
Politecnico di Torino

Corso di Laurea Magistrale in
Ingegneria Aerospaziale

A.a. 2024/2025

Sessione di laurea Dicembre 2025

Configurazione e validazione di un
drone con autopilota PX4 in facility

di volo indoor

Relatori:

Dr. Stefano Primatesta

Riccardo Enrico

Candidato:

Matteo Bisceglia

Abstract

Questa tesi si pone l’obiettivo di configurare un quadricottero dotato di autopilota
PX4 e companion computer nella facility di volo indoor del Dipartimento di
Ingegneria Meccanica e Aerospaziale del Politecnico di Torino, dotata di sistema
di tracciamento Vicon. In una prima fase, è stata realizzata una simulazione in
ambiente Ubuntu con gli stessi strumenti poi usati nel volo reale quali ROS2,
PX4 Autopilot, Micro XRCE-DDS e QGroundControl, andando a verificare la
corretta comunicazione tra questi e la capacità del drone di volare in ambiente
simulativo Gazebo grazie ai dati di odometria che successivamente sarebbero stati
forniti dal sistema Vicon. Con lo scopo di testare la configurazione, la posizione
del drone in Gazebo è stata trasmessa a ROS2 tramite un bridge apposito ed è
stata quindi fornita al PX4 tramite un opportuno topic, andando poi a verificare
l’azione di filtraggio con i sensori del drone dell’autopilota. Tale configurazione in
ambiente simulato rappresenta anche un ambiente preliminare di test in cui svolgere
le prove sperimentali, propedeutiche ai test reali nella facility di volo indoor. Nella
seconda fase si è passati al drone reale. Sul companion computer si è installato e
settato quanto necessario per interfacciare il flight controller con il sistema Vicon.
Sono stati scelti gli opportuni parametri dell’autopilota già inizialmente validati in
simulazione, ed è stata stabilita la comunicazione tra il drone e il sistema Vicon,
per poi effettuare i test sperimentali nella gabbia.

ii

Indice

Elenco delle figure vi

1 Introduzione 1

2 PX4 Vision Autonomy Development Kit 3
2.1 Flight Controller . 6
2.2 Power Management Board . 8
2.3 Companion Computer . 10
2.4 Modulo GNSS . 10
2.5 Camera . 12
2.6 Optical Flow . 13
2.7 Distance Sensor . 14
2.8 Cablaggi . 14

3 Sistema di tracciamento Vicon 17
3.1 Architettura del sistema Vicon e della rete locale 18

4 Architettura Software 20
4.1 PX4 . 21
4.2 QGroundControl . 23
4.3 ROS2 . 24
4.4 MAVLink e MAVROS . 26
4.5 uXRCE-DDS . 27
4.6 Ubuntu . 29

5 Simulazione 30
5.1 Gazebo . 30
5.2 Simulazione SITL con Gazebo, ROS 2 e uXRCE-DDS 31
5.3 Filtro EKF2 . 33
5.4 Fake Vicon . 34
5.5 Scelta dei parametri PX4 . 40

iv

5.6 Test simulativo . 41

6 Test Reale 43
6.1 Nodo vicon_to_px4 . 44
6.2 Parametri di volo . 48
6.3 Variazione dei parametri . 49

6.3.1 EKF2_EVP_NOISE 0.2 . 49
6.3.2 EKF2_BARO_CTRL 1 . 50
6.3.3 EKF2_EV_DELAY . 51

6.4 Prova di volo . 54

7 Conclusioni e Lavori Futuri 57

Bibliografia 58

v

Elenco delle figure

2.1 Drone PX4 Vision Autonomy Development Kit 3
2.2 Pixhawk 6C . 6
2.3 Power module . 9
2.4 Cablaggio PM07 . 9
2.5 Modulo GNSS e Pixhawk . 11
2.6 Modulo GNSS M8N . 12
2.7 Structure Core Depth Camera . 12
2.8 Optical Flow PMW3901 . 13
2.9 Distance sensor . 14
2.10 Cablaggi PX4 Vision Dev Kit V1.5 15

4.1 Tipica architettura per unmanned vehicle 20
4.2 High level PX4 software architecture 21
4.3 Architettura del flight stack . 23
4.4 Schermata principale di QGroundControl 24
4.5 MAVROS e MAVLink . 26
4.6 Pipeline uXRCE-DDS . 28

5.1 Architettura SITL . 32
5.2 Architettura EKF2 . 33
5.3 Sistemi di riferimento NED/FRD ed ENU/FLU 39
5.4 Simulazione del volo in gabbia in Gazebo 41
5.5 Simulazione del volo su Plotjuggler 42

6.1 Volo reale in gabbia . 43
6.2 EKF2_EVP_NOISE 0.2 . 50
6.3 EKF2_BARO_CTRL 1 . 51
6.4 EKF2_EV_DELAY 150 ms . 51
6.5 EKF2_EV_DELAY 80 ms . 52
6.6 EKF_EV_DELAY 40 ms . 52
6.7 EKF2_EV_DELAY 20 ms . 52

vi

6.8 EKF2_EV_DELAY 10 ms . 53
6.9 EKF2_EV_DELAY 5 ms . 53
6.10 Prova di volo in Altitude Mode . 55
6.11 Traiettoria della prova di volo eseguita in Altitude Mode 55
6.12 Prova di volo in Position Mode . 56
6.13 Traiettoria della prova di volo eseguita in Position Mode 56

vii

Capitolo 1

Introduzione

Negli ultimi anni i velivoli a pilotaggio remoto hanno avuto una diffusione estre-
mamente rapida, trovando impiego in ambito civile, industriale e accademico. La
crescente maturità delle tecnologie di controllo e percezione ha reso possibile lo svi-
luppo di droni autonomi in grado di svolgere missioni complesse senza supervisione
costante dell’operatore umano. Tuttavia, la validazione sperimentale di algoritmi di
navigazione, stima e controllo rimane un aspetto critico: le condizioni atmosferiche,
le limitazioni normative, i rischi operativi e la difficoltà nel riprodurre test identici
rendono spesso complesso verificare in modo sicuro e ripetibile il comportamento
del velivolo in ambiente reale.

Per rispondere a queste esigenze, diversi gruppi di ricerca europei hanno svilup-
pato infrastrutture indoor dedicate alla sperimentazione controllata. Tra le più note
si trovano la Flying Machine Arena dell’ETH Zurich e la CyberZoo della TU Delft,
entrambe dotate di sistemi di motion capture ad alta precisione e ampi volumi
di volo per droni autonomi. A queste si affianca anche l’Innovative Air Mobility
Lab di Tecnalia, che mette a disposizione una grande area indoor equipaggiata con
sistemi di tracking ottico e strumenti avanzati per la valutazione del comportamento
dei velivoli in condizioni controllate, incluso un generatore di profili di vento per
simulare ambienti operativi realistici. La presenza di infrastrutture di questo tipo
conferma l’importanza, a livello europeo, di disporre di spazi sicuri e ripetibili per
lo sviluppo e la validazione delle tecnologie di navigazione autonoma.

In questo stesso contesto si inserisce la gabbia di volo indoor del Politecnico di
Torino, dotata di sistema Vicon, che permette di ottenere posizione e velocità del
drone nei 6 gradi di libertà con elevata accuratezza e frequenze elevate, offrendo
un ambiente ideale per la sperimentazione di algoritmi di guida e stima. Il lavoro
presentato in questa tesi si concentra sulla configurazione, integrazione e validazione
di un quadricottero equipaggiato con autopilota PX4 e companion computer per

1

Introduzione

operare all’interno di questa facility, utilizzando il sistema Vicon come sorgente
primaria di odometria.

La prima fase del lavoro ha previsto la creazione di una simulazione completa in
ambiente Ubuntu utilizzando Gazebo, ROS 2, PX4 Autopilot, Micro XRCE-DDS e
QGroundControl, riproducendo fedelmente il setup che sarebbe stato poi utilizzato
nelle prove reali. In simulazione è stata verificata la corretta comunicazione tra i
vari moduli software, il funzionamento del sistema di odometria e la capacità del
filtro EKF2 di fondere i dati simulati in maniera coerente. Successivamente, la
stessa architettura è stata replicata sul drone reale, realizzando nodi ROS 2 dedicati
per ricevere la posa dal server Vicon, trasformarla nel formato compatibile con PX4
e trasmetterla all’autopilota tramite Micro XRCE-DDS. Infine, sono stati condotti
test sperimentali nella gabbia indoor per valutare l’efficacia della configurazione,
analizzare il comportamento del filtro EKF2 in presenza di dati reali e studiare
l’effetto dei principali parametri dell’autopilota.

La tesi è strutturata nel seguente modo. Il Capitolo 1 descrive il kit PX4 Vision
Autonomy Development Kit e le sue principali componenti hardware; il Capitolo
3 presenta il sistema Vicon utilizzato nella facility indoor; il Capitolo 4 illustra
l’architettura software basata su PX4, ROS 2 e Micro XRCE-DDS; il Capitolo 5
tratta la simulazione SITL e le prove in ambiente virtuale; il Capitolo 6 riporta la
configurazione del drone reale e i test sperimentali svolti nella gabbia; il Capitolo 7
conclude il lavoro discutendo i risultati ottenuti e i possibili sviluppi futuri.

2

Capitolo 2

PX4 Vision Autonomy
Development Kit

Figura 2.1: Drone PX4 Vision Autonomy Development Kit

Il drone utilizzato per il progetto di tesi è il PX4 Vision Autonomy Development
Kit [1] che permette di eseguire operazioni di volo autonomo1 e di computer vision
2 anche se quest’ultima funzionalità non verrà sfruttata in questo caso specifico
poiché non verrà usata la camera del drone. In questo capitolo verranno trattate le

1La capacità di volare senza che l’operatore umano impartisca direttamente i comandi
2La capacità del drone, nello specifico del companion computer, di interpretare le immagini

provenienti dalle telecamere

3

PX4 Vision Autonomy Development Kit

principali caratteristiche hardware ad alto livello del modello di veicolo in esame.
Di seguito si descrive il contenuto del kit.

• Componenti principali:

– 1x Pixhawk 4 or Pixhawk 6C (for v1.5) flight controller
– 1x PMW3901 sensore optical flow
– 1x TOF distance sensor a infrarossi (PSK-CM8JL65-CC5)
– 1x Structure Core depth camera

∗ Vision camera con campo visivo di 160°
∗ Camera stereo a infrarossi
∗ Onboard IMU3

∗ Potente processore NU3000 Multi-core depth
– 1x UP Core computer (4GB di memoria & 64GB eMMC)

∗ Intel® Atom™ x5-z8350 (up to 1.92 GHz)
∗ Sistemi operativi compatibili: Microsoft Windows 10 full version,

Linux (ubilinux, Ubuntu, Yocto), Android
∗ FTDI UART connesso al flight controller
∗ USB1: USB3.0 porta utilizzata per l’esecuzione di PX4 avoidance

environment da chiavetta USB2.0 (la connessione di una periferica
USB3.0 può disturbare il GPS).

∗ USB2: porta USB2.0 con connettore JST-GH. Può essere utilizzata per
una seconda camera, LTE, etc. (o tastiera/mouse in fase di sviluppo)

∗ USB3: USB2.0 con porta JST-GH connessa alla depth camera
∗ HDMI: HDMI out
∗ SD card slot
∗ WiFi 802.11 b/g/n @ 2.4 GHz (connesso all’antenna esterna #1).

Permette al computer di accedere alle reti WiFi per connettersi a
Internet o per gli aggiornamenti.

• Specifiche meccaniche

– Telaio: Full 5mm 3k twill in fibra di carbonio
– Motori: T-MOTOR KV1750
– ESC: BEHEli-S 20A ESC

3Inertial Measurement Unit

4

PX4 Vision Autonomy Development Kit

– GPS: M8N GPS module

– Power module: Holybro PM07

– Larghezza alla base: 286mm

– Massa: 854 grammi senza batteria né eliche

– Telemetria: ESP8266 connessa al flight controller (tramite l’antenna
esterna #2). Permette la connessione wireless con la ground station

• Una chiavetta USB2.0 contenente il software per eseguire:

– Ubuntu 18.04 LTS

– ROS Melodic

– Occipital Structure Core ROS driver

– MAVROS

– PX4 avoidance

• Cavi assortiti, 8x eliche, 2x battery straps (installati) e altri accessori (che
possono essere utilizzati per connettere periferiche aggiuntive).

Nel kit non sono invece inclusi la batteria ed il radiocomando. La batteria deve
essere una 4S LiPo4 con connettore femmina XT60 e deve avere una lunghezza
inferiore ai 115 mm per entrare tra il power connector e l’asta del GPS. Il radioco-
mando invece dovrà essere compatibile con il PX4 e nel nostro caso viene utilizzato
un FrSky Taranis QX7 e un ricevitore FrSky R-XSR reciver montato sul drone. E’
inoltre necessaria la ground station QGroundControl.
In questo capitolo verranno dunque descritti i componenti principali del PX4 Vision
Autonomy Development Kit, a prescindere da quale sarà la configurazione usata
nella fase di test del progetto dove nello specifico non verranno utilizzati i sensori:
GNSS, optical flow, distance sensor, depth camera.

4Lithium Polymer a 4 celle

5

2.1 Flight Controller

2.1 Flight Controller

Figura 2.2: Pixhawk 6C

Il flight controller adempie principalmente a:

• leggere i dati dei sensori o da sistemi di mo-
tion capture esterni (Vicon);

• fondere tramite filtro di Kalman (EKF25) i
dati dei sensori e della motion capture (se
presente) per avere una stima univoca;

• controllare il volo (stabilizzazione, controllo
di posizione e velocità, ecc.);

• gestire la comunicazione dell’autopilota con
l’esterno.

Nel caso in esame l’autopilota è un Pixhawk 6C [2] che è un computer embedded
ad alte prestazioni che ospita il firmware dell’autopilota. È equipaggiato di un
microcontrollore STMicroelectronics STM32H743, basato su architettura ARM
Cortex-M7 operante a 480 MHz dotato di 2 MB di memoria flash e 1 MB di RAM, la
scheda dispone inoltre di un processore ausiliario STM32F103 dedicato alle funzioni
I/O e alla gestione delle comunicazioni di basso livello. Questa configurazione
consente l’esecuzione di algoritmi di controllo complessi con elevata frequenza di
aggiornamento, assicurando la stabilità del veicolo anche in presenza di disturbi o
variazioni dinamiche significative.

La scheda presenta al suo interno diversi sensori inerziali e ambientali:

• Due unità IMU ridondanti (ICM-42688-P e BMI055) che forniscono misure di
accelerazione e velocità che poi vengono integrate per risalire all’odometria
del drone

• Un magnetometro IST8310 per la determinazione dell’attitude calcolata a
partire dal nord magnetico terrestre

5Extended Kalman Filter

6

2.1 Flight Controller

• Un barometro MS5611 che fornisce la pressione che verrà poi usata per la
determinazione della quota

La presenza di più tipologie di sensori che forniscono uno stesso tipo di dato e la
loro ridondanza permette di avere una misura meno affetta da rumore e di migliore
qualità in quanto il filtro EKF2 fonde tutti i dati derivanti dai sensori per ottenere
un’unica misura dell’odometria. C’è da notare come i dati "grezzi" provenienti dai
vari sensori (con diverse unità di misura tra loro: Pa, µT , m/s2 ecc...) non vengono
convertiti subito in un dato odometrico relativo al singolo sensore poiché questo
risulterebbe essere troppo dispendioso per l’autopilota e non sarebbe conveniente a
livello numerico. Quindi l’autopilota va a cambiare la stima dello stato complessivo
del drone confrontando i dati grezzi dei sensori con un modello numerico che gli
permette di capire quanto cambiare questa stima.
Essendo la Pixhawk 6C un sistema dual processor, essa è composta da:

• FMU6 Processor: STM32H743 o 32 Bit Arm® Cortex®-M7, 480MHz, 2MB
memory, 1MB SRAM Figura 5: Flight controller Pixhawk 6C 21. E’ il
Processore principale che quindi è imputato ad effettuare le operazioni a
maggiore complessità computazionale e a priorità temporale alta, nello specifico
si occupa di: far girare il firmware PX4, gestione sensori, comunicazioni esterne,
logging e supervisione di sistema monitorando lo stato dell’ IO processor e
intervenendo in caso di failure

• IO Processor: STM32F103 o 32 Bit Arm® Cortex®-M3, 72MHz, 64KB SRAM.
E’ un processore dedicato all’hardware di basso livello per scaricare lavoro
dalla FMU e si occupa di: gestione delle uscite PWM7 verso gli ESC, Gestione
ingressi PWM/SBUS del radiocomando, failsafe dei motori in caso di perdita
di segnale da FMU e inizializzazione e calibrazione base all’avvio

Il flight controller presenta le seguenti interfacce:

• 16- PWM servo outputs raggruppati in due porte, 8 nella porta I/O PWM
OUT e 8 nella porta FMU PWM OUT

• 3 porte seriali con scopo generico

– TELEM1 - Full flow control, con corrente massima 1.5A
– TELEM2 - Full flow control
– TELEM3

6Flight Management Unit
7Pulse Width Modulation

7

2.2 Power Management Board

• 2 porte GPS

– GPS1 - Full GPS port (GPS con safety switch)
– GPS2 - Basic GPS port

• 1 porta I2C che supporta la calibrazione I2C EEPROM dedicata e collocata
sul sensor module

• 2 CAN Buses con controllo silenzioso individuale o ESC RX-MUX control

• 2 porte di debug:

– FMU Debug
– I/O Debug

• R/C input dedicata a Spektrum / DSM e S.BUS, CPPM, analog / PWM
RSSI

• S.BUS output dedicato

• 2 Power input ports (Analog)

Il Pixhawk 6C viene mantenuto ad una temperatura di 40 85° grazie a resistori per
il riscaldamento, permettendo così un opportuno funzionamento delle IMU. Inoltre
la presenza di sensori inerziali all’interno di esso fa si che debba essere posizionato
in prossimità del centro di grafità dell’aeromobile.

2.2 Power Management Board
Per Power Management Board[3] si intende un componente che svolge la funzione
di:

• Power Module - componente che:

– Regola la tensione - la batteria LiPo4S fornisce una tensione variabile tra
i 16.8 e i 13V a seconda del suo livello di carica, il flight controller ha
bisogno invece di 5V stabili in ingresso e questi gli vengono forniti tramite
la porta POWER1 o POWER2.

– Misura tensione e corrente della batteria, questi dati vengono inviati
sempre tramite il cavo POWER al PX4 che stima la carica restante (e la
proietta in QGroundControl) e attiva il failsafe in caso di carica bassa

• Power Distribution Board - è la piattaforma di distriuzione della potenza che
preleva corrente ad alto amperaggio (fino a 120A) dalla batteria per traferirla
agli ESC e ai motori

8

2.2 Power Management Board

Figura 2.3: Power module

I flight controller di precedente generazione avevano dei pin più grandi da cui
quindi uscivano dei connettori più grandi in grado di trasportare una maggiore
corrente e che potevano portare corrente direttamente ai motori (i motori di tali
droni richiedevano correnti minori). Invece i connettori JST-GH che allo stato
dell’arte escono dalla flight controller possono portare una bassa corrente poiché
sono pensati per un segnale PWM a bassa potenza che ha l’unico scopo di far
arrivare un’informazione. Come rappresentato in figura 2.4:

Figura 2.4: Cablaggio PM07

• In uscita dalla batteria c’è un segnale di alta potenza che quindi non può
essere portato dai JST-GH, ma dal connettore XT-60

9

2.3 Companion Computer

• In uscita dalla flight controller si ha un segnale che va nella FMU-PWM-out
che è un segnale PWM di bassa potenza che poi viene smistato verso gli ESC
per indicare quanta corrente deve entrare nei motori

• Negli ESC entrano anche segnali ad alta corrente provenienti dai pad B+ e
GND che fanno si che ai motori arrivi la potenza necessaria per il loro effettivo
funzionamento

2.3 Companion Computer
Il companion computer impiegato nel PX4 Vision Autonomy Development Kit
è l’UP Core[4], un’unità di elaborazione compatta basata su architettura Intel®
Atom™ progettata per applicazioni embedded che richiedono elevata capacità
computazionale a fronte di dimensioni e consumi ridotti. Il companion computer è
totalmente distinto dal flight controller, ma ci può comunicare tramite: USB-seriale,
UART delle porte TELEM, MAVLink via rete, CAN bus oppure interfacce di basso
livello come I2C/SPI. Infatti la sua fonte di alimentazione non è la PM07 ma la
sua carrier board. La carrier board è una struttura che:

• fornisce alimentazione all’UP Core

• espone porte USB, CSI e Wi-Fi

• permette il montaggio fisico del companion

Essa si connette ad alcune linee di un connettore a 100 pin ad alta velocità
posizionato sotto l’UP core, rendendolo così expandable. Il companion computer è
compatibile con molti sistemi operativi, tra cui Linux.

2.4 Modulo GNSS
Nelle missioni outdoor l’impiego di un sistema GNSS è praticamente indispensabile:
è ciò che permette all’autopilota di stabilire la posizione del veicolo e di seguirne
gli spostamenti con un’accuratezza adeguata alla navigazione. Per questa ragione
il modulo GNSS fornisce all’autopilota le informazioni necessarie per operare
correttamente. Il flight controller Pixhawk 6C, inoltre, è in grado di gestire fino
a due ricevitori GNSS allo stesso tempo, collegabili tramite BUS CAN oppure
tramite UART. Se si montano entrambi, non svolgono esattamente lo stesso ruolo: il
modulo principale è quello essenziale, soprattutto quando non si riceve la posizione
da un sistema di motion capture indoor; il secondo, invece, è opzionale e viene
aggiunto dall’utente come ridondanza.

10

2.4 Modulo GNSS

PX4 supporta un’ampia gamma di ricevitori GNSS e praticamente tutte le
principali costellazioni, incluse quelle SBAS. Oltre al ricevitore satellitare, questi
moduli integrano anche un magnetometro che l’autopilota utilizza per ricavare la
direzione e lo yaw del velivolo sfruttando il campo magnetico terrestre. Per evitare
disturbi su questa misura, è importante installare il modulo il più lontano possibile
da fonti di interferenza elettromagnetica come motori e circuiti di potenza.

Figura 2.5: Modulo GNSS e Pixhawk

Il controller verifica anche che il modulo sia montato correttamente, cioè rivolto
verso l’alto e orientato in avanti. Se non è possibile installarlo così e si rende
necessario ruotarlo, PX4 può riconoscere automaticamente rotazioni di almeno
45°. Per inclinazioni diverse bisogna invece impostare a mano gli angoli di Eulero
appropriati. Un altro fattore critico è la distanza del modulo GNSS dal centro di
gravità del drone: più questa aumenta, più diventa importante indicarla tramite i
parametri EKF2_GPS_POS_X, EKF2_GPS_POS_Y e EKF2_GPS_POS_Z.
Questo aspetto è particolarmente rilevante quando si utilizza un sistema RTK a
precisione centimetrica. Senza questa informazione, l’autopilota potrebbe assumere
che il ricevitore si trovi nel centro del velivolo, introducendo compensazioni non
necessarie durante il mantenimento della posizione.

I moduli GNSS includono anche alcuni elementi di sicurezza e segnalazione: il
safety switch, un buzzer e un LED RGB. Prima di far decollare il drone è necessario
attivare fisicamente il safety switch, mentre buzzer e LED servono a comunicare
lo stato del veicolo tramite suoni e colori, rendendo immediato capire se il drone
è acceso, armato o ha rilevato un errore. La figura successiva mostra il modulo
Holybro M8N[5][6] utilizzato sul drone, insieme al safety switch e al LED.

11

2.5 Camera

Figura 2.6: Modulo GNSS M8N

C’è infine una differenza pratica nel modo in cui vengono collegati i due moduli
GNSS: quello primario, che gestisce più funzioni, deve essere connesso alla porta
principale dell’autopilota, che dispone di più terminali; il modulo secondario, che
funge solo da ricevitore GNSS di riserva, si collega invece alla porta dedicata,
dotata di un cablaggio più semplice che non supporta le altre funzionalità. La
rappresentazione nella figura chiarisce bene questa distinzione.

2.5 Camera

Figura 2.7: Structure Core Depth Camera

La presenza di una camera a bordo del drone consente al veicolo di acquisire in-
formazioni visive dell’ambiente circostante fondamentali per compiti di navigazione
autonoma / rilevamento ostacoli e di individuazione della pose del drone (posizione
e attitude). Nel caso del PX4 Vision Autonomy Development Kit il modulo di
visione utilizzato è quello della Structure Core Depth Camera[7] che è costituita da:

• 160° wide vision camera: una camera che cattura immagini ad ampio Field of
View in 2 dimensioni

12

2.6 Optical Flow

• Camere stereo ad infrarossi: una coppia di sensori infrarossi che acquisiscono
immagini simultaneamente e da posizioni diverse, questo consente al depth
processor di effettuare una triangolazione per acquisire la profondità degli
oggetti

• Onboard IMU: serve a migliorare le misure dello stereo matching soprattutto
in caso di movimenti troppo rapidi del drone o non perfetto fissaggio della
camera

• NU3000 multi-core processore di profondità: un processore dedicato che esegue
in hardware gli algoritmi di matching stereo, calcolo della profondità, funsione
visual-inertial (stereo + IMU). Fornisce in uscita il calcolo della posa

2.6 Optical Flow

Figura 2.8: Optical Flow PMW3901

L’optical flow è un piccolo sensore a basso consumo di potenza, particolarmente
utile in assenza di GPS. Esso è costituito da:

• sistema ottico: formato da una lente e da un sensore di immagine monocro-
matico a bassa definizione

• ASIC8 per il calcolo del flusso ottico

L’ASIC prende le immagini acquisite dal sistema ottico in frame successivi e
confrontandole riesce ad ottenere una variazione di posizione laterale ∆X e ∆Y
espressa in pixel, sarà poi l’autopilota infatti ad usare questo dato per calcolare
velocità e successivamente posizioni, che il sensore non può conoscere perché non

8Application Specific Integrated Circuit, un circuito progettato specificatamente per questa
applicazione

13

2.7 Distance Sensor

ha la distanza a cui si trovano gli oggetti.
Nel veicolo oggetto di studio è montato un PMW3901[8][9] che è in grado di
adempiere al suo posto per oggetti che stanno ad una distanza dalla camera a
partire dagli 80 mm, il costruttore infatti non impone costrizioni per quel che
riguarda il limite superiore della distanza degli oggetti.

2.7 Distance Sensor

Figura 2.9: Distance sensor

Il distance sensor è uno strumento essenziale per leggere i dati di variazione di
posizione laterale espressa in pixel in uscita dall’optical flow. Optical flow e distance
sensor sono distinti a livello hardware ma i loro dati vengono presi dall’autopilota
e integrati tra loro. Il distance sensor utilizzato è il Lanbao PSK-CM8JL65-CC5
ToF Infrared Distance Measuring Sensor[10]. Questo sensore rileva la distanza
degli oggetti andando ad individuare la differenza di fase tra il fascio infrarosso
emesso e quello che gli ritorna dopo aver rimbalzato sull’oggetto di interesse. E’
caratterizzato da:

• HALIOS photoelectric detection technology che conferisce al sensore una forte
adattabilità ad ambienti outdoor luminosi e a variazioni di temperatura

• una limitata influenza del colore e della rugosità della superficie di interesse
sull’output del sensore

• ridotte dimensioni: 38 mm x 18 mm x 7 mm, peso ≤ 10g

• un range di 0.17 m -8 m

2.8 Cablaggi
L’architettura che appare nel diagramma di figura 2.10[11] mostra chiaramente
come i vari componenti del sistema si collegano tra loro. Usano una serie di

14

2.8 Cablaggi

Figura 2.10: Cablaggi PX4 Vision Dev Kit V1.5

connettori specifici. Ognuno ha un ruolo preciso per distribuire l’alimentazione e
trasmettere i segnali. La scheda PM07 riceve la potenza dalla batteria attraverso
il connettore XT60. Poi ridistribuisce la tensione regolata agli altri elementi del
drone. Lo fa con connettori JST-GH a 6 e 10 pin. Le uscite a 6 pin servono per
alimentare il Pixhawk 6C. Lo collegano alle porte POWER1 e POWER2. Oltre
ai fili per tensione e massa, questi connettori portano anche le linee analogiche.
Quelle linee riportano al flight controller la tensione e la corrente della batteria.
Il connettore a 10 pin della PM07 gestisce più segnali. Espone canali di ingresso
per PWM e linee di comunicazione extra. Sono dedicate ai controlli motore o a
dispositivi che richiedono più linee. In questa parte del cablaggio ci sono anche le
intestazioni FMU PWM-IN e I/O PWM-IN. Rappresentano i punti dove la PM07
riceve i segnali PWM. Li genera il processore principale del Pixhawk, che è l’FMU.
Oppure il processore ausiliario, che è l’I/O. La PM07 non elabora questi segnali.
Li inoltra semplicemente verso gli ESC insieme alla potenza della batteria.

15

2.8 Cablaggi

Per quanto riguarda l’alimentazione, l’immagine mostra il connettore PWR sulla
carrier board dell’UP Core. Si collega con un cavo a 4 pin all’uscita PWR della
PM07. Questo è l’ingresso principale a 5 V per il companion computer. I simboli
più e meno su entrambi i lati indicano la polarità corretta. Il cavo porta la linea
positiva e la massa. Gli altri pin extra non si usano. Servono solo per compatibilità
con lo standard del connettore. In pratica, la PM07 fornisce al companion tutta la
potenza che gli serve per funzionare.

Il Pixhawk 6C è il nodo centrale dello schema. Usa connettori JST-GH per
quasi tutte le interfacce. Le porte TELEM1 e TELEM2 sono a 6 pin. Collegano
il flight controller alla carrier board dell’UP Core. Permettono il passaggio dei
messaggi MAVLink. E in generale tutto il traffico seriale per la comunicazione tra
autopilota e companion computer. Altre porte a 6 pin, come CAM1 e CAM2, si
usano per sensori extra del kit. Ad esempio l’optical flow e il sensore di distanza
ToF. Nel diagramma appaiono con linee viola. La porta GPS ha un connettore a
10 pin. Trasporta alimentazione, segnali UART per il ricevitore GNSS e linee I2C
per il magnetometro.
La parte bassa della figura si concentra sulla carrier board dell’UP Core. Qui ci sono
porte USB3.0 e USB2.0. C’è anche un connettore a 5 pin che collega la Structure
Core depth camera al companion computer. Questo cavo USB è evidenziato in blu.
Trasmette immagini, dati IMU e stime di posa dalla camera. Nella stessa area si
vede un connettore piccolo a 3 pin. È per la ventola di raffreddamento della CPU
dell’UP Core.

Nel complesso lo schema evidenzia una struttura ordinata e modulare. Si basa
su tre tipi principali di connettori ricorrenti. I 6 pin per alimentazione regolata
e interfacce seriali. I 10 pin per gruppi di segnali più complessi, come PWM e
GPS. E i 3-5 pin per periferiche specifiche, tipo ventole e USB. Questo modo di
fare permette di integrare tutto in un’unica architettura coerente: flight controller,
PM07, companion computer e sensori. La potenza e i segnali seguono percorsi
chiari e facili da controllare durante configurazione e manutenzione.

16

Capitolo 3

Sistema di tracciamento
Vicon

Il sistema di tracciamento Vicon è una piattaforma di motion capture ottico
dotata di alta precisione e progettata per ricostruire in tempo reale la posizione e
l’orientamento di corpi rigidi all’interno di un volume di misura precedentemente
calibrato. Le camere del sistema Vicon emettono un fascio luminoso infrarosso che
permette di individuare dei marker, posti sull’oggetto di interesse, in uno spazio
bidimensionale. Infatti non avendo le camere singole la misura della profondità, è
come se ogni camera, la quale ottiene la posizione dei marker in 2 dimensioni, in
3D individuasse una retta che per ottenere una posizione dovrà essere intersecata
con le rette delle altre camere.
Questo lavoro di triangolazione viene eseguito nel nostro caso dal software Vicon
Tracker che si ritrova a gestire per un dato istante un numero di immagini pari al
numero di camere che ritraggono gli elementi riflettenti. A questo punto stabilire
la posizione del marker è un problema numerico, con la complicazione però che
occorre determinare quale tra i punti riflessi nell’immagine sia quello in esame.
Una volta conosciuta l’effettiva posizione dei marker in 3D è possibile calcolare
l’attitude del drone a partire dalla precedente calibrazione dei marker sul drone.
Nel caso specifico della facility utilizzata per questo lavoro il sistema Vicon utilizza
delle telecamere Vicon Vero v2.2[12] caratterizzate da:

• compattezza (83 x 80 x 135 mm)

• una risoluzione di 2.2 megapixel

• frame rate fino a 330 fps.

• un illuminatore a infrarossi ad anello: è composto da una serie di LED dispo-
sti concentricamente intorno all’obiettivo progettati per emettere radiazione

17

3.1 Architettura del sistema Vicon e della rete locale

infrarossa uniforme e stabile. Esso serve a far risaltare sulla scena gli elementi
riflettenti che sono resi tali da milioni di microsfere in vetro del diametro di
40-70 micron inglobate in uno strato di resina.

• sensore global shutter: sono in grado di leggere simultaneamente tutti i pixel
di un’immagine. Si differenziano dai rolling shutter che leggono una riga per
volta ad istanti temporali consecutivi ma diversi, questo non li rende ideali per
la rilevazione di oggetti in movimento poiché possono dar vita ad immagini
distorte

Le camere del Vicon eseguono un attività di pre-processing delle immagini che
consiste nel trovare il centroide dei marker. Questa è un’attività necessaria poiché
per ogni immagine si avrà una macchia luminosa più grande del centimetro di
diametro degli elementi riflettenti e che può andare dai 4 ai 20 pixel, è dunque
necessario trovarne il baricentro per passarlo poi al software di tracking.
Il software di tracking una volta calcolata la poose in 6 DOF la trasmette alla
rete e può farlo attraverso una varietà di protocolli di streaming. Quello usato nel
nostro caso è il VRPN1, un protocollo leggero basato su UDP che trasmette le pose
del rigid body come sequenza di messaggi contenti posizione e orientamento nel
sistema di riferimento del Vicon. A questo punto si è scelto di lanciare due nodi:

• nodo VRPN client: si connette al server VRPN del Vicon Tracker, riceve
le pose e le converte automaticamente in messaggi ROS2 standard (geome-
try_msgs/PoseStamped) rendendola immediatamente disponibile nel grafo
ROS2

• nodo vicon_to_px4: legge il messaggio in uscita dal nodo VRPN client
contenente la pose che va a pubblicare in \fmu\in\vehicle_visual_odometry

3.1 Architettura del sistema Vicon e della rete
locale

Il sistema di motion capture è basato su un’architettura nella quale i componenti
Vicon e i dispositivi ROS2 convivono in un’unica LAN privata. L’infrastruttura è
costituita da tre elementi principali:

• Switch PoE Ethernet per le telecamere Vicon: ogni telecamera Vicon è collegata
tramite cavo ethernet ad un PoE switch che permette di fornirgli alimentazione
e scambio di dati in un singolo cavo dedicato per ognuna delle 12 telecamere.

1Virtual Reality Peripheral Network

18

3.1 Architettura del sistema Vicon e della rete locale

Lo switch inoltre collega tutte le telecamere al PC master tramite un’unica
porta uplink ethernet

• Computer Vicon Master : è il PC che esegue il software Tracker e al tempo
stesso funge da server della rete Vicon e nodo centrale dell’intero sistema. Esso
è il dispositivo di riferimento della rete LAN e deve essere sempre raggiungibile
dai client, in più tramite il software Tracker apre un socket su una porta
pubblicando in streaming la posa del drone ed i client VRPN (ROS2) vi si
connettono, questo lo rende un server di rete

• Router (Wi-Fi + DHCP : esso estende la LAN Vicon via Wi-Fi permettendo a
laptop e companion computer di connettersi alla stessa rete del PC master ed
assegna indirizzi IP dinamici (DHCP) ai dispositivi che lo richiedono. In realtà
il master e il companion computer del drone hanno un indirizzo IP statico, in
modo tale che ogni volta che viene avviato il sistema questo è sempre lo stesso

19

Capitolo 4

Architettura Software

Figura 4.1: Tipica architettura per unmanned vehicle

L’architettura complessiva del sistema di volo non può limitarsi a guardare il
velivolo solamente dal lato hardware o software, ma deve tenere in considerazione
l’integrazione di questi due aspetti . Sotto questa luce in figura 4.1[13] vengono
riportati i principali componenti sia hardware che software che intervengono in una
tipica configurazione di veicolo unmanned dotato di due on-vehicle computers: il
flight controller e il companion computer. Questi ultimi comunicano attraverso
protocolli dedicati (MAVLink o microDDS) che possono viaggiare su UART, UDP,
TCP, USB, radio telemetrica, Wi-Fi ed ethernet. A completare l’architettura, oltre
a quanto già visto nel capitolo 2 riguardo a connessioni con motori e sensori, ci
sono la ground station e l’eventuale infrastruttura cloud che forniscono telemetria,
comandi e operazioni di monitoraggio.

20

4.1 PX4

4.1 PX4

Figura 4.2: High level PX4 software architecture

Il software installato sul flight controller è il PX4 e viene eseguito su sistema
operativo NuttX. Tutti gli airframes1 disponibili su PX4 condividono una stessa
base di codice il quale si può definire reactive. Questo vuol dire che:

• il PX4 è diviso in molti moduli indipendenti e ognuno di questi può essere
modificato, sostituito e riutilizzato su airframes diversi (applicando in alcuni
casi le dovute modifiche)

1Configurazione predefinita di veicolo: multirotore, ala fissa, VTOL, rover, barca ecc ...

21

4.1 PX4

• la comunicazione viene effettuata tramite passaggio di messaggi in maniera
asincrona

• il sistema può funzionare con un carico di lavoro variabile

Come si può vedere dalla figura 4.2[14] i moduli comunicano tra di loro tramite
il message bus uORB: un sistema publish-subscriber che realizza un passaggio
asincrono di messaggi. Ciò significa che ogni componente fisico pubblica attraverso il
suo driver dedicato dei messaggi uORB ad una propria frequenza (tipicamente l’IMU
a circa 1kHz mentre gli altri sensori a poche decine di Hz). Gli stimatori (ad esempio
EKF2) e i controllori lavorano ad una frequenza ancora diversa dell’ordine delle
centinaia di Hz e prendono l’ultimo messaggio mandato dai driver dei componenti,
a prescindere che essi lavorino a frequenze superiori o inferiori. Si noti come questo
funzionamento è essenziale per le applicazioni real time poiché fà si che stimatori e
controllori non si fermino mai ad aspettare nuove misure.
Lo schema architetturale di figura 4.2 si può dividere in flight stack (in figura va
sotto il nome di flight control e si trova nella parte inferiore del grafico) e middleware
(nel grafico tutto ciò che non è flight control).
Il middleware consiste principalmente in:

• i driver per i sensori embedded: il modulo software che dialoga con il sensore
fisico, traducendo i segnali dell’hardware in messaggi uORB

• tutto ciò che riguarda la comunicazione del drone con il mondo esterno: GCS2,
companion computer ecc...

• uORB publish-subscribe message bus

Rientra inoltre nel gruppo middleware il simulation layer che consente di eseguire
la missione di un veicolo simulato, supporta sia la configurazione SITL3 che HITL4

con quest’ultima che consiste nell’autopoilota fisico presente nel loop.
Il flight stack del PX4 è un insieme di algoritmi di guida, navigazione e controllo

per i droni autonomi ed include i controllori per tutti i tipi di airframes supportati.
In figura 4.3 si può osservare la pipeline del flight stack nella sua interezza. Si
notano i seguenti blocchi:

• estimator: prende uno o più input dai sensori e calcola lo stato del veicolo

2Ground Control Station
3Software In The Loop
4Hardware In The Loop

22

4.2 QGroundControl

Figura 4.3: Architettura del flight stack

• controller: prende in input la variabile di stato che si vuole controllare e il
setpoint che la variabile di stato deve raggiungere (navigator), in uscita dà la
correzione da attuare

• mixer: prende in input i valori di forza e coppia sui tre assi dal controllore e li
applica nel caso reale regolando i regimi rotativi nei vari motori. Si nota come
questa applicazione sia specifica di ogni airframe poiché varia ad esempio la
configurazione dei motori rispetto al centro di gravità e la sua inerzia rotatoria

Quindi nello schema di figura 4.3: i sensori rilevano lo stato attuale del veicolo,
dove ci saranno dei sensori che daranno misure diverse (seppur in alcuni casi di un
ordine di grandezza piccolo) di uno stesso stato. Ebbene queste misure verranno
fuse dall’estimatore (nel nostro caso il filtro di Kalman esteso) per ottenere uno
stato 6 DOF univoco. Lo stato viene passato così al position controller che prende
in input lo stato target del navitor e il comando del pilota che può arrivare da
radiocomando (questo passa il comando anche al controllore di attitude & rate. E’
interessante notare come tra gli output del position controller ci sia uno stato di
attitude, poiché il drone per raggiungere una determinata posizione dovrà assumere
un determinato assetto. Infine i comandi di coppia e forza vengono passati al mixer
che li traduce in comandi di rate per gli attuatori, trasmessi tramite gli ESC.

4.2 QGroundControl
QGroundControl[15] è una ground control station che connettersi agli autopiloti
PX4 o ArduPilot è in grado di:

• fornire l’health status del velivolo e il suo stato e dei suoi sensori in tempo
reale

• realizzare un mission planning per il volo autonomo

• fornire supporto per gestire multi-vehicle simulations

• regolare i parametri dell’autopilota e monitorare lo stato dell’autopilota, del
drone e dei suoi sottosistemi grazie alla MAVLink Console

23

4.3 ROS2

Figura 4.4: Schermata principale di QGroundControl

• visualizzare la mappa 3D dell’ambiente dove si muove il drone

• in caso di camere del veicolo proiettare il video di quest’ultime in tempo reale

4.3 ROS2
ROS è un meta-sistema operativo specifico per applicazioni robotiche, questo vuol
dire che fornisce servizi tipici di un sistema operativo quali:

• hardware abstraction: l’applicazione non comunica direttamente con il senso-
re/attuatore ma parla con un driver ROS. Questa non è una vera astrazione
completa come nei kernel OS: dipende comunque dai driver Lunix sottostanti.
ROS li organizza, non li sostituisce

• low-level device control: ROS non controlla direttamente i dispositivi hardware
del robot ma lo fa tramite nodi, driver e middleware

• implementazioni di funzionalità comuni. Per eseguire operazioni come: proto-
colli di comunicazione tra nodi, messaggi standardizzati, algoritmi di SLAM,
mappe, trasformazioni TF, ROS fornisce librerie pronte

• message-passing tra i processi. ROS consente ad un numero arbitrario di
processi (chiamati nodi) di scambiarsi dati in modo strutturato attraverso
topic, servizi o azioni. Questi processi possono risiedere su uno stesso computer
o più computer, essere implementati in linguaggi differenti ed essere avviati in
momenti diversi in maniera indipendente

• package management. ROS gestisce dipendenze , build system (ad es. colcon),
worksapce e versioni dei pacchetti

24

4.3 ROS2

ROS[16] fornisce inoltre strumenti e librerie per sviluppare che sono stati amplia-
mente utilizzati in questa tesi, come: rviz, gazebo, rqt, rosbag, plotjuggler ecc...
ROS1 è stato inizialmente sviliuppato nel 2007 allo Stanford Artificial Intelligence
Laboratory e dal 2013 è gestito dalla Open Source Robotics Foundations. Al giorno
d’oggi ROS è uno standard per la programmazione robotica e oltre ai vantaggi
fino ad ora elencati si può annoverare quello di avere una community molto attiva
con la quale l’utente si può confrontare nell’implementazione dei progetti robotici.
ROS2 è la nuova versione di ROS nata per venire incontro alle rinnovate esigenze
del mondo della robotica tra le quali:

• un approccio maggiormente orientato verso le applicazioni industriali, essendo
ROS nato in ambiente universitario e di ricerca

• una migliore gestioni delle comunicazioni: la comunicazione in ROS1 non
era abbastanza sicura, non era compatibile con protocolli real time ed era
single point of failure. Infatti in ROS esisteva un nodo centrale al quale tutti i
nodi, anche se distribuiti su più computer, devono registrarsi ottenendo da
lui le informazioni per contattare gli altri nodi. Di conseguenza se il master
smetteva di funzionare o risultava irraggiungibile, l’intero sistema perdeva la
capacità di coordinare i nodi.

Quando si ha a che fare con ROS occorre essere familiari con il concetto di
distribuzione. Una distribuzione è un rilascio ufficiale e coordinato dell’intero
ecosistema ROS che contiene una collezione stabilizzata di pacchetti e librerie, ed
un insieme definito di dipendenze e versioni compatibli con la garanzia che tutti
questi elementi funzionino insieme. Le distribuzioni sono dunque un qualcosa di
necessario in un ambiente eterogeneo come quello della robotica poiché costituiscono
un punto di riferimento comune che allinea tutto l’ecosistema.

Distribuzione ROS 2 Versione Ubuntu compatibile
ROS 2 Dashing Diademata Ubuntu 18.04
ROS 2 Foxy Fitzroy Ubuntu 20.04
ROS 2 Humble Hawksbill Ubuntu 22.04
ROS 2 Jazzy Jalisco Ubuntu 24.04

Tabella 4.1: Compatibilità tra distribuzioni ROS 2 e versioni di Ubuntu.

Scegliere la corretta distribuzione di ROS2 in relazione alla versione di Ubuntu
risulta cruciale in caso di installazione di ROS2 via binario come riportato nella
tabella 4.1. Nel nostro caso specifico si è scelto dunque di installare ROS2 Humble
sul pc usato per la simulazione del setup sperimentale che aveva Ubuntu 22.04,
mentre si è usato ROS2 Jazzy sul companion computer del drone che aveva Ubuntu
24.04.

25

4.4 MAVLink e MAVROS

4.4 MAVLink e MAVROS

Figura 4.5: MAVROS e MAVLink

MAVLink[17] e MAVROS agiscono allinterno di ROS1/ROS2 ma non sono allo
stesso livello. MAVLink è un protocollo di messaggistica molto leggero con IDE
di piccole dimensioni adatto a comunicazioni in tempo reale con poco delay come
quelle con: ground station, telemetrie radio, MAVROS e può venire anche usato
per il caricamento dei parametri dell’autopilota con QGroundControl. MAVLink
segue un design pattern ibirido tra un publish-subscribe ed un point-to-point:

• è un publish-subscribe nel senso che c’è un publisher che manda in broadcast
e i subscriber ascoltano, ma è una logica molto più semplificata rispetto ad
un middleware come DDS (si approfondirà questo concetto nel paragrafo
successivo). PX4 pubblica dei messaggi MAVLink ad una certa frequenza
fissa e tutti i dispositivi connessi allo stesso link MAVLink ricevono quei
pacchetti senza che il PX4 debba sapere chi sono. Viene applicata questa
logica principalmente per messaggi riguardanti tutto ciò che viene scambiato
con una certa periodicità come: telemetria, heartbeat, attitude/setpoint target
e status del sistema

• è un point-to-point per: mission protocol, parameter protocol, file transfer,
log streaming e in generale qualsiasi transazione che richiede conferma e per
tutte le operazioni che non possono andare perse. Il point-to-point è una
transazione affidabile tra due peer5 con una richiesta che attende una risposta

5Dispositivo che può inviare o ricevere dati ed un partecipante alla comunicazione, su un piano
paritario, senza gerarchie

26

4.5 uXRCE-DDS

e se la richiesta non arriva vengono usati timeout e ritrasmissioni

Facendo riferimento alla figura 4.5, ROS/ROS2 possono comunicare con l’autopilota
usando il protocollo MAVLink ma per far si che ciò avvenga è necessario il bridge
MAVROS poiché ROS a differenza di PX4 non è compatibile a ricevere dati in
protocollo MAVLink. AVROS svolge quindi un ruolo fondamentale di adattamento
tra i due ecosistemi: decodifica i pacchetti MAVLink provenienti dall’autopilota e
li converte in topic, servizi e parametri ROS, e viceversa. In questo modo i nodi
ROS possono interagire con PX4 attraverso un’interfaccia uniforme, senza doversi
occupare della gestione del protocollo, del parsing dei messaggi o delle logiche di
comunicazione di basso livello. Inoltre MAVROS fornisce un insieme esteso di
plugin che implementano i principali sottoprotocolli MAVLink (missioni, parametri,
setpoint, stato del veicolo), rendendo possibile il controllo del drone e la lettura
della telemetria direttamente all’interno dell’ambiente ROS. Si fa infine notare al
lettore come questa configurazione MAVLink+MAVROS non è stata scelta per
il setup sperimentale di questo progetto in quanto si è preferito optare per il più
moderno uXRCE-DDS per i motivi che verranno elencati nel paragrafo precedente.

4.5 uXRCE-DDS
Micro XRCE-DDS[18] è un middleware di comunicazione ultra-leggero progettato
per permettere ai dispositivi con risorse estremamente limitate — come microcon-
trollori, sensori embedded o autopiloti — di partecipare a un sistema basato su
DDS (Data Distribution Service), lo stesso standard usato da ROS 2. Infatti tutta
la comunicazione interna di ROS2 si appoggia su veri middleware DDS (Fast DDS,
Cyclone DDS, ecc...) ed è per questo che l’agent di uXRCE-DDS non ha bisogno
di un bridge come MAVROS per comnuicare con ROS.
Micro XRCE-DDS non è un singolo componente ma è diviso in due parti operative:
un client che gira sull’autopilota e un agent sul companion computer. Il client
implementa una versione minima del modello DDS avendo l’autopilota delle capa-
cità computazionali molto ristrette che comunque risulta sufficiente per mandare
all’agent i messaggi tramite protocolli di trasporto UART, UDP, TCP o customiz-
zati dall’utente (nel nostro caso specifico è stato utilizzato un UART/seriale con
baud rate di 921600 sia per l’agent che per il client). Come si può vedere dalla
figura 4.6 il uXRCE-DDS client dialoga con i uORB topics tramite una logica
publisher-subscriber poiché questi sono il sistema interno di messaggistica di PX4,
quindi il client legge questi topic, li converte e li spedisce al mondo esterno che
è ROS2. Si nota che, come per il collegamento tra uORB topic e uXRCE-DDS
client, tutte le connessioni sono bidirezionali poiché esiste sia il caso in cui il client
vuole comunicare con l’agent per mostrargli i suoi topic che il caso opposto in cui
si vogliono inviare comandi al PX4.

27

4.5 uXRCE-DDS

Figura 4.6: Pipeline uXRCE-DDS

Lato companion computer c’è il uXRCE-DDS agent che, dopo che il client ha seria-
lizzato i messaggi uORB in un formato ultra-compatto, li deserializza ricostruendo
il messaggio nel formato standard DDS usando la libreria FAST-CDR. Una volta
che il messaggio è distribuito da FAST-DDS, esso è identico ad un messaggio
generato da un nodo ROS2 nativo e perciò può dialogare con essi. FAST-DDS
per funzionare ha bisogno però di conoscere la struttura del messaggio che arriva
dal client, per farlo ha bisogno del pacchetto px4_msgs che dunque dovrà essere
allineato alla rispettiva versione dell’autopilota
Le principali differenze tra la comunicazione MAVLink-MAVROS e uXRCE-DDS
sono:

• Micro XRCE-DDS è nativo per ROS2 perché parla direttamente DDS, lo
stesso middleware usato da ROS2. MAVLink invece deve passare attraverso
MAVROS (pensato per ROS1) e poi attraverso un ulteriore bridge per arrivare
a ROS2. Questo introduce più livelli, più conversioni e più latenza. Con
XRCE-DDS invece PX4 entra direttamente nel dominio DDS di ROS2 senza
nessun ponte intermedio.

• MAVLink manda byte grezzi e non conosce il significato del dato, invece con
uXRCE-DDS DDS sa: cosa contiene il messaggio, come serializzarlo, come
controllare l’integrità e come distribuirlo ai subscriber corretti

• MAVLink usa per lo più scambi best-effort senza vere garanzie, mentre Micro
XRCE-DDS eredita i QoS di DDS, permettendo comunicazioni affidabili, con
history, deadline e matching automatico tra publisher e subscriber. In pratica
non è più un semplice flusso di pacchetti, ma un sistema molto più controllato.

28

4.6 Ubuntu

4.6 Ubuntu
Nel contesto di un sistema basato su ROS2 e PX4 Autopilot la scelta di utilizzare
Linux Ubuntu[19] non è soltanto una prassi nella comunità robotica ma in questo
caso una vera e propria necessità tecnica. ROS2 infatti è progettato e testato
principalmente su Ubuntu che rappresenta la piattaforma di riferimento per la
distribuzione dei pacchetti binari, il supporto delle librerie middleware (come Fast-
DDS) e l’intero ecosistema di tool utili allo sviluppo e al debugging. Anche PX4
è progettato per funzionare nativamente su Linux: la compilazione del firmware,
le utility di diagnostica, la gestione delle porte seriali e l’esecuzione dell’Agent
Micro XRCE-DDS richiedono un ambiente POSIX completo che Ubuntu è in grado
di fornire. A conferma del fatto che Ubuntu sia la giusta scelta per il sistema
operativo del companion computer c’è anche il fatto che il PX4 Vision Autonomy
Development Kit presenta già installato Ubuntu 18.04 LTS, abbinato con ROS
Melodic.

29

Capitolo 5

Simulazione

Ora che è stato chiarito l’ambiente in cui si andrà ad operare, si può procedere con
la spiegazione della prima vera attività di questo progetto: la realizzazione di una
simulazione SITL per andare a verificare il setup che poi sarebbe stato utilizzato
durante le prove sperimentali con il drone. La simulazione è stata realizzata in
primis per provare l’autopilota PX4 Autopilot in modo da settarne i parametri
utili al raggiungimento dei task. Per la creazione dell’ambiente simulativo è stato
essenziale l’utilizzo del software Gazebo che verrà trattato nel paragrafo successivo.

5.1 Gazebo
Gazebo[20] è un simulatore nato per il campo della robotica, open source, utilizzato
per il test e lo sviluppo di piattaforme e algoritmi robotici in un ambiente virtuale
realistico. Gazebo è completamente compatibile con ROS costituendo così uno
standard nella simulazione robotica, ma può funzionare anche senza di esso. Le
sue principali caratteristiche sono:

• distributed simulation: nel caso delle simulazioni più pesanti come quelle
multi-veicolo è possibile migliorare le performance eseguendo la simulazione
su più computer o più server

• dynamic asset loading: è un ottimizzazione delle risorse che ben si accoppia con
le distributed simulations. Consiste nell’andare a scegliere quando utilizzare o
meno gli asset simulativi allo scopo di migliorare le performance

• performance regolabili andando a modificare il time step, è possibile quindi
andare a realizzare simulazioni real time o più veloci o più lente del real time
a piacimento

30

5.2 Simulazione SITL con Gazebo, ROS 2 e uXRCE-DDS

• cross-platform support: le librerie interne di Gazebo possono essere usate e
compilate su Linux e macOS

• cloud integration: consente di visualizzare, caricare e scaricare modelli simula-
tivi sul cloud-hosted server di Gazebo

• l’integrazione con ROS è garantita da un bridge apposito per ogni release di
ROS. Nello specifico nella realizzazione della fase di sperimentazione di questo
progetto è stato utilizzato un bridge per ROS2 Humble

• si può inserire del rumore nella simulazione che può essere anche personalizzato
in base alle necessità

• grafica 3D

• motore del modello fisico molto realistico

• usa plugin che possono essere sfruttati per dare funzionalità aggiuntive alla
simulazione come plugin riguardanti il motore fisico, il rendering e GUI libraries

• plugin simulation systems: gazebo fornisce un meccanismo per caricare sistemi
customizzati che possono direttamente interagire con la simulazione

• IPC asincrono: una comunicazione intra-process che si basa su topic e servizi
simili a quelli di ROS, ma in un formato diverso

• la possibilità di interagire sia da interfaccia grafica che da linea di comando

• l’utilizzo della Gazebo web application che permette di trovare nuovi asset
simulativi e gestire quelli del proprio team di lavoro, partecipare a competizioni
di simulazione ed eseguire simulazioni su piattaforme cloud

5.2 Simulazione SITL con Gazebo, ROS 2 e
uXRCE-DDS

Il diagramma di figura 5.1 rappresenta i moduli che intervengono in una simulazione
SITL con Gazebo, ROS2, uXRCE-DDS e le relative porte e comunicazioni. Il primo
blocco grande sulla sinistra è proprio quello del SITL che è una ambiente attraverso
il quale il PX4 non gira su un autopilota fisico, come nel caso reale del Pixhawk,
ma viene come processo nativo sul computer che lo esegue, che in questo caso ha
Linux Ubuntu 22.04. Una volta avviato il SITL, il PX4 carica un file di parametri
che vengono detti di autostart che differiscono da quelli di runtime poiché i primi
servono a far partire il PX4 con l’airframe scelto mentre i secondi impostano delle
caratteristiche dell’autopilota quando il suo firmware è in esecuzione. Una volta
che il modello è stato caricato l’autopilota abilita i seguenti moduli SITL specifici:

31

5.2 Simulazione SITL con Gazebo, ROS 2 e uXRCE-DDS

Figura 5.1: Architettura SITL

• sensors_sim: sostituisce i driver hardware trasformando i dati di Gazebo in
messaggi uORB usati dal firmware

• gazebo_gz_interface è il modulo che comunica direttamente con Gazebo: riceve
da esso i dati dei sensori simulati e gli invia i comandi dei motori calcolari
dall’autopilota. In questa comunicazione e in questo specifico progetto la porta
10317 viene usata per il discovery server1, la porta 10318 viene usata per la
discovery multicast2e le porte dinamiche (effimere) sono quelle che portano i
dati veri e propri (IMU, pose/velocità, comandi motori ecc...)

• simulator_interface riceve i dati dei sensori da gazebo_gz_interface e li manda
a sensors_sim, inoltre prende i comandi da mandare ai motori e li manda a
gazebo_gz_interface

• mavlink serve per lo scambio dell’autopilota con QGroundControl di tele-
metria, arming, parametri, missioni e dati sullo stato del velivolo. Nella
configurazione del progetto apre le porte UDP 18570 (lato PX4) e 14550 (lato
QGroundControl)

• uxrce_dds_client è il client uXRCE-DDS ma che viene eseguito sul pc e non
sul microcontrollore. Nella configurazione del progetto apre le porte 8888 lato
agent e delle porte dinamiche lato client

1Scoprire quali processi Ignition sono presenti nella simulazione
2Diffondere e ricevere informazioni sui servizi e sui topic disponibili nella simulazione

32

5.3 Filtro EKF2

5.3 Filtro EKF2
Il filtro EKF2[21][22] risponde all’esigenzadi una state estimation da parte del
software di PX4. State estimation è il processo che determina gli stati del velivolo
a partire dai dati raccolti dai sensori. EKF sta per Extended Kalman Filter che
differisce da un semplice filtro di Kalman poiché quest’ultimo funziona solo per
modelli lineari mentre quello esteso no. Quella dell’EKF è una tecnica matematica
che parte da una predizione dello stato del drone calcolato a partire dal sensore
dell’IMU (che quindi risulta essere il sensore più importante) e lo corregge con i
dati degli altri sensori. Gli stati a cui giunge EKF2 sono 24 e sono i seguenti:

• 4 stati per l’attitude rappresentata come quaternioni per evitare il gimbal lock

• 3 stati per la velocità

• 3 stati per la posizione

• 9 stati per descrizione di errori e bias nei sensori IMU e magnetometro

• 3 stati per l’estimazione del campo magnetico terrestre

• 2 stati per la velocità del vento, dove si hanno solo due stati e non 3 poiché la
componente verticale è poco osservabile

Figura 5.2: Architettura EKF2

In figura 5.2 viene riportata l’architettura alla base del filtro EKF2 di PX4 che è
costituito da due moduli distinti ma comunicanti: EKF e Ouput Predictor. Nel-
l’EKF si ha i dati di accelerazione lineare e velocità angolare dell’IMU che sono dati

33

5.4 Fake Vicon

che arrivano ad una frequenza molto alta e che quindi subiscono un’operazione di
Downsample poiché il blocco State Prediction-Data Fusion-Convariance Prediction
lavora ad una frequenza fino a 100 Hz. I dati IMU ridotti entrano nel FIFO Buffer3

che memorizza tra i 100 e i 200 millisecondi di dati, ciò avviene perché l’IMU è
un sensore a bassissimo ritardo che però dovrà confrontare lo stato predetto dalla
sua misura con misure di sensori con un ritardo di questo ordine di grandezza:
fondere misure con questo delay porterebbe a divergenza. Anche i dati degli altri
sensori (nel nostro caso il Vicon) vengono memorizzati in un buffer per gestire dati
che arrivano a frequenze diverse e con ritardi diversi dai vari sensori. A questo
punto i dati IMU entrano nel blocco State Prediction INS4 che attraverso una
serie di integrazioni dei dati IMU si calcola uno primo stato del drone, questa
operazione però è affetta da errori di integrazione che crescerebbero nel tempo
se non venissero corretti da altre misure. Confrontando i dati IMU con lo stato
calcolato nel blocco State Prediction si ottiene una Covariance Prediction che è
una misura dell’errore dello stato calcolato a partire dai dati IMU, questo cresce nel
tempo poiché aumentano gli errori di integrazione. A questo punto il blocco Data
Fusion fonde i dat IMU e quelli degli altri sensori insieme alla misura dell’errore
dei dati IMU, ottenendo così uno stato delayed del drone che ha un ritardo rispetto
allo stato presente di 100-200 millisecondi, troppo grande per essere usato.
Per far fronte a questo problema c’è il blocco Ouput Prerdictor che prende diret-
tamente i dati dell’IMU che hanno un ritardo molto basso e ci vengono sottratti
gli errori a dinamica lenta dell’IMU e le IMU corrections. Il risultato viene usato
dall’Output Prediction INS per ottenere lo stato non-delayed, che è l’ouput del
filtro EKF2 con una latenza inferiore ai 100 µs, il quale viene immagazzinato in un
FIFO Buffer per poi venir confrontato ad un comune orizzonte temporale con lo
stato in uscita dal blocco EKF; la loro differenza entra nel Correction Algorithm
che in uscita dà le IMU corrections che vengono anche immagazzinate nel Buffer.

5.4 Fake Vicon
E’ stata denominata fake vicon l’attività svolta all’interno di questo progetto di
tesi per andare a simulare la configurazione del drone che poi sarà ripresa nella
configurazione reale[23]. Il caso reale vede il drone che per navigare deve prendere
la pose nei 6 gradi di libertà dal sistema Vicon e pubblicarla nel topic /fmu/in/-
vehicle_visual_odometry che verrà usato a sua volta dal filtro EKF2 di PX4 per
ricavarne una pose in 6 gradi di libertà fusa con i sensori IMU in /fmu/out/vehi-
cle_odometry. E’ possibile simulare questa configurazione poiché su pc è possibile

3First In First Out: il primo dato che entra è il primo dato che esce
4Inertial Navigation System

34

5.4 Fake Vicon

eseguire tutti i componenti necessari per far si che ciò avvenga (uXRCE-DDS, PX4
Autopilot, ROS2 e QGroundControl) ad eccezione dei sistema Vicon. Essendo
che la fase simulativa è uno step essenziale non solo per prendere dimestichezza
con i vari strumenti ma soprattutto per provare la logica del nodo ROS che dovrà
leggere il dato e pubblicarlo su vehicle_visual_odometry e per cominciare ad
individuare i parametri di runtime (da qui in poi verranno chiamati semplicemente
"parametri") necessari per il task di volo reale. Per ovviare all’impossibilità di avere
un "Vicon simulato", si usano i dati provenienti dalla simulazione Gazebo come se
venissero da una fonte visual e vengono inseriti in vehicle_visual_odometry. Per
far questo però occorre prima eseguire un bridge gazebo che converta il messaggio
/model/x500_0/odometry che è un messaggio non ROS di tipo gz.msgs.Odometry,
in un topic ROS2 omonimo ma convertito in na_msgs/msg/Odometry.

1 #!/ usr/bin/env python3
2 import rclpy
3 from rclpy.node import Node
4 from rclpy.qos import QoSProfile , QoSReliabilityPolicy ,

QoSHistoryPolicy
5
6 from nav_msgs .msg import Path , Odometry
7 from geometry_msgs .msg import PoseStamped
8 from px4_msgs .msg import (
9 VehicleOdometry ,

10 VehicleAttitude ,
11)
12
13
14 class MocapNode (Node):
15 def __init__ (self):
16 super (). __init__ (’mocap_node ’)
17
18 qos_be = QoSProfile (
19 reliability = QoSReliabilityPolicy . BEST_EFFORT ,
20 history = QoSHistoryPolicy .KEEP_LAST ,
21 depth =1
22)
23
24 # Subscribers
25 self. create_subscription (
26 Odometry ,
27 ’/model/ x500_0 / odometry ’,
28 self. listener_cb ,
29 10
30)
31 self. create_subscription (
32 VehicleAttitude ,
33 ’/fmu/out/ vehicle_attitude ’,

35

5.4 Fake Vicon

34 self. attitude_cb ,
35 qos_be
36)
37
38 # Publishers (pose/path)
39 self. pose_pub = self. create_publisher (PoseStamped , ’/x500/

pose ’, 10)
40 self. path_pub = self. create_publisher (Path , ’/x500/path ’,

10)
41
42 # Publisher (visual odom towards PX4)
43 self. odom_pub = self. create_publisher (
44 VehicleOdometry ,
45 ’/fmu/in/ vehicle_visual_odometry ’,
46 10
47)
48 # Mocap odom publisher (kept for future use if needed)
49 self. mocap_odom_pub_ = self. create_publisher (
50 VehicleOdometry ,
51 ’/fmu/in/ vehicle_mocap_odometry ’,
52 10
53)
54
55 self.path = Path ()
56 self.path. header . frame_id = ’map ’
57 self. path_cnt = 0
58 self. att_msg = None
59 self. get_logger ().info(’MocapNode started ’)
60
61 def listener_cb (self , msg: Odometry):
62 # Log position from Gazebo
63 self. get_logger ().info(
64 f" Received message from Gazebo : pos =({ msg.pose.pose.

position .x:.2f}, "
65 f"{msg.pose.pose. position .y:.2f}, {msg.pose.pose.

position .z:.2f})",
66 once=True
67)
68
69 # Publish PoseStamped
70 ps = PoseStamped ()
71 ps. header = msg. header
72 ps. header . frame_id = ’map ’
73 ps.pose = msg.pose.pose
74 self. pose_pub . publish (ps)
75
76 # Path publishing (downsampled)
77 if self. path_cnt == 0:
78 self.path. header .stamp = ps. header .stamp

36

5.4 Fake Vicon

79 self.path.poses. append (ps)
80 self. path_pub . publish (self.path)
81 self. path_cnt = (self. path_cnt + 1) % 10
82
83 # Publish VehicleOdometry (visual odom) in NED frame
84 odom = VehicleOdometry ()
85 sec = msg. header .stamp.sec
86 nsec = msg. header .stamp. nanosec
87 now_us = sec * 1 _000_000 + nsec // 1_000
88 odom. timestamp = now_us
89 odom. timestamp_sample = now_us
90
91 p = msg.pose.pose. position
92
93 # Gazebo odom: ENU -> PX4 NED
94 # ENU = (x = East , y = North , z = Up)
95 # NED = (x = North , y = East , z = Down)
96 odom. pose_frame = VehicleOdometry . POSE_FRAME_NED
97 odom. position = [float(p.y), float(p.x), -float(p.z)]
98
99 if self. att_msg :

100 odom.q = [float(q) for q in self. att_msg .q]
101 else:
102 odom.q = [1.0 , 0.0, 0.0, 0.0]
103
104 odom. velocity_frame = VehicleOdometry .

VELOCITY_FRAME_UNKNOWN
105 odom. velocity = [float(’nan ’)] * 3
106 odom. angular_velocity = [float(’nan ’)] * 3
107 odom. quality = 1
108
109 self. odom_pub . publish (odom)
110
111 def attitude_cb (self , msg: VehicleAttitude):
112 self. att_msg = msg
113
114
115 def main(args=None):
116 rclpy.init(args=args)
117 node = MocapNode ()
118 rclpy.spin(node)
119 node. destroy_node ()
120 rclpy. shutdown ()
121
122
123 if __name__ == ’__main__ ’:
124 main ()

Listing 5.1: Node mocap_node per la simulazione SITL

37

5.4 Fake Vicon

Il codice del nodo ROS2 che fa questo è mocap_node.py che è stato riportato nel
listing 5.1. Il codice:

• importa il framework ros (rclpy) e la classe base per creare nodi, le QoS
per gestire l’affidabilità dei messaggi, i tipi di messaggi ROS standard (Path,
Odometry,PoseStamped) ed i messaggi generati da PX4 (VehicleOdometry e
VehicleAttitude) usati per la comunicazione con EKF2

• crea il nodo ros mocap_node. La QoS BEST_EFFORT viene configurata
per i dati non critici: se qualche pacchetto si perde, non serve ritrasmissione
(tipico nei dati streaming PX4)

• si mette in ascolto di /model/x500_0/odometry che ora è un messaggio
nav_msgs/msg/Odometry e dice che ogni volta che arriva un messaggio sul
topic a cui è in ascolto fa partire la callback self.listenere_cb. Il nodo si mette
in ascolto anche di /fmu/out/vehicle_attitude e ogni volta che su esso arrivano
messaggi viene chiamata la callback self.attitude_cb che salva l’ultimo assetto
ricevuto

• pubblica /x500/pose e /x500/path che servono solo per visualizzare in RViz di
ROS2 l’attitude e la traiettoria

• pubblica in /fmu/in/vehicle_visual_odometry ed in /fmu/in/vehicle_mocap_odometry
la pose espressa nel messaggio VehicleOdometry. Il primo topic è quello effet-
tivamente utilizzato, il secondo no ma è stato lasciato per eventuali modifiche
future che richiedano proprio questo topic

• chiama la listener:cb che:

– converte Odometry in PoseStamp per uso dei tool ROS (RVIZ)
– pubblica la path ogni 10 campioni per non saturare RVIZ
– crea e invia VehicleOdometry verso PX4, si nota come occorra passare sia

il timestamp il quale è il tempo di quando viene pubblicato il messaggio,
che il timestamp_sample che indica quando la misura è stata ottenuta.
Compilare questi due campi è essenziale per il funzionamento del filtro
EKF2 come vedremo anche nel capitolo dell’applicazione reale. E’ impor-
tante sottolineare come nel caso simulativo sia stato assegnato lo stesso
valore ad entrambi poiché in SITL non si hanno latenze significative,
questo non varrà per il volo in gabbia

– viene effettauta la conversione da sistema di riferimento ENU a sistema
di riferimento NED.
Questa operazione è necessaria poiché, come si può vedere dalla tabella

5.1 congiuntamente con l’immagine di figura 5.3, tutto ciò che vive nel

38

5.4 Fake Vicon

Frame PX4 ROS
Body FRD (X Forward, Y Right, Z

Down)
FLU (X Forward, Y Left,
Z Up), usually named
base_link

World FRD or NED (X North, Y
East, Z Down)

FLU or ENU (X East, Y
North, Z Up), with the na-
ming being odom or map

Tabella 5.1: Uso dei sistemi di riferimento in PX4 e ROS.

mondo ROS (incluso Gazebo e, quando verrà trattato, i dati in uscita
dal Vicon) ha come sistema di riferimento world ENU e come body FLU,
mentre PX4 usa come world NED e come body FRD. Sono necessari sia il
sistema di riferimento world che quello body poiché la posizione è espressa
nel sistema di riferimento world, mentre l’attitude è l’orientamento del
body rispetto al rispettivo world

Figura 5.3: Sistemi di riferimento NED/FRD ed ENU/FLU

– per quel riguarda l’orientamento invece il codice non usa l’attitude di
Gazebo poiché in questa prima fase si era interessati a lavorare principal-
mente sulla posizione, quindi prende il quaternione pubblicato da PX4 e
lo copia nel messaggio VehicleOdometry che viene inviato

– non vengono fornite le velocità ed EKF2 le ignora

• definisce il main che avvia ROS, esegue il nodo finché non viene terminato e
lo chiude

39

5.5 Scelta dei parametri PX4

5.5 Scelta dei parametri PX4
In questo paragrafo si assegnano i parametri[24] al PX4 in modo da raggiungere
l’obiettivo di questa fase simulativa, i parametri vengono passati all’autopilota
dalla MAVLinkConsole del QGroundControl e sempre da QGroundControl vengono
salvati per poi fare il reboot del velivolo.
Sono stati impostati i seguenti parametri:

• EKF2_BARO_CTRL 0: non fa fondere al filtro EKF2 l’altezza barome-
trica, ovvero l’altezza calcolata tramite il barometro

• EKF2_HGT_REF 3: indica quale debba essere il riferimento principale
per l’altitudine. In questo caso il valore 3 sta a significare che il riferimento
principale è la vision, dunque il topic /fmu/in/vehicle_visual_odometry

• EKF2_EV_DELAY 10: indica il ritardo che l’utente si aspetta in millise-
condi tra la misura vision e la misura delle IMU. In altre parole è la differenza
temporale tra il timestamp del visioin e il "vero" capture time che sarebbe
stato registrato secondo il clock dell’IMU che è il clock del filtro EKF2. Questo
valore non è quasi mai 0 poiché c’è sempre della latenza, ma l’unico modo
per settarlo correttamente è empirico: osservare dai log file quale è l’offset tra
gli IMU rate e gli EV rate. Il valore può venire ulteriormente approfondito
trovando quello che minimizza la differenza tra il dato vision e la previsione
del filtro: innovazione. In questo caso 10 ms è un valore basso, indicativo del
fatto che non siamo in un sistema reale

• EKF2_EV_CTRL 3: indica quali misure fondere nell’estimatore EKF2. Il
valore 3 sta a significare che il filtro fonde solo le misure di posizione orizzontale
e verticale. Non fonde la velocità e nemmeno l’attitude, coerentemente al
codice di mocap_node.py

• EKF2_EV_NOISE_MD 1: se a 0 (defalut) la misura del noise (varianza) è
presa dal messaggio vision (varianza di vehicle_visual_odometry impostata nel
codice mocap_node.py) e gli EV noise parameters (EKF2_EVP_NOISE) fun-
gono da limite inferiore, se invece è posto a 1 come in questo caso l’observation
noise viene settato direttamente dai parametri

• EKF2_EVP_NOISE 0.05: specifica la varianza da parametro per le misure
di posizione, questa misura viene presa solo se EKF2_EV_NOISE_MD è
impostato a 1. Più il valore di EKF2_EVP_NOISE è piccolo, più l’estimatore
si fida della misura vision. 0.05 è il valore minimo

• EKF2_EVP_GATE 4.0: indica il numero di deviazioni standard sopra le
quali il filtro ekf2 rifiuta la misura vision

40

5.6 Test simulativo

• SYS_HAS_GPS 0: indica che non esiste un modulo GPS a bordo

• EKF2_GPS_CTRL 0: disattiva qualsiasi fusione di dati GPS nell’EKF2

5.6 Test simulativo

Figura 5.4: Simulazione del volo in gabbia in Gazebo

In questo paragrafo viene riportato il grafico su Plotjuggler di un test simulativo
eseguito con il setup descritto in questo capitolo. In figura 5.4 è rappresentata
la scena creata in ambiente Gazebo, dove è stato creato un world personalizzato
di Gazebo definito tramite un file SDF. A partire da un modello di gabbia già
esistente la struttura della gabbia è stata modificata per renderla di dimensione più
simile a quella presente nel Politecnico di Torino. La gabbia così modificata è stata
poi inclusa all’interno di un mondo dedicato in cui il file SDF si limita a descrivere
la scena e posizionare il modello nella posa desiderata. L’ambiente di simulazione è
stato inoltre configurato affinché, all’avvio della simulazione tramite il comando
make px4_sitl gz_x500, il veicolo venga inizializzato direttamente all’interno della
gabbia consentendo di eseguire il test in un ambiente delimitato che riproduce
quello reale.
Nella figura vengono rappresentate le 3 componenti nello spazio della posizione del

drone per il topic /fmu/in/vehicle_visual_odometry e /fmu/out/vehicle_odometry.

41

5.6 Test simulativo

Figura 5.5: Simulazione del volo su Plotjuggler

Come si può notare dalla figura 5.5 ognuna delle coordinate del topic vehi-
cle_odometry segue con buona fedeltà le coordinate di vehicle_visual_odometry,
ma al tempo stesso è evidente che esse non coincidano perfettamente in ogni punto.
Questo è un buon segno poiché significa che il filtro EKF2 sta effettivamente
fondendo il dato visual, e al tempo stesso lo tiene nella giusta considerazione per
avere una misura precisa di ciò che sta avvenendo. Tutto ciò conferma che tutta la
configurazione utilizzata è funzionante per l’obiettivo che ci si è posti e consente di
passare alla fase di volo reale in gabbia.

42

Capitolo 6

Test Reale

Figura 6.1: Volo reale in gabbia

In questo capitolo si tratta della configurazione del drone per il volo reale. Come
già accennato nel capitolo 5 il setup del drone per il volo in gabbia sarà molto
simile a quello simulativo. Nello specifico si è andati ad aggiornare il PX4 del
microcontrollore alla versione main 1.16 e si sono installati sul companion computer
una versione dei px4_msgs coerente con quella del PX4. Per consentire la comunica-
zione diretta tra il flight controller PX4 e il sistema ROS 2 installato sul companion

43

6.1 Nodo vicon_to_px4

computer, è stato installato e configurato il middleware Micro XRCE-DDS, insieme
alle sue dipendenze principali Fast-DDS (implementazione del protocollo DDS)
e Fast-CDR (libreria di serializzazione dei dati); ciò permette di tradurre i topic
di px4_msgs in flusso DDS standard. Infine si è optato per la release di ROS2 Jazzy.

6.1 Nodo vicon_to_px4
Come spiegato nel capitolo 3, il nodo ROS vicon_to_px4 è quello che prende la pose
in uscita dal nodo VRPN client e la pubblica in /fmu/in/vehicle_visual_odometry.

1 #!/ usr/bin/env python3
2 import rclpy
3 import numpy as np
4 from rclpy.node import Node
5 from scipy. spatial . transform import Rotation
6 from geometry_msgs .msg import PoseStamped
7 from px4_msgs .msg import VehicleOdometry
8
9 from rclpy.qos import (

10 QoSProfile ,
11 QoSReliabilityPolicy ,
12 QoSDurabilityPolicy ,
13 QoSLivelinessPolicy ,
14)
15
16
17 class ViconToPx4Node (Node):
18 """
19 Convert Vicon pose (world ENU , body FLU) into PX4

VehicleOdometry
20 (world NED , body FRD) and publish on /fmu/in/

vehicle_visual_odometry .
21
22 Assumptions :
23 - Vicon Tracker publishes poses in world ENU , body FLU (x

Fwd , y Left , z Up)
24 - PX4 expects world NED (x North , y East , z Down), body FRD
25 (x Fwd , y Right , z Down).
26 """
27
28 def __init__ (self):
29 super (). __init__ (" vicon_to_px4 ")
30
31 # Optional yaw offset in world NED
32 self. declare_parameter (" yaw_offset_deg ", 0.0)

44

6.1 Nodo vicon_to_px4

33 self. yaw_offset_deg = float(self. get_parameter ("
yaw_offset_deg ").value)

34
35 qos_profile = QoSProfile (
36 reliability = QoSReliabilityPolicy . BEST_EFFORT ,
37 durability = QoSDurabilityPolicy .VOLATILE ,
38 liveliness = QoSLivelinessPolicy .AUTOMATIC ,
39 depth =5,
40)
41
42 # Publisher towards PX4
43 self. _odom_pub = self. create_publisher (
44 VehicleOdometry ,
45 "/fmu/in/ vehicle_visual_odometry ",
46 10,
47)
48
49 # Subscriber from Vicon
50 self. _pose_sub = self. create_subscription (
51 PoseStamped ,
52 "/ vrpn_mocap /Obj1/pose",
53 self. _pose_callback ,
54 qos_profile ,
55)
56
57 self. get_logger ().info(
58 " vicon_to_px4 node initialized . "
59 " Subscription : / vrpn_mocap /Obj1/pose (remappable). "
60 " Output : /fmu/in/ vehicle_visual_odometry "
61)
62
63 #

--
#

64
65 def _pose_callback (self , msg: PoseStamped):
66 odom_msg = self. _convert_pose (msg)
67 self. _odom_pub . publish (odom_msg)
68
69 #

--
#

70
71 def _convert_pose (self , pose_msg : PoseStamped) ->

VehicleOdometry :
72 odom = VehicleOdometry ()
73
74 # Current local timestamp (us)

45

6.1 Nodo vicon_to_px4

75 odom. timestamp = int(self. get_clock ().now (). nanoseconds /
1000)

76
77 # timestamp_sample : time when the measurement was taken
78 odom. timestamp_sample = int(
79 pose_msg . header .stamp.sec * 1e6 +
80 pose_msg . header .stamp. nanosec / 1e3
81)
82
83 #

84 # POSITION -- world ENU -> world NED
85 #

86 x_enu = float(pose_msg .pose. position .x)
87 y_enu = float(pose_msg .pose. position .y)
88 z_enu = float(pose_msg .pose. position .z)
89
90 odom. position = [
91 y_enu , # North
92 x_enu , # East
93 -z_enu # Down
94]
95
96 odom. pose_frame = VehicleOdometry . POSE_FRAME_NED
97
98 #

99 # ORIENTATION -- world ENU + body FLU -> world NED + body

FRD
100 #

101 enu_quat = np.array ([
102 pose_msg .pose. orientation .x,
103 pose_msg .pose. orientation .y,
104 pose_msg .pose. orientation .z,
105 pose_msg .pose. orientation .w
106])
107
108 R_enu_flu = Rotation . from_quat (enu_quat). as_matrix ()
109
110 # WORLD: ENU -> NED
111 R_ned_enu = np.array ([
112 [0, 1, 0],
113 [1, 0, 0],
114 [0, 0, -1]
115])
116
117 # BODY: FLU -> FRD

46

6.1 Nodo vicon_to_px4

118 R_flu_frd = np.array ([
119 [1, 0, 0],
120 [0, -1, 0],
121 [0, 0, -1]
122])
123
124 # Composition
125 R_ned_frd = R_ned_enu @ R_enu_flu @ R_flu_frd
126
127 # Optional yaw offset
128 if abs(self. yaw_offset_deg) > 1e -6:
129 yaw = np. deg2rad (self. yaw_offset_deg)
130 R_yaw = Rotation . from_euler ("z", yaw). as_matrix ()
131 R_ned_frd = R_yaw @ R_ned_frd
132
133 odom.q = Rotation . from_matrix (R_ned_frd). as_quat (). tolist

()
134
135 #

136 # VELOCITIES AND VARIANCES
137 #

138 odom. velocity_frame = VehicleOdometry . VELOCITY_FRAME_NED
139 odom. velocity = [0.0 , 0.0, 0.0]
140 odom. angular_velocity = [0.0 , 0.0, 0.0]
141
142 odom. position_variance = [0.001 , 0.001 , 0.001]
143 odom. orientation_variance = [0.001 , 0.001 , 0.001]
144 odom. velocity_variance = [0.01 , 0.01 , 0.01]
145
146 odom. quality = 0
147
148 return odom
149
150
151 def main(args=None):
152 rclpy.init(args=args)
153 node = ViconToPx4Node ()
154 rclpy.spin(node)
155 node. destroy_node ()
156 rclpy. shutdown ()
157
158
159 if __name__ == " __main__ ":
160 main ()

Listing 6.1: Node vicon_to_px4 for the Vicon–PX4 pipeline

47

6.2 Parametri di volo

Concettualmente il nodo vicon_to_px4 fa le stesse cose del codice del nodo usato in
simulazione ma con la differenza principale che qui viene presa la pose dal sistema
Vicon e non da Gazebo, nello specifico:

• ora il nodo si sottoscrive al topic /vrpn_mocap/Obj1/pose dal quale prende la
pose determinata dal sistema Vicon

• il timestamp e il timestamp_sample non sono più lo stesso valore come in
simulazione. Questo perché il Vicon ha la pipeline camera → V iconPC →
V RPN → ROS2 che ha una sua latenza che non è trascurabile. Dando un
timestamp_sample uguale al timestamp (che coincide con l’istante in cui viene
pubblicato il topic vehicle_visual_odometry) come in simulazione, si andrebbe
a prendere la pose trattandola come se fosse stata presa ad un istante più in
avanti nel tempo di quello che in realtà è. Questa differenza può mandare in
divergenza l’estimatore EKF2, occorre quindi assegnare al timestamp_ sample
il valore del timestamp del topic /vrpn_mocap/Obj1/pose, che sebbene non
coincide esattamente con l’istante esatto in cui la misura è stata catturata dal
Vicon, è un ritardo più che accettabile

• adesso anche l’attitude viene presa come dato esterno e non viene semplice-
mente copiata dal PX4. Questo però necessita di un ragionamento sui sistemi
di riferimento più accurato poiché la pose in uscita dal Vicon è in un sistema
di riferimento diverso da quello che si aspetta il PX4. L’attitude che viene
indicata dal Vicon sta a significare l’orientamento del sistema di riferimento
body FLU rispetto al world ENU (si veda il paragrafo 5.4) ed essendo che il
PX4 si aspetta l’attitude intesa come l’orientamento di un body FRD rispetto
a un world NED occorre effettuare la seguente rotazione:

RNED→F RD = RNED→ENU × RENU→F LU × RF LU→F RD

. Quindi essendo che l’attitude in uscita dal Vicon è il quaternione qENU→F LU ,
occorre applicarvi la rotazione RNED→F RD calcolata precedentemente per dare
in pasto al PX4 un quaterione nel sistema di rifeirmento da lui atteso

• la posizione viene passata nello stesso modo di come è stato fatto nel paragrafo
5.4 trasformando la posizione da ENU a NED

6.2 Parametri di volo
In questa trattazione con parametri di volo si intendono i parametri assegnati
all’autopilota quando è stato effettuato il test di volo vision in gabbia. Di seguito
sono elencati i parametri più significativi e sono spiegati quelli che non sono stati
già trattati nel paragrafo 5.5

48

6.3 Variazione dei parametri

• EKF2_BARO_CTRL 0

• EKF2_HGT_REF 3

• EKF2_EV_DELAY 80: differisce dal valore inserito in simulazione poiché
qui il ritardo tra la misura e la pubblicazione del topic visual è maggiore

• EKF2_EV_CTRL 11: a differenza della simulazione il valore 11 sta a
significare che nel filtro viene fusa non solo la posizione verticale ed orizzontale,
ma anche lo yaw

• EKF2_EV_NOISE_MD 1

• EKF2_EVP_NOISE 0.01

• EKF2_EVP_GATE 6.0: valore più alto rispetto al caso simulativo, per
far rifiutare la misura del Vicon il meno possibile

• EKF2_GPS_CTRL 0

• SYS_HAS_GPS 0

• EKF2_OF_CTRL 0: non fonDe la misura dell’optical flow

• EKF2_RNG_CTRL 0: non fonde la misura del range finder

6.3 Variazione dei parametri
In questo paragrafo si mostrano gli effetti in una prova in gabbia a motori spenti di
alcuni di alcuni dei parametri scelti: EKF2_EVP_NOISE, EKF2_BARO_CTRL
ed EKF2_EV_DELAY. In ognuna delle sezioni di questo paragrafo viene fatto
variare, rispetto ai parametri di volo, solamente il parametro che dà il nome alla
sezione stessa.

6.3.1 EKF2_EVP_NOISE 0.2
E’ stato aumentato il velore del parametro EKF2_EVP_NOISE da 0.01 a 0.2,
questo sta a significare che il filtro ora si fida meno della misura del Vicon pren-
dendo più in considerazione il dato dell’IMU che è un dato ad alta frequenza ma
affetto da errore. In figura 6.2 si nota dunque come il topic vehicle_odometry segua
con scarsa precisione la misura visual di vehicle_visual_odometry, che con buona
approssimazione può essere ritenuta la posizione reale del drone. Essendo che la
posizione in uscita dall’EKF2 differisce troppo da quella reale si può concludere
che questa configurazione non soddisfa i requisiti minimi per andare ad effettuare

49

6.3 Variazione dei parametri

Figura 6.2: EKF2_EVP_NOISE 0.2

un volo vero e proprio.
Si può notare però che nonostante in alcuni punti la differenza tra vehicle_visual_odometry
e vehicle_odometry sia molto alta (si veda ad esempio il picco sulla coordinata y),
andando ad indicare una differenza tra il valore atteso di posizione e quello che
gli arriva dalla misura, il filtro non rifiuta mai la misura visual, cosa che accade
quando si trovano bruschi tratti discontinui. La ragione di ciò la si può trovare nella
matematica che sta dietro al filtro di Kalman esteso. La misura viene accettata se:

innovation2

S
< gate2 (6.1)

Con l’innovation variance S = HPHT + R e gate = EKF2_EV P_GATE,
dove H è la matrice di osservazione. P è la convarianza dello stato ed R =
EKF2_EV P_NOISE. Appare dunque evidente che aumentando il valore EKF2_EVP_NOISE,
a parità di innovazione, le misure verranno scartate più difficilmente.

6.3.2 EKF2_BARO_CTRL 1
Settare il parametro EKF2_BARO_CTRL ad 1 significa far entrare nella fusione di
EKF2 anche il dato dell’altezza barometrica. Il grafico presente in figura 6.3 mostra
un comportamento fiscontinuo del topic vehicle_odometry che sta a significare che
la misura visual viene rifiutata poiché l’equazione 6.1 non è più soddisfatta.
La quota barometrica è una misura sulle z e per questo può sembrare strano che
vadano in instabilità la x e la y. Questo non deve però sorprendere poiché andando
a fondere anche la quota barometrica cambia la covarianza interna P associata alle
misure delle varie fonti di dati, quindi anche alle x ed alla y della misura visual,
andando a variare così quanto il filtro si fida dei vari sensori.

50

6.3 Variazione dei parametri

Figura 6.3: EKF2_BARO_CTRL 1

6.3.3 EKF2_EV_DELAY

Figura 6.4: EKF2_EV_DELAY 150 ms

In questo paragrafo viene studiato il parametro EKF2_EV_DELAY variandone
il valore in millisecondi. Nelle figure da 6.4 a 6.9 sono rappresentate le prove con
valori diEKF2_EV_DELAY decrescente di 150, 80, 40, 20, 10 e 5 ms. Osservando
i grafici si può osservare che il valore di 150 ms è un valore troppo grande di delay,
così come 5 e 10 ms sono troppo piccoli. I risultati migliori si ottengono per un
delay della misura vision supposto tra i 20 e i 40 ms, mentre il ritardo di 80 ms è
accettabile ma meno preciso. Il punto però è che la rete ha un ritardo variabile
che può crescere in caso di traffico maggiore, è stato perciò ritenuto più sicuro
assegnare un delay di 80 piuttosto che di 20 o 40 per essere conservativi.

51

6.3 Variazione dei parametri

Figura 6.5: EKF2_EV_DELAY 80 ms

Figura 6.6: EKF_EV_DELAY 40 ms

Figura 6.7: EKF2_EV_DELAY 20 ms

52

6.3 Variazione dei parametri

Figura 6.8: EKF2_EV_DELAY 10 ms

Figura 6.9: EKF2_EV_DELAY 5 ms

53

6.4 Prova di volo

6.4 Prova di volo
In questa sezione vengono riportati i risultati delle prove di volo in gabbia eseguite
nelle flight mode Altitude e Position.
La modalità Position è una mdoalità in cui PX4 controlla automaticamente X,Y e
Z ed è dunque una modalità completamente assistita per il pilota che comanda una
posizione e non un assetto. Per questo vengono attivati i controller in posizione,
velocità ed attitude in modo tale che il comando di traiettoria del pilota in posizione
e velocità venga usato come setpoint da raggiungere e che l’attitude sia controllata
di conseguenza, unicamente dal PX4.
La modalità Altitude è invece una modalità semi-assistita in cui il PX4 mantiene
automaticamente l’altitudine Z ma non controlla la posizione X ed Y. Per questo in
questa modalità c’è un altitude un attitude controller poiché il controllore di quota
accetta un setpoint di quota e regola la thurst in modo automatico, allo stesso
modo l’attitude controller riceve dal pilota un setpoint di attitude (a differenza
della modalità position) e regola i motori per mantenerlo.
Le prove di volo sono state eseguite con i parametri di volo del capitolo 6.2 e nei
grafici 6.10 e 6.12 vengono riportati i topic /fmu/in/vehicle_visual_odometry ed
/fmu/out/vehicle_odometry, dove quest’ultimo è denominato estimator_odometry
poiché questi topic sono stati ricavati dai logfiles presi da QGroundControl che
quindi ha rinominato i topic. Si nota come in entrambe le prove volo si ha un’ottima
aderenza del topic in uscita dal filtro con il topic visual confermando che l’estimatore
lavora in maniera corretta. I test sono stati eseguiti prima in modalità Altitude e
poi in modalità Position, questo proprio perché Position usa dei controller oltre che
in altitude e in attitude, in posizione e velocità rendendo il sistema più sensibile
ad eventuali errori della misura visual (nel nostro caso le approssimazioni sono
state a livello di delay e di timestamp). Infatti in altitude mode nonostante le
misure visual continuino ad essere fuse dall’EKF2, non vengono usate le posizioni
in X ed Y e le velocità in generale per i controllori, rendendo così questa modalità
più "robusta" rispetto ad eventuali imprecisioni della misura visual. E’ proprio
per questo motivo che il pilota nella prova Position ha riscontrato una leggera
oscillazione del drone in fase di decelerazione e nei cambi di direzione.

54

6.4 Prova di volo

Figura 6.10: Prova di volo in Altitude Mode

Figura 6.11: Traiettoria della prova di volo eseguita in Altitude Mode

55

6.4 Prova di volo

Figura 6.12: Prova di volo in Position Mode

Figura 6.13: Traiettoria della prova di volo eseguita in Position Mode

56

Capitolo 7

Conclusioni e Lavori Futuri

Il progetto di tesi si può ritenere concluso con successo in quanto sia le prove
simulative che quelle in gabbia sono riuscite a far acquisire all’autopilota il dato
visual e a fonderlo correttamente nell’estimatore. Le prove in gabbia hanno mostrato
delle qualità di volo assolutamente in linea con quelle previste dagli scopi del
progetto ma è chiaro che ci sia modo di migliorarle. La principale fonte di degrado
del dato di posizione fuso dall’estimatore è relativo alla gestione dei timestamp e
del parametro EKF2_EV_DELAY poiché per l’estimatore è fondamentale sapere
con la massima precisione a quale istante temporale risale una determinata misura
del sistema Vicon.
Nel progetto infatti non sono stati misurati con precisione il tempo che impiega il
dato misurato dalle camere a venire elaborato dal software in una posizione a 6
gradi di libertà, approssimando l’istante della misura delle camere a quello della
pubblicazione del topic del nodo del client VRPN facendo credere all’estimatore
che il dato in questione sia relativo ad un istante successivo rispetto a quello a cui
è in realtà riferito. Per lavori futuri può essere studiato con maggiore precisione il
parametro precedentemente riportato sul delay che essendo l’intervallo di tempo
inserito dall’utente tra l’istante di tempo nel clock IMU e l’istante di pubblicazione
del topic visual, è l’altro elemento che stimato correttamente, anche in relazione
alla latenza della rete LAN, farebbe migiliorare la correttezza della stima del filtro.
Un’altra correzione per poter migliorare i risultati è quella di far fondere al filtro
i dati di velocità della misura vision, fornendogli così un dato in più sul quale
effettuare la sua stima. Occorre infine annoverare anche la possibilità di configurare
una flotta di droni operanti nella facility di volo indoor del Politecnico di Torino,
sotto la rete LAN già sfruttata per questo progetto.

57

Bibliografia

[1] PX4 Autopilot. PX4 Vision Kit — Complete Vehicle Setup. Accessed: 2025-
11-09. 2024. url: https://docs.px4.io/main/en/complete_vehicles_
mc/px4_vision_kit (cit. a p. 3).

[2] PX4 Autopilot. Holibro Pixhawk 6C. Accessed: 2025-12-03. 2024. url: https:
/ / docs . px4 . io / main / en / flight _ controller / pixhawk6c # holybro -
pixhawk-6c (cit. a p. 6).

[3] PX4 Autopilot. Power Modules & Power Distribution Boards. Accessed: 2025-
12-03. 2024. url: https://docs.px4.io/main/zh/power_module/ (cit. a
p. 8).

[4] UP. UP Core Specifications. Accessed: 2025-12-04. 2023. url: https://up-
board.org/wp-content/uploads/datasheets/UP-core-DatasheetV0.3.
pdf (cit. a p. 10).

[5] PX4 Autopilot. Holybro M8N & M9N GPS. Accessed: 2025-12-04. 2025. url:
https://docs.px4.io/main/en/gps_compass/gps_holybro_m8n_m9n
(cit. a p. 11).

[6] PX4 Autopilot. Mounting a Compass (or GNSS/Compass). Accessed: 2025-
12-04. 2024. url: https://docs.px4.io/main/en/assembly/mount_gps_
compass.html (cit. a p. 11).

[7] Holybro. Holybro Strucutre Core. Accessed: 2025-12-04. 2025. url: https:
//holybro.com/products/structure-core?srsltid=AfmBOooAeElYjOuqb
E12EebQ6o2eZstLJxu9af0MJ-uIqHa-Eh2VnyAC (cit. a p. 12).

[8] PX4 Guide. PMW3901-Based Flow Sensors. Accessed: 2025-12-04. 2025. url:
https://docs.px4.io/main/en/sensor/pmw3901 (cit. a p. 14).

[9] Circuit Digest. Interfacing PMW3901 Optical Flow Sensor With ESP32.
Accessed: 2025-12-04. 2023. url: https://circuitdigest.com/microcon
troller-projects/interfacing-pmw3901-optical-flow-sensor-with-
esp32 (cit. a p. 14).

58

https://docs.px4.io/main/en/complete_vehicles_mc/px4_vision_kit
https://docs.px4.io/main/en/complete_vehicles_mc/px4_vision_kit
https://docs.px4.io/main/en/flight_controller/pixhawk6c#holybro-pixhawk-6c
https://docs.px4.io/main/en/flight_controller/pixhawk6c#holybro-pixhawk-6c
https://docs.px4.io/main/en/flight_controller/pixhawk6c#holybro-pixhawk-6c
https://docs.px4.io/main/zh/power_module/
https://up-board.org/wp-content/uploads/datasheets/UP-core-DatasheetV0.3.pdf
https://up-board.org/wp-content/uploads/datasheets/UP-core-DatasheetV0.3.pdf
https://up-board.org/wp-content/uploads/datasheets/UP-core-DatasheetV0.3.pdf
https://docs.px4.io/main/en/gps_compass/gps_holybro_m8n_m9n
https://docs.px4.io/main/en/assembly/mount_gps_compass.html
https://docs.px4.io/main/en/assembly/mount_gps_compass.html
https://holybro.com/products/structure-core?srsltid=AfmBOooAeElYjOuqbE12EebQ6o2eZstLJxu9af0MJ-uIqHa-Eh2VnyAC
https://holybro.com/products/structure-core?srsltid=AfmBOooAeElYjOuqbE12EebQ6o2eZstLJxu9af0MJ-uIqHa-Eh2VnyAC
https://holybro.com/products/structure-core?srsltid=AfmBOooAeElYjOuqbE12EebQ6o2eZstLJxu9af0MJ-uIqHa-Eh2VnyAC
https://docs.px4.io/main/en/sensor/pmw3901
https://circuitdigest.com/microcontroller-projects/interfacing-pmw3901-optical-flow-sensor-with-esp32
https://circuitdigest.com/microcontroller-projects/interfacing-pmw3901-optical-flow-sensor-with-esp32
https://circuitdigest.com/microcontroller-projects/interfacing-pmw3901-optical-flow-sensor-with-esp32

BIBLIOGRAFIA

[10] RX Electronics. PSK-CM8JL65-CC5 ToF Infrared Distance Measuring Sensor.
Accessed: 2025-12-04. 2024. url: https://www.rxelectronics.nz/datash
eet/47/101990440.pdf (cit. a p. 14).

[11] Holybro. Wiring Diagram. Accessed: 2025-12-04. 2024. url: https://docs.
holybro.com/drone- development- kit/px4- vision- dev- kit- v1.5/
wiring-diagram (cit. a p. 14).

[12] Vicon. Vicon Vero Technical Information. Accessed: 2025-12-04. 2025. url:
https://www.vicon.com/hardware/cameras/vero/#technical-informat
ion (cit. a p. 17).

[13] PX4 Guide. Companion Computers. Accessed: 2025-12-04. 2025. url: https:
//docs.px4.io/main/en/companion_computer/ (cit. a p. 20).

[14] PX4 Guide. PX4 Architectural Overview. Accessed: 2025-12-04. 2025. url:
https://docs.px4.io/main/en/concept/architecture (cit. a p. 22).

[15] QGroundControl. QGroundControl Guide (Daily Builds). Accessed: 2025-12-
04. 2025. url: https://docs.qgroundcontrol.com/master/en/qgc-user-
guide/index.html (cit. a p. 23).

[16] ROS. ROS - Robot Operating System. Accessed: 2025-12-04. 2025. url: https:
//www.ros.org/ (cit. a p. 25).

[17] MAVLink. MAVLink Developer Guide. Accessed: 2025-12-04. 2025. url:
https://mavlink.io/en/ (cit. a p. 26).

[18] PX4 Guide. uXRCE-DDS (PX4-ROS 2/DDS Bridge). Accessed: 2025-12-04.
2025. url: https://docs.px4.io/main/en/middleware/uxrce_dds (cit. a
p. 27).

[19] Ubuntu. Ubuntu Italia Homepage. Accessed: 2025-12-04. 2025. url: https:
//www.ubuntu-it.org/ (cit. a p. 29).

[20] Gazebo. Gazebo Homepage. Accessed: 2025-12-04. 2025. url: https : / /
gazebosim.org/home (cit. a p. 30).

[21] Dr. Paul Riseborough. ‘PX4 State Estimation’ PX4 Developer Summit Zurich
2020. Accessed: 2025-12-04. 2025. url: https://px4.io/wp- content/
uploads/2020/07/Paul-Riseborough-PX4-state-estimation-update.
pdf (cit. a p. 33).

[22] PX4 Autopilot-youtube. PX4 state estimation update - Dr. Paul Riseborough
- PX4 Developer Summit 2019. Accessed: 2025-12-04. 2025. url: https:
//www.youtube.com/watch?v=HkYRJJoyBwQ (cit. a p. 33).

[23] PX4 Guide. Using Vision or Motion Capture Systems for Position Estimation.
Accessed: 2025-12-04. 2025. url: https://docs.px4.io/main/en/ros/
external_position_estimation (cit. a p. 34).

59

https://www.rxelectronics.nz/datasheet/47/101990440.pdf
https://www.rxelectronics.nz/datasheet/47/101990440.pdf
https://docs.holybro.com/drone-development-kit/px4-vision-dev-kit-v1.5/wiring-diagram
https://docs.holybro.com/drone-development-kit/px4-vision-dev-kit-v1.5/wiring-diagram
https://docs.holybro.com/drone-development-kit/px4-vision-dev-kit-v1.5/wiring-diagram
https://www.vicon.com/hardware/cameras/vero/#technical-information
https://www.vicon.com/hardware/cameras/vero/#technical-information
https://docs.px4.io/main/en/companion_computer/
https://docs.px4.io/main/en/companion_computer/
https://docs.px4.io/main/en/concept/architecture
https://docs.qgroundcontrol.com/master/en/qgc-user-guide/index.html
https://docs.qgroundcontrol.com/master/en/qgc-user-guide/index.html
https://www.ros.org/
https://www.ros.org/
https://mavlink.io/en/
https://docs.px4.io/main/en/middleware/uxrce_dds
https://www.ubuntu-it.org/
https://www.ubuntu-it.org/
https://gazebosim.org/home
https://gazebosim.org/home
https://px4.io/wp-content/uploads/2020/07/Paul-Riseborough-PX4-state-estimation-update.pdf
https://px4.io/wp-content/uploads/2020/07/Paul-Riseborough-PX4-state-estimation-update.pdf
https://px4.io/wp-content/uploads/2020/07/Paul-Riseborough-PX4-state-estimation-update.pdf
https://www.youtube.com/watch?v=HkYRJJoyBwQ
https://www.youtube.com/watch?v=HkYRJJoyBwQ
https://docs.px4.io/main/en/ros/external_position_estimation
https://docs.px4.io/main/en/ros/external_position_estimation

BIBLIOGRAFIA

[24] PX4 Guide. Parameter Reference. Accessed: 2025-12-04. 2025. url: https:
//docs.px4.io/main/en/advanced_config/parameter_reference (cit. a
p. 40).

60

https://docs.px4.io/main/en/advanced_config/parameter_reference
https://docs.px4.io/main/en/advanced_config/parameter_reference

	Elenco delle figure
	Introduzione
	PX4 Vision Autonomy Development Kit
	Flight Controller
	Power Management Board
	Companion Computer
	Modulo GNSS
	Camera
	Optical Flow
	Distance Sensor
	Cablaggi

	Sistema di tracciamento Vicon
	Architettura del sistema Vicon e della rete locale

	Architettura Software
	PX4
	QGroundControl
	ROS2
	MAVLink e MAVROS
	uXRCE-DDS
	Ubuntu

	Simulazione
	Gazebo
	Simulazione SITL con Gazebo, ROS 2 e uXRCE-DDS
	Filtro EKF2
	Fake Vicon
	Scelta dei parametri PX4
	Test simulativo

	Test Reale
	Nodo vicon_to_px4
	Parametri di volo
	Variazione dei parametri
	EKF2_EVP_NOISE 0.2
	EKF2_BARO_CTRL 1
	EKF2_EV_DELAY

	Prova di volo

	Conclusioni e Lavori Futuri
	Bibliografia

