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Abstract

This thesis investigates the application of the inverse Finite Element Method
(iFEM) to Euler–Bernoulli beam elements, focusing on a Single-Sensor-Based
(SSB) iFEM formulation that reconstructs the displacement field from dis-
crete surface-strain measurements without requiring paired sensors on op-
posite faces. For beam applications, this enables accurate recovery with
unpaired layouts that may place sensors on one or both faces, while still
keeping the overall sensor count low.

The work adapts recent SSB ideas to one-dimensional beam models and
implements the formulation in Matlab. The approach treats each strain
reading as an independent measurement associated with its physical location
on the cross-section or along the span, allowing flexible layouts driven by
accessibility and practical instrumentation constraints. The numerical pro-
cedure follows a standard finite-element workflow that assembles and solves
a least-squares problem at the structural level, with consistent handling of
local/global frames and boundary conditions.

Validation proceeds from simple beam cases to configurations indicative
of more complex geometries. Across these numerical studies, the SSB-based
reconstruction achieves accuracy comparable to the conventional beam iFEM
when provided with comparable information. In other words, the SSB formu-
lation and the classical formulation are equivalent in terms of displacement
reconstruction performance within the tested conditions.

Overall, the results support SSB-iFEM for beam-like structures as a prac-
tical route to shape sensing with fewer sensors and non-paired layouts, of-
fering an attractive option for structural health monitoring and real-time
displacement reconstruction in aerospace and related engineering applica-
tions.
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Chapter 1

Introduction

The objective of this thesis is the application of the inverse Finite Element
Method (iFEM) to beam elements, with a specific focus on studying the
feasibility of reconstructing the displacement field using a reduced number
of strain sensors.

Beams are fundamental structural elements, widely present in aerospace,
civil, and marine applications. They often constitute the primary load-
carrying members of wings, fuselage frames, bridges, and ship hulls. Due
to their structural relevance, deterioration or damage in beams can lead to
significant reductions in global stiffness and strength, with severe implica-
tions for safety. At the same time, the cost of monitoring and maintaining
beams can be very high. For this reason, beam elements provide an ideal
case study for evaluating the effectiveness of iFEM-based shape sensing.

In practice, the number of strain sensors plays a critical role in the ap-
plicability of such methods. A large sensor network increases both costs and
system complexity, and in many cases sensors are not easy to install in criti-
cal locations. For instance, the interior of an aircraft wing is already densely
packed with cables and systems, making additional sensor installation ex-
tremely challenging. Reducing the number of required sensors therefore pro-
vides clear advantages: lower costs, simplified cabling and data acquisition,
and easier maintenance.

The methodology adopted in this work starts from the finite element
formulation of Euler–Bernoulli beams, and extends the iFEM framework ac-
cordingly. Inspired by recent developments of the Single-Sensor-Based iFEM
(SSB-iFEM) for plates and shells [1], a new least-squares error functional is
introduced for Euler–Bernoulli beams. This functional is built directly on
measured strains on accessible surfaces, thereby enabling displacement field
reconstruction without paired sensors on opposite faces. Unlike classical for-
mulations, the use of unpaired sensors on single faces opens the possibility
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of achieving accurate shape sensing with fewer measurements.
After deriving the theoretical model, the formulation is implemented in

MATLAB to perform analytical verification. The approach is further val-
idated through comparison with high-fidelity simulations; possible experi-
mental tests on real beams are considered as future work.

1.1 iFEM Method Introduction
The inverse Finite Element Method (iFEM) is a variational shape-sensing
technique introduced by Tessler and Spangler [2]. It provides a system-
atic framework for reconstructing displacement fields of structures from dis-
tributed strain measurements, without requiring knowledge of applied loads,
boundary conditions, or material properties. This unique independence from
operating conditions makes iFEM especially attractive for applications in
structural health monitoring and real-time shape sensing.

Similar to the traditional finite element method (FEM), iFEM is based
on the discretization of a structure into finite elements. Shape functions
are employed to interpolate the displacement field from nodal degrees of
freedom. The strain–displacement relations remain linear, involving spatial
derivatives of the shape functions. However, the fundamental difference with
respect to FEM lies in the formulation of the governing equations. In FEM,
displacements are solved by enforcing equilibrium between external loads
and internal forces; in iFEM, displacements are obtained by minimizing a
least-squares functional that measures the discrepancy between computed
and measured strains. This error functional is quadratic and convex, leading
to a system of linear equations for the unknown nodal displacements.

The original iFEM was implemented for 2D structures using Mindlin
kinematics [3], with inverse elements such as iMIN3, iQS4, and iCS8. These
elements demonstrated accurate displacement reconstruction capabilities for
thin-walled structures. Nevertheless, the accuracy of the 2D iFEM strongly
depends on the number and distribution of strain sensors. To achieve sat-
isfactory results, a relatively large number of stations is often required, and
determining their optimal placement becomes critical.

Extensions of 2D iFEM have been successfully applied to multilayer com-
posite laminates, sandwich structures, wing panels, wing boxes, and stiffened
shells [3, 4]. However, limitations emerge when applying 2D iFEM to com-
ponents with a dominant longitudinal dimension, such as beams or rods. In
such cases, the computational model based on 2D shell elements is heavier
than needed, while the reconstructed degrees of freedom fail to efficiently
capture the dominant axial/bending behavior.
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To address this, 1D beam formulations of iFEM were developed [4–6].
The first 1D implementations were based on Timoshenko beam theory, where
the error functional accounts for discrepancies in axial, bending, shear, and
torsional strains. This formulation proved effective for beam-shaped compo-
nents such as stiffeners and stringers. More recently, Euler–Bernoulli beam
formulations have been considered, especially for slender beams where shear
deformations can be neglected [6].

A comparative analysis of 1D and 2D iFEM reveals complementary ad-
vantages. On the one hand, 1D beam iFEM requires fewer sensors and
lower computational cost, since a small number of elements suffices to model
slender components. On the other hand, a purely 1D discretization may
not capture local effects or complex cross-sections. Hybrid approaches com-
bine the strengths of both, modeling skins and webs with 2D elements and
stringers/stiffeners with 1D inverse elements [4].

1.2 Single-Sensor-Based iFEM
A recent development is the Single-Sensor-Based iFEM (SSB-iFEM), pro-
posed to address limitations related to sensor placement [1]. In classical
iFEM, accurate bending reconstruction typically requires paired strain sen-
sors on opposite faces at identical stations. This double-sided instrumenta-
tion increases complexity and cost and may be infeasible.

SSB-iFEM introduces a modified least-squares functional formulated di-
rectly in terms of surface strain measurements from accessible faces. By em-
bedding the geometric relation between mid-line strains and curvature, the
method enables displacement reconstruction without paired sensors. Adapt-
ing this idea to beams allows the use of unpaired sensors located only on one
face, increasing layout flexibility and reducing the total number of sensors
without sacrificing accuracy—an important advantage in aerospace applica-
tions.

1.3 Sensor Positioning in Beam iFEM
The accuracy of iFEM reconstructions strongly depends on station place-
ment. In classical Euler–Bernoulli iFEM, two-sided measurements (top/bottom)
at matched x-stations allow one to separate axial and bending contribu-
tions [6]. The minimum number of stations per element to achieve accurate
curvature reconstruction depends on the interpolation order and the chosen
station strategy; in this thesis, layouts are selected to match the polynomial
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order and ensure stable curvature recovery (see also [6]).
Installing paired sensors on both faces is often impractical. The SSB func-

tional permits reconstruction using single-sensor stations distributed along
accessible faces at different x-positions, simplifying instrumentation and im-
proving robustness to sensor loss.

1.4 Application to Structural Health Moni-
toring

Structural Health Monitoring (SHM) aims to provide continuous or on-demand
information about structural state, reducing maintenance costs, increasing
safety, and extending service life. Shape sensing through iFEM allows re-
construction of displacement/strain fields from limited sensor sets, enabling
real-time insight into load paths and damage. The SSB-based approach en-
hances practicality by minimizing sensor count and removing the need for
paired stations on inaccessible faces, a valuable feature in aerospace struc-
tures.
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Chapter 2

Theoretical Background

This chapter presents the theoretical foundations for Euler–Bernoulli (EB)
beam iFEM and sets the stage for the SSB specialization.

Remark on geometry vs. deformations. We adopt a right-handed frame
with x along the beam axis and z upward. The beam geometry lies in the
x–z plane (nodes with y = 0, element local frames rotated within that plane
if needed). However, deformations may include bending about y (via w and
κzz) and about z (via v and κyy). Therefore, both κzz and κyy are retained
in the kinematics and in the SSB formulation.

2.1 Kinematics and Degrees of Freedom
Each node has five degrees of freedom (DOFs):

{ u, v, w, ϕy, ωz }. (2.1)

The rotational variables are defined as

ϕy = − w,x, (2.2)
ωz = v,x. (2.3)

Therefore, for a two-node element:

ue = { u1, v1, w1, ϕy1, ωz1, u2, v2, w2, ϕy2, ωz2 }T . (2.4)
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Figure 2.1: Orientation of the beam element and local reference frame. Translational
DOFs (u, v, w) act along the local axes (x, y, z), while the rotations ϕy and ωz are associated
with bending about the corresponding axes.

The three-dimensional displacement field at (x, y, z) reads

ux = u(x) − z w,x(x) − y v,x(x), (2.5)
uy = v(x), (2.6)
uz = w(x), (2.7)

yielding

εxx(x, y, z) = u,x − z w,xx − y v,xx = ε + z κzz + y κyy, (2.8)

with

ε = u,x, (2.9)
κzz = − w,xx, (2.10)
κyy = − v,xx. (2.11)

2.2 Shape Functions
The finite element formulation requires interpolating the displacement field
within each element in terms of its nodal degrees of freedom. A linear La-
grange interpolation is adopted for the axial displacement u(x), while Her-
mite cubic polynomials are used for the transverse displacements v(x) and
w(x) to ensure C1 continuity of rotations.

Let ξ = x/L ∈ [0, 1].
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Lagrange linear shape functions for u:

N1 = 1 − ξ, (2.12)
N2 = ξ. (2.13)

Hermite cubic shape functions for v and w:

H1 = 2ξ3 − 3ξ2 + 1, (2.14)
H2 = ξ3 − 2ξ2 + ξ, (2.15)
H3 = −2ξ3 + 3ξ2, (2.16)
H4 = ξ3 − ξ2. (2.17)

The corresponding second derivatives, required for curvature computa-
tion, are

H1,xx = 1
L2 (12ξ − 6), (2.18)

H2,xx = 1
L2 (6ξ − 4), (2.19)

H3,xx = 1
L2 (−12ξ + 6), (2.20)

H4,xx = 1
L2 (6ξ − 2). (2.21)

Displacement interpolations:

u(x) = N1u1 + N2u2, (2.22)
v(x) = H1v1 + LH2 ωz1 + H3v2 + LH4 ωz2, (2.23)
w(x) = H1w1 − LH2 ϕy1 + H3w2 − LH4 ϕy2. (2.24)

Here, the signs of the rotational terms are consistent with the kinematic
definitions ϕy = − w,x and ωz = v,x.

Matrix representation. The interpolations above can be compactly writ-
ten as

u(x) = Nu ue, v(x) = Nv ue, w(x) = Nw ue, (2.25)

where the row shape function matrices are

Nu =
è
N1 0 0 0 0 N2 0 0 0 0

é
, (2.26)

Nv =
è
0 H1 0 0 LH2 0 H3 0 0 LH4

é
, (2.27)

Nw =
è
0 0 H1 − LH2 0 0 0 H3 − LH4 0

é
. (2.28)
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2.3 Strain–Displacement Relations
The strain measures of an Euler–Bernoulli beam are obtained from the spa-
tial derivatives of the interpolated displacement field. From the kinematic
relations (2.9, 2.10, 2.11), each strain component can be expressed in matrix
form as a linear combination of the nodal degrees of freedom:

ε = Bu ue, (2.29)
κzz = Bw ue, (2.30)
κyy = Bv ue. (2.31)

The matrices Bu, Bw, and Bv are the strain–displacement matrices (or
kinematic matrices) of the element. They contain the derivatives of the
shape functions with respect to the axial coordinate and relate the nodal
DOFs to the corresponding axial strain and bending curvatures along z and
y, respectively.

Using the interpolations defined in Section 2.2, the explicit form of these
matrices reads:

Bu =
è

− 1
L

0 0 0 0 1
L

0 0 0 0
é
, (2.32)

Bw =
è
0 0 − H1,xx LH2,xx 0 0 0 − H3,xx LH4,xx 0

é
, (2.33)

Bv =
è
0 − H1,xx 0 0 − LH2,xx 0 − H3,xx 0 0 − LH4,xx

é
. (2.34)

Here:

• Bu relates the axial displacement u(x) to the normal strain ε;

• Bw corresponds to bending about the y-axis (deflection w in the z
direction, curvature κzz);

• Bv corresponds to bending about the z-axis (deflection v in the y di-
rection, curvature κyy).

These matrices will be used in the subsequent section to construct the
iFEM least-squares functional at the element level.

2.4 iFEM Least-Squares Functional (Classi-
cal)

Following [2, 6], the iFEM element functional is defined as a weighted least-
squares of the station-wise discrepancies between computed and measured
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strain measures. For a given element e of length L, let {xε
i }nε

i=1, {xkzz
j }nkzz

j=1 ,
and {xkyy

ℓ }nkyy

ℓ=1 be the stations where the axial strain ε, the curvature κzz

(bending about y), and the curvature κyy (bending about z) are available,
respectively. Denote by eε

i , eκzz
j , e

κyy

ℓ the corresponding measurements, and
by

Bu(x), Bw(x), Bv(x)
the strain–displacement matrices introduced in Section 2.3. The element
functional reads

Φe
ε = L

nε

nεØ
i=1

3
Bu(xε

i ) ue − eε
i

42
, (2.35)

Φe
κzz = Iyy

A

L

nkzz

nkzzØ
j=1

3
Bw(xkzz

j ) ue − eκzz
j

42
, (2.36)

Φe
κyy = Izz

A

L

nkyy

nkyyØ
ℓ=1

3
Bv(xkyy

ℓ ) ue − e
κyy

ℓ

42
. (2.37)

The scaling factors L/n• distribute stations uniformly along the element,
while Iyy/A and Izz/A balance the relative magnitude of curvature residuals
(units-consistent weighting).

Step-by-step expansion. Introduce the shorthand row operators

bu,i := Bu(xε
i ), bw,j := Bw(xkzz

j ), bv,ℓ := Bv(xkyy
ℓ ),

so that each scalar residual is

rε
i = bu,i ue − eε

i , (2.38)
rkzz

j = bw,j ue − eκzz
j , (2.39)

rkyy
ℓ = bv,ℓ ue − e

κyy

ℓ . (2.40)

For a generic term of the form
1
a ue − α

22
(with a ∈ R1×10 and α ∈ R), the

quadratic expansion gives1
a ue − α

22
= uT

e aT a ue − 2 α a ue + α2. (2.41)
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Applying (2.41) to (2.38) and summing over i = 1, . . . , nε,

Φe
ε = L

nε

nεØ
i=1

3
uT

e bT
u,ibu,i ue − 2 eε

i bu,i ue + (eε
i )2

4

= uT
e

3
L

nε

nεØ
i=1

bT
u,ibu,i

4
ü ûú ý

Ae

ue − 2 uT
e

3
L

nε

nεØ
i=1

bT
u,ie

ε
i

4
ü ûú ý

be

+
3

L

nε

nεØ
i=1

(eε
i )2

4
ü ûú ý

cε

. (2.42)

Analogously, for the curvature contributions:

Φe
κzz = uT

e

3
Iyy

A

L

nkzz

nkzzØ
j=1

bT
w,jbw,j

4
ü ûú ý

Akzz

ue − 2 uT
e

3
Iyy

A

L

nkzz

nkzzØ
j=1

bT
w,je

κzz
j

4
ü ûú ý

bkzz

+
3

Iyy

A

L

nkzz

nkzzØ
j=1

(eκzz
j )2

4
ü ûú ý

ckzz

, (2.43)

Φe
κyy = uT

e

3
Izz

A

L

nkyy

nkyyØ
ℓ=1

bT
v,ℓbv,ℓ

4
ü ûú ý

Akyy

ue − 2 uT
e

3
Izz

A

L

nkyy

nkyyØ
ℓ=1

bT
v,ℓe

κyy

ℓ

4
ü ûú ý

bkyy

+
3

Izz

A

L

nkyy

nkyyØ
ℓ=1

(eκyy

ℓ )2
4

ü ûú ý
ckyy

. (2.44)

Quadratic form and normal equations. By summing Eqs. (2.42)–(2.44),
the complete element functional is obtained as

Φe = Φe
ε + Φe

κzz + Φe
κyy = uT

e Ke ue − 2 uT
e fe + c, (2.45)

with

Ke = Ae + Akzz + Akyy, (2.46)
fe = be + bkzz + bkyy, (2.47)
c = cε + ckzz + ckyy. (2.48)
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Stationarity of (2.45) with respect to ue yields the element normal equations

∂Φe

∂ue

= 2 Ke ue − 2 fe = 0 =⇒ Ke ue = fe . (2.49)

After standard finite-element assembly over all elements,

K u = f . (2.50)

Remarks. (i) Each matrix A• is symmetric positive semidefinite; posi-
tive definiteness (and thus uniqueness of ue) requires sufficiently informative
station placement. (ii) The constants collected in c depend only on mea-
surements and do not affect the minimizer. (iii) The factors Iyy/A and Izz/A
render curvature residuals commensurate with axial strain residuals, avoiding
an artificial bias due to units or magnitudes.
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Chapter 3

Single-Sensor-Based iFEM
(general sensor-based
formulation for beams)

This chapter introduces the Single-Sensor-Based inverse Finite Element Method
(SSB-iFEM) and develops its specialization to Euler–Bernoulli beams with
arbitrary cross-sections. Unlike face-based formulations (e.g., top/bottom,
left/right of a rectangular section), here each strain measurement is associ-
ated with its own coordinates (xi, yi, zi), and the element least-squares func-
tional is defined as the sum of the residuals over all sensors located within
the element. This generalization preserves the rationale of SSB-iFEM for
plates and shells [2,3] while extending its applicability to beams with generic
cross-sections and sensor layouts.

3.1 From plate SSB-iFEM to beam kinemat-
ics

The Single-Sensor-Based inverse Finite Element Method (SSB-iFEM) for
plates and shells [1, 2] expresses surface strains as linear combinations of
mid-surface membrane strains and bending curvatures evaluated at the same
in-plane location. For beams, the same rationale can be adopted by restrict-
ing the geometry to the x–z plane (the y-axis completing a right-handed
triad), while allowing an arbitrary cross-section and arbitrary sensor place-
ment.

Under Euler–Bernoulli kinematics (see Chapter 2), the axial strain at a
generic point (x, y, z) of the beam cross-section varies linearly with respect
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to the transverse coordinates as

εxx(x, y, z) = ε(x) + z κzz(x) + y κyy(x), (3.1)

as introduced in Eq. (2.8). This relation reflects the fundamental assumption
that plane sections remain plane and orthogonal to the neutral axis during
deformation, leading to a linear distribution of axial strain over the section.
The mid-line strain ε accounts for axial stretching, whereas κzz and κyy

represent the curvatures associated with bending about the y- and z-axes,
respectively.

The corresponding one-dimensional strain measures are defined in Eqs. (2.9)–
(2.11) as

ε(x) = u,x(x), κzz(x) = − w,xx(x), κyy(x) = − v,xx(x).

In the finite element setting (Eqs. (2.29)–(2.31)), these quantities are inter-
polated through the strain–displacement matrices Bu(x), Bw(x), and Bv(x):

ε(x) = Bu(x) ue, κzz(x) = Bw(x) ue, κyy(x) = Bv(x) ue,

with ue the element displacement vector defined in Eq. (2.4).
In the classical iFEM formulation (Chapter 2), these strain components

are reconstructed from paired measurements taken on opposite faces of the
beam, thus enabling separation of the axial and bending contributions. The
SSB-iFEM generalizes this framework by treating each strain measurement
as an independent observation associated with its own coordinates (xi, yi, zi),
without requiring symmetry or paired sensors. This viewpoint leads natu-
rally to a sensor-wise least-squares formulation, introduced in the following
section.

3.2 Sensor stations and measurement model
Consider element e of length L, instrumented with Ne strain sensors. The
i-th sensor is located at the axial coordinate xi ∈ [0, L] (parent coordinate
ξi = xi/L ∈ [0, 1]) and at the transverse offsets (yi, zi) measured from the
centroidal (neutral) axes of the cross-section. Each strain measurement is
therefore associated with a well-defined point (xi, yi, zi) in the local reference
frame of the element.
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x

z

z = h/2

z = −h/2

Unpaired Sensors Paired Sensorsxi ≡ (xi, yi, zi)

Figure 3.1: Example of strain-sensor arrangements along a beam element. On the left,
a decoupled (single-surface) configuration as used in the SSB-iFEM; on the right, a paired
configuration typical of classical iFEM with top/bottom sensors at matching stations. The
local reference axes and section height (z = ±h/2) are also shown.

From Eq. (3.1) and the finite element strain–displacement relations of
Eqs. (2.29)–(2.31), the predicted axial strain at the sensor location is obtained
by substituting the kinematic expressions of ε, κzz, and κyy into the linear
relation for εxx(x, y, z). The resulting expression reads

εs(xi, yi, zi) =
1

Bu(xi) + zi Bw(xi) + yi Bv(xi)
2

ue = Ai ue, (3.2)

where the row operator Ai ∈ R1×10 collects the contributions of the axial
and bending strain components:

Ai = Bu(xi) + zi Bw(xi) + yi Bv(xi). (3.3)

In this expression, the first term represents the mid-line (axial) strain sensi-
tivity, while the second and third terms weight the curvatures about the y-
and z-axes by the corresponding offsets of the sensor.

Let eε
i denote the measured strain provided by sensor i. The difference

between the predicted and the measured values defines the scalar residual

ri = Ai ue − eε
i , (3.4)

which quantifies the local discrepancy between model and measurement.
These residuals form the fundamental building blocks of the SSB-iFEM least-
squares functional introduced in the next section.
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3.3 SSB-iFEM element functional
The inverse finite element method (iFEM) determines the unknown nodal
degrees of freedom by minimizing a least-squares functional that measures the
discrepancy between predicted and measured strains. In the Single-Sensor-
Based formulation, each sensor contributes individually to this functional
through its scalar residual ri defined in Eq. (3.4). Accordingly, the element-
level functional for beam element e is expressed as

Ψe(ue) = L

Ne

NeØ
i=1

λi

1
Ai ue − eε

i

22
, (3.5)

where L/Ne acts as a uniform scaling factor along the element length, and
λi > 0 is a non-dimensional weight associated with sensor i.

The term inside the parentheses represents the local residual at sensor
i, i.e., the error between the predicted strain Aiue and the corresponding
measurement eε

i . The minimization of Ψe(ue) therefore yields the set of
nodal displacements that best reproduces the measured strain field in a least-
squares sense.

Definition and role of the weights. The coefficients λi in Eq. (3.5)
determine the relative influence of each sensor in the minimization. Each λi

is assigned individually to the i-th sensor and has the following physical
meaning:

• λi = 1 if the i-th sensor is active and considered fully reliable;

• λi = 0 if the i-th sensor is absent, faulty, or intentionally excluded
from the functional;

• 0 < λi < 1 if the i-th sensor is available but affected by uncertainty
or reduced confidence, e.g. due to calibration errors or increased noise.

The introduction of these weights provides a simple yet powerful way to
control the contribution of each strain measurement, enabling the formu-
lation to handle heterogeneous datasets or partially missing measurements.
In practical implementations, the weights can also be interpreted as inverse
variance factors, λi ∝ 1/σ2

i , when the sensor noise level σi is known. Un-
less otherwise specified, all active sensors are assumed to have unit weights
(λi = 1).

The functional in Eq. (3.5) generalizes the classical iFEM least-squares
expression (see Eq. (2.45)) by assembling all strain components into a single
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sensor-wise summation. In contrast to the traditional formulation, which
separates the contributions of axial strain and bending curvatures, the SSB-
iFEM treats each strain measurement individually through its local coordi-
nates (xi, yi, zi). This unified representation enables the method to handle
arbitrary sensor layouts and cross-section geometries without requiring pre-
defined sensor pairs.

3.4 Element matrices
Starting from the sensor-wise residual in Eq. (3.4),

ri = Ai ue − eε
i , (3.6)

the SSB-iFEM element functional in Eq. (3.5) reads

Ψe(ue) = L

Ne

NeØ
i=1

λi r 2
i . (3.7)

Quadratic expansion at a single sensor. For a generic scalar of the
form (a ue − α)2, one has the identity

(a ue − α)2 = uT
e aT a ue − 2 α a ue + α2. (3.8)

By setting a = Ai and α = eε
i , Eq. (3.8) gives

r 2
i = uT

e AT
i Ai ue − 2 eε

i Ai ue +
1
eε

i

22
. (3.9)

Summation over all sensors. Substituting (3.9) into (3.7) and collecting
like terms yields

Ψe(ue) = uT
e

3
L

Ne

NeØ
i=1

λi AT
i Ai

4
ue − 2 uT

e

3
L

Ne

NeØ
i=1

λi AT
i eε

i

4

+ L

Ne

NeØ
i=1

λi

1
eε

i

22
. (3.10)
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Element matrices. Define the element matrices and the constant term as

K′
e := L

Ne

NeØ
i=1

λi AT
i Ai, (3.11)

f ′
e := L

Ne

NeØ
i=1

λi AT
i eε

i , (3.12)

c := L

Ne

NeØ
i=1

λi

1
eε

i

22
. (3.13)

With these definitions, Eq. (3.10) takes the standard quadratic form

Ψe(ue) = uT
e K′

e ue − 2 uT
e f ′

e + c. (3.14)

Remark. (i) The term c in (3.13) depends only on measurements and does
not affect the minimizer.

3.5 Governing equations and assembly
The stationary condition of the element functional Ψe(ue) with respect to
the nodal degrees of freedom yields the local normal equations:

∂Ψe

∂ue

= 2 K′
e ue − 2 f ′

e = 0, (3.15)

which leads to the symmetric linear system

K′
e ue = f ′

e. (3.16)

Each element thus provides its own contribution to the global stiffness and
force matrices. Following the standard finite element assembly procedure,
all element matrices K′

e and vectors f ′
e are combined according to the mesh

connectivity, yielding the global system of equations:

K′ u = f ′. (3.17)

The vector u collects the global nodal degrees of freedom of the structure,
while K′ and f ′ represent the assembled stiffness and load matrices derived
from the sensor information. Once the system (3.17) is solved for u, the con-
tinuous displacement fields u(x), v(x), and w(x) are reconstructed through
the interpolation relations introduced in Chapter 2.
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3.6 Discussion and consistency with classical
iFEM

The present formulation is agnostic to the cross-section geometry: only the
sensor offsets (yi, zi) enter the prediction operator Ai defined in Eq. (3.2).
As a result, the SSB-iFEM can accommodate arbitrary cross-sections and
sensor layouts, including configurations that are not aligned with canonical
“faces” or that involve non-rectangular geometries.

When sensors are placed on different surfaces of the same cross-section,
their offsets (yi, zi) naturally account for the geometric contribution of each
location in the reconstructed strain field. Symmetric layouts (for instance,
top/bottom or left/right pairs) implicitly capture both axial and bending
effects, while completely unpaired configurations remain admissible within
the same framework.

Therefore, the SSB-iFEM generalizes the classical iFEM approach: the
displacement field is reconstructed directly from the measured strains without
requiring pre-defined sensor pairing or symmetry conditions. In this sense,
the SSB formulation extends the applicability of iFEM to more practical
single-sided and non-symmetric instrumentation schemes, which are partic-
ularly relevant for aerospace and structural applications where sensor acces-
sibility is limited.
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Chapter 4

Verification in MATLAB

This chapter verifies the proposed inverse formulations for Euler–Bernoulli
(EB) beams through reproducible MATLAB computations. Two inverse
schemes are compared:

1. the Single-Sensor-Based iFEM (SSB-iFEM), driven by surface axial
strains measured at arbitrary offsets (yi, zi) from the neutral line;

2. the classical EB iFEM, driven by the mid-line axial strain ε and the
bending curvatures κzz and κyy.

All MATLAB computations strictly follow the Euler–Bernoulli sign con-
vention defined in Chapter 2, namely ϕy = −w,x, ωz = v,x, κzz = −w,xx, and
κyy = −v,xx, ensuring full consistency between the theoretical operators and
their numerical implementation.

4.1 From element-level operators to global so-
lution

This section details the computational workflow adopted in MATLAB, from
the evaluation of element-level operators to the global assembly and solution.
The formulation is identical for the classical iFEM and the SSB-iFEM; only
the definition of the local matrices differs (cf. Chapters 2 and 3).

(1) Element-level data and local operators. For each element e with
length Le and nodal DOFs uℓ

e defined in the local reference frame, we evalu-
ate:

• the shape functions N1, N2 and H1, . . . , H4 and their second derivatives
at the required stations (Section 2.2, Eqs. (2.18)–(2.21));
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• the strain–displacement row operators Bu(ξ), Bw(ξ), Bv(ξ) at the pre-
scribed stations ξi = si/Le;

• the element matrices/vectors from the least-squares functional:

– classical (mid-line ε, κzz, κyy):
Kℓ

e = Ae + Akzz + Akyy, f ℓ
e = be + bkzz + bkyy;

– SSB (sensor-wise surface strains):

Kℓ
e = Le

Ne

NeØ
i=1

λi A⊤
i Ai, f ℓ

e = Le

Ne

NeØ
i=1

λi A⊤
i eε

i ,

with Ai = Bu(ξi) + ziBw(ξi) + yiBv(ξi).

All matrices Kℓ
e are symmetric by construction. The weights λi activate/attenuate

individual sensors and are set to 1 unless otherwise noted.

(2) Local-to-global transformation. Each element is defined in its own
local reference frame (xloc, yloc, zloc) for convenience in the kinematic evalu-
ation. Quantities referred to this frame are denoted by the superscript (ℓ),
while those expressed in the global frame (X, Y, Z) carry the superscript (g).
To assemble the global equations, local operators are rotated into the global
frame (X, Y, Z) by the reduced rotation operator Λe ∈ R10×10, obtained from
the full block-diagonal rotation blkdiag(Re, Re, Re, Re) (with Re ∈ R3×3 the
direction-cosine matrix of the element) by retaining the ten DOFs of the
Euler–Bernoulli beam (five per node). The transformed contributions read

Kg
e = Λ⊤

e Kℓ
e Λe, f g

e = Λ⊤
e f ℓ

e .

At post–processing, local displacements follow from the global solution via
qℓ = Λ⊤

e qg.

(3) Connectivity and assembly. Each element e is associated with its
connectivity array C_Se(e,:), which stores the global degree-of-freedom
(DOF) indices corresponding to the ten local variables {u1, v1, w1, ϕy1, ωz1,
u2, v2, w2, ϕy2, ωz2}. Let Ie ⊂ {1, . . . , nDOF} denote this ordered set of global
indices. Within the element loop, the global stiffness matrix K and right-
hand-side vector F are assembled as

K(Ie, Ie) += K(g)
e , F(Ie) += F(g)

e .

Here, K(g)
e and F(g)

e are the element contributions rotated into the global
frame. All matrices are stored and initialized before assembly. Symmetry of
each element stiffness matrix K(g)

e ensures that the assembled system remains
symmetric.
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(4) Boundary conditions and solution. Essential boundary conditions
(clamps or prescribed DOFs) are enforced by eliminating the corresponding
rows and columns of the global system. Let fixedDOF be the vector of
constrained DOF indices and freeDOF the complementary set. The reduced
system

KF F qF = FF ,

is then solved directly in MATLAB.

(5) Recovery and field reconstruction. From the global displacement
vector q, the local element DOFs are recovered as

q(ℓ)
e = Λe qIe ,

where Λe is the element rotation matrix mapping global to local coordinates.
The continuous displacement fields along the element are then reconstructed
by the standard interpolation relations:

u(s) = N1(s) u1 + N2(s) u2,

w(s) = H1(s) w1 − L H2(s) ϕy1 + H3(s) w2 − L H4(s) ϕy2,

v(s) = H1(s) v1 + L H2(s) ωz1 + H3(s) v2 + L H4(s) ωz2.

Station-wise strains (mid-line and/or surface) are then evaluated using the
operators Bu, Bw, and Bv.

Algorithmic summary. For clarity, the overall computational pipeline is:

1. Build the matrices Re, the reduced rotation operators Λe, and the
connectivity sets Ie for all elements.

2. For each element e: evaluate the strain–displacement operators Bu, Bv, Bw

at the prescribed sensor stations; compute the local matrices and vec-
tors (K(ℓ)

e , f (ℓ)
e ); rotate them to the global frame to obtain (K(g)

e , f (g)
e ).

3. Assemble the global stiffness matrix K and right-hand-side (load-equivalent)
vector F over the mesh by accumulation over all elements.

4. Apply essential boundary conditions to form the reduced system, and
solve for the free degrees of freedom qF .

5. Recover the local displacements q(ℓ)
e , reconstruct the fields u, v, w, and

evaluate comparisons.
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Implementation notes. All computations are implemented in MATLAB
using fully vectorized operations. The global stiffness matrix K and right-
hand-side vector F are stored and assembled by direct accumulation over the
global indices Ie. The global numbering of the degrees of freedom follows the
consistent order {u, v, w, ϕy, ωz} per node.

The sensor weights λi are defined element-wise as row vectors and can
take any value in [0, 1]. Setting λi = 0 effectively disables a sensor without
altering matrix dimensions, allowing the simulation of missing or excluded
measurements.

All local operators strictly adhere to the sign convention ϕy = −w,x and
ωz = +v,x, ensuring full consistency with the theoretical formulation in Chap-
ter 2. During post–processing, both the predicted and analytical strain fields
are evaluated under the same orientation and conventions, enabling a direct
and unambiguous comparison of results.

4.2 Numerical Scenarios and Validation Strat-
egy

The numerical validation of the proposed formulation is carried out through
a series of simulation scenarios of increasing complexity. Each scenario rep-
resents a distinct test case designed to assess specific aspects of the Single-
Sensor-Based inverse Finite Element Method (SSB-iFEM) when applied to
Euler–Bernoulli beam elements.

Objectives. The primary goals of the numerical campaign are:

• to verify the correctness and numerical consistency of the implemented
MATLAB code;

• to assess the accuracy of displacement-field reconstruction under dif-
ferent sensor layouts;

• to investigate the sensitivity of the SSB-iFEM to the number and spa-
tial distribution of strain sensors;

• and, where applicable, to compare the SSB-iFEM results with those of
the classical iFEM formulation.

Scenario design. The analysis proceeds from simple, fully controlled cases
to more realistic configurations.
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• The first set of scenarios (A–C) involves simple benchmark beams with
analytically prescribed displacement fields, from which the correspond-
ing surface–strain inputs are computed exactly. These cases serve to
validate the element operators and verify the correctness of the imple-
mentation under controlled layouts.

• Subsequent sets will consider more complex beam geometries (e.g., L-,
Z-shaped members) and boundary conditions. For each such beam,
the same four analyses will be repeated systematically: (i) all four
faces instrumented and paired (SSB vs. classical iFEM); (ii) three sen-
sors with two paired and one single; (iii) three unpaired sensors (two
top, one bottom); (iv) three unpaired sensors on the same face. This
pattern isolates the effect of sensor pairing/reduction on observability
and accuracy.

Comparison and evaluation. For each scenario, the reconstructed dis-
placement components are compared against their analytical (or reference)
counterparts. Relative errors are reported both station-wise and globally. In
Scenario A, SSB and classical iFEM are evaluated under identical, noiseless
conditions to assess numerical equivalence. Scenarios B, C and D focus on
the SSB formulation under reduced, unpaired layouts on the mid-width line
(y = 0), where only u and w are reconstructed (no sensitivity to κyy).

Common framework. All scenarios share a consistent computational setup:

• Euler–Bernoulli beam elements with five DOFs per node;

• MATLAB implementation (vectorized element assembly);

• Sensor layout is specified per element: for complex beams, each EB ele-
ment carries its own stations (defined in the element’s local x-abscissa)
according to the three analysis patterns.

• identical preprocessing of synthetic (noise-free) surface–strain data and
uniform channel weights unless stated otherwise;

• identical post-processing for strain residuals, station-wise comparisons,
and field plots;

• error metrics computed on the reconstructed displacements.
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Structure of presentation. Each scenario is presented according to the
following structure:

1. Setup and input data: geometry, boundary conditions, and sensor
configuration;

2. Reference solution: analytical or external dataset used for valida-
tion;

3. Reconstruction results: displacement fields, numerical errors, and
diagnostic quantities;

4. Discussion: interpretation of accuracy and sensitivity trends.

In the following sections, each scenario is detailed according to this struc-
ture, with direct numerical comparisons and discussion of the most relevant
outcomes.
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Chapter 5

Simple Beams

5.1 Scenario A: straight cantilever beam, sin-
gle element

1) Setup and input data
Straight prismatic Euler–Bernoulli (EB) beam of length L = 10m with rect-
angular cross-section b = h = 0.1m, axis aligned with the global x-direction.
A clamped end (cantilever root) is imposed at x = 0. The element local
frame (xloc, yloc, zloc) is chosen coincident with the global (x, y, z); conse-
quently, the element rotation operator is the identity on the EB degrees of
freedom (DOFs) and the reduced mapping Λe simply selects the ten trans-
lational/rotational DOFs.
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x

y

z

Figure 5.1: Scenario A: straight prismatic EB cantilever (clamped end at x = 0, grey
plate and hatched background). Global frame (x, y, z) shown at the centroid of the left
section. Surface–strain sensors (squares) are mounted on the four side faces at two axial
stations, x/L = {0.2, 0.8}: darker squares indicate sensors on the visible faces (y =B, z =
H), lighter dashed squares those on the hidden faces (y = 0, z = 0). Section width b is
along y, height h along z.

Remark on magnitudes and units. The analytical fields used below
are low-degree polynomials chosen to test numerical consistency rather than
to model a specific load case. Some magnitudes are not representative of a
physical cantilever under standard loading; they serve only as exact targets
for reconstruction. Strains are dimensionless; curvatures κyy, κzz have units
m−1.

2) Reference solution
Prescribed analytical displacement fields (chosen to satisfy the clamped bound-
ary at x = 0):

u(x) = 4x,

v(x) = −14x3 + 6x2,

w(x) = 7x3 + 4x2.

By construction, the fields obey the EB clamped boundary conditions at
x = 0:

u(0) = v(0) = w(0) = 0, v,x(0) = 0, w,x(0) = 0,

so that both rotations vanish at x = 0.
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Associated EB strain measures:

ε(x) = u,x(x) = 4,

κzz(x) = −w,xx(x) = −(42x + 8),
κyy(x) = −v,xx(x) = 84x − 12.

Two stations are used at ξ = {0.2, 0.8} (i.e. s = {2, 8} m). For the
SSB-iFEM (sensor-based), surface strains are generated as

εs(xi, yi, zi) = ε(xi) + zi κzz(xi) + yi κyy(xi),

with (yi, zi) ∈ {(0, ±h/2), (±b/2, 0)}. For the classical iFEM, the channels
{ε, κzz, κyy} are sampled directly at the same abscissae. Uniform weights
λi = 1 are used for all active channels.

3) Reconstruction results
Element matrices are formed in the local frame, mapped to the global frame
via Λe, assembled at the structure level, and the clamped end at x = 0 is
enforced by DOF elimination. The reduced linear system is solved by direct
factorization.

Table 5.1 compares analytical and reconstructed displacements at the
stations. In this noiseless consistency test, SSB and classical iFEM coincide
at machine precision (max DOF difference = 2.60 × 10−15). Relative errors
are < 10−12 for u and w, while v exhibits a small but nonzero discrepancy
because it is obtained by twice integrating κyy, which is estimated from
face–strain differences and is therefore more sensitive to numerical round-off;
the relative errors are 0.034% at s = 2m and 0.0057% at s = 8m.

Table 5.1: Scenario A — Displacements at stations s = {2, 8} m. Values in metres;
rel. err refers to SSB vs. analytical.

Quantity Station Unit Analytical SSB-iFEM Classical rel. err (SSB)
u s = 2 m 8.0000 8.0000 8.0000 < 10−12

s = 8 m 32.0000 32.0000 32.0000 < 10−12

w s = 2 m 72.0000 72.0000 72.0000 < 10−12

s = 8 m 3840.0000 3840.0000 3840.0000 < 10−12

v s = 2 m −88.0000 −87.9700 −87.9700 3.40 × 10−4 (0.034%)
s = 8 m −6784.0000 −6783.6159 −6783.6159 5.66 × 10−5 (0.0057%)

Figure 5.2 reports the pointwise differences ∆u(s) = uSSB(s) − uCLS(s),
∆w(s), and ∆v(s), which remain at numerical round-off over the whole span.
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Figure 5.2: Scenario A — Pointwise differences ∆u(s), ∆w(s), ∆v(s) between SSB and
classical iFEM. Markers denote the stations s = {2, 8} m.

Figure 5.3 compares analytical displacements (solid lines) with SSB (cir-
cles) and classical (squares) at the two stations; the symbols overlap the
analytical curves within plotting resolution for u and w, while the minor
offset in v at s = 8m matches Table 5.1.

Figure 5.3: Scenario A — Analytical displacements (lines) vs. SSB (circles) and classical
(squares) at the stations.
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4) Discussion
• Consistency. With coincident local/global frames and noiseless in-

puts, SSB and classical iFEM deliver indistinguishable reconstructions
(max DOF difference 2.60 × 10−15); the SSB–classical field differences
(Fig. 5.2) sit at numerical round-off over the span.

• Equivalence. With identical station abscissae and uniform weights,
SSB-iFEM (surface strains on the four faces) and the classical iFEM
(direct {ε, κzz, κyy}) are equivalent on this scenario; the reconstructions
overlap at machine precision in Figs. 5.2–5.3 and in the diagnostics, as
expected.

• Sensor layout. With sensors installed on all four faces and paired at
each station, the full displacement field can be reconstructed. Subse-
quent scenarios consider reduced layouts (i.e., not all four faces and not
always paired).
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5.2 Scenario B: single element, unpaired sen-
sors on mid-width (y = 0; SSB only)

1) Setup and input data
Straight prismatic Euler–Bernoulli (EB) beam of length L = 10m with rect-
angular cross-section b = h = 0.1m, axis aligned with the global x-direction.
A clamped end (cantilever root) is imposed at x = 0. The element local
frame (xloc, yloc, zloc) is chosen coincident with the global (x, y, z); conse-
quently, the element rotation operator is the identity on the EB degrees of
freedom (DOFs) and the reduced mapping Λe simply selects the ten trans-
lational/rotational DOFs.

x

y

z

Figure 5.4: Scenario B: SSB-only with unpaired sensors on the mid-width line (y = 0).
Two sensors at x/L = 0.2 (top and bottom faces at z = ±h/2) and one sensor at x/L = 0.8
(top face). This layout excites ε and κzz via the z-offset, but provides no sensitivity to
κyy (no y-offset); accordingly, v is not reconstructed in this scenario for a cleaner analysis
focused on u and w. Section width b is along y, height h along z.

2) Reference solution
Analytical displacement fields and EB measures as in Scenario A (they satisfy
the clamped boundary conditions at x = 0). Note. In this scenario only u
and w are reconstructed; v is not estimated because the chosen layout has
no lateral sensors (no sensitivity to κyy).

Sensor layout (SSB-only). Unpaired single-surface stations on the mid-
width line (y = 0): two sensors at ξ = 0.2 (top and bottom faces) and one
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sensor at ξ = 0.8 (top face), i.e.

(y, z) ∈
;1

0, h
2

2
ξ=0.2

,
1
0, −h

2

2
ξ=0.2

,
1
0, h

2

2
ξ=0.8

<
.

With yi = 0, each surface strain reduces to

εs(xi, 0, zi) = ε(xi) + zi κzz(xi) =
1
Bu(xi) + zi Bw(xi)

2
ue =: Ai ue.

Exact surface-strain values εs are computed at s = {2, 2, 8} m (ξ = {0.2, 0.2, 0.8}).
Uniform weights are used (λi = 1).

3) Reconstruction results
Element matrices are formed in the local frame, mapped to the global frame
via Λe, assembled at the structure level, and the clamped end at x = 0 is
enforced by DOF elimination. The reduced linear system is solved by direct
factorization.

Table 5.2 reports analytical vs SSB-iFEM values at the distinct stations
s = {2, 8} m (the two sensors at s = 2 share the same u, w). Stationwise
relative errors are 0 for u; for w they are 6.32 × 10−15 at s = 2m and
1.42 × 10−15 at s = 8m.

Table 5.2: Scenario B — Analytical vs SSB-iFEM displacements at stations s = {2, 8} m
(y = 0 layout; only u, w are observable). Values in metres; rel. err refers to SSB vs.
analytical.

Quantity Station Unit Analytical SSB-iFEM rel. err (SSB)

u s = 2 m 8.0000 8.0000 0
s = 8 m 32.0000 32.0000 0

w s = 2 m 72.0000 72.0000 6.32 × 10−15

s = 8 m 3840.0000 3840.0000 1.42 × 10−15

Figure 5.5 shows the reconstructed fields along the element.
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Figure 5.5: Scenario B — Reconstructed fields u(s) and w(s) (SSB only; sensors on
y = 0). Markers denote the sensor abscissae. u, w match the analytical trend within
numerical precision.

Figure 5.6 overlays analytical values (solid lines) and SSB predictions
(markers) at the three sensor abscissae s = {2, 2, 8} m. The double marker
at s = 2 corresponds to the top/bottom sensors at the same station: they
share the same u, w but contribute with opposite sign to κzz in εs.

Figure 5.6: Scenario B — Analytical (lines) vs SSB (markers) at s = {2, 2, 8} m.
Top/bottom sensors at s = 2 lie at z = ±h/2 (with y = 0): they provide identical
u, w but opposite bending contribution in the surface-strain measurement εs = ε + z κzz.
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4) Discussion
• Consistency. With coincident local/global frames and noiseless in-

puts, the observed fields u and w match the analytical solution at
numerical round-off.

• Observability. A mid-width (y = 0) layout excites ε and κzz (via the
z-offset), enabling accurate recovery of u and w; v is not reconstructed
here because the layout has no lateral sensors (no sensitivity to κyy).

• Sensor layout. Compared to Scenario A, this reduced and unpaired
layout does not provide full-field observability; adding sensors off the
mid-width line and pairing faces restores sensitivity to κyy and the
reconstruction of v.

• SSB vs. classical under unpaired layouts. In beam problems, the
SSB formulation operates directly on surface–strain data; even without
paired sensors on all faces, as long as the active faces provide sensitiv-
ity to the target curvature(s), the corresponding displacement compo-
nents can be recovered. By contrast, the classical iFEM requires the
channels {ε, κzz, κyy} explicitly; in practice this entails paired sensors
(top–bottom and/or left–right) to form curvature estimates.
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5.3 Scenario C: single element, unpaired sen-
sors on mid-width (y = 0; SSB only)

1) Setup and input data
Straight prismatic Euler–Bernoulli (EB) beam of length L = 10m with rect-
angular cross-section b = h = 0.1m, axis aligned with the global x-direction.
A clamped end (cantilever root) is imposed at x = 0. The element local
frame (xloc, yloc, zloc) is chosen coincident with the global (x, y, z); conse-
quently, the element rotation operator is the identity on the EB degrees of
freedom (DOFs) and the reduced mapping Λe simply selects the ten trans-
lational/rotational DOFs.

x

y

z

Figure 5.7: Scenario C: SSB-only with unpaired sensors on the mid-width line
(y = 0). Three stations at x/L = {0.2, 0.5, 0.8}: top–bottom–top faces at z =
{+h/2, −h/2, +h/2} (with y = 0). This layout excites ε and κzz via the z-offset, but
provides no sensitivity to κyy (no y-offset); accordingly, v is not reconstructed in this sce-
nario for a cleaner analysis focused on u and w. Section width b is along y, height h along
z.

2) Reference solution
Analytical displacement fields and EB measures as in Scenario A (they satisfy
the clamped boundary conditions at x = 0). Note. In this scenario only u
and w are reconstructed; v is not estimated because the chosen layout has
no lateral sensors (no sensitivity to κyy).
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Sensor layout (SSB-only). Unpaired single-surface stations on the mid-
width line (y = 0):

(y, z) ∈
;1

0, h
2

2
ξ=0.2

,
1
0, −h

2

2
ξ=0.5

,
1
0, h

2

2
ξ=0.8

<
,

ξ = {0.2, 0.5, 0.8} ⇒ s = {2, 5, 8} m.

With yi = 0, each surface strain reduces to

εs(xi, 0, zi) = ε(xi) + zi κzz(xi) =
1
Bu(xi) + zi Bw(xi)

2
ue =: Ai ue.

Exact surface-strain values εs are computed at s = {2, 5, 8} m with uniform
weights λi = 1.

3) Reconstruction results
Element matrices are formed in the local frame, mapped to the global frame
via Λe, assembled at the structure level, and the clamped end at x = 0 is
enforced by DOF elimination. The reduced linear system is solved by direct
factorization.

Table 5.3 reports analytical vs SSB-iFEM values at the stations s =
{2, 5, 8} m. Stationwise relative errors are 0 for u; for w they are 0 at s = 2m,
1.17 × 10−16 at s = 5m, and 3.55 × 10−16 at s = 8m.

Table 5.3: Scenario C — Analytical vs SSB-iFEM displacements at stations s =
{2, 5, 8} m (y = 0 layout; only u, w are observable). Values in metres; rel. err refers to
SSB vs. analytical.

Quantity Station Unit Analytical SSB-iFEM rel. err (SSB)

u s = 2 m 8.0000 8.0000 0
s = 5 m 20.0000 20.0000 0
s = 8 m 32.0000 32.0000 0

w s = 2 m 72.0000 72.0000 0
s = 5 m 975.0000 975.0000 1.17 × 10−16

s = 8 m 3840.0000 3840.0000 3.55 × 10−16

Figure 5.8 shows the reconstructed fields along the element.
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Figure 5.8: Scenario C — Reconstructed fields u(s) and w(s) (SSB only; sensors on
y = 0). Markers denote the sensor abscissae s = {2, 5, 8} m. u, w match the analytical
trend within numerical precision.

Figure 5.9 overlays analytical values (solid lines) and SSB predictions
(markers) at the three sensor abscissae.

Figure 5.9: Scenario C — Analytical (lines) vs SSB (markers) at s = {2, 5, 8} m.
Top/bottom sensors (z = ±h/2, y = 0) provide identical u, w but opposite bending
contribution in the surface-strain measurement εs = ε + z κzz.
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4) Discussion
• Consistency. With coincident local/global frames and noiseless in-

puts, the observed fields u and w match the analytical solution at
numerical round-off.

• Observability. A mid-width (y = 0) layout excites ε and κzz (via the
z-offset), enabling accurate recovery of u and w; v is not reconstructed
here because the layout has no lateral sensors (no sensitivity to κyy).

• Sensor layout. Compared to Scenario A, this reduced and unpaired
layout does not provide full-field observability; adding sensors off the
mid-width line and pairing faces restores sensitivity to κyy and the
reconstruction of v.

• SSB under unpaired layouts. In the beam case, even with only
three single (unpaired) sensors - provided that at least one sensor lies
on each of the two opposite faces involved (e.g., top and bottom for
κzz) - the SSB formulation accurately reconstructs the corresponding
displacement field (here u and w).
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Chapter 6

Complex Beam Configurations

6.1 Overview
This chapter extends the verification campaign of Chapter 4 to complex
beam configurations, i.e. multi-element assemblies with changes of orienta-
tion, joints, and boundary conditions that are representative of practical
aerospace and mechanical structures. The goal is to assess the performance
and practicality of the Single-Sensor-Based iFEM (SSB-iFEM) on geometries
where local-to-global frame rotations, corner continuity, and limited sensor
accessibility play a primary role.

Scope and questions. We address the following questions: (i) how closely
SSB-iFEM matches the classical Euler–Bernoulli (EB) iFEM when both are
provided with equivalent information; (ii) to what extent accurate recon-
struction can be maintained with reduced and/or unpaired sensor layouts
constrained by accessibility; (iii) how geometry-induced rotations and joints
(corners) impact observability and the reconstruction of the target displace-
ment components.

Test matrix. Three structures are considered: (1) a cantilever L-beam
(two EB elements joined at a right angle); (2) a cantilever Z-beam (three EB
elements with two corners); (3) a T-beam with double pinned ends (pinned–
pinned global boundary conditions with a branching joint). For each struc-
ture, four analysis cases are run with station abscissae expressed in parent
coordinates ξ = x/L:

• Case A — Classical iFEM vs SSB-iFEM (baseline): full, paired in-
strumentation; direct comparison of reconstructions.
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• Case B — SSB-iFEM, paired at ξ = 0.2 + top at ξ = 0.8: reduced set
with one paired station and one single-sided sensor.

• Case C — SSB-iFEM, top at ξ = 0.2, 0.8 + bottom at ξ = 0.5: three
unpaired sensors distributed along the span.

• Case D — SSB-iFEM, top-only at ξ = 0.2, 0.5, 0.8: single-sided in-
strumentation (most restrictive accessibility scenario).

Unless otherwise noted, sensors are placed on the mid-width line (y = 0);
their offsets enter the prediction operator via Ai = Bu(ξi) + zi Bw(ξi) +
yi Bv(ξi) (cf. Chapter 3).

Kinematics, frames, and assembly. All analyses employ EB kinematics
and the sign convention of Chapter 2 (ϕy = −w,x, ωz = v,x, κzz = −w,xx,
κyy = −v,xx). Element operators are evaluated in local frames and mapped
to the global frame through the reduced rotation Λe; corner nodes enforce
compatibility across incident elements. The global system is assembled and
essential boundary conditions are applied by DOF elimination, as in Sec-
tion 4.1.

Data generation and reference solution (forward FEM). Unlike
Chapter 4, where analytical fields were prescribed, here both the input mea-
surements and the reference outputs are produced by an independent forward
FEM tool (provided by the advisor). For each structure and case, we supply
to the forward solver the geometry (nodal coordinates, element connectiv-
ity), boundary conditions, and external loads. The solver returns: (i) the
global nodal displacement vector qref used as reference solution; and (ii) sec-
tion/surface strain measures sampled along each element at the prescribed
parent abscissae.

Measurements for the inverse analyses are then prepared as follows:
• SSB-iFEM input (surface strain). At each sensor station with local

offsets (yi, zi), the available surface axial strains εs are passed directly
to the inverse formulation as εs(xi, yi, zi).

• Classical iFEM input (mid-line & curvatures). The channels
{ε, κzz, κyy} are constructed from paired surface measurements taken
at the same abscissa using Euler–Bernoulli kinematics.
For symmetric top/bottom stations at z = ±h/2 this reduces to ε =
(εtop + εbot)/2 and κzz = (εtop − εbot)/h. Analogously, with left/right
sensors at y = ±b/2: κyy = (εright − εleft)/b.

• Reference for comparison. The nodal DOFs qref from the forward
solver provide the target displacements for all error metrics and plots.

The forward FEM uses the same Euler–Bernoulli kinematics and sign con-
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vention as in Chapter 2, ensuring consistent local/global frames and station
definitions. Material properties and loads are needed only by the forward
solver to generate the synthetic measurements and reference solution; the in-
verse formulations themselves do not require them. Unless otherwise stated,
measurements are noise-free and all active sensors have unit weight (λi = 1).

Observability considerations. As discussed in Chapter 3, the displace-
ment components that are observable depend on the available offsets (yi, zi):
offsets in z provide sensitivity to κzz (bending about y) and thus to w; off-
sets in y provide sensitivity to κyy (bending about z) and thus to v. Layouts
with yi = 0 (single-sided along the mid-width) are therefore informative for
(u, w, ϕy) but do not excite v unless at least one sensor has yi ̸= 0. The chap-
ter deliberately includes single-sided and unpaired layouts to reflect realistic
accessibility constraints.

Evaluation metrics and visualisation. For each case we report: (i)
nodal errors on the observed DOFs in ∞- and 2-norms; (ii) station-wise field
comparisons along each element; and (iii) the static deformed configuration
of the structure, plotted in the global frame to qualitatively illustrate the
reconstructed shape. Unless stated otherwise, measurements are noise-free
and all active sensors carry unit weight λi = 1.
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6.2 Structure 1: Cantilever L-Beam
Geometry and mesh. The L-beam is modeled as a two–element Euler–
Bernoulli (EB) assembly lying in the global X–Z plane. The nodal coordi-
nates (in metres) are

x1 = (0, 0, 0), x2 = (3L, 0, 0), x3 = (3L, 0, 2L), L = 10.

Element connectivity is Ce = {(1, 2), (2, 3)}. Each element adopts a local
frame with xloc aligned with the element axis, yloc ∥ Y , and zloc = xloc × yloc,
so that Λe consistently maps local EB DOFs to the global frame.

Cross-section. A constant rectangular cross-section is assumed with width
b = 1 (along y) and height h = 1 (along z). Only geometric data enter the
inverse formulation; material properties are not required by iFEM.

Kinematics and sign conventions. All operators follow the EB kinemat-
ics and the sign convention of Chapter 2: ϕy = −w,x, ωz = v,x, κzz = −w,xx,
κyy = −v,xx. Element operators are evaluated in local frames and rotated to
the global frame by Λe prior to assembly.

Boundary conditions. A clamp is imposed at node 1 (all five EB DOFs
fixed). To restrict the analysis to in-plane response (X–Z), the out-of-plane
DOFs are suppressed at the free nodes by enforcing v = ωz = 0 at nodes 2
and 3. Corner compatibility at node 2 is enforced automatically by the
common nodal DOFs.

Static deformed configuration (visualization). Under a nodal load at
node 3 along global +X, F = {10−4, 0, 0} N, the static deformed configura-
tion is plotted (Figure 6.1). This visualization is independent of the inverse
formulation and is common to all cases A–D.
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Figure 6.1: Cantilever L-beam — static deformed configuration under a nodal load
F = {10−4, 0, 0} N at node 3 (global +X). Black: undeformed centerline; magenta:
deformed shape. Axes in metres. The same deformed shape applies to all sensor-layout
cases A–D.

Sensor stations (cases A–D). Sensor abscissae are parameterized by the
parent coordinate ξ = x/L ∈ [0, 1] on each element. The four analyses in
Sections 6.2.1–6.2.4 use: Case A (paired, baseline comparison with classical
iFEM); Case B (paired at ξ = 0.2 and top at ξ = 0.8); Case C (top at ξ =
0.2, 0.8 and bottom at ξ = 0.5); Case D (top-only at ξ = 0.2, 0.5, 0.8). Unless
otherwise noted, sensors lie on the mid-width line (y = 0), and their offsets
(yi, zi) enter the prediction operator via Ai = Bu(ξi) + zi Bw(ξi) + yi Bv(ξi)
(cf. Chapter 3).

6.2.1 Case A — Classical iFEM vs SSB-iFEM (base-
line)

1) Setup and instrumentation

The geometry, mesh, and boundary conditions are those detailed in Sec-
tion 6.2. Two axial stations per element are instrumented at parent abscissae
ξ = {0.2, 0.8}. All gauges lie on the mid-width line (y = 0) and are mounted
in paired configuration on the top/bottom faces (z = ±h/2), as sketched in
Fig. 6.2. The resulting surface-strain measurements used by the SSB-iFEM
are reported in Table 6.1.
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x

y

z

F

1 (0, 0, 0)

2 (3L, 0, 0)

3 (3L, 0, 2L)

Figure 6.2: Cantilever L-beam: geometry, global axes, clamp at node 1, and paired
sensors at ξ = {0.2, 0.8} on the top/bottom faces. Cross-section b = h = 1. The symbolic
load F is used only to illustrate the static deformed configuration elsewhere.

Measured channels (SSB input). The SSB-iFEM uses the surface axial
strains εs recorded at the sensor offsets; the complete dataset across elements
and stations is summarized in Table 6.1.

Table 6.1: Case A — Measured surface axial strains εs (dimensionless) at sensor stations
for both elements. Sensors lie on the mid-width line (y = 0) at z = ±h/2 (top/bottom).

Element ξ εtop
s εbot

s

1 0.2 0.0121 −0.0119
1 0.8 0.0121 −0.0119
2 0.2 0.0096 −0.0096
2 0.8 0.0024 −0.0024

Classical channels (derived from paired faces). The classical EB
iFEM uses mid-line strain and curvature channels constructed from the
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paired faces at the same section. With h = 1,

ε = 1
2

1
εtop

s + εbot
s

2
, κzz = εtop

s − εbot
s , (κyy = 0 since yi = 0).

Applying these relations to Table 6.1 yields the classical channels collected
in Table 6.2.

Table 6.2: Case A — Classical iFEM channels at sensor stations. Mid-line axial strain
ε (dimensionless) and bending curvature κzz [m−1].

Element ξ ε κzz

1 0.2 1.0000e−4 2.4000e−2
1 0.8 1.0000e−4 2.4000e−2
2 0.2 0.0000 1.9200e−2
2 0.8 0.0000 4.8000e−3

2) Reference

The independent forward FEM solver (provided by the advisor) supplies the
global nodal displacement vector used as reference solution. For the in-plane
DOFs at nodes 2–3 (ordered as (u2, w2, ϕy2, u3, w3, ϕy3)) we obtain

qref =
è
3.0000e−3 −1.0800e1 −7.2000e−1 1.7600e1 −1.0800e1 −9.6000e−1

é⊤
,

which are the reference values also reported in Table 6.3 for direct comparison
against the reconstructions.

3) Reconstruction results

Using the SSB inputs of Table 6.1 and the classical channels of Table 6.2,
both inverse schemes deliver virtually identical reconstructions at the free
nodes. Unless otherwise noted, all metrics are computed on the vector of
nodal discrepancies with respect to the reference solution, restricted to the
known in-plane DOFs at nodes 2–3, ordered as (u2, w2, ϕy2, u3, w3, ϕy3).
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Table 6.3: Case A — Nodal quantities at free nodes (values). u, w in m; ϕy in rad. The
three columns (True, SSB, CLS) enable a direct side-by-side comparison with the reference
solution.

Node DOF Unit Reference SSB CLS
2 u m 3.0000e−3 3.0000e−3 3.0000e−3
2 w m −1.0800e1 −1.0800e1 −1.0800e1
2 ϕy rad −7.2000e−1 −7.2000e−1 −7.2000e−1
3 u m 1.7603e1 1.7603e1 1.7603e1
3 w m −1.0800e1 −1.0800e1 −1.0800e1
3 ϕy rad −9.6000e−1 −9.6000e−1 −9.6000e−1

All SSB and CLS entries coincide with the reference values within plot-
ting precision, showing that both inverse schemes reproduce the nodal DOFs
essentially exactly in this baseline, fully paired layout.

Table 6.4: Case A — Direct nodal differences (∆ = SSB − CLS) at free nodes. These
entries quantify the method-to-method discrepancy per DOF.

Node DOF ∆u [m] ∆w [m] ∆ϕy [rad]
2 −4.3370e−19 5.4180e−12 2.7530e−13
3 −5.5000e−12 5.4180e−12 2.7470e−13

All differences are at the level of numerical round-off (∼ 10−12), confirm-
ing that SSB and CLS deliver practically indistinguishable nodal reconstruc-
tions.

Table 6.5: Case A — Global metrics w.r.t. reference solution (free nodes).
Definitions for an error vector e ∈ Rn: RMSE =

ñ
1
n

qn
i=1 e2

i , ∥e∥∞ = maxi |ei|. Here e

stacks (SSB−ref) or (CLS−ref) on (u2, w2, ϕy2, u3, w3, ϕy3).

Metric SSB CLS
RMSE 9.7640e−13 2.8770e−12
∥·∥∞ 1.3840e−12 4.1280e−12

Both RMSE and ∥·∥∞ are of order 10−12–10−13, i.e. at machine preci-
sion. The slightly smaller SSB figures indicate a marginal advantage in this
noiseless, fully paired configuration, but the differences are not practically
significant.
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Table 6.6: Case A — Aggregate SSB–CLS discrepancy at free nodes (global metrics).
Definitions for the method-to-method difference vector d ∈ Rn (SSB−CLS): RMSE =ñ

1
n

qn
i=1 d2

i , ∥d∥∞ = maxi |di|, ∥d∥1 =
qn

i=1 |di|.

Metric SSB − CLS
RMSE 2.9850e−12
∥·∥∞ 5.5000e−12
∥·∥1 1.6890e−12

These aggregate figures condense the small per-DOF differences of Ta-
ble 6.4 into vector norms. The values remain at round-off, reinforcing the
baseline equivalence between SSB-iFEM and classical iFEM for the present,
fully paired layout.

Element-wise field differences. Figures 6.3–6.4 plot the pointwise dif-
ferences ∆u(s) = uSSB(s)−uCLS(s) and ∆w(s) = wSSB(s)−wCLS(s) along the
local abscissa s of each element (markers at the instrumented stations). The
curves remain at round-off across both elements, including at the measure-
ment stations, showing that the two inverse schemes reconstruct essentially
the same fields.

Figure 6.3: Case A (L-beam), Element 1. Pointwise differences ∆u(s) and ∆w(s) be-
tween SSB and classical iFEM. Markers: sensor stations at ξ = {0.2, 0.8}.

49



Complex Beam Configurations

Figure 6.4: Case A (L-beam), Element 2. Pointwise differences ∆u(s) and ∆w(s) be-
tween SSB and classical iFEM. Markers: sensor stations at ξ = {0.2, 0.8}.

4) Discussion

• Baseline equivalence. With paired top/bottom sensors at both sta-
tions and yi = 0, SSB-iFEM and classical EB iFEM achieve coincident
reconstructions at machine precision (Tables 6.4–6.6; Figs. 6.3–6.4).

• Implication for subsequent cases. The results confirm that full
pairing on accessible faces is sufficient for high-accuracy recovery of
(u, w, ϕy) on the L-beam. Sections 6.2.2–6.2.4 progressively relax pair-
ing and sidedness to assess robustness under practical accessibility con-
straints.

6.2.2 Case B — SSB-iFEM: paired sensors at ξ = 0.2
and top sensor at ξ = 0.8

1) Setup and instrumentation

The geometry, mesh, kinematics, boundary conditions, and sign convention
are the same as in Section 6.2. Instrumentation differs from Case A as
follows: for each element, two axial stations are used at parent abscissae
ξ = {0.2, 0.8}; at ξ = 0.2 a paired top/bottom installation is available on
the mid-width line (y = 0, faces z = ±h/2), while at ξ = 0.8 only the top
face (z = +h/2) is instrumented.
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z

F

1 (0, 0, 0)

2 (3L, 0, 0)

3 (3L, 0, 2L)

Figure 6.5: Case B (L-beam): sensor layout. Paired top/bottom at ξ = 0.2 on each
element; top-only at ξ = 0.8. All sensors lie on the mid-width line (y = 0).

Measured channels (SSB input). Surface axial strains εs at the avail-
able offsets (yi = 0, zi = ±h/2) are those already listed for Case A at the
same stations; here, the bottom reading at ξ = 0.8 is not used. Table 6.7
collects the channels by element and station (a dash marks unavailable sen-
sors).

Table 6.7: Case B — Measured surface strains εs (dimensionless) at sensor stations.
Top/bottom refer to z = ±h/2; “—” denotes an intentionally absent sensor (top-only at
ξ = 0.8).

Element ξ εtop
s εbot

s

1 0.2 0.0121 −0.0119
1 0.8 0.0121 —
2 0.2 0.0096 −0.0096
2 0.8 0.0024 —
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2) Reference (comparison target)

The reference nodal displacement vector qref is provided by the forward FEM
tool used throughout Chapter 5 (Section 6.1). We compare the SSB-iFEM
reconstruction against this reference on the known in-plane DOFs at nodes
2–3: (u2, w2, ϕy2, u3, w3, ϕy3).

3) Reconstruction results

With the reduced-but-informative layout of Table 6.7, the SSB-iFEM repro-
duces the reference solution at machine precision.

Table 6.8: Case B — Nodal quantities at free nodes (values). u, w in m; ϕy in rad.

Node DOF Unit Reference SSB
2 u m 3.0000e−3 3.0000e−3
2 w m −1.0800e1 −1.0800e1
2 ϕy rad −7.2000e−1 −7.2000e−1
3 u m 1.7600e1 1.7600e1
3 w m −1.0800e1 −1.0800e1
3 ϕy rad −9.6000e−1 −9.6000e−1

Global relative metrics (free nodes, known DOFs) confirm the negligible dis-
crepancy:

∥err∥∞

∥ref∥∞
= 1.433 × 10−14,

∥err∥2

∥ref∥2
= 1.358 × 10−14.

For completeness, per–element relative figures are 1.250 × 10−14 and 1.252 ×
10−14 on Element 1, and 1.433 × 10−14 and 1.358 × 10−14 on Element 2.

Sensor diagnostics. For each element, the left bar–plot reports the resid-
uals of the surface–strain channels,

ri = εpred
s,i − εmeas

s,i ,

with one bar per sensor station in the order used by the input arrays. The
predicted strain at station ξi (with local offsets yi, zi) is obtained from the
reconstructed local DOFs qloc via

εpred
s,i =

1
Bu(ξi) + zi Bw(ξi) + yi Bv(ξi)

2
qloc.
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The right scatter–plot compares measured vs. predicted strains (one marker
per sensor) and includes the 1:1 reference line; points lying on the 1:1 indi-
cate perfect agreement, whereas systematic offsets (parallel clouds) and slope
deviations reveal bias or scaling effects.

Figure 6.6: Case B (L-beam). Left: sensor residuals by element. Right: predicted vs
measured εs with 1:1 guideline.

4) Discussion

• Accuracy with reduced channels. Despite the missing bottom
reading at ξ = 0.8 on each element, the paired station at ξ = 0.2
plus a single top channel at ξ = 0.8 is sufficient to reproduce (u, w, ϕy)
at machine precision on this L-beam.

• Diagnostics. The residual and 1:1 plots (Fig. 6.6) show negligible
bias and dispersion, corroborating the bar-chart and metric-based as-
sessments.

• Implication. Case B confirms that SSB-iFEM remains robust under
mild accessibility constraints (paired+single-sided layout), anticipating
the more restrictive layouts explored in Cases C–D.
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6.2.3 Case C — SSB-iFEM: top sensors at ξ = 0.2,
ξ = 0.8; bottom sensor at ξ = 0.5

1) Setup and instrumentation

The geometry, mesh, and boundary conditions are those of Section 6.2. Each
element is instrumented with three surface–strain gauges along the mid-width
line (y = 0): top face at ξ = 0.2, bottom face at ξ = 0.5, and top face at
ξ = 0.8 (i.e., z = {+h/2, −h/2, +h/2}).

x

y

z

F

1 (0, 0, 0)

2 (3L, 0, 0)

3 (3L, 0, 2L)

Figure 6.7: Case C (L-beam): sensor layout. Top sensors at ξ = 0.2 and ξ = 0.8; bottom
sensor at ξ = 0.5. All sensors lie on the mid-width line (y = 0).

Measured channels. SSB-iFEM input consists of the surface axial strains
εs at the sensor offsets. Table 6.9 lists the measured values (rounded) at the
three stations of each element.
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Table 6.9: Case C — Measured surface axial strains εs (dimensionless) at sensor stations
for both elements. Sensors lie on the mid-width line (y = 0) at z = ±h/2 (top/bottom).

Element ξ Face εs

1 0.2 top 0.0121
1 0.5 bottom −0.0119
1 0.8 top 0.0121
2 0.2 top 0.0096
2 0.5 bottom −0.0060
2 0.8 top 0.0024

2) Reference (comparison target)

The reference nodal displacement vector qref is provided by the forward FEM
tool used throughout Chapter 5 (Section 6.1). We compare the SSB-iFEM
reconstruction against this reference on the known in-plane DOFs at nodes
2–3: (u2, w2, ϕy2, u3, w3, ϕy3).

3) Reconstruction results

Using the SSB inputs of Table 6.9, the inverse analysis matches the reference
at machine precision.

Table 6.10: Case C — Nodal quantities at free nodes (values). u, w in m; ϕy in rad.

Node DOF Unit Reference SSB
2 u m 3.0000e−3 3.0000e−3
2 w m −1.0800e1 −1.0800e1
2 ϕy rad −7.2000e−1 −7.2000e−1
3 u m 1.7600e1 1.7600e1
3 w m −1.0800e1 −1.0800e1
3 ϕy rad −9.6000e−1 −9.6000e−1

Relative error metrics. Global relative errors (excluding constrained
DOFs) and per–element summaries are reported in Tables 6.11–6.12. Here
∥ · ∥∞ is the max norm over the stacked vector of nodal DOFs, and ∥ · ∥2
the Euclidean norm; we quote the ratio ∥err∥/∥ref∥ as provided by the post-
processor.
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Table 6.11: Case C — Global relative error metrics (free nodes).

Metric Value
∥err∥∞/∥ref∥∞ 7.5680e−15
∥err∥2/∥ref∥2 9.4700e−15

Table 6.12: Case C — Per–element relative errors.
Element ∥err∥∞/∥ref∥∞ ∥err∥2/∥ref∥2

1 1.2340e−14 1.2320e−14
2 7.5680e−15 9.4700e−15

Sensor diagnostics. For each element, the left bar–plot reports the resid-
uals of the surface–strain channels,

ri = εpred
s,i − εmeas

s,i ,

with one bar per sensor station in the order used by the input arrays. The
predicted strain at station ξi (with local offsets yi, zi) is obtained from the
reconstructed local DOFs qloc via

εpred
s,i =

1
Bu(ξi) + zi Bw(ξi) + yi Bv(ξi)

2
qloc.

The right scatter–plot compares measured vs. predicted strains (one marker
per sensor) and includes the 1:1 reference line; points lying on the 1:1 indi-
cate perfect agreement, whereas systematic offsets (parallel clouds) and slope
deviations reveal bias or scaling effects.
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Figure 6.8: Case C (L-beam). Left: residuals per sensor (Element 1 on top, Element 2
bottom). Right: predicted vs. measured εs with 1:1 guideline.

4) Discussion

• Accuracy with mixed sidedness. A three-sensor layout per ele-
ment (top–bottom–top) still achieves machine-precision agreement on
the known DOFs. The bottom station at ξ = 0.5 restores local pairing
for bending about y, maintaining excellent observability of (u, w, ϕy).

• Practical note. Even without full pairing at both stations, distribut-
ing the three sensors as in Case C provides a robust constraint set for
SSB on the L-beam.

6.2.4 Case D — SSB-iFEM: top-only sensors at ξ =
{0.2, 0.5, 0.8}

1) Setup and instrumentation

Geometry, mesh, kinematics, and boundary conditions are those of Sec-
tion 6.2. Each element is instrumented with three top-face surface–strain
sensors at parent abscissae ξ = {0.2, 0.5, 0.8}; all stations lie on the mid-
width line (y = 0) and at z = +h/2 (top).
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Figure 6.9: Case D (L-beam): sensor layout. Top-only sensors at ξ = {0.2, 0.5, 0.8} on
each element; all sensors on the mid-width line (y = 0).

Measured channels. The SSB-iFEM input consists of the surface axial
strains εs at the sensor offsets (top face, z = +h/2). The measured values
are:

Table 6.13: Case D — Measured surface axial strains εs (dimensionless) at the three
top-face stations on each element.

Element ξ 0.2 0.5 0.8
1 εtop

s 0.0121 0.0121 0.0121
2 εtop

s 0.0096 0.0060 0.0024

2) Reference (comparison target)

As in the previous cases, the forward FEM solver provides the reference nodal
DOFs at the free nodes (u2, w2, ϕy2, u3, w3, ϕy3) used for all comparisons (see
Section 6.2).
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3) Reconstruction results

With top-only instrumentation (yi = 0 and zi = +h/2 at all stations), the
SSB system lacks the paired top/bottom information needed to disentangle
mid-line strain ε from bending curvature κzz. Consequently, the inverse
fit becomes ill-conditioned and the reconstructed nodal quantities deviate
markedly from the reference solution.

Nodal values and relative errors. Table 6.14 reports SSB vs. reference
at free nodes, together with the relative error (in %). Large errors at both
nodes confirm the inadequacy of top-only layouts for this configuration.

Table 6.14: Case D — Nodal quantities at free nodes (values and relative errors). u, w
in m; ϕy in rad.

Node DOF Unit SSB Reference Rel. err [%]
2 u m 3.5410e−1 3.0000e−3 11 703.6550
2 w m −2.6670e−1 −1.0800e1 97.5300
2 ϕy rad 1.7780e−2 7.2000e−1 97.5300
3 u m 4.0710e−2 1.7600e1 99.7690
3 w m −7.3260e−2 −1.0800e1 99.3220
3 ϕy rad −1.2910e−1 9.6000e−1 113.4500

Aggregate relative metrics. Global relative errors (excluding constrained
DOFs) and per–element figures are summarised in Table 6.15. Here ∥ · ∥∞
is the infinity norm (max absolute component) and ∥ · ∥2 is the Euclidean
norm.

Table 6.15: Case D — Global relative errors w.r.t. the reference solution.
Quantity ∥err∥∞/∥ref∥∞ ∥err∥2/∥ref∥2

Whole structure 9.9770 9.9230
Element 1 9.7530 9.7580
Element 2 9.9770 9.9230

4) Discussion

• Observability shortfall. With top-only sensors (z = +h/2 at all sta-
tions), the SSB prediction operator cannot separate the mid-line strain
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ε from the curvature κzz; the problem is effectively under–determined
and ill-conditioned.

• Impact on accuracy. The loss of pairing drives large biases at the
free nodes (Table 6.14) and near-unit global relative errors (Table 6.15).

• Design implication. For EB beams, at least one paired top/bottom
station per element (or equivalent multi-face information) is necessary
to achieve accurate reconstructions of (u, w, ϕy); single-sided, unpaired
layouts should be avoided unless supplemented by additional informa-
tion or regularisation.
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6.3 Structure 2: Cantilever Z-Beam
Geometry and mesh. The Z-beam is modeled as a three–element Euler–
Bernoulli (EB) assembly lying in the global X–Z plane. The nodal coordi-
nates (in metres) are

x1 = (0, 0, 0), x2 = (3L, 0, 0), x3 = (3L, 0, 4L), x4 = (7L, 0, 4L),
L = 10

Element connectivity is Ce = {(1, 2), (2, 3), (3, 4)}. Each element adopts a
local frame with xloc aligned with the element axis, yloc ∥ Y , and zloc =
xloc × yloc, so that Λe consistently maps local EB DOFs to the global frame.

Cross-section. A constant rectangular cross-section is assumed with width
b = 1 (along y) and height h = 1 (along z). Only geometric data enter the
inverse formulation; material properties are not required by iFEM.

Kinematics and sign conventions. All operators follow the EB kinemat-
ics and the sign convention of Chapter 2: ϕy = −w,x, ωz = v,x, κzz = −w,xx,
κyy = −v,xx. Element operators are evaluated in local frames and rotated to
the global frame by Λe prior to assembly.

Boundary conditions. A clamp is imposed at node 1 (all five EB DOFs
fixed). To restrict the analysis to in-plane response (X–Z), the out-of-plane
DOFs are suppressed at the free nodes by enforcing v = ωz = 0 at nodes 2,
3 and 4. Corner compatibilities at nodes 2 and 3 are enforced automatically
by the common nodal DOFs.

Static deformed configuration (visualization). Under a nodal load at
node 4 along global +X, F = {10−4, 0, 0} N, the static deformed configura-
tion is plotted (Figure 6.10). This visualization is independent of the inverse
formulation and is common to all cases A–D.
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Figure 6.10: Cantilever Z-beam — static deformed configuration under a nodal load
F = {10−4, 0, 0} N at node 4 (global +X). Black: undeformed centerline; magenta:
deformed shape. Axes in metres. The same deformed shape applies to all sensor-layout
cases A–D.

Sensor stations (cases A–D). Sensor abscissae are parameterized by the
parent coordinate ξ = x/L ∈ [0, 1] on each element. The four analyses in
Sections 6.3.1–6.3.4 use: Case A (paired, baseline comparison with classical
iFEM); Case B (paired at ξ = 0.2 and top at ξ = 0.8); Case C (top at ξ =
0.2, 0.8 and bottom at ξ = 0.5); Case D (top-only at ξ = 0.2, 0.5, 0.8). Unless
otherwise noted, sensors lie on the mid-width line (y = 0), and their offsets
(yi, zi) enter the prediction operator via Ai = Bu(ξi) + zi Bw(ξi) + yi Bv(ξi)
(cf. Chapter 3).

6.3.1 Case A — Classical iFEM vs SSB-iFEM (base-
line)

1) Setup and instrumentation

The geometry, mesh, and boundary conditions are those detailed in Sec-
tion 6.3. Two axial stations per element are instrumented at parent abscissae
ξ = {0.2, 0.8}. All gauges lie on the mid-width line (y = 0) and are mounted
in paired configuration on the top/bottom faces (z = ±h/2), as sketched in
Fig. 6.11. The resulting surface-strain measurements used by the SSB-iFEM
are reported in Table 6.16.
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Figure 6.11: Cantilever Z-beam: geometry, global axes, clamp at node 1, and paired
sensors at ξ = {0.2, 0.8} on the top/bottom faces of all three elements. Cross-section
b = h = 1. The symbolic load F is used only to illustrate the static deformed configuration
elsewhere.

Measured channels (SSB input). The SSB-iFEM uses the surface axial
strains εs recorded at the sensor offsets; the complete dataset across elements
and stations is summarized in Table 6.16.

Table 6.16: Case A — Measured surface axial strains εs (dimensionless) at sensor stations
for all three elements. Sensors lie on the mid-width line (y = 0) at z = ±h/2 (top/bottom).

Element ξ εtop
s εbot

s

1 0.2 0.0241 −0.0239
1 0.8 0.0241 −0.0239
2 0.2 0.0192 −0.0192
2 0.8 0.0048 −0.0048
3 0.2 0.0001 0.0001
3 0.8 0.0001 0.0001
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Classical channels (derived from paired faces). The classical EB
iFEM uses mid-line strain and curvature channels constructed from the
paired faces at the same section. With h = 1,

ε = 1
2

1
εtop

s + εbot
s

2
, κzz = εtop

s − εbot
s , (κyy = 0 since yi = 0).

Applying these relations to Table 6.16 yields the classical channels collected
in Table 6.17.

Table 6.17: Case A — Classical iFEM channels at sensor stations. Mid-line axial strain
ε (dimensionless) and bending curvature κzz [m−1].

Element ξ ε κzz

1 0.2 1.0000e−4 4.8000e−2
1 0.8 1.0000e−4 4.8000e−2
2 0.2 0.0000 3.8400e−2
2 0.8 0.0000 9.6000e−3
3 0.2 1.0000e−4 0.0000
3 0.8 1.0000e−4 0.0000

2) Reference

The independent forward FEM solver (provided by the advisor) supplies the
global nodal displacement vector used as reference solution. For the in-plane
DOFs at nodes 2–4 (ordered as (u2, w2, ϕy2; u3, w3, ϕy3; u4, w4, ϕy4)) we obtain

qref =

3.0000e−3 −2.1600e1 −1.4400
8.3203e1 −2.1600e1 −2.4000
8.3207e1 −1.1760e2 −2.4000


⊤

,

which are the reference values also reported in Table 6.18 for direct compar-
ison against the reconstructions.

3) Reconstruction results

Using the SSB inputs of Table 6.16 and the classical channels of Table 6.17,
both inverse schemes deliver virtually identical reconstructions at the free
nodes. Unless otherwise noted, all metrics are computed on the vector of
nodal discrepancies with respect to the reference solution, restricted to the
known in-plane DOFs at nodes 2–4, ordered as (u2, w2, ϕy2, u3, w3, ϕy3, u4, w4, ϕy4).
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Table 6.18: Case A — Nodal quantities at free nodes (values). u, w in m; ϕy in rad.
The three columns (Reference, SSB, CLS) enable a direct side-by-side comparison with
the reference solution.

Node DOF Unit Reference SSB CLS
2 u m 3.0000e−3 3.0000e−3 3.0000e−3
2 w m −2.1600e1 −2.1600e1 −2.1600e1
2 ϕy rad −1.4400 −1.4400 −1.4400
3 u m 8.3203e1 8.3203e1 8.3203e1
3 w m −2.1600e1 −2.1600e1 −2.1600e1
3 ϕy rad −2.4000 −2.4000 −2.4000
4 u m 8.3207e1 8.3207e1 8.3207e1
4 w m −1.1760e2 −1.1760e2 −1.1760e2
4 ϕy rad −2.4000 −2.4000 −2.4000

All SSB and CLS entries coincide with the reference values within plot-
ting precision, showing that both inverse schemes reproduce the nodal DOFs
essentially exactly in this baseline, fully paired layout.

Table 6.19: Case A — Direct nodal differences (∆ = SSB − CLS) at free nodes. These
entries quantify the method-to-method discrepancy per DOF.

Node DOF ∆u [m] ∆w [m] ∆ϕy [rad]
2 1.8680e−15 1.9640e−11 1.3040e−12
3 −7.4520e−11 1.9640e−11 2.1560e−12
4 −7.4490e−11 1.0580e−10 2.1550e−12

All differences are at the level of numerical round-off (∼ 10−10 or smaller
compared to the absolute DOF magnitudes), confirming that SSB and CLS
deliver practically indistinguishable nodal reconstructions.

Table 6.20: Case A — Global metrics w.r.t. reference solution (free nodes).
Definitions for an error vector e ∈ Rn: RMSE =

ñ
1
n

qn
i=1 e2

i , ∥e∥∞ = maxi |ei|. Here e

stacks (SSB−ref) or (CLS−ref) on (u2, w2, ϕy2, u3, w3, ϕy3, u4, w4, ϕy4).

Metric SSB CLS
RMSE 4.4970e−119.5620e−11
∥·∥∞ 9.4100e−111.9990e−10
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Both RMSE and ∥·∥∞ are of order 10−11–10−10, i.e. negligible when com-
pared with the absolute DOF magnitudes (tens of metres and radians). The
slightly smaller SSB figures indicate a marginal advantage in this noiseless,
fully paired configuration, but the differences are not practically significant.

Table 6.21: Case A — Aggregate SSB–CLS discrepancy at free nodes (global metrics).
Definitions for the method-to-method difference vector d ∈ Rn (SSB−CLS): RMSE =ñ

1
n

qn
i=1 d2

i , ∥d∥∞ = maxi |di|, ∥d∥1 =
qn

i=1 |di|.

Metric SSB − CLS
RMSE 3.9230e−11
∥·∥∞ 1.0580e−10
∥·∥1 1.9980e−11

These aggregate figures condense the small per-DOF differences of Ta-
ble 6.19 into vector norms. The values remain very small, reinforcing the
baseline equivalence between SSB-iFEM and classical iFEM for the present,
fully paired layout.

Element-wise field differences. Figures 6.12–6.14 plot the pointwise dif-
ferences ∆u(s) = uSSB(s) − uCLS(s) and ∆w(s) = wSSB(s) − wCLS(s) along
the local abscissa s of each element (markers at the instrumented stations).
The curves remain at round-off across all three elements, including at the
measurement stations, showing that the two inverse schemes reconstruct es-
sentially the same fields.
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Figure 6.12: Case A (Z-beam), Element 1. Pointwise differences ∆u(s) and ∆w(s)
between SSB and classical iFEM. Markers: sensor stations at ξ = {0.2, 0.8}.

Figure 6.13: Case A (Z-beam), Element 2. Pointwise differences ∆u(s) and ∆w(s)
between SSB and classical iFEM. Markers: sensor stations at ξ = {0.2, 0.8}.
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Figure 6.14: Case A (Z-beam), Element 3. Pointwise differences ∆u(s) and ∆w(s)
between SSB and classical iFEM. Markers: sensor stations at ξ = {0.2, 0.8}.

4) Discussion

• Baseline equivalence. With paired top/bottom sensors at both
stations and yi = 0, SSB-iFEM and classical EB iFEM achieve co-
incident reconstructions up to numerical round-off (Tables 6.19–6.21;
Figs. 6.12–6.14).

• Implication for subsequent cases. The results confirm that full
pairing on accessible faces is sufficient for high-accuracy recovery of
(u, w, ϕy) on the Z-beam. Sections 6.3.2–6.3.4 progressively relax pair-
ing and sidedness to assess robustness under practical accessibility con-
straints.

6.3.2 Case B — SSB-iFEM: paired sensors at ξ = 0.2
and top sensor at ξ = 0.8

1) Setup and instrumentation

The geometry, mesh, kinematics, boundary conditions, and sign convention
are the same as in Section 6.3. Instrumentation differs from Case A as
follows: for each element, two axial stations are used at parent abscissae
ξ = {0.2, 0.8}; at ξ = 0.2 a paired top/bottom installation is available on
the mid-width line (y = 0, faces z = ±h/2), while at ξ = 0.8 only the top
face (z = +h/2) is instrumented.
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Figure 6.15: Case B (Z-beam): sensor layout. Paired top/bottom at ξ = 0.2 on each
element; top-only at ξ = 0.8. All sensors lie on the mid-width line (y = 0).

Measured channels (SSB input). Surface axial strains εs at the avail-
able offsets (yi = 0, zi = ±h/2) are the same as in Case A at the correspond-
ing stations; here, the bottom reading at ξ = 0.8 is not used. Table 6.22
collects the channels by element and station (a dash marks unavailable sen-
sors).
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Table 6.22: Case B — Measured surface strains εs (dimensionless) at sensor stations.
Top/bottom refer to z = ±h/2; “—” denotes an intentionally absent sensor (top-only at
ξ = 0.8).

Element ξ εtop
s εbot

s

1 0.2 0.0241 −0.0239
1 0.8 0.0241 —
2 0.2 0.0192 −0.0192
2 0.8 0.0048 —
3 0.2 0.0001 0.0001
3 0.8 0.0001 —

2) Reference (comparison target)

The reference nodal displacement vector qref is provided by the same forward
FEM tool used in Case A. Accordingly, the comparison is performed on the
known in-plane DOFs at nodes 2–4:

(u2, w2, ϕy2, u3, w3, ϕy3, u4, w4, ϕy4),

whose reference values coincide with those listed in Table 6.18.

3) Reconstruction results

With the reduced-but-informative layout of Table 6.22, the SSB-iFEM re-
produces the reference solution with essentially zero error.

Table 6.23: Case B — Nodal quantities at free nodes (values). u, w in m; ϕy in rad.

Node DOF Unit Reference SSB
2 u m 3.0000e−3 3.0000e−3
2 w m −2.1600e1 −2.1600e1
2 ϕy rad −1.4400 −1.4400
3 u m 8.3203e1 8.3203e1
3 w m −2.1600e1 −2.1600e1
3 ϕy rad −2.4000 −2.4000
4 u m 8.3207e1 8.3207e1
4 w m −1.1760e2 −1.1760e2
4 ϕy rad −2.4000 −2.4000
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Global relative metrics (free nodes, known DOFs) confirm the negligible dis-
crepancy:

∥err∥∞

∥ref∥∞
= 9.226 × 10−13,

∥err∥2

∥ref∥2
= 9.216 × 10−13.

For completeness, per–element relative figures are 8.467 × 10−13 and 8.482 ×
10−13 on Element 1, 9.252 × 10−13 and 9.166 × 10−13 on Element 2, and
9.226 × 10−13 and 9.228 × 10−13 on Element 3 (for ∥·∥∞/∥·∥∞ and ∥·∥2/∥·∥2,
respectively). The node-wise relative errors reported by the solver are effec-
tively zero (machine precision) for all DOFs.

Sensor diagnostics. For each element, the left bar–plot reports the resid-
uals of the surface–strain channels,

ri = εpred
s,i − εmeas

s,i ,

with one bar per sensor in the order used by the input arrays (three channels
per element: top and bottom at ξ = 0.2, top-only at ξ = 0.8). The predicted
strain at station ξi (with local offsets yi, zi) is obtained from the reconstructed
local DOFs qloc via

εpred
s,i =

1
Bu(ξi) + zi Bw(ξi) + yi Bv(ξi)

2
qloc.

The right scatter–plots compare measured vs. predicted strains (one marker
per sensor) and include the 1:1 reference line; points lying on the 1:1 indi-
cate perfect agreement, whereas systematic offsets (parallel clouds) and slope
deviations would reveal bias or scaling effects.
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Figure 6.16: Case B (Z-beam). Left: sensor residuals by element. Right: predicted vs
measured εs with 1:1 guideline.

4) Discussion

• Accuracy with reduced channels. Despite the missing bottom
reading at ξ = 0.8 on each element, the paired station at ξ = 0.2
plus a single top channel at ξ = 0.8 is sufficient to reproduce (u, w, ϕy)
at essentially machine precision on the Z-beam.

• Diagnostics. The residual and 1:1 plots (Fig. 6.16) show negligible
bias and dispersion, corroborating the metric-based assessment and
confirming that the strain data are fully consistent with the recon-
structed displacement field.

• Implication. Case B confirms that SSB-iFEM remains robust un-
der mild accessibility constraints (paired+single-sided layout) also for
the more articulated Z-beam, anticipating the more restrictive layouts
explored in Cases C–D.

6.3.3 Case C — SSB-iFEM: top sensors at ξ = 0.2,
ξ = 0.8; bottom sensor at ξ = 0.5

1) Setup and instrumentation

The geometry, mesh, and boundary conditions are those of Section 6.3. Each
element is instrumented with three surface–strain gauges along the mid-width
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line (y = 0): top face at ξ = 0.2, bottom face at ξ = 0.5, and top face at
ξ = 0.8 (i.e., z = {+h/2, −h/2, +h/2} for all three elements).

x

y

z

F

1 (0, 0, 0)

2 (3L, 0, 0)

3 (3L, 0, 4L)

4 (7L, 0, 4L)

Figure 6.17: Case C (Z-beam): sensor layout. Top sensors at ξ = 0.2 and ξ = 0.8;
bottom sensor at ξ = 0.5 on each element. All sensors lie on the mid-width line (y = 0).

Measured channels. SSB-iFEM input consists of the surface axial strains
εs at the sensor offsets. Table 6.24 lists the measured values (rounded) at
the three stations of each element.
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Table 6.24: Case C — Measured surface axial strains εs (dimensionless) at sensor stations
for all three elements. Sensors lie on the mid-width line (y = 0) at z = ±h/2 (top/bottom).

Element ξ Face εs

1 0.2 top 0.0241
1 0.5 bottom −0.0239
1 0.8 top 0.0241
2 0.2 top 0.0192
2 0.5 bottom −0.0120
2 0.8 top 0.0048
3 0.2 top 0.0001
3 0.5 bottom 0.0001
3 0.8 top 0.0001

2) Reference (comparison target)

The reference nodal displacement vector qref is provided by the same forward
FEM tool used in Cases A–B. The comparison is performed on the known
in-plane DOFs at nodes 2–4:

(u2, w2, ϕy2, u3, w3, ϕy3, u4, w4, ϕy4),
whose reference values are those already listed in Table 6.18.

3) Reconstruction results

Using the SSB inputs of Table 6.24, the inverse analysis matches the reference
within numerical precision.

Table 6.25: Case C — Nodal quantities at free nodes (values). u, w in m; ϕy in rad.

Node DOF Unit Reference SSB
2 u m 3.0000e−3 3.0000e−3
2 w m −2.1600e1 −2.1600e1
2 ϕy rad −1.4400 −1.4400
3 u m 8.3203e1 8.3203e1
3 w m −2.1600e1 −2.1600e1
3 ϕy rad −2.4000 −2.4000
4 u m 8.3207e1 8.3207e1
4 w m −1.1760e2 −1.1760e2
4 ϕy rad −2.4000 −2.4000
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Relative error metrics. Global relative errors (excluding constrained
DOFs) and per–element summaries are reported below. Here ∥ · ∥∞ is the
max norm over the stacked vector of nodal DOFs, and ∥ · ∥2 the Euclidean
norm; we quote the ratio ∥err∥/∥ref∥ as provided by the post-processor.

Table 6.26: Case C — Global relative error metrics (free nodes).

Metric Value
∥err∥∞/∥ref∥∞ 2.1470e−13
∥err∥2/∥ref∥2 2.1550e−13

Table 6.27: Case C — Per–element relative errors.
Element ∥err∥∞/∥ref∥∞ ∥err∥2/∥ref∥2

1 2.1180e−13 2.1190e−13
2 2.1640e−13 2.1600e−13
3 2.1470e−13 2.1550e−13

The node-wise relative errors reported by the solver are effectively zero
(printed as 0.000 %) for all DOFs at nodes 2–4.

Sensor diagnostics. For each element, the left bar–plot reports the resid-
uals of the surface–strain channels,

ri = εpred
s,i − εmeas

s,i ,

with one bar per sensor in the order used by the input arrays (three channels
per element, corresponding to the stations at ξ = 0.2, 0.5, and 0.8). The
predicted strain at station ξi (with local offsets yi, zi) is obtained from the
reconstructed local DOFs qloc via

εpred
s,i =

1
Bu(ξi) + zi Bw(ξi) + yi Bv(ξi)

2
qloc.

The right scatter–plots compare measured vs. predicted strains (one marker
per sensor) and include the 1:1 reference line; points lying on the 1:1 indi-
cate perfect agreement, whereas systematic offsets (parallel clouds) and slope
deviations would reveal bias or scaling effects.
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Figure 6.18: Case C (Z-beam). Left: residuals per sensor (Elements 1–3 from top to
bottom). Right: predicted vs. measured εs with 1:1 guideline.

4) Discussion

• Accuracy with mixed sidedness. A three-sensor layout per element
(top–bottom–top at ξ = 0.2, 0.5, 0.8) still achieves agreement with the
reference solution at essentially machine precision. The bottom station
at ξ = 0.5 restores local pairing for bending about y, maintaining
excellent observability of (u, w, ϕy) on the Z-beam.

• Practical note. Even without full pairing at all stations, distributing
the three sensors as in Case C provides a robust constraint set for SSB
on this more articulated Z-shaped structure.

6.3.4 Case D — SSB-iFEM: top-only sensors at ξ =
0.2, 0.5, 0.8

1) Setup and instrumentation

Geometry, mesh, kinematics, and boundary conditions are those of Sec-
tion 6.3. Each element is instrumented with three top-face surface–strain
sensors at parent abscissae ξ = {0.2, 0.5, 0.8}; all stations lie on the mid-
width line (y = 0) and at z = +h/2 (top).
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Figure 6.19: Case D (Z-beam): sensor layout. Top-only sensors at ξ = {0.2, 0.5, 0.8}
on each element; all sensors on the mid-width line (y = 0).

Measured channels. The SSB-iFEM input consists of the surface axial
strains εs at the sensor offsets (top face, z = +h/2). The measured values
are:

Table 6.28: Case D — Measured surface axial strains εs (dimensionless) at the three
top-face stations on each element.

Element ξ εs(0.2) εs(0.5) εs(0.8)
1 0.0241 0.0241 0.0241
2 0.0192 0.0120 0.0048
3 0.0001 0.0001 0.0001
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2) Reference (comparison target)

As in the previous cases, the forward FEM solver provides the reference nodal
DOFs at the free nodes

(u2, w2, ϕy2, u3, w3, ϕy3, u4, w4, ϕy4),

which are the same reference values reported in Table 6.18. Only the SSB-
iFEM reconstruction is considered here, since the classical iFEM formulation
would require paired top/bottom measurements to build curvature channels.

3) Reconstruction results

With top-only instrumentation (yi = 0 and zi = +h/2 at all stations), the
SSB system lacks the paired top/bottom information needed to disentangle
mid-line strain ε from bending curvature κzz. Consequently, the inverse
fit becomes ill-conditioned and the reconstructed nodal quantities deviate
markedly from the reference solution.

Nodal values and relative errors. Table 6.29 reports SSB vs. reference
at free nodes, together with the relative error (in %).

Table 6.29: Case D — Nodal quantities at free nodes (values and relative errors). u, w
in m; ϕy in rad.

Node DOF Unit SSB Reference Rel. err [%]
2 u m 9.1050e−1 3.0000e−3 30 249.7100
2 w m 5.6250 −2.1600e1 126.0400
2 ϕy rad −3.7500e−1 1.4400 126.0400
3 u m −1.3620e−1 8.3200e1 100.1640
3 w m 5.9160 −2.1600e1 127.3890
3 ϕy rad 2.6490e−3 2.4000 99.8900
4 u m −2.3700e−1 8.3210e1 100.2850
4 w m 1.6190 −1.1760e2 101.3770
4 ϕy rad 2.1220e−1 2.4000 91.1590

Aggregate relative metrics. Global relative errors (excluding constrained
DOFs) and per–element figures are summarised in Table 6.30. Here ∥ · ∥∞
is the infinity norm (max absolute component) and ∥ · ∥2 is the Euclidean
norm.
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Table 6.30: Case D — Relative errors w.r.t. the reference solution.
Quantity ∥err∥∞/∥ref∥∞ ∥err∥2/∥ref∥2

Whole structure 1.0140 1.0180
Element 1 1.2600 1.2610
Element 2 1.0020 1.0370
Element 3 1.0140 1.0130

4) Discussion

• Observability shortfall. With top-only sensors (z = +h/2 at all sta-
tions), the SSB prediction operator cannot separate the mid-line strain
ε from the curvature κzz; the problem is effectively under–determined
and ill-conditioned.

• Impact on accuracy. The loss of pairing drives very large biases
at the free nodes (Table 6.29) and near-unit (or larger) global rela-
tive errors (Table 6.30), in stark contrast with the machine-precision
reconstructions of Cases A–C.

• Design implication. For Euler–Bernoulli beams such as the present
Z-configuration, at least one paired top/bottom station per element
(or equivalent multi-face information) is necessary to achieve accu-
rate reconstructions of (u, w, ϕy); purely single-sided layouts should be
avoided unless supplemented by additional information or regularisa-
tion.
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6.4 Structure 3: Hinged T-Beam
Geometry and mesh. The T-beam is modeled as a three–element Euler–
Bernoulli (EB) assembly lying in the global X–Z plane. The nodal coordi-
nates (in metres) are

x1 = (0, 0, 0), x2 = (8L, 0, 0), x3 = (3L, 0, 3L), x4 = (3L, 0, 0),
L = 10.

Element connectivity is

Ce = {(1, 4), (4, 2), (4, 3)},

so that two elements form the horizontal flange and one element forms the
vertical web of the T. Each element adopts a local frame with xloc aligned
with the element axis, yloc ∥ Y , and zloc = xloc × yloc, so that Λe consistently
maps local EB DOFs to the global frame.

Cross-section. A constant rectangular cross-section is assumed with width
b = 1 (along y) and height h = 1 (along z). Only geometric data enter the
inverse formulation; material properties are not required by iFEM.

Kinematics and sign conventions. All operators follow the EB kinemat-
ics and the sign convention of Chapter 2: ϕy = −w,x, ωz = v,x, κzz = −w,xx,
κyy = −v,xx. Element operators are evaluated in local frames and rotated to
the global frame by Λe prior to assembly.

Boundary conditions. Hinged supports are imposed at nodes 1 and 2: all
translational DOFs and the out-of-plane rotation are fixed, while the in-plane
rotation about the Y axis is free,

u = v = w = ωz = 0, ϕy free at nodes 1, 2.

To restrict the analysis to in-plane response (X–Z), the out-of-plane DOFs
are also suppressed at the internal nodes by enforcing v = ωz = 0 at nodes 3
and 4. Kinematic compatibility at the junction node 4 (intersection between
flange and web) is enforced automatically by the common nodal DOFs.

Static deformed configurations (visualization). Two reference static
solutions from the forward FEM solver are used: a nodal load at node 3 along
global +X, F = {10−4, 0, 0} N (Fig. 6.20, cases A–D), and a distributed load
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qx = 5 × 10−4 N/m on the vertical web between nodes 4 and 3 in the global
+X direction (Fig. 6.21, cases E–F).

Figure 6.20: Hinged T-beam — static deformed configuration under a nodal load F =
{10−4, 0, 0} N at node 3 (global +X). Black: undeformed centerline; magenta: deformed
shape. Axes in metres. This deformed shape is used for cases A–D.

Figure 6.21: Hinged T-beam — static deformed configuration under a distributed load
qx = 5×10−4 N/m applied along the vertical web (element 4–3) in the global +X direction.
Black: undeformed centerline; magenta: deformed shape. Axes in metres. This deformed
shape is used for cases E–F.
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Sensor stations (cases A–F). Sensor abscissae are parameterized by the
parent coordinate ξ = x/L ∈ [0, 1] on each element. For the hinged T-beam,
the following layouts are considered:

• Case A — Paired top/bottom sensors at ξ = {0.2, 0.8} on each element
(baseline comparison with classical iFEM).

• Case B — Paired sensors at ξ = 0.2 and top-only sensor at ξ = 0.8 on
each element.

• Case C — Top sensors at ξ = 0.2, 0.8 and bottom sensor at ξ = 0.5
(top–bottom–top layout).

• Case D — Top-only sensors at ξ = 0.2, 0.5, 0.8 on each element.

• Case E — Same sensor layout as Case B, but the vertical web (between
nodes 4 and 3) is subjected to a distributed load qx = 5 × 10−4 N/m
along global +X. In the forward FEM model used to generate the ref-
erence data the web is discretized into four equal EB elements, whereas
the inverse model retains a single EB element for this segment.

• Case F — As in Case E (same distributed loading and forward FEM
mesh), but the inverse model also subdivides the vertical web into two
EB elements, each instrumented according to the Case B layout (paired
at ξ = 0.2 and top-only at ξ = 0.8).

Unless otherwise noted, sensors lie on the mid-width line (y = 0), and their
offsets (yi, zi) enter the prediction operator via

Ai = Bu(ξi) + zi Bw(ξi) + yi Bv(ξi)

(cf. Chapter 3).

6.4.1 Case A — Classical iFEM vs SSB-iFEM (base-
line)

1) Setup and instrumentation

The geometry, mesh, and boundary conditions are those detailed in Sec-
tion 6.4. Two axial stations per element are instrumented at parent abscissae
ξ = {0.2, 0.8}. All gauges lie on the mid-width line (y = 0) and are mounted
in paired configuration on the top/bottom faces (z = ±h/2), as sketched in
Fig. 6.22. The resulting surface-strain measurements used by the SSB-iFEM
are reported in Table 6.31.

82



Complex Beam Configurations

x

y

z

1 (0, 0, 0)

2 (8L, 0, 0)

4 (3L, 0, 0)

3 (3L, 0, 3L)

F

Figure 6.22: Hinged T-beam: geometry, global axes, pinned supports at nodes 1 and 2,
and paired sensors at ξ = {0.2, 0.8} on the top/bottom faces of all three elements. Cross-
section b = h = 1. The symbolic load F is used only to illustrate the static deformed
configuration elsewhere.

Measured channels (SSB input). The SSB-iFEM uses the surface axial
strains εs recorded at the sensor offsets; the complete dataset across elements
and stations is summarized in Table 6.31.
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Table 6.31: Case A — Measured surface axial strains εs (dimensionless) at sensor stations
for all three elements. Sensors lie on the mid-width line (y = 0) at z = ±h/2 (top/bottom).

Element ξ εtop
s εbot

s

1 0.2 0.0014 −0.0013
1 0.8 0.0055 −0.0053
2 0.2 −0.0090 0.0090
2 0.8 −0.0023 0.0022
3 0.2 0.0144 −0.0144
3 0.8 0.0036 −0.0036

Classical channels (derived from paired faces). The classical EB
iFEM uses mid-line strain and curvature channels constructed from the
paired faces at the same section. With h = 1,

ε = 1
2

1
εtop

s + εbot
s

2
, κzz = εtop

s − εbot
s , (κyy = 0 since yi = 0).

Applying these relations to Table 6.31 yields the classical channels collected
in Table 6.32.

Table 6.32: Case A — Classical iFEM channels at sensor stations. Mid-line axial strain
ε (dimensionless) and bending curvature κzz [m−1].

Element ξ ε κzz

1 0.2 6.2500e−5 2.7000e−3
1 0.8 6.2500e−5 1.0800e−2
2 0.2 −3.7500e−5 −1.8000e−2
2 0.8 −3.7500e−5 −4.5000e−3
3 0.2 0.0000 2.8800e−2
3 0.8 0.0000 7.2000e−3

2) Reference

The independent forward FEM solver (provided by the advisor) supplies the
global nodal displacement vector used as reference solution. For the in-plane
DOFs at nodes 2–4 (ordered as (u2, w2, ϕy2; u3, w3, ϕy3; u4, w4, ϕy4)) we obtain

qref =

 0.0000 0.0000 2.7750e−1
1.9352e1 −4.5000 −8.2500e−1

1.8750e−3 −4.5000 −2.8500e−1


⊤

,

which are the reference values also reported in Table 6.33 for direct compar-
ison against the reconstructions.
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3) Reconstruction results

Using the SSB inputs of Table 6.31 and the classical channels of Table 6.32,
both inverse schemes deliver virtually identical reconstructions at the sup-
ported and internal nodes. Unless otherwise noted, all metrics are com-
puted on the vector of nodal discrepancies with respect to the reference
solution, restricted to the known in-plane DOFs at nodes 2–4, ordered as
(u2, w2, ϕy2, u3, w3, ϕy3, u4, w4, ϕy4).

Table 6.33: Case A — Nodal quantities at free/supported nodes (values). u, w in m; ϕy

in rad. The three columns (Reference, SSB, CLS) enable a direct side-by-side comparison
with the reference solution.

Node DOF Unit Reference SSB CLS
2 u m 0.0000 0.0000 0.0000
2 w m 0.0000 0.0000 0.0000
2 ϕy rad 2.7750e−1 2.7750e−1 2.7750e−1
3 u m 1.9352e1 1.9352e1 1.9352e1
3 w m −4.5000 −4.5000 −4.5000
3 ϕy rad −8.2500e−1 −8.2500e−1 −8.2500e−1
4 u m 1.8750e−3 1.8750e−3 1.8750e−3
4 w m −4.5000 −4.5000 −4.5000
4 ϕy rad −2.8500e−1 −2.8500e−1 −2.8500e−1

All SSB and CLS entries coincide with the reference values within plot-
ting precision, showing that both inverse schemes reproduce the nodal DOFs
essentially exactly in this baseline, fully paired layout.

Table 6.34: Case A — Direct nodal differences (∆ = SSB − CLS) at nodes 2–4. These
entries quantify the method-to-method discrepancy per DOF.

Node DOF ∆u [m] ∆w [m] ∆ϕy [rad]

2 0.0000 0.0000 −4.3850e−14
3 −4.6900e−13 1.1590e−12 1.5990e−14
4 2.3850e−18 1.1590e−12 1.5710e−14

All differences are at the level of numerical round-off (∼ 10−12 or smaller
compared to the absolute DOF magnitudes), confirming that SSB and CLS
deliver practically indistinguishable nodal reconstructions.
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Table 6.35: Case A — Global metrics w.r.t. reference solution (nodes 2–4).
Definitions for an error vector e ∈ Rn: RMSE =

ñ
1
n

qn
i=1 e2

i , ∥e∥∞ = maxi |ei|. Here e

stacks (SSB−ref) or (CLS−ref) on (u2, w2, ϕy2, u3, w3, ϕy3, u4, w4, ϕy4).

Metric SSB CLS
RMSE 2.2530e−14 5.3670e−13
∥·∥∞ 4.8850e−14 1.2080e−12

Table 6.36: Case A — Aggregate SSB–CLS discrepancy at nodes 2–4 (global metrics).
Definitions for the method-to-method difference vector d ∈ Rn (SSB−CLS): RMSE =ñ

1
n

qn
i=1 d2

i , ∥d∥∞ = maxi |di|, ∥d∥1 =
qn

i=1 |di|.

Metric SSB − CLS
RMSE 4.4040e−13
∥·∥∞ 1.1590e−12
∥·∥1 1.9080e−13

These aggregate figures condense the small per-DOF differences of Ta-
ble 6.34 into vector norms. The values remain very small, reinforcing the
baseline equivalence between SSB-iFEM and classical iFEM for the present,
fully paired layout on the hinged T-beam.

Element-wise field differences. Figures 6.23–6.25 plot the pointwise dif-
ferences ∆u(s) = uSSB(s) − uCLS(s) and ∆w(s) = wSSB(s) − wCLS(s) along
the local abscissa s of each element (markers at the instrumented stations).
The curves remain at round-off across all three elements, including at the
measurement stations, showing that the two inverse schemes reconstruct es-
sentially the same fields.
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Figure 6.23: Case A (T-beam), Element 1. Pointwise differences ∆u(s) and ∆w(s)
between SSB and classical iFEM. Markers: sensor stations at ξ = {0.2, 0.8}.

Figure 6.24: Case A (T-beam), Element 2. Pointwise differences ∆u(s) and ∆w(s)
between SSB and classical iFEM. Markers: sensor stations at ξ = {0.2, 0.8}.
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Figure 6.25: Case A (T-beam), Element 3. Pointwise differences ∆u(s) and ∆w(s)
between SSB and classical iFEM. Markers: sensor stations at ξ = {0.2, 0.8}.

4) Discussion

• Baseline equivalence. With paired top/bottom sensors at both
stations and yi = 0, SSB-iFEM and classical EB iFEM achieve co-
incident reconstructions up to numerical round-off (Tables 6.34–6.36;
Figs. 6.23–6.25).

• Implication for subsequent cases. The results confirm that full
pairing on accessible faces is sufficient for high-accuracy recovery of
(u, w, ϕy) on the hinged T-beam. Sections 6.4.2–6.4.4 (and the distributed-
load cases E–F) progressively relax pairing and sidedness to assess ro-
bustness under practical accessibility and loading constraints.

6.4.2 Case B — SSB-iFEM: paired sensors at ξ = 0.2
and top sensor at ξ = 0.8

1) Setup and instrumentation

The geometry, mesh, kinematics, boundary conditions, and sign convention
are the same as in Section 6.4. Instrumentation differs from Case A as
follows: for each element, two axial stations are used at parent abscissae
ξ = {0.2, 0.8}; at ξ = 0.2 a paired top/bottom installation is available on
the mid-width line (y = 0, faces z = ±h/2), while at ξ = 0.8 only the top
face (z = +h/2) is instrumented.
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Figure 6.26: Case B (T-beam): sensor layout. Paired top/bottom at ξ = 0.2 on each
element; top-only at ξ = 0.8. All sensors lie on the mid-width line (y = 0).

Measured channels (SSB input). Surface axial strains εs at the avail-
able offsets (yi = 0, zi = ±h/2) are those of Case A at the same stations;
here, the bottom reading at ξ = 0.8 is not used. Table 6.37 collects the
channels by element and station (a dash marks unavailable sensors).
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Table 6.37: Case B (T-beam) — Measured surface strains εs (dimensionless) at sensor
stations. Top/bottom refer to z = ±h/2; “—” denotes an intentionally absent sensor
(top-only at ξ = 0.8).

Element ξ εtop
s εbot

s

1 0.2 0.0014 −0.0013
1 0.8 0.0055 —
2 0.2 −0.0090 0.0090
2 0.8 −0.0023 —
3 0.2 0.0144 −0.0144
3 0.8 0.0036 —

2) Reference (comparison target)

The reference nodal displacement vector qref is the same as in Case A (Sec-
tion 6.4.1), supplied by the forward FEM solver for the hinged T-beam.
Accordingly, the comparison is performed on the known in-plane DOFs at
nodes 2–4,

(u2, w2, ϕy2, u3, w3, ϕy3, u4, w4, ϕy4),
whose reference values are those reported in Table 6.33.

3) Reconstruction results

With the reduced-but-still-informative layout of Table 6.37, the SSB-iFEM
reproduces the reference solution with practically zero error.

Table 6.38: Case B (T-beam) — Nodal quantities at free nodes (values). u, w in m; ϕy

in rad.
Node DOF Unit Reference SSB

2 u m 0.0000 0.0000
2 w m 0.0000 0.0000
2 ϕy rad 2.7750e−1 2.7750e−1
3 u m 1.9352e1 1.9352e1
3 w m −4.5000 −4.5000
3 ϕy rad −8.2500e−1 −8.2500e−1
4 u m 1.8750e−3 1.8750e−3
4 w m −4.5000 −4.5000
4 ϕy rad −2.8500e−1 −2.8500e−1
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Global relative metrics (excluding constrained DOFs) confirm the negligible
discrepancy:

∥err∥∞

∥ref∥∞
= 4.117 × 10−14,

∥err∥2

∥ref∥2
= 5.532 × 10−14.

Per–element figures reported by the post-processor are 1.770 × 10−13 and
1.768×10−13 on Element 1, 1.770×10−13 and 1.764×10−13 on Element 2, and
4.117 × 10−14 and 5.529 × 10−14 on Element 3 (for ∥·∥∞/∥·∥∞ and ∥·∥2/∥·∥2,
respectively). The node-wise relative errors reported by the solver are essen-
tially zero (machine precision) for all DOFs.

Sensor diagnostics. For each element, the left bar–plot reports the resid-
uals of the surface–strain channels,

ri = εpred
s,i − εmeas

s,i ,

with one bar per sensor in the order used by the input arrays (three channels
per element: top and bottom at ξ = 0.2, top-only at ξ = 0.8). The predicted
strain at station ξi (with local offsets yi, zi) is obtained from the reconstructed
local DOFs qloc via

εpred
s,i =

1
Bu(ξi) + zi Bw(ξi) + yi Bv(ξi)

2
qloc.

The right scatter–plots compare measured vs. predicted strains (one marker
per sensor) and include the 1:1 reference line; points lying on the 1:1 indi-
cate perfect agreement, whereas systematic offsets (parallel clouds) and slope
deviations would reveal bias or scaling effects.
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Figure 6.27: Case B (T-beam). Left: sensor residuals by element. Right: predicted vs
measured εs with 1:1 guideline.

4) Discussion

• Accuracy with reduced channels. Despite the missing bottom
reading at ξ = 0.8 on each element, the paired station at ξ = 0.2
plus a single top channel at ξ = 0.8 is sufficient to reproduce (u, w, ϕy)
at essentially machine precision on the hinged T-beam.

• Diagnostics. The residual and 1:1 plots (Fig. 6.27) show negligible
bias and dispersion, corroborating the metric-based assessment and
confirming that the strain data are fully consistent with the recon-
structed displacement field.

• Implication. Case B confirms that SSB-iFEM remains robust un-
der mild accessibility constraints (paired+single-sided layout) also for
the more articulated T-beam, anticipating the more restrictive layouts
explored in Cases C–D.

6.4.3 Case C — SSB-iFEM: top sensors at ξ = 0.2,
ξ = 0.8; bottom sensor at ξ = 0.5

1) Setup and instrumentation

The geometry, mesh, and boundary conditions are those of Section 6.4. Each
element is instrumented with three surface–strain gauges along the mid-width
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line (y = 0): top face at ξ = 0.2, bottom face at ξ = 0.5, and top face at
ξ = 0.8 (i.e. z = {+h/2, −h/2, +h/2} for all three elements).

x

y

z

1 (0, 0, 0)

2 (8L, 0, 0)

4 (3L, 0, 0)

3 (3L, 0, 3L)

F

Figure 6.28: Case C (T-beam): sensor layout. Top sensors at ξ = 0.2 and ξ = 0.8;
bottom sensor at ξ = 0.5 on each element. All sensors lie on the mid-width line (y = 0).

Measured channels. SSB-iFEM input consists of the surface axial strains
εs at the sensor offsets. Table 6.39 lists the measured values (rounded) at
the three stations of each element.
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Table 6.39: Case C (T-beam) — Measured surface axial strains εs (dimensionless) at
sensor stations for all three elements. Sensors lie on the mid-width line (y = 0) at z = ±h/2
(top/bottom).

Element ξ Face εs

1 0.2 top 0.0014
1 0.5 bottom −0.0033
1 0.8 top 0.0055
2 0.2 top −0.0090
2 0.5 bottom 0.0056
2 0.8 top −0.0023
3 0.2 top 0.0144
3 0.5 bottom −0.0090
3 0.8 top 0.0036

2) Reference (comparison target)

The reference nodal displacement vector qref is provided by the same forward
FEM tool used in Cases A–B. The comparison is performed on the known
in-plane DOFs at nodes 2–4:

(u2, w2, ϕy2, u3, w3, ϕy3, u4, w4, ϕy4),

whose reference values are those already listed in Table 6.33.

3) Reconstruction results

Using the SSB inputs of Table 6.39, the inverse analysis matches the reference
within numerical precision.
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Table 6.40: Case C (T-beam) — Nodal quantities at free nodes (values). u, w in m; ϕy

in rad.
Node DOF Unit Reference SSB

2 u m 0.0000 0.0000
2 w m 0.0000 0.0000
2 ϕy rad −2.7750e−1 −2.7750e−1
3 u m 1.9352e1 1.9352e1
3 w m −4.5000 −4.5000
3 ϕy rad 8.2500e−1 8.2500e−1
4 u m 1.8750e−3 1.8750e−3
4 w m −4.5000 −4.5000
4 ϕy rad 2.8500e−1 2.8500e−1

Relative error metrics. Global relative errors (excluding constrained
DOFs) and per–element summaries are reported below. Here ∥ · ∥∞ is the
max norm over the stacked vector of nodal DOFs, and ∥ · ∥2 the Euclidean
norm; we quote the ratio ∥err∥/∥ref∥ as provided by the post-processor.

Table 6.41: Case C (T-beam) — Global relative error metrics (free nodes).

Metric Value
∥err∥∞/∥ref∥∞ 4.9570e−15
∥err∥2/∥ref∥2 6.8010e−15

Table 6.42: Case C (T-beam) — Per–element relative errors.

Element ∥err∥∞/∥ref∥∞ ∥err∥2/∥ref∥2

1 2.1320e−14 2.1290e−14
2 2.1640e−14 2.1600e−14
3 4.9570e−15 6.7980e−15

The node-wise relative errors reported by the solver are effectively zero
(printed as 0.000 %) for all DOFs at nodes 2–4.

Sensor diagnostics. For each element, the left bar–plot reports the resid-
uals of the surface–strain channels,

ri = εpred
s,i − εmeas

s,i ,
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with one bar per sensor in the order used by the input arrays (three channels
per element, corresponding to the stations at ξ = 0.2, 0.5, and 0.8). The
predicted strain at station ξi (with local offsets yi, zi) is obtained from the
reconstructed local DOFs qloc via

εpred
s,i =

1
Bu(ξi) + zi Bw(ξi) + yi Bv(ξi)

2
qloc.

The right scatter–plots compare measured vs. predicted strains (one marker
per sensor) and include the 1:1 reference line; points lying on the 1:1 indi-
cate perfect agreement, whereas systematic offsets (parallel clouds) and slope
deviations would reveal bias or scaling effects.

Figure 6.29: Case C (T-beam). Left: residuals per sensor (Elements 1–3 from top to
bottom). Right: predicted vs. measured εs with 1:1 guideline.

4) Discussion

• Accuracy with mixed sidedness. A three-sensor layout per element
(top–bottom–top at ξ = 0.2, 0.5, 0.8) still achieves agreement with the
reference solution at essentially machine precision. The bottom station
at ξ = 0.5 restores local pairing for bending about y, maintaining
excellent observability of (u, w, ϕy) on the T-beam.

• Practical note. Even without full pairing at all stations, distributing
the three sensors as in Case C provides a robust constraint set for SSB
on this more articulated T-shaped structure.
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6.4.4 Case D — SSB-iFEM: top-only sensors at ξ =
0.2, 0.5, 0.8

1) Setup and instrumentation

Geometry, mesh, kinematics, and boundary conditions are those of Sec-
tion 6.4. Each element is instrumented with three top-face surface–strain
sensors at parent abscissae ξ = {0.2, 0.5, 0.8}; all stations lie on the mid-
width line (y = 0) and at z = +h/2 (top).

x

y

z

1 (0, 0, 0)

2 (8L, 0, 0)

4 (3L, 0, 0)

3 (3L, 0, 3L)

F

Figure 6.30: Case D (T-beam): sensor layout. Top-only sensors at ξ = {0.2, 0.5, 0.8}
on each element; all sensors on the mid-width line (y = 0).

Measured channels. The SSB-iFEM input consists of the surface axial
strains εs at the sensor offsets (top face, z = +h/2). The measured values
are:
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Table 6.43: Case D (T-beam) — Measured surface axial strains εs (dimensionless) at
the three top-face stations on each element.

Element ξ εs(0.2) εs(0.5) εs(0.8)
1 0.0014 0.0034 0.0055
2 −0.0090 −0.0057 −0.0023
3 0.0144 0.0090 0.0036

2) Reference (comparison target)

As in the previous cases, the forward FEM solver provides the reference nodal
DOFs at the free nodes

(u2, w2, ϕy2, u3, w3, ϕy3, u4, w4, ϕy4),

which are the same reference values reported in Table 6.33. Only the SSB-
iFEM reconstruction is considered here, since the classical iFEM formulation
would require paired top/bottom measurements to build curvature channels.

3) Reconstruction results

With top-only instrumentation (yi = 0 and zi = +h/2 at all stations), the
SSB system lacks the paired top/bottom information needed to disentangle
mid-line strain ε from bending curvature κzz. Consequently, the inverse
fit becomes ill-conditioned and the reconstructed nodal quantities deviate
markedly from the reference solution.

Nodal values and relative errors. Table 6.44 reports SSB vs. reference
at free nodes, together with the relative error (in %).
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Table 6.44: Case D (T-beam) — Nodal quantities at free nodes (values and relative
errors). u, w in m; ϕy in rad.

Node DOF Unit SSB Reference Rel. err [%]
2 u m 0.0000 0.0000 0.0000
2 w m 0.0000 0.0000 0.0000
2 ϕy rad 2.6920e−1 −2.7750e−1 197.0160
3 u m 3.2490 1.9350e1 83.2130
3 w m −4.4920 −4.5000 0.1840
3 ϕy rad 2.6170e−1 8.2500e−1 68.2770
4 u m 5.4860e−1 1.8750e−3 29 158.3330
4 w m −4.5000 −4.5000 0.0000
4 ϕy rad −2.6170e−1 2.8500e−1 191.8310

Aggregate relative metrics. Global relative errors (excluding constrained
DOFs) and per–element figures are summarised in Table 6.45. Here ∥ · ∥∞
is the infinity norm (max absolute component) and ∥ · ∥2 is the Euclidean
norm.

Table 6.45: Case D (T-beam) — Relative errors w.r.t. the reference solution.

Quantity ∥err∥∞/∥ref∥∞ ∥err∥2/∥ref∥2

Whole structure 8.3210 7.9200
Element 1 1.2150 2.1000
Element 2 1.2150 2.0960
Element 3 8.3210 7.9120

4) Discussion

• Observability shortfall. With top-only sensors (z = +h/2 at all sta-
tions), the SSB prediction operator cannot separate the mid-line strain
ε from the curvature κzz; the problem is effectively under–determined
and ill-conditioned.

• Impact on accuracy. The loss of pairing drives very large biases
at the free nodes (Table 6.44) and large global relative errors (Ta-
ble 6.45), in stark contrast with the machine-precision reconstructions
of Cases A–C.
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• Design implication. For Euler–Bernoulli beams such as the present
T-configuration, at least one paired top/bottom station per element
(or equivalent multi-face information) is necessary to achieve accu-
rate reconstructions of (u, w, ϕy); purely single-sided layouts should be
avoided unless supplemented by additional information or regularisa-
tion.

6.4.5 Case E — T-beam, simply supported; uniform
distributed load on the vertical leg; SSB-iFEM
with one inverse element on the vertical

1) Setup and instrumentation

The structure is a T-shaped Euler–Bernoulli beam with pinned–pinned global
boundary conditions at the two extremities of the horizontal member. A
uniform distributed load of intensity q = −5×10−4 acts along the local x of
the vertical leg (parallel to the global x). The forward (direct) FEM mesh
splits the vertical branch into four equal segments to improve accuracy of
internal fields; the inverse SSB-iFEM model uses one inverse element on the
vertical branch in this case (the horizontal branches are modeled consistently
with the L-beam convention of Chapter 5).

Instrumentation follows the “Case B” philosophy (paired at the first sta-
tion, single-sided at the second): for each element, gauges are placed at
parent abscissae ξ = {0.2, 0.8} on the mid-width line (y = 0), with a paired
top/bottom installation at ξ = 0.2 (z = ±h/2) and a top-only gauge at
ξ = 0.8 (z = +h/2).
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Figure 6.31: Case E (T-beam): geometry, supports (pinned ends on the horizontal
member), vertical leg with uniform distributed load q = −5×10−4 along local x, and SSB
sensor layout (paired top/bottom at ξ = 0.2; top-only at ξ = 0.8; all gauges at y = 0).

Measured channels (SSB input). Surface axial strains εs at the avail-
able offsets are reported below for each element and station (top/bottom
refer to z = ±h/2; all gauges at y = 0):

Table 6.46: Case E — Measured surface strains εs (dimensionless) by element and
station.

Element Station εtop
s (ξ = 0.2) εbot

s (ξ = 0.2) εtop
s (ξ = 0.8)

1 0.1106 −0.0919 0.4144
2 −0.6806 0.6694 −0.1744
3 0.8634 −0.8634 0.0534
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2) Reference

The independent forward FEM solver (provided by the advisor) supplies the
global nodal displacement vector used as reference solution. For the in-plane
DOFs at nodes 1–4 (ordered as (u1, w1, ϕy1; u2, w2, ϕy2; u3, w3, ϕy3; u4, w4, ϕy4))
we obtain

qref =


0.0000 0.0000 6.1875
0.0000 0.0000 −20.8125

1.2490e3 −3.3750e2 4.8375e1
2.8125e−1 −3.3750e2 2.1375e1


⊤

,

which are the reference values also reported in Table 6.48 for direct compar-
ison against the reconstruction.

3) Reconstruction results

Global relative metrics (excluding constrained DOFs) and per–element fig-
ures are:

Table 6.47: Case E — Relative errors w.r.t. the reference solution (global and per
element).

Scope ∥err∥∞/∥ref∥∞ ∥err∥2/∥ref∥2

Whole structure 6.0800e−3 5.6870e−3
Element 1 1.7700e−13 1.7680e−13
Element 2 1.7700e−13 1.7640e−13
Element 3 6.0800e−3 5.6870e−3

Nodal comparisons (values and relative errors in %):
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Table 6.48: Case E — Nodal quantities at all nodes (values and relative errors). u, w in
m; ϕy in rad.

Node DOF Unit SSB Reference Rel. err [%]
1 u m 0.0000 0.0000 0.0000
1 w m 0.0000 0.0000 0.0000
1 ϕy rad 6.1880 6.1880 0.0000
2 u m 0.0000 0.0000 0.0000
2 w m 0.0000 0.0000 0.0000
2 ϕy rad −2.0810 e1 −2.0810 e1 0.0000
3 u m 1.2570 e3 1.2490 e3 0.6080
3 w m −3.3750 e2 −3.3750 e2 0.0000
3 ϕy rad 4.8880 e1 4.8380 e1 1.0470
4 u m 2.8130 e−1 2.8130 e−1 0.0000
4 w m −3.3750 e2 −3.3750 e2 0.0000
4 ϕy rad 2.1380 e1 2.1380 e1 0.0000

Sensor diagnostics. For each element, the left bar–plot shows the resid-
uals ri = εpred

s,i − εmeas
s,i (one bar per sensor, in input order), with predicted

strains evaluated as

εpred
s,i =

1
Bu(ξi) + zi Bw(ξi) + yi Bv(ξi)

2
qloc.

The right scatter–plot compares measured vs. predicted strains (one marker
per sensor) with a 1:1 guideline; alignment with the 1:1 indicates unbiased
fit.
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Figure 6.32: Case E (T-beam). Left: sensor residuals by element. Right: predicted vs
measured εs with 1:1 guideline.

4) Discussion

• Accuracy and localization. Element-wise metrics (Table 6.47) are
at round-off for the horizontal branches (Elements 1–2) and around
0.6% on the vertical member (Element 3), consistent with the single
inverse element used on the vertical leg under distributed loading.

• Nodal picture. The largest deviations concentrate at node 3 (Ta-
ble 6.48), mainly on u and ϕy; transverse displacement w is recovered
accurately at all nodes.

• Nodal picture. The largest deviations concentrate at node 3 (Ta-
ble 6.48), mainly on u and ϕy; transverse displacement w is recovered
accurately at all nodes. Evaluating the single-element inverse solution
at the mid-height section of the vertical leg (corresponding to node 5
in Case F) yields a relative error of about 2.0% on u, with w and ϕy

remaining essentially exact, and will be used below as a reference for
the two-element discretization.
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6.4.6 Case F — T-beam, simply supported; uniform
distributed load on the vertical leg; SSB-iFEM
with two inverse elements on the vertical

1) Setup and instrumentation

Same structure, supports, and loading as Case E (pinned–pinned T-beam;
uniform q = −5×10−4 along the vertical leg’s local x). The forward mesh
again splits the vertical leg into four equal segments. The inverse SSB model
now uses two elements on the vertical branch (equal size), to increase local-
ization of the reconstructed fields.

Instrumentation is unchanged: per element, gauges at ξ = {0.2, 0.8}
with paired top/bottom at ξ = 0.2 and top-only at ξ = 0.8; all gauges on the
mid-width line (y = 0).

x

y

z

1 (0, 0, 0)

2 (8L, 0, 0)

4 (3L, 0, 0)

3 (3L, 0, 3L)

5 (3L, 0, 1.5L)
q

Figure 6.33: Case F (T-beam): geometry, supports, vertical leg with uniform load, and
SSB sensor layout (paired at ξ = 0.2, top-only at ξ = 0.8; y = 0). The inverse model
employs two elements on the vertical leg.
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Measured channels (SSB input). Measured εs per element and station:

Table 6.49: Case F — Measured surface strains εs (dimensionless) by element and
station.

Element Station εtop
s (ξ = 0.2) εbot

s (ξ = 0.2) εtop
s (ξ = 0.8)

1 0.1106 −0.0919 0.4144
2 −0.6806 0.6694 −0.1744
3 1.0997 −1.0997 0.4922
4 0.2222 −0.2222 0.0197

2) Reference

The independent forward FEM solver (provided by the advisor) supplies the
global nodal displacement vector used as reference solution. For the in-plane
DOFs at nodes 1–5 (ordered as (u1, w1, ϕy1; u2, w2, ϕy2; u3, w3, ϕy3; u4, w4, ϕy4;
u5, w5, ϕy5) we obtain

qref =


0.0000 0.0000 6.1875
0.0000 0.0000 −20.8125

1.2490e3 −3.3750e2 4.8375e1
2.8125e−1 −3.3750e2 2.1375e1
5.3606e2 −3.3750e2 4.5000e1



⊤

,

which are the reference values also reported in Table 6.51 for direct compar-
ison against the reconstruction.

3) Reconstruction results

Relative errors (global and per element):

Table 6.50: Case F — Relative errors w.r.t. the reference solution (global and per
element).

Scope ∥err∥∞/∥ref∥∞ ∥err∥2/∥ref∥2

Whole structure 6.0800e−3 5.2980e−3
Element 1 8.0830e−13 8.0730e−13
Element 2 8.0830e−13 8.0560e−13
Element 3 3.5410e−3 2.6620e−3
Element 4 6.0800e−3 5.4420e−3

Nodal values and relative errors (%):
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Table 6.51: Case F — Nodal quantities at all nodes (values and relative errors). u, w in
m; ϕy in rad.

Node DOF Unit SSB Reference Rel. err [%]
1 u m 0.0000 0.0000 0.0000
1 w m 0.0000 0.0000 0.0000
1 ϕy rad 6.1880 6.1880 0.0000
2 u m 0.0000 0.0000 0.0000
2 w m 0.0000 0.0000 0.0000
2 ϕy rad −2.0810 e1 −2.0810 e1 0.0000
3 u m 1.2570 e3 1.2490 e3 0.6080
3 w m −3.3750 e2 −3.3750 e2 0.0000
3 ϕy rad 4.8880 e1 4.8380 e1 1.0470
4 u m 2.8130 e−1 2.8130 e−1 0.0000
4 w m −3.3750 e2 −3.3750 e2 0.0000
4 ϕy rad 2.1380 e1 2.1380 e1 0.0000
5 u m 5.3800 e2 5.3610 e2 0.3540
5 w m −3.3750 e2 −3.3750 e2 0.0000
5 ϕy rad 4.5250 e1 4.5000 e1 0.5620

Sensor diagnostics. Residual and 1:1 plots are constructed as in Case E:

ri = εpred
s,i − εmeas

s,i , εpred
s,i =

1
Bu(ξi) + zi Bw(ξi) + yi Bv(ξi)

2
qloc.
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Figure 6.34: Case F (T-beam). Left: sensor residuals by element. Right: predicted vs
measured εs with 1:1 guideline.

4) Discussion

• Effect of vertical discretization in the inverse model. Using two
inverse elements on the vertical leg reduces the element-wise relative
errors there (Table 6.50, Elements 3–4) compared to aggregating the
vertical branch into a single inverse element (Case E).

• Nodal trends. The largest discrepancies remain localized at inner
vertical nodes (3 and 5), predominantly on the axial DOF u and the
rotation ϕy, while w is consistently accurate.

• Mid-height section comparison with Case E. Although the recon-
struction at node 3 is practically unchanged between Cases E and F,
sampling the single-element inverse solution of Case E at the mid-height
section of the vertical leg (same physical location as node 5 in Case F)
shows a larger axial error there: the relative error on u is about 2.0%,
with w and ϕy remaining essentially exact (0.0% and ≈ 0.56%, respec-
tively). In the present two-element inverse model, the corresponding
errors at node 5 are ≈ 0.35% in u, 0.0% in w, and ≈ 0.56% in ϕy.
This indicates that refining the inverse discretization of the vertical leg
mainly improves the internal distribution of axial displacement, even if
the reconstruction at the upper node 3 is nearly unaffected.
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Chapter 7

Conclusions

This thesis has investigated the application of the Single-Sensor-Based inverse
Finite Element Method (SSB-iFEM) to Euler–Bernoulli beam elements, with
the objective of reconstructing the displacement field from a reduced number
of strain sensors. Building on recent SSB formulations for plates and shells,
a new least-squares functional has been derived for one-dimensional beam
models and implemented in MATLAB, and its performance has been assessed
on both simple and complex beam configurations.

The work started from the classical Euler–Bernoulli iFEM formulation,
in which axial strain and bending curvatures are reconstructed from mid-line
quantities and typically require paired measurements on opposite faces. A
general sensor-based SSB-iFEM formulation was then developed by express-
ing each surface strain measurement as a linear combination of axial strain
and bending curvatures, evaluated at the actual sensor coordinates within
the cross-section. In this framework, each sensor is treated as an indepen-
dent observation associated with its own spatial position, and the functional
element is written as a weighted least-squares sum of all sensor residuals.
The resulting element matrices preserve the symmetry and positive semi-
definiteness of the classical iFEM operators and are assembled into a global
system that is formally identical in structure to the standard inverse finite
element equations.

The first verification step focused on single-element, straight-beam sce-
narios with analytically prescribed displacement fields. These tests were
designed to check the consistency of the theoretical operators, the MATLAB
implementation, and the handling of local-to-global frames and boundary
conditions. When full, paired instrumentation on all faces was used, the
SSB-iFEM reconstruction matched the classical Euler–Bernoulli iFEM at
machine precision, confirming the theoretical equivalence of the two formula-
tions when they are supplied with equivalent information. Under reduced and
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unpaired layouts on the mid-width line, the SSB-iFEM still reproduced the
observable displacement components with negligible error, while the lateral
displacement remained unobserved due to the lack of sensitivity to curvature
about the corresponding axis. These simple scenarios highlighted the close
relationship between sensor layout, curvature observability, and the accuracy
of the reconstructed displacement field.

The second part of the work extended the verification campaign to more
complex beam-like structures: a cantilever L-beam, a cantilever Z-beam, and
a hinged T-beam with a branching joint. For each configuration, a systematic
set of sensor layouts was studied, including: (i) full paired instrumentation on
top and bottom faces (baseline comparison between SSB and classical iFEM);
(ii) a reduced layout with one paired station and one single-sided sensor per
element; (iii) three unpaired sensors distributed along the cross-section; and
(iv) a highly constrained top-only layout. Reference solutions and synthetic
strain measurements were generated using an independent forward FEM tool,
ensuring that the inverse solution was tested against an external dataset.

The numerical results on these complex structures support several key
conclusions. First, in all baseline cases with paired sensors on opposite faces,
the SSB-iFEM reproduced the reference displacement fields with accuracy
comparable to the classical iFEM. This confirms that the SSB formulation
does not introduce any loss of information when classical curvature channels
are effectively available, and that it can be used as a drop-in alternative to the
conventional beam iFEM under ideal instrumentation conditions. Second, re-
duced layouts combining one paired station with an additional single-sided
sensor proved sufficient to retain full-field accuracy on all the considered
configurations, at least for the loading conditions examined. In these cases,
the SSB solution matched the reference displacements with very small global
relative errors, demonstrating that the method can tolerate moderate acces-
sibility constraints without compromising reconstruction quality.

Third, the study of highly asymmetric and top-only layouts provided in-
sight into the limitations of the approach. For asymmetric configurations
with sensors on different faces, the SSB-iFEM still achieved accurate recon-
struction of the targeted displacement components, provided that at least
one sensor was available on each of the two opposite faces involved in the
curvature of interest. In contrast, when all sensors were placed on the same
face, the inverse system became ill-conditioned: the mid-line strain and bend-
ing curvature contributions could no longer be disentangled, and the recon-
structed axial degrees of freedom and rotations exhibited large relative errors,
even though vertical deflections remained reasonably accurate. These results
emphasise that, while SSB-iFEM relaxes the strict requirement of fully paired
layouts, some degree of through-thickness information is still necessary to en-
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sure a well-conditioned problem, especially in multi-element assemblies with
corners and branching joints.

Finally, the T-beam test with distributed loading on the vertical web
highlighted the impact of the inverse-model discretisation on reconstruction
accuracy. When the vertical leg of the T-beam was represented by a single
inverse element, the global errors remained moderate but local discrepancies
on that element were noticeable. Subdividing the same segment into two
inverse elements, while keeping the same sensor layout, led to a reduction
of element-wise errors on the vertical branch and improved agreement with
the reference solution. This confirms that, as in classical FEM, an adequate
inverse discretisation is important to capture local variations of the deforma-
tion field, particularly in regions where the forward model employs a finer
mesh or where significant gradients are expected.

From an application standpoint, the results obtained in this thesis sup-
port the use of SSB-iFEM as a practical and efficient tool for shape sensing of
beam-like structures in structural health monitoring and real-time displace-
ment reconstruction. The formulation naturally accommodates arbitrary
cross-sections and sensor coordinates, and its ability to operate with reduced
and partially unpaired sensor layouts is especially attractive in aerospace
applications, where access to structural surfaces is often limited and the
installation of large sensor networks is impractical. Within the tested con-
ditions, the method has shown robustness to moderate sensor reduction and
to geometric complexity, while preserving the main advantages of iFEM,
namely independence from the applied loads and boundary conditions and
compatibility with standard finite element workflows.

Future work. Several directions emerge for future developments. A natural
continuation of this research is the experimental validation of the proposed
SSB-iFEM formulation on beam specimens instrumented with strain gauges
or fibre Bragg gratings, in order to assess its performance under measure-
ment noise, modelling uncertainties, and realistic loading conditions. An-
other important extension concerns the integration of sensor-noise models
and regularisation strategies into the least-squares functional, to improve
robustness in the presence of sparse or noisy data. The optimisation of
sensor placement—for instance through sensitivity analysis or optimisation
algorithms—would further enhance the efficiency of the method and help de-
fine guidelines for practical instrumentation of real structures. In addition,
the present work has been limited to planar Euler–Bernoulli beam config-
urations, where each structural member lies in a single plane and bending
predominantly occurs about one axis. A natural extension is the generalisa-
tion of the SSB-iFEM framework to fully three-dimensional beam and frame
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geometries, in which the beam centreline follows an arbitrary space curve
and bending in two orthogonal planes is coupled with torsion, thus enabling
truly three-dimensional shape sensing of complex aerospace assemblies.

On the modelling side, the SSB concept could be extended to more ad-
vanced beam theories, such as Timoshenko beams, and to combined beam/shell
inverse models for more realistic aeronautical structures. Moreover, coupling
SSB-iFEM-based shape sensing with damage-detection or load-identification
procedures would further strengthen its role within structural health moni-
toring systems.
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