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Abstract

This thesis follows my work at the French Centre National d’Études Spatiales for the
development of a MATLAB Interplanetary Navigator for mission analysis and testing. I
was hired as an intern to develop and validate the interplanetary orbital navigator. After
the internship, I designed the guidance for an interplanetary trajectory towards an asteroid
in order to further test the Navigator.
This work extends the existing CNES MATLAB Navigator from Earth-centric to interplan-
etary operations by enriching its dynamics and measurement toolkit within an Extended
Kalman Filter (EKF) that runs over “orbital windows” and is driven by modular inputs,
directives, and telecommands. The dynamics now include IAU-compliant inertial and body-
fixed frames (ICRF/BCF), TDB time handling, Chebyshev-based ephemerides, third-body
gravity (including solid tides where relevant), first-order relativistic terms, a plate-based
solar-radiation-pressure model with eclipse logic, and thrust profiles. On the navigation
side, the EKF processes optical line-of-sight (LOS) angles and a LiDAR range model for
proximity operations. A mission-generation tool in Java produces scenarios, measurements,
and reference ephemerides allowing for testing of the navigator in different missions and
environments.
A campaign of validation tests demonstrates performance and limitations. Propagation
accuracy is validated, and LOS+LiDAR measurements allow for sub-millimetre state
accuracy in planetary orbits. Along non-orbital trajectories, such as the Juventas trajectory
(HERA), simplified mean-thrust modelling can induce large transient errors, but the filter
still re-converges once measurements become available. In deep-space cruise, LOS-only is
insufficient, LiDAR is unavailable and long-distance range/Doppler would be required.
To have a case study in deep space, a guidance analysis allowed for the development of an
interplanetary trajectory. The Optimal Control Theory has been studied and adapted on a
Fortran trajectory optimizer to compute an optimal low-thrust transfer to the near-Earth
asteroid 2000 SG344. The terminal flyby was then evaluated with the navigator, which
achieved high accuracy.
Overall, the navigator meets its goals for planetary orbits and interplanetary missions, with
a few limitations. To achieve full interplanetary capability, future work should integrate
long-range ranging (e.g., radio), refine thrust modelling, and implement attitude laws to
fully couple SRP and sensing.
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Chapter 1

Introduction

1.1 Introduction

Within CNES, the GNC–Trajectory department has begun developing an Interplanetary
Navigator for satellites. A first prototype, developed by previous interns, was centred on
navigation in Earth orbit and did not yet cover the specificities of interplanetary flight.
This navigator had been developed in Matlab® for study and prototyping purposes. Freed
from flight constraints (real time navigation, memory limit, operational reliability), this
environment serves as a test bed: it promotes readability, modularity and the rapid addition
of new models, while offering extensive analysis and storage capabilities.

The objective of the internship is to extend this navigator to the interplanetary context.
Concretely, this means integrating new dynamical models, measurement models adapted to
interplanetary contexts, and tuning and validating navigation using simulated data and,
where possible, real data. The targeted basic building blocks are:

• Orbital Dynamics model: gravity of the central body (two–body problem) supple-
mented by perturbations from third bodies of the Solar System and non–gravitational
forces, such as solar radiation pressure and thrust;

• Time scales and frames: management of time scales (TT/TDB) and frame trans-
formations (inertial/barycentric vs. planetocentric), necessary for the consistency of
calculations, extrapolations, and measurements;

• Ephemerides: access to the states (position/velocity) of celestial bodies via a
standard ephemeris source, in order to model perturbations or central body changes;

• Measurement models: support for directional Line of Sight (LOS) measurements
from optical sensors, and preparation to integrate other types of measurements (range,
Doppler, angles) if required;

• Telecommands: special commands to change simulation’s parameters, such as the
central body or the perturbing body;

1
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• All of the above changes must finally be validated through precise testing in various
scenarios and missions, both in orbit and in deep space trajectories.

The associated requirements are summarised below.

R-ID Requirement

R-01
The navigator must be designed to be easily modified, tested and improved (modular
architecture, clear interfaces, basic unit tests).

R-02
The navigator must read and process a configuration file, a measurement file and a
telecommand file (robust I/O, logging, consistency checking).

R-03
The dynamics model must include at least the gravity of the central body around which
the satellite orbits (two–body problem).

R-04 The navigator must be adapted to interplanetary navigation.

R-04.1
The navigator must operate with time scales suitable for the interplanetary context
(management of TDB time scale and associated conversions).

R-04.2 The navigator must model the gravitational perturbations of other Solar System bodies.

R-04.3
The navigator must access the position and velocity of celestial bodies via a Chebyshev
ephemeris source.

R-04.4
The solar radiation pressure (SRP) model must be improved to account for attitude
laws.

R-04.5
The navigator must use interplanetary measurements for navigation (measurement model,
uncertainty management, weighting).

R-04.6
The navigator must handle changes of central body and adaptation of dynamic models
over the course of an interplanetary mission (trajectory segments, frames, events).

R-04.7
The navigator must model thrust acceleration (impulsive or continuous) and its injection
into the dynamics.

R-04.8
All new developments must be validated through precise simulations and testing, in
order to tune the Kalman Filter.

Priority is given to integrating the effects and measurements essential to robust interplane-
tary navigation, while keeping an open architecture for future extensions (new measurements,
new physical models, new measures).
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1.2 CNES and the GNC-Trajectory Service

The Centre National d’Études Spatiales (CNES) is the French space agency in charge
of preparing, proposing and implementing France’s space policy, in close coordination with
European and international partners. It is involved in a wide range of missions, from Earth
observation and telecommunications to navigation, science and exploration, as well as the
associated ground segments and data systems [1].
Beyond the development of satellites and launchers, CNES provides technical expertise
and programmatic support throughout the life cycle of space systems: early-phase studies,
definition of mission requirements, support to development and qualification, and assistance
during in-orbit operations. It also acts as a key interface between public authorities, industry
and the research community, helping to structure and support the French and European
space ecosystem.

1.2.1 GNC-Trajectory Department

The work presented in this thesis was carried out within the GNC-Trajectory service of
CNES, which belongs to the Technical and Digital Directorate (DTN). The service is part
of the teams responsible for Guidance, Navigation and Control (GNC) and flight dynamics.
It brings together a small group of engineers specialising in orbital mechanics and space
navigation.
The main activities of the service cover precise orbit determination (POD), orbit propagation
and modelling, preparation and analysis of operational orbit determination chains, and the
development of navigation algorithms for both Earth-orbiting and interplanetary missions.
Depending on the project, the team may be involved from the feasibility-study stage up
to in-flight validation and routine operations, working in close collaboration with other
CNES departments and external partners. The internship on which this thesis is based
took place in this service, in the context of its expertise in flight dynamics and operational
orbitography.
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1.3 Architecture of the MATLAB Navigator

Since the MATLAB navigator is not an embedded navigator, its basic architecture is built
to be easier to analyse and modify. This MATLAB navigator plays both the role of a model
library and a navigator: the dynamic models are introduced as functions or classes and
they are used by the main to navigate with the Kalman Filter.

1.3.1 Global architecture

The architecture of the MATLAB Navigator is fairly linear:

Inputs
MissionData, directives, TC

Mission setup
booleans measures & forces

Classes definition
simu & sat

Navigation by EKF
measures GNSS, LOS, LiDAR

Post-processing
Reference orbit, covariance

Outputs & visualisation
estimation • uncertainties • residuals

Figure 1.1: Architecture of the MATLAB Navigator.

At the centre of the Navigator is the Kalman Filter. The filter parameters are chosen from
the input files.

1.3.2 Inputs

The initial values of the simulation are given by the input files:

• MissionData: a .json file that defines all the aspects necessary to perform a simulation.
Physical parameters, bodies present in the simulation, active forces, Kalman filter
parameters, satellite parameters, position of the antenna, cameras, etc.

• directives: a text file that completely describes the mission: it provides the time,
the initial orbit, the instants at which to extrapolate and all of the measures.

• tc: the Navigator is capable of modifying parameters via telecommands (tc). The
file is read at the beginning of the simulation and the commands are stored in simu.
Afterwards, they are executed at the indicated instant.
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• Other data: the Navigator requires several other data sets to perform the simulation:
planetary ephemerides (for interplanetary missions), harmonic coefficients of the
potential, orientation of the body-fixed frame, etc.

These input files are read by the navigator, which uses them to build the classes and the
base data of the mission. Most of the simulation data are stored in the variable simu:
perturbing bodies, active forces, harmonic coefficients of the potential, etc.
By contrast, other data are stored in sat, the variable responsible for storing information
on the satellites: clock time, state, measurements, etc.

1.3.3 Navigation via EKF

Navigation is carried out by the extended Kalman filter; the method consists of dividing
the mission into orbital windows, indicated by the EXTRAPOLATION directive.

Each orbital window is processed
individually by the navigator with
the Extended Kalman Filter. Dur-
ing each orbital window, the navi-
gator performs an extrapolation of
the next state and uses the mea-
surements of the window to esti-
mate the next state. Finally, it
uses the extrapolated values and
the estimated values to correct the
state.
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Chapter 2

Physical Models of the Navigator

2.1 Space reference frames

Space reference frames form the basis of all navigation activity. Choosing the right frame
is therefore essential: some operations can only be performed in an inertial frame, others
only in a body-fixed frame. Between these two extremes there are also several intermediate
frames that can be used depending on the type of application or the desired precision.
In the MATLAB Navigator, these two categories of frames are clearly distinguished: inertial
frames for dynamics and state propagation versus body frames for local calculations.

2.1.1 Existing reference frames for navigation around the Earth

All of the reference frames already available in the MATLAB Navigator are suited to
navigation applications around the Earth. The existing frames have been sufficiently tested
on Earth orbits and are optimised for the measurements available in the Navigator.

• Inertial frames

– VEIS: takes into account the motion of the Earth’s pole but not the effects of
precession/nutation. This frame is no longer used for extrapolation; however,
the computation of the position of the Moon and Sun according to the Meeus
model (sec. 2.3) provides positions in the VEIS frame.

– CIRF (Celestial Intermediate Reference Frame): intermediate celestial frame
used as a quasi-inertial frame in place of the VEIS. It takes into account the
motion of the Earth’s pole; the effects of precession and nutation are handled
elsewhere.

– ICRF (International Celestial Reference Frame): inertial frame defined by the
IERS1 standards. This frame is appropriate for applications outside Earth orbit.

• Body-fixed frames
1IERS: International Earth Rotation and Reference Systems Service
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– ITRF (International Terrestrial Reference Frame): non-inertial frame fixed to
the Earth, defined for applications around the Earth. It is notably used for the
calculation of the terrestrial potential and the processing of GNSS and ground
station measurements.

The algorithm of the MATLAB Navigator is based on that of SOFA[1]2 and complies with
the IERS standards.
All of the frames available in the Navigator can be reached by vector rotations. In the
MATLAB Navigator, transformations are performed by the function CL_fr_convert (from
CelestLab, CNES), which automatically allows the user to pass from any frame to any
other.
The expression of the transformation matrix from the ITRF to the GCRF is as follows:

MITRF→GCRF =MCIRF→GCRF ·MTIRF→CIRF ·MITRF→TIRF (2.1)

With:

• MITRF→TIRF : the pole motion matrix;

• MTIRF→CIRF : the diurnal rotation matrix;

• MCIRF→GCRF : the precession–nutation matrix.

Figure 2.1: Reference systems of the IERS conventions: ITRS, TIRS, CIRS, GCRS

All the terrestrial reference frames used by the Navigator are explained in more detail in
Appendix A

2SOFA: Standards of Fundamental Astronomy
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2.1.2 Interplanetary evolution: BCF frame

The current reference frames are not sufficient for interplanetary applications, with the
exception of the inertial frame ICRF. Although state extrapolation is performed with the
existing frame ICRF3, it is necessary to define new frames tied to the celestial bodies for
the calculation of the planets’ potentials.

The BCF (Body-Centered Fixed) frames are rotating frames fixed to specific celestial
bodies that rotate with the celestial body itself. They are used for all bodies except the
Earth (which uses the ITRF) for computing the potential of the central body.
Their orientation follows the IAU4 conventions via the pole rotation (right ascension, decli-
nation) and a meridian angle that incorporates precession, nutation and even librations (for
many moons), as well as variations in the length of the day. Concretely, the inertial → BCF
transformation is expressed as a chain of time-dependent rotations (typically), which guar-
antee that the gravity field (spherical harmonics), the topography, and ground references
remain fixed in this frame.

To define the orientation of the axes of these frames, one uses the IAU conventions defining
the orientation parameters of the planet:

• α: right ascension of the planetary pole;

• δ: declination of the planetary pole;

• W : prime meridian.

Transformation matrix ICRF → BCF

The transformation matrix between the inertial frame (ICRF) and the body-fixed frame
is computed from the parameters α, δ and W . These orientation parameters depend
on coefficients specific to each body and on time, expressed on the TDB (Barycentric
Dynamical Time) scale. They are computed from the following relations:

α(TJD) = aα + bαTcent +
n∑

i=1

Ki
α sin

(
ciα + diαTJD

)
(2.2)

δ(TJD) = aδ + bδTcent +

n∑
i=1

Ki
δ cos

(
ciδ + diδTJD

)
(2.3)

W (TJD) = aW + bWTJD +
n∑

i=1

Ki
W sin

(
ciW + diWTJD

)
(2.4)

The parameters depend on:
3In the code the ICRF frame is called "GCRF" because it was designed for terrestrial use; however, its

use remains valid anywhere in the Solar System.
4IAU: International Astronomical Union
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Figure 2.2: Parameters linked to the fixed frame of a body (α, δ, W )

• the time, expressed in Julian days (TJD) and in centuries (Tcent = TJD/36525)since
J2000 ;

• coefficients specific to each body a, b, c, d,K.

All models are based on the IAU 2015, except for the Moon, which uses the IAU 2009
model.
The transformation between the ICRF and the frame tied to the body (BCF) is given by
the following relation (three rotations):

MICRF→BCF = R3

(
π
2 + α

)
R1

(
π
2 − δ

)
R3(W ) (2.5)

The transformation matrix between the BCF frame and the ICRF is simply the transpose:

MBCF→ICRF =
(
MICRF→BCF

)T (2.6)

Rotation velocity ICRF → BCF

The rotation velocity between the two frames is calculated by taking the time derivative of
the previous relations.

α̇(TJD) =
bα

36525
+

n∑
i=1

Ki
αd

i
α cos

(
ciα + diαTJD

)
(2.7)
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δ̇(TJD) =
bδ

36525
−

n∑
i=1

Ki
δd

i
δ sin

(
ciδ + diδTJD

)
(2.8)

Ẇ (TJD) = bW +
n∑

i=1

Ki
Wd

i
W cos

(
ciW + diWTJD

)
(2.9)

After computing the derivatives, the function (inspired by CelestLab) CL_rot_angVelocity
uses the angles and their derivatives to compute the rotation velocity between frames
ωICRF→BCF .
The MATLAB function fr_icrf2bcf enables the coefficients of any celestial body (found in
the data files or in the simulation variable simu) to be obtained and the parameters to be
calculated in order to perform the transformation.
As for all frames, the transformation is entirely managed by CL_fr_convert, which requires
the time in CJD, the initial frame and the final frame. The formula "BCF_astre" can be
used to perform the transformation to the BCF frame of the body named astre.

2.1.3 Local frames

The local frames (tied to the satellite) defined in the MATLAB Navigator are: the inertial
frame (IN), the platform frame (PF), the QSW frame and the TNW frame.
The transitions between these different frames are described in the following paragraphs.

QSW frame

The QSW frame is defined as follows:

• Q: radial axis

• W: normal to the orbit

• S: completes the triad

The components are computed from the position/velocity of the satellite in the inertial
frame:

Q⃗ =
P⃗

||P⃗ ||
(2.10)

W⃗ =
Q⃗ ∧ V⃗

||Q⃗ ∧ V⃗ ||
(2.11)

S⃗ = W⃗ ∧ Q⃗ (2.12)

TNW frame

The TNW frame is defined as follows:
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• T: tangential axis

• W: normal to the orbit

• N: completes the triad

The components are computed from the position/velocity of the satellite in the inertial
frame:

T⃗ =
V⃗

||V⃗ ||
(2.13)

W⃗ =
P⃗ ∧ V⃗

||P⃗ ∧ V⃗ ||
(2.14)

N⃗ = W⃗ ∧ T⃗ (2.15)
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2.2 Time reference frames

Date formats

The types of date already defined in the Navigator before the interplanetary evolution are:

• Date JD: The Julian Days (JD) are a continuous count of days used in astronomy.
JD 0 is set at 1 January 4712 (4713 BC, Julian calendar) at noon.

• Date CJD: corresponds to the number of Julian days since 01/01/1950 at midnight
(CJD = JD – 2433282.5).

• Date counter: value corresponding to an onboard clock. The correspondence between
the counter date and a CJD date is defined in the navigator.

Format: number of seconds since the last update of the counter (seconds, integer) +
number of fractions of a second within the second (fractions of a second, real)

• Date GPS: date in GNSS5 format. Specific functions allow conversion between a
CJD date and a GPS date.

Format: Days (integer) Seconds (real) Fractions of a second (real)

Terrestrial scales

The types of time scales already defined in the Navigator before the interplanetary evolution
are:

• TAI: International Atomic Time. It is a time scale provided by the BIPM (Bureau
International des poids et mesures) and based on nearly 150 atomic clocks worldwide.
It makes it possible to define the time standard and the reference time scale used
throughout the world.

• TT: Terrestrial Time. It is a time scale established from TAI and defined by the
International Astronomical Union for making time measurements on astronomical
observations performed from the Earth. This time scale was previously called TDT
(Terrestrial Dynamic Time) or ET (Ephemeris Time). TT is defined by the following
relation:

TT = TAI + 32.184s (2.16)

• UTC: Coordinated Universal Time. It is an international standard on which civil
time is based. UTC differs from TAI by an integer number of seconds. The number
of seconds separating these two time scales is updated when UTC drifts more than
0.9s from UT1. As of today this number is 37s, so we have the following relation:

UTC = TAI − 37s (2.17)
5GNSS: Global Navigation Satellite System
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• UT1: UT1 drifts variably relative to TAI. When the desired precision is not greater
than one second one may consider that UTC=UT1. In the MATLAB Navigator the
offset TAI–UT1 is set to zero, but this choice is configurable via the simulation data
(in simu.Temps.UT1_UTC ).

Figure 2.3: Conversions between the time scales

As with the spatial reference frames, the time scales present in the Navigator are sufficient
for Earth orbits, but poorly suited for interplanetary missions: they do not take into account
relativistic effects (related to the distances and gravitational potentials between bodies).

Barycentric Dynamical Time (TDB)

The TDB is a relativistic coordinated time scale, intended for astronomy to take into
account time dilation in the calculation of orbits and ephemerides (planets, asteroids,
comets, satellites). In the MATLAB Navigator, it is used for computing the positions of
bodies and the rotation axes of bodies. To convert between scales, we use the difference
TDB−TT as implemented in SOFA:

TDB − TT = 0.001657 sin g, (2.18)

g = 6.24 + 0.017202 · JD2000TT , (2.19)

where JD2000TT = JDTT − 2451545 is the Julian date in TT counted since 01/01/2000.
This approximation typically provides a precision of the order of 50µs on TDB−TT (more
complete models exist in SOFA).
In practice, the error induced by replacing the TDB by the TT remains negligible in many
cases;
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2.3 Calculation of the positions of celestial bodies

The MATLAB navigator was initially developed for Earth satellites, where the only celestial
bodies involved in navigation are the Moon and the Sun. Their effects are calculated by
mathematical models: those of Meeus. This choice simplifies calculations and storage, but
it is not sufficient for interplanetary missions.
The Meeus models provide the position of the Moon and the Sun in an Earth-centred frame.
They require a date in Terrestrial Time (TT) and provide the position of the Moon in the
EoD frame and the position of the Sun in the VEIS frame.
Moreover, the analytical models do not provide velocity information. Consequently, cer-
tain operations that require these data cannot be carried out using only the analytical
ephemerides, such as changes of central body. If necessary, it would nevertheless be possible
to compute this velocity by finite difference.

In order to compute the effects of other bodies on the dynamics of the satellite in interplan-
etary missions, it is necessary to know their position.
For interplanetary missions, one must know uniformly and accurately the positions and
velocities of many bodies (planets, moons, sometimes asteroids) in a barycentric inertial
frame (ICRF) and a relativistic time scale (TDB). These data are necessary to model the
gravitational perturbations of third bodies or to handle transitions of sphere of influence
and changes of central body.
Hence the need to integrate the reading of numerical ephemerides that complement or
replace the Meeus models as soon as the navigation leaves the terrestrial neighbourhood.

2.3.1 Meeus analytical model

There is one Meeus model for the Moon and one for the Sun. These models provide the
position of the Moon and the Sun in an Earth-centred frame. The implemented models
are taken from Patrius. The lunar model has the particularity that it allows the number
of terms in the series to be selected when computing the Moon’s position, which makes it
possible to reduce computation time at the expense of accuracy.
The models require a date in Terrestrial Time (TT) and provide the position of the Moon
in the EoD frame and the position of the Sun in the EME2000 frame. The functions for
converting these frames to the GCRF frame have been implemented in BOLERO6.
The analytical models do not provide velocity information. Consequently, certain operations
requiring these data cannot be performed using the analytical ephemerides, such as changes
of central body. If necessary, however, it would be possible to compute this velocity by
finite difference.

6BOLERO is CNES’s reference library for orbital navigation. It is originally developed in C and it
contains all physical models and navigation methods for a Navigator.
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2.3.2 Calculation by numerical ephemerides

In order to enable the navigator to simulate interplanetary missions, it is always necessary
to know the position and velocity of any celestial body. The ephemerides used by the
MATLAB navigator are provided in the form of Chebyshev coefficients, which then make it
possible to calculate the position of a body via Chebyshev polynomials. The reading of the
ephemerides is carried out by the function LectureEph.m, which automatically uses the text
files found locally. The reading is usually performed only once at initialisation: thereafter,
the resulting data are stored in the variable simu.simuAstres. This allows the position and
velocity at any time to be computed very efficiently.

Position of a body

Most of the ephemerides used give the position of the barycentre of the body relative
to the Solar System Barycentre (SSB), except for planet–moon systems (Earth–Moon,
Mars–Phobos, . . . ) which are ephemerides of position/velocity relative to the barycentre of
the two-body system or the more massive body.

The numerical ephemerides are provided as series of Chebyshev coefficients a0, . . . , an (order
n), in kilometres in the ICRF frame. For each coordinate x, y, z, a set of coefficients is valid
over a time interval [t1, t2]. The position at time t ∈ [t1, t2] is obtained by evaluating, for
each coordinate, the corresponding Chebyshev series (after reducing the time to t̄ ∈ [−1, 1]).
These ephemerides are described as piecewise: the timeline is divided into segments of
N days, each equipped with its own coefficients. This scheme offers a good compromise
between precision and storage: the desired accuracy is achieved with a moderate order n; if
necessary, one adjusts n or the length of the segment to control the error.
Example for the coordinate x:

x =

n∑
i=0

aiTi(t̄) (2.20)

With the recurrence relation, 
T0 = 1

T1 = t̄

Ti(t̄) = 2Ti−1(t̄)− Ti−2(t̄)

(2.21)

And,

t̄ =
2(t− t1)

t2 − t1
− 1 (2.22)

By performing this process on the three coordinates (x, y, z), one obtains the position of
the body in the ICRF frame. If available, one uses the data stored in simu.
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Velocity of a body

The velocity of a body is computed from the same input data as the position, using the
derivative of the Chebyshev polynomial.
Example for the coordinate Vx:

Vx =
dx

dt
=

n∑
i=0

ai
dTi(t̄)

dt
(2.23)

With the recurrence relation,
dT0
dt = 0

dT1
dt = dt̄

dt

dTi(t̄)
dt = 2t̄dTi−1(t̄)

dt + 2dt̄
dtTi−1(t̄)− dTi−1(t̄)

dt

(2.24)

Where,

dt̄

dt
=

2

t2 − t1
(2.25)

The ephemerides give the velocities in ICRF, centred on the SSB, in km/day. Afterwards,
the calculation function automatically converts them into m/s.

The positions and velocities are computed by the function CalculPositionVitesseEph.m,
which provides the ephemerides results in m and m/s.

Comparison between ephemerides and Meeus model

Computing the position of the Sun and Moon with the Meeus model is very advantageous in
terms of computation cost; however, the results present errors. Computing the position with
the ephemerides, even with simplifications, will always be more precise than the analytical
models. Here we therefore compare positions computed by the Meeus model with those
from the ephemerides.
With regard to the Sun, below we show the radial distance between 1 January 2023 and
1 January 2024.
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(a) Sun: radial distance (b) Sun: relative error

Figure 2.4: Comparison Meeus vs ephemerides for the Sun (2023–2024).

The results are clear: even if the mean error remains moderate (∼2%), the difference is
very variable and can reach up to 2.5 billion metres.
It is always preferable to work with the position computation of bodies performed by the
ephemerides. The MATLAB navigator has no constraints in computation time, so it is the
preferred option.

2.3.3 Calculation with CalcBodyPos.m

Computing the position of one celestial body relative to another is a delicate process
involving several steps that must be performed correctly:

• Conversion to TDB

• reading the ephemerides of both bodies

• computing the positions/velocities of the bodies relative to the SSB

• computing the relative positions/velocities between the two bodies

• conversion to the correct frame

In the MATLAB navigator this is handled entirely by the function CalcBodyPos.m, which
performs all these steps automatically. This function uses the default ephemerides (with
CalculPositionVitesseEph.m) but it can also use the mathematical models of the Moon and
the Sun.
The method simu.interpolationAstres computes the positions and velocities of all bodies
considered during the simulation using CalcBodyPos.m, interpolates them by spline and
finally stores the results in simu.simuAstres. After this precomputation step, CalcBody-
Pos.m uses these interpolated positions and velocities for subsequent calculations, thereby
optimising the simulation. Several tests were carried out to validate that using the spline
instead of the direct position computation does not produce errors.
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This function can also be used to compute the distance of the satellite with respect to any
celestial body.
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2.4 Accelerations

The navigation dynamics around the Earth were modelled by the following accelerations:

γ⃗total = γ⃗Central Body +
∑

γ⃗Perturbing Bodies + Csγ⃗SRP + Cf γ⃗Drag (2.26)

with:

• γ⃗Central Body the gravitational acceleration of the central body (More thoroughly
explained in Appendix B.1).

• γ⃗Perturbing Bodies the gravitational acceleration due to the perturbing bodies: Moon
and Sun.

• γ⃗SRP the acceleration due to solar radiation pressure, assuming a spherical satellite.

• γ⃗Drag the acceleration due to atmospheric drag (More thoroughly explained in Ap-
pendix B.2).

This dynamic model is optimal for terrestrial missions, but it must be modified and extended
for interplanetary missions, taking into account the following effects:

• γ⃗Central Body must be computable for all celestial bodies in the solar system.

• γ⃗Perturbing Bodies must be adapted to take into account planets other than the Moon
and the Sun (using ephemerides in place of mathematical models).

• More precise calculation of γ⃗SRP : satellite modelled by plates and taking attitude
laws into account.

• It is necessary to add the thrust acceleration model γ⃗Thrust.

2.4.1 Gravity of the Central Body

The acceleration due to the central body, already implemented in the first version of the
MATLAB Navigator, followed the model below:
We denote x, y and z the coordinates of the satellite in an inertial frame centred on the
central body. We denote r, φ, λ the spherical coordinates of the satellite, r is the distance,
φ the latitude and λ the longitude:

x = r cosλ cosφ

y = r sinλ cosφ

z = r sinφ

(2.27)
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With these notations we have:
γ⃗Central Body = ∇⃗U (2.28)

With,

U =
GM

r

n∑
l=0

n∑
m=0

(
Req

r

)n

P̄lm(sin φ)(C̄lm cosmλ+ S̄lm sinmλ) (2.29)

where C̄lm and S̄lm are the normalised harmonic coefficients of the potential of degree l
and order m, given in the fixed frame of the central body. A more detailed explanation of
this dynamical model is available in Appendix B.1

Interplanetary Evolution

The calculation of the potential has been adapted to different choices of central body: the
default inertial frame is ITRF if the central body is the Earth, or BCF if the central body
is another; the conversion to BCF is managed by CL_fr_convert, as explained in section 2.1.

If the harmonic coefficients of the potential C and S are available in the file astre_pot_dione,
the method simu.LectureHarmPot stores them and the potential calculation function
CalcAccPot.m uses them up to the order of precision n. Otherwise, the code is also adapted
to perform a simple potential calculation by

γ⃗Central Body =
GM

r2
r⃗ (2.30)

2.4.2 Gravity of Perturbing Bodies

A perturbing body is any star (other than the central body) having a gravitational influence
on the satellite. The study of the satellite’s motion is carried out in a frame tied to the
central body; it is in fact the differential attraction exerted by the perturbing body on the
satellite and on the central body that must be taken into account.
The calculation of the effect of the perturbing bodies was already implemented in the
previous version of the Navigator; however, it has been adapted to other stars besides the
Moon and the Sun.
The acceleration of the perturbing bodies is broken down into two accelerations, a direct
acceleration and a tidal acceleration γ⃗PertBodies = γ⃗Direct + γ⃗tide

Direct Acceleration

Let O be the position of the centre of gravity of the central body, A the position of the
centre of gravity of the perturbing body of mass Mp and S the position of the centre of
gravity of the satellite.
If we assume that the central body and the perturbing body are both point masses, then
the direct acceleration is:
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γ⃗direct = GMp

(
S⃗A

∥S⃗A∥3
− O⃗A

∥O⃗A∥3

)
(2.31)

The distances between the central body and the perturbing body are computed with the
help of the function CalcBodyPos.m, described in paragraph 2.3.

Solid Tidal Acceleration

Celestial bodies are subject to a deformation caused by perturbing bodies. This deformation
depends on several factors: the body itself, the characteristics of the perturbing bodies and
their distances. These deformations can have significant effects on the satellite dynamics,
called solid tide accelerations.
The solid tide acceleration on the Navigator is based on the Love model developed at order
2.

γ⃗tide =
3

2
k2
GMp

r3b

R5

r4

[
(1− 5 cos2(Ψ)

r⃗

r
+ (2 cos(Ψ)

r⃗b
rb

]
(2.32)

with:
G : Gravitational constant.
Mp : Mass of the perturbing body.
k2 : Love number of the central body.
r⃗b : Position of the perturbing body with respect to the central body.
r⃗ : Position of the satellite with respect to the central body.
R : Equatorial radius of the central body.
Ψ : Angle between the perturbing body and the satellite from the central body

where the most important factor is the Love number k2 of the central body, which indicates
its rate of deformation. The MATLAB Navigator can also use the order 3 development of
the Love model.

γ⃗tide, 3 =
1

2
k3 µb

R7

r5 r4b

[(
15− 35 cos2Ψ

)
cosΨ

r⃗

r
+
(
15 cos2Ψ− 3

) r⃗b
rb

]
(2.33)

In the MATLAB Navigator, the Love number k2 is considered non-zero only for the Earth
and the Moon. For the time being, all other bodies are considered undeformable.

2.4.3 Solar Radiation Pressure

The model for calculating Solar Radiation Pressure (SRP) present in the MATLAB Navigator
considered the satellite to be spherical; since solar radiation pressure is one of the main
forces acting during interplanetary missions, the introduction of a more precise model was
necessary.
When the satellite is in shadow, the solar radiation pressure is equal to 0.
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Modelling the solar radiation pressure on a plate

The new satellite model is described by 3 plates indicated by their normal vector plus a
plate that describes the solar panels.

Figure 2.5: Satellite plate model

Let:

• ks the coefficient of specular reflection of the plate.

• kd the coefficient of diffuse reflection of the plate.

• ka the absorption coefficient of the plate.

Sp the surface area of the plate and msat the mass of the satellite. If N⃗p is the normal
vector to the plate then:

γ⃗SRP Plate = Ps
Sp
msat

· (u⃗s · N⃗p) · (F⃗s + F⃗D + F⃗A) (2.34)

γ⃗SRP =
∑

Plates

γ⃗SRPplate (2.35)

where:

F⃗s =
(
2ks · (u⃗s · N⃗p)

)
· N⃗p

F⃗D = kd ·
(
u⃗s − 2

3N⃗p

)
F⃗A = kA · u⃗s
With Ps the constant of solar radiation pressure (4.56× 10−6N/m2).
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The calculation of the Solar Radiation Pressure uses a more precise model of the satellite in
order to take into account the orientation of the plates relative to the Sun: the orientation
depends by the dynamic attitude law. This attitude law (better described in sec. 2.5) is not
yet taken into account by the model. In fact, at present the satellite is considered “inertial”
with all the plates oriented towards their normal axis and the solar panels oriented towards
the Sun.
The normal vectors to the plates do not take attitude into account, because the effect of
the satellite orientation is described by the normal vector, except for the solar panels where
the orientation is described by the attitude. However, the current satellite model considers
the panels always turned towards the Sun.
The current navigator manages the attitude only for Line of Sight measurements and it
does not yet take into account the attitude law (sec. 2.5) commanded by telecommand.
This attitude law must influence the orientation of the plates and produce a different solar
radiation pressure. However, without an attitude law, the navigator considers the plates
always turned towards their normal vector and the solar panels always turned towards the
Sun.
The value Ps is modified to take into account the Satellite/Sun distance using the formula

P ′
s =

AU

d2
(2.36)

with:
AU the astronomical unit (Distance Sun - Earth) and d the distance Sun/Satellite. This
function allows the SRP acceleration to be described at any location in the Solar System.

Eclipse model
The algorithm presented here is taken from reference [2].
The hypotheses made are as follows:

• The Sun and the central body are spheres

• Only the occultation of the Sun by the central body is taken into account; occultations
due to Moons are not taken into account.

Let r⃗ the vector linking the central body to the satellite, s⃗ the vector linking the satellite
to the central body and r⊙ the vector linking the central body to the Sun.
The radius of the central body is denoted RB and the radius of the Sun is denoted R⊙

a = arcsin
R⊙

∥r⃗⊙ − r⃗∥
; b = arcsin

RB

∥s⃗∥
; c = arccos

s⃗T (r⃗0 − r⃗)

∥s⃗∥∥r⃗⊙ − r⃗∥
(2.37)

with a the apparent angle of the Sun, b the apparent angle of the central body and c the
separation angle of the 2 bodies.
If a+ b ≤ c there is no occultation, the shadow factor ν = 1.
If c < b− a the occultation is complete, so the shadow factor is ν = 0.
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If c < a− b the central body is in front of the Sun but the Sun still appears. The coverage
factor is ν = 1− S

πR0

2

This modelling is not considered for the heliocentric phases of the missions, where the Sun
is the central body, however the MATLAB Navigator is capable of considering the eclipse
of any celestial body.

2.4.4 Thrust

The introduction of a thrust acceleration is carried out by Telecommand (see section 3.3).
The Navigator applies a special treatment to thrust accelerations. Whenever a thrust
manoeuvre occurs, its effect is meaned over the entire Orbital Window, and the state
is propagated considering the thrust constant in the window. This choice is justified by
the behaviour of the Kalman Filter: modest simplifications in the thrust model do not
cause trajectory divergence because the filter continuously corrects the satellite state; small
acceleration errors are therefore acceptable.
In order for the correction to work, however, the thrust error has to be taken into account
by the Kalman Filter through the State Vector, the Covariance, the Transition Matrix and
the Covariance matrix (more thoroughly explained in 3.2).

Instantaneous thrust

The calculation of the instantaneous thrust acceleration γ⃗Thrust(t) is done using the following
equation:

γ⃗Thrust(t) =
F⃗

mi − ∥F⃗∥
g0Isp

(t− ti)
(2.38)

with:
g0: Gravitational acceleration at the Earth’s surface. Isp: Specific impulse. mi: Initial
mass. ti: Start date of the thrust F⃗ : Thrust in Newtons.

Mean thrust calculation

tf = ti +∆t

Tf = min(tf , t2)

Ti = max(ti, t1)

With ti − tf being the interval between the start and the end of the manoeuvre and t1 − t2

the interval between the start and the end of the Orbital Window.
The mean thrust, considered constant in each of the six steps of the Runge-Kutta Integrator,
is calculated as:

γMean =

γe +
γThrust(Ti)+γThrust(Tf )

2
Tf−T i
t2−t1

if Tf − Ti > 0

0 if Tf − Ti <= 0
(2.39)
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2.4.5 Future perspectives for the orbital dynamics

The current acceleration model of the navigator is very accurate and adapted to orbital
missions; however, improvements are always necessary to achieve even greater accuracy,
especially in interplanetary flight and manoeuvre-intensive missions. These improvements
mainly concern SRP, Thrust and the Hill and Relativistic forces.

• The SRP currently considers a more precise satellite model: the plate model. However,
the calculation of the acceleration does not take into account the current attitude law.
When the navigator will be able to manage this law (by telecommand, see section
3.3) this aspect of the dynamics will need to be improved.

• The current Thrust model is greatly simplified, and this works well with simple
missions; however, in certain missions with few measurements available, the Kalman
Filter might have problems correcting the error.

• The Hill acceleration is a periodic perturbation linked to orbital dynamics, depending
on the satellite frequency and a modelled noise; the effect is small but useful to refine
the long-term model.

• The relativistic acceleration is a correction stemming from general relativity, de-
pending on the mass and rotation of the central body; the influence is very small but
not negligible over long durations or for high precision orbits.

• One could consider modelling a drag acceleration adapted to other bodies in the
solar system with an atmosphere (Mars, Venus, ...)

Even though there are always possible improvements, the current dynamic model has been
tested and it is very accurate for navigation throughout the solar system.
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2.5 Modelling the attitude

In the MATLAB Navigator, the attitude of the satellite is defined as the rotation between
the inertial frame and the platform frame.
Originally, the satellite was represented by a sphere in order to simplify the model. To
improve the reliability of interplanetary dynamics, it was later modelled by the plate model
(see 2.4.3). This description makes it possible to link the attitude to the orientation of
the plates in the inertial frame. Note: this does not affect the drag model, for which the
description by faces does not intervene.
The attitude is involved in three functions:

• computing the acceleration due to solar radiation pressure;

• precise positioning of the GNSS / station / inter-satellite antennas for modelling
theoretical measurements;

• performing optical Line of Sight (LOS) measurements on landmarks.

The Navigator is not designed to propagate the attitude dynamics itself. At this stage,
the attitude used in the Navigator comes from LOS measurements. In other words, in
the absence of an explicitly defined attitude law, the applied orientation corresponds to
pointing toward the landmark of the measurement.

2.5.1 General principle

The frames used by the MATLAB Navigator for the attitude are:

• the platform frame (PF ): axes of the satellite (positions of antennas or cameras are
defined in this frame);

• the inertial frame (IN): integration frame (CIRF or ICRF), also used for integration
during the simulation.

The passage from (PF ) to (IN) is provided, in each LOS measurement, in the form of an
attitude quaternion:

qatt = q(PF )→(IN).

This attitude is therefore used by the LOS measurements.

2.5.2 Future prospects: development of attitude laws

For applications other than those directly related to LOS measurements (and, where
applicable, for LOS when the attitude is not provided), one envisages defining generic
attitude laws:

• geocentric law (GEOCENTRIC);
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• yaw–steering law (YAW-STEERING);

• heliocentric law (HELIOCENTRIC).

The frames associated with these laws are:

• (QSW ): Q radial (centre of the Earth → satellite), W normal to the orbit, S
completes the triad (approximately oriented along the velocity);

• (TRL): pitch–roll–yaw (Tangage–Roulis–Lacet), defined by a constant rotation with
respect to QSW ;

• (TRL)0: frame fixed with respect to the platform; it coincides with TRL if the roll,
pitch and yaw angles are zero. The passage between TRL and (TRL)0 is defined by
the attitude law.

These laws must position the axes of the platform frame with respect to QSW . The
following conventions are adopted:

• (TRL) → (QSW ) is defined by the constant matrix

P(TRL)→(QSW ) =


0 0 1

0 1 0

−1 0 0

 ;

• (TRL)0 → (TRL) is defined by the attitude law, in the form of an attitude matrix:

Matt = P(TRL)0→(TRL);

• (PF ) → (TRL)0 is fixed once and for all in the mission parameters, in the form of
the matrix

P(PF )→(TRL)0 .

The overall passage between (PF ) and (QSW ) is therefore written

P(PF )→(QSW ) = P(PF )→(TRL)0 P(TRL)0→(TRL) P(TRL)→(QSW ).

Implications for the models. The formulation by attitude laws—although it has not
yet been integrated—mainly affects the solar radiation pressure model:

• Geocentric: fixed orientation in the local orbital frame; the attitude matrix is the
identity, Matt = P(TRL)0→(TRL) = I. The panel normal vector is zero: N⃗PF = 0⃗.

• Heliocentric: the panels are oriented toward the Sun.

• Body-pointing: law assumed during LOS Landmark measurements, pointing toward
the barycentre of a celestial body.
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Figure 2.6: QSW and pitch–roll–yaw (TRL) frames

The change of attitude law is driven by telecommands.
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Chapter 3

Interplanetary Navigation

Navigation is defined as the ability to know the satellite’s state (position, speed, etc.) at
any time. In the Interplanetary Navigator, navigation is performed by an Extended Kalman
Filter, which uses the previously explained physical models to predict the next state and the
measurements to correct said state. In the end, measurements are the heart of navigation.

3.1 Measurements

In the space environment the most reliable kind of measurement is the GNSS measurement;
however, the satellite needs to be in Earth’s proximity to work. Before my arrival, most
available measurements were GNSS measurements. However, for interplanetary applications,
new measurements have to be introduced and tested in order for the navigator to estimate
the current state outside of Earth’s influence. As interplanetary measurements, the most
important is the Line of Sight measurement, as well as a LiDAR1-like range measurement.
Before discussing interplanetary measurements, here is a general overview of all the mea-
surements available before the interplanetary modifications.

3.1.1 GNSS measurements

The GNSS Measurements are the main kind of measurements used by the navigator in
terrestrial orbits. All the details on these is shown in Appendix C

Code measurement

The receiver continuously receives the code transmitted by the GNSS satellite, with a
delay corresponding to the travel time of the signal between the transmitting and receiving
satellites. The navigator uses this delay as a measurement.

1LiDAR: Light Detection and Ranging, also called two-way range measurement
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Phase measurement

Imperfect synchronisation between the receiver and satellite clocks introduces an error into
the phase measurement that must be estimated. This error can be used to estimate the
satellite’s state.

Code difference measurement

The simple difference measurement is constructed from two measurements from the same
transmitting GNSS satellite Pe to two different receivers Pr1 and Pr2.
In the navigator, the PR measurements are expressed as emission dates in GNSS time
tGNSS
e .

Phase difference measurement

The simple difference phase measurement follows the same principle as the simple difference
code measurement, being constructed from two measurements from the same transmitting
GNSS satellite Pe to two different receivers Pr1 and Pr2.

Inter-satellite measurement

The ISL distance measurement corresponds to the propagation time of the signal between
a transmitting satellite and a receiving satellite. It is obtained by comparing the emission
date and the reception date, assuming that the clocks are synchronised and the antennas
placed at the centre of mass of the satellites. This measurement therefore makes it possible
to access directly the instantaneous distance between the two satellites in an inertial frame,
and constitutes an essential datum for intersatellite navigation.

3.1.2 Interplanetary measurements: Line of Sight

Consider a satellite equipped with a camera capable of carrying out optical measurements,
which we call the “observer”, and a target being observed, which may be of various types
(centroid of a body, landmark on a body, another satellite, etc.). The measurement de-
veloped is the so-called “Line of Sight Landmark” measurement, which consists of the
coordinates of the target in the image. Knowing the actual position of the landmark as
well as the characteristics of the camera, it is then possible to compare the theoretical
coordinates with the measured coordinates.
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Figure 3.1: Line of Sight measurement

In the MATLAB navigator, the target is often the barycentre of a body, with the satellite
pointing towards the central body (law BodyCenterPointing); however, the Landmark
measurement is flexible enough to be used on other bodies or other targets. The position
of the barycentre is known from the ephemerides and, knowing the position of the satellite
and the pointing direction of the camera, it is possible to compute the measurements in an
inertial frame. The attitude is necessary to compute the theoretical measurements in the
camera frame.

Figure 3.2: Line of Sight measurement

Calculation of the theoretical measurement

We measure u and v, which are the pixel coordinates of the target in the image plane. We
do not take into account the light propagation time. Let cI be the position of the target in
the inertial frame and pIsat the position of the observer satellite in the inertial frame. The
vector linking the camera to the point of interest (Line of Sight) is:
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LI =


cIx − (pIx +∆x)

cIy − (pIy +∆y)

cIz − (pIz +∆z)

 (3.1)

with ∆i the vector from the centre of the satellite to the camera in the inertial frame.
Expressing this vector in the camera frame and denoting MIC the transformation matrix
from the inertial frame to the camera frame, we have:

LC =MICL
I (3.2)

We then find:

u = f
LC
x

LC
z

(3.3)

v = f
LC
y

LC
z

(3.4)

with f the focal distance of the camera.
The transformation matrix from the inertial frame to the camera frame, MIC , is a matrix
described by two rotations:

MIC =MPC ·MIP (3.5)

where

• MPC : the transformation matrix between the platform frame and the camera frame,
described in the initial MissionData

• MIP : the rotation matrix between the inertial frame and the platform frame, which
effectively describes the attitude of the satellite. The attitude of the satellite is
provided by the measurement directive.

All of the rotations are described by quaternions. The transformation between a quaternion
and a rotation matrix is performed with the MATLAB function quaternion.m (and conversely
with rotmat.m), with type equal to “point”. The rotation of the line of sight vectors is
performed by the function rotatepoint(q, v).

Calculation of partial derivatives with respect to the observer’s position

We seek the partial derivatives of the measurement with respect to the position of the
satellite in the inertial frame.
We have:
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∂u

∂pIx
= f

 ∂LC
x

∂pIx
LC
z − LC

x
∂LC

z

∂pIx

(LC
z )

2

 (3.6)

under the assumption that ∂f
∂pIx

= 0.

Furthermore, under the assumption that MICx

∂pIx
= 0 and that ∂∆x

∂pIx
= 0.

∂LC

∂px
=MIC

∂LI

∂px
=


M11 M12 M13

M21 M22 M23

M31 M32 M33

 ·


∂LI

x
∂px

∂LI
y

∂px

∂LI
z

∂px

 =


−M11

−M21

−M31

 (3.7)

∂LC

∂py
=


−M12

−M22

−M32

 (3.8)

∂LC

∂pz
=


−M13

−M23

−M33

 (3.9)

The final result is therefore:

∂u

∂pIx
=
f(LC

xM31 − LC
z M11)

(LC
z )

2
(3.10)

∂u

∂pIy
=
f(LC

xM32 − LC
z M12)

(LC
z )

2
(3.11)

∂u

∂pIz
=
f(LC

xM33 − LC
z M13)

(LC
z )

2
(3.12)

For the component v of the measurement, by the same method and with the same assump-
tions we find:

∂v

∂pIx
=
f(LC

y M31 − LC
z M21)

(LC
z )

2
(3.13)

∂v

∂pIy
=
f(LC

y M32 − LC
z M22)

(LC
z )

2
(3.14)

∂v

∂pIz
=
f(LC

y M33 − LC
z M23)

(LC
z )

2
(3.15)
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3.1.3 Interplanetary measurement: LiDAR

As explained in Sec. 3.1.2, Line of Sight (LOS) measurements alone are insufficient for
interplanetary navigation. The LOS vector conveys angular information about the satellite’s
position, but not its range to the target. Navigating without range causes radial errors to
accumulate, leading to divergent estimates. For this reason, it is necessary to introduce an
additional interplanetary measurement for distance estimation.
LiDAR is a two-way type of measurement: the instrument emits a signal toward a celestial
object, the signal reflects off the surface, and the satellite detects the return. By recording
the times of emission and reception (with the reflection occurring at the surface), the
satellite infers the target’s distance.

Figure 3.3: LiDAR measurement representation

In both LiDAR and LOS cases, the satellite points at its target, which may be the body’s
barycentre or a surface landmark of known position. The attitude follows a body-pointing
law; however, for LiDAR the attitude is not critical, since the measurement time matters
more than the exact pointing vector. The landmark position, or rather its position relative
from a known ephemeris (body baricenter), is assumed to be well known from onboard
data.
The validation phase of the navigator (sec. 4.1) will show the necessity of a range measure-
ment such as LiDAR, which allows the navigator to correctly perform manoeuvres and be
utilised in non-orbital trajectories.

Calculation of the theoretical measurement

The measurement dynamics are defined by three instants:

• the instant of emission of the signal, te

• the instant of reflection at the surface, tb

• the instant of reception of the signal, tr
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The measurement is represented by three pieces of information: the reception time tr, the
emission time te, and the distance of the landmark. Also, the navigator must be able to
compute the landmark’s position.
The measurement describes two distances: the backward distance ρ↓, defined as the norm
of the difference between the satellite’s position at reception, P⃗r(tr), and the landmark’s
position at reflection, P⃗L(tb),

ρ↓ =
∥∥P⃗r(tr)− P⃗L(tb)

∥∥. (3.16)

and the forward distance, defined as the norm of the difference between the landmark’s
position at reflection, P⃗L(tb), and the satellite’s position at emission, P⃗r(te),

ρ↑ =
∥∥P⃗L(tb)− P⃗r(te)

∥∥ (3.17)

The reflection time is defined as

tb = tr −
ρ↓
c

= tr −
∥∥P⃗L(tb)− P⃗r(te)

∥∥
c

(3.18)

Since tb appears on both sides of the computation, an iterative method is required to
compute it. Starting from an initial guess tb < tr:

• Compute the landmark position at tb: P⃗L(tb).

• Compute the backward distance: ρ↓ = ∥P⃗r(tr)− P⃗L(tb)∥.

• Update tb to t′b using ρ↓:
t′b = tr −

ρ↓
c

• Compute the error ϵ = |tb − t′b| and iterate.

When the error falls below a prescribed threshold (usually 10−6m or 10−12m), tb (and with
it P⃗L(tb)) is determined.
Given the emission time te, the forward distance is

ρ↑ = ||P⃗L(tb)− P⃗r(te)|| (3.19)

Finally, the modeled range measurement M is computed as

M = ρ↑ + ρ↓ + 2c∆tinstr, (3.20)

which also accounts for the instrument delay ∆tinstr.
Because this solution is obtained iteratively, convergence depends on the actual range.
In practice, LiDAR is directed towards relatively nearby targets (typically up to a few
thousand kilometers). For more distant objects, the algorithm may fail to converge and,
even if it does, the range information is weak: very distant landmarks are nearly stationary
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relative to the spacecraft, so P⃗L(tb) changes little and the modeled measurement M becomes
ill-conditioned and error-prone.

Calculation of partial derivatives with respect to the observer’s state

Since all state updates are done at the end of an orbital window, all partial derivatives have
to be transitioned to the end of the orbital window tfinal.

∂M(tr)

∂x

∣∣∣∣
tfinal

=
∂M(tr)

∂x

∣∣∣∣
tr

∂x(tr)

∂x(tfinal)
=
∂M(tr)

∂x

∣∣∣∣
tr

Φtr−→tfinal
(3.21)

where Φtr−→tfinal
is the transition matrix between tr and tfinal. We linearize the spacecraft

kinematics about a chosen reference epoch tf (local constant–velocity model):

P⃗r(t) ≈ P⃗r + V⃗r (t− tf ), (3.22)

The transition to tf is not a problem for position related derivatives, however it is important
to take into account for velocity derivatives.

∂P⃗r(t)

∂P⃗r

=I, (3.23)

∂P⃗r(t)

∂V⃗r

=(t− tf ) I = − I (tf − t). (3.24)

The line-of-sight unitary vectors (as in the theoretical measurement):

û↑ =
P⃗L(tb)− P⃗r(te)

ρ↑
, û↓ =

P⃗r(tr)− P⃗L(tb)

ρ↓
.

Using ∂∥a∥/∂a = a⊤/∥a∥ = u⊤ and the chain rule, we obtain:

Derivative w.r.t. position at tf . Both legs depend on P⃗r only through P⃗r(tr) and
P⃗r(te); therefore

∂M

∂P⃗r

∣∣∣∣
tf

= û↓ + û↑ (3.25)

Derivative w.r.t. velocity at tf . Using the chain rule under the constant–velocity
linearization, we write

∂M

∂Vr

∣∣∣∣
tfinal

=
∂M

∂Pr

∂Pr(t)

∂Vr(tf )
= û↓

∂Pr(tr)

∂Vr(tf )
+ û↑

∂Pr(te)

∂Vr(tf )
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From 3.24, the kinematic Jacobians are

∂Pr(tr)

∂Vr(tf )
= I

(
tr − tf

)
(3.26)

∂Pr(te)

∂Vr(tf )
= I

(
te − tf

)
(3.27)

Substituting these expressions yields

∂M

∂V⃗r

∣∣∣∣
tf

= û↓ (tr − tf ) + û↑ (te − tf )

(3.28)

Define the time gaps
∆t↑ = tr − te, ∆tr = tr − tf ,

Therefore, the velocity derivative becomes

∂M

∂V⃗r

∣∣∣∣
tf

= (û↓ + û↑)∆tr − û↑∆t↑ (3.29)

The measurement matrix

More details on the processing of the measurements and their derivatives are provided in
Section 3.2.3 for LOS and Lidar or in [3] and [4] for GNSS measurements.
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3.2 Kalman Filter

The Kalman filter (KF) is designed to optimally estimate the state of a linear dynamic
system when the system model and the measurements are subject to Gaussian noise. The
Kalman filter assumes that the system dynamics and the measurement equations are linear.
The extended Kalman filter (EKF) operates by linearising the non-linear system dynamics
and the measurement model around the current state estimate (and not around a reference
trajectory). This linearisation is performed at each iteration of the filter.
In fact, the filter is modelled as a loop, where each increment corresponds to an orbital
window (FO), i.e. a predefined time interval between two extrapolations. In a classical
Kalman filter, the prediction (or extrapolation) step is performed up to the time of the
next available measurement. However, in this particular context, the approach is different:
the prediction is made at regular intervals defined by these orbital windows, as explained
in 1.3.1.

Dynamic model

Suppose that the quantities of interest are realisations of a random process, x(t), whose
distribution we know at an initial time t0 and whose temporal evolution follows the following
stochastic differential equation:

ẋ(t) = f(x(t), t) +B(t)w(t) (3.30)

with B(t) the control matrix of the noise.
Assume that the initial distribution of x(t0) and the distribution of w(t) (model noise) are
Gaussian, with a mean and a covariance given by:

E[x(t0)] = x̄0 and E[(x(t0)− x̄0)(x(t0)− x̄0)
T ] = P0 (3.31)

E[w(t)] = 0 and E[w(t)wT (τ)] = Q(t)δ(t− τ) (3.32)

We can also write this as: x(t0) ∼ N(x̄(t0),P0) and w(t) ∼ N(0,Q).
With Q(t) the power spectral density of w(t) and δ(t− τ) the Dirac delta.
We also assume that:

E[w(t)(x(t0)− x̄0)
T ] = 0, ∀t (3.33)

Note that even if x(t0) and w(t) are assumed Gaussian, x(t) is not Gaussian for t > t0,
because f is a non-linear function.
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Measurement model

The dynamic model is defined in the continuous domain. However, the measurements are
noisy representations of the state elements obtained at discrete times tk.

yk = h(xk) + vk (3.34)

We define similarly some relations:

E[vk] = 0 and E[vkv
T
j ] = Rkδkj (3.35)

With R(t) the power spectral density of v(t) and δkj the Kronecker delta. We similarly
assume that:

E[vk(x(t0)− x̄0)
T ] = 0 and E[w(t)vT

k ] = 0, ∀k, t (3.36)

As previously, it should be noted that yk does not remain Gaussian for all k, because h is
a non-linear function.

Extended Kalman Filter (EKF)

We rewrite the continuous-discrete Extended Kalman Filter (CT-DT EKF) equations: ẋ(t) = f(x(t), t) +B(t)w(t)

yk = h(xk) + vk

(3.37)

The algorithm is described below:
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Algorithm 1 Extended Kalman Filter (EKF)

Inputs: x̂+
k−1 and P+

k−1

Outputs: x̂+
k and P+

k

(1) Extrapolate state by numerical integration (ode45)

x̂−
k =

∫ tk
tk−1

f(x(τ), τ)dτ = ϕk−1,k(x̂
+
k−1), x(tk−1) = x̂+

k−1, x+
0 = x̄0

(2) Compute the transition matrix between k − 1 and k : Φk−1,k (see 3.2.2)

(3) Extrapolate the covariance

P−
k = Φk−1,kP

+
k−1Φ

T
k−1,k +Qk, P+

0 = P0

(4) Compute the estimated theoretical measurement ŷk and the measurement matrix
Hk

ŷk = h(x̂−
k ) and Hk = ∂h

∂x

∣∣
x̂−
k

(5) Compute the Kalman gain

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1

(6) Correct state and correct covariance

x̂+
k = x̂−

k +Kk(yk − ŷk)

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k

Filter tuning:

• Initial covariance on state vector: P0

• Model errors: Qk

• Measurement noise covariance: Rk

The theoretical definition of Qk is written below. However, in practice it corresponds to a
filter tuning parameter.

Qk =

∫ tk

tk−1

∫ tk

tk−1

ϕ(tk, τ)B(τ)E[w(t)wT (σ)]BT (σ)ϕT (tk, σ)dτdσ (3.38)

The extra difficulty of the EKF compared to a KF is due to the fact that at each iteration,
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the linearisation must be updated. The linearisation is computed based on the current
estimate, because no predefined nominal trajectory is available. Thus, to calculate ϕk−1,k,
we use the previous estimate, and to calculate Hk, we use the state prediction at the next
step.
An explanatory diagram of the algorithm is also shown below.

Figure 3.4: EKF algorithm

Remark : The covariance correction equation adopted is the Joseph form:

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k (3.39)

This formula is totally equivalent to the equation previously used in the navigator:

P+
k = (I −KkHk)P

−
k (3.40)

The first formulation is more complex, but it ensures that the covariance matrix remains
strictly symmetrical, which was not always the case with the old formulation. Indeed,
the old approach could lead to non-symmetric covariance matrices and negative diagonal
values σ2xi

during the first iterations of the filter. The Joseph form, on the other hand, is
symmetric by construction and solves these problems linked to numerical approximations
when subtracting very large and similar numbers.

The use of the Joseph form is common practice in the implementation of sequential filters.
Its main advantage is that it guarantees that the estimation error covariance matrix P+

k is
positive definite, at the cost of a slightly greater computational effort.

3.2.1 State Vector

Here we describe the state vector that the Navigator uses for estimation via the Kalman
Filter. The state consists of all the simulation variables that must be estimated and
corrected during navigation. In particular, they are arranged in the following order for each
receiver satellite:
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State vector parameter Notation Size

Position r (3,1)

Velocity v (3,1)

Clock H (3,1)

Solar Radiation Pressure coefficient CSRP (1,1)

Drag coefficient Cf (1,1)

Phase bias B (nbsat,1)

Thrust Error γe (3,1)

Table 3.1: State vector

The state vectors of the nbrec satellites are concatenated. Each state vector is of variable
size depending on the forces or measurements considered in the Mission Data and Directives
for each satellite.

The last term, the thrust-error, is itself a state estimated by the Kalman Filter. It is
initialized to zero, and at the first thrust event the following settings are applied:

• The thrust-error state is set to the zero vector, 03×1.

• The covariance matrix P initializes the thrust-error block as a diagonal matrix
diag(CovI ,CovI ,CovI), where CovI is specified in the thrust telecommand.

• The additive process-noise matrix (for the thrust-error state) is initialized as diag(CovM ,CovM ,CovM ),
where CovM is specified in the thrust telecommand.

• The transition Matrix takes into account two new matrices for the thrust effects.

3.2.2 Transition matrix Φ

Let inbrec the number of receiver satellites, the state transition matrix from state tk to state
tk+1 is as follows:

Φk−1,k =



ΦSat1 0 0 0

0 ΦSat2 0 0

0 0 ... 0

0 0 0 ΦSatinbrec


(3.41)

In turn, the state transition matrix associated with a satellite is as follows:
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ΦSati =



ΦPVi 0 ΦCsi→PVi ΦCfi
→PVi 0 ΦMan→PVi

0 ΦHi 0 0 0 0

0 0 ΦCsi
0 0 0

0 0 0 ΦCfi
0 0

0 0 0 0 ΦBni
0

0 0 0 0 0 ΦMan


(3.42)

For applications of this type, it is desirable to have an easily computable form for the state
transition matrix, which is accurate for short time intervals. For ΦPV , only the central
force is considered because it is well known that the transition matrix does not need to be
calculated as accurately as the state itself.
The matrix G is the gradient matrix of the gravitational field: it describes how a small change
in position influences the gravitational force experienced by a satellite. The calculation
model for G only takes into account the potential of the central body and, if we are in an
Earth orbit, the Earth flattening J2, neglecting other terms.
Currently, the MATLAB Navigator uses the J2 model around the Earth and the following
model around another star.

Gk = −GM

(
I3

∥Pk−∥3
− 3

Pk−P
T
k−

∥Pk−∥5

)
, Gk+ = −GM

(
I3

∥Pk+∥3
− 3

Pk+P
T
k+

∥Pk+∥5

)
(3.43)

HG = I3 +
∆t2

6
(2Gk +Gk+) , (3.44)

HD = ∆t

(
I3 +

∆t2

12
(Gk +Gk+)

)
, (3.45)

BG =
∆t

2
(Gk +Gk+) , (3.46)

BD = I3 +
∆t2

6
(Gk + 2Gk+) , (3.47)

ΦPV =

HG HD

BG BD

 (3.48)

Taking into account only the central term in the acceleration we have:

γ⃗ = − µ

∥P∥3
P⃗ (3.49)

And therefore the partial derivatives:
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∂γ⃗

∂P⃗
= −µ( 1

∥P∥3
I3×3 − 3P⃗

P⃗ T

∥P∥5
) (3.50)

The factor P⃗ P⃗ T is a dyadic product, which gives a 3× 3 matrix and should not be confused
with the dot product. We thus have the following expression for G:

G =
∂γ⃗

∂P
=

µ

∥P∥5


3x2 − r2 3xy 3xz

3yx 3y2 − r2 3yz

3zx 3zy 3z2 − r2

 (3.51)

This calculation of G is suitable for orbits where the central body’s acceleration is predomi-
nant. For other applications where 3rd-body forces or SRP are not negligible it would be
appropriate to include them in the calculation of G [5] [2].
For the other dynamic parameters:
The clock bias state: ΦH

ΦH =


1 ∆t

∆t2

2

0 1 ∆t

0 0 1

 (3.52)

The drag coefficient being modelled as constant: ΦCfi = 1

ΦCfi−>PVi
=

∆t2

2 γ⃗drag

∆tγ⃗drag

 (3.53)

Similarly, for the SRP : ΦSRPi = 1

ΦSRPi−>PVi =

∆t2

2 γ⃗SRP

∆tγ⃗SRP

 (3.54)

For the phase bias: ΦBiasi = 1

For the thrust error: ΦMani = I3

ΦMani−>PVi =

∆t2

2 MX−>inertial

∆tMX−>inertial

 (3.55)

with X = QSW or TNW or Inertial depending on the thrust frame

3.2.3 Measurement matrix H

The measurement matrix H is the matrix which carries all the measurements’ M partial
derivatives with relation to the state vector x. It derives from the measurement function
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h(x) and the state x

h(x) =
[
M

]
, x⊤ =

[
r⊤ v⊤ H⊤ CSRP Cf B⊤ γ⊤

e

]
,

with r,v,H, γe ∈ R3, CSRP , Cf ∈ R and B ∈ Rnbsat . (Here H denotes the clock, not to be
confused with the measurement matrix H.) The measurement matrix is the Jacobian

H =
∂h

∂x
∈ R2×(11+nbsat).

For each measurement, the measurement matrix carries different types of derivatives. In
this navigator, the two interplanetary measurements available are the Line of Sight and the
LiDAR, while there are still the GNSS measurements available.

The construction of HLOS

For the case of LOS measurements, the position of the target is expressed in an inertial
frame whose origin coincides with the centre of the satellite’s central body, with the same
origin and date as for pIsat. The image coordinates u and v are treated as two distinct
measurements.
The measurement function is

h(x) =

u
v


In the current model (without propagation time, focal length and alignments known, without
instantaneous coupling), the LOS depends at time t only on the observer’s position r. We
obtain

H =
[
Hr︸︷︷︸
2×3

∣∣ 0︸︷︷︸
2×3

∣∣ 0︸︷︷︸
2×3

∣∣ 0︸︷︷︸
2×1

∣∣ 0︸︷︷︸
2×1

∣∣ 0︸︷︷︸
2×nbsat

∣∣ 0︸︷︷︸
2×3

]
.

The non-zero block Hr groups the derivatives of (u, v) with respect to r = (x, y, z) in the
inertial frame. With LC the LOS vector in camera, MIC the inertial→camera matrix and
f the focal length, we have

Hr =

∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

 = (3.56)

=


f (LC

xM31 − LC
z M11)

(LC
z )

2

f (LC
xM32 − LC

z M12)

(LC
z )

2

f (LC
xM33 − LC

z M13)

(LC
z )

2

f (LC
y M31 − LC

z M21)

(LC
z )

2

f (LC
y M32 − LC

z M22)

(LC
z )

2

f (LC
y M33 − LC

z M23)

(LC
z )

2

 . (3.57)

The other blocks are zero: the velocity v, the clock H, CSRP , Cf and the GNSS biases B

do not affect the instantaneous optical projection in this model.
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The construction of HLiDAR

In the current model we simplify the spacecraft’s dynamics and consider the clock to be
correct: the LiDAR measurement only depends on the satellite’s position and speed

h(x) =
[
ρ

]

H =
[
Hr︸︷︷︸
1×3

∣∣ Hv︸︷︷︸
1×3

∣∣ 0︸︷︷︸
1×3

∣∣ 0︸︷︷︸
1×1

∣∣ 0︸︷︷︸
1×1

∣∣ 0︸︷︷︸
1×nbsat

∣∣ 0︸︷︷︸
1×3

]
.

The non-zero blocks Hr and Hr group the derivatives of the distance ρ with respect to
r = (x, y, z) and vx, vy, vz in the inertial frame.

HLiDAR =


∂ρ
∂x

∂ρ
∂vx

∂ρ
∂y

∂ρ
∂vy

∂ρ
∂z

∂ρ
∂vz


T

=


ûx↓ + ûx↑ (ûx↓ + ûx↑)∆tr − ûx↑ ∆t↑

ûy↓ + ûy↑ (ûy↓ + ûy↑)∆tr − ûy↑ ∆t↑

ûz↓ + ûz↑ (ûz↓ + ûz↑)∆tr − ûz↑ ∆t↑


T

(3.58)

Although higher precision would require to take into account the clock derivatives, the
actual model is simplified and considers the time clock to be correct.
The partial derivatives calculated previously will each have its place in the matrix H . Each
row corresponds to a measurement; the navigator stores the available measurements in a
specific order consistent with the measurement noise matrix R.

Complete measurement matrix H

The matrix H used by the MATLAB Navigator takes into account all the available mea-
surements, whether GNSS or LOS. The structure of the matrix uses a precise order. We
consider a code measurement for satellite 1 c1, a code measurement for satellite 2 c2, a
phase measurement for satellite 1 ph1, a phase measurement for satellite 2 ph2, a single
difference code measurement c2 − c1, a single difference phase measurement ph2 − ph1, an
ISL distance measurement d1, the two Line of Sight measurements LOSu and LOSv, one
for each image coordinate, and finally the LiDAR range measurement ρ, in this precise
order. The GNSS measurements are all attached to the same transmitting satellite.
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H =



Hm1 0

0 Hm2

Hl1 0

0 Hl2

−Hm1 Hm2

−Hl1 Hl2

Hd1 Hd2

HLOSu1 0

HLOSv1 0

0 HLOSu2

0 HLOSv2

Hρ1 0

0 Hρ2



We build the measurement function matrix
Hk. The number of rows is equal to the
number of measurements and the number of
columns is equal to the sum of the state vector
of the 2 receiver satellites. Each sub-matrix
Hi is associated with measurement i and con-
tains the partial derivatives.

3.2.4 Covariance Matrix P

According to the theory of the Extended Kalman Filter, the propagation of the covariance
matrix is carried out according to the following formula:

P−
k = Φk−1,kP

+
k−1Φ

T
k−1,k +Qk (3.59)

The first step consists in determining the model noise matrix Qk. The model error is
related to the dynamics (velocity, acceleration), while the position is obtained by integration.
Consequently, there is no model error necessary for the position. For example, it is useful
to define Qk as being zero and to observe the estimation error to determine at what point
it begins to diverge.
Suppose a model error of 10−9 in acceleration after 30 seconds. The model noise on velocity
should then be:

QV−dt = 10−9 × 30 = 3× 10−8 m2/s2

Thus, for an orbital window containing n transmitting satellites, the model noise matrix is
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defined as follows:

Qkdt =



QP−dt 0 0 0 0 0 0

0 QV−dt 0 0 0 0 0

0 0 QH−dt 0 0 0 0

0 0 0 QCf−dt 0 0 0

0 0 0 0 QCSRP−dt 0 0

0 0 0 0 0 QBias−dt 0

0 0 0 0 0 0 QMan−dt


where each sub-matrix Qi−dt is square and symmetric. In particular:

QBias−dt =



QBias1−dt 0 0 0 0 0 0

0 QBias2−dt 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 QBiasn−dt 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 0


The matrix QBias−dt is of size NbChannels × NbChannels, with NbChannels being the
maximum number of channels associated with the GNSS transmitting satellites. This
parameter is defined in the Mission Data.
To obtain Qk, we use the following relation which links the continuous model to the discrete
model:

Qkdt = Qk ×∆t

Although this matrix is constant, it is necessary to take into account the fact that the
number of phase biases changes with time. The model noises are initialised only if there
is indeed a transmitting satellite; otherwise, the value is reset to zero. This distinction is
made based on the list of PRN numbers of the transmitting satellites. The conditioning
of the covariance matrix P+

k−1 is based on the PRN numbers of the satellites of each
orbital window. Thus, from the information contained in the list of PRN numbers of the
transmitting satellites, the covariance matrix is recreated.
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3.3 Telecommands

Interplanetary missions are more complex in several respects. Many mission parameters
are likely to change, and these changes must be carried out during the simulation. The
current method implemented in the navigator consists of providing precise indications of the
parameters to change at a specific instant: the telecommands. That is why the MATLAB
navigator must be able to read and update the telecommands at input.

The telecommands are written in the file tc, and they can modify several aspects of
navigation.

• DMANO. Allows the definition of a thrust acceleration. The start of the thrust will
be the activation instant of the telecommand.

• DCORPSC. Allows the change of the central body of the mission. Fundamental for
interplanetary journeys.

• DCORPSP. Allows the change of the perturbing bodies and their active forces.

• DYN_MODEL. Allows the definition of the accelerations to consider during navigation

All the telecommands are read at the same time as the directives and they are stored in
simu.TCs. Activation of a telecommand is carried out at the beginning of the orbital window
that contains the telecommand activation time (except for DMANO which actually begins
to compute the thrust acceleration at the exact instant indicated by the telecommand).
At the beginning of each orbital window, before starting extrapolation, the MATLAB
Navigator executes the method simu.executerTelecommandes, which makes it possible to
check whether the telecommands DCORPSC, DCORPSP and DYN_MODEL are to be
executed in this window.

TC DMANO

The telecommand format indicates

• start date of the thrust (cjd in days and seconds)

• Fx, Fy, Fz the forces in the three axes;

• mi the mass at the start of the thrust;

• dt the total duration of the thrust;

• the frame in which the forces are given (usually INERTIEL);

• Isp of the thruster.

The acceleration is calculated by the formula indicated in 2.4.4, and it is computed at each
integration step.
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TC DCORPSC

DCORPSC is the telecommand responsible for changing the central body. In the case
of DCORPSC, the change of central body implies a change of state of the satellite: one
computes the distance and the velocity between the first central body and the second

PCC1→CC2 = PCC2→SSB − PCC1→SSB (3.60)

VCC1→CC2 = VCC2→SSB − VCC1→SSB (3.61)

and afterwards the state of the satellite is modified

Psat→CC2 = Psat→CC1 + PCC1→CC2 (3.62)

Vsat→CC2 = Vsat→CC1 + VCC1→CC2 (3.63)

In addition, this telecommand also changes the current potential acceleration model: the
harmonic coefficients of the potential, the radius and the gravitational constant of the
central body are updated.

TC DCORPSP

Often used with the change of central body, the telecommand DCORPSP allows the
modification of the active forces of the perturbing bodies. The forces are indicated by
booleans: direct or tide. Remark : the Love coefficients for the tide acceleration (2.4.2)
are modelled only for the Moon and the Earth; the other bodies always have a zero tide
acceleration.

TC DYN_MODEL

By a list of booleans, it is possible to modify the active forces during the simulation. The
order of the booleans is as follows:

• Acceleration of the central body

• Drag acceleration

• Solar radiation pressure

• Hill acceleration

• Relativistic acceleration

Future prospects

The four telecommands managed by the MATLAB Navigator are the most important for
performing navigation during interplanetary missions. However, there are several other

50



Interplanetary Navigation

telecommands that can be introduced: change of attitude law or rejection thresholds for
measurements, etc.
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Chapter 4

Validation Tests

4.1 Test generation

To validate the navigator, it is necessary to test it on different scenarios. However, generating
suitable missions is not simple. Real data from interplanetary missions is rare and hard
to find, and there is not yet a CNES mission providing Line of Sight nor LiDAR type
measurements.
Creating such measurements is also complex because it requires propagating a complete
mission and simulating the associated observations. To meet this need, a tool was developed
in Java with the Patrius library. The tool I developed during the internship allows to
simulate a mission, generate the corresponding measurements and produce the input files
necessary to test the navigator. The development also depends on other CNES libraries
such as Lotus, Orbito and Hera Project.

Landmark Measurement

The Line of Sight measurement generation was handled by the LandmarkMeasurement
class from LOTUS, which makes it possible to make Landmark measurements towards a
celestial body. In particular, the aim of the tests was to simulate a landmark located at the
barycentre of the celestial body and to use the generateSimulatedMeasurement function to
generate simulated measurements with Gaussian noise.
The LandmarkMeasurement class uses the same formulation as the Navigator for Line of
Sight measurements (3.1.2), taking into account both the rotation between the camera and
the satellite and the attitude of the satellite itself.

Relative Two Way Distance Measurement

The LiDAR-type measurement was also generated by a class from LOTUS, the RelativeT-
woWaysDistanceMeasurement, which makes it possible to generate LiDAR measurements
towards a landmark with a known ephemeris. In particular, the aim of the tests was to
simulate a landmark located at the barycentre of the celestial body, while the distance
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measurement is taken from the reflection on the celestial body’s surface, and to use the gener-
ateSimulatedMeasurement method to generate simulated measurements with Gaussian noise.

Finally, the LOS and LiDAR measurements are written to the directives file in a format
readable by the Navigator.

4.1.1 The mission generator

Interplanetary missions are often very complicated: for this reason, the tool has been
designed to be simple to use, easily extensible and modifiable, both in the mission dynamics
and in the measurement parameters.
The interplanetary mission is divided into phases, each defined by a set of specific parameters.
The phase constructor, PhaseConfig, takes all this data as input

• Name: phase identifier.

• Central body: body around which the phase is propagated.

• Integration frame: frame used for propagation.

• Start date: initial instant of the phase.

• End date: final instant of the phase.

• Initial orbit: starting orbit (only for the first phase).

• Perturbing bodies: list of bodies whose direct acceleration should be taken into
account.

• Occulting bodies (SRP): bodies capable of occulting the sun (influences the SRP).

• Attitude: applied attitude law (generally BodyCenterPointing).

• Generate measurements (genMeasures): boolean indicator to activate or not
the generation of measurements.

• useDrag: boolean indicator to activate or not drag forces.

• Interpolation step: time step used for interpolation.

• LOS Measurement step: time step between each LOS measurement.

• LiDAR Measurement step: time step between each LiDAR measurement.

• Stop event: condition which interrupts propagation before the end date.

• Data on manoeuvres: parameters defining the manoeuvres carried out during the
phase.
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The MATLAB Navigator is designed to always consider a central body; during an inter-
planetary trajectory, the central body can change several times. This division into phases
makes it possible to better manage the complete mission and to generate the telecommands
necessary for changes during the phases.
It is also possible to modify the measurement conditions: type of camera, standard devia-
tion, resolution, orientation on the satellite and, in addition, bias on the camera or on the
position of the planet’s barycentre.

Initialize
Environment

Measuring parameters choice

Phases definition (PhaseConfig)

Writing MissionData

Propagation
of the phase i

Event
satisfied ?

Stop
propagation

Propagate till
end date

Generating LOS & LiDAR measures

Writing
directives, tc

Last phase ?

Generate ephemeris

oui non

Figure 4.1: Structure of the test generation code

All the mission parameters are written into the MissionData and the progress of the mission
is described by the directives and the telecommands.
The propagator simulates each phase taking into account the specified forces and thrusts,
generating the measurements at each specified interval and producing the input files for
the Navigator as well as a final reference ephemeris.
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4.2 Orbital tests

An orbital trajectory is a simple trajectory carried around a central body, without manoeu-
vres, change of central bodies and close to the planet. It is the simplest type of environment
for space navigation, and it is the environment for which navigator has been developed.
Orbital tests are used to validate certain functionalities of the Navigator. All the tests
carried out were generated with Patrius (sec. 4.1).
Among the functionalities of the Navigator, those that we wish to validate are:

• Extrapolation in ICRF (instead of CIRF);

• Calculation of the acceleration potential around another planet;

• Accuracy of the conversion to BCF;

• Calculation of the position of the perturbing bodies via the ephemerides;

• Modelling of the satellite plates for solar radiation pressure (SRP);

• Navigation by Line of Sight (LOS): stability of the measurements, reliability of the
navigation and limits.

• Navigation by both Line of Sight and LiDAR: stability of the measurements, reliability
of the navigation and limits.

We expect very precise results for state propagation alone; these performances depend on
the dynamic model, which must be correctly modelled. On the other hand, LOS navigation
should be less precise. As explained in sec. 3.1.2, LOS measurements are essentially angular
(phase measurements) and poorly suited to estimating the radial distance: we therefore
expect the radial error not to be corrected by the filter and the estimate to diverge in
the long term. With LOS+LiDAR navigation, finally, we should obtain the best possible
accuracy the navigator can reach.
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4.2.1 Moon

Figure 4.2: Orbit around the Moon

Test configuration

The dynamical model is configured to use the Moon as the central body, with its gravitational
potential represented up to degree and order 20. Only the central lunar gravity field is active
in this test. All additional forces (drag, solar radiation pressure, relativistic corrections and
Hill approximation) are disabled in the dynamic settings.
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Quantity Value

Central body Moon

Perturbing bodies None

Reference frame ICRF

Epoch (CJD) 26333.00043

Epoch (calendar) 05 February 2022 00:00:37.15

Time scale TAI

Semi-major axis a 3.4985× 106 m

Eccentricity e 4.22× 10−4

Inclination i 0◦

RAAN Ω 0◦

Argument of periapsis ω 0◦

True anomaly 180◦

Duration 24 h

Extrapolation step 10

LOS measurement step 10

LiDAR measurement step 1

Table 4.1: Initial orbital elements for Test #1 (single spacecraft around the Moon).

Initial satellite’s state:

r0 =
[
3.5× 106 0 0

]T
m, v0 =

[
0 1183.553997 0

]T
m/s.

The process noise associated with the orbital state is specified as diagonal in the configuration
file. Each Cartesian position component (X,Y, Z) is assigned a model noise covariance of
1× 10−6 in the units of the state, while each velocity component (VX , VY , VZ) is assigned a
model noise covariance of 1× 10−12. All other model noise entries are set to zero.
To quantify the error, the RMS will be computed. For position, the components of the error
vector are denoted by ep,R(ti), ep,AT(ti) and ep,CT(ti), while for velocity, the corresponding
components are ev,R(ti), ev,AT(ti) and ev,CT(ti).
For each component, the root-mean-square (RMS) error is computed over the N samples of
the arc according to

RMSr,k =

√√√√ 1

N

N∑
i=1

ep,k(ti)2, RMSv,k =

√√√√ 1

N

N∑
i=1

ev,k(ti)2,
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with k ∈ {R,AT,CT}.

Tests without measurements

In order to validate the accuracy of the dynamic model, we use a test around the Moon
without any measurement, to compare the orbit propagated by the navigator with the real
orbit.
The performance of the navigator is evaluated in the local orbital frame associated with
the reference trajectory. At each epoch, the estimation error is defined as the difference
between the estimated and reference state, projected onto the radial (R), along-track (AT)
and cross-track (CT) directions.

Figure 4.3: Results of the simulation without measurements around the Moon

The estimation errors are obtained by transforming the x,y,z ICRF coordinates into QSW
coordinates (as explained in 2.1.3), in order to observe the radial, along-track or normal
errors to the orbital plane. The errors show that the models used are extremely precise and
follow the real orbit well. The Moon has a potential that is calculated to degree 20 and the
acceleration models give an orbit almost perfectly equal to the reference one. This type of
test is very useful for visualising the reliability of the dynamic model; however, without
a Kalman filter, an error can easily propagate and cause the estimation to diverge while
never being corrected. Therefore, the no-measurement test gives no information on the
performance of the filter. The prediction of the state is very precise, but without error
correction, an initial error would propagate throughout the whole mission.
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Navigation by Line of Sight

A test with LOS measurements allows the navigation with only LOS measurements to be
validated. The adopted scenario uses an entry orbit different from the real orbit; we expect
the measurements to correct this error.
We introduce a simulated error of 100 m on the tangential component of the satellite’s
position. LOS navigation being angular only, we expect the radial component to be unstable
and diverge, while the Kalman filter remains capable of correcting the error and correctly
estimating the along-track and normal components.

Figure 4.4: Correction of the orbit error: estimation of the first 30 minutes

We observe that the initial error is corrected in a few seconds. The filter correctly estimates
the satellite’s position, even if the input measurements are noisy. Oscillations persist,
however, especially at the beginning of the test, because LOS measurements are rarely used
without other sensors, such as a LIDAR. In addition, on board the satellite, LOS image
processing can be computationally expensive; the number of measurements is therefore
reduced. Here, one LOS measurement per orbital window (every 30 s) was simulated.
Finally, in the long term, navigation remains precise.
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Figure 4.5: Position estimation over the entire test

Figure 4.6: Velocity estimation over the entire test

The resulting RMS values for position and velocity in the three directions are
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Direction RMS Position RMS Speed

Radial 0.516931 0.001809

Along-Track 2.759374 0.000050

Normal 0.469412 0.000175

3D 2.846351 0.001818

Table 4.2: Error in position and speed with LOS measurements

Navigation by Line of Sight & LiDAR

As shown before, navigation by Line of sight requires a few hours to correct the error;
however when covariance reduces, the navigator provides optimal results over the long term.
Now, the objective is to compare navigation performed with only LOS to navigation that
combines LOS and LiDAR. The result will obviously be much more precise since the LiDAR
measurements are also much more frequent.

Figure 4.7: Position estimation over the whole mission, with measurements in LOS and LiDAR

As expected, the estimation is significantly more precise and stable, the navigator corrects
the initial error in a matter of seconds rather than hours compared with LOS navigation.
The overall precision reaches the tenth of millimetres although there still are very little
oscillations in normal estimation.
The overall performance of the navigation can be understood analysing the RMS results.

61



Validation Tests

Direction RMS Position RMS Speed

Radial 0.015784 0.000405

Along-Track 0.599101 0.000012

Normal 0.766491 0.000221

3D 0.972975 0.000461

Table 4.3: Error in position and speed with LOS+LiDAR measurements

This table clearly shows better results than the LOS-only navigation. This will be clear in
the final comparison.

Final Comparison

Direction
RMS Position RMS Speed

LOS only LOS + LiDAR LOS only LOS + LiDAR

Radial 0.516931 0.015784 0.001809 0.000405

Along-Track 2.759374 0.599101 0.000050 0.000012

Normal 0.469412 0.766491 0.000175 0.000221

3D 2.846351 0.972975 0.001818 0.000461

Table 4.4: Comparison of RMS position and speed errors for LOS-only and LOS+LiDAR
navigation.

As it is clearly shown, the LiDAR measurements give significantly more precise navigation
on all directions, not only radial. Overall, a simple test like this shows an acceptable error
also for LOS-only navigation, however orbits are rarely as simple as this one.

4.2.2 Didymos

A final orbital test is carried out around Didymos. Didymos is a binary asteroid (Didymos
+ Dimorphos) located at about 1.6 AU from the Sun. It is the target of the Hera mission
(ESA), launched on 7 October 2024, which will reach the system at the end of 2026 after
an interplanetary cruise, then will evolve in a quasi-orbit around the pair. It will deploy
the Milani and Juventas CubeSats to map, probe the interior of Dimorphos and precisely
measure the effects of the impact.
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Here, we test the effectiveness of navigation around a small celestial body. For this case, the
orbit is elliptical and retrograde, with a non-zero inclination and eccentricity. The satellite
approaches up to 470m above the surface.

Test configuration

The dynamical model is configured to use the Didymos system as the central body, with its
gravitational potential represented up to degree and order 20. In addition to the central
gravity field of Didymos, the perturbing bodies are the Moon, the Earth and the Sun. The
only non-gravitational active force is the Solar Radiation Pressure.

Quantity Value

Central body Didymos

Perturbing bodies Earth, Moon, Sun

Reference frame ICRF

Epoch (CJD) 28139.56233

Epoch (calendar) 16 January 2027 13:29:45.657

Time scale TAI

Semi-major axis a 1752.86

Eccentricity e 0.4866

Inclination i 140.00°

RAAN Ω 10.00°

Argument of periapsis ω 316.71°

True anomaly 93.29°

Duration 48 h

Extrapolation step 30 s

LOS measurement step 30

LiDAR measurement step 1

Table 4.5: Mission parameters for Test #2 (single spacecraft around Didymos).

Initial satellite’s state:

r0 =
[
1011.366202 −641.686084 677.622735

]T
m,

v0 =
[
−0.047348 −0.133598 0.103500

]T
m/s.
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The process noise associated with the orbital state is specified as diagonal in the configuration
file, where the noise entries are the same as the previous mission.

Navigation by Line of Sight

The navigation results around a small body in a peculiar orbit highlight the limitations of
relying solely on line-of-sight measurements. This test is performed with an initial error of
100,m in both the along-track and normal position components, as well as a 0.5,m/s error
in the along-track velocity. In orbit around an asteroid, such errors are difficult to correct,
making this scenario a stringent test of the navigator’s ability to recover from significant
errors in an unusual orbital configuration.

Figure 4.8: Orbit around Didymos with initial error. Note the correction of the error.

On figure 4.9, we observe the result of correcting the initial error.
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Figure 4.9: Correction of the initial error on the orbit around Didymos.

The initial error on the tangential and normal components is indeed corrected; however, the
correction is slower on the radial and not definitive. In fact, around more massive bodies,
gravitational dynamics exerts a more marked effect on the Kalman filter, which facilitates
the reduction of errors; around Didymos, we therefore expect less precise performance,
especially on the radial.
It can be seen that the residual error lies outside the 3σ bounds. This behaviour indicates an
inconsistency in the physical modelling of the mission: a mismatch between the gravitational
model used by the Navigator and the one implemented in Java used to generate the test.
The discrepancy becomes larger as the spacecraft moves away from Didymos, but decreases
as it approaches the central body. Unfortunately, Didymos’ gravitational harmonics are
CNES internal data, impossible to have access to. For this reason, all missions around
Didymos show errors outside the expected covariance: the navigator believes it knows the
true orbit but underestimates its uncertainties.
Although this behaviour is clearly undesired, Figure 4.10 shows that the navigator is able
to correct the initial error; in this case it demonstrates the robustness of the navigator in
correcting the error even when the available physical parameters are not precise. It also
suggests that accurate navigation around unknown bodies is still achievable. However this
only works in the directions the navigator has information on, which are Along Track and
Normal. Without LiDAR measurements, the radial estimation diverges.

65



Validation Tests

Figure 4.10: Complete estimation around Didymos.

The results obtained remain, nevertheless, sufficiently precise around non-radial directions,
as shown in Table 4.6.

Direction RMS Position RMS Speed

Radial 48.216298 0.004028

Along-Track 0.034537 0.002389

Normal 0.040505 0.000310

3D 48.216327 0.004694

Table 4.6: Error in position and speed with LOS measurements

Navigation by Line of Sight & LiDAR

The navigator will now be tested in the same orbit and the same initial errors with the
help of LiDAR measurements.
The results obtained show an increase in precision and especially in the reactivity of the
navigator. As shown in Figure 4.11, the initial error is corrected much faster than in the
LOS-only test.
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Figure 4.11: Correction of the initial error with LOS+LiDAR measurements

Results still show that the covariance is too narrow, and some estimates fall outside of the
3σ limit. The reason for this occurrence is an error in the modelling as explained previously.
Nonetheless, the combined effect of LOS and LiDAR measurements defines a significantly
more precise estimation around the asteroid.

Figure 4.12: Estimation around Didymos with LiDAR measurements

The overall estimation mission shows extremely precise navigation, with sub-centimetre
errors, in Table 4.7.
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Direction RMS Position RMS Speed

Radial 0.046601 0.000216

Along-Track 0.031666 0.000171

Normal 0.040078 0.000310

3D 0.069143 0.000415

Table 4.7: Error in position and speed with LOS+LiDAR measurements

Final Comparison

In Table 4.8 the comparison shows the difference between the LOS-only and the LOS+LiDAR
navigation.

Direction
RMS Position RMS Speed

LOS LOS + LiDAR LOS LOS + LiDAR

Radial 48.216298 0.046601 0.004028 0.000216

Along-Track 0.034537 0.031666 0.002389 0.000171

Normal 0.040505 0.040078 0.000310 0.000310

3D 48.216327 0.069143 0.004694 0.000415

Table 4.8: Comparison of RMS position and speed errors for LOS and LOS+LiDAR measurements.
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4.3 Interplanetary tests

The MATLAB navigator has been developed to be adaptable to all kinds of interplanetary
navigation, providing an estimate of the satellite’s state even when its trajectory is not a
simple orbit. Propagation in deep space is programmed to be just as precise as in orbits
close to planets; however, the state correction via measurements requires measurements
adapted to deep-space conditions.
The measurements developed in this internship, Line of Sight and LiDAR, can provide
information on the satellite’s state relative to other landmarks, but they strongly depend
on the distance to those landmarks. In deep space, distant bodies tend to appear almost
immobile relative to the spacecraft, so the measurements carry very little information and
the estimation diverges.
In this section, the navigator will be tested on non-orbital trajectories, in order to analyse
its response to a simplified manoeuvre model and to navigation around more distant bodies.
In particular, two cases are considered: the HERA mission (the trajectory of the Juventas
CubeSat) and an interplanetary mission towards another asteroid. The latter is designed
from scratch.

4.3.1 Juventas mission: first week

The capabilities of the navigator are particularly well illustrated during a navigation test
for the HERA mission, with the CubeSat Juventas. The trajectory of Juventas is atypical
and manoeuvres play a crucial role. This test consists in evaluating LOS navigation during
the first week of the mission, taking into account the effects of manoeuvres.

As mentioned before, the measurements by Line of Sight do not take into account the radial
distance and are not capable of correcting range errors. Navigation by only LOS prevents
the correct handling of manoeuvres during the simulation since the model is simplified.
Distance measurements can correct those errors; without them, the estimation is expected
to diverge. Moreover, the current model of acceleration by thrust is very simplified, which
is expected to generate significant errors in the estimation

Test configuration

In this scenario the spacecraft moves in the vicinity of the Didymos system, which is taken
as the central gravitating body. The dynamics are propagated in the inertial ICRF frame,
using a spherical-harmonic representation of the gravity field of Didymos up to degree and
order 20. The gravitational attraction of the Moon, the Earth and the Sun is included as
third–body perturbations. Also Solar Radiation Pressure is taken into account.

69



Validation Tests

Table 4.9: Initial orbital elements for the Didymos test case (single spacecraft).

Quantity Value

Central body Didymos

Perturbing bodies Earth, Moon, Sun

Reference frame ICRF

Epoch (CJD) 28139.56233

Epoch (calendar) 16 January 2027 13:29:45.657 (TAI)

Semi-major axis a −2.263× 103 m

Eccentricity e 12.320

Inclination i 93.49◦

RAAN Ω 282.33◦

Argument of periapsis ω 326.11◦

True anomaly 341.16◦

Duration 7days

Integration step 30 s

The osculating Cartesian state at the reference epoch is

r0 =
[
4759.868642 −15665.117650 −21410.562487

]T
m,

v0 =
[
0.010040 −0.077149 0.109334

]T
m/s.

Stochastic modelling of the orbital state follows the same philosophy adopted in the other
test cases.

Navigation by Line of Sight

As explained before, the Juventas mission heavily relies on manoeuvres in order to follow
the correct trajectory. These errors are expected to be corrected by the Kalman Filter.
However, in a LOS-only navigation the radial error will not be corrected.
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Figure 4.13: Trajectory during the first week of the HERA mission with Juventas.

Navigation is precise at the beginning of the trajectory; however, an error appears during
the manoeuvre.
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Figure 4.14: Zoom on the first manoeuvre of Juventas.

Although the manoeuvre is correctly applied, the navigator’s manoeuvre model (which only
uses mean acceleration in orbital window) leads to a divergence in the estimation. On the
other hand, the LOS measurements allow for the effective correction of the tangential and
normal components, while the radial error persists. This tendency is clearly visible in the
estimation of the trajectory, presented in figure 4.15.
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Figure 4.15: Estimation error of the Juventas trajectory.

The performances are listed in Table 4.10

Direction RMS Position RMS Speed

Radial 1515.966104 0.003899

Along-Track 0.116177 0.007326

Normal 0.097455 0.000074

3D 1515.966111 0.008299

Table 4.10: Error in position and speed with LOS measurements

A comparison with the navigation with both LOS and LiDAR will show that this problem
is easily avoidable with a distance measurement.

Navigation by Line of Sight & LiDAR

A new test integrating LiDAR measurements will show the performance of the estimation
during the first week of the HERA mission for Juventas.
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Figure 4.16: Juventas Orbit of the first 7 days of the mission, with LiDAR measurements

As shown in Figure 4.16, the navigator now follows the reference precisely, executing the
manoeuvre with perfect precision. The simplified model for thrust acceleration indeed
causes errors in the state, but the Kalman Filter is capable of using the information in
the range measurement and the angular measurements to correct the state. This is clearly
visible in the estimation plot, Figure 4.17
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Figure 4.17: Position estimation during the first week of the Juventas trajectory, with LiDAR
measurements

The estimation plot shows that measurement updates promptly correct the thrust error,
keeping the overall state error at the centimetre level. However, the estimate occasionally
falls just outside the predicted covariance bounds, suggesting residual dynamical mismod-
elling. Because the same pattern was observed in the Didymos orbital case (Sec. 4.2),
the most plausible cause is a mismatch between the asteroid gravity model used by the
navigator and the one used by the mission generator in Patrius (Sec. 4.1). Since both
models rely on CNES internal data, harmonising them should be feasible and would likely
remove this discrepancy.

Direction RMS Position RMS Speed

Radial 0.046096 0.000216

Along-Track 0.032475 0.000171

Normal 0.039401 0.000310

3D 0.068788 0.000415

Table 4.11: Error in position and speed with LOS+LiDAR measurements
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Final Comparison

Direction
RMS Position RMS Speed

LOS LOS + LiDAR LOS LOS + LiDAR

Radial 1515.966104 0.046096 0.003899 0.000216

Along-Track 0.116177 0.032475 0.007326 0.000171

Normal 0.097455 0.039401 0.000074 0.000310

3D 1515.966111 0.068788 0.008299 0.000415

Table 4.12: Comparison of RMS position and speed errors for LOS and LOS+LiDAR measure-
ments.

The final comparison of the two different navigation methods once again shows that LiDAR
measurements are necessary for space navigation, especially with manoeuvres.

4.3.2 Interplanetary trajectory

For the HERA mission, internal CNES data were available for analysis; by contrast, real
interplanetary trajectories are not available for testing. To validate the navigator in a
realistic deep-space context and to study its behaviour over a complete interplanetary
transfer, a full mission from Earth to an asteroid will be designed in Chapter 5 using an
optimal-control-based trajectory optimisation.
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Chapter 5

Guidance and Interplanetary
Trajectory Optimisation

5.1 Introduction to Interplanetary Trajectory Optimisation

The work presented in the first part of this thesis concentrated on the development of an
interplanetary navigator. The navigator, implemented in a high-level environment for ease
of analysis and modularity, brings together detailed dynamical models and measurement
models into an Extended Kalman Filter architecture. Despite significant progress, only
a limited amount of real mission data were available for validation. In particular, the
absence of long-range interplanetary trajectories in which line-of-sight (LOS) and LiDAR
measurements are combined meant that the navigation performance could not be assessed
over the entire cruise. To overcome this limitation and to test the navigator in a realistic
setting, a synthetic mission was created. Rather than waiting for flight data to become
available, the thesis also focused on the development of a representative interplanetary
transfer: a low-thrust spiral from Earth’s vicinity to a small asteroid.
This second part of the work thus serves a dual purpose. Firstly, it generates a physically
consistent reference trajectory, which will later be used to simulate measurements and
evaluate the navigation filter. Secondly, it sheds light on the theory and practice of low-
thrust trajectory optimisation, to provide an overview of both Guidance and Navigation
aspects of an interplanetary space mission. The optimisation problem is framed as the
minimisation of propellant consumption subject to the dynamics of a spacecraft equipped
with a continuous low-thrust propulsion system.
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5.2 Optimisation of a Space Trajectory

Trajectory optimisation can be performed using either direct methods, in which the control
history is discretised and a large nonlinear programming problem is solved, or indirect
methods that derive necessary conditions for optimality by means of the calculus of
variations. Indirect methods are characterised by high numerical precision and compact
parameterisation but often suffer from convergence difficulties. In this work, we adopt an
indirect approach because it provides a rigorous framework for deriving the control law and
reduces the number of unknown parameters to a manageable set.
In general, an indirect method is defined by:

• A state vector x, which collects the mission quantities to be tracked

• A control vector u, used to explore candidate solutions and find the optimal one

• An independent variable, usually the time t

• Differential equations ẋ = f(x, u, t) describing the evolution of the state as a
function of time and control

• Boundary conditions χ(x(t0), x(tf ), t0, tf ) = 0, usually set by mission requirements

• Functional J = φ(x(t0), x(tf ), t0, tf ) +
∫ tf
to
ϕ(x(t), u(t), t)dt (we will use the Mayer

form, where ϕ = 0)

After defining all parameters of the optimal control problem, the necessary conditions
for the optimal solution are two: the functional J must be stationary and the boundary
conditions must be satisfied.

5.2.1 Optimal Control Theory

The optimisation of an interplanetary trajectory typically begins by partitioning the
trajectory into multiple arcs over which the variables are continuous and the control law is
the same. Continuity across arcs is enforced by boundary conditions at the arc endpoints,
where each variable assumes the value x(j−1)+ and xj− , where ’+’ and ’-’ symbolize the
values to the left or the right of point j. This helps take into account discontinuities, such
as flybys or impulsive manoeuvres. The functional J is then augmented to take into account
the costate variables λ and the adjoint constants µ.

J∗ = φ+ µTχ+
n∑

j=1

∫ t−j

t+j−1

λT
(
f − ẋ

)
dt

The Hamiltonian of the system is defined as H = λT f (in Mayer form we consider ϕ = 0).
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The values for J and J∗ depend on the values at the boundaries for time t, state x, time
derivatives of the state ẋ and control u.
Each arbitrary variation δx, δu, δx(j−1)+ , δxj− , δt(j−1)+ , δtj− causes

δJ∗ =

(
−H(j−1)+ +

∂φ

∂t(j−1)+

+ µT
∂χ

∂t(j−1)+

)
δt(j−1)+ +

(
Hj− +

∂φ

∂tj−
+ µT

∂χ

∂tj−

)
δtj−

+

(
λT(j−1)+

+
∂φ

∂x(j−1)+

+ µT

[
∂χ

∂x(j−1)+

])
δx(j−1)+ +

(
− λTj +

∂φ

∂xj−
+ µT

[
∂χ

∂xj−

])
δx−j

+
∑
j

∫ tj−

t(j−1)+

[(
∂H

∂x
+ λ̇T

)
δx+

∂H

∂u
δu

]
dt, j = 1, . . . , n

In order to find a maximum or minimum, the functional J has to be stationary, which means
the first variation δJ must be equal to zero for any admissible δx, δu, δx(j−1)+ , δxj− , δt(j−1)+ , δtj+ .
Adjoint variables and multipliers (adjoint constants) are introduced to nullify the coefficients
of each variation.
Adjoint (costate) dynamics — Euler–Lagrange form:

dλ

dt
= −

(
∂H

∂x

)T

(5.1)

Control optimality condition (
∂H

∂u

)T

= 0 (5.2)

With this formulation, the optimal solution also depends on bounds on the control, which is
independent of the functional. When control is bounded, such as when the thrust magnitude
is bounded as 0 ≤ T ≤ Tmax, the optimal control lies on the boundary of the admissible set.
Optimal boundary conditions

−λ−T
j +

∂φ

∂x−j
+ µT

[
∂χ

∂x−j

]
=0, j = 1, . . . , n (5.3)

λ+T
j +

∂φ

∂x+j
+ µT

[
∂χ

∂x+j

]
=0, j = 0, . . . , n− 1 (5.4)

H−
j +

∂φ

∂t−j
+ µT

∂χ

∂t−j
=0, j = 1, . . . , n (5.5)

−H+
j +

∂φ

∂t+j
+ µT

∂χ

∂t+j
=0, j = 0, . . . , n− 1 (5.6)

where j− and j+ denote values immediately before and after point j, respectively. Without
µT :, the optimal boundary conditions are defined as

σ(x(j−1)+ , xj− , λ(j−1)+ , λj− , t(j−1)+ , tj− , ) (5.7)
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which are different from the boundary conditions described in 5.2

5.2.2 Boundary Value Problem

Optimal control theory often leads to a system of boundary differential equations in which
the initial values of the variables are not known a priori. The solution is obtained by
integrating the variational system so as to satisfy all the boundary conditions χ and the
optimal boundary conditions σ.
The main complication of indirect methods is often the solution of the resulting boundary-
value problem (BVP), which, in general,

• divides the integration domain into subintervals where the differential equations may
change,

• has subinterval durations that are unknown,

• involves boundary conditions that can be nonlinear,

• may include variables that are discontinuous across internal boundaries.

The uncertainty on the duration is handled through the stretched variable ϵ

ϵ = j − 1 +
t− tj−1

τj
(5.8)

where τj is the duration of the j-th interval.
The problem is then reformulated without explicitly distinguishing between state variables
x and adjoint variables λ; it becomes a differential problem in y = (x, λ):

dy

dt
= f∗(z, ϵ) (5.9)

Since the problem now depends on boundary parameters, which may be variables or
constants, it is finally written in terms of the vector z = (y, c), where c is a vector of
constant parameters. Thus:

dz

dϵ
= f(z, ϵ) (5.10)

Inside z we have
dy

dϵ
= τj

dy

dt
,

dc

dϵ
= 0 (5.11)

Boundary conditions are defined as
Ψ(s) = 0 (5.12)

where s is the vector of boundary values s = (y0, y1, . . . , yn, c). None of the boundary
values is assumed to be known, and the solution is obtained through an iterative procedure
in which each iteration starts from the values computed in the previous one. This means
that the BVP requires an initial guess p1, and the rth iteration starts from z(0) = pr. A
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variation on the initial guess ∆p causes a variation on the boundary conditions ∆Ψ defined
as

∆Ψ =

[
∂Ψ

∂p

]
∆p (5.13)

The objective is to have Ψ = 0, so each iteration the variation has to be ∆Ψ = −Ψr−1.
This means that at each iteration, the initial values have to be corrected with

∆p = pr+1 − pr = −

[
∂Ψ

∂p

]−1

Ψr (5.14)

where [
∂Ψ

∂p

]
=

[
∂Ψ

∂s

] [
∂s

∂p

]
(5.15)

The first one can be immediately acquired by deriving the boundary conditions with respect
to their parameters; the second one depends on the boundary values assumed by

[
∂z
∂p

]
in

all the intervals ϵ = 0, 1, ..., n. It can be calculated by integrating the homogeneous system

˙[
∂z

∂p

]
=

[
∂g

∂z

][
∂z

∂p

]
(5.16)

where [
∂z

∂p

]
= [g(ϵ)] (5.17)

and
˙[g] =

d

dε

[
∂z

∂p

]
=

[
∂

∂p

(
dz

dε

)]
=

[
∂f

∂p

]
=

[
∂f

∂z

]
[g] (5.18)

This formulation also helps finding initial values of the system:

[g(0)] =

[
∂z(0)

∂p

]
= [I] (5.19)

Finally, the Boundary Value Problem only depends on two elements,
[
∂Ψ
∂s

]
and

[
∂s
∂p

]
. Also,

the
[
∂Ψ
∂s

]
matrix can be derived numerically by analysing the response ∆Ψ(∆pi) of the

system to small variation ∆pi of parameters pi.
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5.3 Optimization of a space trajectory: flyby near asteroid
2000 SG344

5.3.1 The mission

The asteroid 2000 SG344 is a small near-Earth asteroid first observed in 2000. It is assumed
to have a mass of about 7.1× 107 kg and a diameter of about 37 m. Its importance stems
from the fact that it has been cited as one of the near-Earth objects with a relatively high
listed probability of impacting Earth within the next century, with estimates around 1 in
360 between 2069 and 2121 [6]. The Italian Space Agency has expressed strong interest
in this asteroid, and for this reason, Professor Lorenzo Casalino developed a trajectory
optimizer in Fortran, which I will use to find the optimal flyby trajectory and to test the
Interplanetary Navigator.

5.3.2 Setup of the variational problem

The trajectory is heliocentric and subject to a low-thrust acceleration vector. As a low-
thrust mission, the expected duration is on the order of one to two years, modelled here
with a single arc (although the method can operate with multi-arc trajectories). We adopt
an inertial reference frame aligned with the ecliptic and describe the spacecraft state in
spherical-polar coordinates (r, ϑ, φ) with associated velocities (u, v, w) measured in a local
frame.
The objective function to be minimised is the propellant mass consumed during the
manoeuvres, or equivalently to maximise the final mass mf .

min JMayer = −m(tf ) subject to ṁ = − T

Ispg0
.

The state vector

The state vector comprises 14 variables:

y = [r, ϑ, φ, u, v, w,m, λr, λϑ, λφ, λu, λv, λw, λm]T (5.21)

As explained in Sec. 5.2.1, the λ variables are the adjoint (costate) variables of the optimal
control problem.
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The differential equations that describe the evolution of these state variables are:

ṙ = u, (5.22)

ϑ̇ =
v

r cosφ
, (5.23)

φ̇ =
w

r
, (5.24)

u̇ = − 1

r2
+
v2

r
+
w2

r
+
T

m
sin γT + a(Earth)

r , (5.25)

v̇ = −uv
r

+
vw

r
+
T

m
cos γT cosψT + a

(Earth)
ϑ , (5.26)

ẇ = −uw
r

− v2 tanφ

r
+
T

m
cos γT sinψT + a(Earth)

φ , (5.27)

ṁ = − T

Ispg0
(5.28)

where γT and ψT are the corresponding angles for the thrust T and the terms a(Earth)
i (t, r, ϑ, φ)

are the perturbations caused by Earth’s gravity.
As for the evolution of the co-state variables, their differential equations follow from the
Euler–Lagrange equations:

λ̇r =
1

r2

[
λϑ

v

cosϕ
+ λϕw + λu

(
−2

r
+ v2 + w2

)
+ (5.29)

+ λv (−uv + vw tanϕ) + λw
(
−uw − v2 tanϕ

) ]
+ µEarth

r (5.30)

λ̇ϑ = 0 + µEarth
ϑ (5.31)

λ̇ϕ =
1

r cos2 ϕ

(
−λϑv sinϕ− λvvw + λwv

2
)
+ µEarth

φ (5.32)

λ̇u =
1

r
(−λrr + λvv + λww) (5.33)

λ̇v =
1

r

[
−λϑ

1

cosϕ
− 2λuv + λv (u− w tanϕ) + 2λwv tanϕ

]
(5.34)

λ̇w =
1

r
(−λϕ − 2λuw − λvv tanϕ+ λwu) (5.35)

λ̇m =
T

m2
λV (5.36)

where the terms µEarth
i (t, r, ϑ, φ, u, v, w, λ) are the effect of Earth’s gravitational perturba-

tions on the co-state variables.
The adjoint variables quantify the sensitivity with respect to each state component; they
will be used in Sec. 5.3.2.
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The control vector

For a space trajectory, the control is defined by the spacecraft’s thrust magnitude T and
its direction, given by the angles γT and ψT .

u = (T, γT , ψT )
T (5.37)

To compute the optimal thrust direction, optimal control theory uses the adjoint variables
described in Sec. 5.3.2. These variables allow the optimal thrust direction to be computed
at each step of the optimization and to depend on the state variables as displayed here.

sin γT =
λu
λV

(5.38)

cos γT cosψT =
λv
λV

(5.39)

cos γT sinψT =
λw
λV

(5.40)

where
λV =

√
λ2u + λ2v + λ2w (5.41)

is the magnitude of the primer vector, which is parallel to the optimal thrust direction.
To compute the optimal thrust magnitude, the switching function is used:

SF =
λV
m

− λm
c

(5.42)

At each step, if SF > 0 the thrust is set to its maximum value Tmax; if SF < 0 the thrust is
set to (near) zero. This is consistent with a bang-bang control, where thrust is either on or
off. The effective exhaust speed c is considered constant during this trajectory.

The optimal solution

The optimal solution is subject to prescribed boundary conditions on the initial state
(r0, ϑ0, φ0, u0, v0, w0) and on the final state at arrival (rf , ϑf , φf , uf , vf , wf ). In the Mayer
formulation, the performance index is J = −mf .
Following the calculus of costate variables (Sec. 5.3.2) (λr, λϑ, λφ, λu, λv, λw, λm), the
Hamiltonian is

H = λru+ λϑ
v

r cosφ
+ λφ

w

r
+ λu

(
− 1

r2
+
v2 + w2

r

)
+

+ λv

(
−uv
r

+
vw

r

)
+ λw

(
−uw

r
− v2 tanφ

r

)
+ λm

(
− T

Ispg0

)
+
T

m
p · uT+

+ λua
(Earth)
r + λva

(Earth)
ϑ + λwa

(Earth)
φ

(5.43)

where p = (λu, λv, λw) is the primer vector and uT is the unit vector in the thrust direction.
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The optimality conditions require that the control maximise H at each time. When the
thrust level is fixed, this reduces to steering the thrust along the primer direction; the
switching function determines whether to thrust or coast based on the sign of λm and the
magnitude of p.
Since this trajectory is modelled with a single arc, the only boundary conditions are the
initial and final states.

5.4 Solution Method and Algorithmic Structure

The algorithm is implemented in a Fortran software, which uses the BVNGL [7] method to
solve the variational problem. The structure of the code can be summarised as follows:

1. Initial guess: Choose an initial guess for the unknown parameters, including the
initial values of the costate variables. Suitable guesses can be obtained from simplified
analytic solutions or by scaling shorter-duration transfers.

2. Integration: Propagate the state and costate differential equations forward in time
along each arc, applying the optimality condition to compute the thrust direction.
During coast arcs the thrust is minimal; during thrust arcs it is aligned with the
primer vector λV .

3. Matching conditions: At the end of each arc, enforce continuity of the state
variables and apply the matching conditions for the costates. If intermediate events
such as flybys or imposed constraints occur, additional algebraic conditions must be
satisfied.

4. Residual evaluation: Assemble a residual vector containing the differences between
the actual terminal values and the desired boundary conditions. These residuals
quantify how far the current guess is from satisfying the two-point boundary-value
problem.

5. Newton iteration: Solve a linear system for the corrections to the unknown
parameters using the Jacobian of the residual vector. Update the parameters and
repeat the integration until the residuals fall below prescribed tolerances.

6. Convergence check: Monitor convergence by tracking the norm of the residuals
and the variation of the parameters. If convergence stalls, adjust the initial guess or
refine the segmentation of the trajectory (e.g., by adding or removing thrust arcs)
and repeat the procedure.
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5.5 Results of the Optimised Trajectory

The optimisation carried out for the mission departing from Earth and performing a flyby
of asteroid 2000 SG344 used an initial spacecraft mass of approximately 21 kg, a specific
impulse of 2100 s, and a maximum thrust of a few tenths of a newton. The optimiser
allowed the departure date and flight duration to vary freely so as to minimise propellant
consumption, subject to a minimum-distance constraint at the asteroid.

Figure 5.1: Heliocentric view of the optimised trajectory from Earth to the asteroid. The low-
thrust spiral gradually intercepts the asteroid at the target epoch. The final portion corresponds to
a close flyby used for navigation testing.

Figure 5.1 illustrates the three-dimensional trajectory in the heliocentric ICRF. The
spacecraft slowly spirals away from Earth’s orbit, gradually reducing its radial velocity
relative to the Sun. The low thrust level implies that the spacecraft performs multiple
revolutions around the Sun before reaching the asteroid. The optimised mission duration is
about 640 days (approximately 1.75 years). Over this time the spacecraft mass decreases
by only about 0.8 kg, highlighting the efficiency of electric propulsion (5.3), continuously
approaching the asteroid.
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Figure 5.2: Distance from the asteroid during the mission

Figure 5.3: Mass consumption during the mission and its effect on the spacecraft’s heliocentric
speed

The thrust vector exhibits big and instantaneous variations; its magnitude remains below
1 mN and the peaks of thrust coincide precisely with the asteroid approach (see Fig.
5.2). The thrust history shows that the optimiser applies the bang-bang model of thrust
throughout most of the cruise, with thrust components that jump from 0 to around 1 mN.

Figure 5.4: Thrust history and corresponding power

87



Guidance and Interplanetary Trajectory Optimisation

Departure Arrival

Epoch [TDB] 13 Jan 2031, 19:49 14 Oct 2032, 06:46

Position (x, y, z) [106 km] (−60.2, 134.3, −0.0087) (107.2, 94.7, −0.172)

Velocity (vx, vy, vz) [km s−1] (−27.7, −12.3, 0.0004) (−21.8, 21.9, −0.004)

Mass [kg] 21 20.22

Table 5.1: Departure and arrival conditions in the heliocentric ecliptic frame.
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5.6 Navigation Test on the Optimised Trajectory

Tackling the guidance design of an interplanetary mission posed new challenges in the
astrodynamic aspects of the mission and in the optimisation techniques. The newly
optimised trajectory will be used to validate the MATLAB Interplanetary Navigator,
allowing control and insight into both the Guidance and the Navigation components of
GNC. The trajectory is used to generate measurement data (as explained in Sec. 4.1), and
the navigator is tested in this environment.
As indicated in the first part of the thesis, the current navigator uses Line of Sight (LOS) and
range (LiDAR) measurements. LOS measurements provide accurate angular information
but limited range accuracy, while LiDAR measurements carry range information and are
intended to compensate LOS limitations. However, these two measurement types are
typically most precise only in the vicinity of space objects and targets: LOS requires
identifiable targets to image, and LiDAR requires a surface for the signal to reflect from.
Such targets exist in deep space, but they provide little information about the spacecraft’s
absolute position when they are very far away: the bearing to a distant body varies slowly
relative to the spacecraft, and the range to a far celestial body changes only weakly along
interplanetary trajectories. Interplanetary navigation is usually supported by ground-
antenna radiometric measurements, which the current navigator does not implement.
What do we expect, then? The whole trajectory will be tested; results will likely show
increasing uncertainty as the spacecraft recedes from Earth, and improved accuracy during
the final approach to asteroid 2000 SG344.

5.6.1 Departure from Earth

The first-phase navigation test, at departure from Earth, illustrates the limitations of the
MATLAB navigator.
The spacecraft begins its journey far from suitable nearby optical targets; the best choice is
the Moon. We verified that along the trajectory the Moon is visible and well illuminated
by the Sun, making it a good LOS target. As for range measurements, their precision is
jeopardised by the large distance to the Moon; therefore, range measurements will target
the Moon but the results will show the combination of Line of Sight and LiDAR is not
sufficient for navigation when far away from targets.
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Figure 5.5: Trajectory of the first five days of the mission towards 2000 SG344

As the trajectory shows, the navigator has not sufficient information for navigation. The
plot shows a slow and steady divergence of the navigator’s estimation, not any errors,
which indicates the absence of information regarding the position and the subsequent slow
divergence of the estimate. This is clear also looking at the estimation plot.

Figure 5.6: Estimation during the first 100 hours of the mission towards 2000 SG344

The estimation diverges quickly: even though the measurements are correctly taken and
correspond to the true trajectory, the resulting estimate carries no reliable information
about the spacecraft state. With no information, the estimation slowly diverges from the
real trajectory. The navigator is not capable of deep-space navigation using only these
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measurements, and the result is far from the real one.

Direction RMS Position RMS Speed

Radial 575719701.91 1000.97

Along-Track 438704180.42 2642.56

Normal 118230985.41 1463.05

3D 733411957.22 3182.07

Table 5.2: Error in position and speed during the departure phase of the mission towards 2000
SG344

Testing the navigator on other parts of this trajectory would add little value. The MATLAB
navigator has been designed for rendezvous, flybys, and close approaches to celestial bodies.
To achieve better navigation in deep space it would be necessary to implement antenna-based
measurements capable of estimating the spacecraft state far from other bodies; however,
CNES is not prioritising this aspect at the moment.

5.6.2 Final approach to 2000 SG344

In this section we test the navigator’s performance in its best operational scenario: in the
vicinity of a small body. Here, LOS and range measurements exploit most of the available
information. The spacecraft performs a close flyby of the asteroid (without significant
dynamical perturbation), and the navigator points to the asteroid to take Line of Sight and
LiDAR measurements.

Figure 5.7: Flyby of 2000 SG344

In this test, the last two days of the approach are simulated, with an LOS measurement
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every 30 s and a LiDAR measurement every 1 s. The spacecraft approaches the asteroid to
a minimum distance of a few km.

Figure 5.8: Position estimation during the flyby. The closest approach is around 11 hours from
the beginning.

Figure 5.9: Speed estimation during the flyby. The closest approach is around 11 hours from the
beginning.

The estimation plots show that the solution accuracy improves as the spacecraft approaches
the asteroid and then slowly degrades as it recedes. The 3σ bounds shrink during the
approach because the geometry and measurement quality improve; during the outbound
leg, the covariance grows again and the estimate tends to lie near the upper bound. This
behaviour is consistent with the incomplete model for the SRP, which doesn’t take into
account the attitude. Although the thrust model is imprecise, the thrust error state is
capable of absorbing this error and keep the results within the expected covariance; however,
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the constant bias and derive of the estimation surely is a consequence of the inaccurate
model for the SRP.
Overall, the results demonstrate very high accuracy in both phases of the flyby, but they
also indicate that, in its current configuration, the navigator is not suitable for long-duration
low-thrust trajectories.

RMS Position RMS Speed

Direction At flyby After flyby At flyby After flyby

Radial 0.43773 1.71768 0.00023 0.00041

Along-Track 0.09463 0.60072 0.00003 0.00010

Normal 0.15662 0.68433 0.00004 0.00009

3D 0.47444 1.94412 0.00023 0.00043

Table 5.3: Error in position and speed with LOS measurements

Overall, the navigator performs quite accurately; during the flyby, at maximum proximity to
the asteroid, measurements are more accurate and the estimation reaches its peak precision;
after the flyby, as the spacecraft gets further away, the estimation becomes less accurate.
Although the navigator does not perform with its maximum achievable precision, this
behaviour is expected: the MATLAB Navigator has been conceived as an orbital navigator,
with no real interplanetary measurements. These results show that the navigator is however
capable of working outside of its intended environment with fairly optimal results and
achieve great results. With small refinements on the SRP model and new interplanetary
measurements the navigator should be perfectly ready for real interplanetary cruises.
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Conclusion

6.1 Conclusion

To conclude, at the end of this internship, the initial objectives were achieved, notably
for the required functionalities. However, during validation tests over the last few months,
certain limitations have shown that the initial requirements were sufficient for the initial
objective of an orbital navigator, but they were not sufficient to simulate interplanetary
navigation at 100 %.
As shown in section 4.1, the current state of the navigator does indeed allow good estimation
around a planet: the navigator is capable of correcting errors within the predicted covariance
and maintaining an extreme level of accuracy. However, interplanetary navigation based
solely on LOS measurements is not reliable; range measurements are also necessary
To obtain a complete estimate, it is necessary to measure the distance to the celestial
objects. This can be achieved thanks to LiDAR measurements: LiDAR uses two-way signals
to estimate the distance to the celestial bodies. It is indeed the LOS + LiDAR combination
that allows navigation without GNSS.
However, both Line of Sight and LiDAR measurements require a nearby landmark, which
means that high-precision estimation can only be achieved in close proximity to a celestial
body. This behaviour is evident in all the test cases: as the spacecraft moves away, the
estimation gradually diverges. This is perfectly coherent with the initial design of the
MATLAB Navigator, which is intended to be used in orbits or nearby celestial bodies. To
further challenge the navigator, an interplanetary trajectory was designed using optimal
control theory to test its performance in deep space, which is not its intended environment.
During the guidance development, the optimisation of an interplanetary trajectory posed
new challenges in understanding the deep space environment, as well as the Optimal Control
Theory; the guidance analysis found the optimal trajectory for a close flyby of an asteroid
named 2000 SG344.
The guidance phase of the thesis allowed for the complete analysis of an interplanetary
mission, from the guidance phase to the navigation phase. The whole trajectory has been
tested with the navigator; however, the results in the interplanetary cruise, as expected,
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weren’t of high precision. The final approach, closest to the asteroid, proved the high
reliability of the navigator in the proximity of space objects.
As for next developments, the addition of attitude laws is necessary for a correct estimation
of solar radiation pressure and required to complete the dynamic model. Also, a long-range
distance measurement is necessary for interplanetary cruises.
This thesis has allowed me to address all phases of a project: from design and development
to final validation through rigorous testing in various scenarios. It has also brought me
to both the Guidance and Navigation analysis of an interplanetary mission, giving me a
well-rounded perspective on interplanetary mission design and implementation.
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Appendix A: Terrestrial Reference
Frames

A.1 Terrestrial frames

A.1.1 Transition VEIS/ITRF

The transition between (ITRF) and Veis is performed:

• by passing from (ITRF ) to the true terrestrial frame, taking into account the pole
model (u, v)

R2(u).R1(v) =


cos(u) 0 − sin(u)

0 1 0

sin(u) 0 cos(u)



1 0 0

0 cos(v) sin(v)

0 − sin(v) cos(v)

 (A.1)

Considering cos(x) ≈ 1 and sin(x) ≈ x for u and v:

R2(u).R1(v) ≈


1 uv ≈ 0 −u

0 1 v

u −v 1

 (A.2)

• by passing from the true terrestrial frame to Veis: rotation by the sidereal time θS , in
which the UT1–UTC difference is neglected.

R3(θS) =


cos(θS) − sin(θS) 0

sin(θS)n cos(θS) 0

0 0 1

 (A.3)
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θS = a1 + ωT (tTUC − t0) (A.4)

with t0 = 01/01/1990

a1 = 1.743078993205 rad

Finally:

MITRF−>V eis =


cos(θS) − sin(θS) −u cos(θS)− v sin(θS)

sin(θS) cos(θS) −u sin(θS) + v cos(θS)

u −v 1

 (A.5)

And correspondingly:

MV eis−>ITRF =


cos(θS) sin(θS) u

− sin(θS) cos(θS) −v

−u cos(θS)− v sin(θS) −u sin(θS) + v cos(θS) 1

 (A.6)

In order to transform the velocity of the satellite from one frame to the other, it is necessary
to know the time derivative of the transition matrix VEIS/ITRF.
We therefore have the following matrices:

ωV eis−>ITRF =


− sin(θS) cos(θS) 0

− cos(θS) − sin(θS) 0

u sin(θS)− v cos(θS) −u cos(θS)− v sin(θS) 0

 (A.7)

ωITRF−>V eis =


− sin(θS) − cos(θS) u sin(θS)− v cos(θS)

cos(θS) − sin(θS) −u cos(θS)− v sin(θS)

0 0 0

 (A.8)

For the transformation of a PV record, we therefore have the following relation:P
V


V eis

=

MITRF−>V eis 0

ωITRF−>V eis MITRF−>V eis

P
V


ITRF

(A.9)

A.1.2 Pole motion matrix TIRF/ITRF

The terrestrial pole motion is the motion of the CIP relative to the terrestrial frame. This
motion is described by two angular coordinates (u, v) expressed in arcseconds. These
coordinates are made available on a daily basis by the IERS bulletins.
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The pole motion matrix has the expression:

MTIRF→ITRF = R3(s
′)R2(−u)R1(−v) (A.10)

With s′ the non-rotating origin of the TIO considered constant in BOLERO and whose
value is: s′ = −47µasT with T the number of centuries since J2000 (TT).
The function IERS__Polar_Motion_Matrix makes it possible to compute this matrix.

A.1.3 Diurnal rotation matrix MCIRF→TIRF

This matrix is related to the rotation of the Earth about its axis. It is a rotation about
the CIP axis (z-axis of the TIRF frame) by an angle called ERA (Earth Rotation Angle).
The rotation of the Earth is not a regular motion with a constant rotation rate. As with
the terrestrial pole motion, this angle is not directly predictable by a model. Its value is
obtained through observations (mainly VLBI) and disseminated by the IERS bulletins. The
bulletins do not supply the ERA directly, but UT1, which is related to the ERA.
The angle is calculated by the following relation [8]:

ERA = 2π(0.7790570.7790572732640 + 1.00273781191135448× tUT1) (A.11)

With tUT1 the time expressed in UT1 Julian days since J2000.
We then have:

MCIRF→TIRF = R3(ERA) (A.12)

A.1.4 Precession and nutation matrix MGCRF→CIRF

The orientation of the Earth’s rotation axis (CIP) evolves under the action of the Sun, the
Moon and the planets with a long-period motion called precession and a shorter-period
motion called nutation. Both are included in the motion of the CIP relative to the celestial
frame GCRF.
The matrix represents MGCRF→CIRF , i.e. the combined effects of precession, nutation and
bias, and defines the orientation of the CIP and of the celestial longitude origin (the CIO),
via the following relation:

MGCRF→CIRF = R3(e)R2(d)R3(−(e+ s)) (A.13)

With,

• e = atan2
(
X
Y

)
if X2 + Y 2 > 0 otherwise e = 0;

• d = atan
(√

X2+Y 2

1−(X2+Y 2)

)
;
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• s the non-rotating origin of the CIO in the GCRF. This term is computed from
the expansion of a polynomial series based on the SOFA algorithm and the IERS
standards (function IERS__Cio_Locator_S ).

The coordinates X,Y are the coordinates of the celestial pole CIP. They are computed
by the function IERS__XY using the Fukushima–Williams precession angles and the
IAU 2000A nutation model (series expansion). The model takes into account luni-solar and
planetary nutation. There is a series decomposition of 678 terms for the luni-solar effects
and 687 terms for the planetary effects.
A performance study showed that the computation time of this nutation model was
particularly expensive in CPU time. A simpler model was therefore implemented consisting
of 80 terms for the luni-solar effects and addition of a bias for the planetary terms (IAU 2000B
model).
These models are based on the SOFA algorithms nut00a and nut00b and are described in
the IERS 2010 convention. The IAU 2000B model provides the motion of the celestial pole
with an accuracy that does not result in a deviation greater than 1 mas compared with
that of the IAU 2000A model over the period 1995–2050.
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Appendix B: Accelerations

B.1 Central Body Acceleration

γ⃗Central Body = ∇⃗U (B.1)

With,

U =
GM

r

n∑
l=0

n∑
m=0

(
Req

r

)n

P̄lm(sin φ)(C̄lm cosmλ+ S̄lm sinmλ) (B.2)

where C̄lm and S̄lm are the normalised harmonic coefficients of the potential of degree l
and order m, given in the fixed frame of the central body.

B.1.1 Legendre Functions

The Legendre functions can be defined by relation to the Legendre polynomials:

Pn,m(x) =
(
1− x2

)m
2
dm

dxm
Pn(x)

where Pn(x) is the Legendre polynomial of degree n.
We have the following recurrence relations:

Pn,n(x) = (2n− 1)
√

(1− x2)Pn−1,n−1(x)

Pn,n−1(x) = (2n− 1)xPn−1,n−1(x)

and,
(n−m)Pn,m(x) = (2n− 1)xPn−1,m(x)− (n+m− 1)Pn−2,m(x)

B.1.2 Working Variables

The following variables are introduced:

αm = cosm(φ) cos(mλ)

βm = cosm(φ) sin(mλ)
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and

Wn,m =

(
Req

r

)n+1 1

cosm φ
Pn,m(sinφ)

with the composite terms:
An,m = αmWn,m

Bn,m = βmWn,m

With these variables, one can write:

U(r, φ, λ) =
GM

r

∞∑
t

n∑
m=0

(Cn,mAn,m + Sn,mBn,m)

The variables αm and βm are constructed as follows: α0

β0

 =

 1

0


 αm

βm

 =

 cosλ cosφ − sinλ cosφ

sinλ cosφ cosλ cosφ

 αm−1

βm−1

 =

 x̂ −ŷ

ŷ x̂

 αm−1

βm−1


and by using the recurrence relations on the Legendre functions:

W0,0 =
Req

r

Wn,n = (2n− 1)
Req

r
Wn−1,n−1

Wn,n−1 = (2n− 1)
Req

r
ẑWn−1,n−1

Wn,m =
(2n− 1)

(n−m)

Req

r
ẑWn−1,m − (n+m− 1)

(n−m)

(
Req

r

)2

Wn−2,m m = 0..n− 2

B.1.3 Calculation of Derivatives

To calculate the partial derivatives with respect to the position, we use the relations on the
elementary complex potentials defined by Cunningham:

Vn,m =
1

rn+1
Pn,m(sinφ)eimλ =

1

Rn+1
eq

(An,n + iBn,m)
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We find the following derivatives on the coefficients A and B:

∂An,m

∂x
= − 1

2R1
[An+1,m+1 − (n−m+ 2)(n−m+ 1)An+1,m−1] for m = 1..n

= − 1

R1
An+1,1 for m = 0

∂An,m

∂y
= − 1

2R1
[Bn+1,m+1 + (n−m+ 2)(n−m+ 1)Bn+1,m−1] for m = 1..n

= − 1

R1
Bn+1,1 for m = 0

and:

∂Bn,m

∂x
= − 1

2R1
[Bn+1,m+1 − (n−m+ 2)(n−m+ 1)Bn+1,m−1] for m = 1..n

= 0 for m = 0

∂Bn,m

∂y
= − 1

2R1
[−An+1,m+1 − (n−m+ 2)(n−m+ 1)An+1,m−1] for m = 1..n

= 0 for m = 0

∂Bn,m

∂z
= − 1

R1
(n−m+ 1)Bn+1,m for m = 0..n

B.1.4 Calculation of the Acceleration

The acceleration due to the potential is written:

γ⃗Central Body = ∇⃗U (B.3)

and in rectangular coordinates we have:

γξ =
∂U

∂ξ
=
GM

Req

∞∑
n=0

n∑
m=0

(
Cn,n

∂An,m

∂ξ
+ Sn,m

∂Bn,m

∂ξ

)
(B.4)

with ξ = x, y or z, which can also be written in the form:

γξ = −GM

R2
t

∞∑
n=0

n∑
m=0

γn,m

with

γn,m = −R

(
Cn,m

∂An,m

∂ξ
+ Sn,m

∂Bn,m

∂ξ

)
The previous expressions allow the calculation of γ :
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m = 1, . . . , n



γx̄n,m =
Cn,m

2

[
An+1,m+1 − (χn,m + 1)χn,mAn+1,m−1

]
+
Sn,m
2

[
Bn+1,m+1 − (χn,m + 1)χn,mBn+1,m−1

]
,

γγn,m =
Cn,m

2

[
Bn+1,m+1 + (χn,m + 1)χn,mBn+1,m−1

]
+
Sn,m
2

[
−An+1,m+1 − (χn,m + 1)χn,mAn+1,m−1

]
,

γzn,m = 2χn,m

(Cn,m

2
An+1,m +

Sn,m
2

Bn+1,m

)
(B.5)

χn,m = n−m+ 1.

And,

m = 0


γn,0 = Cn,0An+1,1 + Sn,0Bn+1,1,

ψn,0 = Cn,0Bn+1,1 − Sn,0An+1,1,

γzn,0 = (n+ 1)
(
Cn,0An+1,0 + Sn,0Bn+1,0

) (B.6)

B.1.5 Normalisation

Instead of the classical normalisation of the harmonic coefficients of the Earth potential,
we use the following normalisation, simpler to implement:

m ̸= 0
{ Cn,m =

ηmCn,m

2

Sn,m =
ηmSn,m

2

(where η is an arbitrary constant),
and:

m = 0
{ Cn,0 = Cn,0

Sn,0 = Sn,0

The factor 2 is used to simplify the calculation of γ when m ̸= 0.
The elementary potentials become:

Wn,m =
Wn,n

ηm
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And the recurrence relations:

W̄0,0 =
Req

r

W̄n,n = (2n− 1)
Re

r

Wn−1,n−1

η

W̄n,n−1 = (2n− 1)
Req

r
ẑWn−1,n−1

W̄n,m =
(2n− 1)

(n−m)

Req

r
ẑWn−1,m − (n+m− 1)

(n−m)

(
Req

r

)2

Wn−2,m m = 0..n− 2

In the Navigator, η was chosen equal to 20.

B.2 Atmospheric drag force

The drag acceleration due to atmospheric braking is written:
γDrag = kS⃗ with S⃗ the tangential unit vector (of the local orbital frame) and k the amplitude
of the drag force. k is a parameter estimated by the filter.
The drag acceleration is considered constant during the sequence.
The calculation of the atmospheric drag acceleration is based on two models, the model
chosen depending on the altitude of the satellite. For an altitude between 150 and 1000 km,
the US76 model is used. For an altitude between 1000 km and 3000 km the DTM model is
used.

γ⃗drag = −ρ0e−β(h)(h−h0)∥V⃗ ∥V⃗ (B.7)

with:

V⃗ = V⃗IN −


0

0

ωt

 ∧ ⃗PIN

V⃗IN : Satellite velocity in the inertial frame.
ωt: Rotation rate of the Earth. (ωt = 7.2921151467× 10−5 rad/s)
P⃗IN : Satellite position in the inertial frame.

β(h) =


0.072224− 0.00030374h+ 6.8107× 10−7h2−

6.8654× 10−10h3 + 2.5151× 10−13h4 if h < hr

1
19.187+0051572h if h >= hr

(B.8)

h = ∥ ⃗PIN∥ −Rt

√√√√1−

(
eP⃗INz

∥P⃗IN∥

)2

(B.9)

with ρ0 = 0.254068762× 10−9 kg/m3
hr = 965.0746538482 km
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h0 = 200 km
e = 0.08181922146 km
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GNSS measurements

C.1 GNSS measurements techniques

C.1.1 Code measurement

Figure C.1: GNSS code measurement

The receiver continuously receives the code
from the GNSS satellite, with a delay corre-
sponding to the time taken by the wave to
cover the distance between the emitting satel-
lite and the receiving satellite. This delay
is measured by the receiver as the difference
between the moment of reception (receiver
clock) and the moment of emission (emitter
clock). However, the clocks of the receiver and of the satellite are not synchronised, which
introduces an error in the measurement of the time that must be estimated. The accuracy
of the code measurement depends on the receivers and is of metric order of magnitude [9].

C.1.2 Phase measurement

Another positioning technique by GNSS relies on the measurement of the phase shift
between the signals received and those generated by the receiver.

Figure C.2: GNSS phase measurement

Another positioning technique by GNSS re-
lies on the measurement of the phase shift
between the signals received and those gener-
ated by the receiver. This measurement can
be performed on the different carriers used by
the GNSS. As in the code measurement, the
absence of perfect synchronisation between
the clocks of the receiver and of the satellite
introduces a synchronisation error in the phase shift measurement, which must be estimated.
The signal emitted by the satellite is received by the receiver, comprising an integer number
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of cycles and a fractional part of a cycle. However, only the fractional part of the propagation
time of the signal between the satellite and the receiver, counted in number of cycles, can
be measured by the receivers. The integer number of cycles that have elapsed since the
beginning of the measurement is unknown, creating what is called an ambiguity (or a bias)
in the phase measurement. The integer ambiguity corresponds to the integer number of
cycles elapsed at the beginning of the measurement.
During an observation session, it is crucial not to interrupt the signal observed towards
a satellite. In case of interruption, a cycle slip occurs, modifying the value of the integer
ambiguity. This will have to be estimated again by the navigator during the next observation
session.
For the GPS system, the wavelengths associated with the L1 and L2 carriers are respectively
λ1 = 19.0 cm and λ2 = 24.4 cm. The accuracy of the phase measurement is millimetric [9].

C.1.3 Navigation message

In addition to being modulated by the phase using the code, GNSS signals are also
modulated by the navigation message. This message contains information usable by the
receiver, such as:

• The position of the satellites (ephemerides) and information concerning them (state
of the satellite).

• Data for determining the emission date of the signal, according to the satellite’s time
scale.

• The satellite clock correction to be applied to compensate for its drift relative to
GNSS time.

• More general information, such as a global parametric model of the ionosphere (to
correct its effect) and an almanac of all satellites (health, approximate position).

C.1.4 Broadcast data and SP3

Broadcast (BRDC) data and SP3 are two types of data used in satellite navigation, but
they differ in their origin, accuracy and use.
Broadcast data are provided directly by the GNSS satellites via the navigation message
that each satellite regularly sends to the receivers. The Broadcast message contains in
particular the satellites’ ephemerides, the satellite time, the coefficients for the ionospheric
correction. They are mainly used for real-time navigation applications.
SP3 files (Standard Product #3) are produced by the IGS (International GNSS Service).
The raw data coming from numerous ground GNSS receivers are processed to compute the
precise orbits and clocks of the satellites. An SP3 file contains very precise information
on the positions and clocks of GNSS satellites. SP3 data are much more precise than the
Broadcast ephemerides, with a typical accuracy of a few centimetres for the satellite orbits.
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These data are obtained after complex processing of the GNSS observations, often several
hours or days after the initial observations. SP3 files are used for applications requiring
high precision, such as precise point positioning (PPP) or geodesy.
The analysis products, such as SP3 files, can be classified according to their latency, i.e.
the time elapsed between the time of the last observations and the moment when the file is
produced. The table below presents the versions of the orbit and clock product produced
by the IGS for the GPS constellation as well as the Broadcast solution.

Solution 1D RMS accuracy Clock 1σ [ns] Latency

Broadcast 1.0 m 2.5 ns (= 75 cm) Real time

Ultra-fast (predicted) 5 cm 1.5 ns (= 45 cm) Real time

Ultra-fast (observed) 3 cm 0.05 ns (= 15 cm) 3-9 hours

Rapid 2.5 cm 0.025 ns (= 7.5 cm) 17-41 hours

Final 2.5 cm 0.02 ns (= 6 cm) 12-19 days

Table C.1: Performance of GPS Broadcast and IGS solutions [10]

C.2 Modelling of navigator measurements

In this navigator, as in BOLERO, the measurement is expressed in the form of the emission
date in GNSS time: tGPS

e associated with the reception date in receiver time trr, expressed
in counter time Tc. The receiver uses the navigation message to determine the transmitter
clock and its relativistic correction: heapp = he +∆trele and the position of the transmitter
at the emission date P⃗e/ITRF (t

GPS
e ). The emitter part is therefore resolved upstream by

the receiver.

Starting from the measurements, we seek to estimate: the trajectory of the emitter P⃗r(t)

and V⃗r(t) and the remaining components of the state vector. The adopted reference frame
is the CIRF; however, the partial derivatives remain the same for the ICRF.

Concerning the times, the lower index indicates the type of event: "e" for emission date,
"r" for reception date. The upper index is the time scale used (receiver time, transmitter
TGPS,...).

C.2.1 Pseudo-range satellite GNSS – satellite

The pseudo-range measurement, called Pseudo-Range (PR in metres) is modelled as follows:

PRcode = c (trr − tee) (C.1)
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These times are related to the reference time, here tGPS , by a clock bias.

trr = tGPS
r + hrapp = tGPS

r + (hr +∆trelr)

tee = tGPS
e + heapp = tGPS

e + (he +∆trele)

(C.2)

with hr/eapp the apparent clock bias which includes the clock bias hr/e as well as the
relativistic effect ∆trelr/e . Considering errors related to the speed and path of the signal,
we obtain the following pseudo-range:

PRcode = ρ+ c (hr − he) + diono + dtropo + dMT + c∆trelr − c∆trele (C.3)

with the following considerations:

• ρ = c (tGPS
r − tGPS

e ) = ||P⃗r(t
GPS
r )− P⃗e(t

GPS
e )|| the geometric distance.

• diono = 0 by measurement combination (bi-frequency receiver or phase-code combina-
tion).

• ∆trelr = −2
P⃗r/InerV⃗r/Iner

c2
the relativistic correction on the receiver clock.

• The tropospheric effect is null: dtropo = 0.

• The multipath effect is null: dMT = 0.

With all these simplifications, the measurement becomes:

PRcode = ρ+ c (hr − he) + c∆trelr − c∆trele (C.4)

As stated previously, the measurement is represented in the navigator by the emission date
in system time: tGPS

e . Rearranging equation C.1,

tee = trr −
PRcode

c

By replacing PRcode by its expression, we obtain the theoretical code measurement:

Mcode = tGPS
e = trr − hr −

ρ

c
+ 2

P⃗r/InerV⃗r/Iner

c2
(C.5)

The navigation message provides the apparent clock bias heapp , which helps to obtain the
previous relation by writing:

tGPS
e = tee − heapp

This is why the relativistic term of the emitter does not appear explicitly in the equation
whereas that of the receiver is separated from the clock bias.
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• Partial derivative of ρ with respect to the receiver position (vector of dimension 3)

∂⃗ρ

∂Pr
≈

P⃗r/Iner − P⃗e/Iner

ρ
(C.6)

• Partial derivative of ρ with respect to time

∂ρ

∂tr
≈ ∂⃗ρ

∂Pr

(
V⃗r/Iner − V⃗e/Iner

)
≈
( P⃗r/Iner − P⃗e/Iner

ρ

)(
V⃗r/Iner − V⃗e/Iner

)
(C.7)

We now compute the partial derivatives of the theoretical measurement M with respect
to the parameters of the state vector.

• Partial derivative with respect to the position

⃗∂M

∂Pr

∣∣∣∣∣
tfinal

≈ −1

c

∂⃗ρ

∂Pr
≈ −1

c

( P⃗r/Iner − P⃗e/Iner

ρ

)
(C.8)

• Partial derivative with respect to the velocity

⃗∂M

∂Vr

∣∣∣∣∣
tfinal

≈
⃗∂M

∂Pr

∣∣∣∣∣
tr

(tr − tfinal) ≈ −1

c

( P⃗r/Iner − P⃗e/Iner

ρ

)
(tr − tfinal) (C.9)

• Partial derivative with respect to the clock parameters (Tc, d = ∆f/f and dd = ∆̇f/f)
We have already shown the clock relations in Equation 3.52 which will be useful here.

– Partial derivative with respect to hr

∂M

∂hr

∣∣∣∣
tfinal

≈ −
(
1− 1

c

∂ρ

∂tGPS
r

)
≈ −

(
1− 1

c

( P⃗r/Iner − P⃗e/Iner

ρ

)(
V⃗r/Iner − V⃗e/Iner

))
(C.10)

– Partial derivative with respect to d

∂M

∂d

∣∣∣∣
tfinal

≈ −
(
1− 1

c

( P⃗r/Iner − P⃗e/Iner

ρ

)(
V⃗r/Iner − V⃗e/Iner

))
(tGPS

r − tfinal)

(C.11)

– Partial derivative with respect to dd

∂M

∂dd

∣∣∣∣
tfinal

≈ 1

2

(
1− 1

c

( P⃗r/Iner − P⃗e/Iner

ρ

)(
V⃗r/Iner − V⃗e/Iner

))
(tGPS

r − tfinal)
2

(C.12)

111



GNSS measurements

• Partial derivative with respect to the phase bias

∂M

∂biais

∣∣∣∣
tfinal

= 0 (C.13)

C.2.2 Phase satellite GNSS – satellite

The phase measurement is calculated from the PR measurement and with the satellite bias
recovered in the state vector:

PRphase = ρ+ c (hr −he)−diono+dtropo+dMT + c∆trelr − c∆trele −λN +λΦWup (C.14)

With the same simplifications as before, we add that the Wind-Up is zero: λΦWup = 0.
The latter is an effect due to the electromagnetic nature of the circularly polarised waves,
intrinsic to GNSS signals. It depends on the relative orientation of the satellite and receiver
antennas and the direction of the line of sight.

Moreover, λN is the bias or ambiguity of phase estimated in the state vector.
The measurement becomes:

PRphase = ρ+ c (hr − he) + c∆trelr − c∆trele − λN

PRphase = PRcode − λN

(C.15)

The measurement is also expressed by the emission date in GNSS time and is modelled as
follows:

tee = trr −
PRphase

c
(C.16)

By replacing PRcode by its expression, we obtain the theoretical phase measurement:

Mphase = tGPS
e = trr − hr −

ρ

c
+ 2

P⃗r/InerV⃗r/Iner

c2
+
biais

c
(C.17)

Where biais = λN .
All the partial derivative results obtained for the GNSS Distance Measurement are identical
here except for:

• Partial derivative of the measurement with respect to the phase bias

∂M

∂biais

∣∣∣∣
tfinal

=
1

c
(C.18)
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C.2.3 Single difference of code satellite 1 – GNSS satellite – satellite 2

The single difference measurement is built from two measurements of the same emitting
GNSS satellite Pe towards two different receivers Pr1 and Pr2.

In the figure: te1 and te2 are the emission dates
of the signals towards receivers 1 and 2; tr1 tr2
are the reception dates at receivers 1 and 2.
The single difference code measurement is there-
fore equal to:

SDPR12 = PR2 − PR1 (C.19)

In the navigator, PR measurements are ex-
pressed as emission dates in GNSS time tGNSS

e .
Thus:

tGNSS
e1 = tr1r1 − PR1

c − he1

tGNSS
e2 = tr2r2 − PR2

c − he2

(C.20)

Thus:
tGNSS
e2 − tGNSS

e1 = tr2r2 − tr1r1 −
PR2 − PR1

c
− (he2 − he1) (C.21)

The single difference measurement is expressed as the difference of the emission dates in
GNSS time:

tGNSS
e2 − tGNSS

e1 = tr2r2 − tr1r1 −
SDPR12

c
− (he2 − he1) (C.22)

This measurement is modelled as:

MSDCode = tGNSS
e2 − tGNSS

e1 = tGNSS
r2 − tGNSS

r1 − ρ2 − ρ1
c

+ 2
P⃗r2/InerV⃗r2/Iner − P⃗r1/InerV⃗r1/Iner

c2

(C.23)
where ρ1 and ρ2 are the geometric distances between the emitter at the emission date and
receivers 1 and 2 at the reception date. Thus, by making single difference measurements,
we get rid of the error on the clock of the emitting satellite and therefore only the errors on
the clocks of the receiving satellites remain. The ionospheric effect has also been removed
by measurement combination. The last term of the equation is the relativistic correction
(part due to the eccentricity of the orbit) on the clocks of receivers 1 and 2.

• Partial derivative with respect to the clock parameters (Tc, d = ∆f/f and dd = ∆̇f/f)
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If we have chosen to estimate the clock for satellite 1:

∂M
∂Tc1

= +(1− 1
c
∂ρ1
∂tr1

)

∂M
∂d = ∂M

∂Tc1
.(tGNSS

r1 − tPV final)

∂M
∂dd = 1

2
∂M
∂Tc1

.(tGNSS
r1 − tPV final)

2 = 1
2
∂M
∂d .(t

GNSS
r1 − tPV final)

(C.24)

where tPV final is the end date of the current orbital window.

Otherwise these partial derivatives are zero: ∂M
∂Tc1

= 0, ∂M
∂d1

= 0 and ∂M
∂dd1

= 0

If we have chosen to estimate the clock for satellite 2:

∂M
∂Tc2

= −(1− 1
c
∂ρ2
∂tr2

)

∂M
∂d = ∂M

∂Tc2
.(tGNSS

r2 − tPV final)

∂M
∂dd = 1

2
∂M
∂Tc2

.(tGNSS
r2 − tPV final)

2 = 1
2
∂M
∂d .(t

GNSS
r2 − tPV final)

(C.25)

Otherwise these partial derivatives are zero: ∂M
∂Tc2

= 0, ∂M
∂d2

= 0 and ∂M
∂dd2

= 0

• Partial derivative with respect to the positions and velocities of receivers 1 and 2

If we do not free the position of a receiver (see iPr1 , iPr2 :)
=⇒ the partial derivatives with respect to that one are zero, otherwise:

−−→
∂M
∂Pr2

= −1
c

−−→
∂ρ2
∂Pr2

−−→
∂M
∂Vr2

=
−−→
∂M
∂Pr2

.(tGNSS
r2 − tPV final)

−−→
∂M
∂Pr1

= 1
c

−−→
∂ρ1
∂Pr1

−−→
∂M
∂Vr1

=
−−→
∂M
∂Pr1

.(tGNSS
r1 − tPV final)

(C.26)

• Partial derivative with respect to the phase bias :

∂M
∂biais1

= 0

∂M
∂biais2

= 0

(C.27)

C.2.4 Single difference of phase satellite 1 – GNSS satellite – satellite 2

The single difference phase measurement follows the same principle as the single difference
code measurement, being built from two measurements of the same emitting GNSS satellite
Pe towards two different receivers Pr1 and Pr2.
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The single difference phase measurement is equal to:

SDPhase12 =MPhase2 −MPhase1 (C.28)

Where Phase2 and Phase1 are the phase measurements defined by equation C.17 corre-
sponding respectively to receiving satellites 2 and 1.
Phase measurements are expressed as emission dates in GNSS time tGNSS

e .
Thus:

tGNSS
e1 = tr1r1 − PR1

c − he1 +
biais1

c

tGNSS
e2 = tr2r2 − PR2

c − he2 +
biais2

c

(C.29)

Thus:

tGNSS
e2 − tGNSS

e1 = tr2r2 − tr1r1 −
PR2 − PR1

c
− (he2 − he1) +

biais2 − biais1
c

(C.30)

The SD measurement is therefore expressed as the difference of the emission dates in GNSS
time:

tGNSS
e2 − tGNSS

e1 = tr2r2 − tr1r1 −
SDR12

c
− (he2 − he1) +

biais2 − biais1
c

(C.31)

This measurement is modelled as:

MSDPhase = tGNSS
e2 − tGNSS

e1

MSDPhase = tGNSS
r2 − tGNSS

r1 − ρ2 − ρ1
c

+
biais2 − biais1

c
+ 2

P⃗r2/InerV⃗r2/Iner − P⃗r1/InerV⃗r1/Iner

c2

(C.32)
where ρ1 and ρ2 are the geometric distances between the emitter at the emission date
and receivers 1 and 2 at the reception date. The ionospheric effect has been removed by
measurement combination. The last term of the equation is the relativistic correction (part
due to the eccentricity of the orbit) on the clocks of receivers 1 and 2.

It should be noted that this measurement alone only allows the estimation of a difference of
biases: ∆biais = biais2 − biais1. In the navigator, this relative state ∆biais is not present
in the state vector; the difference of biases must therefore be performed directly after the
estimation.

The partial derivatives obtained for the GNSS Single Difference Code Measurement are
reused with the exception of:

• Partial derivative with respect to the phase bias :
If we have chosen to estimate the phase bias for satellite 1 :
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∂M
∂biais1

= −1
c

(C.33)

If we have chosen to estimate the phase bias for satellite 2 :

∂M
∂biais2

= +1
c

(C.34)

C.2.5 ISL distance

Let S1 be the position and velocity of the emitting satellite at the emission date in the
inertial frame and S2 the position and velocity of the receiving satellite at the reception
date in the inertial frame.

S1 =
[
x1 y1 z1 vx1 vy1 vz1

]T
S2 =

[
x2 y2 z2 vx2 vy2 vz2

]T
The distance ρ between satellites S1 and S2 is written:

ρ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (C.35)

We suppose for the moment that the clocks of satellites S1 and S2 are synchronised. We
also suppose that the measurement is made between antennas located at the centre of mass
of each respective satellite. Let tr be the reception date of the measurement. The emission
date te is the measurement:

MDistISL = tr −
ρ

c
(C.36)

To find the theoretical measurement, it is necessary to:

• Know the position of the emitter at the emission date P⃗e(te)

• Know the position of the receiver at the reception date P⃗r(tr)

One then obtains:
ρ = ||P⃗r(tr)− P⃗e(te)|| (C.37)

We propose to interpolate the orbital windows of the satellites at the correct dates.

• Partial derivative with respect to the position and velocity

∂M

∂Pr(tf )
= −1

c

∂ρ

∂Pr(tf )
(C.38)

∂M

∂Pe(tf )
= −1

c

∂ρ

∂Pe(tf )
(C.39)

∂M

∂Vr(tf )
= −1

c

∂ρ

∂Pr
(tm − tf ) (C.40)

∂M

∂Ve(tf )
= −1

c

∂ρ

∂Pe
(tm − tf ) (C.41)
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C.3 Measurement and Partial derivatives: detailed computa-
tion

C.3.1 Pseudo-range satellite GNSS – satellite

Measurement format

The measurement contains the following elements:

• MESURE DISTANCE_SATELLITE

• GNSS constellation number

• Antenna number

• Identifier of the emitting GNSS satellite

• Reception date of the measurement trr (Seconds, Decimals)

• Emission date of the measurement tGPS
e (Day, Seconds)

• Measurement covariance cov(te) [m2]

• Position of the emitter Pe(t
GPS
e ) in ITRF in [m]

• Covariance of the position of the emitter cov(Pe) in ITRF in [m2]

Partial derivatives

These calculations of partial derivatives are necessary in estimation algorithms: we seek
to estimate a certain number of parameters that influence the position of the emitter
and/or the receiver. These parameters influence the propagation time and therefore the
measurements made. The positions of the emitter and the receiver depend on:

• time t

• dynamic parameters pdyne and pdynr parametrising the movement of the emitter and
the receiver

If one wishes to derive ρ with respect to time, this would give:

∂ρ

∂tr
=

∂ρ

∂P⃗r

∂P⃗r(tr)

∂tr
+

∂ρ

∂P⃗e

∂P⃗e(te)

∂tr

∂ρ

∂tr
=

∂⃗ρ

∂Pr

∂P⃗r(tr)

tr
+

∂⃗ρ

∂Pe

∂P⃗e(tr − ρ/c)

∂tr
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We end up with these two terms of partial derivatives. We rather write the following
equation:

ρ2 = c2τ2(t, pdyne , pdynr) = ||P⃗r(tr, pdynr)− P⃗e(tr − τ(t, pdyne , pdynr), pdyne)||2

Which we write in the form of an implicit equation in τ .

F (t, pdyne , pdynr , τ(t, pdyne , pdynr)) =c
2τ2(t, pdyne , pdynr)− ||P⃗r(tr, pdynr)+

− P⃗e(tr − τ(t, pdyne , pdynr), pdyne)||2

F (t, pdyne , pdynr , τ(t, pdyne , pdynr)) = 0 (C.42)

According to the Implicit Function Theorem:

∂τ

∂t
= −

∂F

∂t
∂F

∂τ

∂τ

∂pdynr

= −

∂F

∂pdynr

∂F

∂τ

∂τ

∂pdyne

= −

∂F

∂pdyne

∂F

∂τ

In this case, we compute:

∂F

∂τ
= 2c2τ − 2

(
P⃗r(tr)− P⃗e(tr − τ)

)
· ∂P⃗e(t)

∂t

∣∣∣∣∣
t=tr−τ

= 2c2τ − 2
(
P⃗r(tr)− P⃗e(tr − τ)

)
· V⃗e(tr − τ)

∂F

∂tr
= −2

(
P⃗r(tr)− P⃗e(tr − τ)

)
· (V⃗r(tr)− V⃗e(tr − τ))

∂F

∂pdynr

= −2
(
P⃗r(tr)− P⃗e(tr − τ)

)
· ∂P⃗r(t)

∂pdynr

∣∣∣∣∣
t=tr

∂F

∂pdyne

= −2
(
P⃗r(tr)− P⃗e(tr − τ)

)
· ∂P⃗e(t)

∂pdyne

∣∣∣∣∣
t=tr−τ

And we apply the theorem:
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∂τ

∂t
=

(
(
P⃗r(tr)− P⃗e(tr − τ)

)
(V⃗r(tr)− V⃗e(tr − τ))

c2τ −
(
P⃗r(tr)− P⃗e(tr − τ)

)
· V⃗e(tr − τ)

∂τ

∂pdynr

=

(
P⃗r(tr)− P⃗e(tr − τ)

)
· ∂P⃗r(t)

∂pdynr

∣∣∣∣∣
t=tr

c2τ −
(
P⃗r(tr)− P⃗e(tr − τ)

)
· V⃗e(tr − τ)

∂τ

∂pdyne

=

(
P⃗r(tr)− P⃗e(tr − τ)

)
· ∂P⃗e(t)

∂pdyne

∣∣∣∣∣
t=tr−τ

c2τ −
(
P⃗r(tr)− P⃗e(tr − τ)

)
· V⃗e(tr − τ)

From these equations, the partial derivatives of ρ = cτ can be calculated.

• Partial derivative of ρ with respect to the receiver position (vector of dimension 3)

∂⃗ρ

∂Pr
=

c
(
P⃗r/Iner − P⃗e/Iner

)
cρ−

(
P⃗r/Iner − P⃗e/Iner

)
· V⃗e/Iner

which is approximated by:

∂⃗ρ

∂Pr
≈

P⃗r/Iner − P⃗e/Iner

ρ
(C.46)

• Partial derivative of ρ with respect to time

∂ρ

∂tr
=
c
(
P⃗r/Iner − P⃗e/Iner

)
·
(
V⃗r/Iner − V⃗e/Iner

)
cρ−

(
P⃗r/Iner − P⃗e/Iner

)
· V⃗e/Iner

which is approximated by:

∂ρ

∂tr
≈ ∂⃗ρ

∂Pr

(
V⃗r/Iner − V⃗e/Iner

)
≈
( P⃗r/Iner − P⃗e/Iner

ρ

)(
V⃗r/Iner − V⃗e/Iner

)
(C.47)

Remark : This is the formula that is implemented in BOLERO and in the navigator,
but in practice, V⃗e/Iner is taken to be zero, because we do not have the data. The
calculation is therefore wrong, however without any consequence, because this partial
derivative is then used in a formula where it is completely negligible (see further the
calculation of the derivative of the measurement with respect to the on-board clock).

It is important to note that the state vector parameters estimated are those at the end
date of the orbital window tfinal, and not at the date of the measurement tGPS

r .
Now,

∂M(tr)

∂x

∣∣∣∣
tfinal

=
∂M(tr)

∂x

∣∣∣∣
tr

∂x(tr)

∂x(tfinal)
=
∂M(tr)

∂x

∣∣∣∣
tr

Φtr−→tfinal
(C.48)
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with Φtr−→tfinal
the transition matrix between tGPS

r and tfinal.
To do the exact calculation, one would have to consider that the propagation in the orbital
window is done by 5th order Hermite interpolation. However, we simplify the transition
matrix by considering: 

Ptfinal
= Pr + Vr(tfinal − tr)

Vtfinal
= Vr

and therefore:

Φtr−→tfinal
=

 I I(tfinal − tr)

0 I


We now compute the partial derivatives of the theoretical measurement M with respect
to the parameters of the state vector.

• Partial derivative with respect to the position

⃗∂M

∂Pr

∣∣∣∣∣
tr

= −1

c

∂ρ

∂Pr

∣∣∣∣
tr

+ 2
V⃗r

c2

We use Equation C.46 and take the date back from tr to tfinal by Φtr−→tfinal
. Also,

the relativistic term is considered negligible.

⃗∂M

∂Pr

∣∣∣∣∣
tfinal

≈ −1

c

∂⃗ρ

∂Pr
≈ −1

c

( P⃗r/Iner − P⃗e/Iner

ρ

)
(C.49)

• Partial derivative with respect to the velocity

⃗∂M

∂Vr

∣∣∣∣∣
tfinal

=
⃗∂M

∂Pr

∣∣∣∣∣
tr

∂Pr(tr)

∂Vr(tfinal)

The partial derivative
⃗∂M

∂Pr
appears because the measurement M depends only on

position and not on velocity. Now,

∂Pr(tr)

∂Vr(tfinal)
= −I(tfinal − tr)

We therefore obtain:

⃗∂M

∂Vr

∣∣∣∣∣
tfinal

≈
⃗∂M

∂Pr

∣∣∣∣∣
tr

(tr − tfinal) ≈ −1

c

( P⃗r/Iner − P⃗e/Iner

ρ

)
(tr − tfinal) (C.50)
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• Partial derivative with respect to the clock parameters (Tc, d = ∆f/f and dd = ∆̇f/f)
We have already demonstrated the clock relations in Equation 3.52 which will be
useful here.

– Partial derivative with respect to Tc

∂M

∂Tc

∣∣∣∣
tr

=
∂tGPS

r

∂Tc
− 1

c

∂ρ

∂Tc
=
∂tGPS

r

∂Tc
− 1

c

∂ρ

∂tGPS
r

∂tGPS
r

∂Tc

∂M

∂Tc

∣∣∣∣
tr

=
∂tGPS

r

∂Tc

(
1− 1

c

∂ρ

∂tGPS
r

)
Using the equation developed in ?? and denoting Tcr the reception date in
counter time, we have:

tGPS
r = tGPS +

(Tcr − Tc)

1 + d

[
1− 1

2

dd

(1 + d)2
(Tcr − Tc)

]
And we calculate

∂tGPS
r

∂Tc
by differentiating with respect to Tc:

∂tGPS
r

∂Tc

∣∣∣∣
Tcr

=
−1

1 + d
+

dd

(1 + d)3
(Tcr − Tc)

We can neglect d relative to 1 and likewise dd(Tcr − Tc) is also negligible relative
to 1.

∂tGPS
r

∂Tc

∣∣∣∣
Tcr

≈ −1

We end up with:
∂M

∂Tc

∣∣∣∣
tr

≈ −
(
1− 1

c

∂ρ

∂tGPS
r

)
Which we calculate at the end date of the orbital window tfinal using the
transition matrix already calculated in Equation 3.52 (here = 1):

∂M

∂Tc

∣∣∣∣
tfinal

≈ −
(
1− 1

c

∂ρ

∂tGPS
r

)
≈ −

(
1− 1

c

( P⃗r/Iner − P⃗e/Iner

ρ

)(
V⃗r/Iner − V⃗e/Iner

))
(C.51)

The second term is indeed negligible due to its factor in 1/c. This justifies the
approximation stated earlier.

– Partial derivative with respect to d

∂M

∂d

∣∣∣∣
tfinal

=
∂M

∂Tc

∣∣∣∣
tr

∂Tc(t
GPS
r )

∂d(tfinal)

We use Equation 3.52 to obtain the second term (here = −∆t).
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∂M

∂d

∣∣∣∣
tfinal

≈ −
(
1− 1

c

( P⃗r/Iner − P⃗e/Iner

ρ

)(
V⃗r/Iner − V⃗e/Iner

))
(tGPS

r − tfinal)

(C.52)

– Partial derivative with respect to dd

∂M

∂dd

∣∣∣∣
tfinal

=
∂M

∂Tc

∣∣∣∣
tr

∂Tc(t
GPS
r )

∂dd(tfinal)

We use Equation 3.52 to obtain the second term (here = −1

2
∆t2).

∂M

∂dd

∣∣∣∣
tfinal

=
∂M

∂Tc

∣∣∣∣
tr

(−1

2
∆t2) =

1

2
∆t

∂M

∂d

∣∣∣∣
tfinal

Which gives:

∂M

∂dd

∣∣∣∣
tfinal

≈ −1

2

(
1−1

c

( P⃗r/Iner − P⃗e/Iner

ρ

)(
V⃗r/Iner−V⃗e/Iner

))
(tGPS

r −tfinal)(tfinal−tGPS
r )

∂M

∂dd

∣∣∣∣
tfinal

≈ 1

2

(
1− 1

c

( P⃗r/Iner − P⃗e/Iner

ρ

)(
V⃗r/Iner − V⃗e/Iner

))
(tGPS

r − tfinal)
2

(C.53)

• Partial derivative with respect to the phase bias

∂M

∂biais

∣∣∣∣
tfinal

= 0 (C.54)

Note : In BOLERO, the counter time Tc is defined in the state whereas in this navigator
it is directly the clock bias hr. It is important to understand the relationship between Tc
and the clock bias hr:

Tc = TGPS + hr

We must analyse the partial derivatives of the distance measurements with respect to Tc
and hr.

Partial derivative with respect to Tc :
The measurement M depends on Tc. Thus, we have M = f(Tc). The partial derivative of
M with respect to Tc is simply:

∂M

∂Tc
= f ′(Tc)
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Partial derivative with respect to hr :
Using the relation Tc = TGPS+hr, we can writeM as a function of hr: M = f(TGPS+hr).
The partial derivative of M with respect to hr is:

∂M

∂hr
=
∂f(TGPS + hr)

∂hr

Applying the chain rule, we obtain:

∂M

∂hr
=
∂f(TGPS + hr)

∂(TGPS + hr)
· ∂(TGPS + hr)

∂hr

Since ∂(TGPS+hr)
∂hr

= 1, this simplifies the equation to:

∂M

∂hr
=
∂f(TGPS + hr)

∂(TGPS + hr)

Recognising that TGPS + hr is just Tc, we obtain:

∂M

∂hr
=
∂f(Tc)

∂Tc

The partial derivatives of distance with respect to Tc and hr are therefore identical:

∂M

∂Tc
=
∂M

∂hr

This result is based on the fact that the variation of the measurement with respect to the
counter date Tc is directly equivalent to its variation with respect to the clock bias hr,
because Tc is linearly related to hr with a coefficient of 1. This applies to all measurements.

Phase satellite GNSS – satellite

Measurement format

The measurement contains the following elements:

• MESURE PHASE_SATELLITE

• Number of the satellite concerned

• GNSS constellation number

• Antenna number

• Identifier of the emitting GNSS satellite

• Reception date of the measurement trr (Seconds, Decimals)

• Emission date of the measurement tGPS
e (Day, Seconds)

• Measurement covariance cov(te) [m2]
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• Position of the emitter Pe(t
GPS
e ) in ITRF in [m]

• Covariance of the position of the emitter cov(Pe) in ITRF in [m2]

• CS/NCS: New GNSS satellite (Phase jump / No phase jump)

Partial derivatives

All the partial derivative results obtained for the GNSS Distance Measurement are identical
here except for:

• Partial derivative of the measurement with respect to the phase bias

∂M

∂biais

∣∣∣∣
tfinal

=
1

c
(C.55)

Single difference of code satellite 1 – GNSS satellite – satellite 2

Measurement format

The measurement contains the following elements:

• MESURE SD_CODE

• Number indicating receiver satellite 1

• Number indicating receiver satellite 2

• GNSS constellation number

• Number of the antenna of receiver satellite 1 that captured the measurement

• Number of the antenna of receiver satellite 2 that captured the measurement

• Identifier of the emitting GNSS satellite

• Reception date of the measurement tr1r1 (Seconds, Decimals)

• Reception date of the measurement tr2r2 (Seconds, Decimals)

• Emission date of the measurement tGNSS
e1 (Day, Seconds)

• Emission date of the measurement tGNSS
e2 (Day, Seconds)

• Measurement covariance cov(te1) [m2]

• Measurement covariance cov(te2) [m2]

• Position of the emitter Pe(t
GNSS
e1 ) in ITRF in [m]
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• Position of the emitter Pe(t
GNSS
e2 ) in ITRF in [m]

• Covariance of the position of the emitter cov(Pe) in ITRF in [m2]

Partial derivatives

We now compute the partial derivatives, at the end date of the orbital window, of the
theoretical measurement M with respect to the parameters of the state vector.

• Partial derivative with respect to the clock parameters (Tc, d = ∆f/f and dd = ∆̇f/f)
If we have chosen to estimate the clock for satellite 1:

∂M
∂Tc1

= +(1− 1
c
∂ρ1
∂tr1

)

∂M
∂d = ∂M

∂Tc1
.(tGNSS

r1 − tPV final)

∂M
∂dd = 1

2
∂M
∂Tc1

.(tGNSS
r1 − tPV final)

2 = 1
2
∂M
∂d .(t

GNSS
r1 − tPV final)

(C.56)

where tPV final is the end date of the current orbital window.

Otherwise these partial derivatives are zero: ∂M
∂Tc1

= 0, ∂M
∂d1

= 0 and ∂M
∂dd1

= 0

If we have chosen to estimate the clock for satellite 2:

∂M
∂Tc2

= −(1− 1
c
∂ρ2
∂tr2

)

∂M
∂d = ∂M

∂Tc2
.(tGNSS

r2 − tPV final)

∂M
∂dd = 1

2
∂M
∂Tc2

.(tGNSS
r2 − tPV final)

2 = 1
2
∂M
∂d .(t

GNSS
r2 − tPV final)

(C.57)

Otherwise these partial derivatives are zero: ∂M
∂Tc2

= 0, ∂M
∂d2

= 0 and ∂M
∂dd2

= 0

• Partial derivative with respect to the positions and velocities of receivers 1 and 2

If we do not free the position of a receiver (see iPr1 , iPr2 :)
=⇒ the partial derivatives with respect to that one are zero, otherwise:

−−→
∂M
∂Pr2

= −1
c

−−→
∂ρ2
∂Pr2

−−→
∂M
∂Vr2

=
−−→
∂M
∂Pr2

.(tGNSS
r2 − tPV final)

−−→
∂M
∂Pr1

= 1
c

−−→
∂ρ1
∂Pr1

−−→
∂M
∂Vr1

=
−−→
∂M
∂Pr1

.(tGNSS
r1 − tPV final)

(C.58)
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• Partial derivative with respect to the phase bias :

∂M
∂biais1

= 0

∂M
∂biais2

= 0

(C.59)

Single difference of phase satellite 1 – GNSS satellite – satellite 2

Measurement format

The measurement contains the following elements:

• MESURE SD_PHASE

• Number indicating receiver satellite 1

• Number indicating receiver satellite 2

• GNSS constellation number

• Number of the antenna of receiver satellite 1 that captured the measurement

• Number of the antenna of receiver satellite 2 that captured the measurement

• Number Ne of the emitting GNSS satellite (PRN)

• Reception date of the measurement tr1r1 (Seconds, Decimals)

• Reception date of the measurement tr2r2 (Seconds, Decimals)

• Emission date of the measurement tGNSS
e1 (Day, Seconds)

• Emission date of the measurement tGNSS
e2 (Day, Seconds)

• Measurement covariance cov(te1) [m2]

• Measurement covariance cov(te2) [m2]

• Position of the emitter Pe(t
GNSS
e1 ) in ITRF in [m]

• Position of the emitter Pe(t
GNSS
e2 ) in ITRF in [m]

• Covariance of the position of the emitter cov(Pe) in ITRF in [m2]

• CS/NCS: New GNSS satellite for receiver 1 (Phase jump / No phase jump)

• CS/NCS: New GNSS satellite for receiver 2 (Phase jump / No phase jump)
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Partial derivatives

The partial derivatives obtained for the GNSS Single Difference Code Measurement are
reused with the exception of:

• Partial derivative with respect to the phase bias :
If we have chosen to estimate the phase bias for satellite 1 :

∂M
∂biais1

= −1
c

(C.60)

If we have chosen to estimate the phase bias for satellite 2 :

∂M
∂biais2

= +1
c

(C.61)

ISL distance measurements

Measurement format

The measurement contains the following elements:

• MESURE DISTANCE_INTER_SATELLITE

• Number of the emitting satellite S1

• Number of the receiving satellite S2

• Number of the emitting satellite antenna

• Number of the receiving satellite antenna

• Reception date of the measurement tr (Days / Seconds)

• Emission date of the measurement te (Days / Seconds)

• Measurement covariance cov(te) (m2)

Partial derivatives

The distance ρ between satellites S1 and S2 is written:

ρ =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (C.62)

ρ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (C.63)

The partial derivatives with respect to position are:
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∂ρ

∂x1
=
x1 − x2

ρ
(C.64)

and:

∂ρ

∂x2
=
x2 − x1

ρ
(C.65)

The partial derivatives of the other components are calculated in the same way.
The partial derivatives with respect to velocity are:

∂ρ

∂vx1

= 0 (C.66)

∂ρ

∂vx2

= 0 (C.67)

The partial derivatives of the measurement at the reception date tm are:

∂M

∂Pr
=
∂M

∂ρ

∂ρ

∂Pr

∂M

∂Pr
= −1

c

∂ρ

∂Pr

∂M

∂Vr
=
∂M

∂Pr

∂Pr

∂Vr

Similarly for the emitter satellite:

∂M

∂Pe
= −1

c

∂ρ

∂Pe

The correction is not made at the measurement date tm but at the end date of the orbital
window tf .
We use the transition matrix already demonstrated in subsection 3.2.1 :

ΦPVti→tf
=


∂P2
∂P1

∂P2
∂V1

∂V2
∂P1

∂V2
∂V1



ΦPV =

I3 + ∆t2

6 (2Gk +Gk+1) ∆t(I3 +
∆t2

12 (Gk +Gk+1)

∆t
2 (Gk +Gk+1) I3 +

∆t2

6 (Gk + 2Gk+1)



ΦPV ≈

 I3 ∆t(I3)

∆t
2 (Gk +Gk+1) I3


We use this matrix to know the partial derivative at the end of the orbital window.
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• Partial derivative with respect to the position

∂M

∂Pr(tf )
= −1

c

∂ρ

∂Pr(tf )
(C.68)

Similarly, for the emitter satellite:

∂M

∂Pe(tf )
= −1

c

∂ρ

∂Pe(tf )
(C.69)

• Partial derivative with respect to the velocity

∂M

∂Vr(tf )
=
∂Pr(tm)

∂Vr(tf )

∂M

∂Pr(tm)

∂M

∂Vr(tf )
= I3(tm − tf )

∂M

∂Pr(tm)

∂M

∂Vr(tf )
= −1

c

∂ρ

∂Pr
(tm − tf ) (C.70)

Similarly, for the emitter satellite:

∂M

∂Ve(tf )
= −1

c

∂ρ

∂Pe
(tm − tf ) (C.71)
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Glossary

Acronyms

CNES Centre National d’Études Spatiales, the French space agency.
DTN Direction Technique et Numérique, the technical and digital directorate of CNES.
GNC Guidance, Navigation and Control.
POD Precise Orbit Determination.
IAU International Astronomical Union.
BIPM Bureau International des Poids et Mesures.
SSB Solar System Barycentre (or Barycenter).
BOLERO CNES reference library for orbital navigation, providing physical models and navigation

methods.
Patrius CNES Java library for orbit propagation, dynamics and mission analysis.
LOTUS CNES Java library including measurement modelling classes (e.g. landmark and LiDAR

measurements).
Orbito CNES library used for orbit-related computations in the mission generator.

MATLAB Navigator’s specifics

MissionData JSON input file defining the global configuration of a simulation: physical parameters,
bodies, active forces, Kalman filter parameters, satellite properties, sensor locations and other
mission settings.

Directives file Text input file describing the timeline of the mission: start and end times, initial orbit,
extrapolation instants and list of measurements to be used during the simulation.

Telecommand file (tc) Input file used to modify navigator parameters during the simulation (e.g. forces,
attitudes, thresholds) at specified times.

simu Main internal data structure of the Navigator storing simulation-wide information: physical constants,
perturbing bodies, active forces, time scales and configuration parameters.

sat Internal data structure representing the spacecraft (or spacecrafts), storing clock time, state vectors,
measurements and navigation results.

Orbital window Fixed-duration time interval between two extrapolation instants. The EKF runs over
successive orbital windows, propagating and updating the state within each window.

Reference frames and time scales

Inertial frame Reference frame in which Newton’s laws hold without fictitious forces; used for dynamics
and state propagation (e.g. ICRF).

Body-fixed frame Frame rigidly attached to a celestial body, rotating with it; used for local computations
on or near the body.

VEIS Vrai Équinoxe Initial du Système, historical celestial reference frame used in the Navigator.
CIRF Celestial Intermediate Reference Frame.
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ICRF International Celestial Reference Frame.
GCRF Geocentric Celestial Reference Frame.
EME2000 Earth Mean Equator and Equinox of J2000 reference frame.
EoD Earth Orientation at Date frame.
ITRF International Terrestrial Reference Frame.
TIRF Terrestrial Intermediate Reference Frame.
BCF frame Body-centred, body-fixed frame of the central body, defined by its rotation axis and orienta-

tion model.
QSW frame Local orbital frame with axes along radial (R), along-track (S) and cross-track (W) directions,

used to analyse position and velocity errors.
TNW frame Local orbital frame defined by tangential (T), normal (N) and W axes, conceptually similar

to QSW.
Julian Date (JD) Continuous count of days used in astronomy and ephemerides.
CJD Modified Julian date used in the Navigator: number of days since 01/01/1950 at midnight (JD

−2433282.5).
TAI International Atomic Time, time scale based on atomic clocks and used as fundamental reference.
TT Terrestrial Time, time scale derived from TAI and used for astronomical observations from Earth.
UTC Coordinated Universal Time, civil time scale differing from TAI by an integer number of leap

seconds.
UT1 Earth-rotation-based time scale; for low precision applications it is often approximated as equal to

UTC.
TDB Barycentric Dynamical Time, relativistic time scale used in barycentric ephemerides and interplane-

tary dynamics.
GPS time Time scale associated with GNSS systems, used for GNSS measurements and conversions.

Ephemerides and celestial mechanics

Ephemerides Tabulated or modelled positions (and often velocities) of celestial bodies as functions of
time, used to compute perturbations and observation geometries.

Meeus analytical model Analytical model providing approximate positions of the Sun and Moon in an
Earth-centred frame, with reduced computational cost and limited accuracy.

Chebyshev coefficients Coefficients of Chebyshev polynomial expansions used to represent positions
and velocities of celestial bodies over time intervals, enabling efficient interpolation of numerical
ephemerides.

Forces and dynamics

Spherical harmonics Expansion of the gravitational potential into degree and order terms, used to
model non-spherical gravity fields of planets and small bodies.

Solid tides Deformation of a celestial body due to external gravity (e.g. Sun, Moon) causing additional
perturbations in the gravity field.

Solar Radiation Pressure (SRP) Non-gravitational force generated by solar photons impacting space-
craft surfaces, modelled using plate areas, optical properties and Sun–spacecraft geometry.

Mean thrust model Simplified representation of thrust as an average acceleration over an orbital
window, instead of resolving the detailed thrust profile.

Navigation and estimation concepts

State vector Vector containing the dynamical state of the spacecraft and possibly additional parameters
(e.g. biases, clock states) to be estimated. In the MATLAB Navigator it is composed by
position, velocity, clock bias, drag coefficient, SRP coefficient, thrust error.
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Covariance matrix Symmetric positive-definite matrix representing the uncertainty of the state vector;
propagated and updated in the EKF.

Process noise Random model error in the state dynamics, described by a process noise covariance matrix,
accounting for unmodelled accelerations and uncertainties.

Measurement noise Random error affecting measurements, represented by a covariance matrix in the
EKF measurement model.

Kalman filter Recursive estimation algorithm combining a dynamic model with noisy measurements to
estimate the state and its uncertainty.

Extended Kalman Filter Nonlinear extension of the Kalman filter that linearises the dynamics and
measurement models around the current estimate.

Transition matrix State transition matrix mapping state perturbations and covariance from one orbital
window to the next.

Line of Sight (LOS) measurement Measurement of the direction from the spacecraft to a target (e.g.
celestial body) expressed as a unit vector or angular quantities; used mainly to constrain
tangential and normal components of the state.

LiDAR range measurement Distance measurement obtained from a LiDAR sensor by emitting laser
pulses and measuring their two-way time of flight.

RMS error Root-mean-square error of position or velocity, computed over a set of samples to quantify
navigation performance.

3σ bounds Confidence interval corresponding to three standard deviations of a Gaussian error, used to
assess consistency between errors and covariance.

Guidance, optimal control and mission design

Guidance Problem of determining the desired trajectory or control law for the spacecraft to reach mission
objectives.

Optimal Control Theory Theory that determines control laws for dynamical systems in order to
optimise a performance index under constraints.

Optimal Control Problem Mathematical problem defined by dynamics, boundary conditions, con-
straints and an objective functional to be minimised or maximised.

State and costate Pair of vectors in optimal control: the state describes the physical system; costate
(adjoint) variables describe sensitivities of the objective and satisfy adjoint equations.

Mayer-type cost functional Objective function depending only on the final state or final time (e.g.
maximisation of final mass).

Mission generator Java-based tool (using Patrius and other CNES libraries) that propagates interplan-
etary missions, generates LOS and LiDAR measurements and produces MissionData, directives
and telecommand files for the MATLAB Navigator.

Missions and celestial bodies

Hera mission ESA mission to the binary asteroid system Didymos–Dimorphos, designed to study the
effects of a kinetic impact and demonstrate planetary defence techniques.

Didymos Near-Earth binary asteroid system and central body in several test cases of the thesis.
Dimorphos Small satellite of Didymos, target of the kinetic impact experiment.
Juventas CubeSat of the Hera mission with an atypical, manoeuvre-intensive trajectory, used in the

thesis as a test case for navigation around a small body.
Milani CubeSat of the Hera mission dedicated to mapping and probing Dimorphos, an example of a

mission combining camera and LiDAR for navigation.
2000 SG344 Small near-Earth asteroid with non-negligible impact probability on Earth in the next

century; used as target of an interplanetary low-thrust trajectory optimisation in the thesis.
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