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Abstract
This thesis falls within the scope of the restricted three-body problem (CR3BP), a
dynamic model capable of describing, with realism and manageable complexity, the
motion of a body of negligible mass subject to the gravitational attraction of two pri-
mary bodies in circular orbit. The CR3BP is now a fundamental reference for the
preliminary analysis of missions in multi-body environments, widely used in scientific
and exploration missions. Despite the existence of the NASA Jet Propulsion Labo-
ratory (JPL) public catalog of periodic orbits, this resource is limited to a finite set
of precomputed orbital systems and families, and does not allow for the autonomous
generation of new solutions or the easy extension of the database to other three-body
systems.

The objective of the thesis is to develop a numerical tool, implemented in Python
and equipped with a graphical user interface (GUI), which acts as an intermediate link
between the NASA JPL database and the more complex proprietary mission design en-
vironments. The tool allows for high-precision calculation, classification, and analysis
of periodic orbits in the CR3BP, replicating and expanding the functionality of the JPL
dynamic catalog, and making it possible to define new three-body systems, generate
initial conditions for new orbits, and correct them towards periodicity.

After reviewing the equations of motion in the synodic system, the Lagrangian
points, their stability framework, and the role of the effective potential and Jacobi con-
stant, the thesis analyzes the main orbital families considered in the tool: Lyapunov
orbits, Distant Retrograde Orbits (DRO), Short and Long Period Orbits, Halo, Vertical
and Axial orbits. For each family, the geometric aspects and global stability indices
are studied as a function of the dynamic parameters.

The methodological core of the work is represented by dynamic systems theory
and differential correction algorithms. Starting from variational equations, the State
Transition Matrix (STM) is derived, which is used to formulate and solve two-point
boundary value problems using shooting methods. A single shooting algorithm, in
which the correction acts on a single initial state vector, and a multiple shooting al-
gorithm, which divides the orbit into several arcs and introduces intermediate state
vectors as correction variables, are implemented and compared. A numerical campaign
in the Earth–Moon system shows that single shooting is particularly efficient for planar
or highly symmetric orbits, while multiple shooting is more robust for complex three-
dimensional orbits.

To derive the initial conditions of Halo orbits, Richardson’s analytical approxima-
tion is first implemented, which provides third-order solutions for the initial conditions
starting from a prescribed vertical amplitude; its accuracy is sufficient in some cases,
but not always adequate to guarantee the convergence of the correction methods. To
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overcome these limitations, the thesis introduces a Genetic Algorithm (GA) specifically
designed to search for quasi-periodic initial conditions, using as a cost function the de-
viation from periodicity measured on the velocity components at the plane section.
Initially validated on a Northern Halo of the Earth-Moon system, the GA is then ap-
plied to systems not covered by the JPL catalog, such as Pluto-Charon and the binary
star system α Centauri AB, demonstrating the ability to identify initial conditions with
a high probability of periodicity even in the absence of reference solutions.

A further original contribution is the development of an algorithm for estimating
the surface coverage of a celestial body by a probe in periodic orbit. The surface is
discretized using a spherical Fibonacci lattice, which distributes an arbitrary number
of points almost uniformly on the sphere, while the field of view of the onboard instru-
ment is translated into an imprint angle and a visibility criterion formulated in matrix
terms. The procedure returns the fraction of the surface observed and an estimate of
the numerical error, which decreases with the square root of the number of discretiza-
tion points.

All the methodologies developed are integrated into a single software tool with a
GUI, divided into modules dedicated to the orbit database, the definition of new sys-
tems, differential correction, the derivation of initial conditions, and coverage analysis.
In conclusion, the thesis creates a flexible environment for high-precision calculation
and classification of periodic orbits in the CR3BP, capable of extending and enhancing
the NASA JPL database and supporting the preliminary phases of mission design in
different scenarios.
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Introduction
Modern space design increasingly operates in gravitational environments where more
than two bodies are considered, and the hypothesis of the two-body problem is no
longer sufficient. The addition of just a third body breaks down the Keplerian inte-
grability and introduces several non-linearities. In this context, the Circular Restricted
Three-Body Problem (CR3BP) hypothesis is important because it is the simplest model
capable of preserving the essential dynamical structures of a three-body system, while
mantaining a manageable complexity. In fact, this hypothesis eliminates the need
of complete ephemerides, reduces the number of parameters and enables the analysis
in non-dimensional units as discussed later. Thus, the CR3BP is the basis of many
missions, including those operated in the lunar environment such, as the Cislunar
Autonomous Positioning System Technology Operations and Navigation Experiment
(CAPSTONE) [1]; and missions like the Double Asteroid Redirection Test (DART) [2],
OSIRIS-REx [3] and Hayabusa [4], which are designed for the observation and sample
collection from the surfaces of asteroids in the vicinity of the Earth.

The CR3BP has been the subject of numerous studies over the past 250 years, with
contributions from illustrious figures like Euler, Lagrange and Jacobi. Due to the tech-
nological limitations at the time, first attempts focused mainly on finding an analytical
solution to the problem. These attempts soon resulted in the identification of just one
integral of motion, which was later demostrated to be the only integral of motion that
could be derived for the CR3BP. In the following years, the advent of more reliable
numerical methods made it possible to solve the equations of motion of the CR3BP,
first computing the location of the equilibrium points of a three-body system and then
deriving the initial conditions of the so-called periodic orbits. The identification of the
equilibrium, or libration, points, has made it possible to carry out missions whose main
objective has been scientific investigations into the physics of stars and galaxies.

One example of a mission of this kind, which made use of the three-body dynam-
ics, is the International Sun-Earth Explorer (ISEE-3). This mission was the first to
be designed using a combination of analytical and numerical methods to predetermine
the reference libration orbit, along with proven operational numerical techniques for
targeting and optimization [5, 6]. ISEE-3 was designed and supported by the Flight
Dynamics Analysis Branch (FDAB) of the Goddard Space Flight Center, which used
the reference software for all missions designed before 1990, namely the Goddard Mis-
sion Analysis System (GMAS). GMAS was the first software capable of propagating
complex orbits with realistic perturbations models, incorporating also attitude control
functions, evaluation of eclipse periods and ground coverage. Furthermore, it enabled
user to connect proprietary modules to perform customized analyses [7]. GMAS was
widely employed to design periodic orbits and advanced configurations in the CR3BP
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before the development of new generation softwares. One of the main limitations of
GMAS was its implementation on a mainframe computer, which at the time was the
only resource capable of computing high accuracy and high fidelity trajectories for or-
bits around the libration points.

From the mid-1990s onwards, GMAS was replaced by Swingby [8, 9], a new oper-
ational PC program developed by GSFC. Thanks to this new trajectory and mission
design software, it became possible to carry out new missions based on orbits built
around the libration points, such as the Solar Heliospheric Observatory (SOHO), the
Advanced Composition Explorer (ACE), the Microwave Anisotropy Probe (MAP), and
Genesis. The main new feature was the interactive graphical interface, which provided
instantaneous feedback on the trajectory design in multiple reference frame. Other in-
novations included the ability to change physical constants to describe different three-
body systens and select the perturbations to be included into the simulation. Swingby
was designed to act as a generic tool capable of supporting missions of various natures.
Thanks to its numerical accuracy and the multiple mission design functions it was
equipped with, Swingby became the new standard in mission design and formed the
basis for the development of new tools like Astrogator.

Astrogator is, more precisely, a tool from Analytical Graphics Inc.’s (AGI’s) Sys-
tems Tool Kit (STK). This tool has been used to design missions like Arcus [10],
ARTEMIS [11] e James Webb Space Telescope (JWST) [12]. It is evident that STK
and its tools have become the new reference point for the mission and trajectory de-
sign, giving a huge contribution to the planning of missions that will mark fundamental
milestones in the scientific research and human exploration since the 2010s.

Besides these proprietary and commercial softwares, such as STK/Astrogator, few
instruments deal with the fundamental topics related to the CR3BP, therefore enabling
a preliminary phase of mission planning and trajectory design. The main resource is a
database provided by NASA. Such database, as will be highlighted hereafter, guaran-
tees free access to data related to several families of periodic orbits. However, rather
than being a truly useful tool for mission and trajectory design, this database can be
seen as a complement to software that performs these tasks.

1.1 State of the art
Due to the growing interest in the space sector and space exploration, new products
designed to enhance preliminary mission design are continuously released. Most of
these, like those previously mentioned, provide extremely accurate tools for reliably
designing missions. However, the majority of these products require licences upwards
of several hundreds of thousand of dollars.

The next section discusses and analyzes the only instrument provided to the public
free of charge. However, this too has significantly limited functions for mission and
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trajectory design.

1.1.1 Database of three-body periodic orbits by NASA
JPL

NASA’s Jet Propulsion Laboratory (JPL) provides free access to a web database1 of
periodic orbits, computed in the context of the CR3BP, whose theory will be discussed
in more detail in Chapter 2. This database, also known as dynamical orbit catalog
contains 727,774 precomputed orbits in total and is updated whenever new orbits are
derived. Periodic orbits that are already available in the catalog are derived using a
robust multiple shooting differential correction algorithm based on a generalized con-
straint and free variable method within a pseudo-arclength continuation scheme. All
stored data can be accessed via the web interface provided for users, shown in Figure
1.1 and the Application Programming Interface (API) service, which allows to obtain
datas with the highest available resolution.

Figure 1.1: User interface to access the three-body periodic orbits database provided
by NASA [13]

Using the graphic interface, the user can select a system amongst the seven available,
which are:

• Sun-Earth system;

• Sun-Mars system;

• Earth-Moon system;

• Mars-Phobos system;

• Jupiter-Europa;

• Saturn-Enceladus;
1https://ssd.jpl.nasa.gov/tools/periodic_orbits.html#/periodic
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• Saturn-Titan.

Additionally, the user can choose the family of periodic orbits of interest, and specify
a few parameters to filter the database. These parameters include the Lagrangian
point around which the orbit is built, the orbital period, the Jacobi constant, and the
stability index. The output data are organized into two different sections. The first one
containts two tables showing the physical properties of the system within the selected
family of periodic orbits is evaluated. As shown in Figure 1.2 and Figure 1.3, one
table reports the ratio of the masses of the two celestial bodies and the units used to
non-dimensionalize the output data. The second table simply shows the location of the
Lagrangian points of the system in non-dimensionalized units.

Figure 1.2: Lagrange points location provided by NASA JPL for the Earth-Moon
system [13]

Figure 1.3: System physical properties provided by NASA JPL for the Earth-Moon
system [13]

The second table gathers all data collected from the dynamical orbit catalog according
to the user’s selections. Each row of the table corresponds to a specific periodic orbit,
characterised by the following parameters:

• an ID to identify the orbit;

• six elements that form the initial conditions vector;
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• the Jacobi constant;

• the orbital period expressed in both non-dimensional unit and days;

• the stability index.

Figure 1.4a and Figure 1.4b show how these data are presented to the user. They break
down the results table in order to offer a clearer view of the data it contains.

(a)

(b)

Figure 1.4: Output table provided by NASA JPL for the Long Period orbit family
around L4 in the Earth-Moon system [13]

These data can be used to perform several tasks, such as plotting one or more orbits,
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generating a ".csv" showing the initial conditions of the selected orbits or the state
vector of each point that composes the orbit, or observing the trends in the Jacobi
constant and stability index.

Although this website represents the only way to freely access data on periodic
orbits under the hypothesis of the restricted three-body problem, it has limitations.
The only systems available are the those provided to the user, as well as the only
orbits that can be obtained are the precomputed ones. Consequently, users cannot
obtain informations on any other system or derive the initial conditions for new orbits
independently.

1.2 Objectives
The objective of this thesis is to develop a tool that put itself, due to its characteristics,
between the NASA JPL database and the more complex mission design softwares men-
tioned previously. The tool’s primary function must be to retrieve periodic solutions in
the CR3BP and extend this function to different dynamical systems. This will enable
initial conditions for new periodic orbits in new sistems to be derived with sufficient
accuracy and then provided to differential correction algorithms as an initial guess.

Here follows the list of the particular objectives that the thesis set out to achieve:

• to comprehend the theoretical basis and the fundamental characteristics of the
CR3BP;

• to replicate the structure and the essential functions of the dynamical orbit catalog
produced by NASA JPL;

• to analyze the sensitivity of the differential correction method to variations in
the initial conditions, in order to identify its operational limits and critical failure
points;

• to design and develop an algorithm that generates the initial conditions for new
Halo orbits and use differential correction algorithms to ensure these initial con-
ditions are periodic;

• to validate the results obtained through comparisons with analytical solutions
or theoretical approximations derived from the mathematical framework of the
CR3BP.

• to design and develop an algorithm that can evaluate the percentage of surface
of a celestial body that is visible as the spacecraft moves along a specific periodic
orbit;

• to obtain results that can be extrapolated to realistic scenarios with the potential
to be applied in the early phases of space mission design;
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• to create a graphic user interface (GUI) that enables the user to easily and intu-
itively perform all the functions at his disposal;

1.3 Methodology
Two programming languages have been considered to code the tool: MATLAB and
Python.

The first one is an environment created by Cleve Molner in 1984. MATLAB dis-
tinguishes for the presence of numerous toolboxes, an integrated IDE and Simulink.
Its computational speed and the vector/matrix syntax make MATLAB intuitive and
well-suited to designing control algorithms, signal processing and numerical algorithms
based on the use of matrices.

Python is a general-purpose open-source programming language created in 1991 by
Guido von Rossum. Thanks to its extensive range of libraries, Python represents a
valid alternative to MATLAB. It is also an excellent choice for scientific computing,
machine learning and deep learning applications, as well as for creating Graphical User
Interfaces (GUI). Finally, Python’s interoperability with other programming languages
such as C/C++, makes it ideal for coding of "end-to-end" software.

In order to create a freely usable and distributable tool with native web integra-
tion and no licence limitations for the general public, Python is the obvious choice for
this thesis work. However, it is worth noting that MATLAB is now the standard for
technical calculations in academic and corporate environments.

1.4 Thesis overview
This thesis is structured in 6 chapters.

Chapter 1 introduced the scenarios in which the CR3BP is applied, as well as
its importance. It provided a historical overview of mission design software from the
1990s to the present day. The NASA JPL database was analysed due to its public
access, and its functions, pros and cons were described as state of the art. Finally, the
objectives of this thesis were outlined, as well as the programming language used to
code the tool;

Chapter 2 introduces the theoretical framework on which the thesis is based. Firstly,
it presents the fundamental studies that, during the years, contributed to the definition
of the Circular Restricted Three-Body Problem. It then introduces the two reference
frames used and the units used to non-dimensionalize the equations of motion, which
are derived right after in the rotational reference frame. Finally, key concepts are pre-
sented and analyzed. These include the Lagrangian points and their stability, as well as
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the Jacobi constant and how the value of this last parameter influences the extension of
the zero-velocity curves. This thorough analysis of fundamental theoretical concepts is
essential for the comprehension of the characteristics and the behaviour of a three-body
system.

Chapter 3 explore the topic of periodic orbits in the CR3BP, presenting the char-
acteristics necessary for them to be considered as such. Furthermore, it shows the
procedure to integrate the equations of motion, in order to produce a visual represen-
tation of the periodic orbits. An analisys of the periodic orbits that are available in
the tool follows, investigating the geometric and stability characteristics of each family.
As well as providing a preliminary graphical representation, this chapter enables the
reader to understand the nature of the different families of periodic orbits and, as a
consequence, their possible applications in various operational scenarios.

Chapter 4 provides a brief introduction to the Dynamical System Theory, before
focusing its analysis on the differential correction algorithms. First, the State Tran-
sition Matrix is derived, with particular attention given to its main characteristics
and its importance for the differential correction algorithms. Next, the two imple-
mented algorithms are thouroughly explained, presenting the mathematical discussion,
the structure of the algoritm and an application case to demonstrate how it works.
Finally, the results obtained when testing both algorithms with the same initial con-
ditions are presented. Thus, after explaining the theoretical basis of the algorithms,
the reader is offered a comparison to help understand the scenarios in which the two
algorithms ensure the best performance in correcting the initial conditions.

Chapter 5 presents methods to derive the initial conditions for Halo orbits. The first
method is Richardson’s approximation, which yields third-order analytical solutions for
the initial conditions of Halo orbits. After proving the utility and limitations of this
approach, the theoretical functioning of a genetic algorithm and its fundamental steps
are described. The genetic algorithm is then tested using reference initial conditions to
demonstrate its reliability. Lastly, the results of the application of the genetic algorithm
to two new three-body systems are presented. These results highlight the capacity of
the genetic algorithm to find initial conditions highly likely to be periodic using the
analytical approximation as a starting point.

Chapter 6 describes the final architecture of the tool, analyzing each of its modules
and explaining how they work. Next, several future improvements are mentioned that
would make the tool more complete and suitable to further aid in designing missions.
Finally, the conclusions summarize the work done and explain how the thesis objectives
have been satisfied.
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The Circular Restricted Three-Body
Problem
The Three-Body Problem (3BP) is a theory of the motion of an isolated system of
three arbitrary point masses mi. According to Newton’s Law of Universal Gravitation
and Second Law of Motion [14], the motion of every mass is a result of the mutual
gravitational attraction, leading to the following equations of motion

mi
d2ri

dt2
= G

Ø
j ̸=1

mimj

r3
ji

rji (2.1)

where G is the Gravitational Constant equal to
6.6743 × 10−11 N m2 kg−2, mi denotes the mass of i-th body and, rji is the relative
position of Pj with respect to Pi, defined as

rji = rj − ri (2.2)

Equation (2.1) informs us that the trajectory of any body is defined by three second-
order differential equations. Hence, a standard three-body system has nine second-order
differential equations defining it, or alternatively eighteen first-order equations. Thus,
eighteen initial conditions would be required in order to fully define the system’s evo-
lution analitically. However, when there are three or more bodies, only ten integrals of
motion are available, suggesting that the system is not entirely integrable. Specifically,
the first integral of motion was obtained by Jacobi in 1836 [15] and is presently called
the Jacobi integral, which will be examined in Section 2.3. Later, in 1899, Poincarè
showed that this is the only precise constant of motion for the general problem of three
bodies [16]. Nevertheless, under these assumptions, analytical solutions, named ho-
mographic solutions, may be found, in which the system’s geometric configuration is
constant in time. These solutions have been obtained imposing zero angular momen-
tum and equal masses, i.e. m1 = m2 = m3. Among the ensuing orbits was one initially
postulated by Moore in 1993 [17] and later confirmed by Chenciner and Montgomery
in 2000 [18]. In this orbit, the three masses form a figure-eight curve, trace a rigid
equilateral triangle that rotates at constant angular velocity inside it circumscribing
circle, as depicted in Figure 2.1.

Of the numerous configurations shown to be numerically stable, this is merely an
example. Despite this, the presence of such solutions in physical space is considered
highly unlikely.
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m1

m2

m3

Figure 2.1: Figure-eight loop with equal masses

One simplifying assumption which is best suited to the majority of planetary systems
that have been observed is that the mass of one of the bodies is negligible in comparison
to the other two, which are referred to as primaries. With this in hand, the negligible
mass does not influence the primaries’ motion. This leads to a reformulation of the
problem as so-called Restricted Three-Body Problem (R3BP). Therefore, the analysis
of the system dynamics is the analysis of relative motion of the third body with respect
to the primaries, which orbit about their common center of mass. A classic example is
the motion of a spacecraft in the Earth-Moon system.

A second approximation is the primaries being in circular orbits around each other,
assumption valid for most planet-moon and Sun-planet pairs in the Solar System. This
is the formulation of the problem first suggested by Euler in 1767 [19], starting the break
up from the R3BP towards the Circular Restricted Three-Body Problem (CR3BP).

A further variation of the problem has the primaries orbiting in elliptical curves,
resulting in the so-called Elliptic Restricted Three-Body Problem (ER3BP). Neverthe-
less, in the rest of this research, only the CR3BP will be used, since it is an adequate
model for the dynamical description of the previously cited primary body pairs, and
for many others that will be used as examples throughout this thesis.

2.1 Equations of Motion
To get the equations of motion (EoMs) of the CR3BP, the configuration shown in
Figure 2.2 is used. Figure 2.2 shows two frames: an inertial frame, denoted by IJK;
and a rotating frame, or synonymously synodic frame, denoted by ijk. The latter is the
barycenter of the two primaries with uniform angular velocity ω, which by the circular
motion assumption coincides with the mean angular motion of the primaries

ω =
ó
GM

R3 k (2.3)

where M is the total mass of the two primaries, and R is the distance between them.
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I

J

m1

m2

m3

i

j

a2

a1

r1

r2

r

ω(t− t0)

O
K ≡ k

Figure 2.2: Geometric representation of the CR3BP

The relationship that defines the transformation from the synodic frame to the inertial
frame is given by the following equation

I
J
K

 =


cosω(t− t0) − sinω(t− t0) 0
sinω(t− t0) cosω(t− t0) 0

0 0 1




i
j
k

 = R


i
j
k

 (2.4)

where R is the direct cosine matrix that transforms between the two reference frames.
The EoMs may be written as well in the synodic and in the inertial frame of refer-

ence. In the case at hand, the synodic frame is employed, as it enables the eradication
of the time dependency from the equations of motion. In addition, the periodicity of
the orbit in the CR3BP setting arises precisely due to the reference frame being chosen
accordingly.

An additional simplification, widely used in the literature involves the nondimen-
sionalization of the variables under consideration. This process eliminates the necessity
of knowing the absolute values of the masses and the distance between the primaries,
requiring instead only their relative relationships. The process of nondimensionaliza-
tion is performed through division of the dimensional variables by suitable reference
quantities, namely:

• Length Unit, corresponding to the sum of the distances of the two primaries from
the barycenter

LU = a1 + a2
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• Mass Unit, which is equal to the sum of the masses of the primaries

MU = m1 +m2

• Time Unit, derived from the dimensional part of the orbital period

TU =

ó
R3

GM

Because of the normalization used, the total mass of the system, the primary separation
and the Gravitational Constant are all taken to be unity, while the orbital period T is
simplified to 2π.

Moreover, since the total mass M of the system is nondimentionalized to unity, the
smaller mass m2 can be set to a fraction of M

m2 = µ (2.5)

Consequently, the mass of the larger primary becomes

m1 = M −m2 = 1− µ (2.6)

The µ parameter, conventionally referred to as the mass ratio, can thus range from a
minimum of 0 for the classical Two-Body Problem (2BP) to a maximum of 0.5 for a
system of two equal primaries, similar to many binary star systems.

Additionally, by definition of the barycenter, the distance of every primary from
center of mass can be expressed as a function of the mass ratio

m1a1 = m2a2 =⇒ a1
a2

= µ

1− µ (2.7)

From the Equation (2.7), it follows that the nondimensional distances of the primaries
from the center of mass are

a1 = µ

a2 = 1− µ
(2.8)

that is, each is equal to the nondimensional mass of the opposite body, such that their
distances are complementary with respect to unity.

As per the above assumption, the EoMs can now be written with respect to the
synodic reference frame, as depicted in Figure 2.3. The third body state vector m3

whose motion is to be examined is defined in the rotating frame and included both
position and velocity terms

X =
3
x, y, z,

dx

dt
,
dy

dt
,
dz

dt

4
(2.9)
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The position vector of m3 in the synodic frame is expressed as

r = xi + yj + zk (2.10)

m1

m2

m3

r
r1 r2

i

j

ω

a2a1

Figure 2.3: Synodic reference frame

Differentiating Equation (2.10) with respect to time provides the velocity of the body
within the rotating frame

dr(R)

dt
= dx

dt
i + dy

dt
j + dz

dt
k (2.11)

where the superscript (R) represents the rotational reference frame.
A second differentiation of Equation (2.11) leads the acceleration vector in the

synodic frame
d2r(R)

dt2
= d2x

dt2
i + d2y

dt2
j + d2z

dt2
k (2.12)

Both the velocity and acceleration vectors can also be expressed in the inertial reference
frame.

The transformation of the velocity is given by

dr(I)

dt
= dr(R)

dt
+ ω(R/I) × r (2.13)

where the superscript (I) stands for intertial reference frame.
The corresponding acceleration expression is

d2r(I)

dt2
= d2r(R)

dt2
+ 2ω(R/I) × dr(R)

dt
+ dω(R/I)

dt
× r + ω(R/I) ×

1
ω(R/I) × r

2
(2.14)

It can be observed in Equation (2.14) that the inertial frame acceleration, and hence
the one experienced in Newton’s second law, consists of four separate terms:

• d2r(R)

dt2 is the acceleration of the third body in the rotating frame;

• 2ω(R/I) × dr(R)

dt is the Coriolis acceleration;
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• dω(R/I)

dt × r is the acceleration due to a non-constant motion of the synodic frame
with respect to the inertial frame;

• ω(R/I) ×
1
ω(R/I) × r

2
is the centripetal acceleration.

Since the two primaries’ motion around their barycenter is circular and in the xy plane,
the angular velocity vector ω is constat and along the z-axis

ω =


0
0
ω

 (2.15)

Hence, the third term on the right hand side of Equation (2.14) is dropped, and the
Coriolis and centripetal accelerations reduce to

2ω(R/I) × dr(R)

dt
= 2

--------
i j k
0 0 ω
dx
dt

dy
dt

dz
dt

-------- = 2ωdx
dt

i− 2ωdy
dt

j (2.16)

ω(R/I) ×
1
ω(R/I) × r

2
=

--------
i j k
0 0 ω

−ωy ωx 0

-------- = −ω2(xi + yj) (2.17)

By putting Equations (2.16) and (2.17) in Equation (2.14), one get the expression of the
acceleration of the third body with respect to the inertial frame, expressed as function
of the synodic frame coordinates

d2r(I)

dt2
=
A
d2x

dt2
− 2dy

dt
− x

B
i +

A
d2y

dt2
+ 2dx

dt
− y

B
j + d2z

dt2
k (2.18)

By applying the Universal Gravitational Law as given in Equation (2.1) the gravi-
tational acceleration on the third body can be calculated. In order to calculate the
contributions from the two primaries, one needs to find the position vectors from the
primaries towards the third mass m3. Referring to Equation (2.2) and the configuration
described in Fig. (2.3), the relative position vectors are

r1 = r− a1i = (x+ µ)i + yj + zk (2.19)

r2 = r− a2i = (x− 1 + µ)i + yj + zk (2.20)

with their magnitudes given by

r1 =
ñ

(x+ µ)2 + y2 + z2

r2 =
ñ

(x− 1 + µ)2 + y2 + z2
(2.21)

According to Law of Universal Gravitation, the accelerations exerted by the two pri-
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2.1 Equations of Motion

maries on m3 are
a1 = −(1− µ)r1

r3
1

a2 = −µr2
r3

2

(2.22)

Summing these contributions results in the total gravitational acceleration acting on
the third body

ag = −(1− µ)r1
r3

1
− µr2

r3
2

(2.23)

Care should be taken to note that, due to previous nondimensionalization, both the
whole mass M and the gravitational constant G are assigned unity values and therefore
omitted from Equation (2.23). Had this normalization not been carried out, they would
have featured in the expression explicitly.

It should be noted further that the acceleration in Equation (2.23) is equivalent to
the previously obtained one in Equation (2.14).

Hence, setting them equal and solving for the ijk components provides the final
form of the EoMs: a set of three second-order, non-linear, and coupled differential
equations 

d2x

dt2
− 2dy

dt
− x = −(1− µ)(x+ µ)

r3
1

− µ(x− 1 + µ)
r3

2
d2y

dt2
+ 2dx

dt
− y = −(1− µ)y

r3
1

− µy

r3
2

d2z

dt2
= −(1− µ)z

r3
1

− µz

r3
2

(2.24)

The EoMs provided in Equation (2.24) can be re-expressed alternatively by introducing
the pseudo-potential function U

U = 1
2(x2 + y2) + 1− µ

r1
+ µ

r2
(2.25)

Based on the formulation provided in Equation (2.25), the EoMs can be expressed more
briefly as 

d2x

dt2
− 2dy

dt
= ∂U

∂x
d2y

dt2
+ 2dx

dt
= ∂U

∂y

d2z

dt2
= ∂U

∂z

(2.26)

The pseudo-potential U consists of the two primaries’ gravitational potential together
with an additional term, known as centrifugal potential, associated with the first term
in Equation (2.25), and is caused by taking rotational reference frame. The pseudo-
potential thus describes the effective potential experienced by the third body in the
synodic reference frame. Figure 2.4 shows this function for the mass ratio µ = 0.15.
As can be seen, the pseudo-potential tends to infinity at the locations of the two main
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2 The Circular Restricted Three-Body Problem

bodies. This is due to the fact that the distance between the third body and one of
the primaries approaches zero in the region. Moreover, the maximum corresponding
to the more massive primary is of larger radial size. This is a direct consequence of
the mass-dependent nature of the gravitational term in the pseudo-potential: since the
potential contribution of each primary is a function of its mass, the stronger attaction
of the heavier body produces a deeper and wider potential well around it.

Figure 2.4: Pseudo-potential function

Equation (2.26) will be utilized in the subsequent sections to find the Lagrange points
and to obtain the Jacobi integral.

2.2 Lagrange Points
Once the EoMs have been obtained, the question that arises is whether or not there exist
equilibrium points within the synodic frame. These are equivalent to configurations
where the third body is at rest in reference to the primaries. Within the synodic
frame, this implies that the third body is stationary with respect to position in time.
The location of such points is of inherent importance in the CR3BP, as they are the
starting point of families of periodic and quasi-periodic orbits.

In order to find points with such characteristics, one must enforce that both velocity
and acceleration be zero at these points. This is equivalent to insisting that the spatial
derivatives of the pseudo-potential function U be zero.

In view of these parameters, the EoMs provided in Equation (2.26) reduce to the
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2.2 Lagrange Points

following algebraic system

x− (1− µ)(x+ µ)
r3

1
− µ(x− 1 + µ)

r3
2

= 05
1− 1− µ

r3
1
− µ

r3
2

6
y = 05

−1− µ
r3

1
− µ

r3
2

6
z = 0

(2.27)

It is immediately evident that the equation along the z-axis holds only if z = 0. There-
fore, all the equilibrium points, or libration points, or Lagrange points, named after
Lagrange who first calculated them in 1772 [20], lie in the i-j plane, which coincides
with the plane of motion of the primaries.

In order to find the coordinates of the Lagrange points in the synodic reference
frame, one must solve the x- and y- equations of Equation (2.27). The y-equation has
two different solutions, y = 0 and y ̸= 0, which inherently distinguish the libration
points into two distinct groups: the equilateral points (y ̸= 0) and the collinear points
(y = 0).

2.2.1 Equilateral Points
The first group of Lagrange points is identified imposing that y ̸= 0 within the equa-
tion along the y-direction. Recalling that all Lagrange points lie in the i-j plane, the
resulting system to be solved becomes

x− (1− µ)(x+ µ)
r3

1
− µ(x− 1 + µ)

r3
2

= 0

1− 1− µ
r3

1
− µ

r3
2

= 0
(2.28)

By manipulating the relations in Equation (2.28) the conditions required to determine
the equilateral points can be derived.

More precisely, multiplying the second equation by x − 1 + µ and subtracting it
from the first one gives

✚x−
(1− µ)(x+ µ)

r3
1

−
✟
✟✟✟

✟✟✟µ(x− 1 + µ)
r3

2
−✚x+ 1−µ+ (1− µ)(x− 1 + µ)

r3
1

+
✟

✟✟✟
✟✟✟µ(x− 1 + µ)

r3
2

= 0

which simplifies to
1− µ
r3

1
= 1− µ

implying that r1 = 1.
Likewise, multiplying the second equation by x + µ and once again subtracting it
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2 The Circular Restricted Three-Body Problem

from the first yields

✚x−
✘✘✘✘✘✘✘✘(1− µ)(x+ µ)

r3
1

− µ(x− 1 + µ)
r3

2
−✚x+ 1−µ+

✘✘✘✘✘✘✘✘✘✘(1− µ)(x− 1 + µ)
r3

1
+ µ(x− 1 + µ)

r3
2

= 0

which results in
µ

r3
2

= µ

hence obtaining r2 = 1.
Referencing the general equations for the distance of the third body from each

primary given by Equation (2.21) and observing that these distances are equal to each
other, the relation is obtainedñ

(x+ µ)2 + y2 =
ñ

(x− 1 + µ)2 + y2 (2.29)

Solving for x, Equation (2.29) becomes

x = 1
2 − µ (2.30)

From this outcome, and the unitary nature of both of these distances, the y-coordinates
of the two equilateral points are

y = ±
√

3
2 (2.31)

Therefore, the equilateral points lie on the vertices of two unit length equilateral trian-
gles, hence their designation. The equilateral points are usually denoted as L4 and L5,
and their coordinates are as follows

L4 :
A

1
2 − µ,

√
3

2 , 0
B

L5 :
A

1
2 − µ,−

√
3

2 , 0
B (2.32)

2.2.2 Collinear Points
The coordinates of the second group of Lagrange points can be obtained by using the
second solution of the equation in the y-direction of Equation (2.28), i.e., y = 0. This
type of condition imposes that all the second set of Lagrange points be located on the
x-axis of the synodic frame. By thus substituting y = 0 and z = 0, the given relation
simplifies to

x− (1− µ)(x+ µ)
|x+ µ|3

− µ(x− 1 + µ)
|x− 1 + µ|3

= 0 (2.33)

where the absolute values in the denominators are used to enforce that the terms are
positive because they are physical distances. There are three real roots to Equation
(2.33), which are the positions of points that are collinear along the x-axis. The points
are often represented as L1, L2, and L3.
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2.2 Lagrange Points

However, unlike for the equilateral points, the computation of collinear points’ po-
sitions involves the solution of an equation that lacks direct analytical solutions. As
such, two different approaches can be used based on mass ratio µ value. If µ is small
enough, Equation (2.33) can be approximated and approximate analytical solutions for
the coordinates of collinear points can be derived

L1 :
A
−
5
µ

3

6 1
3

+ 1, 0, 0
B

L2 :
A5

µ

3

6 1
3

+ 1, 0, 0
B

L3 :
3
−1−

55µ
12

6
, 0, 0

4
(2.34)

If instead the mass ratio µ is not very small, then the above approximate coordinates
may serve as a good initial guess for a numerical solution of Equation (2.33). For in-
stance, the Newton-Raphson method [21] may be used to solve Equation (2.33) and
find the numerical solutions corresponding to the x-coordinates of L1, L2 and L3. Ap-
proximate solutions tend to be near true roots and also improve convergence of the
numerical method. Figure 2.5 illustrates how the position of the collinear points vary
with the mass ratio µ. The horizontal axis has been truncated to the interval [0, 0.2]
since it includes all the values relevant to the Solar System systems.

Figure 2.5: Variation of the collinear points as a function of µ

Figure 2.6 present a few representative examples, with the horizontal axis converted to
a logarithmic scale to better emphasize the difference in µ values.
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2 The Circular Restricted Three-Body Problem

Figure 2.6: Zoomed-in plot of the collinear point locations with µ on a logarithmic
scale

Figure 2.6 present a few representative examples of three-body systems, with the hor-
izontal axis converted to a logarithmic scale to better emphasize the difference in µ

values. It should be noted that:

• L1 is always confined to the interval [−µ, 1−µ] and tends to zero as µ approaches
0.5;

• L2 lies within the interval [1 − µ,∞[ and exhibits a behavior similar to that of
L1;

• L3 in located in ]−∞,−1] and tends to −∞ as µ approaches to 0.5.

2.2.3 Stability of the Lagrange Points
Having determined the position of the Lagrange points, one must determine the condi-
tions under which these points are stable. A Lagrange point is stable if, when a body
is put at its position and a small perturbation is given to its initial state, the body
does not deviate from the point over time. To formulate this condition mathematically,
the initial coordinates of the third body are expressed as small deviations from the
equilibrium position

x = xe + δx

y = ye + δy

z = ze + δz

(2.35)

where xe, ye and ze denote the coordinates of a given Lagrangian pointy, while δx, δy
and δz represents small perturbations applied along each axis. In practise, since all
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2.2 Lagrange Points

Lagrangian points lie in the xy-plane, it follows that ze = 0
With these perturbed conditions, the expressions for the inverse cube of the dis-

tances of the third body to each primary, originally established by Equation (2.21), are
now

r−3
1 =

è
(xe + δx+ µ)2 + (ye + δy)2 + δz2

é− 3
2

r−3
2 =

è
(xe + δx− 1 + µ)2 + (ye + δy)2 + δz2

é− 3
2

(2.36)

Multiplying everything out, disregarding the higher-order terms, and using the binomial
theorem

r−3
1 ≈ r−3

1e − 3r−5
1e [(xe + µ)δx+ yeδy]

r−3
2 ≈ r−3

2e − 3r−5
2e [(xe − 1 + µ)δx+ yeδy]

(2.37)

where rie represent the distance of the i-th primary from the location of the Lagrange
points, hence it can be written as

rie =

xe for L1, L2, L3

1 for L4, L5
(2.38)

By getting the first and second derivative of Equation (2.35) and substituting them,
along with Equation (2.37), into Equation (2.24), yields the linearized EoMs around
the Lagrange points 

δẍ− 2δẏ − (1−A)δx−Bδy = 0

δÿ + 2δẋ−Bδx− (1− C) = 0

δz̈ +Dδz = 0

(2.39)

where δẋ and δẍ are respectively the first and second derivative with respect to time.
The coefficients A, B, C and D are constants defined as follows

A = (1− µ)
C

1
r3

1e

− 3(xe + µ)2

r5
1e

D
+ µ

C
1
r3

2e

− 3(xe − 1 + µ)2

r5
2e

D

B = 3(1− µ)(xe + µ)ye

r5
1e

+ 3(1− µ)(xe − 1 + µ)ye

r5
2e

C = (1− µ)
C

1
r3

1e

− 3 y
2
e

r5
1e

D
+ µ

C
1
r3

2e

− 3 y
2
e

r5
2e

D

D = 1− µ
r3

1e

+ µ

r3
2e

(2.40)

Because the motion along the z-direction is a simple harmonic motion and therefore
it is always stable, the attention can be focused on the first two relations of Equation
(2.39), leading to the 2D linearized EoMsδẍ− 2δẏ − (1−A)δx−Bδy = 0

δÿ + 2δẋ−Bδx− (1− C) = 0
(2.41)
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It is assumed that Equation (2.41) admits a solution of the following kind

δx = c1e
λt

δy = c2e
λt

(2.42)

The system can be expressed in matrix form by inserting the first and second derivative
of Equation (2.42) into Equation (2.41)

C
λ2 − (1−A) −B − 2λ
−B + 2λ λ2 − (1− C)

DI
δx

δy

J
=
I

0
0

J
(2.43)

which represents a typical eigenvalue problem. The trivial solution δx = δy = 0, one
of the two allowed, does not provide any additional information regarding the stability
of the system. Such solution corresponds to the third body being located at one of the
Lagrangian points exactly. The non-trivial solution is of greater interest and can be
derived when the matrix in Equation (2.43) is invertible, namely non-singular. Com-
puting the determinant and setting it equal to zero yeilds the characteristic equation.
This is a quadratic equation in λ2

λ4 + λ2 (2 + C +A) +
1
1− C −A+AC −B2

2
= 0 (2.44)

whose solutions are given by

λ = ±

ó
−2− C −A±

ò
2C + 2A+ 1

4C
2 − 1

2AC + 1
4A

2 +B2 (2.45)

In order for the system to be stable, all roots must be purely immaginary or have a
negative real part.

For istance, when the equilateral points are considered, it is known that both dis-
tances from the primaries r1e and r2e are unitary. Therefore, Equation (2.44) becomes

λ4 + λ2 −
327

4

4
µ(µ− 1) = 0 (2.46)

whose roots are given by

λ2 = 1
2

3
−1±

ñ
1− 27µ(1− µ)

4
(2.47)

To ensure the solutions are purely imaginary, the argument of the root must be negative

1− 27µ(1− µ) < 0 (2.48)

Knowing that µ ∈ [0, 0.5], Equation (2.48) is only satisfied if

µ <
1
18
1
9−
√

69
2
≈ 0.0385209 (2.49)
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This value corresponds to the critical mass ratio µ∗.
Hence, L4 and L5 are marginally stable if and only if µ < µ∗, a condition that

applies to each planetary system in the Solar System. The only exception is the Pluto-
Charon system, whose mass ratio is µ = 0.108511.

A similar analysis can be conducted for the collinear points L1, L2 and L3 as well.
Unlike the previous case, the roots of the characteristic equation have always positive
real parts, meaning that these points are always unstable.

Figure 2.7 finally shows a representation of the five Lagrange points in the i-j plane
for a system with an arbitrary µ set to 0.1.

m1 m2

L1 L2L3

L4

L5

i

j

Figure 2.7: Lagrange points in the CR3BP

2.3 Jacobi Integral
As anticipated in the introduction to this chapter, the Jacobi integral (or Jacobi con-
stant) is the only conservation law that is valid in the context of the CR3BP [15]. In
particular, this integral of motion is the only one that provides informations on the
dynamics of the third body with respect to the primaries.

To derive the Jacobi constant, the EoMs presented in Equation (2.24) are used as a
starting point. The first step is to multiply each equation by the first derivative of the
corresponding spatial variable, and then the three resultant expressions are summed
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up C
d2x

dt2
− 2dy

dt
− x+ (1− µ)(x+ µ)

r3
1

+ µ(x− 1 + µ)
r3

2

D
dx

dt

+
C
d2y

dt2
+ 2dx

dt
− y + (1− µ)y

r3
1

+ µy

r3
2

D
dy

dt

+
C
d2z

dt2
+ (1− µ)z

r3
1

+ µz

r3
2

D
dz

dt
= 0

(2.50)

Making the products explicit and grouping the terms yields

dx

dt

d2x

dt2
+ dy

dt

d2y

dt2
+ dz

dt

d2z

dt2
− xdx

dt
− ydy

dt
=− (1− µ)

r3
1

5
(x+ µ)dx

dt
+ y

dy

dt
+ z

dz

dt

6
− µ

r3
2

5
(x− 1 + µ)dx

dt
+ y

dy

dt
+ z

dz

dt

6
(2.51)

The first three terms on the left-hand side form the time derivative of the kinetic energy
in the synodic reference frame

dx

dt

d2x

dt2
+ dy

dt

d2y

dt2
+ dz

dt

d2z

dt2
= 1

2
d

dt

1
V 2
2

(2.52)

where V is the magnitude of the velocity vector, while the remaining two terms on the
left-hand side represent the opposite of the derivative of the centrifugal potential

−xdx
dt
− ydy

dt
= 1

2
d

dt

1
x2 + y2

2
(2.53)

Acknowledging that the expressions bewtween square brackets on the right-hand side
represent the squared distances from the primaries and substituting Equations (2.52)
and (2.53) into Equation (2.51), yields the following

d

dt

51
2V

2 − 1
2
1
x2 + y2

2
− 1− µ

r1
− µ

r2

6
= 0 (2.54)

Integrating Equation (2.54) with respect to time, the expression of the Jacobi constant
is obtained

J ′ = 1
2

C3
dx

dt

42
+
3
dy

dt

42
+
3
dz

dt

42D
− 1

2
1
x2 + y2

2
− 1− µ

r1
− µ

r2
(2.55)

In the continuation of the thesis an alternative formulation will be employed, which
will allow the Jacobi constant to be conceived as a positive number

J = 2(1− µ)
r1

+ 2µ
r2

+
1
x2 + y2

2
−
C3

dx

dt

42
+
3
dy

dt

42
+
3
dz

dt

42D
(2.56)
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Equivalently, the Jacobi constant can be express as a function of the pseudo-potential
U

J = 2U − V 2 (2.57)

Equation (2.57) shows that the Jacobi integral represents the total energy of the third
body, which depends on the initial conditions. Due to the dependence of the kinetic
energy on velocity, a decrease of the latter corresponds to an increase in the pseudo-
potential. When the velocity reaches zero, the third body will be located on a zero-
velocity curve, which represents an invalicable limit for a given value of J. These curves
define the borders of the Hill’s regions, namely the portions of the synodic plane within
which the third body can move freely. Taking the Earth-Moon system as an example,
Figure 2.8 shows the accessible regions when the Jacobi constant is set to J = 3.3.
Specifically, the colored region corresponds to the region inaccessible to the third body.
Therefore, under these conditions a body orbiting the Earth would be unable to reach
the Moon, and vice versa.

Figure 2.8: Zero-velocity curves for Earth-Moon system for J = 3.3

For the Lagrange points to be accessible, the value of the Jacobi constant must vary.
Using Equation (2.56) it is possible to compute the constant’s value at each Lagrange
point location, assuming a condition of zero velocity. Considering L1, a value of J =
3.18834 is derived. Assuming such value for J, the two internal regions extend exactly
to L1, but they are not yet connected. In order for this to happen, it is sufficient to
slightly reduce the value of the Jacobi constant.

Figure 2.9 presents the situation described above: the two regions do indeed connect
when J = 3.18. Thanks to the bottleneck that appears around L1, the second primary
is accessible.
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2 The Circular Restricted Three-Body Problem

Figure 2.9: Zero-velocity curves for Earth-Moon system for J = 3.18

A further reduction of the Jacobi constant to J = 3.17216 lead to the region around
the smaller primary to extent to L2, as showed by Figure 2.10.

Figure 2.10: Zero-velocity curves for Earth-Moon system for J = 3.17216

In order for the third body to reach L3, which is located on the opposite side of the
bigger primary, the energy of the body must increase significantly. With J = 3.012147,
Figure 2.11 shows that the unaccessible regions becoming narrower, which benefits an
enlargment of the Hill’s regions. Additionally, it can be deduced that, once the third
collinear point is reached, the equilateral points become accessible following a slight
increase in the constant. Indeed, employing the coordinates of these points, a value of

26
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the Jacobi constant of J = 2.987997 is computed, which opens the entire synodic plane
to the third body. Due to the symmetry of L4 and L5 with respect to the x-axis, the
same value applies to both points.

Figure 2.11: Zero-velocity curves for Earth-Moon system for J = 3.012147

Table 2.1 summarizes the values of the Jacobi constant for each of the Lagrange points
for the Earth-Moon system. It becomes clear that the enumeration of the Lagrange
points follows the sequence of values of the constant. L1 is associated with the highest
value of J, which corresponds to the least amout of energy, making it the easiest to
reach. Proceding towards the equilateral points, a greater amount of energy is required,
meaning they are the most difficult to achieve.

Table 2.1: Values of Jacobi constant at Earth-Moon Lagrangian points

Lagrange point L1 L2 L3 L4 L5
Jacobi constant 3.18834 3.17216 3.012147 2.987997 2.987997
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Periodic Orbits of the CR3BP
The analysis of the periodic solutions for the CR3BP is a topic that has been broadly de-
bated since the 1960s, particularly following the launch of the International Sun-Earth
Explorer (ISEE) mission in 1974, which had the objective to study the interaction
between the Earth’s magnetic field and the solar wind. Starting from the concept of
solution, it can be concluded that it is almost impossible to obtain full information on
any orbit of a non-integrable dynamical systems, unless the orbit is asymptotic, quasi-
periodic or periodic. More precisely, there is no numerical method that can handle the
case of t −→∞.

If the dynamical system under analysis is integrable or can be linearized, the previ-
ous conclusion does not apply. In fact, asymptotic or periodic solutions can be derived
by analysing the motion around the Lagrange points. For simple periodic orbits, object
of the thesis, a relation of the kind

Ẋ = f(X0) (3.1)

can be established and, consequently, the group of initial conditions corresponds to the
set of points belonging to the curve f(X0).

As Szebehely reports in his work [22], the starting point is the definition of periodic
motion in a dynamical system. Motion is periodic if the same configuration repeats
at regular time intervals. For example, in a fixed coordinate frame of the 2BP, the
solution repeats after one period, in accordance with

T = 2π/n (3.2)

where n is the mean angular motion. Introducing the synodic reference frame, which
rotates with a period Tsyn = 2π, periodic motion exists in the rotational frame when n
is a rational number.

Moving on to the three-body problem, the system of differential equations that
describes the CR3BP can be expressed as

dxi

dt
= Xi(x1, . . . , xn) i = 1, . . . , n (3.3)

The system has a solution that is equal to

xi = φi(t) (3.4)
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which represents the vector of initial conditions of the orbit. This vector has six com-
ponents and corresponds to

X = [x, y, z, ẋ, ẏ, ż] (3.5)

If the function φi shows the property

φi(0) = φi(T ) (3.6)

namely if the initial value of φi is equal to the value obtained after one period, hence
φi(t) = φi(t+ T ), then the function φi is periodic in t with an orbital period of T and
xi = φi(t) is a periodic solution of the system of differential equations.

A function x(t) is almost periodic if, for any given ϵ > 0 there is an E(ϵ) such that
for each real number α there is a T that satisfies

α ≤ T ≤ α+ E(ϵ) (3.7)

and
|x(t+ T )− x(t)| ≤ ϵ for all t (3.8)

If the conditions expressed by Equations (3.7) and (3.8) are satisfied, the function is
almost periodic. Alternatively, it is possible to affirm that the function is periodic with
an error equal to ϵ.

As previously mentioned, this thesis focuses exclusively on deriving and correcting
periodic solutions, and does not cover non-periodic orbits in the CR3BP.

3.1 Numerical integration of initial con-
ditions

To obtain a proper visual and numerical representation of periodic orbits in the CR3BP,
it is necessary to integrate the EoMs using a set of initial conditions. In order for the
orbit to be periodic, the initial conditions vector must also be periodic. If this con-
dition is not met, the initial conditions can be corrected using differential correction
algorithms, as detailed in Chapter 4. Assuming that the initial state vector can gen-
erate a periodic orbit, the EoMs can be numerically integrated using the solve_ivp

integrator, that belongs to the scipy.integrate Python library. The selected integra-
tion method is the DOP853, i.e. the explicit Dormand-Price method. The reasons that
led to this choice are as follows:

• DOP853 is an eighth-order method, which is a higher order than the 4th order
Runge-Kutta methods already implemented in the scipy.integrate library. A
higher order usually implies that fewer steps are required to meet the fixed toler-
ance;
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3.2 Analysis of orbit families

• DOP853 uses a variable step method, i.e., integration steps are distributed au-
tonomously by the method, setting longer steps for a more regular path and
shorter steps in corrispondence with events or discontinuities;

• DOP853 is an explicit method, which is part of a class of methods more suited to
non-stiff problems like the CR3BP compared to implicit methods.

The numerical integration of the EoMs takes place by setting both a relative tolerance
r_tol and an absolute tolerances a_tol equal to 10−13.

3.2 Analysis of orbit families
3.2.1 Lyapunov orbits
Lyapunov orbits are named after the Russian mathematician Aleksandr Lyapunov,
whose research represents the basis for evaluating the stability of non-linear dynamical
systems. The existence of such orbits is ensured by the Lyapunov center theorem, which
in general guarantees the existence of periodic orbits near a central equilibrium point for
bidimensional Hamiltonian systems [23]. In fact, small perturbations in the equilibrium
point generate a family of periodic orbits for systems of this kind. In the context of
the Lyapunov orbits, the equilibrium points are the collinear points. Planar orbits
symmetrical with respect to the xz-plane extend around these points. This particular
geometry results in an initial state vector with several infinitesimal components that
can be approximated to zero without introducing significant errors, such that

X0 = [x0, 0, 0, 0, ẏ0, 0] (3.9)

Figure 3.1: Overview of the Lyapunov orbits around L1 in the Earth-Moon system
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3 Periodic Orbits of the CR3BP

Figure 3.1 shows an overview of the orbits built around L1 in the Earth-Moon system
that belong to such family. More specifically, Lyapunov orbits built around L1 ensure
uninterrupted communication between the surfaces of both celestial bodies. Lyapunov
orbits built around L2 and L3 allow a favorable access to the equatorial region of
the closest body, respectively the secondary body and the primary body. Even if all
these orbits can guarantee almost continuous coverage of the equatorial region, they are
characterized by a significant high stability index and are therefore unstable. Figure 3.2
highlights the trend in the stability index of the orbits built around L1 with the Jacobi
constant value. This results in very high stationkeeping costs. If the perturbations
were not counteracted, the trajectory would deviate from its nominal periodic orbit.
This is the main reason why Lyapunov orbits have limited applicability. However,
their significant instability makes them ideal candidates for low ∆v staging orbits for
both orbit insertion and departure from 2D orbits, e.g. Distante Retrograde Orbits as
discussed in the next subsection. Therefore, Lyapunov orbits and Lyapunov-like orbits
can be employed for the insertion along more stable orbits or for descent onto the
surface of a celestial body.

Figure 3.2: Stability plot of the Lyapunov orbit familiy around L1 in the Earth-Moon
system

3.2.2 Distant Retrograde Orbits
The Distant Retrograde Orbits (DROs) family is a second example of a group of planar
orbits that exhibits symmetry with respect to the xz-plane. The focus of this thesis
is on 2D DROs, although 3D DROs also exist. Due to this similarity with Lyapunov
orbits, the initial condition vector for a generic DRO simplifies as showed by Equation
(3.9). Analyzing the name of this family reveals two main features:

• Distant states that the DROs develop, on average, at a significant distance from
the center of the secondary body, to the extent that they encompass both L1 and
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3.2 Analysis of orbit families

L2. As can be seen in Figure 3.3, the amplitude of most of the orbits higher than
the distance between the two Lagrange points;

• Retrograde provides information regarding the motion of the spacecraft. In fact,
the spacecraft orbits around the smaller celestial body in the opposite direction to
that of the revolution of the secondary body around the primary body. However,
this is only true in the synodic reference frame, while in the inertial reference
frame the motion of the spacecraft is prograde.

Figure 3.3: Overview of the DROs in the Earth-Moon system

Another characteristic of DROs is their stability, which is caused by the interaction with
the two aforementioned Lagrange points. This feature can be observed in Figure 3.4,
that shows the trend of the stability index, as a function of Jacobi constant. Because
the value of the stability index is always very close to unity, DROs are marginally stable.
Several studies confirm that a spacecraft moving along a DRO around the Moon requires
few to no stationkeeping maneuvres over several decades [24,25]. Therefore, combining
a very small ∆v required for stationkeeping and the relatively high stability, DROs
are highly recommended as longterm parking orbits. It is indeed possible to transition
from a DRO to Halo orbits or Near Rectilinear Halo Orbits (NRHOs) with an equally
low propulsive cost.
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3 Periodic Orbits of the CR3BP

Figure 3.4: Stability plot of the DROs family in the Earth-Moon system

Although DROs offer more applications than Lyapunov orbits, only one mission has
been carried out using a DRO to date: the NASA Artemis I mission. The two main
elements of the mission were the Space Launch System (SLS) rocket and the unmanned
Orion module. The objectives of the mission were to test both of the components and
to study the permanence of Orion in a DRO around the Moon [26]. This test was
performed in anticipation of the upcoming Artemis missions. Additionally, the previous
Asteroid Redirect Mission (ARM) was scheduled by NASA to study the use of DROs.
The plan was to intercept an asteroid in the vicinity of the Earth and redirect it into
a lunar DRO. However, the mission was cancelled in 2017 [27].

3.2.3 Short Period and Long Period Orbits
The group of planar orbits ends with two orbit families built around the equilateral
points: Short Period Orbits (SPOs) and Long Period Orbits (LPOs). Both families are
characterized by a variable geometry. Figure 3.5 and Figure 3.6 show that orbits near
the reference equilateral point have a quasi-elliptic shape. As the amplitude and period
of the orbits increase, they begin to curve around the primary, incorporating L3 too.
This is particularly true for SPOs, because LPOs tend to assume more complex shapes
and do not only to curve around the primary.
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3.2 Analysis of orbit families

Figure 3.5: Overview of the SPOs family around L4 in the Earth-Moon system

Figure 3.6: Overview of the LPOs family around L5 in the Earth-Moon system

As their classification suggests, the main difference relative to SPOs and LPOs, is their
orbital period. SPOs have a period that is comparable to the revolution period of both
primaries, whereas LPOs are distinguished by a significantly longer period with respect
to the primaries. Figure 3.7 shows how a generic LPO built around L4 requires more
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3 Periodic Orbits of the CR3BP

than one passage around the Lagrange point to come back to its starting point.

Figure 3.7: Generic LPO built around L4 in the Earth-Moon system

Unlike Lyapunov orbits, SPOs and LPOs should be stable orbits, due to the stability
of the equilateral points. However, Figure 3.8 shows that SPOs are stable orbits, with
almost every orbit built around L4 having a stability index practically equal to one. But,
Figure 3.9 highlights that LPOs are indeed marginally stable, with only a restricted
number of orbits being stable.

Figure 3.8: Stability plot of the SPOs orbit family around L4 in the Earth-Moon
system
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3.2 Analysis of orbit families

Figure 3.9: Stability plot of the LPOs orbit family around L5 in the Earth-Moon
system

Therefore, these orbits can be useful for observing missions of the outer layers of a
the celestial body or studying the interplanetary material that accumulates in these
regions. One concept of a mission that will use these kind of orbits is the Helio-
Magnetism Investigation from the Sun to Earth (HeMISE) mission. This mission will
consist of two twin satellites that will investigate the Sun’s photosferic and magnetic
fields, as well as the propagation of electromagnetic waves along the Sun-Earth line [28].

3.2.4 Halo orbits
This orbit family is named after the term "halo", which was first used by Farquhar [29]
in 1973 to describe a key characteristic of this orbit family: when observed from one
of the two primaries, a generic Halo orbit appears to create a halo around the other
primary. This happens even if the orbit does not extends exactly around the celestial
body, and it is not planar. Figure 3.10 shows a representation of a generic Halo orbit
built around L2 in the Earth-Moon system projected along the yz-plane. From this
view, the orbit happens to look planar, even if it is not, and the behaviour described
earlier can be observed. As mentioned before, Halo orbits are not planar, but three-
dimensional. Indeed, they can be distinguished based on their most distant position
along the z-axis, a quantity also known as z-amplitude, Az. Other than Az, Halo orbits
can be classified as Northern Halo orbits or Southern Halo orbits, depending on their
spatial orientation.
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Figure 3.10: Generic Halo Northern orbit around L2 in the Earth-Moon system,
shown in the yz-plane

In particular, starting from a Northern Halo orbit it is always possible to identify the
corresponding Southern Halo orbit by simply inverting the sign of the z component in
the initial state vector, and viceversa. The state vector for a generic Halo orbit is

X0 = [x0, 0, z0, 0, ẏ0, 0] (3.10)

and it is perpendicular to the xz-plane. As a consequence, the resultant orbit will also
be symmetric with respect to the xz-plane. Figure 3.11 highlights this characteristic.

Figure 3.11: Overview of the Halo Southern orbits family around L1 in the Earth-
Moon system
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Figure 3.11 shows an overview of Southern Halo orbits built around L1 in the Earth-
Moon system and highlights another peculiar characteristic of Halo orbits. As they
approach the closer celestial body, they become more elongated and are known as Near
Rectilinear Halo Orbits (NRHOs). Furthermore, a clear trend for the orbital period can
be traced: as the orbits approach the closer celestial body, the orbital period decreases.

Finally, it is useful to analyze the stability of such orbits. The three groups of orbits,
each built around one of the collinear points, exhibit different trends for the stability
index. As shown in Figure 3.12, orbits built around L1 are mainly unstable, except for
a small group of orbits having a stability index very close to unity.

Figure 3.12: Stability plot of the Halo Northern orbit family around L1 in the Earth-
Moon system

Similarly, the majority of orbits built around L2 are unstable, but the group of stable
orbits in much wider that the previous one, as can be observed in Figure 3.13. It should
also be noted that orbits with a stability index of one fall into the NRHO group.

Figure 3.13: Stability plot of the Halo Northern orbit family around L2 in the Earth-
Moon system
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Orbits built around L3 are mostly marginally stable, with a group of stable orbits that
share the same characteristics as those built around L2, as can be observed in Figure
3.14.

Figure 3.14: Stability plot of the Halo Northern orbit family around L3 in the Earth-
Moon system

Halo orbits have a wide range of applications. Thanks to their particular geometry,
which allows for uninterrupted communications between the two celestial bodies, and
their extended orbital periods. Table 3.1 lists some of the missions that have used Halo
orbits to meet their objectives.

Table 3.1: Missions using Halo orbits

Mission (Agency, Year) Halo Orbit Type Main Objective
ISEE-3/ICE (NASA/ESA, 1978) Sun–Earth L1 Solar wind/magnetotail science
WIND (NASA, 1994) Sun–Earth L1 Solar wind and interplanetary plasma & fields
SOHO (ESA/NASA, 1995) Sun–Earth L1 Solar physics and helioseismology, space

weather monitoring.
JWST (NASA/ESA/CSA, 2021) Sun–Earth L2 Infrared astronomy: first light, galaxy assembly,

exoplanet atmospheres
ACE (NASA, 1997) Sun–Earth L1 Energetic particles/solar wind; real-time space

weather
WMAP (NASA, 2001) Sun–Earth L2 Cosmic Microwave Background anisotropy and

cosmology
Genesis (NASA, 2001) Sun–Earth L1 Solar-wind sample return for solar composition

studies
Queqiao-1 (CNSA, 2018) Earth–Moon L2 Comms relay for Chang’e-4, far-side support

and radio experiments
Spektr-RG (Roscosmos/DLR, 2019) Sun–Earth L2 X-ray astronomy, all-sky surveys
Euclid (ESA, 2023) Sun–Earth L2 Cosmology
Artemis III (NASA, 2027) Earth-Moon L2 NRHO Lunar environment & magnetotail dynamics

ISEE and WIND missions were the first to employ Halo orbits built in the Sun-Earth
system to conduct in-depth research on solar activity. Among future missions are the
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Artemis missions and the assembly of the Lunar Gateway. The Artemis missions aim to
return humans to the Moon’s surface, while the creation of the Lunar Gateway would
lead to the first orbiting station beyond low Earth orbit.

3.2.5 Axial and Vertical orbits
Another example of three-dimensional orbit families are the Axial and Vertical orbit
families. Both these families exist in proximity to the collinear and the equilateral
points. Vertical orbits built around the collinear points originate from a bifurcation
of the Lyapunov orbits. In fact, these orbits are also referred to as Vertical Lyapunov
orbits, due to their link with the Lyapunov orbit family. The origin of these orbits
can be recognised by analyzing their geometry. Figure 3.15 shows a group of generic
Vertical orbits built around L1 in the Earth-Moon system. It can be noted that initial
orbits have a two-lobe geometry that develops primarily along the z-direction. As the
orbital period increases, the two-lobe structure of the orbits is mantained, but the lobes
tend to converge towards the xy-plane surrounding the reference celestial body.

Figure 3.15: Overview of the Vertical orbits family around L1 in the Earth-Moon
system

Axial orbits are characterised by a geometry similar to that of Vertical orbits. For orbits
built around L1 and L2 in particular, a structure consisting of two lobes extending
outside the xy-plane can be observed. However, these orbits rotate around the y-axis.
Consequently, there is a transition from orbits ensuring a better coverage of polar
regions of the reference celestial body to quasi-planar orbits that guarantee primarily
coverage of the equatorial region. This behaviour can be observed in Figure 3.16.
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Figure 3.16: Overview of the Axial orbits family around L1 in the Earth-Moon system

Axial orbits built around the equilateral points exhibit a less intuitive evolution of their
geometry. Orbits with shorter orbital periods assume an elliptic shape in the vicinity
of the primary body. As they approach the equilateral point around which the orbits
are built, the orbits’ structure evolves in the previously observed two-lobe geometry
with greater extension outside the xy-plane. Figure 3.17 illustrates this characteristic.

Figure 3.17: Overview of the Axial orbits family around L4 in the Earth-Moon system

Both families are characterised by a predictable trend in the stability index: orbits
formed around the collinear points tend to be unstable, whereas most of those in the
vicinity of the equilateral points are marginally stable, with a variable number of stable
orbits. Figure 3.18 and Figure 3.19 confirm that around the collinear points the orbits
are broadly unstable, with stability index values in the hundreds.
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Figure 3.18: Stability plot of the Axial orbit family around L2 in the Earth-Moon
system

Figure 3.19: Stability plot of the Vertical orbit family around L1 in the Earth-Moon
system

Figure 3.20 and Figure 3.21 show a similar behaviour to these observed for the SPOs
and LPOs in Subsection 3.2.3. In fact, Figure 3.20 shows that orbits Axial orbits built
around L4 are marginally stable, with a consistent number of orbits having a stability
index equal to one, hence being stable. On the other hand, Figure 3.21 points out
that orbits built around L5 are also marginally stable, but the the value of the stability
index varies less and stays very close to unit.
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Figure 3.20: Stability plot of the Axial orbit family around L4 in the Earth-Moon
system

Figure 3.21: Stability plot of the Vertical orbit family around L5 in the Earth-Moon
system

Employment possibilities of the aforementioned orbits are strictly connected to their
structure. Both Axial and, in particular, Vertical orbits around collinear points can be
taken into consideration for observing the polar regions of the reference celestial body.
Axial orbits extending around the equilateral points can be used as transfer orbits due
to their proximity to bifurcation points with other orbit families.

3.2.6 Other orbits
To complete the analysis of the periodic solutions of the CR3BP, two families of three-
dimensional orbits are considered: Butterfly orbits and Dragonfly orbits.
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Similarly to Vertical orbits, Butterfly orbits also derive from a bifurcation that involves
an already known orbit family: Halo orbits. This link with Halo orbits explains why
even Butterfly orbits can be distinguished as either Northern or Southern orbits. Taking
a look at Figure 3.22, that shows two generic Northern Butterfly orbits in the Earth-
Moon system, it can be noted that the geometry of these orbits is more complex that
that of Halo orbits. In particular, Butterfly orbits that are closer to the secondary body
have a U -shape and are symmetric with respect to the xy-plane. As the dimensions of
the orbit increase, the shape becomes more complex with two large lobes developing
around both L1 and L2.

Figure 3.22: Northern Butterfly orbits in the Earth-Moon system

Dragonfly orbits also originate from a bifurcation point of different families, mainly
Halo orbits built around L2. This connection with Halo orbits can be observed in
Figure 3.23, which shows two random Northtern Dragonfly orbits in the Earth-Moon
system. The orbit closer to the Moon, the orange orbit in Figure 3.23, happens to
be very close to the Northern Halo orbits seen before. Moving away from the Moon,
geometry becomes more complex and the orbit assumes a two-lobe configuration, with
the upper lobe being very extended.
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Figure 3.23: Northern Dragonfly orbits in the Earth-Moon system

Both of these orbit families are generally unstable like the Halo orbits from which they
derive. This characteristic is confirmed by Figure 3.24 and Figure 3.25, where it can
be seen that both families have stability index values that are high enough to consider
them unstable. Figure 3.24 also shows cusp points, which can be attributed to the
bifurcation points from which these orbits originate.

Figure 3.24: Stability plot of the Butterfly Northern orbit family in the Earth-Moon
system
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Figure 3.25: Stability plot of the Dragonfly Northern orbit family in the Earth-Moon
system

However, this instability makes them attractive for use as transfer trajectories with low
∆v. Moreover, Butterfly orbits have attracted a lot of interest due to their peculiar
shape that provides excellent visibility of the lunar south pole. As well as providing a
favorable observation window of the polar region, they also the guarantee of satisfactory
communications with Earth.
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Dynamical System Theory and Dif-
ferential Correction
Dynamical Systems Theory (DST) was first introduced in the 19th century by Henri
Poincaré and it is also known as chaos theory [30]. This theory can be used to study
complex, time-evolving systems analyzing their response to the initial conditions. In
mathematics, a dynamical system that is highly sensitive to the intial conditions is
referred to as chaotic. An example of such this type of system is a generic N-body sys-
tem. In fact, due to the presence of several celestial bodies that gravitationally interact
between each other, a slight change in the initial conditions of a periodic orbit results
in a completely different orbit that is likely not periodic. DST not only helps deduce
the governing equations of the chaotic motion of a body in the N-body problem, but
provides also a procedure to discover and validate orbit families that can be used for
interplanetary transfer or as parking orbits, such as for Genesis [31], JWST [32] and
CAPSTONE [33].

Section 4.1 shows how the State Transition Matrix (STM) is derived and its major
charachteristics explained. This matrix plays a fundamental role due to the sensitiv-
ity of the chaotic systems to the initial conditions. The STM describes how a point
evolves along the trajectory over time and it is necessary for the differential correction
algorithms to work properly. These algorithms will be analized in detail in Section
4.2, with a particular focus on their use in obtaining periodic initial conditions in the
CR3BP.

4.1 State Transition Matrix
It is assumed that there is a trajectory ϕ(t, t0) going from a starting point x(t0) to a
final point x(t) that respects the dynamics expressed by

ẋ = f(x), x ∈ R6 (4.1)

Such trajectory corresponds to the flow map of the dynamical system expressed by
Equation (4.1) and allows to map points from their location at the initial instant t0
to their position at time t. It is immediate to verify that the flow map satisfies the
Equation (4.1)

dϕ(t;x0)
dt

= f(ϕ(t;x0)), with ϕ(t0;x0) = x0 (4.2)

A reference trajectory x̄(t) connecting the points x̄0 and x̄1 is assumed to exist. An
alternative trajectory starting from a perturbed initial point x̄0 + δx̄0, will evolve with
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the displacement
δx̄(t) = ϕ(t; x̄0 + δx̄0)− ϕ(t; x̄0) (4.3)

Performing a Taylor series expansion of Equation (4.3) yields

δx̄(t) = ∂ϕ(t; x̄0)
∂x0

δx̄0 + higher order terms (4.4)

where the matrix ∂ϕ(t;x̄0)
∂x0

is denoted as state transition matrix (STM), or sensitivity
matrix. The use of the STM for linear systems leads to an exact analytical solution,
but introduces an approximation when it comes to non-linear systems. Hence, in the
CR3BP the STM performs a linear mapping between small initial and final displace-
ments. Therefore, it is possible to quantify the sensitivity of the final state to a variation
in the initial state. Due to this property, the STM plays a key role in differential cor-
rection algorithms that provide initial conditions for periodic orbits. Equation (4.4)
can then be written as

δx̄ = Φ(t, t0)δx̄0 (4.5)

with the STM designated by Φ(t, t0). This matrix can also be expressed using the
partial derivatives of the state vector elements computed at a generic time t with
respect to the same quantities evaluated at the initial instant t0.

Φ(t, t0) =
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∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
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∂ẋ0

∂ẏ
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=

 Φρρ ΦρV

ΦρV ΦV V

 (4.6)

The STM is a 6× 6 matrix, within which four 3× 3 submatrices of partial derivatives
can be recognised. More specifically, the subscripts ρ and V respectively represent
position and velocity. Differentiating Equation (4.2) with respect to x0 the relation
that describes how the STM evolves along the trajectory is obtained

d

dt

∂ϕ(t; x̄0)
∂x0

= A(t)∂ϕ(t; x̄0)
∂x0

(4.7)

Recalling the definition of the STM, Equation (4.7) can be reformulated as follows

Φ̇(t, t0) = A(t)Φ(t, t0) (4.8)

where the matrix A(t) is the Jacobian matrix of the system.
This last matrix is obtained by recalling Equation (2.25), which defines the pseudo-

potential U, and expanding it in a Taylor series. Taking into consideration an expansion
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with respect to the variable x
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However, since U is not a function of the velocities (ẋ, ẏ, ż), Equation (4.9) becomes
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Repeating the same process for the variables y and z yields
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By substituting Equations (4.10), (4.11) and (4.12) into Equation (2.26), the EoMs can
be expressed as follows
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∂2U

∂x∂y

B
x+

A
∂2U

∂2y

B
y +

A
∂2U

∂y∂z

B
z

d2z

dt2
=
A
∂2U

∂x∂z

B
x+

A
∂2U

∂y∂z

B
y +

A
∂2U

∂2z

B
z

(4.13)

whose partial derivatives are made explicit hereafter

∂2U

∂x2 = 1− (1− µ)
r3

1
− µ

r3
2

+ 3(1− µ)(x+ µ)2

r5
1

+ 3µ(x− 1 + µ)2

r5
2

∂2U

∂x∂y
= 3(1− µ)(x+ µ)y

r5
1

+ 3µ(x− 1 + µ)y
r5

2
∂2U

∂x∂z
= 3(1− µ)(x+ µ)z

r5
1

+ 3µ(x− 1 + µ)z
r5

2
∂2U

∂y2 = 1− (1− µ)
r3

1
− µ

r3
2

+ 3(1− µ)y2

r5
1

+ 3µy2

r5
2

∂2U

∂y∂z
= 3(1− µ)yz

r5
1

+ 3µyz
r5

2
∂2U

∂z2 = −(1− µ)
r3

1
− µ

r3
2

+ 3(1− µ)z2

r5
1

+ 3µz2

r5
2

(4.14)
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Rewriting the system shown by Equation (4.13) in matrix form reveals the appearence
of the system’s Jacobian matrix A(t)

dX
dt

= d

dt



x

y

z

ẋ

ẏ

ż


=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 11

∂2U
∂x2

2 1
∂2U
∂x∂y

2 1
∂2U
∂x∂z

2
0 2 01

∂2U
∂x∂y

2 1
∂2U
∂y2

2 1
∂2U
∂y∂z

2
−2 0 01

∂2U
∂x∂z

2 1
∂2U
∂y∂z

2 1
∂2U
∂z2

2
0 0 0





x

y

z

ẋ

ẏ

ż


= A(t)X (4.15)

Similarly to the STM, A(t) is a 6×6 matrix composed by four 3×3 square submatrices

A(t) =

 0 I
U Ω

 (4.16)

Equation (4.8) shows that the time evolution of the STM is described by a set of 36
ordinary differential equations (ODEs), via the matrix A(t). However, the Jacobian
matrix is non-autonomous, but it depends on a specific solution or reference trajectory.
Therefore, to evaluate the STM, it is necessary not only to numerically integrate Equa-
tion (4.8), but also the EoMs simultaneously in order to retrieve the required trajectory.
The final set of equations comprises 42 ODEs and requires the initial conditions to be
solved. The initial conditions for the state vector X are problem-specific, while the
initial condition for the STM is by definition Φ(t0, t0) = I, with I equal to the 6 × 6
identity matrix.

The STM computed after an entire period is also known as monodromy matrix,
when a periodi solution, i.e. a periodic orbit, is considered. This matrix can be used
to assess the stability of the orbit, i.e., whether an initial perturbation increases or
decreases over time.

M ≡ Φ(T ) = ∂ϕ(T ; x̄0)
∂x0

(4.17)

The characteristics of such matrix are derived from the results of Floquet theory [34]:

• the monodromy matrix of a periodic orbit in the CR3BP must possess at least
two eigenvalues equal to one;

• the monodromy matrix of an autonomous Hamiltonian system is symplectic;

• if λ is an eigenvalue of the matrix M, then λ−1, λ̄ (complex conjugate) e λ̄−1 are
eigenvalues of the monodromy matrix and have the same multiplicity.

After analyzing the mathematical derivation of STM and listing its properties, the next
step is to discuss the differential correction algorithms, which are based precisely on
this matrix.
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4.2 Differential Correction
As mentioned in the previous section, there are several families of periodic orbits in
the context of the CR3BP. Each family is a periodic solution of the EoMs and exhibits
distinctive characteristics. One of the most interesting properties of these orbits is the
periodicity. Given the initial conditions of an orbit, expressed in terms of the state
vector X, and the period T, the orbit is defined periodic if the following condition
applies

Xf = X(T ) = X0 (4.18)

where the subscript "f" indicates the state vector after a period, while the subscript "0"
denotes the state vector at the initial time. According to Equation (4.18), the state
vector evaluated after a period must be equal to the initial state vector for an orbit
to be considered periodic. However, it is usually difficult to identify initial conditions
that lead to a periodic CR3BP orbit, unless the correct numerical methodology is em-
ployed. The following sections will discuss two algorithms belonging to the differential
correction family. The principle at the base of these algorithms can be described as a
targeting process. The idea for both algorithms is to iteratively apply small variations
to an end of the trajectory in order to target a desired point at the other end.

The main difference between the two algorithms is the number of sections used to
split the trajectory, hence the number of points distributed along the path. The first
version of the algorithm implemented is the simplest, known as single shooting; while
the evolution of this method is called multiple shooting.

The conclusive section of this chapter will show that both algorithms converge to
the desired periodic solution if the estimate of the initial conditions is sufficiently ac-
curate. Despite that, due to their characteristics, their convergence speeds and fields
of application are quite different, even though they belong to the same family of algo-
rithms.

4.2.1 Single shooting method
The single shooting algorithm for differential correction was developed in the 1960s.
The algorithm was created in response to the necessity for numerical correction of sets
of initial conditions to obtain periodic orbits in the CR3BP.

The first documented work was carried out by Broucke [35], who produced a
database of periodic orbits for the Earth-Moon system. The idea at the base of this
work was the future foundation of the method: iteratively correcting the initial con-
ditions using the STM. In 1973 Hénon [36] introduced the algorithm into the context
of DST, describing it as a standard method for identifying periodic orbits correcting
errors in Poincaré sections. Subsequently, Farquhar [37] used the algorithm during his
study on three-dimensional orbits, which are now knows as halo orbits. Based on Far-
quhar’s work, Howell [38] investigated halo orbits and proposed a formulation of the
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single shooting differential correction, which is still widely adopted in literature today.
Howell exploited the symmetry characteristics of this orbit family to reduce the number
of variables to be corrected at each iteration.

Moving on to the mathematical formulation of the method, the starting point is
the problem setting as a Two-Point Boundary Value Problem (TPBVP). The goal is
to correct the initial state vector X0, so that when integrated for a specified time, it
yields to a final state Xf that satisfies Equation (4.18). The fundamental equation of
the single shooting method derives from a Taylor series expansion arrested to the first
order of the EoMs around (X0,T)

δXf = Φ(T )δX0 + ∂Xf

∂t
δT (4.19)

where:

• Φ(T) is the STM evaluated after a period;

• δX0 is the vector containing the corrections to be computed and applied to the
initial state vector to obtain periodic initial conditions;

• δXf represents the variation of the final state due to the application of δX0 to
the initial state;

• δT is the period change that has to be computed at each iteration.

As mentioned in Section 4.1 the STM must be derived integrating a system of 42 ODEs,
which includes the EoMs. However, the period of a periodic orbit is generally unknown
a priori. Therefore, the number of unknowns which have to be computed each time
increases to 43. The high computational cost can be reduced using the symmetry
properties of certain orbits families. Doing so, the initial conditions vector simplifies
and the number of unknowns to be calculated decreases.

To demostrate this, the formulation proposed by Howell for halo orbits is recalled
[38]. As discussed in Section periodic orbits, such orbits are perpendicular to the x-z
plane and are then denoted by an initial condition vector in the form of

X0 =
è
x0 0 z0 0 ẏ0 0

é
(4.20)

It is not only the initial state vector that can be simplified, but even the state vector
at the end of the integration process. Indeed, to respect the symmetry of halo orbits
with respect to the x-z plane, the following conditions must hold

y (tf ) = 0, ẋ (tf ) = 0, ż (tf ) = 0 (4.21)

where tf = T/2, because the x-z plane crossing takes place after half period. Since
the period is an unknown, it needs to be derived explicitly. In this case, it is possible
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to use the constraint y (tf ) = δy = 0 to express δT as funcion of the initial state
variables. Extracting the second row from the system expressed by Equation (4.19),
which corresponds to the constraint

δy = 0 = Φ21δx0 + Φ23δz0 + Φ25δẏ0 + ẏfδT (4.22)

which solved for δT yields

δT = − 1
ẏf

(Φ21δx0 + Φ23δz0 + Φ25δẏ0) (4.23)

Based on these considerations, the remaining constraints are ẋf = 0 and żf = 0. The
initial conditions that can be corrected are the three non-zero components of the state
vector. Therefore, Equation 4.19 simplifies as follows

δxf

δyf

δzf

δẋf

δẏf

δżf


=



Φ11 Φ12 Φ13 Φ14 Φ15 Φ16

Φ21 Φ22 Φ23 Φ24 Φ25 Φ26

Φ31 Φ32 Φ33 Φ34 Φ35 Φ36

Φ41 Φ42 Φ43 Φ44 Φ45 Φ46

Φ51 Φ52 Φ53 Φ54 Φ55 Φ56

Φ61 Φ62 Φ63 Φ64 Φ65 Φ66





δx0

δy0

δz0

δẋ0

δẏ0

δż0


+



δẋf

δẏf

δżf

δẍf

δÿf

δz̈f


δT (4.24)

Clearly, this form of the system is undetermined, due to presence of just two equations
from which to derive three unknowns. Consequently, one variable must be fixed to
solve the system and compute the two free variables. Usually, z0 is chosen as the fixed
variable because halo orbits can be classified with the maximum value along the z axis,
known as z-amplitude, Az. Accordingly, the variation that apply to x0 and ẏ0 are
computed as

I
δx0

δẏ0

J
=
CC

Φ41 Φ45

Φ61 Φ65

D
− 1
ẏf

I
ẍf

z̈f

Jè
Φ21 Φ25

éD−1I
δẋf

δżf

J
(4.25)

Alternatively, one the three variables can be arbitrarily fixed and the other two can
be corrected. This correction process continues until the variations in the final state
exceed the specified tolerance threshold, e.g. 10−10. Algorithm 1 outlines the key steps
of the single shooting method.
It is useful to observe that the period is not calculated using Equation (4.23), but it
is obtained by interrupting the time integration of the initial conditions when the x-z
plane is crossed.
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Algorithm 1 Single shooting differential correction for Halo orbits
1: Define initial conditions: X0 = [x0, 0, z0, 0, ẏ0, 0 ]⊤

2: Set the tolerance: tol← 10−14 (for example)
3: Set the maximum number of iterations: kmax ∈ N+

4: while
!
|ẋf | > tol or |żf | > tol

"
and k < kmax do

5: Integrate EoMs and STM using Eqs. (4.8)
6: Extract from the augmented state: Xf = X(tf ) and Φf = Φ(tf )

7: Differentiate the final state: ∂Xf

∂t
= [ ẋf , ẏf , żf , ẍf , ÿf , z̈f ]⊤

8: Set the final variations: δẋf = −ẋf , δżf = −żf

9: if |ẏf | ≤ tol then
10: Periodic orbit found
11: else
12: Fix one initial component (x0 or z0 or ẏ0) and free the other two.
13: Compute δX0 using Eq. (4.24).
14: Update the free initial components: X0 ← X0 + δX0.
15: k ← k + 1

An example of the Algorithm 1 is shown hereafter, where the initial conditions of an
existing Northern Halo orbit built around L1 in the Earth-Moon system have been se-
lected. The state vector provided as an initial guess is: X0=[0.836, 0, 0.1478446561518,
0, 0.256, 0] In this case, the exact value of the z component has been given, with the
other two being approximated. Figures 4.1a and 4.1b show a comparison between
the integrated initial state vector, Figure 4.1a, and the integrated initial conditions
resulting from the single shooting algorithm, Figure 4.1b. Since the desired orbit is
built around L1, both figures show a sphere corresponding to the Moon for the sake of
completeness.

(a) (b)

Figure 4.1: Comparison between a set of non-periodic initial conditions and a set of
periodic initial conditions in the Earth-Moon system
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Figure 4.1a allows to observe the non-periodicity of the initial conditions provided,
while Figure 4.1b highlights the effectiveness of the algorithm. Indeed,the algorithm
produces initial conditions that lead to a periodic orbit.

Figure 4.2 shows instead the evolution of the initial conditions with the number of
iterations needed to reach convergence. Firstly, it can be affirmed that the initial guess
is sufficiently accurate, because of the small number of iterations required to satisfy the
convergence criterion. Additionally, the corrections made have a magnitude less than
10−3, which indicates that the original intial conditions are close to those of a periodic
orbit.

Figure 4.2: Initial conditions evolution during the single shooting differential correc-
tion

Finally, Figure 4.3 reports the values of |ẋf | and |żf | for each iteration. These values are
used to verify the periodicity of the orbit. This final figure confirms the computational
speed and the effectiveness of the algorithm when applied to this family of orbits.
Indeed, after a few iterations the values of velocities along x- and z-axes at the final time
can be considered null, because they drop below the set tolerance. Consequently, the
resultant orbit crosses the x-z plane perpendicularly and can be considered a periodic
halo orbit.
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Figure 4.3: Final state vector variations at each iteration

4.2.2 Multiple shooting method
The multiple shooting method was developed as a numerical analysis technique that
can overcome the limitations of the single shooting variant, such as convergence and
conditioning problems.

Osborne [39] first proposed an approach based on the trajectory’s fragmentation into
multiple segments. According to this approach, the dynamical system is integrated on
multiple arcs, which are connected together thanks to continuity conditions. Over the
following years Bulircsh [40] highlighted the effectiveness of the method when applied
to non-linear systems and to systems that are strongly sensitive to initial conditions.
Deuflhard [41] demostrated that the multiple shooting algorithm can be interpreted
as an extension of the Newton’s method for considerably bad-conditioned systems.
Between 1980s and 1990s, periodic orbits and interplanetary trajectories were formed
by the union of multiple dynamical arcs, so the multiple shooting was widely employed
due to its potential. The algorithm established itself as a robust method that can
effectively handle long temporal arcs and an high numerical sensitivity.

The following mathematical description recalls the formulation proposed by Van
Anderlecht [42]. The base principle of the method is the same as that of the single
shooting algorithm: the initial conditions are updated until the convergence criterion
is met. Similarly to the single shooting, the targeting problem is based on an n-free
variables vector X, subject to m constraint equations grouped in the vector F(X).
The objective of the targeting problem is to identify a vector X∗ that satisfies the
constraints, i.e. ensures F(Xi) = 0. Given an estimate of the initial conditions Xi, the
equation for the initial conditions of the next iteration can be obtained by expanding
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the constraints vector in a Taylor series.

F(Xi) + A(Xi) · (Xi+1 −Xi) = 0 (4.26)

where A(Xi) is the m× n Jacobian matrix

A(Xi) =


∂F1
∂X1

∂F1
∂X2

· · · ∂F1
∂Xn

∂F2
∂X1

∂F2
∂X2

· · · ∂F2
∂Xn...

... . . . ...
∂Fm
∂X1

∂Fm
∂X2

· · · ∂Fm
∂Xn

 (4.27)

A solution can only be computed if the number of free variables is equal to or greater
than the number of constraint equations. If this condition is met, two different scenarios
can be observed

• when the number of the free variables is equal to the number of constraints
(n = m), the only solution to Equation (4.26) can be calculated using Newton’s
method

Xi+1 = Xi −A(Xi)−1F(Xi) (4.28)

• if the number of free variables is greater than the number of constraints (n >

m), Equation (4.26) shows infinite solutions. Therefore, it must be selected the
solution Xi+1 closer to Xi, so the first inherits most of the features of the solution
computed at the previous iteration. Such solution is known as minimun-norm
solution and is calculated as follows

Xi+1 = Xi −A(Xi)T
è
A(Xi)A(Xi)T

é−1
F(Xi) (4.29)

In both cases, the initial conditions are updated until the order of magnitude of the
norm of the constraints vector is greater than the specified tolerance, e.g. 10−10. As
mentioned, the multiple shooting is applied to a fragmented trajectory. Hence, X is
a vector comprising n vectors that represent the initial conditions of each point fixed
along the trajectory

X = [x̄1, x̄2, · · · , x̄n−1, x̄n]T (4.30)

where the notation x̄i represents the vector of initial conditions of the i-th point. In
the general case when the total integration period, that is the period T of the desired
orbit, is not known a priori, it is added to the vector of free variables. Consequently, the
number of unknowns is equal to 6n+1. Providing an initial guess of the orbital period,
the state of each internal point x̄i can be integrated for a time ti = T

n−1 , reaching the
point denoted x̄t

i+1. This process does not apply to the last point x̄n. Figure 4.4 illus-
trates how the multiple shooting operates. After that, the vector F(X), that contains
all the constraint equations that ensure the final trajectory to be closed, is analyzed.
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x̄1

x̄2x̄t
2

x̄3

x̄2

x̄4
x̄t

4

x̄5 x̄t
5

Figure 4.4: Multiple Shooting Targeting Scheme

Inside the vector, three subvectors can be identified, each of them corresponding to a
specified constraint:

• the first is FC , a 6(n−1) variables vector that comprises the continuity conditions
between the segments. This ensures that the condition x̄t

i+1 = x̄i+1 is satisfied.
The structure of the vector is presented below

FC =


x̄t

2 − x̄2

x̄t
3 − x̄3

...
x̄t

n − x̄n

 (4.31)

• FP is a five elements vector that imposes the periodicity condition, so it is re-
sponsible for the finale state to match the initial state

FP =



xt
n − x1

yt
n − y1

zt
n − z1

ẋt
n − ẋ1

żt
n − ż1


(4.32)

• FL is known as normalization or system closure constraint and ensures that the
motion happens in the proximity of the selected Lagrangian point

FL = y1 − yLi (4.33)
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Hence, the residuals vector is presented as a vector containing 6n elements, assembled
as follows

F(X) =


FC

FP

FL

 (4.34)

Finally, the Jacobian matrix A(X), which has dimensions 6n× (6n+ 1), is shown

A(X) =



Φ1(6×6) −I6×6 06×6 · · · · · · 06×6
1

n−1
˙̄xt
2

06×6
. . . . . . . . . ...

...
... . . . . . . . . . . . . ...

...
... . . . . . . . . . 06×6

...
06×6 · · · · · · 06×6 Φn−1(6×6) −I6×6

1
n−1

˙̄xt
n

∂FP
∂x̄1

05×6 · · · 05×6
∂FP

∂x̄n−1
05×6

∂FP
∂T

∂FL
∂x̄1

01×6 · · · · · · · · · 01×6 0


(4.35)

The Jacobian matrix employed for the multiple shooting is made up of submatrices
of different nature. The dimensions of each submatrix are specified by the subscript
reported, while they are explained hereafter:

• Φi(6×6) represents the STM relative to each segment of the trajectory;

• −I6×6 is the identity matrix with the sign changed;

• 06×6 indicates a zero square matrix, however within the Jacobian matrix the zero
rectangular matrix 05×6 and the zero row vector 01×6 can be observed as well;

• ∂FP
∂x̄1

is a 5× 6 matrix and, due to the structure of FP , corresponds to a negative
rectangular identity matrix

∂FP

∂x̄1
=



−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 −1


(4.36)

• ∂FP
∂x̄n−1

is a 5 × 6 matrix too and contains the elements of STM that relates the
integrated state x̄t

n to the state x̄n−1

∂FP

∂x̄n−1
=



∂xt
n

∂xn−1
∂xt

n
∂yn−1

∂xt
n

∂zn−1
∂xt

n
∂ẋn−1

∂xt
n

∂ẏn−1
∂xt

n
∂żn−1

∂yt
n

∂xn−1
∂yt

n
∂yn−1

∂yt
n

∂zn−1
∂yt

n
∂ẋn−1

∂yt
n

∂ẏn−1
∂yt

n
∂żn−1

∂zt
n

∂xn−1
∂zt

n
∂yn−1

∂zt
n

∂zn−1
∂zt

n
∂ẋn−1

∂zt
n

∂ẏn−1
∂zt

n
∂żn−1

∂ẋt
n

∂xn−1
∂ẋt

n
∂yn−1

∂ẋt
n

∂zn−1
∂ẋt

n
∂ẋn−1

∂ẋt
n

∂ẏn−1
∂ẋt

n
∂żn−1

∂żt
n

∂xn−1
∂żt

n
∂yn−1

∂żt
n

∂zn−1
∂żt

n
∂ẋn−1

∂żt
n

∂ẏn−1
∂żt

n
∂żn−1


(4.37)
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• ∂FP
∂T is a column vector made up of five elements corresponding to the derivatives

of the FP elements with respect to the period

∂FP

∂T
= 1
n− 1



ẋt
n

ẏt
n

żt
n

ẍt
n

z̈t
n


(4.38)

• ∂FP
∂x̄1

is a row vector of dimension 6 formed by the derivatives of FP with respect
to the initial state

∂FP

∂x̄1
=
è
0 1 0 0 0 0

é
(4.39)

The need to compute the state of all points distributed along the trajectory at each
iteration makes the multiple shooting method more computationally expensive than
the single shooting method. Similar to the latter, depending on the family of orbits
considered, the problem can be simplified by exploiting its symmetry characteristics.
Furthermore, the problem can be also simplified by fixing the period of the orbit. In
fact, this alone causes the Jacobian to “lose” a column and have a dimension of 6n×6n.
As in the case of single shooting, the Algorithm 2 below shows the basic steps of the
multiple shooting method.

Algorithm 2 Multiple shooting differential correction for periodic orbits
1: Define initial conditions: x̄0

2: Set the number of sections: N and define n← N + 1
3: Set the initial period guess: T and the step h← T/N

4: Set the tolerance: tol← 10−12 (for example)
5: Set the maximum number of iterations: kmax ∈ N+

6: Initialize the nodes by propagation:
7: for i = 0 to N − 1 do ▷ Derive n initial points
8: x̄i+1 ← Propagate x̄i via EoMs for time h
9: Define the unknowns vector: X←

#
vec(x̄0, . . . , x̄N ), T

$⊤
10: k ← 0
11: while ∥F(X)∥ > tol and k < kmax do
12: Compute the constraints vector F(X) using Eq. (4.34)
13: Compute the Jacobian A(X) using Eq. (4.35)
14: Compute the correction δX using the minimum-norm solution, Eq. (4.29)
15: Update the unknowns: X← X + δX
16: k ← k + 1

In order to reduce the computational cost of the algorithm, corrections are calculated
and then applied only to the components that are indicated based on the desired orbit.
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In the case of planar orbits, such as lyapunov orbits, the state of the first point is

x̄1 = [x, 0, 0, 0, ẏ, 0] (4.40)

so the corrections only affect the two non-zero components. To comply with the orbital
planarity constraint, the corrections applied to the other points will affect the compo-
nents x, y, ẋ and ẏ. In the case of three-dimensional orbits, such as halo orbits, the
initial state is corrected on the basis of the simplifications that can be made. The other
points, on the other hand, will have corrections applied to all six components.

As in the previous case, it is here reported the application of the described algo-
rithm to a Northern Halo orbit built around L1 in the Earth-Moon system. The state
vector provided as initial guess is: X0 = [8.36E − 1, 0, 1.47E − 1, 0, 2.56E − 1, 0]. Un-
like in the single shooting case, all the three non-zero components of the state vector
are corrected simultaneously. This is possibile because the exact period of the orbit is
known and fixed at T = 2.7450787982481035. According to the outlined procedure, the
first step is to generate a succession of points along the trajectory on which to apply
the algorithm. Table 4.1 reports the state vector of each point when the trajectory is
broken down into N=5 segments.

Table 4.1: State vectors of shooting nodes for the multiple-shooting differential cor-
rection algorithm

# Point 1 2 3 4 5 6

State Vector



0.836
0

0.147
0

0.256
0





0.8675271216
0.1157426143
0.0877227778
0.1034881572
0.1231293310
0.2034091588





−0.2335785765
−0.2303298607
0.0740720024
−0.0471620415
0.0949455145
0.9249685338





0.9224273300
−0.0858432924
−0.0564606959
−0.0851718919
−0.2526981507
0.2107888683





0.8533441582
−0.1160295676
0.0756763728
−0.1379383445
0.1179140501
0.2123482462





0.7915650923
0.0099900162
0.1455954923
−0.0813554382
0.3060879524
0.0288544313



Figure 4.5a shows how the shooting points are distributed at the initial time around
L1 and the Moon, that is the celestial body displayed. Applying the multiple shooting
algorithm to this initial scheme and by iteratively fixing the state vector of each internal
point, results the trajectory reported in Figure 4.5b. Thanks to the corrections applied,
integrating the state of a point for a fraction of the period leads directly to the following
point, ensuring continuity between points and therefore the periodicity of the orbit.
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(a) (b)

Figure 4.5: Application of the multiple shooting differential correction algorithm to
a set of initial nodes leading to a periodic connected orbit

Figure 4.6 illustrates the evolution of the state vector of the first point across the
iterative procedure. At first, it can be noted that all the non-zero components vary,
in line with the hypothesis made. Secondly, it is evident that the number of iterations
required to meet the convergence criterion is in the hundreds. Such increase in the
number of iterations is related to the convergence criterion used. In fact, it is not
sufficient that the corrections applied to the state vector of the first point fall below
the fixed tolerance. This condition must also be met by the residuals vector norm, so
the continuity between the points is ensured. Clearly, if the number of the shooting
points increases, the number of conditions to be satisfied increases as well and so does
the number of iterations needed, hence the convergence speed decreases.

Figure 4.6: Initial conditions evolution during the multiple shooting differential cor-
rection
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Figure 4.7a shows how the residuals vector evolves with each iteration, while Figure
4.7b reports the absolute values of the corrections applied to the components of the
initial guess state vector. As can be seen from the plots, the norm of the individual
corrections decreases faster than the residuals vector. In conclusion, even if the initial
point is corrected to lead to periodic initial conditions, the multiple shooting algorithm
stops only when all points are fixed in order to ensure the continuity between the
segments that comprise the final trajectory.

(a) (b)

Figure 4.7: Residuals vector norm and absolute value of corrections applied to the
initial state vector

4.3 Perfomance analysis and numerical
comparison

This section will analyze the performance of the two algorithms when applied to dif-
ferent orbit families in the Earth-Moon system. Both algorithms were tested with a
maximum number of iterations max_iter = 1000 and a relative tolerance tol = 10−14.

The performance of the single shooting algorithm was evaluated according to the
following procedure: given the periodic initial conditions for an orbit, the state vector
was approximated to determine the number of iterations required to correct such ini-
tial conditions. For each orbit, the initial guess was provided with a different number
of decimal digits at each attempt to observe the correlation between the accuracy of
the initial guess and the resulting number of iterations. The following parameters are
employed to evaluate the performance of the algorithm :

• Number of iterations required to meet the convergence criterion;

• Residuals norm, i.e. the norm of the variations of the final state δXf ;
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• Percent error on the initial conditions, computed as follows:

IC% = ∥IC− ICperiodic∥
∥ICperiodic∥

× 100% . (4.41)

where IC is the initial conditions vector that is iteratively corrected and ICperiodic

is the vector of periodic initial conditions that is known a priori;

• Percent error on the period, computed similarly to IC%

T% = |T − Treal|
|Treal|

(4.42)

where T is the estimated period of the orbit, obtained by interrupting the inte-
gration process of the system of 42 ODEs, and Treal is the actual period of the
periodic orbit.

Taking into consideration a Lyapunov orbit built around L1 with periodic initial con-
ditions equal to

X0 = [0.8026705755589522, 0, 0, 0, 0.338409540598485, 0] (4.43)

Table 4.2 shows an example of the tests that were carried out. In accordance with the
application principles of the algorithm, in turn one of the components was fixed while
the algoritm corrected the free variable. Each test was perfomed approximing the free
variable with an increasing number of decimal digits with each attempt to observe the
algorithm’s response.

Table 4.2: Results of the single shooting algorithm applied to a Lyapunov L1 orbit in
the Earth-Moon system

ICs Fixed Variable Convergence Iterations |δXf | IC% T%

[0.8, 0, 0, 0, 0.338409540598485, 0] ẏ yes 5 3.88× 10−14 3.44× 10−13 2.85× 10−12

[0.802, 0, 0, 0, 0.338409540598485, 0] ẏ yes 4 1.09× 10−13 3.57× 10−13 6.79× 10−12

[0.8026, 0, 0, 0, 0.338409540598485, 0] ẏ yes 4 1.56× 10−14 3.44× 10−13 1.69× 10−12

[0.80267, 0, 0, 0, 0.338409540598485, 0] ẏ yes 3 1.56× 10−14 3.44× 10−13 1.69× 10−12

[0.8026705755589522, 0, 0, 0, 0.33, 0] x yes 5 6.23× 10−16 2.63× 10−12 2.31× 10−12

[0.8026705755589522, 0, 0, 0, 0.338, 0] x yes 4 2.01× 10−14 2.71× 10−12 3.34× 10−12

[0.8026705755589522, 0, 0, 0, 0.3384, 0] x yes 3 1.16× 10−14 2.55× 10−12 2.13× 10−12

The multiple shooting algorithm was used providing always the exact period of a known
periodic orbit and approximating all components of the state vector. As with the
previous algorithm, the initial guess was provided with an increasing number of decimal
digits in each component with each attempt. In addition, each provided state vector
was tested with a different number of segments. To evaluate the performance of this
algorithm, the same parameters listed for the single shooting algorithm were used, with
one exception. Since the period of the orbit is always equal to the actual period of the
periodic orbit, T% was not computed. Instead, the number of segments used in each
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attempt was tracked. Table 4.3 reports an example of the tests perfomed using the
multiple shooting algorithm, taking into consideration the orbit whose periodic initial
condition are expressed by Equation (4.43).

Table 4.3: Results of the multiple shooting algorithm applied to a Lyapunov L1 orbit
in the Earth-Moon system

ICs Convergence Segments Iterations |δXf | IC%

[0.8026, 0, 0, 0, 0.3384, 0] yes 3 109 8.77× 10−13 1.16× 10−12

[0.8026, 0, 0, 0, 0.3384, 0] yes 5 169 9.55× 10−13 8.75× 10−13

[0.8026, 0, 0, 0, 0.3384, 0] yes 7 261 9.54× 10−13 1.03× 10−12

[0.8026, 0, 0, 0, 0.3384, 0] yes 9 335 9.49× 10−13 1.98× 10−12

[0.8026, 0, 0, 0, 0.3384, 0] yes 11 413 9.54× 10−13 1.06× 10−12

[0.80267, 0, 0, 0, 0.3384, 0] yes 3 94 9.76× 10−13 1.06× 10−12

[0.80267, 0, 0, 0, 0.3384, 0] yes 5 161 9.62× 10−13 6.96× 10−13

[0.80267, 0, 0, 0, 0.3384, 0] yes 7 214 9.44× 10−13 8.33× 10−13

[0.80267, 0, 0, 0, 0.3384, 0] yes 9 262 9.59× 10−13 7.38× 10−13

[0.80267, 0, 0, 0, 0.3384, 0] yes 11 308 9.77× 10−13 1.04× 10−12

[0.80267, 0, 0, 0, 0.338409, 0] yes 3 90 8.43× 10−13 1.20× 10−12

[0.80267, 0, 0, 0, 0.338409, 0] yes 5 153 9.64× 10−13 1.20× 10−12

[0.80267, 0, 0, 0, 0.338409, 0] yes 7 204 9.29× 10−13 1.44× 10−12

[0.80267, 0, 0, 0, 0.338409, 0] yes 9 250 9.78× 10−13 1.27× 10−12

[0.80267, 0, 0, 0, 0.338409, 0] yes 11 296 9.59× 10−13 7.38× 10−13

Figure 4.8 shows a visual representation of the results relating to the proposed example.

Figure 4.8: Convergence outcome of single shooting and multiple shooting algorithms
applied to Lyapunov L1 orbit in the Earth-Moon system

It is noticible that the single shooting algorithm exhibits a greater speed compared to
the multiple shooting version. The number of iterations required to meet the conver-
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gence criterion ranges from a few for the single shooting algorithm to several hundred
for the multiple shooting algorithm. Furthermore, the example shown can be considered
well-behaved because each attempt converged, correcting effectively the initial condi-
tions. This occurs because it is easier to correct the initial conditions of a planar orbit
than those of a 3D orbit.

However, when all the tests performed are taken into consideration, the convergence
rate of almost all analyzed orbit families is lower than 100%. Table 4.4 compares the
percentage of the converged tests for each orbit family. Correcting the initial condition
vectors of DROs with the single shooting algorithm results in a 100% accuracy mainly
because these orbits are two-dimensional and marginally stable, unlike all other orbits
which are unstable.

Table 4.4: Convergence rates of single and multiple shooting for different orbit families
in the Earth-Moon system

Orbit Family Single Shooting Multiple Shooting
Lyapunov 69.39% 56.94%

DRO 100.00% 53.33%
Halo Northern 90.62% 72.67%

Axial 80.00% 62.22%
Vertical 25.00% 91.85%

Butterfly Northern - 71.11%
Short Period - 61.33%

The results reveal a crucial detail: the single shooting algorithm outperforms the multi-
ple shooting when it is employed to correct the initial conditions of planar or symmetric
orbits, with a state vector of less than three non-null components and a relatively short
period. These are the ideal operating conditions for the single shooting, enabling it
to work on well-conditioned systems and guarantee convergence even when the ini-
tial guess is significantly less accurate. In these circumstances the use of the multiple
shooting algorithm is not recommended due to its higher computational cost. However,
multiple shooting algorithm is useful for correcting an initial conditions vector with
almost all non-null components that belongs to a 3D orbit family with no symmetry or
difficult to determine. Providing an accurate initial guess, multiple shooting is able to
correct the initial conditions in most cases and to ensure the periodicity of the orbit.
However, alongside the high computational cost, a low convergence speed is generally
expected. In fact, it is common for the number of iterations required to be in the
hundreds. Figures 4.9a and 4.9b show the outcomes of all the tests performed, iden-
tifying the orbit families with different color markers for the single shooting and the
multiple shooting algorithm, respectively. In Figure 4.9b it is evident that the majority
of positive tests required more than 100 iterations. Figure 4.9a shows, instead, that
the number of iterations needed is relatively low, but increases with the complexity of
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the initial conditions vector.

(a)

(b)

Figure 4.9: Convergence results of single shooting (a) and multiple shooting (b)

A second piece of data highlighted by both figures is the number of unsuccessful at-
tempts. The number of such attempts is significantly higher for multiple shooting than
for single shooting for two main reasons:

• Table 4.3 shows that the initial guess was provided with a minimum of three or
four decimal digits. Having such a small number of significant figures can lead to
a bad-conditioned system, especially if the initial state vector has more non-null
components, hence decreasing the probability of convergence;
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• the multiple shooting method corrects not only the initial conditions vector, but
also the state vector of each internal shooting point. Consequently, if the trajec-
tory is broken down into an increasing number of segments, there’s a good chance
that the method will not converge to a solution within the maximum number of
iterations fixed.

In summary, the single shooting algorithm is the optimal choice for correcting the initial
condition vector of a planar or symmetric orbit with a short orbital period. In most
cases, even an approximate initial guess is sufficient to obtain a periodic initial condition
vector after a few iterations. The multiple shooting algorithm is more appropriate when
the initial state vector belongs to orbit families with complex geometry and long orbital
periods. Furthermore, the state vector has to be provided with sufficient accuracy in
order to converge to a proper solution. Figures 4.10 and 4.11 show a comparison of the
performance of the two algorithms used with Vertical orbits built around the collinear
points. It should be noted that these tests were conducted only on orbits built around
the collinear points because the single shooting algorithm does not apply to Vertical
orbits built around the equilateral points. Moreover, it is evident that the number of
tests carried out with the multiple shooting algorithm is higher than that with the single
shooting algorithm, which was affected by several bad-conditioned problems. Figure
4.10 shows that when the single shooting algotithm takes fewer iterations when it is able
to converge to a solution. However, Figure 4.11 highlights that the multiple shooting
algorithm is more reliable with this orbit family due to the higher number of successful
attempts.

Figure 4.10: Convergence outcome of single shooting algorithm applied to Vertical
orbits around collinear Lagrangian points in the Earth-Moon system
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Figure 4.11: Convergence outcome of multiple shooting algorithm applied to Vertical
orbits around collinear Lagrangian points in the Earth-Moon system
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Initial conditions derivation for any
CR3BP system
As discussed in Chapter 4, in most cases the vector of initial conditions must be cor-
rected to ensure the periodicity of the orbit. Furthermore, in order for the differential
correction algorithms to perform correctly and obtain a periodic solution, it is essential
to provide an accurate estimate of the initial state vector. Thus far, the vector of initial
conditions has been taken from the NASA JPL database and approximated to verify
the performance of the differential correction algorithms. This chapter aims to develop
a method to compute the initial conditions of Halo orbits for systems that are not listed
in the NASA JPL database. This CR3BP orbit family has been chosen due to its broad
use in numerous real missions, as previously mentioned.

First, a method to analytically approximate the initial conditions of Halo orbits
is described. These initial conditions are necessary for the next step, where a genetic
algorithm is used to generate new Halo orbits in systems that are not mentioned in
the NASA JPL dynamical orbit catalog. This algorithm is the key to derive the initial
conditions of the new desired periodic halo orbits. The following section focuses on
the results obtained applying the whole procedure to two new systems: Pluto-Charon
and α Centauri. The last section provides a detailed description of the algorithm that
enables the user of the tool to perform coverage analysis using a derived periodic orbit.

5.1 Approximating initial conditions in
the CR3BP

This section describes the method based on the Richardson’s work [43] that allows to
derive the initial conditions for Halo orbits. More precisely, the method aims to iden-
tify third-order analytical solutions for periodic halo-type motions around the collinear
points in the CR3BP.

First, the EoMs are the linearized as expressed in Equation (2.26). However,
Richardson uses a reference frame centered on one of the collinear points. Conse-
quently, in order for Equation (2.26) to be formally equivalent to the EoMs employed
by Richardson, it is necessary to transition from the synodic frame to the frame cen-
tered on the Lagrangian point and to non-dimentionalize the variables employed. The
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following relations are used to achieve this

x = xsyn − xLi

γL

y = yLi

γL

z = zLi

γL

(5.1)

where xLi , yLi , zLi are the coordinates of the chosen collinear point, and γL is a non-
dimensional quantity calculated as follows

γL = r2L

LU
for motion about L1 or L2

γL = r1L

LU
for motion about L3

(5.2)

with r1L and r2L representing the distances of the primaries from the reference La-
grangian point. However, since the distances have been non-dimentionalized, these two
variables are equal to one in their respective applications. The linearized EoMs admit
solutions of the kind

x = −Ax cosλt+ ϕ

y = kAx sinλt+ ϕ

z = Az sinλt+ ψ

(5.3)

which describe a periodic halo-type motion. Ax and Az are connected by an algebraic
relation, as are the phase angles ϕ and ψ. Both relations will be explained shortly.
Linearized solutions are just the first step in obtaining the third-order solutions for a
periodic motion around the collinear points.

In order to accomplish this, the EoMs must be rewritten around one collinear point
using the Lagrangian L, expressed as

L = 1
2(ρ̇ · ρ̇) +Gm1

5 1
|r1 − ρ|

− r1 · ρ
|r1|3

6
+Gm2

5 1
|r2 − ρ|

− r2 · ρ
|r2|3

6
(5.4)

where ρ is the position vector of the mass m3 with respect to the Lagrangian point.
Expanding the two gravitational contributions Gm1

r1
and Gm2

r2
in series, Equation (5.4)

is rewritten as
L = 1

2(ρ∗ · ρ∗) +
∞Ø

n=2
cnρ

nPn(x/ρ) (5.5)

with the (∗) operator indicating the derivation with respect to the variable s = n1t,
where n1 corresponds to the mean angular motion of the system. Pn(x/ρ) represents the
n-th Legendre polynomial, whose constants cn are retrieved according to the following
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equation

cn = 1
γ3

L

C
(±1)nµ+ (−1)n (1− µ)γn+1

L

(1∓ γL)n+1

D
, for L1 or L1

cn = 1
γ3

L

C
1− µ+ µγn+1

L

(1 + γL)n+1

D
, for L3

(5.6)

Using Equations (5.5) and (5.6), the EoMs can be written as

x∗∗ − 2y∗ − (1 + 2c2)x =
∞Ø

n=2
(n+ 1)cn+1ρ

nPn(x/ρ)

y∗∗ + 2x∗ + (c2 − 1)y =
∞Ø

n=3
cnyρ

n−2P̃n(x/ρ)

z∗∗ + c2z =
∞Ø

n=3
cnzρ

n−2P̃n(x/ρ)

(5.7)

with

P̃n(x/ρ) =
[(n−2/2]Ø

k=0
(3 + 4k − 2n)Pn−2k−2(x/ρ) (5.8)

To derive periodic halo-type solutions from Equation (5.7), the amplitudes of the lin-
earized solutions, Ax and Az, must be large enough so that the nonlinear contributions
to the system produce equal eigenfrequencies. Based on this hypothesis, Richardson’s
EoMs are

x∗∗ − 2y∗ − (1 + 2c2)x = 0

y∗∗ + 2x∗ + (c2 − 1)y = 0

z∗∗ + λ2z = 0

(5.9)

where the coefficient c2 in Equation (5.7) is replaced by λ2. These two terms are nec-
essary to compute the correction ∆

∆ = λ2 − c2 (5.10)

which must be applied to the right-hand side of the z-equation of Equation (5.7). Thus,
the z-equation becomes

z∗∗ + c2z =
∞Ø

n=3
cnzρ

n−2P̃n(x/ρ) + ∆z (5.11)

As a result of the successive approximations procedure, secular terms that are desired
to be eliminated, appear. To eliminate them, the Linsted-Poincaré method is applied,
introducing the variable τ to substitute the temporal variable t. This variable is of the
kind

τ = ωs (5.12)
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where ω is the correction frequency equal to

ω = 1 +
Ø
n≥1

ωn with ωn ≤ 1 (5.13)

Equation (5.7) is then rewritten as a function of τ

ω2x′′ − 2ωy′ − (1 + 2c2)x = 3
2c3(2x2 − y2 − z2) + 2c4x(2x2 − 3y2 − 3z2)

ω2y′′ + 2ωx′ + (c2 − 1)y = −3c2xy −
3
2c4y(4x2 − y2 − z2)

ω2z′′ + λ2z = −3c3xz −
3
2c4z(4x2 − y2 − z2)

(5.14)

Third-order solutions can be derived, without the secular terms, by specifying properly
the values of ωn. In particular, from the second-order equations is known that ω1 = 0,
while the following relation holds for ω2

ω2 = s1A
2
x + s2A

2
z (5.15)

with constants s1 and s2 reported in the Appendix A. To ignore the secular terms in
the z-equation as well, the two relations between the amplitudes and the phase angles
must be used. The relationship between the amplitudes expresses as follows

l1A
2
x + l2A

2
z + ∆ = 0 (5.16)

where the expressions of l1 and l2 are listed in Appendix A. Finally, the aforementioned
constraint-relationship between the phase angles is

ψ = ϕ+ nπ

2 with n = 1, 3 (5.17)

Based on these considerations, the third-order solutions for a periodic motion around
each collinear point are derived

x = a21A
2
x + a22A

2
z −Ax cos τ1 + (a23A

2
x − a24A

2
z) cos 2τ1 + (a31A

3
x − a32AxA

2
z) cos 3τ1

y = kAx sin τ1 + (b21A
2
x − b22A

2
z) sin 2τ1 + (b31A

3
x − b32AxA

2
z) sin 3τ1

z = δnAz cos τ1 + δnd21AxAz(cos 2τ1 − 3) + δn(d32AzA
2
x − d31A

3
z) cos 3τ1

ẋ = λωn1
è
Ax sin τ1 − 2(a23A

2
x − a24A

2
z) sin 2τ1 − 3(a31A

3
x − a32AxA

2
z) sin 3τ1

é
ẏ = λωn1

è
kAx cos τ1 + 2(b21A

2
x − b22A

2
z) cos 2τ1 + 3(b31A

3
x − b32AxA

2
z) cos 3τ1

é
ż = λωn1

è
−δnAz sin τ1 − 2δnd21AxAz sin 2τ1 − 3δn(d32AzA

2
x − d31A

3
z) sin 3τ1

é
(5.18)

where the switch function δn is expressed as

δn = 2− n with n = 1, 3 (5.19)
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and, according to the value of n, it distinguishes between Halo Northern orbits and
Halo Southern orbits, respectively. Finally, τ1 is equal to

τ1 = λτ + ϕ (5.20)

with constants aij , bij e dij listed in Appendix A.
However, the initial conditions computed according to this procedure belong to the

reference frame centered on the Lagrangian point. Therefore, to express them with
respect to the synodic reference frame, the inverse of Equation (5.1) must be used as
the final step.

Algorithm 3 shows the sequence of operations necessary to obtain the initial condi-
tions of an Halo orbit using the Richardson method.

Algorithm 3 Construction of initial conditions for a periodic Halo orbit
1: Choose the system and the collinear Lagrangian point
2: Set the Az amplitude and the phase angle ϕ
3: Compute the local non-dimensional distance: γL according to Eq. (5.2)
4: Compute Lagrangian constants cn using Eq. 5.6
5: Compute the linearized frequency λ and constant k
6: Use Appendix A to compute the second- and third-order coefficients
7: Solve Eq. (5.16) for the in-plane amplitude: Ax

8: Compute the Lindstedt–Poincaré frequency correction with Eq. (5.15)
9: Compute ψ with Eq. (5.17) choosing n = 1 for Northern or n3 for Southern orbit

10: Evaluate the third-order solution at τ = 0 according to Eq. (5.18)

The initial conditions produced as output by Algorithm 3 must be corrected using one
of the differential correction algorithms to ensure that they lead to a periodic orbit. As
mentioned in Section 4.3, using the single shooting method is sufficient for this orbit
family.

Table 5.1 lists the values of the mass ratio µ and the non-dimensional position along
the x-axis of the collinear points in the four new systems to which the Richardson
procedure has been applied.

Table 5.1: Mass ratios and non-dimentionalized positions collinear points of new
systems

System Mass ratio L1 L2 L3

Sun-Mercury 1.66× 10−7 0.99619396701 1.00381538196 -1.00000006917
Jupiter-Ganymede 7.81× 10−5 0.97058373638 1.02984548118 -1.00003252728

Pluto-Charon 0.1087 0.59262439711 1.26258391589 -1.04523234461
α Centauri A-
α Centauri B

0.4519 0.06792829736 1.21460314181 -1.18130951202
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In addition to some three-body systems belonging to the solar system, Table 5.1 includes
also the stellar system α Centauri. This is actually a triple stellar system, and in
fact Proxima Centauri has been demonstrated to be gravitationally connected to the
system. However, it is neglected due to its large distance from the barycenter of the
binary system α Centauri AB. Such hypothesis allows to consider a system with a
considerably high mass ratio and analyze a limit case to which the CR3BP hypothesis
can be applied.

Figures 5.1 and 5.2 are an example of the results that can be obtained applying
Algorithm 3 and Algorithm 1 to derive initial conditions and correct them in the Pluto-
Charon system.

(a) (b)

(c)

Figure 5.1: 2D view of the computed Northern Halo orbit around L2 in the Pluto-
Charon system with Az = 2800 km: (a) x-y plane, (b) y-z plane, (c) x-z plane
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Figure 5.2: 3D view of the computed Northern Halo orbit around L2 in the Pluto-
Charon system with Az = 2800 km

More examples, using other systems cited in Table 5.1, are shown in Appendix B.
Looking at the results, it can be seen that, apart from the Pluto-Charon system, it was
not possible to identify at least one periodic orbit around each of the collinear points
for any other system. Consequently, Richardson’s detailed procedure does not always
produce satisfactory results, i.e. sets of initial conditions that are sufficiently accurate
to be corrected effectively. In fact, several attempts carried out in different systems
have produced negative results or have shown that the method is strongly influenced by
the value of Az provided. To overcome this problem, genetic algorithms can be used,
which search within an interval for the presence of a possible solution.

5.2 Genetic Algorithm
Genetic Algorithms (GAs) are a class of optimization algorithms belonging to the re-
search field of the evolutionary computation. GAs are based on random processes, just
like evolutionary biological processes, and shares with these some fundamental terms,
such as population, generation and chromosomes. Unlike natural biological processes,
the creator of a GA can set the level of randomization and the level of control. GAs
have advantages over other search algorithm because their randomic nature enables
them to explore wider search spaces without requiring additional information about
the problem. This feature places GAs ahead of other optimization methods, which
instead require information about linearity, continuity or derivatives to find a solution.

The mechanism underlying GAs is straightforward. Starting from an initial popu-
lation, the suitability of each individual is evaluated using a specific function, and the
best individuals are chosen to produce the new generation. Through this process, the
algorithm tends to the solution of the problem by producing individuals, i.e. possible
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solutions, which are more suitable with each generation. It should be noted that the
objective of the GA is not to identify all possible solution within a certain search inter-
val, but rather to obtain solutions that are good enough to be provided to a differential
correction algorithm as initial guesses for the initial conditions of a periodic orbit.

5.2.1 Individuals of the population
In order to proceed with the creation of the GA, it is first necessary to determine
the characteristics of the individuals forming the population. Since the goal is to find
possible initial conditions for periodic Halo orbits, each individual is represented by a
two-component vector

v = [x0, ẏ0] (5.21)

It is already known that the state vector of a periodic Halo orbit has just three non-zero
components, one of which is kept fixed during the differential correction process. Con-
sequently, chosing z as the invariant variable, each individual has two chromosomes,
corresponding to x0 and ẏ0, which the GA will manipulate.

Another fundamental step in initializing the population is defining the search inter-
val. To verify the GA’s performance, a periodic solution is drawn from the NASA JPL
database and the two intervals are built simmetrically around the nominal values fot
the x and ẏ components as follows

vmin = vp − δ · vp

vmax = vp + δ · vp
(5.22)

dove where vp represents the periodic solution known a priori. The parameter δ must
be chosen carefully to avoid two possible scenarios:

• the extremes of the search interval are too close to vp and cause the GA to
converge too quickly;

• the search intervals are too wide, which negatively affect the GA’s efficiency.

5.2.2 Fitness function
After the characteristics of the individuals have been stated, their suitability must be
evaluated using the fitness function, which is usually indicated as the cost of the indi-
vidual. The definition of this function is crucial for correctly selecting the individuals.
In this case, the symmetry characteristics of Halo orbits, discussed in Section 3.2.4, can
be used. Halo orbits are known to cross the xz-plane perpendicularly to it, hence in
two distinct points ẏ has a non-zero value, while ẋ and ż are null. Using this feature,
the EoMs are integrated using the v-components and the fixed z component as initial
conditions. The integration process stops when an event function detects that the xz-
plane has been crossed. After the integration, the cost of the individual is computed
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using the following fitness function

ffit = |ẋ|+ |ż| (5.23)

The goal of the GA is to minimize the value of the fitness function so that the solution
is coherent with the definition of a Halo orbit. The absolute values of the two velocities
ẋ and ż are used to compute the sum, preventing the fitness function from approaching
zero without ensuring symmetry. If the event function is not triggered during the
integration, the cost of the individual is set to be ffit = 104. This passage helps to
strongly penalize less suitable individuals. These individuals are more likely to be
excluded from creating the new generation and be progressively eliminated.

5.2.3 Natural selection
Natural selection plays a crucial role in creating a new generation of individuals. Indeed,
this process leads to the selection of the best individuals to be the future parents.
Specifically, individuals are sorted according to their fitness value, from highest to
lowest. Only a fraction of the whole population is selected to advance to the next
steps, typically setting the survival rate to 50%. Therefore, at each iteration of the
GA, half of the population consisting of the lowest-cost individuals survives, while the
other half is replaced by the new generation.

A different approach to natural selection is the thresholding. With this technique,
individuals with a fitness function value that is less than the threshold survive. Initially,
just a few individuals survive, but this number increases in subsequent generations.

Even though thresholding allows to select the best individuals without previously
sorting the population, classic natural selection is chosen for the GA.

5.2.4 Selection
The selection process consists in pairing the individuals who survived natural selection
so that new individuals can be generated in the next mating phase. The pairing process
aims to create a number of couples equal to Npairs = Npop−Npar, with Npopis the total
population size and Npar is the number of parents. The most common selection methods
are as follows [44]:

• Pairing from top to bottom, selecting two individuals at a time until the necessary
number of couples is reached. This approach is very easy to implement, but it
doesn’t accurately model nature

• Random pairing is performed by simply randomically extracting the index of the
individuals which form the couple;

• Weighted random pairing associates a selection probability to each individual
which is inversely proportional to its cost. Then, the extraction of a random
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number determines the selection of a certain individual. This type of selection
is also known as roulette wheel weighting and it can be implemented using the
method of the rank weighting. In practice, the probability associated with an
individual is computed as a function of its position n in the sorting

Pn = Npar − n+ 1qNpar
n=1 n

(5.24)

According to the calculated probabilities and the random numbers extracted, an
individual may be paired with itself or more couples may be formed from the
same individuals. To avoid this, a control mechanism can be implemented to
force the extraction to be repeated so until no two couples are the same.;

• Tournament selection randomly selects a small group of individuals, usually two
or three, and identifies the least expensive among them. This individual is one of
the parents of the couple. The tournament repeats until all couples are formed.
This selection method is usually preceded by thresholding, so that the population
is never sorted.

Since roulette wheel and tournament selection are both standard GAs selection mecha-
nisms, the roulette wheel rank weighted selection has been chosen for implementation.

5.2.5 Mating
After selecting and pairing the individuals, the mating or crossover phase follows. This
is the process that leads to the next generation of individuals. Mating can occur
according to a fixed probability, but in this case it is imposed to happen for each
couple. Crossover creates new individuals which inherit their parents’ characteristics.
To accomplish this, chromosomes of the new individuals are computed as a weighted
average of their parents’. The implemented equations are as follows

vnew
1 = α · v1 + (1− α) · v2

vnew
2 = α · v2 + (1− α) · v1

(5.25)

where α is a random number belonging to [0,1] that is indipendently extracted for
each mating operation. Because of the random nature of α, it is unlikely, though not
impossible, that it will be equal to one, resulting in the new individuals being copies of
the parents.

5.2.6 Mutation
Mutations are applied to the new individuals to encourage a higher genetic diversity
and prevent the GA from stalling. Without mutations, the GA can converge to a local
optimum rather than a global optimum of the fitness function. To avoid this behavior,
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mutations are set to occur with a 20% probability. When a mutation occurs, a small
perturbation is applied to both chromosomes of the individual. This perturbation is
modeled as random noise that follows a normal distribution. Therefore, the random
perturbation has a mean value of zero and a standard deviation of one. Altought it is
unlikely that the perturbation will have a high value, it is anyway scaled by a factor β
before being applied, according to the following

vmut = v + β · η with η ∼ N(0, I) (5.26)

where η si the vector that contains the two perturbations to be applied, which are
randomly extracted independently .

The application of perturbations can cause the chromosomes to exceed the search
interval limitations. It is sufficient to verify that the limits are still respected after
the mutation. If not, the mutated chromosome can be rounded to the nearest interval
extreme.

5.2.7 GA performances
This section will test the GA implemented, which is more schematically describe in
Algorithm 4.

Algorithm 4 Genetic algorithm for periodic Halo orbit initial conditions
1: Choose NASA JPL nominal values znom and vnom = [x0, ẏ0]
2: Choose GA parameters: perturbation factor δ, population size Npop, number of

generations Ngen, number of runs Nrun, mass ratio µ, threshold ε

3: for j = 1, 2 do ▷ Building search intervals
4: [bj , bj ]← ICj(1± δ)

5: for r = 1, . . . , Nrun do ▷ Monte Carlo over different GA runs
6: Initialize population P(0) = {v(0)

k }
Npop
k=1 :

7: while i < Ngen and flag = 0 do ▷ Main GA loop
8: for each individual y(i)

k ∈ P(i) do
9: Integrate EoMs on t ∈ [0, 2π] with plane-crossing event y = 0

10: if event is detected then
11: ffitk

← |ẋk|+ |żk|
12: else
13: ffitk

← 104

14: Sort P(i) in ascending order of fk

15: Extract best fitness f (i)
best and best individual y(i)

best
16: if f (i)

best < ε then
17: flag← 1
18: Keep the best Npar = Npop/2 individuals from S(i)
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19: Assign rank-based selection probabilities pj and cumulative sums Pj

20: Use roulette-wheel sampling on Pj to form Npar couples of distinct parents
21: for each couple of parents (v1,v2) do
22: Draw β1, β2 ∼ U(0, 1)
23: vnew

1 ← β1v1 + (1− β1)v2; vnew
2 ← β2v2 + (1− β2)v1

24: if mutation is enabled then
25: With pm = 0.2, perturb vnew

1 ,vnew
2 with Gaussian noise

26: Project mutated components back into their bounds [bj , bj ]

27: Add vnew
1 and vnew

2 to P(i+1)

28: P(i) ← P(i+1), i← i+ 1

As previously mentioned, the reference initial conditions are selected from those avail-
able in the NASA JPL database. Specifically, the initial conditions vector describes a
Halo Northern orbit built around L2 in the Earth-Moon system, which has a stability
index equal to index = 100.3033. In such way, the influence of the orbit stability on
convergence capacity of the GA should be mitigated.

Table 5.2 presents the values of the parameters used to set the GA. The threshold
value, as well as the parameter δ used to create the search interval bounds, have been
chosen to prevent premature convergence.

Table 5.2: Setting parameters for the convergence test using a Halo Northern orbit
built around L2 in the Earth-Moon system

Parameter Symbol Value
Number of runs N 10
Population size P 100

Max generations Gmax 100
Threshold ϵ 10−4

Mutation probability pm 0.2
Mutation scale factor α 0.05
Relative search radius δ 0.05

The solution found at the end of a run is strongly related to the starting seed, namely the
initial population randomly generated. This mainly affects the number of generations
required to reach the threshold and the quality of the computed solution. Repeated
use of the GA lead to different solutions, therefore it allows to select the solution with
the lowest cost to be used as an initial guess for the differential correction algorithm.
Considering the following nominal initial conditions

XJPL = [1.1486648559117889, 0, 0.14897322998167725, 0,−0.21907387052814919, 0]
(5.27)
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the results obtained at the end of the ten runs set are summarized in Table 5.3.

Table 5.3: GA results for the Halo Northern reference orbit built around L2 in the
Earth-Moon system

Convergence [%] Mean Gen. Best cost Best solution
50% 8.8 9.98× 10−6 [1.14866420854413,−0.219070715292363]

Even with the threshold set to ϵ = 10−4, the best solution found across the ten runs has
a cost that is two orders of magnitude lower. However, the chosen threshold proved to
be very strict, indeed half of the runs failed to converge and produced solutions with a
mean cost of 10−3. The average number of the generations required can be interpreted
as a positive result because, when the GA converges, it does so quickly. To assess
the validity of the solution obtained, it is sufficient to analyze the results of the single
shooting differential correction algorithm showed in Figures 5.3a and 4.3.

(a)

(b)

Figure 5.3: Results of the single shooting differential correction algorithm applied to
the set of initial conditions provided by the GA
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These graphs prove that the initial guess coming given by the GA is very accurate. In-
deed differential correction algorithm converges in only two iterations, with a tolerance
of 10−14.

Repeating the test with a modified threshold of ϵ = 10−2, yields different results,
particularly with regard to the convergence rate and the average number of iterations
needed to satisfy the imposed tolerance are concerned, as shown by Table 5.4.

Table 5.4: GA results for the Halo Northern reference orbit built around L2 in the
Earth-Moon system with modified threshold

Convergence [%] Mean Gen. Best cost Best solution
100% 1.6 1.03× 10−3 [1.14859986681057,−0.218339208434893]

Using a less restrictive threshold, the GA can still find a solution, but the solution has a
higher cost. However, the single shooting differential correction effectively corrects the
derived initial conditions in just one additional iteration compared to the previous test.
Therefore, it is reasonable to assume that solutions obtained by setting a threshold of
ϵ = 10−3 are precise enough to serve as initial guess to the differential correction and
the computational cost is not too high.

5.3 Derivation of initial conditions us-
ing GA

Once the GA structure is detailed, it can be integrated into the initial conditions deriva-
tion process for new three-body systems. Unlike the tests conducted so far, the initial
conditions are derived by imposing few constraints and without knowing any solutions
in advance. Specifically, the characteristics of the desired orbit are defined by choosing
the three-body system in which deriving the initial conditions, the Lagrangian point
around which to build the orbit and its amplitude Az. Finally, since the process regards
Halo orbits, the desired orbits must be specified as either Northern or Southern. This
information is needed to set Richardson’s procedure, depicted in Section 5.1, to obtain
an estimation of the initial conditions. This first result, is essential for generating the
search intervals of the GA.

Built the search intervals or radius δ around the first estimate of the initial con-
ditions, the GA parameters are set to begin finding a solution. Due to the different
circumstances for the application of the GA compared to the tests performed in Section
5.2.7, Table 5.5 reports the values of the parameters used from now on.
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Table 5.5: Genetic algorithm parameters used in the derivation of initial conditions
for Pluto-Charon and α Centauri AB

Parameter Symbol Value
Number of runs N 100
Population size P 100

Max generations Gmax 100
Threshold ϵ 10−2

Mutation probability pm 0.2
Mutation scale factor α 0.05
Relative search radius δ 0.3

The number of runs is increased to 100 to improve the likelihood of finding low-cost
solutions, hence best initial guesses fot the differential correction. Furthermore, since
the solution is unknown, a threshold of 10−2 is considered sufficient. Finally, the search
intervals are built using δ = 0.3. This means that the GA will investigate a space
spanning 30% above and below Richardson’s estimation. This decision is justified by
the fact that the solution may not be located in the immediate vicinity of the estima-
tion. Therefore, wider intervals give more the GA room for maneuver and increase the
chance of finding a solution.

Finally, once the lowest-cost solutions is selected, the initial conditions vector con-
sisting of the two chromosomes [x0, ẏ0] and the z coordinate obtained by fixing the
value of Az is corrected. The initial conditions vector returned by the single shooting
differential correction represents the initial state that leads to a periodic orbits that
responds to the initial constraints.

5.3.1 Pluto-Charon system
The first system chosen to demonstrate the functioning of the GA that does not belong
to the NASA JPL database is Pluto-Charon. Pluto, was once classified as the ninth
planet of the solare system but was reclassified as dwarf planet in 2006, after the
discovery of Eris, a dwarf planet with a mass that is 27% higher than Pluto’s. Although
Pluto has five known moons, Charos is selected due to its unique characteristics. Indeed,
Charon’s diameter is half that of Pluto, and its mass is one-eighth that of Pluto.
Unlike many other planetary systems in the solar system, where moon’s dimensionts are
remarkably smaller than the mother body, Pluto-Charon is a binary system. Because
of Charon’s dimensions the barycenter of this system lies outside both bodies. This
characteristic is confirmed by the value of the mass ratio, that is µ = 0.10873. For
comparison, this mass ratio is approximately ten times higher than that of the Earth-
Moon system, which is already considered to be quite high. This high mass ratio
not only makes the dynamics more complex and chaotic, but according to Equation
(2.48), makes the equilateral points L4 and L5 unstable. These characteristics make the
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Pluto-Charon system a good benchmark for the GA capabilities, where Richardson’s
analytical approximation begins to struggle.

A total of seven new Halo orbits are derived, each of them with a different amplitude,
Az, and orientation. Table 5.6 summarizes the characteristics of these orbits, which are
used as input parameters for the analytical approximation of the initial conditions.

Table 5.6: Features of each Halo orbit in the Pluto-Charon system used as inputs for
Richardson’s approximation

Orbit Az [ND] Az [km] Orientation Li Mass ratio
Orbit 1 0.25 1470 Southern

L1 0.10873

Orbit 2 0.50 2950 Northern
Orbit 3 0.75 4400 Northern
Orbit 4 1.0 5860 Southern
Orbit 5 1.25 7340 Southern
Orbit 6 1.51 8850 Northern
Orbit 7 1.75 10270 Northern

Table 5.7 shows instead the set of initial conditions that were analytically approximated
using the procedure detailed by Richardson.

Table 5.7: Initial conditions derived using Richardson’s analytical approximation for
each Halo orbit in the Pluto-Charon system

Orbit Analytical ICs
Orbit 1 [0.572, 0, -0.0782026630800778, 0, 0.29, 0]
Orbit 2 [0.574, 0, 0.1604394860979834, 0, 0.412, 0]
Orbit 3 [0.585, 0, 0.2454337465373808, 0, 0.518, 0]
Orbit 4 [0.607, 0, -0.3358252995570846, 0, 0.584, 0]
Orbit 5 [0.64, 0, -0.4326959572476554, 0, 0.59, 0]
Orbit 6 [0.685, 0, 0.5372827659114511, 0, 0.517, 0]
Orbit 7 [0.739, 0, 0.6412207406270349, 0, 0.36, 0]

These initial conditions cannot be effectively corrected by the single shooting differential
correction algorithm, especially when the Az ≥ 0.6. Consequently, employing a genetic
algorithm is crucial to find a candidate solution within search intervals wide enough
and centered on the x0 and ẏ0 components of the aforementioned initial conditions,
which are approximated analytically.

Applying the GA using the parameters introduced in Table 5.5 and considering each
individual with the characteristics described in Section 5.2.1, yields the results that are
shown in Table 5.8.
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Table 5.8: Results of the genetic algorithm for each Halo orbit in the Pluto-Charon
system using ϵ = 10−2

Orbit Convergence [%] Mean Gen. Best cost Best individual [x0, ẏ0]
Orbit 1 94 10.75 6.705× 10−4 [0.56943553242901, 0.29839056639836]
Orbit 2 84 15.89 1.009× 10−3 [0.56455042560736, 0.4198921937556]
Orbit 3 97 9.24 4.085× 10−4 [0.556822250625615, 0.5337951187651]
Orbit 4 100 4.46 2.049× 10−4 [0.554195504589591, 0.6108414122852]
Orbit 5 100 15.91 4.674× 10−4 [0.61969235978080, 0.48115632001899]
Orbit 6 73 38.14 7.513× 10−4 [0.62710429350244, 0.38703794864584]
Orbit 7 35 28.51 1.859× 10−3 [0.57229330790619, 0.40353606152459]

A comparison of the solutions produced by the GA and the analytical estimation pro-
vided by Richadson’s approximation, reveals that the approximations are very accurate
for small values of Az. In fact, a maximum percentage variation of 5% in the compo-
nents [x0, ẏ0] can be observed. However, this difference increases significantly as Az

increases, reaching a miximum percentage difference of almost 30% in the remaining
four orbit components. This confirms that the analytical approximation is strongly
limited. Table 5.9 shows that GA solutions are good initial guesses for the differential
correction.

Table 5.9: Individuals obtained after the differential correction and absolute differ-
ences between the values derived by the GA and the differential correction for each
Halo orbit in the Pluto-Charon system

Orbit Corrected [x0, ẏ0] |∆x0| |∆ẏ0|
Orbit 1 [0.5696563323846876, 0.2958828502255298] 2.207× 10−4 2.507× 10−3

Orbit 2 [0.5644700840793219, 0.4205618476240396] 8.034× 10−5 6.696× 10−4

Orbit 3 [0.5567926282163066, 0.5339458056928368] 2.962× 10−5 1.506× 10−4

Orbit 4 [0.5542066273225952, 0.610763585831493] 1.112× 10−5 7.782× 10−5

Orbit 5 [0.6197836879799687, 0.4810328678007726] 9.133× 10−5 1.234× 10−4

Orbit 6 [0.6271700963729365, 0.3868877612009191] 6.581× 10−5 1.502× 10−4

Orbit 7 [0.5721940607310713, 0.4036804800195342] 9.925× 10−5 1.444× 10−4

The columns reporting the difference in absolute value of the corrected components
witness that single shooting differential correction make always modifications starting
from the fourth or fifth decimal digit. Thus, GA solutions are very close to an effective
periodic solution and only require minor adjustments. As previously discussed, these
minimal corrections are the actual discriminating factor between a non-periodic and a
periodic, symmetrical solutions. Further confirmation of the quality of the GA solution
is the speed of the correction process. Indeed, Figures 5.4 and 5.5 show that no more
than three iterations are always needed to comply with a tolerance tol = 10−13.
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(a) Orbit 1 (b) Orbit 2

(c) Orbit 3 (d) Orbit 4

(e) Orbit 5 (f) Orbit 6

(g) Orbit 7

Figure 5.4: Initial conditions evolution throughout the differential correction process
for each orbit in the Pluto-Charon system90
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(a) Orbit 1 (b) Orbit 2

(c) Orbit 3 (d) Orbit 4

(e) Orbit 5 (f) Orbit 6

(g) Orbit 7

Figure 5.5: Final state velocities throughout the differential correction process for
each orbit in the Pluto-Charon system 91
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Figures 5.6 and 5.7 graphically show the orbits resulting from the integration of the
initial conditions obtained as the output of the differential correction.

(a) (b)

(c)

Figure 5.6: 2D view of the Halo orbits obtained using the GA around L1 in the
Pluto-Charon system: (a) x-y plane, (b) y-z plane, (c) x-z plane

Figure 5.7: 3D view of the Halo orbits obtained using the GA around L1 in the
Pluto-Charon system
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Finally, Table 5.10 reports the periods and stability indexes of the resultant orbits. The
value of the stability index marginally affects the GA’s convergence percentage, which
is instead more influenced by the z-amplitude. However, the correlation between the
stability index and Az, as described in Section 3.2.4 can be reasserted. As Az increases,
Halo orbits tend to become more elongated, falling into the NRHO family. As shown,
these orbits have stability indexes close to or equal to one, and this trend is confirmed
by the data presented in Table 5.10.

Table 5.10: Periods and stability indexes of the Halo orbits built around L1 obtained
using the GA in the Pluto-Charon system

Orbit Az [ND] Az [km] Period [ND] Period [Days] Stability index
Orbit 1 0.25 1470 2.465 2.514 1124.36
Orbit 2 0.50 2950 2.559 2.609 464.26
Orbit 3 0.75 4400 2.662 2.715 114.98
Orbit 4 1.0 5860 2.606 2.658 14.69
Orbit 5 1.25 7340 2.166 2.209 1.36
Orbit 6 1.51 8850 2.229 2.273 1.11
Orbit 7 1.75 10270 2.445 2.494 4.41

5.3.2 α Centauri AB system
α Centauri is a triple star system, and also the closest stellar system to the solar
system. Proxima Centauri is indeed located 4.365 light-years (ly) away, making it the
closer star to Earth after the Sun. This system consists of the pair α Centauri A e α
Centauri B, which are a yellow and an orange dwarf respectively, and are close to each
other; and Proxima Centauri, a red dwarf much farther away. Table 5.11 reports the
characteristics of the three bodies belonging to the system.

Table 5.11: α Centauri bodies characteristics

α Centauri A α Centauri B Proxima Centauri
Distance from Earth 4.37 ly 4.37 ly 4.24 ly

Mass 1.1 M⊙ 0.9 M⊙ 0.12 M⊙

Radius 1.22 R⊙ 0.86 R⊙ 0.14 R⊙

Luminosity 151%⊙ 50%⊙ 0.15%⊙

Surface Temp 5800 K 5300 K 3000 K
Periapsis 11.2 AU 4500 AU
Apoapsis 36 AU 13000 AU

Eccentricity 0.52 0.5
Orbital period 80 years 550, 000 years

The subscript ⊙ indicates that the mass, radius and luminosity are expressed as a
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function of those of the Sun.
These data help explain why the analysis should focus on the system formed by

α Centauri A ed α Centauri B, also known as α Centauri AB, altought α Centauri
is a system composed by three bodies. These two stars have comparable masses and
are much closer than Proxima Centauri, which is still linked to the system. Further-
more, eccentricity values highlight that the orbit along which the two main stars move,
is highy eccentric, contrary to what is observed in planetay systems of the solar sys-
tem. Consequently, applying the CR3BP hypothesis to this system seems unwarranted.
However, analyzing α Centauri AB serves a different purpose, that is testing the poten-
tial of the algorithms described so far in unique conditions. Therefore, even if deriving
Halo orbits in this system does not respond to a practical interest, it represents an
excellent testing ground for GA in a system with a mass ratio close to its limit value.
If the outcome is positive, GA could be more likely used to find periodic Halo orbits in
an asteroid systems.

Table 5.12 reports the desired characteristics of the new orbits. Besides the mass
ratio, the z amplitudes are notable, reaching values in the hundreds of astronomical
units (AU). However, these orders of magnitude are not surprising given the physical
characteristics of the system.

Table 5.12: Features of each Halo orbit in the α Centauri AB system used as inputs
for Richardson’s approximation

Orbit Az [ND] Az [km] Orientation Li Mass ratio
Orbit 1 0.1 237× 106 Northern

L2

0.451918
Orbit 2 0.3 708× 106 Northern
Orbit 3 0.6 1.02× 109 Southern

L1Orbit 4 0.9 1.53× 109 Northern

Using the procedure detailed in Section 5.1 yields the analytical initial conditions listed
in Table 5.13.

Table 5.13: Initial conditions derived using Richardson’s analytical approximation for
each Halo orbit in the α Centauri AB system

Orbit Analytical ICs
Orbit 1 [0.981, 0, 0.0507194238999922, 0, 0.777, 0]
Orbit 2 [0.928, 0, 0.1464499509721667, 0, 0.921, 0]
Orbit 3 [0.005, 0, -0.2929985669405203, 0, 0.693, 0]
Orbit 4 [-0.018, 0, 0.443029897974902, 0, 0.683, 0]

Consequently, the GA set with the same parameters shown in Table 5.5 is used. How-
ever, a small clarification is necessary. Due to the value of µ close to its theoretical
limit, the point L1 has an almost zero value. Therefore, constructing the search inter-
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vals using the parameter δ = 0.3 leads to an extremely narrow search space. Thus, the
two orbits built around L1 are derived using a search interval set at [-0.3, 0.3] for the
x0 component, and the interval used to find the correct value of the ẏ0 component is
built using δ = 1. Following these modifications, the GA produced the results reported
in Table 5.14.

Table 5.14: Results of the genetic algorithm for each Halo orbit in the α Centauri
AB system using ϵ = 10−2

Orbit Convergence [%] Mean Gen. Best cost Best individual [x0, ẏ0]
Orbit 1 100 10.89 1.092× 10−3 [0.92142307321223, 0.9599892620113]
Orbit 2 56 18.21 2.469× 10−3 [0.87114365964844, 1.07073686198129]
Orbit 3 96 15.43 6.216× 10−4 [-0.00489002006232, 0.81190347014181]
Orbit 4 90 4.76 9.008× 10−4 [-0.239372069454730, 1.22401154734194]

For the orbits built around the L2, the GA exhibited performance similar to that
resulted in Section 5.3.1. For orbits built around L1 the GA benefited from the mod-
ifications made to the setting parameters. Otherwise, no good-fit solution would be
found. The results obtained proved to be excellent initial guesses with which to begin
the differential correction process. This can be seen by the results in Table 5.15.

Table 5.15: Individuals obtained after the differential correction and absolute differ-
ences between the values derived by the GA and the differential correction for each
Halo orbit in the α Centauri AB system

Orbit Corrected [x0, ẏ0] |∆x0| |∆ẏ0|
Orbit 1 [0.9265211138800251, 0.9406654266665474] 5.098× 10−3 1.932× 10−2

Orbit 2 [0.8652085866621616, 1.0927332836174912] 5.935× 10−3 2.199× 10−2

Orbit 3 [-0.0488528635021841, 0.8115824891875094] 4.734× 10−5 3.209× 10−4

Orbit 4 [-0.239241981480691, 1.2240866726673463] 1.301× 10−4 7.512× 10−5

Figures 5.8 and 5.9 show that all sets of initial conditions are corrected quickly, requiring
a maximum of four iterations.
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(a) Orbit 1 (b) Orbit 2

(c) Orbit 3 (d) Orbit 4

Figure 5.8: Initial conditions evolution throughout the differential correction process
for each orbit in the α Centauri AB system
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(a) Orbit 1 (b) Orbit 2

(c) Orbit 3 (d) Orbit 4

Figure 5.9: Final state velocities throughout the differential correction process for
each orbit in the α Centauri AB system

Finally, the orbits whose periods and stability indexes are summarized in Table 5.16
are shown in Figures 5.10 and 5.11.

Table 5.16: Periods and stability indexes of the Halo orbits obtained using the GA
in the α Centauri AB system

Orbit Az [ND] Az [km] Period [ND] Period [years] Stability index
Orbit 1 0.1 237× 106 6.676 60.28 97.69
Orbit 2 0.3 708× 106 4.608 59.41 73.54
Orbit 3 0.6 1.02× 109 2.613 33.68 137.99
Orbit 4 0.9 1.53× 109 2.791 35.98 10.24
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(a) (b)

(c)

Figure 5.10: 2D view of the Halo orbits obtained using the GA in the α Centauri AB
system: (a) x-y plane, (b) y-z plane, (c) x-z plane

Figure 5.11: 3D view of the Halo orbits obtained using the GA in the α Centauri AB
system
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5.4 Celestial body coverage analysis
Once a periodic orbit has been chosen in a certain system, the tool enables the user to
calculate the percentage of surface area covered by that orbit. This section will explain
how the algorithm works and the mathematical criteria that ensure the achievement of
the desired objectives.

The first step is to evaluate the position of the spacecraft, hence the position of the
onboard observation instrument, with respect to the celestial body to be observed. This
operation is straightforward because the position of the celestial body is known a-priori
and the position of the spacecraft can be obtained by integrating the EoMs using the
initial conditions of the chosen periodic orbit, both with respect to the synodic reference
frame. Once these quantities are known, the spacecraft’s position with respect to the
center of the observed celestial body can be simply computed as follows

rs = X3 −Rc (5.28)

where:

• X3 indicate the position of the spacecraft in the synodic reference frame obtained
considering the first three components of the state vector X at a certain time;

• Rc represents the position of the celestial body in the synodic reference frame;

• rs is the relative position of the spacecraft with respect to the celestial body.

After that, the field of view (FOV) of the onboard instrument is retrieved to evaluate
the coverage percentage. There are actually two ways to set the FOV value. First, the
user can assign an arbitrary value, which will be used to perform the coverage analysis.
Otherwise, if no value is provided, the FOV is automatically computed. Specifically,
the theoretical maximum FOV value is computed for each position occupied by the
spacecraft along the orbit, using the following equation

αmax = arcsin R
rs

(5.29)

where R represents the value of the radius of the celestial body observed.
Figure 5.12 graphically represents the FOV and clarifies the origin of Equation

(5.29).
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M

ms/c

FOV

Figure 5.12: Field of view (FOV) of the sensor on board the spacecraft pointed
towards the body M

To quantify the percentage of surface area observed, it is necessary to convert the in-
strument’s FOV into a ground coverage angle, also known as footprint angle ψ. This
angle determines the portion of surface that is effectively intercepted by the instru-
ment’s FOV as a function of the spacecraft’s position and the radius of the celestial
body, and it is calculated as

ψ = arccos
rs(1− cos2 α) + cosα

ñ
R2 − r2

s sin2 α

R
(5.30)

By exploiting the footprint angle, the ground area observed is calculated as follows

Aobs = 2πR2(1− cosψ) (5.31)

Consequently, the percentage of the celestial body’s surface area observed at a certain
time is

Acovi = Aobs

Atot
= 1− cosψ

2 (5.32)

However, Equations (5.31) and (5.32) are not sufficient to evaluate the observed surface
area fraction after moving along an orbit for one period. It is indeed necessary to
discretize the surface of the celestial body and determine the number of samples that
are intercepted at least once by the set FOV during one period.

5.4.1 Spherical Fibonacci lattice
To achieve the most uniform discretization of the spherical surface under observation,
the spherical Fibonacci lattice is employed. This method distributes a sequence of
points along the sphere in the form of a spiral trajectory using the golden angle. This
angle, as will be shown later, is computed using the golden step, which is a defining
feature of the Fibonacci lattice.
Firstly, the points are distributed uniformly along the z-direction. The z-coordinates
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are derived as follows

zk = 1− 2k + 0.5
M

with k = 0, . . . ,M − 1 (5.33)

where M is the number of total points that has to be distributed along the sphere. The
0.5 offset introduced in Equation (5.33) avoids the points being placed at the poles of
the sphere.

As the points are distributed along a unit radius sphere, the following equation
holds

x2 + y2 + z2 = 1 (5.34)

which can be also written as
x2 + y2 = 1− z2 (5.35)

Therefore, by substituing zk in Equation (5.35) the distance rk between the center of
the sphere and the points lying along the sphere at its intersection with the plane zk is
obtained.

To complete the sphere sampling, the x- and y-coordinates of the points must also
be computed. In order to place almost uniformly the points along the zk plane, the
aforementioned golden angle is computed. This angle is computed using the golden ratio
φ, which is the limit of the ratio between two consecutive Fibonacci lattice numbers,
ni and ni+1, when i→∞, namely

φ = 1 +
√

5
2 (5.36)

The golden angle is then computed as

θk = 2π k
φ

with k = 0, . . . ,M − 1 (5.37)

Once the golden angles have been computed for each value of k, the vectors containing
the coordinates of each point, scaled using the distance rk, can be derived

uk = [rk · cos θk, rk · sin θk, zk] with k = 0, . . . ,M − 1 (5.38)

Figure 5.13 shows how the points are distributed along the surface of a generic celestial
body, for example the Earth, in accordance with the depicted procedure.
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Figure 5.13: Earth’s surface discretization using the spherical Fibonacci lattice with
M=500 points

5.4.2 Visibility criterion
Once the surface of the celestial body under observation has been discretized, the num-
ber of points falling within the FOV must be evaluated. The criterion used takes into
account the angle between the observation direction and the perpendicular direction to
the surface at each point of the spherical Fibonacci lattice. The observation direction
is assumed to be always nadir-pointed, i.e. the bisector of the FOV is perpendicular to
the surface of the celestial body at every time step. The visibility criterion is based on
the following equation

uk · ri ≥ cosψi (5.39)

where

• uk indicates the direction at the k-th point of the spherical Fibonacci lattice that
is perpendicular to the spherical surface;

• ri represents the nadir-pointed direction of the observation instrument at a certain
time;

• ψi is the footprint angle computed at a certain time.

For a point on the spherical surface to be within the FOV, it is necessary that its
angular distance from the observation direction to be less than the footprint angle.
Consequently, the cosine of this angle must be greater than or equal to the cosine of
the footprint angle, as defined by Equation (5.39).

To perform the coverage analysis considering the entire periodic orbit, this must
be discretised as well. The visibility criterion is then applied to each position along
the orbital trajectory, taking into account all the points distributed along the spherical
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surface. Therefore, the equation implemented is in a matrix form as follows

D = URT (5.40)

Terms presented by Equation (5.40) are explained below

• U ∈ RM×3 is the matrix that contains, along each row, the coordinates of the
points belonging to the spherical Fibonacci lattice;

• R ∈ RN×3 containts, for each row, the coordinates of the N positions sampled
along the orbit;

• D ∈ RM×N is the resultant matrix containing the scalar products between all
observation directions and all the directions at the points on the surface of the
celestial body.

If one of the values of U satisfies Equation (5.39) at least once, then it falls within the
FOV. Therefore, the percentage of the observed surface using a certain periodic orbit
is equal to

Acov = #observed points
M (5.41)

According the following relation, the error committed during this operation decreases
as the number of points used to discretise the surface increases

err = 1
2
√
M

(5.42)

Algorithm 5 outlines the key steps necessary to perform correctly the coverage analysis.

Algorithm 5 Surface coverage analysis with spherical Fibonacci sampling
1: Set number of orbit samples: N
2: Set number of sphere samples: M
3: Integrate the EoMs using the initial state vector X0

4: Derive the spacecraft positions {X3}Ni=1 sampling the resultant trajectory
5: for i = 1 to N do
6: Compute spacecraft relative position rsi and line-of-sight (LOS) direction using

Eq. (5.28)
7: Compute maximum theoretical FOV: αmaxi using Eq. (5.29)
8: Compute footprint angle: ψi via Eq. (5.30)
9: for k = 1 to M do

10: Derive points coordinates to discretise the body surface using Eq. (5.38)
11: Apply visibility criterion described by Eq. (5.40)
12: Count the number of points observed
13: Compute the coverage percent: Acov using Eq. (5.41)
14: Calculate the evaluation error: err via Eq. (5.42)
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Algorithm 5 is applied to an example orbit, i.e. a Halo Northern orbit, built around L1

in the Earth-Moon system discretized with N = 2000 points. The initial state vector
of this orbit corresponds to

X0 = [0.83225881783611, 0, 0.127216985561728, 0, 0.241121072266256, 0] (5.43)

Figure 5.14: Observation geometry for a Halo Northern orbit built around L1 in the
Earth-Moon system

Figure 5.14 shows the FOV calculated at the position corresponding to X0. Figure
5.15 shows a zoomed-in view of the Moon. It displays the portion of surface observed
with the FOV computed at the initial position, with the surface discretised using M =
250, 000 points.

Figure 5.15: Instantaneous coverage of the Moon’s surface evaluated at X0
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Figure 5.16 consists of a cumulative coverage map of the Moon. The maximum number
of observations per point corresponds to the number of points used to discretize the
orbital trajectory. As it can be seen from the colorbar, regions of the lunar surface
highlighted in warm colors underwent the highest number of observations. Conversely,
regions denoted by cool colors are those that were less or not observed using the chosen
orbit.

Figure 5.16: Moon’s surface coverage map

The result emerging from Figure 5.16 is confirmed by the computed coverage percent-
age, which is Acov = 86.034%. Furthermore, the result is consistent with the geometry
of Halo orbits. While these orbits do not ensure the total coverage of the surface to be
observed, they guarantee good coverage of one primary body and almost uninterrupted
communication with the other.

Finally, Figure 5.17 shows how the coverage percentage and the error committed in
evaluating this latter evolve as function of M . In this case, the orbit used as example
is the same as that used previously, M ∈

#
100, 1× 106$ and N = 2000. In addition,

the following parameters were calculated during the coverage analysis:

• The average of all the FOVs calculated in each position FOVavg = 1.7635ř;

• The average of all the footprint angles obtained for each position along the orbit
φavg = 88.2365ř

• The mean percentage of the surface observed Aavg = 48.4614%, calculated by
taking the average of the percentages observed at each position.

As can be seen, the coverage percentage approaches a constant value when M is at
least equal to 100, 000 points. Contemporarly, the error tends to zero as M increseases,
as mentioned before.
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Figure 5.17: Coverage percentage and error in coverage estimation as functions of
number of points
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ments and Conclusions
6.1 GUI and Tool architecture
This section describes the GUI created in Python for the tool. The main objective is to
realize a simple and intuitive interface that enables users to access all the algorithms
presented thus far. For this reason, the GUI has been divided into more individual
modules, that are analyzed separately.

6.1.1 Database
The first page of the GUI allows users to search the orbit database at its disposal. Most
of these orbits are retrieved from the NASA JPL database via the appropriate API.
The panel through which users can choose the parameters to filter the orbit database
is represented in Figure 6.1.

Figure 6.1: “Browse Database” menu of the GUI developed in Python for consulting
the orbit database

The structure of the selection menu follows that of the same menu that is in the NASA
JPL database. The menu was recreated with the same structure due to its excellent
usability. Consequently, users can choose to receive as output data relative to one of
the available orbit families in one of the systems of the database around the chosen
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Lagrangian point. Moreover, users can further filter the database by entering arbitrary
values for the Jacobi constant, orbital period, and stabiliy index, according to the
limits suggested within each input line. These limits are determined by identifying the
maximum and minimum values of these three parameters for the selected orbit family.
This gives users an immediate idea of the ranges within which the three parameters lie.
This is the only improvement made to the NASA JPL menu to access the database,
which was already well-optimized.

After selecting the parameters, the database can be filtered to return the desired
output data. The output data includes the physical characteristics of the chosen system,
displayed in the appropriate section shown in Figure 6.2.

Figure 6.2: System information panel of the GUI for the selected CR3BP system,
displaying its main physical and dynamical parameters

In order, the currently selected system is displayed, along with its fundamental pa-
rameters, such as the mass ratio, the length unit and the time unit. The latter two
parameters are essential to convert all the data expressed in non-dimensional units into
dimensional units, such as the coordinates of the Lagrangian points mentioned right
below. Finally, radii and masses of the bodies forming the system are displayed. This
information makes it easier to understand the output data presented in the following
table. Due to the quantity of information contained in the table, it is divided into
Figures 6.3a and 6.3b.
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(a)

(b)

Figure 6.3: Output data table of the GUI listing the initial conditions and main
dynamical parameters of all orbits in the selected family

In this case too, the output data are proposed in the same way as in the NASA JPL
database. A table consisting of ten columns reports the following data:

• the first three columns present the x, y and z coordinates of the initial state in
non-dimensional units;

• the successive three columns show the ẋ, ẏ and ż velocity components of the
initial conditions vector, always expressed in non-dimensional units;

• the seventh column shows the Jacobi constant values, which indicate the energetic
cost to access an orbit;

• two more columns show the orbital period expressed in non-dimensional units
and in seconds;
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• last column reports the stability index values for each orbit.

Figure 6.3a also illustrate all the action buttons of the first tool page. Each of these
buttons allows users to perform a specific action. The function of each button is
explained below, starting from the left:

• the Search button allows users to filter the database according to the options
chosen in the previous menu shown in Figure 6.1;

• the Deselect all button simply deselects all the rows that users have selected
in the output table;

• Plot selected orbits create a three-dimensional graphic using one or more
selected orbits in the output table;

• Preview family automatically selects a small group of orbits belonging to the
chosen family and creates a three-dimensional graphic that illustrates the trend
of these orbits;

• the Stability plot button does not require any user selection in the output
table and plots all stability indices and orbital periods in non-dimensional units
as a function of the Jacobi constant for the chosen orbit family;

• Coverage analysis enables users to apply the algorithm depicted in Section 5.4
to obtain the previously discussed results for the selected orbit;

• Download i.c.s produces a .csv file containing all the selected rows in the output
table or all the rows of the table if no rows are individually selected by the user;

• the Propagante & download button requires the selection of one table row, pro-
ceeds with the integration of the initial conditions of the selected orbit and create
a .csv containing all the integration steps.

All of these elements make up the first page of the tool, which can be seen in its entirety
in Figures 6.4.
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Figure 6.4: Main page of the GUI displaying system information, orbit selection
controls, and the corresponding output data table for the selected orbit family

6.1.2 New system definition
One of the tool’s innovations compared to the NASA JPL database is the panel that
allows users to modify the database itself. For example, users can add a new three-body
system, such as a planetary system not present in the NASA JPL database, a binary
star system, or an asteroid system. The section of the GUI through which the user can
proceed to the definition of a new system is depicted in Figure 6.5.

Figure 6.5: New system definition panel of the GUI used to insert custom three-body
systems into the database

This interface is divided into two main sections. One section is used to specify the
system’s physical parameters. One of the most important parameters to define a new
system is the mass ratio. Users have two options to do so: entering a mass ratio value
directly or specifying the two body masses, in which case the mass ratio is computed.
Next, users must define the length unit and the orbital period of the system. These
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parameters can be provided using different units of measurement or using the non-
dimensional units, by selecting them from the appropriate drop-down menu.

The second part of this interface is used to define the geometry of the two main
bodies. For most of the systems to be analyzed using the spherical bodies hypothesis is
sufficient. Thus, users can simply enter the values of the radii. However, some systems
consists of a primary spherical body and a secondary body with a more irregular shape,
such as Mars and its moons. Therefore, selecting Spherical-Ellipsoidal applies
the ellipsoidal body hypothesis to the smaller body, allowing users to enter the three
defining dimensions.

At the end of the panel, there are two action buttons. The Add system button, as
it suggests, adds the system to the database, saving all the inserted parameters and
computing the location of the Lagrangian points. If users do not want the system to
be saved, using the Compute Lagrange points button computes the location of the
Lagrangian points and provides the results in the form of a three-dimensional plot for
visualization in the defined system.

6.1.3 Differential correction
The second new section of the tool allows users to provide arbitrary initial conditions
and correct them using the differential correction algorithms. Thus, the tool is not
limited to being a database, but becomes a computational tool that can be used to
refine known non-periodic initial conditions. Figure 6.6 shows the section with which
the users can exploit the differential correction algorithms.

Figure 6.6: Differential correction setup panel of the GUI for selecting the algorithm
and defining the target periodic orbit

Users can select either the single shooting or the multiple shooting algorithm to correct
the provided set of initial conditions. In order for the algorithm to give a satisfying
result, the characteristics of the desired periodic orbit must be declared using the
appropriate drop-down menus. Finally, it is necessary to enter the initial conditions
vector and select the variable to be fixed during the correction process. The graphic
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representation of the periodic orbit and the graphs showing the corrections applied to
the non-fixed components are then generated.

6.1.4 Initial conditions derivation
The last section of the GUI enables users to autonomously derive new initial conditions.
This function is useful when the users define a new three-body system and want to
derive new orbits, or when users want to obtain new orbits in a known system, but
with different characteristics. Figure 6.7 shows the panel through which the users can
access this function.

Figure 6.7: Initial conditions derivation panel of the GUI for generating Halo orbit
seeds in the selected CR3BP system

Similarly to the section used to choose the differential correction algorithm to be used
to correct new initial conditions, in this panel allows users to select either Richardson’s
analytical approximations or the genetic algorithm to compute new sets of initial con-
ditions. These algorithms have already been discussed in detail in Chapter 5. Since the
derivation of the initial conditions is limited to the Halo orbits, users must select the
system, the orbit orientation and the Lagrangian point around which the orbit will be
built. Finally, users must specify the z amplitude value in kilometers or in AU. At the
end of the interface, there is a checkbox that, when selected, authorizes the automatic
correction of the resultant initial state vector to produce a periodic vector of initial
conditions. Otherwise, if this option is deselected, the result produced is the initial
state vector computed by the selected algorithm without correction.

6.2 Conclusions
This thesis focuses on the development of a tool for deriving and analyzing the periodic
orbits of the CR3BP, paying special attention to Halo orbits. One of the main objec-
tives was to create a unique environment that integrates defining three-body systems,
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deriving initial conditions and implementing differential corrections algorithms to ren-
der initial conditions periodic.

After clarifying the theoretical framework of the CR3BP, the main types of periodic
orbits were adequately discussed. Among these, DROs and Halo orbits were found to
be the most commonly used in real missions. For this reason, the successive initial
conditions derivation focuses on the latter.

Next, the theoretical fundamentals and the characteristics of the two implemented
differential correction algorithms were deeply analyzed. Both were tested with different
families of periodic orbits and the numerical results were presented to clarify the sug-
gested field of application. As demostraded, the single shooting algorithm is extremely
effective, quick and reliable with simple vectors of initial conditions. In contrast, the
multiple shooting algorithm requires more iterations and has a higher computational
cost. However, it is better suited for correcting complex three-dimensional orbits with
multiple non-null components in the initial state vector.

To generate new Halo orbits, it was demonstrated that just the Richardson’s an-
alytical approximations generally provide good initial estimations, but are not always
sufficient to guarantee the convergence of the correction methods. Integrating a genetic
algorithm overcomes these limitation by producing solutions with a high convergence
percentage in the different analyzed systems, as well an accuracy of 10−4 for the non-
null components, even in absence of a reference solution. This result, confirmed by
the outcome of the subsequent differential correction, demonstrates the robustness and
versatility of the proposed approach.

Finally, the coverage algorithm based on the spherical Fibonacci lattice enabled an
effective and numerically stable estimate of the surface fraction observed along a peri-
odic orbit. Simulations demonstrated that it is possible to reach coverages above 80%
of the surface of the observed body for new Halo orbits considered, with rapid conver-
gence of the estimation as the number of discretization points increases. These results,
integrated within the GUI, confirm the tool’s ability to support preliminary mission
scenario analysis and lay the groundwork for future extensions that will provide more
complete mission design functionalities.

6.3 Future work
Future implementations include the use of more advanced numerical methods than the
Newton-Raphson method, to derive even more accurately the Lagrangian points, espe-
cially for systems with a mass ratio close to the limit value of 0.5.

Another important implementation is to increase the number of systems in the
database, to include all the planetary systems in the solar system. Then, the genetic
algorithm could be used to derive new Halo orbits in each system. Moreover, the
derivation of initial conditions should not be limited to only few specimens. Instead,
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hundreds of Halo orbits should be generated for each Lagrangian point, in order to
decisively expand the orbit database.

Following this path, it would be of uselful for users to have algorithms that can
derive initial conditions for not only Halo orbits, but also for the other orbit families
described in Section 3. Thus, the database could be expanded to provide users with
more options and become more complete.

Currently, the tool mainly focuses on the storage and the derivation of initial con-
ditions for periodic orbits. In ordet to make a step toward creating a tool that can
perform a preliminary mission anlysis, functions to compute transfer trajectories be-
tween different orbits and descent trajectories to the surface of a celestial body must
be implemented. With these functions, it would be possible to estimate the necessary
∆V to perform a certain mission.

As far as the GUI is concerned, it is possible to introduce a page where users can
adjust the parameters of the algorithms used or choose which results and graphs to re-
ceive as output. Finally, the fluidity of the three-dimensional plots could be significantly
improved by using a better optimized library than matplotlib.
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Appendix A

Richardson constants and coeffi-
cients
The linearized frequency λ is derived solving the following equation

λ4 + (c2 − 2)λ2 − (c2 − 1)(1 + c2) = 0 (A.1)

Constant k
k = 1

2λ(λ2 + 1 + 2c2) = 2λ
λ2 + 1− c2

(A.2)

and coefficients
d1 = 3λ2

k

è
k(6λ2 − 1)− 2λ

é
d2 = 8λ2

k

è
k(11λ2 − 1)− 2λ

é (A.3)

are used to calculate the following coefficients

a21 = 3c3(k2 − 2)
4(1 + 2c2)

a22 = 3c3
4(1 + 2c2)

a23 = −3c3λ

4kd1

è
3k3λ− 6k(k − λ) + 4

é
a24 = −3c3λ

4kd1
(2 + 3kλ)

a31 = − 9λ
4d2

è
4c3(ka23 − b21 + kc4(4 + k2)

é
+
A

9λ2 + 1− c2
2d2

Bè
3c3(2a23 − kb21) + c4(2 + 3k2)

é
a32 = − 1

d2

;9λ
4 [4c3(ka24 − b22) + kc4] + 3

2(9λ2 + 1− c2) [c3(kb22 + d21 − 2a23)− c4]
<

b21 = −3c3λ

2d1
(3kλ− 4)

b22 = 3c3λ

d1

b31 = 3
8d2

î
8λ
è
3c3(kb21 − 2a23)− c4(2 + 3k2)

é
+ (9λ2 + 1 + 2c2)

è
4c3(ka24 − b21) + kc4(4 + k2)

éï
b32 = 1

d2

;
9λ [c3(kb22 + d21 − 2a24)− c4] + 3

8(9λ2 + 1 + 2c2) [4c3(ka24 − b22) + kc4]
<

d21 = − c3
2λ2

d31 = 3
64λ2 (4c3a24 + c4)
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A Richardson constants and coefficients

d32 = 3
64λ2

è
4c3(a23 − d21) + c4(4 + k2)

é
(A.4)

These coefficients are in turn used to calculate the constants used for frequency correc-
tion

s1 = 1
2λ [λ(1 + k2)− 2k]

;3
2c3

è
2a21(k2 − 2)− a23(k2 + 2)− 2kb21

é
− 3

8c4(3k4 − 8k2 + 8)
<

s2 = 1
2λ [λ(1 + k2)− 2k]

;3
2c3

è
2a22(k2 − 2) + a24(k2 + 2) + 2kb22 + 5d21

é
+ 3

8c4(12− k2)
<

(A.5)
These constants are also used in calculating the coefficients present in the amplitude-
constraint relationship

l1 = a1 + 2λ2s1

l2 = a2 + 2λ2s2
(A.6)

where
a1 = −3

2c3(2a21 + a23 + 5d21)− 3
8(12− k2)

a2 = 3
2(a24 − 2a22) + 9

8c4

(A.7)
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Appendix B

Halo orbit examples
Table B.1 reports, for each chosen system that is not part of the NASA JPL CR3BP
database, the Lagrangian point around which the new orbit is built and the amplitude
Az of the desired orbit. The non-null components obtained after the differential correc-
tion and used to form the initial condition vector of each orbit are listed on the right
side of the table.

System Lagrangian Point Az x0 z0 ẏ0

Sun-Mercury L1 100, 000 0.9958949694342745 0.001993350982731309 0.004765946126279004
Sun-Mercury L2 70, 000 1.0028385518212544 0.0010732563263877 0.0048434215813002

Jupiter-Ganymede L1 20, 000 0.9698633282185479 0.0221096801693863 0.0407853354070788
Jupiter-Ganymede L3 600, 000 -1.448144096834162 1.0298940514131996 1.0939720719393502

Pluto-Charon L1 4000 0.559309869585235 0.2215250384692508 0.5047035682835929
Pluto-Charon L3 9000 -1.4722733017437595 0.7546912076888178 1.0667617850439732
α Centauri A-
α Centauri B

L1 5× 107 0.0441641493924296 0.0142339944067844 0.2960231260380268

α Centauri A-
α Centauri B

L3 1× 109 -1.4063340137055116 0.4026732826451843 0.7972232950301624

Table B.1: Initial conditions for Halo orbit generation in the CR3BP. Each row lists
the system, target Lagrange point, prescribed vertical amplitude Az, and the non-null
components of the initial state vector

The results listed in Table B.1 are shown graphically below. Each orbit is depicted both
in the three bidimensional planes of the synodic reference frame and three-dimensionale
space.
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B Halo orbit examples

(a) (b)

(c)

Figure B.1: 2D view of the computed Northern Halo orbit around L1 in the Sun-
Mercury system with Az = 100, 000 km: (a) x-y plane, (b) y-z plane, (c) x-z plane

Figure B.2: 3D view of the computed Northern Halo orbit around L1 in the Sun-
Mercury system with Az = 100, 000 km
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(a) (b)

(c)

Figure B.3: 2D view of the computed Northern Halo orbit around L2 in the Sun-
Mercury system with Az = 70, 000 km: (a) x-y plane, (b) y-z plane, (c) x-z plane

Figure B.4: 3D view of the computed Northern Halo orbit around L2 in the Sun-
Mercury system with Az = 70, 000 km
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B Halo orbit examples

(a) (b)

(c)

Figure B.5: 2D view of the computed Northern Halo orbit around L1 in the Jupiter-
Ganymede system with Az = 20, 000 km: (a) x-y plane, (b) y-z plane, (c) x-z plane

Figure B.6: 3D view of the computed Northern Halo orbit around L1 in the Jupiter-
Ganymede system with Az = 20, 000 km
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(a) (b)

(c)

Figure B.7: 2D view of the computed Northern Halo orbit around L3 in the Jupiter-
Ganymede system with Az = 600, 000 km: (a) x-y plane, (b) y-z plane, (c) x-z plane

Figure B.8: 3D view of the computed Northern Halo orbit around L3 in the Jupiter-
Ganymede system with Az = 600, 000 km

127



B Halo orbit examples

(a) (b)

(c)

Figure B.9: 2D view of the computed Northern Halo orbit around L1 in the Pluto-
Charon system with Az = 4000 km: (a) x-y plane, (b) y-z plane, (c) x-z plane

Figure B.10: 3D view of the computed Northern Halo orbit around L1 in the Pluto-
Charon system with Az = 4000 km
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(a) (b)

(c)

Figure B.11: 2D view of the computed Northern Halo orbit around L3 in the Pluto-
Charon system with Az = 9000 km: (a) x-y plane, (b) y-z plane, (c) x-z plane

Figure B.12: 3D view of the computed Northern Halo orbit around L3 in the Pluto-
Charon system with Az = 9000 km
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B Halo orbit examples

(a) (b)

(c)

Figure B.13: 2D view of the computed Northern Halo orbit around L1 in the α
Centauri AB system with Az = 5× 107 km: (a) x-y plane, (b) y-z plane, (c) x-z plane

Figure B.14: 3D view of the computed Northern Halo orbit around L1 in the α
Centauri AB system with Az = 5 × 107 km and α Centauri B enlarged by a factor of
50x
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(a) (b)

(c)

Figure B.15: 2D view of the computed Northern Halo orbit around L3 in the α
Centauri AB system with Az = 1× 109 km: (a) x-y plane, (b) y-z plane, (c) x-z plane

Figure B.16: 3D view of the computed Northern Halo orbit around L3 in the α
Centauri AB system with Az = 1 × 109 km and α Centauri A enlarged by a factor of
50x
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