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Abstract

I riduttori armonici sono ampiamente impiegati nella robotica di precisione, ma la loro

complessa struttura meccanica li rende soggetti a guasti che possono compromettere

l’affidabilità, la sicurezza e l’efficienza dell’intero sistema. Una possibile soluzione a

queste criticità è l’adozione di strategie di Prognostics and Health Monitoring (PHM);

tuttavia, lo sviluppo di tali tecniche è ostacolato dalla limitata disponibilità di dati

sperimentali relativi a componenti difettosi. Per ovviare a questa carenza, è possibile

creare modelli digital twin ad alta fedeltà, in grado di simulare il comportamento del

sistema sia in condizioni nominali sia in presenza di guasti.

Il presente lavoro si basa su studi precedenti che hanno adottato un approccio multi-

body per analizzare l’interazione tra gli ingranaggi e il comportamento del cuscinetto de-

formabile del Wave Generator. L’obiettivo principale della tesi è l’integrazione di questi

due modelli complessi all’interno di un’unica piattaforma di simulazione dinamica.

L’efficacia e l’affidabilità del modello integrato sono state valutate sia in regime stati-

co che dinamico attraverso implementazioni realizzate con il software MATLAB/Simulink.

Il modello risultante fornisce una rappresentazione più realistica e dettagliata del ridut-

tore armonico nel suo insieme, gettando le basi per future simulazioni di difetti localizzati

e per la validazione di algoritmi di diagnostica e prognostica.
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Introduzione

Il riduttore armonico, noto anche con il termine anglofono strain wave gear e commer-

cialmente conosciuto come Harmonic Drive® (dal nome del principale produttore [2]),

è un componente di trasmissione meccanica ampiamente impiegato nelle applicazioni

robotiche, aerospaziali e nei sistemi di servoattuazione ad alta precisione [3, 4]. La sua

funzione primaria è ridurre la velocità di rotazione tra un albero motore in ingresso e

un albero condotto in uscita, garantendo al contempo la trasmissione di coppia. Ri-

spetto ad altre tipologie di riduttori compatti, come i riduttori epicicloidali (planetari)

o cicloidali, il riduttore armonico viene spesso preferito per una combinazione unica di

caratteristiche: offre infatti un elevato rapporto di riduzione (tipicamente da 30:1

fino a oltre 320:1) in un singolo stadio, un design estremamente compatto e leggero, la

coassialità tra l’albero di ingresso e quello di uscita, e soprattutto un’ assenza quasi

totale di gioco angolare (zero backlash) [5]. Perciò risulta particolarmente adatto per

applicazioni che richiedono posizionamenti precisi e ripetibili, come i giunti dei robot

industriali e collaborativi [4].

Tali proprietà derivano dalla particolare architettura del riduttore, composta da tre

elementi principali:

• Wave Generator (WG): costituito a sua volta da una camma ellittica inserita in

un cuscinetto deformabile; sulla camma è tipicamente collegato l’albero d’ingresso;

• Flexspline (FS): un ingranaggio flessibile con dentatura esterna, tale che, quando
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Introduzione

deformato dal wave generator, ingrani con la Circular Spline;

• Circular Spline (CS): un ingranaggio rigido con dentatura interna, che nel caso

in esame supporta l’albero d’uscita.

L’affidabilità è un requisito fondamentale per i sistemi robotici, e i riduttori armonici

possono rappresentare un punto di criticità in un sistema complesso. Essendo responsa-

bili di una quota significativa dei malfunzionamenti nei bracci robotici industriali [5], la

loro integrità è essenziale per la disponibilità e la sicurezza dell’intero sistema, special-

mente in contesti collaborativi [6, 7]. Questa esigenza ha guidato l’adozione di tecniche

di Prognostics and Health Monitoring (PHM), il cui obiettivo è monitorare lo stato di

salute dei componenti per incrementare l’affidabilità, riducendo tempi di fermo e costi

di manutenzione [8].

Tali tecniche si basano sulla raccolta e l’analisi di dati ottenuti da sensoristica sul

componente. Tuttavia, la scarsità di dati sperimentali relativi a componenti difettosi

rende difficile l’addestramento di algoritmi diagnostici [3, 9], per superare questo limite,

si ricorre a simulazioni numeriche con modelli che costituiscono un clone digitale (digital

twin)del componente [5].

Per questo motivo, sono stati sviluppati modelli multibody ad alta fedeltà (high-

fidelity), in grado di rappresentare in maniera puntuale le dinamiche dei singoli compo-

nenti. Tra questi si riportano, da un lato, i modelli di interazione tra Wave Generator

e Flexspline, e di ingranamento tra i denti Flexspline e Circular Spline [3, 10]; dall’al-

tro, modelli dedicati alla caratterizzazione del cuscinetto deformabile e all’interazione di

questo con la camma ellittica e la Flexspline [11, 12].

L’obiettivo di questo lavoro di tesi è di di ottenere un modello che descriva l’inte-

razione tra il cuscinetto deformabile ed i restanti elementi del riduttore attraverso lo

sviluppo di un modello integrato, così da ottenere una rappresentazione più realistica

e dettagliata dell’intero sistema. In questo modo, diventa possibile simulare non solo
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Introduzione

il comportamento nominale del riduttore, ma anche l’effetto di difetti localizzati, come

la rottura di un dente o l’usura di un contatto nel cuscinetto. Il modello sviluppato

permette di studiare puntualmente l’insorgere di un difetto agendo sui parametri fisici

localizzati; ad esempio, la rottura progressiva di un dente viene simulata riducendone la

rigidezza flessionale nel tempo.

I seguenti capitoli descriveranno il processo di sviluppo ed implementazione del mo-

dello che descrive il riduttore armonico: prima se ne studieranno i principi di funziona-

mento, la geometria e le caratteristiche dei componenti principali, analizzando anche le

modalità di guasto e le ragioni del suo ampio impiego in robotica. Successivamente, si

effettuerà un’analisi statica per ricavare le condizioni iniziali, ottenendo i risultati per

l’inserimento del Wave Generator nella Flexspline e sulla modellazione delle interazioni

meccaniche che definiscono l’equilibrio iniziale. Si procederà poi allo sviluppo del mo-

dello dinamico di rotazione del riduttore completo, descrivendo il moto relativo tra

Wave Generator, Flexspline e Circular Spline e includendo le leggi di ingranamento e i

vincoli cinematici. Infine, verranno presentati e discussi i principali risultati numeri-

ci ottenuti dalle simulazioni, con particolare attenzione alla distribuzione delle forze di

contatto ed alla valutazione dell’rapporto di riduzione cinematico.
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Capitolo 1

Principio di funzionamento e

geometria del riduttore armonico

I riduttori armonici, noti anche come strain wave gear, appartengono alla categoria dei

rotismi epicicloidali e furono introdotti nel 1955 da C. W. Musser [2]. Grazie al loro

particolare principio di funzionamento che sarà necessario conoscere per una corretta

modellazione, hanno trovato ampia diffusione in ambito robotico e aerospaziale, dove so-

no richieste compattezza, elevato rapporto di riduzione e precisione. Rispetto ai riduttori

tradizionali, presentano infatti numerosi vantaggi:

• assenza di gioco (zero backlash), che garantisce una trasmissione del moto affidabile;

• ingombro ridotto e design compatto rispetto ad altri riduttori coassiali;

• rapporti di riduzione elevati;

• ingranamento simultaneo di più denti, che conferisce silenziosità e regolarità al

funzionamento;

• flessibilità di configurazione, con possibilità di fissare alternativamente Flexspline

o Circular Spline.
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Principio di funzionamento e geometria del riduttore armonico

Tuttavia, come ogni componente meccanico, anche il riduttore armonico presenta

limiti operativi ed è soggetto a diverse modalità di guasto [5]. È richiesta un’eleva-

ta precisione geometrica in fase di produzione e montaggio per evitare interferenze [5].

Durante il funzionamento, l’elemento più critico è tipicamente la Flexspline, la quale,

essendo sottoposta a carichi ciclici, è soggetta a rottura per fatica [7]. Micro-cricche

possono innescarsi in diverse zone, come alla base del dente (rim), sulla superfi-

cie del dente, nella sezione posteriore o all’interfaccia diaframma-flangia [5, 6],

propagandosi poi lungo il dente o, in modo più critico, lungo la rim, portando poten-

zialmente alla rottura catastrofica del componente [13]. Altre problematiche rilevanti

includono l’usura, sia adesiva tra i denti di Flexspline e Circular Spline, sia sull’inter-

faccia tra Wave Generator e Flexspline, spesso aggravata da una lubrificazione non

ottimale [5, 6] o da effetti geometrici come l’angolo di conicità che causa usura non

uniforme e può portare a rotture nella sezione posteriore [5,14]. Sollecitazioni superficiali

ripetute possono inoltre portare alla formazione di pitting sui fianchi dei denti [5]. La

gestione della salute e della prognostica (PHM) di questi componenti si concen-

tra quindi principalmente sul rilevamento di guasti meccanici in cuscinetti e ruote

dentate [4].

1.1 Principio di funzionamento

Come mostrato anche in Figura 1.1, il riduttore armonico è costituito da tre elementi

principali:

• Wave Generator (WG) – costituito da una camma ellittica su cui è calettato

un cuscinetto a sfere deformabile; è collegato all’albero di ingresso;

• Flexspline (FS) – un ingranaggio flessibile a denti esterni, deformabile secondo

la forma del Wave Generator ;
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1.1 – Principio di funzionamento

• Circular Spline (CS) – un ingranaggio rigido con dentatura interna, nel caso in

esame, solidale all’albero di uscita.

Durante il funzionamento, la rotazione del Wave Generator (WG) impone una defor-

mazione ellittica alla Flexspline (FS). Questa deformazione fa sì che i denti esterni della

FS ingranino con i denti interni della Circular Spline (CS) lungo due zone diametral-

mente opposte, approssimativamente allineate con l’asse maggiore dell’ellisse imposta

dal WG [2]. Queste zone di contatto, indicate schematicamente con (4) in Figura 1.2,

ruotano solidalmente con il WG.

Da un punto di vista cinematico, questo meccanismo è equivalente a quello di un

riduttore epicicloidale [1]. L’analogia si basa sul fatto che la rotazione della deforma-

zione ellittica, imposta dal WG, agisce come il porta-treno in un sistema epicicloidale,

forzando le zone di ingranamento a orbitare. La Flexspline, con i suoi denti ZF S , può es-

sere vista come analoga a un ingranaggio planetario (deformabile anziché rigido), mentre

la Circular Spline, con denti ZCS , funge da corona fissa o mobile. Poiché ZF S è legger-

mente inferiore a ZCS (nel caso in esame ZCS − ZF S = 2), per ogni giro completo della

deformazione (cioè del WG), la Flexspline subisce uno spostamento relativo rispetto alla

Circular Spline, pari alla differenza del numero di denti. Questa cinematica permette di

derivare relazioni tra le velocità angolari dei tre componenti (θ̇W G, θ̇F S , θ̇CS) analoghe

all’equazione di Willis per i rotismi epicicloidali, come mostrato nell’Equazione 1.2. La

flessibilità intrinseca della Flexspline è ciò che permette di realizzare questa cinematica

complessa in una struttura compatta e coassiale, trasformando il moto relativo dei denti,

che in un sistema rigido sarebbe planetario, in un moto relativo tra alberi coassiali.

Il rapporto di trasmissione ideale, nel caso di albero d’uscita sulla Flexspline, si può

esprimere come:

τ = ZF S

ZCS − ZF S
(1.1)
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Principio di funzionamento e geometria del riduttore armonico

dove ZF S e ZCS rappresentano rispettivamente il numero di denti della Flexspline

e della Circular Spline. Nel caso in esame, essi valgono ZF S = 200 e ZCS = 202. La

piccola differenza nel numero di denti consente di ottenere rapporti molto elevati con

ingombri contenuti.

Figura 1.1: Schema del riduttore armonico e dei suoi tre elementi principali. [1]

Ad ogni semigiro del Wave Generator, la Flexspline avanza (o retrocede) di un dente

rispetto alla Circular Spline, generando così la riduzione del moto [15]. Da queste con-

siderazioni è possibile legare le velocità dei tre componenti con un’equazione per poter

studiare separatamente i casi in cui l’albero di uscita si trovi sulla circular spline o sulla

flexspline.

θ̇W G = (τ + 1)θ̇CS − τ θ̇F S (1.2)

Scegliendo la Flexspline come uscita e la Circular Spline come ruota fissa, si ottiene

un’inversione di moto e una riduzione della velocità dell’albero di uscita di τ volte. Al

contrario, fissando la Flexspline e collegando l’uscita alla Circular Spline, si mantiene

la direzione del moto ma con una riduzione della velocità pari a (τ + 1) volte rispetto

all’albero di ingresso.

18



1.2 – Geometria e dimensioni dei componenti

Figura 1.2: Funzionamento di un riduttore armonico con albero d’uscita sulla Flexspline.

1.2 Geometria e dimensioni dei componenti

Precedentemente all’assemblaggio, tutti i componenti del riduttore sono costruiti con

simmetria circolare fatta eccezione ovviamente per la camma del wave generator. Il

cuscinetto in cui questa si inserisce è composto da due ralle di spessore trascurabile

rispetto alle dimensioni radiali ed un certo numero di sfere, nel caso in esame pari a nove,

che permettono alla camma di ruotare riducendone l’attrito quando questa aderisce alla

ralla interna mentre la flexspline aderisce alla ralla esterna.

La camma può essere descritta come un’ellisse con semiassi ai e bi, orientata lungo
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Principio di funzionamento e geometria del riduttore armonico

gli assi cartesiani. La differenza tra i due semiassi definisce l’entità della deformazione

imposta, mentre la rotazione della camma rispetto all’origine determina la posizione an-

golare della deformazione. Al variare dell’angolo di rotazione, l’ellisse ruota solidalmente

alla ralla interna, trasferendo la deformazione lungo i punti di contatto con le sfere del

cuscinetto.

Figura 1.3: Cuscinetto in condizioni non deformate.

Grandezza Notazione Valore

Raggio interno Ri 15,69 mm
Raggio esterno Re 23,63 mm
Diametro sfere db 7,94 mm
Semiasse maggiore ai 16,19 mm
Semiasse minore bi 15,19 mm

Tabella 1.1: Dimensioni del cuscinetto

20



1.2 – Geometria e dimensioni dei componenti

La Flexspline è l’elemento del riduttore armonico che, grazie alla deformazione in-

dotta dal Wave Generator, permette l’ingranamento con la Circular Spline. In confi-

gurazione non deformata la sua geometria può essere assimilata a quella di un cilindro

sottile, detto rim, chiuso su un’estremità da una flangia che consente il collegamento

meccanico con l’albero di uscita, o con un vincolo torsionale come nel caso in esame. I

parametri principali che dimensionano la Flexspline e la sua dentatura sono: il numero

dei denti, il passo ed il modulo dei denti (p = πm), i raggi di altezza dei denti e della

rim, la lunghezza dei denti e della flangia e lo spessore della flangia e della rim.

Figura 1.4: Sezione della flexspline non deformata

La geometria della circular spline, infine, può essere assimilata a quella di una corona

cilindrica a parete spessa, sulla quale è ricavata una dentatura interna con modulo pari a

quello dei denti della flexspline ma in numero superiore per il maggiore raggio. Il profilo

dei denti non è semplicemente a doppio arco (come nella flexspline), ma viene costruito

per essere coniugato a quello della flexspline, così da garantire un corretto ingranamento

e un rapporto di trasmissione costante, evitando scorrimenti tra i denti [16].
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Principio di funzionamento e geometria del riduttore armonico

Grandezza Notazione Valore

Raggio interno del cilindro r0F S 23,63 mm
Raggio alla testa dei denti raF S 25 mm
Lunghezza dei denti bF S 12,1 mm
Lunghezza della rim l 30,6 mm
Spessore della flangia sboss 15,19 mm
Spessore della rim srimF S 0,875 mm
Numero dei denti ZF S 200

Tabella 1.2: Principali dimensioni della flexspline

Figura 1.5: Sezione della circular spline

Grandezza Notazione Valore

Raggio del cilindro RbCS 24,75 mm
Raggio della testa dei denti riCS 24,15 mm
Lunghezza dei denti bCS 12,1 mm
Spessore della rim srimCS 2 mm
Numero dei denti ZCS 202

Tabella 1.3: Principali dimensioni della circular spline
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Capitolo 2

Analisi statica del riduttore

armonico

In questo capitolo viene affrontato il calcolo delle condizioni iniziali del modello del ridut-

tore armonico, necessarie per garantire una corretta simulazione del suo comportamento

dinamico. Tali condizioni derivano dalla soluzione della configurazione di equilibrio stati-

co del sistema una volta inserito il Wave Generator all’interno della Flexspline e quest’ul-

tima all’interno della Circular Spline, modellandone le interazioni. Dopo aver definito

il modello matematico che descrive le interazioni tra i componenti, se ne presenterà la

risoluzione numerica implementata in ambiente MATLAB®.

2.1 Descrizione del modello matematico

La soluzione della formulazione statica per la simulazione del riduttore armonico è stata

sviluppata a partire da un modello matematico coincidente con quello che verrà utilizzato

per la fase di rotazione, considerando però condizioni di equilibrio statico. L’approccio

seguito è di tipo vettoriale: le incognite che descrivono le coordinate dei punti della ralla

esterna e dei denti della flexspline vengono messe in relazione alle rigidezze ed alle forze
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Analisi statica del riduttore armonico

agenti nel sistema. Queste ultime dipendono quindi a loro volta dalle incognite stesse o

dalle variabili indipendenti, ossia le coordinate della ralla interna.

Per costruire il modello si procede dall’interno verso l’esterno: si analizza prima

la deformazione del cuscinetto, modellando le sfere come molle non lineari con contat-

to hertziano, successivamente si sfruttano questi risultati come condizioni iniziali per

valutare l’interazione con la flexspline concludendo con la modellazione delle forze di

ingranamento tra flexspline e circular spline.

Come descritto nel Capitolo 1, il cuscinetto è costituito da una ralla interna, nove

sfere e una ralla esterna. La ralla interna viene modellata come un’ellisse ideale, sulla

quale è imposto lo spostamento derivante dalla camma ellittica del Wave Generator.

Le nove sfere sono rappresentate come elementi elastici secondo la teoria del contatto

hertziano, in grado di sviluppare forze di compressione in funzione della deformazione.

Infine, la ralla esterna è discretizzata in nove settori, ciascuno centrato su un punto

di contatto con le sfere, connessi tra loro tramite un modello molla-smorzatore che

garantisce l’integrità della ralla esterna e l’omogeneizzazione della deformazione tra un

settore e l’altro.

In questo primo modello, su ciascuno dei nove settori (i = 1, . . . ,9) appartenenti alla

ralla esterna agiscono le forze elastiche dovute alle sfere FB in direzione normale all’ellisse

αN e le forze di richiamo tra settori adiacenti Fi±1 dirette lungo la congiungente tra i

settori.

Secondo la teoria del contatto Hertziano la forza FB è calcolabile come fatto in [11]

FB = Kb · δγ · h(δ) (2.1)

in cui:

• Kb è la rigidezza della sfera
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2.1 – Descrizione del modello matematico

Figura 2.1: Diagramma di corpo libero di un settore della ralla esterna del cuscinetto

• δ =
√︁

(xe − xi)2 + (ye − yi)2 − db è la deformazione ideale della sfera, in cui db è il

suo diametro in condizioni indeformate.

• γ = 3
2 è l’esponente del contatto Hertziano

• h(δ) =

⎧⎪⎪⎨⎪⎪⎩
1 se δ < 0

0 se δ ≥ 0
è la funzione di attivazione del contatto

e l’angolo normale all’ellisse è calcolabile come αNi = arctan
(︃

a2
i yi

b2
i xi

)︃
.

Le forze tra settori adiacenti sono modellate secondo un modello elasto-viscoso:

FSSi±1 = ki±1 · δi±1 + ci±1 · δ̇i±1 (2.2)

in cui:
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• ki±1 è la rigidezza tra settori adiacenti

• δi±1 =
√︁

(xi − xi±1)2 + (yi − yi±1)2 − δ0 è la deformazione tra settori adiacenti e

δ0 la distanza tra settori in condizioni non deformate

• ci±1 è lo smorzamento tra settori adiacenti

• δ̇i±1 = (ẋi±1 − ẋi) · cos(εi±1) + (ẏi±1 − ẏi) · sin(εi±1) è la velocità relativa tra due

settori

• εi±1 = arctan
(︂

yi±1−yi

xi±1−xi

)︂
è l’angolo tra la congiungente due settori e l’asse orizzon-

tale

Le condizioni di equilibrio dinamico si possono scrivere come:

mS ẍ = FB · cos(αN ) + FSS+1 · cos(ε+1) + FSS−1 · cos(ε−1)

mS ÿ = FB · sin(αN ) + FSS+1 · sin(ε+1) + FSS−1 · sin(ε−1)
(2.3)

Che nel caso statico si riducono a:

0 = FB · cos(αN ) + k+1 · δ+1 · cos(ε+1) + k−1 · δ−1 · cos(ε−1)

0 = FB · sin(αN ) + k+1 · δ+1 · sin(ε+1) + k−1 · δ−1 · sin(ε−1)
(2.4)

La soluzione di questo sistema permette il calcolo delle condizioni di equilibrio del

wave generator all’inserimento della camma ellittica. Successivamente, il modello è stato

arricchito includendo l’interfaccia con la flexspline: la ralla esterna è stata ricostruita con

una discretizzazione da 200 punti, ottenuti interpolando i raggi calcolati nei nove punti di

contatto tramite una spline cubica, così da garantire la continuità della derivata prima.

Su ciascuno di questi punti viene modellato il contatto elastico con il corrispondente

dente della flexspline, seguendo lo schema già proposto in [3].
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2.1 – Descrizione del modello matematico

Figura 2.2: Diagramma di corpo libero di un settore di ralla esterna, con interazione
della flexspline

Figura 2.3: Diagramma di corpo libero di un dente di flexspline
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Analisi statica del riduttore armonico

2.1.1 Modellazione dell’interazione tra Wave Generator e Flexspline

In questo modello si considera la discretizzazione della flexspline coincidente con i denti

(t = 1 . . . ZF S) e quindi su ogni dente le forze agenti: di interazione con il settore

sottostante FT S , le interazioni tra denti adiacenti FT T t±1, un coppia di forze dovute

resistenza flessionale FF t±1, una forza dovuta alla resistenza torsionale FR poiché la

rotazione della flexspline è vincolata, come visto in. Si considera quindi su ogni settore

un carico distribuito q =
∑︁

FT S

L , dove L rappresenta la lunghezza del settore. Questo

carico distribuito equivale a un carico concentrato di intensità
∑︁
FT S applicato nel centro

del settore.

Operativamente, calcolato il vettore FT S di ZF S elementi (forze di interazione dente-

settore), si determina il vettore
∑︁

FT S di nb elementi attraverso l’operazione:

∑︂
FT S = −Q · FT S (2.5)

dove Q è una matrice di assegnazione di dimensione [nb × ZF S ], inizializzata a zeri,

che ha lo scopo di mappare ciascun dente j (colonna) al settore i (riga) angolarmente

più vicino.

La matrice viene costruita iterando su ogni colonna j (per j = 1 . . . ZF S): si calcolano

le differenze angolari tra la posizione del dente j e quelle di tutti i nb settori; si individua

quindi l’indice di riga i che corrisponde alla minima differenza e si imposta Q(i, j) = 1.

In questo modo, ogni colonna contiene un unico ’1’, definendo così la ripartizione

delle forze tra i diversi settori della ralla esterna.

L’interazione tra dente e settore è modellata con un modello elasto-viscoso che agi-

sce solo quando i corpi si compenetrano, come era la forza FB, l’interazione tra denti

adiacenti della flexspline è analoga a quella tra settori adiacenti.Si introduce inoltre una

forza di richiamo flessionale, fondamentale per replicare il comportamento fisico reale del

sistema . Questa componente modella la rigidezza intrinseca della rim della flexspline,
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2.1 – Descrizione del modello matematico

la quale si oppone naturalmente alla flessione relativa tra i denti . Senza questa for-

za, volendo costringere la flexspline a seguire istantaneamente la deformazione ellittica,

sarebbero necessari valori di smorzamento tra i denti eccessivamente alti. Tali smorza-

menti, tuttavia, provocherebbero ritardi dinamici, portando a penetrazioni eccessive e

possibili "falsi ingranamenti" con la Circular Spline .

Per evitare questo comportamento irrealistico (simile a una catena appoggiata) e

replicare l’effettiva elasticità del componente, la coppia di richiamo flessionale è definita

proporzionale alla variazione dell’angolo tra due denti adiacenti:

FF i±1 = KF i · η + cF i · η̇
δi±1

(2.6)

in cui:

• KF i è un valore di rigidezza flessionale

• η = εi − εi0 è la variazione dell’angolo tra due denti

• cF i è un valore di smorzamento flessionale

• δi±1 è la distanza tra il centro di massa di due denti

Sarà diretta perpendicolarmente alla congiungente tra i due denti, π
2 ∓ ε±1 rispetto

l’asse orizzontale.

La forza di richiamo torsionale serve invece a modellare il vincolo della flexspline ed

ha quindi modulo proporzionale alla variazione dell’angolo tra il dente e l’origine del

sistema di riferimento, questa forza sarà presente solo durante la rotazione del riduttore.

FR =
KT · ∆ψ + cT · VR

ρt

ρt
(2.7)

in cui:

• KT è un valore di rigidezza torsionale
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• ∆ψ = ψ − ψ0 è la variazione dell’angolo del dente misurata dall’origine del si-

stema di riferimento rispetto alle condizioni statiche, dopo l’inserimento del wave

generator ma precedentemente alla rotazione

• cT è un valore di smorzamento torsionale

• VR è la velocità del dente in direzione tangente all’ellisse

• ρt è la distanza del dente dal centro dell’ellisse

Le forze di ingranamento con i denti della circular spline alla destra e alla sinistra

F dx
m e F sx

m saranno presenti nel modello di rotazione completo e verranno descritte nel

paragrafo 2.1.2.

Le equazioni di equilibrio sono state quindi formulate a partire dai diagrammi di

corpo libero dei settori della ralla esterna e dei denti della flexspline.

mSxS̈ = FB · cos(αN ) + FSS+1 · cos(ε+1) + FSS−1 · cos(ε−1) −
∑︂

FT S · cos(αN )

mSyS̈ = FB · sin(αN ) + FSS+1 · sin(ε+1) + FSS−1 · sin(ε−1) −
∑︂

FT S · sin(αN )

mTxT̈ = FT S · cos(αN ) + FT T +1 · cos(ε+1) + FT T −1 · cos(ε−1) − FF +1 · sin(ε+1)

− FF −1 · sin(ε−1) − FR · sin(αN ) + F dx
m ,x + F sx

m x

mT yT̈ = FT S · sin(αN ) + FT T +1 · sin(ε+1) + FT T −1 · sin(ε−1) + FF +1 · cos(ε+1)

− FF −1 · cos(ε−1) − FR · cos(αN ) + F dx
m ,y + F sx

m ,y

(2.8)

Che nel caso statico si riducono a:
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2.1 – Descrizione del modello matematico

0 = FB · cos(αN ) + k+1 · δ+1 · cos(ε+1) + k−1 · δ−1 · cos(ε−1) −
∑︂

FT S · cos(αN )

0 = FB · sin(αN ) + k+1 · δ+1 · sin(ε+1) + k−1 · δ−1 · sin(ε−1) −
∑︂

FT S · sin(αN )

0 = FT S · cos(αN ) + kT +1 · (δT +1 − δ0) · cos(ε+1) + kT −1 · (δT −1 − δ0) · cos(ε−1)

− KF · η+1
δT +1

· sin(ε+1) − KF · η−1
δT −1

· sin(ε−1)

0 = FT S · sin(αN ) + kT +1 · (δT +1 − δ0) · sin(ε+1) + kT −1 · (δT −1 − δ0) · sin(ε−1)

+ KF · η+1
δT +1

· cos(ε+1) − KF · η−1
δT −1

· cos(ε−1)

(2.9)

La risoluzione del sistema, da 418 incognite complessive di cui nove coppie per le

sfere e 200 coppie per i denti, consente di determinare la configurazione iniziale del

sistema composto da Wave Generator e Flexspline, si procede infine modellando le forze

di ingranamento tra denti della Flexspline e Circular Spline, al fine di poter considerare

un ulteriore grado di libertà del sistema: la rotazione della Circular Spline.

2.1.2 Modellazione dell’interazione tra Flexspline e Circular Spline

La Circular Spline viene modellata come un corpo rigido che ha la possibilità di ingranare

con la Flex Spline, la sua equazione di equilibrio alla rotazione sarà:

JCS · θ̈CS =
∑︂

(Fm · cos(β − δm) · ρCS) − cCS θ̇CS − TR (2.10)

in cui:

• JCS è l’inerzia della Circular Spline attorno all’asse di rotazione

• δm è definito come la differenza tra gli angoli che, rispetto al centro del sistema,

individuano rispettivamente il punto di contatto e il centro di massa del dente [3].

• ρCS è il raggio primitivo della Circular Spline

31



Analisi statica del riduttore armonico

Figura 2.4: Diagramma di corpo libero di un dente di flex spline, con interazione della
circular spline

• TR è la coppia di carico a valle del riduttore

Questa condizione in situazione statica, ed assenza di carico, si riduce a:

∑︂
(Fm · cos(β − δm)) = 0 (2.11)

Per valutare le forze di interazione tra i denti è stato ricostruito il modello proposto

in [3]: per ciascun dente della Flexspline vengono individuati i denti della Circular Spline

angolarmente più prossimi, denominati rispettivamente dente destro e dente sinistro
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potenzialmente in ingranamento.

A partire dal punto di discretizzazione del dente della Flexspline, viene quindi rico-

struito il profilo a doppio arco del dente, discretizzato in 5N punti: N punti per ciascun

arco delle due facce laterali e N punti per la testa del dente. La compenetrazione tra i

profili dei denti viene valutata come la distanza tra due punti appartenenti alle rispettive

facce dei denti, individuati dalla media degli indici dei punti in compenetrazione.

Operativamente, il calcolo di Fm può essere così sintetizzato:

• per ogni punto della Flexspline di coordinate (xt, yt) si individuano i denti della

Circular Spline più vicini, a destra e a sinistra, di coordinate (xCS,DX , yCS,DX) e

(xCS,SX , yCS,SX);

• si costruisce il profilo dei denti e li si trasla sulle rispettive coordinate (xt, yt) e

(xCS , yCS), ruotandolo di un angolo αN per la Flexspline e αN + π per la Circular

Spline;

• si calcola la differenza lungo x e y tra i punti dei due profili;

• si conferma la presenza di compenetrazione nel caso in cui almeno una di tali

differenze sia pari a zero;

• infine, il valore di compenetrazione δ viene assunto come la distanza tra i punti le

cui coordinate corrispondono alla media degli indici dei punti in compenetrazione;

• Si calcola quindi Fm = KF SCS
· δ

Nelle figure 2.5 e 2.6 sono mostrati dei dettagli di Flexspline e Circular Spline al-

l’interno del secondo e terzo quadrante in condizioni di equilibrio, è possibile notare il

contatto e la compentrazione rispettivamente sulle facce destre e sinistre dei denti più

vicini al semiasse maggiore denti.
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Figura 2.5: Esempio di visualizzazione della compenetrazione tra denti con ingranamento
destro sul settore 5

Avendo descritto tutte le forze in gioco è ora possibile procedere con la ricerca delle

condizioni di equilibrio iniziali, a causa delle numerose non linearità inserite nella model-

lazione si affiderà il problema ad un risolutore basato sulla minimizzazione del residuo

con algoritmo ai minimi quadrati.

2.2 Risultati del calcolo delle condizioni iniziali

Una volta definite le equazioni di equilibrio e il modello matematico che descrive le

interazioni tra le componenti del Wave Generator e della Flexspline, è stato necessario

risolvere numericamente il sistema non lineare ottenuto per determinare le condizioni
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Figura 2.6: Esempio di visualizzazione della compenetrazione tra denti con ingranamento
sinistro nel primo quadrante

iniziali di equilibrio statiche.

Il problema è stato formulato come un sistema di equazioni che descrive le forze

risultanti su ogni punto della discretizzazione, in cui le incognite sono le coordinate dei

punti appartenenti alla ralla esterna e ai denti della Flexspline. A causa della natura non

lineare delle forze di contatto (in particolare quelle modellate secondo la teoria hertziana)

e dell’elevato numero di variabili, il sistema risulta fortemente accoppiato e sensibile alla

scelta delle condizioni iniziali.

Per la risoluzione è stato adottato il solver lsqnonlin di MATLAB®, preferendolo a

fsolve in quanto consente infatti di formulare il problema come una minimizzazione nel

senso dei minimi quadrati della norma delle equazioni residue, garantendo una maggiore

robustezza numerica anche in presenza di non linearità marcate e fornendo una migliore
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gestione dei limiti e dei vincoli sulle variabili [17].

Tra gli algoritmi disponibili all’interno del solver lsqnonlin sono stati analizzati

i metodi trust-region-reflective, Levenberg–Marquardt, e interior-point, confrontandone

l’efficacia sul problema in esame.

L’algoritmo trust-region-reflective si basa sulla risoluzione iterativa di sottoproblemi

quadratici all’interno di una regione di fiducia (trust region), nella quale il modello

locale approssima in modo accettabile la funzione obiettivo. Ogni iterazione richiede

la costruzione e la risoluzione di un sistema lineare associato alla matrice hessiana o

alla sua approssimazione, con aggiornamenti della dimensione della regione di fiducia

in base al rapporto tra riduzione effettiva e prevista della funzione obiettivo. Questo

approccio, pur essendo robusto e ampiamente utilizzato per problemi vincolati da limiti

superiori e inferiori, tende a soffrire di tempi di convergenza elevati e di instabilità in

presenza di forti non linearità e di residui di piccola entità, come avviene nel modello

considerato [18].

Il metodo Levenberg–Marquardt (LM) rappresenta invece un compromesso tra il me-

todo di Gauss–Newton e la discesa del gradiente, introducendo un parametro di rego-

larizzazione che stabilizza l’aggiornamento in prossimità di regioni non lineari o mal

condizionate. Questo algoritmo è particolarmente efficiente per problemi di dimensioni

moderate e con jacobiani densi, ma tende a mostrare difficoltà di convergenza per pro-

blemi di larga scala con struttura sparsa e numerosi vincoli [17]. Nei test preliminari

condotti, il metodo LM ha mostrato una sensibilità marcata alla scelta delle condizioni

iniziali e una maggiore probabilità di convergenza verso soluzioni localmente non fisiche.

L’algoritmo interior-point, infine, si basa su una formulazione in cui i vincoli del

problema vengono incorporati nella funzione obiettivo attraverso funzioni barriera, ri-

solvendo iterativamente le condizioni di Karush–Kuhn–Tucker mediante passi Newton

modificati. Questo approccio consente di mantenere le variabili entro i limiti ammissibili

e di gestire vincoli non lineari o sistemi altamente accoppiati.
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Nonostante i maggiori tempi di computazione richiesti, l’algoritmo interior-point

ha fornito i risultati più accurati e stabili, garantendo una convergenza regolare e una

soluzione coerente con l’equilibrio statico atteso. Le simulazioni hanno evidenziato che

tale metodo permette di risolvere il problema senza divergenze o oscillazioni numeriche,

preservando la continuità delle forze di contatto tra i vari componenti: per questo motivo

è stato scelto come algoritmo definitivo per la risoluzione del modello completo.

Nel campo dell’ottimizzazione meccanica e del contatto elastico, applicazioni analo-

ghe confermano l’efficacia dei metodi interior-point per la risoluzione di problemi di tipo

hertziano [19].

Figura 2.7: Rappresentazione dei risultati del problema della deformazione del cuscinetto
isolato

La Figura 2.7 mostra la configurazione di equilibrio della ralla esterna del cuscinetto,

ottenuta risolvendo il sistema in 18 incognite mediante il solver lsqnonlin tramite algo-

ritmo interior-point. Il confronto tra le geometrie prima e dopo la deformazione mostra
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la deformazione elastica subita dalla ralla in corrispondenza delle zone di contatto con

le sfere. La deviazione rispetto alla geometria iniziale risulta coerente con l’andamento

teorico previsto: la ralla si flette localmente in prossimità delle forze di contatto, man-

tenendo tuttavia una forma pressoché circolare nelle regioni non sollecitate che vengono

ricostruite sfruttando un’interpolazione che fa uso di spline cubiche, in modo da garantire

continuità nella derivata.

Figura 2.8: Equilibrio delle forze sul settore 1, in blu la forza elastica dalla sfera, in
arancione e rosso le forze dai settori adiacenti
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Questo comportamento conferma la corretta distribuzione del carico fra le sfere e la

validità del modello nel descrivere la risposta elastica della ralla. Il risultato ottenuto

fornisce quindi una base di riferimento, nonchè il punto iniziale, per la successiva ricerca

delle condizioni di equilibrio tra Flexspline e Circular Spline.

Figura 2.9: Rappresentazione dei risultati del calcolo delle condizioni iniziali nel modello
completo

Dall’analisi dei risultati del calcolo delle condizioni iniziali è possibile trarre alcune

conclusioni riguardanti la distribuzione e il modulo delle forze nel sistema complessivo,

comprendente il cuscinetto deformabile, la Flexspline e la Circular Spline.

Tutte le nove sfere risultano compresse, come previsto, in modo da generare rea-

zioni radiali che bilanciano le forze agenti sui corrispondenti settori della ralla esterna.

La compressione delle sfere rappresenta il principale meccanismo di trasmissione della

deformazione imposta dalla camma ellittica del Wave Generator verso l’anello esterno,

consentendo al sistema di raggiungere la condizione di equilibrio statico. Le reazioni di
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contatto, distribuite in modo simmetrico lungo la circonferenza, mostrano un andamento

coerente con la simmetria del modello, con valori massimi in corrispondenza dei punti

di maggiore eccentricità della camma.

Figura 2.10: Equilibrio delle forze sul dente n.121

In equilibrio, anche le forze di richiamo tra settori adiacenti e quelle di contatto tra

i settori e i denti della Flexspline contribuiscono a mantenere la continuità geometrica

della ralla esterna. Le interazioni tra settori agiscono lungo le congiungenti tra i centri

dei settori, compensando le componenti tangenziali delle reazioni delle sfere e garantendo

la stabilità della forma ellittica assunta dall’anello esterno sotto deformazione.

Le forze di ingranamento tra Flexspline e Circular Spline risultano localizzate sul

semiasse maggiore dell’ellisse, in accordo con il principio di funzionamento del riduttore

armonico. Il modulo di tali forze risulta contenuto, poiché la deformazione imposta dal

Wave Generator viene in larga parte assorbita dalle rigidezze distribuite del sistema, in
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particolare da quella hertziana delle sfere e dalla rigidezza flessionale dei denti della Fle-

xspline. Inoltre, le forze di ingranamento presentano un andamento simmetrico rispetto

all’asse maggiore: tale simmetria implica che la risultante delle forze tangenziali lungo

la circonferenza è prossima a zero e che, di conseguenza, la Circular Spline non tende a

ruotare. Questo comportamento conferma che il modello in equilibrio statico non pre-

senta coppie spurie sull’albero d’uscita e rispetta la condizione di simmetria imposta dal

sistema.

Si osserva, infine, che il modello risulta particolarmente sensibile ai parametri di

rigidezza del contatto tra sfere, delle connessioni tra settori e della flessione dei den-

ti. Piccole variazioni di questi parametri possono modificare in modo apprezzabile la

distribuzione delle forze e il grado di deformazione locale, aspetto che riveste un ruolo

centrale nell’ottica delle applicazioni di Prognostics and Health Monitoring basate sull’a-

nalisi delle forze di contatto e delle loro variazioni nel tempo, per questo motivo saranno

necessari raffinati lavori di tuning dei parametri che garantiranno realismo e funzionalità

al modello finale.
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Capitolo 3

Modello di rotazione del riduttore

completo

Il presente capitolo descrive l’integrazione del modello del cuscinetto deformabile all’in-

terno del modello completo di riduttore armonico per poi effettuare una analisi di natura

dinamica del sistema complesso costituito da cuscinetto deformabile e riduttore armoni-

co.

Il modello risultante, implementato in ambiente Matlab/Simulink, consente di simulare

il comportamento dinamico del sistema durante la rotazione, includendo le interazioni

tra tutte le principali componenti: Wave Generator, Flexspline e Circular Spline. L’o-

biettivo è quello di ottenere una rappresentazione high-fidelity del riduttore, capace di

riprodurre in modo realistico gli effetti della deformabilità e dell’elasticità dei singoli ele-

menti, fornendo così una base solida per analisi di diagnostica, prognostica e validazione

futura con dati sperimentali. Il modello è stato costruito secondo un approccio multi-

body, nel quale ogni sottocomponente è rappresentato da un blocco Simulink dedicato

e interconnesso agli altri attraverso segnali di forza, spostamento e velocità angolare.

La simulazione del comportamento complessivo consente di analizzare in dettaglio la
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Modello di rotazione del riduttore completo

risposta dinamica del riduttore durante una rotazione imposta, con la possibilità di ve-

rificare la coerenza del comportamento statico (condizioni di equilibrio) e di valutare le

prestazioni cinematiche e dinamiche del sistema.

Le condizioni iniziali ottenute nel capitolo 2 possono essere quindi inserite all’interno

del modello qui presentato, inizialmente con una velocità di rotazione in ingresso nulla per

poterne verificare le condizioni di equilibrio e poi ottenere dei risultati sulle prestazioni

del riduttore simulando una rotazione in ingresso.

Figura 3.1: Schema del modello Simulink per la rotazione del riduttore armonico comple-
to, con evidenza dei blocchi principali (Sfere, Ralla Esterna, Flexspline, Circular Spline)
e dei segnali scambiati.

Lo schema generale del modello, mostrato in Figura 3.1, evidenzia il flusso dei segnali

principali e la sequenza di calcolo che collega i diversi blocchi funzionali:

• Input del modello: la variabile di ingresso principale è la velocità angolare

ωW G del Wave Generator, applicata alla camma ellittica. Essa rappresenta la

sorgente del moto e, attraverso una funzione di trasferimento che viene utilizzata

per simulare una partenza graduale, impone le deformazioni sul resto del sistema:

la rotazione della camma genera lo spostamento ellittico della ralla interna del

cuscinetto, che costituisce il primo elemento dinamico del modello.

• Blocco Sfere: riceve come input la cinematica della ralla interna e calcola le

forze di contatto hertziane e di attrito tra ciascuna sfera e le due ralle. L’output
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Modello di rotazione del riduttore completo

del blocco è rappresentato dalla forza totale scambiata dalle sfere (FB), che viene

trasmessa al blocco successivo e contribuisce all’equilibrio della ralla esterna.

• Blocco Ralla Esterna: utilizza le forze delle sfere come input, risolvendo per

ogni settore della ralla l’equilibrio dinamico in presenza di forze elasto-viscose e

delle interazioni con la Flexspline. Le posizioni della Flexspline vengono ricevute in

feedback ed elaborate per calcolare le forze di contatto FT S . L’output principale di

questo blocco è rappresentato dalle coordinate aggiornate della superficie esterna

(Xe), utilizzate nel calcolo delle interazioni con le sfere.

• Blocco Flexspline: costituisce il cuore del modello, in quanto elabora le forze

in ingresso e le interazioni tra la Flexspline e la Circular Spline. Riceve in input

la forza di contatto proveniente dalla ralla esterna (FT S) e le coordinate della

Circular Spline in feedback. Internamente, per ogni dente, vengono calcolate le

forze flessionali e torsionali e la forza d’ingranamento (Fm) derivante dal contatto

con la Circular Spline. L’output di questo blocco è costituito dalle coordinate

istantanee dei denti della Flexspline (XF S), utilizzate come feedback sia per la

ralla esterna sia per la Circular Spline.

• Blocco Circular Spline: rappresenta l’anello di chiusura della catena cinemati-

ca. Riceve la distribuzione delle forze di ingranamento provenienti dalla Flexspline

e calcola, in base alle posizioni angolari e ai denti in presa, la coppia risultan-

te agente sulla Circular Spline. L’equilibrio rotazionale di quest’ultima consente

di determinare l’accelerazione e la velocità angolare in uscita, che rappresentano

l’output cinematico del riduttore.

L’interazione tra i blocchi è completamente bidirezionale: le forze di contatto ven-

gono propagate in avanti lungo la catena cinematica, mentre le posizioni e le coordinate
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Modello di rotazione del riduttore completo

geometriche vengono restituite in feedback ai blocchi precedenti, garantendo un accop-

piamento realistico tra tutti i componenti in rispetto del principio di azione-reazione.

Questa architettura consente di ottenere un modello numericamente coerente e dinami-

camente accoppiato, in grado di riprodurre fedelmente i fenomeni meccanici caratteristici

del riduttore armonico.

Nei paragrafi seguenti verranno descritti in dettaglio i principali sottomodelli che

compongono l’architettura del riduttore, specificando le equazioni implementate, le ipo-

tesi adottate e la natura dei segnali scambiati tra i vari blocchi.

3.1 Modellazione dinamica delle Sfere

Figura 3.2: Schema del sottomodello Simulink relativo alla dinamica delle sfere e al
calcolo dell’interazione con la ralla esterna.

All’interno di questo blocco viene implementata la dinamica delle nove sfere interne

al cuscinetto deformabile del Wave Generator, come descritto nel Capitolo 2 di [11].

Ogni sfera è modellata come un corpo rigido soggetto alle forze di contatto con la ralla

interna e la ralla esterna, quindi alle forze d’attrito e alle eventuali componenti viscose

associate alla rotazione. L’equilibrio dinamico viene risolto a ogni passo di integrazione,

aggiornando la posizione e la velocità di ciascuna sfera in funzione delle forze agenti.
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A ogni step di simulazione vengono ricalcolate le coordinate dei punti di contatto tra

le sfere e la ralla esterna. Per ciascuna sfera i viene risolto l’equilibrio alla traslazione

lungo la direzione tangenziale e l’equilibrio alla rotazione, considerando unicamente le

forze che effettivamente agiscono sulla sfera, ovvero le componenti di attrito. Le forze

di contatto hertziane, pur essendo calcolate nel blocco, non agiscono direttamente sulle

sfere ma vengono trasmesse come segnali di uscita verso la ralla esterna.

mb ẍi = Fattr,i + Fvisc,i (3.1)

Le forze di attrito Fattr,i sono modellate come proporzionali alla forza di contatto normale

FB,i tra le due ralle attraverso la sfera, mediante un coefficiente d’attrito µi calcolato

dinamicamente in funzione dello stato locale di contatto:

Fattr,i = µi FB,i ti (3.2)

dove ti è la direzione tangenziale nel punto di contatto. L’algoritmo di calcolo di

µi tiene conto delle condizioni relative di scorrimento, consentendo di distinguere tra

regime di aderenza e di slittamento parziale, come descritto in [20].

L’angolo di rotazione θi di ciascuna sfera viene aggiornato a ogni passo temporale

integrando la velocità angolare istantanea θ̇i:

θi(t+ ∆t) = θi(t) + θ̇i ∆t (3.3)

L’integrazione di θi consente di aggiornare la posizione dei punti di contatto e di calcolare

le nuove direzioni delle forze αN,i, garantendo la corretta evoluzione cinematica della

superficie di contatto tra sfera e ralla. I valori aggiornati di FB,i e αN,i vengono quindi

forniti in uscita al blocco successivo (Ralla Esterna), che utilizza tali informazioni per

determinare la risposta dinamica dei settori deformabili.
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Questo approccio, mutuato dal modello di [11], consente di rappresentare accuratamente

la distribuzione dinamica dei contatti durante la rotazione del Wave Generator. In

particolare, il ricalcolo iterativo dei punti di contatto e delle forze hertziane garantisce

la coerenza con la cinematica imposta dal profilo ellittico e con la deformabilità della

ralla esterna.

3.2 Modellazione dinamica della ralla esterna del cuscinet-

to deformabile

Figura 3.3: Schema del sottomodello Simulink relativo alla dinamica dei settori della
ralla esterna e al calcolo dell’interazione con la Flexspline.

Il blocco Ralla Esterna rappresenta l’anello intermedio del modello e svolge un ruolo

fondamentale nella trasmissione delle forze dal cuscinetto alla Flexspline. Riceve in input

le forze di contatto FB provenienti dalle sfere e le rispettive direzioni αN,i calcolate

nel blocco precedente, risolvendo per ciascun settore della ralla l’equilibrio dinamico in

presenza delle forze esterne e delle interazioni elasto-viscose con i settori adiacenti.

La ralla esterna è discretizzata in nb settori, ognuno dei quali è assimilabile a una piccola

porzione di trave deformabile vincolata elasticamente alle porzioni vicine. Le forze scam-

biate con la Flexspline vengono modellate come carichi distribuiti sui settori, calcolati in
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base alle coordinate della superficie della Flexspline (XF S) ricevute in feedback. Poiché

la Flexspline è rappresentata da un numero di denti ZF S maggiore del numero di settori

della ralla, è stato necessario introdurre una matrice di assegnamento che consente

di collegare in modo coerente i denti ai settori corrispondenti.

Le posizioni della Flexspline, ottenute dal blocco successivo, vengono elaborate in-

sieme alla ricostruzione della ralla esterna, ottenuta interpolando i nove settori, per

valutare i punti di contatto locali. L’output del blocco è rappresentato dalle coordinate

aggiornate della superficie esterna della ralla (Xe), utilizzate come input per il calcolo

delle forze di contatto nel blocco Flexspline.

3.3 Modellazione dinamica della Flexspline

Figura 3.4: Schema del sottomodello Simulink relativo alla dinamica dei denti della
Flexspline e al calcolo delle forze di ingranamento.

Il blocco dedicato alla dinamica della Flexspline rappresenta il cuore della modella-

zione del riduttore armonico, in quanto racchiude la parte più complessa del compor-

tamento dinamico e dell’interazione tra componenti. In questa sezione vengono risolti i

fenomeni di deformazione della parete flessibile e di ingranamento con la Circular Spli-

ne, includendo anche le forze interne di richiamo flessionale e torsionale già descritte

nel Capitolo 2. La Flexspline è modellata come un insieme di denti discreti, ciascuno
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dei quali è connesso elasticamente ai denti adiacenti tramite elementi di rigidezza che

riproducono il comportamento deformabile dell’anello sottile.

Il blocco riceve in ingresso:

• le forze di contatto FT S provenienti dalla ralla esterna;

• le coordinate della Circular Spline (XCS) in feedback;

• le direzioni di contatto αN,i e gli angoli di orientamento dei denti.

Per ogni dente j della Flexspline viene risolto l’equilibrio dinamico, considerando:

• le forze esterne provenienti dalla ralla esterna (FT S,j);

• le forze d’ingranamento Fm,j dovute al contatto con la Circular Spline;

• le forze interne di richiamo elastico, flessionale Ff,j e torsionale Ft,j che rappre-

sentano rispettivamente la rigidezza tra denti adiacenti, la forza di richiamo per la

deformazione della Flexspline e la reazione vincolare.

Il calcolo delle forze d’ingranamento Fm,j avviene individuando, a ogni passo temporale, i

denti effettivamente in presa e determinando la compenetrazione elastica locale lm,j tra il

profilo della Flexspline e quello della Circular Spline. Come descritto in [3], il contatto

tra i profili coniugati viene modellato attraverso un sistema massa–molla–smorzatore

che consente di rappresentare in modo continuo la generazione e l’evoluzione della forza

di ingranamento. La forza normale Fm,j giace lungo la retta di pressione individuata

dall’angolo βj e, in generale, non risulta simmetrica tra il profilo sinistro e quello destro

del dente. La formulazione adottata per il calcolo della forza di ingranamento è la

seguente:

Fm,j = KF S−CS lm,j + cF S−CS l̇m,j (3.4)

dove:
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• KF S−CS [N/m] è la rigidezza di contatto tra la Flexspline e la Circular Spline;

• cF S−CS [Ns/m] è il coefficiente di smorzamento del contatto;

• lm,j [m] rappresenta la deformazione dovuta alla compenetrazione tra i due profili

nel punto di contatto;

• l̇m,j [m/s] è la velocità di deformazione, calcolata a partire dalle velocità dei punti

di contatto dei due profili.

Le due componenti di ingranamento (sinistra e destra) possono presentare valori diffe-

renti, poiché il punto di contatto sul profilo destro non risulta in generale simmetrico

rispetto a quello sinistro. Questa asimmetria si traduce in una distribuzione non unifor-

me delle forze Fm,j lungo la circonferenza della Flexspline, fenomeno tipico dei riduttori

armonici.

L’inserimento del Wave Generator all’interno della Flexspline, a sua volta accop-

piata con la Circular Spline, determina una deformazione ellittica tale da garantire

l’ingranamento simultaneo di più coppie di denti lungo la circonferenza.

Le forze di ingranamento Fm,j vengono successivamente scomposte in componenti radiale

e tangenziale. Questa scomposizione avviene in funzione della posizione angolare dei

denti (ψj), o meglio della differenza tra le posizioni angolari tra i denti in contatto

(δm) , e dell’angolo di pressione locale (β). I valori calcolati vengono quindi trasmessi

come output al blocco Circular Spline, dove concorrono al calcolo della coppia torcente

risultante.

L’approccio adottato consente di rappresentare in modo realistico la deformabilità del-

la parete della Flexspline e la distribuzione delle forze lungo il perimetro, garantendo

coerenza con la cinematica imposta dal Wave Generator.
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3.4 Modellazione dinamica della Circular Spline

Il blocco Circular Spline chiude la catena cinematica del riduttore, ricevendo in ingresso

le forze d’ingranamento Fm calcolate nel blocco Flexspline e la coppia resistente, qualora

fosse presente. Per ciascun dente in presa, vengono valutati l’angolo di contatto β e

la direzione della forza d’ingranamento, in modo da poter determinare il contributo

tangenziale alla coppia risultante.

L’equilibrio dinamico alla rotazione della Circular Spline viene quindi espresso come:

JCS · θ̈CS =
∑︂

(Fm · cos(β − δm) · ρ) − cCS θ̇CS − TR (3.5)

dove:

• JCS è il momento d’inerzia della Circular Spline;

• ρ rappresenta il raggio del punto di applicazione della forza;

• cCS è il coefficiente viscoso di smorzamento;

• TR è la coppia resistente esterna applicata all’albero d’uscita.

Il primo termine a destra dell’equazione (3.5) rappresenta la somma dei contributi tan-

genziali di tutte le forze d’ingranamento, che generano la coppia motrice trasmessa attra-

verso il riduttore. L’integrazione temporale dell’equazione del moto consente di ottenere

la velocità angolare θ̇CS e la posizione angolare θCS della Circular Spline, variabili che co-

stituiscono le principali uscite del modello e vengono restituite al blocco Flexspline come

segnali di feedback. Questo accoppiamento bidirezionale garantisce la coerenza cinema-

tica e dinamica tra le due ruote dentate, permettendo di analizzare il comportamento

del riduttore sotto differenti condizioni operative.
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Capitolo 4

Risultati e validazione del modello

Nei capitoli precedenti è stato descritto il processo di integrazione del modello high-

fidelity del cuscinetto deformabile all’interno del modello multibody completo del ridut-

tore armonico. Si è prima affrontata l’analisi statica, in MATLAB, per la determinazio-

ne delle corrette condizioni iniziali nel capitolo 2 e, successivamente, si è presentato il

modello dinamico integrato in ambiente Simulink nel capitolo 3.

Ora ci si pone lo scopo di analizzare e validare il comportamento del modello ottenuto:

a tal fine verranno presentati i risultati numerici di due tipologie di simulazione:

La prima, descritta nella Sezione 4.1, analizza la stabilità statica del sistema. Si

verifica che il modello dinamico, in assenza di input di rotazione e sottoposto alle sole

condizioni iniziali di precarico, mantenga l’equilibrio statico calcolato in precedenza,

confermando la corretta implementazione delle interazioni tra i componenti.

La seconda, trattata nella Sezione 4.2, riguarda la rotazione del riduttore comple-

to. Verranno analizzati i principali output cinematici e dinamici, come la distribuzione

delle forze di contatto, la valutazione dell’errore cinematico e la risposta complessi-

va del sistema. Questi risultati verranno discussi e confrontati qualitativamente con i

comportamenti attesi descritti in letteratura, ponendo le basi per la futura validazione

sperimentale del modello.
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4.1 Simulazione di stabilità statica

Il primo passo per la validazione del modello dinamico consiste nel verificarne la stabilità

in condizioni statiche, confermando che il sistema, una volta inizializzato con le condi-

zioni di equilibrio statico calcolate nel capitolo 2, mantenga tale equilibrio in assenza

di input esterni ovvero quando il modello, in ambiente Matlab/Simulink, viene lanciato

imponendo una velocità di rotazione del Wave Generator nulla (ωW G = 0). Le condi-

zioni iniziali relative alla deformazione dei componenti e al precarico interno sono state

caricate direttamente dai risultati dell’analisi statica . Idealmente si vorrebbe che, in

queste condizioni, le velocità e le accelerazioni di tutti i componenti del modello (denti

della Flexspline, settori della ralla esterna, sfere e Circular Spline) rimangano nulle, e che

le forze di interazione interne rimangano costanti e pari ai valori di equilibrio; tuttavia, è

prevedibile che vi siano delle oscillazioni dovute agli errori numerici residui della funzione

di minimizzazione dell’errore utilizzata per ricavare le condizioni iniziali nel capitolo 2.

La simulazione è stata eseguita impostando i parametri in tabella dove si riportano

anche le specifiche dell’hardware impiegato.

Parametro Descrizione/Valore

Processore Intel® Core™ i7-8565U CPU @ 1.80GHz
Memoria RAM 8 GB

ωW G (Input) 0 rad/s
Solver ode14x
Tempo di simulazione 50 · 10−6 s
Fixed-step size 1 · 10−7 s

Tabella 4.1: Parametri utilizzati per la simulazione statica del riduttore armonico.

L’analisi dei risultati, riportata nelle figure seguenti, mostra un comportamento del

sistema vicino alla stabilità attesa, sebbene si manifestino delle oscillazioni prevedibili

e dovute agli errori residui della funzione di minimizzazione dell’errore utilizzata per

ricavare le condizioni iniziali (capitolo 2), che comportano una risultante delle forze
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interne non perfettamente bilanciata all’istante t = 0.

4.1.1 Analisi delle forze e degli spostamenti sul Cuscinetto

La Figura 4.1 mostra l’evoluzione delle forze Fb esercitate dalle 9 sfere del Wave Gene-

rator sui settori della ralla esterna. Per le sfere 2–9 il valore rimane vicino al precarico

iniziale, segno che l’accoppiamento mantiene un comportamento stabile.

L’unica anomalia riguarda la sfera 1, per la quale la forza Fb,1 si annulla dopo

pochi passi d’integrazione. Questo non è un fenomeno fisico ma un chiaro artefatto

del modello: il settore corrispondente si allontana progressivamente fino a perdere il

contatto. La causa è da attribuire allo squilibrio residuo nelle condizioni iniziali,

legato all’impiego di valori di rigidezza ancora approssimati nel modello statico.

Figura 4.1: Evoluzione delle forze Fb sulle 9 sfere del WG. Si noti il decadimento a zero
della forza sulla sfera 1.

La Figura 4.2 conferma questo comportamento: mentre i settori 2–9 si mantengono

prossimi alle loro posizioni di equilibrio, il settore 1 si sposta verso l’esterno di alcuni

centesimi di millimetro, fino alla perdita di contatto con la sfera. Questo risultato, pur
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non realistico dal punto di vista fisico, è coerente con l’annullamento della forza e indica

la necessità di un successivo tuning delle rigidezze.

Figura 4.2: Traiettoria del settore 1 della ralla esterna durante la simulazione statica.

4.1.2 Analisi delle forze e degli spostamenti sulla Flexspline

L’effetto dello squilibrio iniziale si riflette anche sulla risposta della Flexspline. Le forze

di contatto FT S tra denti e settori, riportate in Figura 4.3, mostrano un andamen-

to complessivamente decrescente: ciò suggerisce un leggero spostamento radiale della

Flexspline verso l’esterno. Il comportamento non lineare delle curve è coerente con gli
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assestamenti locali dei denti e con le approssimazioni presenti nella configurazione statica

iniziale.

Figura 4.3: Evoluzione delle forze FT S (Flexspline-Settori).

La Figura 4.4 mostra invece le traiettorie dei denti della Flexspline. Le oscillazioni

osservate, pur con ampiezza non trascurabile, risultano smorzate e compatibili con una

delle frequenze proprie del sistema, verosimilmente associate alla vibrazione radiale

dei denti o della rim di supporto. Ciò indica che, nonostante le semplificazioni iniziali,

il modello riproduce in modo coerente la dinamica locale della Flexspline.

4.1.3 Forze di ingranamento e stabilità della Circular Spline

L’aspetto più critico della stabilità statica riguarda le forze di ingranamento (meshing)

tra i denti della Flexspline e della Circular Spline. Come mostrato in Figura 4.5

(a), l’evoluzione delle coppie totali Csx e Cdx evidenzia che all’istante t = 0 la somma

delle forze di ingranamento non è nulla, generando una coppia risultante non nulla sulla

Circular Spline.
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Figura 4.4: Traiettorie di alcuni denti della Flexspline durante la simulazione statica.

Questa coppia iniziale genera un piccolo spostamento angolare transitorio della CS

(θCS). La CS, essendo libera di ruotare, si sposta in una nuova posizione generando forze

d’ingranamento opposte, come si vede nel dettaglio delle singole forze in Figura 4.5 (b).

Il sistema si assesta così in una nuova posizione di equilibrio dopo pochi microsecondi.

Durante questo transitorio, i denti della Flexspline tendono a riposizionarsi. Come

si può osservare dalla figura della configurazione finale (vedere Figura 4.6), i denti nelle

zone di ingranamento primario (sull’asse maggiore) subiscono un leggero spostamento,

mentre quelli lungo il semiasse minore (al di fuori del meshing) si dispongono in una

configurazione alternata e più stabile, anche se poco realistica. Questo comportamen-

to è guidato dalle forze interne di rigideza flessionale, che spingono la FS verso una

configurazione di minima energia potenziale in assenza di un carico esterno. Questo

comportamento della simulazione statica non pregiudica l’analisi dinamica: non appena

il Wave Generator entra in rotazione (ωW G /= 0), la deformazione ellittica imposta dal-

la camma diventa la forzante dominante bilancia immediatamente questa la resistenza

flessionale, costringendo i denti a seguire il profilo ellittico corretto, come verrà mostrato
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4.1 – Simulazione di stabilità statica

(a) Evoluzione delle coppie di ingranamento totali Csx e Cdx.

(b) Evoluzione delle singole forze d’ingranamento Fm.

Figura 4.5: Dinamica dell’assestamento statico delle forze e delle coppie di ingranamento.
(a) Le coppie risultanti non nulle iniziali si smorzano. (b) Le singole forze Fm oscillano
e si assestano in una nuova configurazione di equilibrio.

59



Risultati e validazione del modello

nella sezione successiva.

Figura 4.6: Configurazione finale al termine del transitorio in configurazione statica.

Dopo questo breve assestamento (circa 20 · 10−6 s), tutte le forze e le posizioni

raggiungono un nuovo stato di equilibrio stabile, confermando la stabilità intrinseca del

modello in assenza di input.
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4.2 – Simulazione di rotazione del riduttore completo

4.2 Simulazione di rotazione del riduttore completo

Verificata la stabilità statica, si passa all’analisi del transitorio di avvio del riduttore.

Al modello viene imposto un input di velocità ωW G sotto forma di rampa, che cresce

gradualmente fino al valore operativo di 31 rad/s (come specificato in Tabella 4.2).

L’obiettivo è osservare il comportamento del sistema durante questa fase operativa,

valutando la cinematica, le forze di contatto nel cuscinetto e l’insorgenza delle forze

di ingranamento. La simulazione è stata inizializzata con le medesime condizioni di

precarico statico descritte nel Capitolo 2. I parametri utilizzati sono riportati in Tabella

4.2.

Tabella 4.2: Parametri utilizzati per la simulazione dinamica del riduttore armonico.

Parametro Descrizione/Valore

Processore Intel® Core™ i7-8565U CPU @ 1.80GHz
Memoria RAM 8 GB
ωW G (Input) 31 rad/s
Solver ode14x
Fixed-step size 5 · 10−7 s

Nei paragrafi seguenti vengono presentati i risultati principali della simulazione a

regime.

4.2.1 Analisi cinematica: traiettorie dei denti

La Figura 4.7 mostra le traiettorie dei denti della Flexspline durante la rotazione del

WG. L’analisi globale, in Figura 4.7a, conferma che i denti seguono un percorso che

riproduce il profilo ellittico imposto, indicando che la deformazione si propaga in modo

coerente lungo tutta la rim.

Il dettaglio in Figura 4.7b permette di apprezzare la forma del percorso per i singoli

denti. L’assenza di sovrapposizioni o deviazioni anomale conferma che l’interfaccia tra la

camma del WG e la rim trasferisce correttamente la deformazione. Pur non disponendo
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Risultati e validazione del modello

(a) Panoramica delle traiettorie di un campione di denti.

(b) Dettaglio su 4 denti selezionati.

Figura 4.7: Analisi delle traiettorie dei denti durante la simulazione dinamica: (a) vista
d’insieme e (b) dettaglio su denti specifici.
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4.2 – Simulazione di rotazione del riduttore completo

di una quantificazione numerica dello scostamento rispetto al profilo teorico, l’andamento

complessivo risulta coerente con il principio di funzionamento del riduttore.

4.2.2 Analisi delle forze di interazione sul cuscinetto

Le forze FT S scambiate tra la Flexspline e i nove settori della ralla esterna, mostrate in

Figura 4.8, presentano un andamento periodico legato alla rotazione del Wave Generator.

Ogni settore attraversa ciclicamente zone di maggiore e minore deformazione e viene

pertanto caricato e scaricato in sequenza, in accordo con il funzionamento del cuscinetto

ellittico.

Dall’osservazione del grafico emergono due elementi significativi. In primo luogo, i

picchi di forza non compaiono simultaneamente sui diversi settori, ma sono distribuiti nel

tempo: ciò è coerente con la propagazione dell’onda di deformazione lungo la ralla. In

secondo luogo, l’intensità dei picchi non è identica per tutti i settori. Questa variabilità,

pur non marcata, è compatibile con le approssimazioni geometriche e con la sensibilità

del modello alle imprecisioni nelle condizioni di avvio.

Il limitato intervallo temporale della simulazione non permette di osservare il com-

portamento a regime, ma consente di evidenziare il transitorio di avvio. Le oscillazioni

ad alta frequenza sovrapposte ai contributi principali sono attribuibili all’eccitazione del-

le frequenze proprie dei componenti coinvolti, in particolare dei settori e della rim della

Flexspline.

La risposta ottenuta, pur riferita a una fase iniziale della dinamica, risulta utile anche

dal punto di vista del monitoraggio di salute del sistema: la struttura temporale delle

forze FT S fornisce una firma dinamica sensibile a variazioni nei parametri o a condizioni

di usura non uniforme, costituisce quindi una base di dati per individuare deviazioni

dovute a difetti localizzati.
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Risultati e validazione del modello

Figura 4.8: Evoluzione delle forze di contatto FT S sui nove settori della ralla esterna.

4.2.3 Forze di ingranamento

La Figura 4.9 riporta le forze di ingranamento Fm sui denti della Flexspline in presa con

la Circular Spline. L’andamento è caratterizzato da picchi ripetitivi di natura impulsiva,

tipici dei riduttori armonici: il carico viene infatti trasferito in modo discreto da un

gruppo di denti a quello successivo man mano che il profilo ellittico ruota.

Le oscillazioni ad alta frequenza che si sovrappongono ai picchi principali sono at-

tribuibili alla dinamica locale dei singoli denti, eccitati dall’impatto di contatto durante

l’ingranamento. Tale comportamento, complesso ma fisicamente plausibile, conferma

che l’interazione Flexspline–Circular Spline è catturata in modo coerente dal modello.
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4.2 – Simulazione di rotazione del riduttore completo

Figura 4.9: Evoluzione delle forze di ingranamento su un campione di denti.

4.2.4 Rapporto di riduzione e uscita cinematica

La Figura 4.10 riporta gli angoli, le velocità e il rapporto istantaneo tra WG e Circular

Spline. Il transitorio iniziale, visibile nello zoom in 4.10b, è un artefatto numerico dovuto

alla divisione per un angolo di uscita inizialmente prossimo allo zero, il comportamento

ritorna stabile dopo circa 6 · 10−6 s.

A regime, la velocità della Circular Spline assume un valore di ωCS ≈ 0.31 rad/s

coerente con il rapporto di riduzione nominale 100:1 del riduttore considerato. La ve-

locità risulta stabile nel tempo e non presenta irregolarità apprezzabili, confermando la

consistenza delle interazioni cinematiche e dinamiche all’interno del modello.

La simulazione evidenzia una risposta a regime coerente con il funzionamento atteso

del riduttore armonico: le traiettorie dei denti seguono correttamente il profilo imposto,
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Risultati e validazione del modello

le forze sul cuscinetto presentano una periodicità regolare e i picchi di ingranamento

mostrano una dinamica credibile. Gli errori numerici sono limitati al transitorio iniziale

e non influenzano il comportamento a regime. Nel complesso, il modello fornisce una

rappresentazione fisicamente consistente della trasmissione e costituisce una base solida

per future attività di tuning dei parametri e per applicazioni nel monitoraggio delle

prestazioni (PHM).
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4.2 – Simulazione di rotazione del riduttore completo

(a) Angoli, velocità in input ed output.

(b) Rapporto di riduzione cinematico.

Figura 4.10: Analisi cinematica della trasmissione durante la simulazione dinamica.
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Conclusioni e sviluppi futuri

La presente tesi si inserisce nel contesto dello sviluppo di digital twin ad alta fedeltà per

componenti robotici. La necessità di tali modelli è motivata dalla difficoltà nel reperire

dati sperimentali di guasto, fondamentali per lo sviluppo di efficaci strategie di Progno-

stics and Health Monitoring (PHM). Lavori precedenti avevano stabilito le fondamenta,

sviluppando un modello multibody per le interazioni degli ingranaggi e un sottomodello

avanzato per il cuscinetto deformabile del Wave Generator. L’obiettivo principale di

questo lavoro è stato l’integrazione di questi due modelli in un’unica piattaforma di si-

mulazione dinamica, superando la precedente idealizzazione del Wave Generator come

corpo infinitamente rigido.

Questo lavoro costituisce una base per le future attività di ricerca e sviluppo: Il

prossimo passo, di cruciale importanza, sarà la verifica funzionale del modello integrato

in applicazioni di PHM. Tale verifica sarà possibile solo dopo un’accurata attività di

tuning dei parametri del modello (quali rigidezze e smorzamenti dei contatti) attraverso

il confronto con dati sperimentali. Questo processo è indispensabile per garantire non

solo l’accuratezza qualitativa, già dimostrata, ma anche quella quantitativa.

Una volta validato, il modello potrà essere impiegato come banco prova virtuale per

il suo scopo primario: il PHM. Gli sviluppi futuri si concentreranno su:

• La simulazione di specifiche modalità di guasto localizzate, come l’usura progres-

siva nelle piste del cuscinetto, la variazione di rigidezza dovuta a cricche nella
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Flexspline, o il danneggiamento di singoli denti.

• La generazione di ampi dataset simulati, rappresentativi del comportamento del

riduttore sia in condizioni nominali che in diverse fasi di degradazione.

• L’utilizzo di tali dataset per l’addestramento e la validazione di algoritmi di dia-

gnostica e prognostica, con l’obiettivo finale di stimare la Remaining Useful Life

(RUL) del componente in applicazioni robotiche reali.
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Glossario dei simboli

Acronimi

CS Circular Spline

FS Flexspline

PHM Prognostics and Health Monitoring

WG Wave Generator

Simboli Greci

Simbolo Descrizione

αN Angolo della normale alla superficie ellittica

β Angolo di pressione / ingranamento (direzione della forza di contatto)

γ Esponente del contatto Hertziano (γ = 1.5)

δb Deformazione di contatto della sfera (compenetrazione radiale)

δm Angolo di sfasamento del contatto rispetto al centro del dente

δss Deformazione elastica tra settori adiacenti

ϵ Angolo della congiungente tra elementi (settori o denti)

η Variazione dell’angolo tra due denti adiacenti

θ Posizione angolare (generica)
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Glossario dei simboli

Simbolo Descrizione

θCS Posizione angolare della Circular Spline

θF S Posizione angolare della Flexspline

θW G Posizione angolare del Wave Generator

µ Coefficiente d’attrito

ρ Raggio generico di applicazione della forza

ρCS Raggio primitivo della Circular Spline

ρt Distanza (raggio) di un dente dal centro di rotazione

τ Rapporto di trasmissione ideale (configurazione CS fissa)

ψ Angolo di posizione assoluta di un dente

ω Velocità angolare (generica, ω = θ̇)

ωCS Velocità angolare della Circular Spline

ωF S Velocità angolare della Flexspline

ωW G Velocità angolare del Wave Generator (input)

Simboli Latini

Simbolo Descrizione

ai, bi Semiassi (maggiore e minore) della camma ellittica

bCS , bF S Lunghezza (assiale) dei denti (CS, FS)

c Coefficiente di smorzamento generico

cT Smorzamento torsionale (FS)

cCS Smorzamento viscoso della Circular Spline

cF S−CS Smorzamento del contatto tra denti FS e CS

Csx, Cdx Coppie totali di ingranamento (sinistra e destra) agenti sulla CS
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Simbolo Descrizione

db Diametro delle sfere del cuscinetto

Fattr Forza d’attrito

FB Forza di contatto Hertziano (sfera)

FF Forza di richiamo flessionale (tra denti FS)

Fm Forza di ingranamento (normale) tra denti FS e CS

FR Forza equivalente di richiamo torsionale (su denti FS)

FSS Forza di interazione tra settori adiacenti (ralla esterna)

FT S Forza di interazione tra Dente (FS) e Settore (WG)

FT T Forza di interazione tra denti adiacenti (FS)

h(δ) Funzione di attivazione del contatto (Heaviside)

JCS Momento d’inerzia della Circular Spline

kb Rigidezza del contatto sferico (Hertz)

ki±1 Rigidezza strutturale tra settori della ralla

KF Rigidezza flessionale (tra denti FS)

KT Rigidezza torsionale (dente FS)

KF S−CS Rigidezza del contatto tra denti FS e CS

l Lunghezza della rim (sezione cilindrica) della Flexspline

lm Compenetrazione elastica tra i denti di FS e CS (Lunghezza)

L Lunghezza totale della Flexspline (inclusa flangia)

m Modulo della dentatura

mb Massa della sfera

mS Massa del settore (ralla esterna)

mT Massa del dente (Flexspline)

ns Numero di settori (discretizzazione ralla esterna)

N Numero di punti di discretizzazione (profilo dente)
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Simbolo Descrizione

p Passo della dentatura

q Carico distribuito

Q Matrice di assegnazione (mappatura dente-settore)

Re Raggio esterno (ralla esterna WG) in condizioni indeformate

Ri Raggio interno (ralla interna WG) in condizioni indeformate

RbCS Raggio di base della Circular Spline

raF S Raggio alla testa dei denti (Flexspline)

rics Raggio alla testa dei denti (Circular Spline)

r0F S Raggio interno della rim (Flexspline)

sboss Spessore della flangia (boss) della Flexspline

srim Spessore della rim (sezione cilindrica)

TR Coppia resistente (di carico) sull’albero d’uscita

VR Velocità tangenziale del dente

(x, y) Coordinate cartesiane

ZCS Numero di denti della Circular Spline

ZF S Numero di denti della Flexspline
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