does not
require knowledge of the satellite attitude, projects the three-dimensional geometry of the
spacecraft into a plane, considering the maximum projected area, Amax, it can present in
any orientation.
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The equivalent HBR is the defined as:

Rs =
ó
Amax

π
(4.20)

If the information of the satellite attitude at TCA is available, it is possible to calculate
the area actually projected into the conjunction plane, Atca and determine the HBR:

Rs =
ó
Atca
π

(4.21)

Since the determination of the satellite attitude and detailed three-dimensional geometry
goes beyond the scope of this thesis, the estimation of Rs was conducted following a more
data-driven approach. Since the collision probability (Pc) tends to be overestimated when,
in the absence of precise information on the uncertainties in the positions of the debris
and the satellite, it is calculated according to the maximum probability formulation (as in
Section 4.1.2) with an AR set to represent most possible encounters without considering
specific individual cases, the further overestimation of the combined HBR would lead
to an unrealistic increase in (Pc), potentially generating false alarms and unnecessary
avoidance maneuvers. To mitigate this effect, Rs was determined by combining the
maximum projected area methodology with actual data from ESA DISCOS (Database
and Information System Characterizing Objects in Space)1 [63]. Through the DISCOSweb
API, all active payloads (defined by objectClass = Payload and active = True) were
extracted together with their maximum cross-sectional area (xSectMax). At the same time,
the orbital parameter associated with the same objects were retrieved and filtered to ensure
consistency with the operational scenario in consideration. In particular, only orbits whose
semi-major axis and inclination fall within a defined range around the nominal values of the
reference satellite were selected, specifically within ±100 km, and within ±10◦ respectively.
The two data sets acquired, active payloads and orbits, were cross-referenced using the
unique identifier discosId, selecting only active satellites belonging to the orbital band of
interest. For each satellite identified, the respective HBR is calculated as in Eqn. (4.20):

Rs,i =
ò

xSectMaxi

π
(4.22)

where xSectMaxi represents the maximum cross-sectional area of the i-th satellite, provided
by the DISCOS database. The effective single value of the satellite HBR is then defined as
the sum of the mean value, R̄s, and one standard deviation, σRs , of the distribution:

Rs = R̄s + σRs (4.23)
1The ESA DISCOS database serves as a single-source reference for launch information, object registration

details, launch vehicle description, and spacecraft information for all trackable, unclassified object. It
comprises more than 40.000 entries, including data on launch events, debris, rocket bodies, and operational
spacecraft. The maintenance and operation of the database through the dedicated APIs is formally
acknowledge.
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Debris hard body radius - Rd

The characterization of debris in inherently more complex than that of active satellites.
Comprehensive catalogs such as ESA DISCOS mainly cover trackable object, and even
those debris that can be tracked often lack reliable geometric or physical information.
Therefore, the debris HBR, Rd, is determined through statistical analysis such as the
one proposed by Baars and Hall [64]. Based on the processing of radar data from the
Space Fence system, the size distribution of unknown secondary objects is quantified by
analyzing approximately 230000 “known-on-unknown” conjunctions. The results show that
approximately 97.5% of the secondary objects have a radius of less than 0.36 m, which is
therefore adopted in this thesis as the representative value for Rd.

4.2.2 Cross-Sectional Area

The cross-sectional area is a key parameter in the orbital propagator, as it directly influences
the modeling of the non-gravitational perturbations. Determining the exact projected
area in the velocity direction for atmospheric drag and the area directly exposed to solar
radiation for srp would require continuous knowledge of the satellite and debris attitude,
which, as previously mentioned, lies beyond the scope of this thesis. For this reason, a
simplified assumption is adopted: the same effective cross-sectional area is used for both
perturbations, defining As and Ad for the satellite and debris, respectively.

The satellite cross-sectional area is obtained via the DISCOSWeb API, similarly to
the estimation of Rs, by selecting active payloads, applying the same orbital filtering,
and collecting the average cross-sectional area (xSectAvg) for each selected satellite. The
resulting sample is then analyzed statistically and a single representative value of As is
defined as:

As = Ās + σAs (4.24)

For the estimation of the debris cross-sectional area, the object is approximated as
a sphere, a common assumption given its typical irregular shape and chaotic tumbling
motion. The area Ad is therefore computed from the previously defined fixed HBR as the
projection into a plane of the sphere as:

Ad = πR2
d (4.25)

4.2.3 Mass

Finally, the last parameter required to propagate both satellite and debris while accounting
for non-gravitational perturbation is the mass. For the satellite mass, ms, the value is
obtained through the same DISCOSWeb API procedure retrieving the mass parameter of
active payload using the same orbital filtering. The estimation of debris mass, md, which
is considerably more uncertain to determine, is based on the statistical analysis presented
by Smith et al [65]. Based on their findings, a constant representative area-to-mass ratio
of (A/M)d = 0.1 m2/kg is adopted, determining consequently md from its cross-sectional
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area Ad as:
md = Ad

(A/M)d
(4.26)

Having established the physical and geometrical characterization of both the spacecraft
and the debris, and defined all parameters required for conjunction risk assessment and
orbital propagation, the set of quantities governing collision risk scenarios has been fully
determined. The next step is to move from the quantitative definition of these parameters
to the formulation of an autonomous decision process capable of using them to evaluate
conjunction risk and plan effective collision avoidance maneuvers within the available
time-critical windows.

4.3 Markov Decision Process Formulation

The problem of planning time-critical CAMs can be naturally formulated as a MDP,
in which an agent interacts with a simulated environment, represented in this work by
the high precision orbital propagator introduced in Section 2.4, to autonomously learn
effective avoidance strategies against potential collision with a single debris in LEO. The
MDP framework provide a rigorous representation of the decision making process in terms
of states, actions, transition dynamics, and rewards, and therefore represents an ideal
formalism for describing the CAM planning problem addressed in this thesis. Within this
formulation the agent attempts to to determine a policy that maps the orbital configuration
of the spacecraft to an appropriate control action, aiming to minimize the collision risk
while keeping the spacecraft within its operational orbital limits and optimizing the
available propulsive budget. Although in many spacecraft operations sensor noise or orbital
uncertainties may render the system partially observable, in this work is assumed that the
system is fully observable, the observation available to the agent coincides with the real
environment state. The problem is therefore formalized as a fully observable MDP.

4.3.1 State Space

The definition of the state space directly determines how the agent perceives and interacts
with the environment. To satisfy the Markov property, the state st must contain all the
information necessary to predict the future evolution of the system. It should provide the
agent with sufficient and relevant information to interact effectively with the environment
dynamics while avoiding unnecessary complexity. This reflects a balance between complete-
ness, the ability to encode all relevant environmental information, and complexity, which
affects both computational cost and training stability [52].

Based on these considerations, and noting that in the context of CAM planning the
state should capture variables that reflect the perceived hazard level of the conjunction [34],
the state at timestep t is defined as2:

st = (rt , vt , rrel,t , vrel,t , ∆vfrac,t , τtca,t , dmin,t , Pc,t) (4.27)
2Although expressed as a tuple for clarity, this representation is ultimately handled as a numerical vector

in the training frameworks, st ∈ R16
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where rt ∈ R3 and vt ∈ R3 denote the spacecraft position and velocity in the ECI RF. The
vectors rrel,t = rt− rd,t ∈ R3 and vrel,t = vt−vd,t ∈ R3 represent, respectively, the relative
position and velocity of the spacecraft with respect to the debris, expressed in the same
ECI RF. The scaler ∆vfrac,t = 1−∆vused/∆vmax represent the remaining fraction of the
total ∆v budget, ∆vmax. The variable τtca,t = ttca,t − tcurr denotes the remaining time to
the predicted TCA at current step t, while dmin.t e Pc,t corresponding to the estimated
minimum distance and collision probability always at the current step t. These variables,
which play a fundamental role in conjunction risk assessment, are introduced and derived
in detail in a dedicated section later in this chapter.

4.3.2 Action Space

The definition of the action space must satisfy two properties: completeness and validity [66].
Completeness ensures that the set of possible actions allows the agent to reach the desired
objective, missing any essential control input could prevent convergence toward an optimal
policy. Validity, on the other hand, requires that all actions within the action space are
physically feasible and consistent with the operational constraint of the system.

Although electric propulsion is increasingly adopted in LEO missions, their low con-
tinuous thrust levels and long actuation times makes them unsuitable for time-critical
CAM planning. Given the short-notice nature of conjunction scenarios, only impulsive
maneuvers are considered. Consequently, the actions at available to the agent correspond
to instantaneous changes in the spacecraft velocity components along the three axis of ECI
RF, ensuring that the completeness property is satisfied 3:

at = (∆vx,t,∆vy,t,∆vz,t) (4.28)

Since the actions are selected by the policy network, their raw value are constrained
by the activation function applied to the actor network’s output layer. In this work, a
hyperbolic tangent (tanh) activation is used, which bounds the action components within
the normalized interval [−1, 1]. The actions are subsequently mapped into meaningful
velocity increments in the range [−∆vmax,t,+∆vmax,t] representing the maximum admissible
∆v along each inertial axis at each step t . Moreover, a minimum ∆v threshold, ∆vthr, is
imposed to emulate the finite resolution of impulsive thrusters and prevents the generation
of unrealistically small maneuvers that would be infeasible in real spacecraft operations.
If the computed ∆v falls below ∆vthr, the action is set to zero, satisfying the validity
property.

4.3.3 Transition Dynamics

Once the agent selects an action at according to the policy distribution generated by the
actor network, the environment applies this control input to update its internal physical
state, triggering the transition from the current state st to the next state st+1. This

3As for the state representation, the tuple is ultimately handled as a numerical vector within the training
framework, at ∈ R3
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process establishes the connection between the decision-making logic of the agent and the
dynamical evolution of the simulated orbital environment.

At each decision step t, the environment receives the action vector at selected by the
agent, representing the instantaneous velocity change along the three inertial axes of the
ECI RF. The propulsive budget is subsequently updated:

∆vused ← ∆vused + ∆vt (4.29)

with ∆vt =
ñ

∆v2
x,t + ∆v2

y,t + ∆v2
z,t being the magnitude of the applied impulse. The

impulsive maneuver is then applied as an instantaneous change in the spacecraft velocity
modifying its state vector as:

vt+ = vt + ∆vt , Xt+ =
C

rt

vt+

D
(4.30)

where Xt+ defines the post-maneuver initial condition for the subsequent orbital propagation.
The custom orbital propagator introduced in Section 2.4 is then employed to integrate
the spacecraft equation of motion from t ·∆t to (t + 1) ·∆t, over the decision timestep
∆t. Depending on the required simulation fidelity, the propagation is performed under a
simple two-body problem or by progressively including selected perturbations.

Once the propagation is complete, a conjunction risk assessment is performed over a
fine temporal grid of 1s, spanning from the current time, (t+ 1) ·∆t, to the predicted ttca,t,
in order to evaluate the post-maneuver parameters such as the predicted time of closest
approach (ttca,t+1), the minimum relative distance between the spacecraft and the debris
(dmin,t+1), and the corresponding collision probability (Pc,t+1). These quantities quantify
the effect of the agent’s action on the conjunction geometry and directly determine the
scaler reward rt+1 assigned to the executed action, as discussed in Section 4.3.4.

Finally the environment updates the new state:

st+1 = (rt+1 , vt+1 , rrel,t+1 , vrel,t+1 , ∆vfrac,t+1 , τtca,t+1 , dmin,t+1 , Pc,t+1) (4.31)

and returns it to the agent, closing the interaction loop. This iterative process continues
until a termination condition is met as seen in Section 4.3.5.

4.3.4 Reward Function Design

The definition of the reward function represents one of the most critical components of
a RL framework. Its design requires a deep understanding of the environment dynamics
and optimization objectives to determine which actions should be encouraged or penalized.
The reward is a scalar signal (rt ∈ R) that can be dense or sparse [52]. Sparse reward
delivers nonzero values only at the end of an episode, when a termination condition is
met, while dense reward provides continuous feedback, positive, negative or zero, at every
step. Although sparse formulation is simpler to define, they often result in poor sample
efficiency since the agent receives limited information about which intermediate actions
contribute to success or failure. Dense reward, on the other hand, enables faster learning
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but requires careful tuning to avoid biasing the agent toward short-term goals. In both
cases, the magnitude and scaling of the reward must be carefully adjusted; if the numerical
scales of the individual components differ significantly, the training process can become
unstable, causing the agent to prioritize some objective over others.

In this work, a hybrid reward strategy was adopted, the agent receives dense reward
throughout an episode, providing intermediate feedback on its performance, and an addi-
tional terminal reward is assigned whenever a termination event occurs, either corresponding
to a success or a failure. Following a common approach in the literature [67,68], all dense
rewards are defined to be non-positive at every step, assuming negative values to penalize
undesired behavior and becoming zero only when the agent acts according to the defined
objective. A positive terminal reward is provided only when the episode terminates under
a success condition. Since the goal of this thesis is to train a DRL agent capable of
performing CAMs by balancing multiple and potentially conflicting objectives, the dense
reward follows the typical weighted-sum formulation, in which each term corresponds to a
specific performance goal: minimizing collision probability, maintaining the operational
orbit within predefined limits, and optimize the consumption of the available ∆v budget.
The overall reward can thus be expressed as:

rtot = cPc · rPc + c∆COE · r∆COE + c∆v · r∆v + rterminal (4.32)

where cPc , c∆COE, and c∆v are reward weighting coefficients that determine the relative
importance of each component. The definition and purpose of each reward term in Eqn.
(4.32) are described in the following subsections.

Collision Probability Term - rPc

As discussed in Section 1.2.2, according to [7], CAMs are considered successful when the
post-maneuver collision probability is reduced by at least 1.5 order of magnitude below the
nominal threshold of 10−4. In line with this standard, a target collision probability value,
here referred to as Pc,goal = 3 · 10−6 is defined as the reference level the agent must achieve
to ensure a safe post-maneuver configuration. The reward associated with the collision
probability is then designed to encourage the agent to minimize Pc toward this goal value.
Drawing inspiration from Mu et al. [34], the corresponding reward term rPc is defined as:

rPc =


0, Pc ≤ Pc,goal,

−1
2

C
1−

log10
!
Pc,t/Pc,goal

"
log10(Pc,goal)

D
, Pc,goal < Pc ≤ 1

(4.33)

This formulation produces a reward that penalize configurations with high collision proba-
bility while saturating at zero once the target value is achieved. The logarithmic scaling
ensures a smoother reward gradient in the range of interest, allowing the agent to receive
meaningful feedback even when Pc varies by several orders of magnitude.
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Figure 4.5 illustrates the resulting reward function. The curve remains flat (zero reward)
for Pc ≤ Pc,goal, representing a safe post-maneuver condition, and decreases monotonically
as the probability of collision increases.

Figure 4.5: Collision Probability Reward Function

Orbit Deviation Term - r∆COE

In addition to minimizing the collision probability, the CAM planning problem addressed
in this work aims to ensure that the satellite post-maneuver orbit remains within its
operational limits. Consequently, the reward function is designed to discourage excessive
orbital deviations caused by avoidance impulses. Unlike the formulation proposed by
Kazemi et al. [69], where distinct reward functions are defined for each orbital element to
compensate for their not uniform order of magnitude, in this work a normalized formulation
is adopted. The goal is to ensure that each orbital element contributes equally to the
overall reward, they are therefore scaled by their own acceptable deviation threshold τCOE.
The resulting normalized deviation ρ is then:

ρ = |∆COE|
τCOE

, (4.34)

where ∆COE = COEt−COEref,t, represents the deviation of each orbital element from the
reference orbit propagated over the same time window without any applied maneuver. To
ensure a smooth penalization of orbital deviation, a Huber-like function ϕ(ρ) was defined
as follows:

ϕ(ρ) =



0, if ρ ≤ 1,
1
2(ρ− 1)2, if 1 < ρ ≤ 1 + δ,

δ

5
(ρ− 1)− 1

2δ
6
, if ρ > 1 + δ,

(4.35)

with δ = 0.5 defines the extent of the quadratic transition region. The use of this Huber-like
formulation alternates between a quadratic region, which gently penalizes small deviation
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beyond the threshold, with a linear region that prevents excessive divergence for large
deviations, improving learning stability. The reward contribution associated with each
orbital element is expressed as:

r∆COEi
= −ϕ(ρi) (4.36)

where ρi represents the normalized deviation of the i-th orbital element from its nominal
value. The overall reward accounting for the deviation of all monitored orbital elements
(namely a, e, i, Ω, ω) is then computed as the sum of the individual components:

r∆COE =
Ø

i

r∆COEi
(4.37)

An example of the proposed formulation is illustrated in Figure 4.6, which shows the
reward function associated with the eccentricity deviation with a threshold τe = 0.001. For
deviation smaller than τe, no reward is applied, as |∆e| exceeds the threshold, the reward
gradually decreases according to the quadratic segment until ρ = 1 + δ, beyond which the
function follows a linear trend.

Figure 4.6: Eccentricity Deviation Reward Function

Propulsion Budget Term - r∆v

The propulsion budget term represents the component of the reward function directly
linked to the action selected by the agent at each step. It is defined as:

r∆v = − ∆vt√
3 ·∆vmax,t

(4.38)

with ∆vt =
ñ

∆v2
x + ∆v2

y + ∆v2
z magnitude of the action selected at step t. The normal-

ization factor
√

3 ensures consistency across the three action directions, such that the
maximum combined impulse within the admissible actin space corresponds to a penalty of
unit magnitude and keeps r∆v bounded within [−1, 0].
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Differently from the other reward terms, where the weighting coefficient remain constant
throughout an episode, the coefficient associated with the propellant consumption term c∆v

is dynamically increased. When the primary objective is already satisfied, Pc ≤ Pc,goal and
COEs within threshold, the increased weight of r∆v effectively discourage the agent from
performing unnecessary maneuvers. Furthermore, to reinforce this behavior and promote
a “no-action” policy, when rPc , r∆COE , r∆v = 0, indicating that all primary goals have
been achieved and the agent has correctly chosen to apply no control action, a step reward
bonus, rbonus,t = +2 is applied.

4.3.5 Termination Conditions and Terminal Reward

The termination conditions for each training episode are designed to represent realistic
operational outcomes in the proposed CAM scenario, accounting for both successful and
failure cases. Each termination event is associated with a terminal reward rterminal, which
provides the agent with with a final evaluation of its overall episodic performance. The
episode can terminate under two main categories of events:

1. Propulsion budget violation
The episode terminates when the cumulative ∆v used, ∆vused exceed the maximum
available budget, ∆vMAX , i.e., when ∆vfrac,t = 0. This event, corresponding to the
exhaustion of the available propulsive capability, is penalized with a large negative
terminal reward to discourage fuel inefficient behaviors:

rterminal = −20 if ∆vfrac,t = 0 (4.39)

2. Time of Closest Approach reached
When the predicted TCA ttca.t falls between two consecutive time steps, the orbital
propagation within the current step is interrupted and the integration is stopped
at TCA, terminating the episode. In this case, the final step may be shorter than
the nominal time interval. At this point, the termination outcome depends on the
relative miss distance dmin,tca and on the post-maneuvers collision probability Pc,tca:

• Collision: if dmin ≤ HBR the event is classified as a physical collision and a
negative reward is assigned:

rterminal = −20 (4.40)

• Successful Mitigation: if Pc,tca satisfy the safety condition Pc,tca ≤ Pc,goal and
the spacecraft orbit at TCA, is within is thresholds, i.e. ρtca ≤ 1 the episode is
considered successful. The agent is then rewarded with a large positive reward:

rterminal = +25 (4.41)
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• Failed Mitigation: if no collision occurs but Pc,tca > Pc,goal and/or ρtca > 1
the episode is classified as an unsuccessful mitigation attempt and terminates
with a negative terminal reward to indicate a suboptimal outcome:

rterminal = −20 (4.42)

These termination outcomes can be summarized as:

rterminal =


+25, if Pc,tca ≤ Pc,goal and COEtca within threshold

−20, if mitigation failed or collision occurred

−20, if ∆vfrac,t = 0

(4.43)

The magnitude of the terminal reward is intentionally set higher than that of the dense
reward, ensuring that the final outcome of the episode dominates the cumulative reward
signal. In this formulation, the terminal reward acts as a global performance indicator,
reinforcing successful CAM strategies and guiding the learning process toward safe, efficient
and mission compliant maneuver planning.

4.4 Conjunction Scenario

In order to train and validate the DRL agent to plan collision avoidance maneuvers
effectively and generalize them to any operating condition, a large number of conjunction
scenarios are required. However, the scarcity of real conjunction data, combined with
their limited heterogeneity and accessibility, makes the exclusive use of observational
datasets insufficient for statistically significant training. In literature, this problem has
been addressed with different approaches: through generative probabilistic models, which
simulate the conjunction assessment process and produce synthetic CDM series consistent
with real orbital populations and with the uncertainties of radar and optical observation [70],
simulated datasets for all-vs-all conjunction screening in which the orbits of a large catalog
of objects are propagated and combined to generate a massive set of synthetic close
approaches, which are then used to train and test machine learning algorithms capable of
automatically recognizing pairs of objects at risk of collision [71].

In this study a different approach is adopted. Real data are not used to generate close
approach scenarios, but rather the logic of randomized scenario generators introduced
by Gremyachikh et al. [72] is followed. This methodology is integrated with the back-
propagation procedure from TCA and with the stochastic perturbation of position and
velocity conditions proposed by Bourriez et al. [73]. From a RL perspective, this process
can be interpreted as a form of domain randomization, designed to expose the agent to a
wide variety of encounter geometries, thereby improving its ability to generalize beyond
the specific training scenarios. The database generation phases are described below.
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4.4.1 Satellite Initialization

The spacecraft is initialized at the reference time t0 using a set of the six classical orbital
elements {a, e ∈ [0, 1), i, Ω, ω and θ}. The values of these parameters are chosen in order
to place the spacecraft within the orbital range of interest for the study conducted in this
thesis, i.e. LEO. Subsequently, the orbital elements are converted into the corresponding
cartesian state vector in ECI RF, expressed as:

X(t0) =
C

r(t0)
v(t0)

D
(4.44)

which constitutes the initial condition for the numerical integration of the equations of
motion. After defining the semi-major axis and the inclination, the HBR (Rs), the cross-
sectional area (As) and the mass (ms) of the satellite are determined through the procedure
described in Section 4.2 by interacting with the DISCOSweb API.

4.4.2 Close Approach Database Generator

Once the satellite’s orbital status has been defined, a set of NCA close approach scenarios
between the satellite and the debris is generated. This process allows the generation of a
database of potential collision events to be used for training and validating the DRL agent.
The methodological procedure adopted for their generation follows 6 steps detailed below.

1. TCA sampling For each close approach scenario, a nominal TCA is defined, sampled
from a uniform distribution within a predefined time window:

ttca ∼ U(t0 + tmin, t0 + tmax) s (4.45)

The use of a uniform distribution ensures equal probability of extraction for all
instances included in the interval considered, avoiding the introduction of temporal
biases in the generation of conjunctions.

2. Spacecraft propagation The state of the satellite, defined by X(t0), is propagated
from the reference epoch t0 to the selected conjunction time ttca, by numerically
integrating its equations of motion. The satellite state vector at TCA, X(ttca), is
then stored and used as a reference condition for the subsequent generation of debris.

3. Perturbation of debris position at TCA To create realistic close approach
scenarios, the position of the debris at TCA is obtained by introducing a Gaussian
perturbation to the position of the satellite at the same moment in time:

rd(ttca) = r(ttca) +N (0, σposI3) (4.46)

where the standard deviation σpos is itself randomly drawn from a uniform interval.
This double randomization, uniform on the standard deviation and normal on the
actual position, allows to captures both the variability between different scenarios
and the stochastic uncertainty in the relative geometry of the encounter.
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4. Perturbation of debris velocity at TCA To complete the debris state definition
at TCA, a rotation is applied to the spacecraft velocity vector to generate different
encounter geometries and relative approach directions. The rotation is performed
about the direction orthogonal to the local orbital plane, defined by the cross product
between the debris position and the spacecraft velocity at the time of closest approach:

ŵ = rd(tT CA) × vs(tT CA)
|rd(tT CA) × vs(tT CA)| (4.47)

The debris velocity is then obtained by rotating the spacecraft velocity vector by a
random angle α, uniformly sampled within [−αmax,−αmin] ∪ [αmin, αmax] intervals,
around the unit vector ŵ. The transformation is expressed through Rodrigues
rotation formula, which provides a general representation of a finite rotation of a
vector around an arbitrary axis:

Rŵ(α) = I cosα+ (1− cosα)ŵŵT + [ŵ]× sinα (4.48)

where [ŵ]× is the skew-symmetric matrix associated with the cross product by ŵ.
Accordingly, the rotated debris velocity is given by:

vd(tT CA) = Rŵ(α)vs(tT CA) (4.49)

Renaming temporarily vd(tT CA) as v′ for simplicity and vs(tT CA) as v, expanding
Eqn. (4.49) yields:

v′ = v cosα+ (ŵ× v) sinα+ ŵ(ŵ · v)(1− cosα). (4.50)

In this specific case, the rotation axis ŵ is constructed to be orthogonal to the
spacecraft velocity vector, the scalar product (ŵ · v) becomes zero, and the last term
of Eqn. (4.50) vanishes. The resulting simplified form is therefore:

vd(tT CA) = vs(tT CA) cosα+ (ŵ× vs(tT CA)) sinα (4.51)

This expression corresponds to a planar rotation of the spacecraft velocity, it preserves
the magnitude of the velocity while altering its direction, thereby generating distinct
encounter geometries and varying relative approach angles between the spacecraft
and the debris. Finally, to emulate modeling uncertainties and observation noise, the
magnitude of the debris velocity is stochastically perturbed by multiplying it by a
random scaling factor s drawn from a normal distribution centered at one:

vTCA
DEB ← svTCA

DEB, s ∼ N (1, σvel) (4.52)

where σvel is the standard deviation.
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5. Debris backpropagation. At this point the state vector of the debris at the time
of close approach is known:

Xd(ttca) =
C

rd(ttca)
vd(ttca)

D
(4.53)

and, after defining its geometric and physical characteristics (Rd, Ad, and md) as
described in Section 4.2, it is propagated backward from tT CA to the initial time t0
obtain the corresponding initial state:

Xd(t0) =
C

rd(t0)
vd(t0)

D
(4.54)

6. Conjunction risk assessment & Database generation Having determined the
initial states of the satellite and debris, together with their respective geometric and
physical characteristics, it is now possible to perform a conjunction risk assessment.
Both bodies are propagated forward in time by numerically integrating the equations
of motion, using a fine, common time grid to ensure uniformity in the comparison
of trajectories. From this propagation, ttca, dmin, and Pc are obtained. For each
successfully generated scenario, the initial state vector of the debris, the conjunction
time, the minimum distance, and the corresponding collision probability are then
stored in a dedicated database file. This archive constitutes the Collision Scenarios
Database used in the subsequent training and validation phases of the DRL agent.
An example of the resulting database structure, is reported below in Table 4.1.

DEB rd(t0) [km] vd(t0) [km/s] ttca [s] dmin [km] Pc [-]
001 [x1, y1, z1] [vx1 , vy1 , vz1 ] ttca1 dmin1 Pc1

002 [x2, y2, z2] [vx2 , vy2 , vz2 ] ttca2 dmin2 Pc2

...
...

...
...

...
...

NCA [ · · · ] [ · · · ] · · · · · · · · ·

Table 4.1: Close Approach Database Structure

All the propagation phases described above, both forward and backward in time, are
performed using the custom orbital propagator developed in Section 2.4. The modular
implementation of the propagator allows the generation of different databases depending
on the perturbation included in the dynamic model, enable the creation of distinct datasets
for the development, testing, and final deployment phases of the DRL framework.
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4.5 DRL Framework Architecture

After analyzing in detail all the fundamental components that contribute to the definition
of a framework for the autonomous planning of CAM in time-critical scenarios, from the
characterization of the metrics used for the conjunction risk assessment to the formulation
of the problem as an MDP, it is now possible to integrate these elements into a consistent
architecture. This section presents the overall structure of the training framework developed
in this work, describing its logical organization and the interaction flows between the main
modules, as schematically illustrated below in Figure 4.7.
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4.5.1 Conjunction Scenario Module

This module is responsible for preparing the initial orbital conditions of the satellite and
generating realistic conjunction scenarios used throughout the training and evaluation
process. Its structure reflects the methodology described in Section 4.4 and is implemented
to seamlessly interface with the other components of the framework. Once the close
approach database has been generated, all the debris contained are propagated from their
initial state to the corresponding TCA defined in the database (ttcai,0) on a fine time
grid of 1s. The resulting trajectories Xdi

(t) are then stored to be easily accessible during
training. This process significantly reduces the computational cost, avoiding the need to
propagate debris trajectories at each step of the environment, and ensures that the state of
the satellite and that of the debris are always compared on the same time grid during the
conjunction risk assessment phase.

4.5.2 Agent - Environment Interaction Module

The interaction between the agent and the environment in this framework follows a hybrid
temporal organization, combining an episodic structure, in which each episode corresponds
to an individual conjunctions scenario, with a step-based interaction scheme adopted during
PPO training.

Episodic Level

As illustrated in Figure 4.7, the tags reset() and step() identify the framework compo-
nents that are involved at the episodic level during training. Each episode represents an
individual conjunction scenario between the spacecraft and a selected debris object, within
which the agent interacts with the environment through successive simulation steps. At the
beginning of each episode, the environment is reset to its initial conditions. The satellite is
restored to the nominal orbital state defined in the Satellite Initialization module, while a
debris is randomly selected from the Close Approach Database. Based on the information
contained in the database and on the satellite’s state, the initial state observed by the
agent st0 is constructed:

st0 = (rt0 , vt0 , rrel,t0 , vrel,t0 , ∆vfrac,t0 , τtca,t0 , dmin,t0 , Pc,t0) (4.55)

At each step, the agent selects an action at, corresponding to an impulsive ∆v. The
updated spacecraft state is then propagated over the decision timestep ∆t. To evaluate the
effect of the maneuver executed at step t, a conjunction risk assessment is performed, as
described in Section 4.3.3, by cross-matching the propagated satellite trajectory with the
pre-computed debris states associated with the current episode. This allows the framework
to compute the post-maneuver conjunction parameters (ttca,t+1, dmin,t+1, Pc,t+1). These
quantities define the new state st+1, which is returned to the agent, closing the interaction
loop. The process continues until a termination condition is met, marking the end of the
episode and triggering a new reset for the subsequent scenario.
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Step - Based Level

At the step-based level, the interaction between the agent and the environment develops
within the data collection phase of the PPO training loop. During this phase, the current
policy πθold interacts with the environment over a fixed number of timesteps T, generating
sequences of transitions (st, at, rt, st+1). Each transition corresponds to a discrete
simulation interval, during which the environment propagates the spacecraft dynamics
according to the impulsive maneuver selected by the agent and computes the resulting
reward reflecting the achieved performance. The resulting reward rt, together with the
transition (st, at, rt, st+1), is stored in the rollout buffer, as shown in Figure 4.7. To
accelerate the data collection process, Nenv parallel environment instances are employed,
each running an independent conjunction scenario under the same policy. In this work
Nenv = 4 parallel environment instances are employed allowing multiple trajectories to be
sampled simultaneously, significantly decreasing the overall training time. Once T timesteps
have been collected for each of the Nenv parallel environment instances, the rollout buffer
contains a consistent dataset of Nenv ·T transitions. These data are subsequently processed
to compute the advantage estimates Ât and value targets V targ

t , which are then used
during the optimization phase to update the parameters of the actor and critic networks.
After each optimization cycle, the new policy πθ replaces the old one, and a new rollout
iteration begins, continuing until the total number of iteration Niter is reached.

Stable-Baseline3 Implementation

To ensure consistency, modularity, and compliance with the state of the art DRL standards,
the PPO training algorithm has been implemented using the open source library Stable-
Baseline3 (SB3) [74]. SB3, developed in PyTorch, provides a robust and standardized
framework for defining, training, and evaluating DRL agents, allowing a seamless integration
between the custom orbital environment and the PPO training pipeline. Since SB3 operates
on a step-based logic, the training process was organized around the number of agent-
environment interaction rather than on full episodes. Accordingly, the total number of
training timestep is define:

Ttot = Niter ·Nenv · T (4.56)
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Chapter 5

Training and Evaluation

The objective of this chapter is to assess the capability of the proposed DRL framework
to plan effective avoidance maneuvers in time-critical conjunction scenario, between a
maneuverable satellite and a single non-cooperative debris, characterized by a short time
notice between conjunction detection and the expected TCA. A perturbed orbital dynamics
model is considered, accounting for the effects of atmospheric drag and the first two zonal
harmonics of Earth’s gravitational potential, J2 and J3. The choice to include only these
perturbations, while neglecting other such as SRP and third-body effect, is justified by
the fact that they are the most relevant for satellite in LEO and for the short time scale
considered in this work. Moreover, including the neglected perturbation, would considerably
increase the computational cost of integrating the equations of motion at each decision
step, without providing any meaningful improvement in the simulation fidelity.

5.1 Experimental Setup

The experimental setup introduced in this section, with parameters defining the simulation
environment, establishes the overall configuration used to train and evaluate the DRL
agent.

5.1.1 Simulation Parameters

The first parameters to be defined concerns the temporal resolution of the decision process
and the operational limits of the impulsive maneuvers performed by the agent. These
parameters determine how frequently the satellite can perform an avoidance maneuver
and the maximum velocity increments allowed per step per axis (∆vmax,t) and per episode
(∆vMAX). Table 5.1 summarize the adopted values.

Parameter Explanation Adopted Value
∆t Decision timestep 120 s

∆vmax,t Maximum axis maneuver increment 0.04 m/s
∆vthr Maneuver threshold 0.012 m/s

∆vMAX Propulsive budget 3 m/s

Table 5.1: Operational Parameters
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The decision timestep was set to 120 s, representing the interval at which the agent interacts
with the environment by selecting a new action. This value results from a trade-off between
control capability and computational efficiency. A shorter interval would increase the
number of actions per episode, enabling more precise maneuvering but substantially raising
the total number of training steps required for policy convergence, and consequently, the
computational cost. On the other hand, larger timestep would reduce the agent’s ability to
finely adjust the trajectory, potentially reducing the effectiveness of the avoidance strategy
in time-critical scenarios.

Satellite Initialization

The satellite state is initialized at the reference epoch t0 = 15 May 2025, 13 : 51 : 00
(UTC) and defined by the classical orbital elements listed in Table 5.2, together with the
corresponding state vector in ECI RF at the same epoch.

COE Value
a [km] 7000.00
e [-] 0.05000
i [deg] 35.0000
Ω [deg] 0.00000
ω [deg] 10.0000
θ [deg] 30.0000

X(t0) Value
r(t0) [km] [5126.90, 3523.98, 2467.52]

v(t0) [km/s] [−4.92218, 5.04588, 3.53316]

Table 5.2: Satellite’s initial state at epoch t0

As described in Section 4.2, the physical and geometric characteristics of the satellite were
defined through the ESA DISCOSWeb API, by filtering all active payloads within the
orbital region surrounding the reference orbit. A statistical analysis on the resulting datased,
comprising 1351 active satellites, returned an average satellite HBR of R̄s = 3.916 m with a
standard deviation σRs = 1.504 m. To define a single, conservative but physically consistent
value, the representative radius used is defined as Rs = R̄s + σRs . Similarly, the statistical
analysis of the average cross-sectional area yielded Ās = 21.307 m2 with σAs = 11.901 m2

leading to a representative value of As = Ās + σAs . From the same dataset, the average
mass of the filtered satellites is ms = 505 kg. The complete set of adopted geometric and
physical parameters for both the satellite and the debris, derived for the last as discussed
in Section 4.2, is summarized in Table 5.3 below.

Satellite Debris
Parameter Value Parameter Value
Rs [m] 5.42 Rd [m] 0.36
As [m2] 30.208 Ad [m2] 0.4071
ms [kg] 505 md [kg] 4.071

Table 5.3: Satellite and Debris Characteristics
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5.1.2 Close Approach Database Generation

The close approach database constitutes the core of the training and evaluation process
as it provides the agent with a wide variety of conjunction geometries and collision risk
conditions. The nominal conjunction time ttca is sampled between a predefined time
window starting from the initial epoch t0, whose limits are set to tmin = 3600 s and
tmax = 7200 s. This range was selected to reproduce time-critical collision avoidance
scenario, consistent with the motivation of this thesis. The disturbances applied to the
position and velocity of the spacecraft to get the debris state at the TCA are generated
according to the distributions defined in Section 4.4.2, with uniformly sampled standard
deviations:

σpos ∼ U(0.1, 1.2) km (5.1)

σvel ∼ U(0, 0.1) km/s (5.2)

The parameters defining the uniform distributions σpos and σvel were tuned to generate
a database where 100% of the generated encounters exhibit a probability of collision
Pc ≥ 10−4, a value high enough to require the execution of an avoidance maneuver. The
rotation angle to get the debris velocity is bounded within αmin = 10◦ and αmax = 45◦,
ensuring sufficiently distinct encounter geometries while avoiding unrealistic head-on
configurations. The variety of encounter geometries of the generated database enables the
learned policy to generalize effectively, allowing the agent to perform avoidance maneuvers
satisfying the imposed objective, even in conjunction never encountered during training.
This concept, often referred to as domain randomization in DRL, represents one of the
main strength of the adopted approach, as it eliminates the need to retrain the model for
each new conjunction, significantly reducing computational cost and training time.

The complete database consists of NCA = 50 independent conjunction scenarios. Of
these, 80% are used for training, while the remaining 20% are only used for the evaluation
of the learned policy. For completeness, both the training and evaluation complete database
are reported in Appendix D. To provide a visual overview of the generated database, Figure
5.1 shows the orbital configuration of the training set.

Figure 5.1: Training Set Orbital Configuration (ECI RF)
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5.1.3 Deep Reinforcement Learning Training Configuration

The DRL training configuration was defined to ensure both a stable and computationally
efficient learning process. The main parameters influencing the training performance, sum-
marized in Table 5.4, were selected through a trade-off between stability and computational
cost.

Variable Explanation Adopted Value
Nenv Environment instances 4
T Rollout steps 512
Niter Policy update iterations 500
Ttot Total steps 1024000
K Number of epochs 10
M Mini Batch Size 256

Table 5.4: PPO Algorithm Training Parameters

To accelerate the data collection phase of the PPO training loop, each policy update
was performed on 4 parallel instances of the environment. At each iteration, the current
policy πθold

was rolled out for 512 steps over each environment instance, resulting in a
total rollout length of 2048 state transition per iteration. A larger rollout length increases
the set of sample used to estimate the advantage function, reducing the variance of the
policy gradient, but also increases the policy lag, since samples are collected with slightly
outdated parameters. Conversely, shorter rollouts increase the update frequency but lead
to higher variance, more noise, in the advantage estimates. The chosen value of 512 steps
(2048 over the 4 instances) is adopted to balance stable gradient estimates while keeping
the policy update frequency adequate.

Before performing the parameters update, the 2048 sample training batch was randomly
divided into mini-batches of 256 transitions. Each mini-batch was then used to optimize the
policy and value networks according to the PPO objective function, JP P O

t (θ, w), presented
in Section 3.4.1. The optimization over each mini batch was repeated for K = 10 epochs,
allowing multiple passes through the data to refine the policy parameters before collecting
new trajectories. A mini-batch size of 256 was found to effectively smooth the stochasticity
of the gradient without excessively increasing computational cost. Larger mini-batches
typically lead to more stable training but require more memory and reduce the beneficial
randomness in gradient updates. The number of epochs per update was set to 10, which
enables multiple optimization passes through the same batch to exploit the collected data
more efficiently, while preventing overfitting to on-policy samples, a risk that increases for
higher epoch counts.

The number of policy-update iterations was set to 500, corresponding to a total of
1.024 · 106 environment steps. This configuration was determined empirically after multiple
training campaigns, observing that after approximately one million interactions the average
episode reward reached a plateau and the policy became stable and nearly deterministic,
indicating convergence of the learning process.
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Proximal Policy Approximation Hyperparameter

The Hyperparameters specifically defining the PPO update process and its surrogate
objective function, JP P O

t (θ, w), are summarized in Table 5.5.

Variable Explanation Adopted Value
ηθ, ηw Networks learning rate 3 · 10−4

− Actor structure [16, 64, 64, 3]
− Critic structure [16, 64, 64, 1]
γ Discount factor 0.99
ϵ Clip ratio 0.2
c1 Value loss weight 0.5
c2 Entropy weight 0.005

Table 5.5: PPO Algorithm Hyperparameters

Most of the PPO hyperparameter adopted in this work correspond to the default values of
the SB3 PPO implementation, since empirical tuning confirmed that these values provide
the best trade-off between training stability and overall performance within the developed
framework. The default architecture of the actor and critic networks, both implemented
with two hidden layers of 64 neuron each, ensures an efficient structure without unnecessary
computational cost. The hyperbolic tangent (tanh) activation function was adopted for all
layers in both networks, producing outputs bounded in the range [-1, 1]. This property is
particularly beneficial for the actor network, where the three output neurons correspond
to the components of the continuous action vector and must subsequently be mapped to
physical realistic impulsive maneuvers along each direction of the ECI RF.

The discount factor γ determines the relative importance assigned to the immediate
and future reward. In the context of this thesis, where the objective of each episode is
to reach a terminal success condition representing the completion a series of CAMs, the
discount factor was set to 0.99. This choice encourages the agent to adopt a long-term
strategy that consider the cumulative effect of multiple actions rather than focusing solely
on immediate improvements.

The entropy coefficient c2 was changed with respect to the default configuration.
It introduces a term in the PPO objective that penalizes overly deterministic policies,
encouraging exploration. In early stage of the training, it is important for the agent
to explore a wide range of possible policies, to effectively discover the optimal control
strategy that yields the most discounted return. This coefficient must be carefully tuned
because excessively high values lead to persistent random behavior and prevent convergence,
while low value accelerate convergence but increase the risk of premature exploitation and
convergence to suboptimal policies.

Reward Coefficient Tuning

The tuning of the reward coefficient, was carried out through several training runs, during
which different combination were tested to achieve a stable and balanced policy behavior.
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The final configuration, reported in Table 5.6, was selected as the best compromise between
the main learning objective, i.e. minimizing collision probability, minimizing orbital
deviation and ensuring propulsive efficiency. As discussed in Section 4.3.4, each coefficient
determines the relative importance assigned to a specific term in the total reward function,
influencing the agent’s decision making strategy during training.

Reward Coefficient Adopted Value
CPc 2.5

C∆COE 4.5
C∆v 0.1, 0.5

Table 5.6: Reward coefficients

The coefficient associated with the propulsive term, C∆v, was implemented as a dynamic
weight that increases from 0.1 to 0.5 once the two primary objectives, collision risk mitigation
and orbital maintenance are achieved. This was designed to discourage the agent from
applying unnecessary maneuvers once a safe and compliant configuration has been reached.
The initial low value ensures that fuel consumption is penalized only marginally during
the early phase of an episode, allowing the agent to focus on learning effective avoidance
strategies before optimizing propulsive efficiency.

Finally, Table 5.7 reports the thresholds adopted for normalizing the deviations of the
COEs with respect to the reference orbit.

τCOE Adopted Value
τa [km] 1
τe [-] 0.005
τi [deg] 0.05
τΩ [deg] 0.05
τω [deg] 0.05

Table 5.7: COEs Deviation Threshold - τCOE

5.2 Training Performances

Once the experimental setup had been fully defined, training was performed over 500 Niter,
corresponding to a total of 1024000 steps, and required approximately 12 hours to complete.
This section analyzes the main metrics tracked during the learning process, with the aim of
evaluating both the stability of PPO algorithm and the evolution of policy behavior during
training. The analysis is organized by considering both indicators directly related to the
dynamics of the update algorithm and metrics that describe how the policy progressively
develops behaviors consistent with the objectives of the collision avoidance problem.
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5.2.1 Proximal Policy Optimization Training Performance

Among the indicators commonly used to assess the stability of PPO training process, two
quantities are particularly relevant: the evolution of the total loss (Figure 5.2), and the
explained variance (Figure 5.3).

Total Loss The total loss is defined as the opposite of the PPO objective function,
JP P O

t (θ, w). Since the PPO objective must be maximized for the policy to improve, the
loss is minimized during training. The behavior of the total loss over the entire training
process is reported in Figure 5.2.

Figure 5.2: Evolution of PPO total loss over 1024000 training step

The loss shows a steep decrease during the initial training phase, indicating the rapid
adjustment of both policy and value networks parameters. After this initial stage, the
loss progressively stabilizes around low values, indicating consistent policy refinement and
reduced parameters updates. The absence of large fluctuation in the later stages confirms
that the agent reaches a stable training regime, approaching a nearly deterministic control
action.

Explained Variance The explained variance (EV) quantifies how accurately the value
network vw(st) predicts the target state value vtarg

t and it is formally defined as:

EV = 1− σ2(vtarg
t − vw(st))
σ2(vtarg

t )
(5.3)

The goal during training is to achieve EV values close to EV ≈ 1, indicating that the critic
provides highly accurate predictions of the target value. The evolution of the EV over the
entire training process is reported in Figure 5.3.
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Figure 5.3: Evolution of EV over 1024000 training step

At the beginning of the training, the EV is negative, indicating that the critic is unable to
provide meaningful estimates of the target value, an expected behavior since the networks
start from untrained, random parameters. Within the first 200000 training step, the EV
raises to approximately 0.8, highlighting that the critic progressively learn an accurate
mapping between states and target values. In the later stages of the training, the metric
reaches values close to 1 with very small oscillation, confirming that value prediction have
become highly reliable.

5.2.2 Policy Training Performance

The policy performance during training is assessed by observing the evolution of the average
episode reward, the average success rate, the average episode burn count, and the average
∆vused per episode, reported respectively in Figure 5.4, Figure 5.5, and Figure 5.6.

The average reward is computed as the sum, over the episodes contained in each PPO
iteration cycle Niter, of the dense rewards and the terminal reward accumulated within
each episode. During the initial phase of training, within the first 200000 steps, the reward
increases rapidly, followed by a more gradual, steady growth until the end of training,
where the maximum value is reached.

Figure 5.4: Evolution of Average Episode Reward during training
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This behavior, observed in Figures 5.4, is consistent with a policy that, as training progresses,
achieves success conditions more frequently, reducing the penalties associated with the
dense terms of the reward function. The success rate, measuring the fraction of episodes
ending with a successful mitigation condition, i.e. Pc,tca ≤ Pc.goal and ρtca ≤ 1, provides a
more directly interpretable performance metric.

Figure 5.5: Evolution of success rate during training

As shown in Figure 5.5, after an initial exploration phase, in which almost all episodes
result in failure, the success rate increases rapidly and reaches values around 0.5–0.6
within the first 200000 steps. This behavior explains the rise observed in the average
episode reward during the same interval. After approximately 400000 steps, the success
rate stabilizes around 0.8–0.85, indicating that the policy has learned a robust avoidance
strategy with respect to the variability of conjunction scenarios. The fact that the average
reward continues to gradually increase suggests that the policy is not only improving the
probability of success, but is also refining how it achieves success, progressively reducing
both orbital deviations and propulsive resources.

A more detailed explanation of this refinement phase can be seen in the average episode
burns count and the average episode ∆vused, shown in Figures 5.6. The average number of
burns per episode quantifies the number of non-zero impulse maneuvers performed before
the end of an episode. The trend shows that, in the initial and intermediate phases of
training, this value remains almost constant, at around 46 impulses per episode. In this
stage, the policy is mainly oriented towards achieving successful mitigation, distributing
the pulses throughout the entire episode at the expense of propulsive efficiency. Once
the success rate stabilizes around 0.8, the average number of burns begins to decrease
significantly, converging towards values close to 40 per episode. This reduction indicates
that, after learning to reliably satisfy safety and orbit constraints, the policy tends to
eliminate redundant maneuvers, exploiting the structure of the reward function and, in
particular, the presence of the step bonus in the absence of action when all constraints are
satisfied.
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Figure 5.6: Evolution of burn count (left) and ∆vused (right) trend during training

A similar trend is observed when analyzing the average value of ∆vused per episode, shown
in the right panel of Figure 5.6. In the early stages of training, the curve shows an increase
from approximately 2.3 to approximately 2.7 m/s. In this exploratory phase, the policy
tends to adopt more aggressive strategies, using a greater amount of the propulsive budget
to achieve successful conditions more frequently. Around the same training horizon in
which the success rate stabilizes (approximately 400000 steps), the average ∆vused begins
to decrease progressively, converging towards values of the order of 1.9 m/s at the end of
training. This transition indicates that, once a reliable avoidance strategy has been learned,
the policy begins to fully exploit the structure of the reward function, which makes the use
of ∆v progressively more penalizing when the terms rPc and r∆COE are already close to
zero.

5.3 Learned Policy Evaluation

After analyzing the proposed framework’s training behavior, the collision avoidance capa-
bilities of the learned policy are assessed through an evaluation phase. During training, the
agent samples actions from a Gaussian distribution parameterized by the actor network,
enabling the stochastic exploration necessary for policy optimization. During the evaluation
phase, however, the actor network parameters are “frozen” at the final training iteration
(at step 1024000) and executed in deterministic mode: no sampling is performed, and the
selected action corresponds to the mean of the learned distribution. This ensures fully
reproducible rollouts and allows for an objective evaluation of the final policy’s performance.

In this work, the evaluation is carried out on the 20% portion of the generated close-
approach database that was never used during training, corresponding to a set of 10 close
approach scenarios.

5.3.1 Policy Generalization Capabilities

The evaluation phase allows to verify the generalization capability of the learned policy,
i.e., its ability to transfer the avoidance strategies acquired during training to conjunction
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scenarios never encountered before. The evaluation close approach database present a
wide variability both in terms of orbital configuration and in the associated collision risk
metrics, minimum miss distance, TCA, and initial collision probability. This diversity
is fundamental for assessing the robustness of the learned policy with respect to diverse
encounter geometries. Figure 5.7 and Table 5.8 show, respectively, the orbital configuration
of the 10 scenarios and their collision risk metrics.

Figure 5.7: Evaluation Set Orbital
Configuration (ECI RF)

DEB ttca [s] dmin [km] Pc

001 6192 0.458 2.21 × 10−3

002 5528 1.426 2.40 × 10−4

003 4952 0.173 1.19 × 10−2

004 6107 0.899 5.99 × 10−4

005 6179 0.685 1.02 × 10−3

006 4995 1.567 1.99 × 10−4

007 7025 0.559 1.51 × 10−3

008 5106 0.791 7.69 × 10−4

009 5748 0.592 1.35 × 10−3

010 6580 0.442 2.36 × 10−3

Table 5.8: Evaluation Close Approach
Database

The deterministic rollout of the learned policy on the ten evaluation scenarios showed
remarkable performance. The policy was able to achieve a successful mitigation in all 10
cases, meeting the two main objectives: reducing the Pc below Pc,goal and maintaining
the satellite orbit within operational limits. In particular, success was achieved with an
average value of ∆vused of 2 m/s, with an average burn count of 42, and an average episode
reward of approximately 14, results are fully consistent with the trends observed during
the final stages of the training phase.

The observed behavior highlights the main strength of the adopted DRL framework:
once trained, the policy acts as a mapping from the observed state to learned optimal
action, obtained through real-time inference of the policy network. It is therefore not
necessary to retrain the model for each new conjunction scenario. This highlights the
potential of this approach in the context of time-critical collision avoidance maneuvers,
where speed and reliability of the decision-making process play a crucial role.

5.3.2 Policy Rollout Analysis on a Representative Conjunction Scenario

To evaluate the operational behavior of the learned policy, its response is examined in
detail on a specific conjunction scenario from the evaluation database. The objective is not
to verify whether or not the policy meets the success criteria, already demonstrated in the
previous section, but to show how the sequence of actions generated by the policy allows
the objectives of the collision avoidance problem to be achieved.
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In particular, the scenario associated with debris DEB007, reported in Table 5.8, is
considered. This case represents a typical time-critical conjunction, perfectly representative
of the operational context addressed in this thesis. The TCA is less than two hours after
the initial epoch t0, specifically after 7025 seconds (15 May 2025, 15:48:05 UTC). The
nominal configuration has a minimum distance of 0.559 km and a collision probability of
1.511 · 10−3, values that make it necessary to perform a mitigation action. Figure 5.8 shows
the close approach geometry of the scenario, with a zoom around the TCA to highlight
the critical nature of the encounter.

Figure 5.8: Close Approach Geometry

The deterministic rollout of the learned policy is then carried out over this specific scenario.
At each decision step, the agent observes the state of the environment and selects the
action as the mean of the learned policy distribution, resulting in a deterministic control
input. The action are applied as impulsive ∆v along the three axis of the ECI RF. The
complete sequence of impulses generated during the episode is shown in Figure 5.9.

Figure 5.9: Collision Avoidance Maneuvers Sequence - ECI RF
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The maneuvers sequence reflects the structure of the designed reward function. Once the
primary objectives have been achieved, the penalty associated with propulsion budget
increases, while the agent is rewarded for avoiding unnecessary maneuvers. This explains
the progressive reduction in the magnitude of the impulses after step 40 and the complete
absence of maneuvers between step 44 and the TCA. The effectiveness of the maneuver
sequence is quantified in Figure 5.10, which reports the evolution of the minimum miss
distance and collision probability at each decision step during the deterministic policy
rollout.

Figure 5.10: Minimum Miss Distance and Collision Probability Evolution

In the initial phase, the first velocity increment produce a rapid increase in the minimum
distance (from less than 1 km to about 8 km in the first eight steps), leading to a reduction
in the probability of collision by more than two orders of magnitude. After this initial rise,
dmin exhibits a short plateau, consistent with the evolution of the orbital elements relative
to the reference orbit, shown in Figure 5.11. In this interval the argument of perigee
temporarily exceeds its operational limits, inducing the policy, to reduce the intensity and
change the direction of velocity increment in order to restore orbital compliance. Once
adequate margins are restored, the policy resumes applying higher magnitude impulses to
further increase dmin and bring Pc below Pc,goal. It is interesting to note that, in order to
achieve a more consistent reduction in the probability of collision, the policy temporarily
accepts a deviation of the semi-major axis beyond the operational limit. Once Pc falls
below the target value, the remaining impulses are aimed not towards further modifying
Pc, but toward bringing a back within limits, ensuring full compliance with the success
conditions at the TCA. The episode therefore ends with an effective avoidance that is also
consistent with the mission objectives.
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Figure 5.11: COEs Deviation During Maneuvers Sequence

Analyzing the deviation of the other orbital elements during the maneuvers sequence
confirms the desired behavior. The magnitude of the ∆v components selected by the policy
ensure that eccentricity, inclination, and RAAN always remain within their respective
operating thresholds. Table 5.9 summarizes the deviations of the five orbital elements
at TCA from the nominal values of the reference orbit. As shown, the policy keeps the
satellite’s orbit within the required limits, with very only minimal percentage variations.
This allows the satellite to resume its nominal activities immediately after TCA, without
requiring further corrective orbit maintenance maneuvers.

COEs at ttca Reference Orbit Post CAMs Orbit |∆COE| Relative Variation
a [km] 6996.74 6995.99 7.55 · 10−1 −0.0107194 %
e [-] 0.0493261 0.0493942 6.81 · 10−5 +0.138061 %
i [deg] 34.9857 34.9859 2.24 · 10−4 +0.000571662 %
Ω [deg] 359.455 359.447 7.31 · 10−3 −0.00222562 %
ω [deg] 10.6684 10.6616 6.83 · 10−3 −0.0637396 %

Table 5.9: COEs Relative Variation at TCA

Although the velocity increments are applied in the ECI RF, chosen to ensure consistency
with the orbital propagator, a more intuitive and informative understanding of the policy
behavior is obtained by analyzing the maneuvers in the Radial-Transverse-Normal (RTN)
RF (a detailed description of which is given in Appendix A). The maneuvers sequence is
shown in Figure 5.12, which reports the components of the impulsive ∆v along the R, T,
and N axes, together with the azimuth (Az) and elevation (El) angles that describe the
direction of the overall ∆v vector in the local system.
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Figure 5.12: Collision Avoidance Maneuvers Sequence - RTN RF

Analyzing the ∆v components in the RTN RF is possible to directly interpret the con-
tribution of each maneuver to the change in the geometry of the encounter. In the first
steps, the transverse component ∆vT is dominant and drives the rapid increase in the dmin.
Subsequently, the applied maneuvers are mostly oriented along the radial axis. Radial
corrections, for a comparable ∆v, produce more contained variations in semi-major axis
and eccentricity than purely tangential impulses. For this reason, the policy tends to favor
radial impulses to keep the orbital elements as close as possible to their respective operating
limits, while continuing to reduce Pc. The most relevant policy behavior emerges from the
analysis of the normal component ∆vN . Out-of-plane impulses directly modify i and Ω
and are therefore significantly more expensive in terms of ∆v than in-plane corrections.
For this reason, the magnitude of ∆vN remains systematically lower than the radial and
transverse components. This trend is reflected in the evolution of the elevation angle: in
the first half of the episode, the elevation is mainly negative, while in the second half it
becomes positive. The sequence of normal impulses with opposite signs compensates for
the variation in i and Ω.

Lastly, the final configuration after maneuvers is shown in Figure 5.13.

Figure 5.13: Post Maneuvers Close Approach Geometry
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The left panel reports the orbital geometry resulting from the entire avoidance maneuvers
sequence. The green arrows represent the velocity increments applied during the episode,
where their direction and length indicates the orientation and magnitude of the resulting
∆v vector, while their length reflects its magnitude. Consistently with the analysis in the
RTN reference system, the impulses are mainly oriented along the radial direction, while
the out-of-plane component remain very limited. The right panel provide a zoomed view of
the relative geometry at TCA, comparing satellite position after the maneuvers with the
debris orbit and the reference orbit. The displacement produced by the maneuvers sequence
results a final minimum distance of dmin(ttca) = 14.050 km, a significant increase compared
to the initial 0.556 km. As a result, the Pc is reduced from 1.511 · 10−3 to 2.490 · 10−6,
well below the target threshold of 3 · 10−6 and nearly three orders of magnitude lower than
initial value. Overall the maneuver sequence generated by the learned policy successfully
resolves the conjunction scenario, increasing the geometric separation and reducing the
collision probability to a safe level while maintaining the orbital configuration within the
prescribed operational limits.

5.3.3 Post Maneuvers Conjunction Risk Assessment

After assessing the effectiveness of the proposed approach in planning collision avoidance
maneuvers, it is also necessary to verify that the maneuvers performed do not result in a
new increase in the risk of collision with the same object involved in the close approach.
The probability of collision must be below the threshold of 10−4 in the period following
the maneuvers. In particular, requirement 5.3.3.3(f) of the ESA Space Debris Mitigation
Requirements [10] states that, for missions in LEO the collision probability with any
cataloged object must not exceed 10−4 in the four days following the planned maneuver.

To verify compliance with this requirement, a conjunction risk assessment was performed
between the spacecraft and the debris considered in the close approach scenario for four
days following the TCA. Both states of satellite and debris were propagated using the
custom orbital propagator described in 2.4, including all relevant perturbations modeled
in this thesis: atmospheric drag, zonal harmonics from J2 to J6, SRP, and gravitational
perturbations from the Sun and Moon. The temporal evolution of the relative distance
and the corresponding collision probability are shown in Figure 5.14.

The four days propagation shows that following the maneuvers performed, the two
objects do not return to a high-risk configuration. As shown by the red vertical line in
Figure 5.14, the minimum relative separation occurs 32 hours, 15 minutes, and 5 seconds
after the TCA, corresponding to 17 May 2025, 00:03:05 (UTC). At that time, the relative
distance between the satellite and debris is 422.929 km, while the probability of collision is
Pc = 2.748 · 10−9, well below the operational threshold of 10−4.
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Figure 5.14: Relative distance and collision probability during the four day post-maneuvers
propagation

This result confirms that the sequence of maneuvers planned by the learned policy not
only effectively resolves the conjunction event at TCA, but also guarantees the absence of
further critical events in the following four-day interval, fully satisfying the post-CAMs
safety requirement.
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Chapter 6

Conclusions & Future Work

After outlining the context, the problem statement, the theoretical foundations, and
the formulation, training, and evaluation of the proposed DRL framework, this chapter
summarizes the main conclusions of the work and presents possible future developments
aimed at further improving its performance and operational applicability.

6.1 Conclusions

This thesis addressed the challenge of autonomously planning CAMs in LEO under time-
critical constraints, motivated by the growing density of space traffic, the operational
limitations of ground-based procedures, and the technological gap identified for short-notice
conjunction events. As highlighted in Section 1.2.3, current CAM workflows may require
hours to days between the reception of a CDM and the execution of a maneuver, a timeframe
incompatible with short-notice conjunction events, particularly in the context of dense
orbital environments and large constellations. These considerations motivated the central
objective of this thesis: to develop and evaluate a DRL framework for the autonomous
planning of CAMs in scenarios characterized by limited decision time windows, involving an
active and maneuverable satellite and a single non-cooperative debris object. The results
obtained confirmed that the proposed framework fully satisfied this objective. Training
performance analyses showed a stable learning process, with convergence of the success
rate to approximately 86% and progressive refinement of the policy’s propulsive efficiency.
The evaluation of the learned policy on a database of ten unseen conjunction scenarios
showed successful mitigation in all cases, thereby confirming the extent to which the
learned policy is able to generalize across different conjunction geometries and to provide
response times consistent with an autonomous planning of CAMs within a constrained
decision window. The detailed rollout examination on a representative conjunction scenario
further illustrated the operational behavior of the learned strategy: the collision probability
was reduced by almost three orders of magnitude while the orbital deviations at TCA
remained within the prescribed limits, confirming that the sequence of avoidance maneuver
do not compromise the spacecraft’s ability to resume its nominal operations. Finally, the
post-maneuver analysis confirmed that the application of the maneuvers sequence does not
introduce new short-term risks, as demonstrated by the four-day propagation following
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TCA. The collision probability remained consistently below 10−8 indicating full compliance
with operational safety requirements and the absence of condition that would necessitate
an additional avoidance maneuver. Equally important, the time required for the maneuver
planning corresponds solely to the inference time of the policy network, on the order of
seconds, demonstrating that the framework can operate onboard without the need for
retraining, even in the presence of previously unseen conjunctions scenario.

Overall, this thesis demonstrated that a DRL-based approach can serve not merely
as a theoretical alternative to classical CAM planning, but as a valuable solution to
autonomously plan effective collision avoidance maneuvers in time-critical scenarios. The
results confirm the feasibility of adopting RL for next-generation autonomous CAM systems
and lay the foundation for future developments aimed at integrating such frameworks into
operational space traffic management architectures.

6.2 Future Work

Reduced Decision Timestep A first extension of the proposed framework concerns
the reduction of the decision timestep with which the agent selects the action to be applied.
The current architecture uses a 120 second interval, which has proven effective in ensuring
stability during training, allowing an overall success rate of approximately 86% to be
achieved, producing maneuver sequences capable of resolving the majority of conjunction
scenarios. However, it has been observed that the remaining 14% of failures are mainly due
to the agent’s limited ability to react appropriately when the TCA approaches the lower
limit of the available time window (tmin), which is approximately one hour. A reduction in
the decision step, supported by greater computational resources needed to handle a higher
number of iterations during training, would allow the framework to be extended to even
more stringent scenarios. This improvement would potentially make it possible to plan
CAM maneuvers in time windows of less than one hour compared to the TCA, expanding
the applicability of the method to the category of "Last-Instant" CAM proposed in [26].

POMDP Formulation A second possible improvements is to reformulate the CAM
planning problem as a Partially Observable Markov Decision Process (POMDP). Unlike
the fully observable MDP adopted in this thesis, in a POMDP the agent cannot directly
access the true state of the environment, it receives an observation that provide only partial,
noisy, or uncertain information about the underlying dynamical state. This formulation is
particularly relevant for realistic conjunction scenarios, where orbit determination errors,
sensor noise, and asynchronous updates limit the accuracy of the state information available.
The mathematical formulation of an POMDP is an extension of the MDP tuple through
the introduction of two additional components (S,A,P,O,Z, γ), where:

• O: observation space, set of all possible observation (ot ∈ O) the agent receive from
the environment.

• Z: observation model, defined as Z(st+1, at, ot) = P(ot|st+1, at). It describe the
probability of observing ot after taking action at and transitioning to the hidden
state st+1.
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Although the environment evolves according to a hidden state, the agent must still make
decision based solely on the limited information provided by the observations. For this
reason, POMDP formulation introduce the concept of a belief state bt(st), a probability
distribution that represent the agent best estimate of the state given all past actions and
observations.

Multi-Debris and Multi-Agent Scenarios Addressing multi-debris scenarios would
require extending the representation of the system state to include multiple encounter
geometries simultaneously, along with a reformulation of the reward function capable of
assessing the overall risk generated by all objects involved. If both objects are maneuverable
satellite, the problem takes on the nature of a multi-agent system, in which each satellite
must plan its own maneuver while taking into account the actions of the other. Configura-
tions of this type can be addressed using Multi-Agent Reinforcement Learning techniques,
which allow cooperative interactions to be modeled, thus opening up the possibility of
addressing more complex conjunctions and more realistic operational scenarios.
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Appendix A

Reference Frames

A.1 Earth-Centered Inertial (ECI)

Equatorial Plane

Î
Vernal Equinox,Υ

Ĵ

K̂
North Pole

Figure A.1: Earth-Centered Inertial (ECI) Reference Frame

The study of the orbital motion of a satellite requires, as a fundamental first step, the
definition of an inertial reference system in which to express kinematic and dynamic
quantities. The reference system most commonly adopted in orbital mechanics for Earth-
orbiting satellites is the equatorial geocentric inertial system, known as Earth-Centered
Inertial (ECI) (Figure A.1). The ECI RF is centered in Earth’s center of mass with the
equatorial plane as the reference plane. The three orthogonal axes defining the frame are:

• Î: directed toward the vernal equinox, or the point of intersection of the equatorial
plane and the ecliptic plane, at the constellation Aries (Υ) at J2000.

• K̂: orthogonal to the equatorial plane, directed toward Earth’s Geographic North
pole.

• Ĵ: obtained through right hand rule, such that the right-handed triad is completed.
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A.2 Perifocal (PQW)

p̂

q̂
ŵ

Orbital Plane

Î
Ĵ

K̂

(a) 3D View
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ŵ

q̂

p̂

(b) 2D View: Orbital Plane

Figure A.2: Perifocal (PQW ) Reference Frame

The perifocal reference frame (PQW) (Figure A.2) is an inertial coordinate system whose
origin is located at the focus of the orbit, which coincides with the Earth’s center of mass.
The fundamental plane of the frame is defined by the orbital plane of the satellite and the
three orthogonal axes defining the frame are:

• p̂: is aligned with the eccentricity vector e and thus points toward the perigee of the
orbit.

• ŵ: is normal to the orbital plane and is therefore parallel to the specific angular
momentum vector h.

• q̂: obtained through right hand rule, such that the right-handed triad is completed.

Because this system maintains a fixed orientation with respect to perigee, it is particularly
suitable for describing orbits with non-zero eccentricity. In the presence of a perfectly
circular orbit, where the direction of perigee is not defined, the system loses physical
meaning and alternative systems are typically used.

A.3 Earth-Centered Earth-Fixed (ECEF)

The ECEF RF (Figure A.3) is a non-inertial, Earth-fixed reference frame with its origin
located at the Earth’s center of mass. Unlike the ECI frame which is inertial, the ECEF x

and y axes rotate with the Earth at its sidereal rotation rate ω. The fundamental plane of
the frame is defined by the equatorial plane and the three orthogonal axes defining the
frame are:

• Î′: directed from the Earth’s center toward the intersection of the equator and the
Greenwich meridian (GM).

• K̂′: aligned with the Earth’s rotation axis and pointing toward the Earth’s Geographic
North Pole.
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• Ĵ′: completes the right-handed triad according to the right-hand rule, and lies in the
equatorial plane.

Equatorial Plane

ω

Î
Ĵ

K̂′ ≡ K̂

αG

Î′
Ĵ′

GM

Figure A.3: Earth-Centered Earth-Fixed (ECEF) Reference Frame

Because the ECEF frame rotates with the Earth, the orientation of Î′ and Ĵ′ changes over
time with respect to inertial space. The angular displacement between the inertial Î axis
(ECI frame) and the rotating Î′ axis (ECEF frame) is quantified by the Greenwich sidereal
angle αG, which increases steadily at the Earth’s rotation rate.

A.4 Radial-Transverse-Normal (RTN)

Sat

Satellite Orbit

R̂
T̂N̂

Î Ĵ

K̂

(a) 3D view: RTN frame along the orbit

R̂

T̂

N̂

∆v

Az El
Sat

(b) 2D view: RTN frame in the orbital
plane

Figure A.4: Radial-Tangential-Normal (RTN ) Reference Frame

The Radial-Transverse-Normal (RTN) RF (Figure A.4) is a non-inertial, satellite centered
reference frame moving with it along its orbit. Its origin coincides with the instantaneous
position of the satellite, and the three orthogonal axes are defined as follows:

• R̂: directed outward from the Earth toward the satellite, aligned with the position
vector r.
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• N̂: is perpendicular to the instantaneous orbital plane, aligned with the satellite’s
specific angular momentum vector.

• T̂: lies in the orbital plane completing the right-handed triad. It points in the
direction of the velocity vector only in case of circular orbit or at the at the apsides
in an elliptic orbit.

Because the RTN RF is tied to the satellite rather than to inertial space, it provides a
natural representation of the direction of impulsive ∆v maneuvers. For this reason, the
maneuver direction is often described using the azimuth and elevation angles defined in
Figure A.4b. In this formulation, the azimuth (Az) is measured in the instantaneous RT
plane, from the transverse axis T̂ to the projection of the ∆v vector onto the RT plane.
The elevation (El) quantifies instead the out-of-plane component of the burn and is defined
as the angle between the RT plane and the ∆v vector.
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Atmospheric Density Model

Altitude Range
h [km]

Base Altitude
h0 [km]

Nominal Density
ρ0 [kg/m3]

Scale Height
H

0–25 0 1.225×100 7.249
25–30 25 3.899×10−2 6.349
30–40 30 1.774×10−2 6.682
40–50 40 3.972×10−3 7.554
50–60 50 1.057×10−3 8.382
60–70 60 3.206×10−4 7.714
70–80 70 8.770×10−5 6.549
80–90 80 1.905×10−5 5.799
90–100 90 3.396×10−6 5.382
100–110 100 5.297×10−7 5.877
110–120 110 9.661×10−8 7.263
120–130 120 2.438×10−8 9.473
130–140 130 8.484×10−9 12.636
140–150 140 3.845×10−9 16.149
150–180 150 2.070×10−9 22.523
180–200 180 5.464×10−10 29.740
200–250 200 2.789×10−10 37.105
250–300 250 7.248×10−11 45.546
300–350 300 2.418×10−11 53.628
350–400 350 9.518×10−12 53.298
400–450 400 3.725×10−12 58.515
450–500 450 1.585×10−12 60.828
500–600 500 6.967×10−13 63.822
600–700 600 1.454×10−13 71.835
700–800 700 3.614×10−14 88.667
800–900 800 1.170×10−14 124.64
900–1000 900 5.245×10−15 181.05

1000– 1000 3.019×10−15 268.00

Table B.1: Nominal atmospheric density ρ0 and scale height H values for different altitude
bands, used in the exponential density model [1]
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Appendix C

Zonal Harmonic Accelerations

This appendix contains the analytical expression of the perturbing accelerations in ECI
RF, due to the zonal harmonics J4, J5, and J6 of the Earth’s gravitational potential.
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with J4 = −1.6198976 · 10−6.

aJ5 = 3J5µR
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with J5 = −2.2771610 · 10−7.
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with J6 = 5.4068120 · 10−7.
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Appendix D

Close Approach Database

DEB rd(t0) [km] vd(t0) [km/s] ttca [s] dmin [km] Pc

001 [467.967, 4347.31, 5398.57] [-6.41711, -2.86274, 3.58412] 6192 0.458118 2.2065 × 10−3

002 [-755.284, 4144.85, 6202.49] [-7.36232, -0.182678, 0.410769] 5356 1.26344 3.0543 × 10−4

003 [-1904.75, 1994.89, 7381.44] [-7.04445, -0.047336, -0.681761] 5211 0.426261 2.5268 × 10−3

004 [5359.29, 2311.87, 3248.36] [-3.23043, 7.13186, 0.551784] 6042 0.705294 9.6278 × 10−4

005 [4274.93, 5317.92, 815.698] [-3.69814, 2.22787, 6.40325] 3617 0.308667 4.5637 × 10−3

006 [-10622.8, 4454.43, 2154.22] [-2.50943, -4.24058, -0.889435] 5014 0.795060 7.6179 × 10−4

007 [-4148.06, 6012.35, 2489.56] [-6.62773, -2.14777, -2.24300] 5960 0.550005 1.5579 × 10−3

008 [2953.63, 4287.55, 4543.31] [-6.87245, 3.40725, 1.32521] 7102 0.747937 8.5855 × 10−4

009 [669.964, 5959.04, 3397.74] [-6.21070, 3.24817, -3.70314] 6386 0.553929 1.5368 × 10−3

010 [-7031.88, 1358.74, 4553.26] [-4.28207, -4.56624, -2.71694] 6120 1.40333 2.4796 × 10−4

011 [5453.37, 2718.06, 2735.31] [-2.92778, 7.21270, -1.05454] 5841 1.03339 4.5470 × 10−4

012 [-11984.6, -309.393, -2855.91] [-0.332975, -4.69999, -1.09920] 5673 1.18696 3.4568 × 10−4

013 [2178.89, 5102.63, 3964.85] [-7.01736, 0.682540, 3.62021] 6169 1.35246 2.6682 × 10−4

014 [5411.05, 3832.52, -809.691] [-4.47319, 6.45775, -0.443981] 5143 0.741512 8.7315 × 10−4

015 [197.308, 7777.36, 3575.84] [-5.14280, -1.06479, 3.84913] 4045 0.953253 5.3323 × 10−4

016 [2090.75, 6237.39, 2179.02] [-7.14589, 3.16362, -0.281288] 5621 1.80896 1.4962 × 10−4

017 [-1437.03, -12673.9, -10168.5] [3.64834, -1.05307, 0.471961] 6717 0.936942 5.5168 × 10−4

018 [4026.22, 1367.86, 5320.43] [-4.92978, 5.38774, 2.66847] 4319 1.75571 1.5880 × 10−4

019 [-1999.30, 7965.72, 2979.38] [-5.93725, -1.40163, 2.04166] 4494 0.639595 1.1644 × 10−3

020 [1160.66, 7516.18, 2861.94] [-5.23655, -0.260367, 4.31993] 4018 1.15698 3.6365 × 10−4

021 [-3692.47, 2872.73, 7056.58] [-6.36410, -0.126048, -1.98559] 5110 0.998829 4.8630 × 10−4

022 [-9459.97, 1148.17, -1780.32] [-1.40233, -5.00533, -3.24118] 6240 1.24136 3.1630 × 10−4

023 [-7194.07, 4429.76, -3205.53] [-3.28173, -4.70390, -3.00802] 6065 0.766715 8.1791 × 10−4

024 [4564.47, 4448.35, 2129.98] [-5.22228, 5.92276, -0.409791] 5729 1.47018 2.2605 × 10−4

025 [-5970.87, 3966.29, 1411.66] [-4.19417, -3.00250, -5.87193] 7169 1.11873 3.8868 × 10−4

026 [3262.32, 4113.76, 4336.30] [-6.41506, 4.49272, 0.777966] 6653 1.63528 1.8293 × 10−4

027 [-5994.14, 5136.63, -1456.13] [-3.78226, -3.76117, -4.83211] 6436 1.04779 4.4244 × 10−4

028 [-12929.96, 598.238, -467.707] [-0.528020, -4.35173, -1.36771] 5355 0.267145 5.8837 × 10−3

029 [-10191.1, 5793.76, 7266.62] [-1.92200, -3.92595, -0.846698] 4245 1.34212 2.7092 × 10−4

030 [3396.73, 2063.33, 5587.52] [-6.51703, 0.890902, 4.23147] 5331 1.44806 2.3297 × 10−4

031 [-2478.74, 6282.04, 2163.45] [-5.91708, -3.57872, 3.67412] 7185 0.716475 9.3370 × 10−4

032 [3445.74, 5851.50, 1287.14] [-6.42447, 3.99050, 1.74067] 4995 1.43082 2.3858 × 10−4

033 [-2338.62, 7976.63, 2584.67] [-5.99610, -1.47158, 1.90440] 4590 1.77137 1.5601 × 10−4

034 [1933.17, 6891.35, -166.630] [-6.97990, 2.70739, 1.17714] 4992 1.24107 3.1644 × 10−4

035 [4358.52, 5174.26, 954.401] [-5.42962, 4.35518, 3.47416] 4435 1.99063 1.2365 × 10−4

036 [-1369.30, 3652.06, 6680.10] [-7.17999, -0.075094, -0.244657] 5222 1.06419 4.2906 × 10−4

037 [2110.58, 6280.26, 1762.71] [-5.45176, 0.341094, 5.64246] 6642 1.10580 3.9772 × 10−4

038 [-11891.8, 1625.03, 2552.59] [-1.58451, -1.54806, -4.26859] 5160 0.850716 6.6709 × 10−4

039 [-3974.20, -13981.6, -10144.1] [3.08160, -1.35032, 1.13709] 6404 0.808155 7.3779 × 10−4

040 [6151.74, 2212.51, 1242.77] [-2.71644, 4.74435, 5.58222] 5685 1.12968 3.8125 × 10−4

Table D.1: Training Close Approach Database
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DEB rd(t0) [km] vd(t0) [km/s] ttca [s] dmin [km] Pc

001 [467.967, 4347.307, 5398.571] [-6.41711, -2.86274, 3.58412] 6192 0.458118 2.2065 × 10−3

002 [561.898, 6963.380, 1628.544] [-7.43314, 1.62464, -0.731262] 5528 1.426482 2.4003 × 10−4

003 [2694.093, 6060.478, 2416.162] [-6.79123, 3.02703, 1.81285] 4952 0.172708 1.1934 × 10−2

004 [5581.519, 2074.697, 2992.339] [-3.29375, 6.91115, 1.73640] 6107 0.898907 5.9859 × 10−4

005 [5048.038, 3076.906, 3144.339] [-4.61490, 6.13075, 1.78429] 6179 0.685082 1.0189 × 10−3

006 [-6850.207, 6952.588, 456.375] [-4.63678, -3.38594, 1.31016] 4995 1.566881 1.9916 × 10−4

007 [-1888.737, 5769.374, 3541.734] [-7.42632, -2.57757, 0.681196] 7025 0.558891 1.5107 × 10−3

008 [-3483.600, 3189.945, 6959.575] [-6.44309, -0.179087, -1.84252] 5106 0.791221 7.6905 × 10−4

009 [5198.445, 3513.116, 2324.196] [-4.68029, 6.08768, 1.78158] 5748 0.592227 1.3512 × 10−3

010 [3271.124, 5384.705, 2553.700] [-6.44764, 2.24095, 3.95083] 6580 0.441737 2.3632 × 10−3

Table D.2: Evaluation Close Approach Database
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