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Sommario

I modelli di ordine ridotto (Reduced-Order Models, ROMs) sono sempre più ricono-
sciuti come strumenti fondamentali per abilitare applicazioni della Computational
Fluid Dynamics (CFD) in tempo reale, in particolare se affiancati a strategie basate
sul Machine Learning in configurazioni a geometria fissa. Il loro costo computa-
zionale ridotto li rende estremamente attrattivi per compiti di progettazione e
ottimizzazione, specialmente in spazi parametrici ad alta dimensionalità. Inoltre,
ROMs stanno diventando strumenti fondamentali per accelerare le simulazioni ad
alta fedeltà, fornendo condizioni iniziali efficaci e abilitando processi di ottimizza-
zione di forma in contesti industriali.
La presente tesi si concentra sullo sviluppo e sull’applicazione di un algoritmo
di interpolazione non-lineare basato sulla Convex Displacement Inter-
polation (CDI), che consente di stimare soluzioni intermedie del campo di moto
sfruttando sensori basati sulla fisica del problema, progettati per identificare strut-
ture coerenti nel campo di flusso, come ad esempio i sensori di onda d’urto. A
differenza dei metodi lineari come la Proper Orthogonal Decomposition (POD),
incapaci di catturare fenomeni di advezione delle strutture di flusso, gli approcci
non-lineari superano questa limitazione introducendo un mapping che tiene conto
di tali movimenti. In particolare, la CDI introduce una mappatura di deformazione
in grado di tracciare lo spostamento delle principali strutture fluide (ad esempio
urti, fasci d’espansione o vortici) nello spazio dei parametri, fornendo così predizioni
più accurate e fisicamente coerenti.
Un aspetto chiave di questo lavoro è l’impiego di sensori che tengono conto del-
la fisica del problema, parte integrante dell’algoritmo CDI. Questi sensori sono
progettati per identificare e tracciare le strutture coerenti del flusso nello spazio
delle soluzioni, analizzando i gradienti delle grandezze conservative. Per garantire
l’affidabilità e l’accuratezza dei sensori, è stata condotta un’analisi dell’errore
per ciascun sensore su tutti i casi test esaminati.
Successivamente, è stato costruito un dataset mediante una serie di simulazioni
RANS (Reynolds-Averaged Navier-Stokes) eseguite con un solver CFD sviluppato
internamente, in linguaggio Fortran90, su diversi casi studio: una presa d’aria
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subsonica di un TurboFan e una presa supersonica a doppia rampa. L’algoritmo
di interpolazione non-lineare è stato quindi implementato attraverso un codice
numerico proprietario. La procedura di interpolazione inizia con l’estrazione delle
strutture coerenti mediante i sensori e tali sensori generano delle nuvole di punti
(point clouds) per ogni snapshot di soluzione.
Un algoritmo di registrazione allinea i point clouds all’interno del dataset, ga-
rantendo la definizione di mapping bidirezionali tra i diversi parametri. Questi
mapping vengono utilizzati per interpolare in maniera non-lineare sia le strutture
coerenti sia i campi di moto associati. La tecnica si distingue per la sua natura
non-intrusiva, in quanto non richiede l’accesso diretto alle equazioni di governo,
pur preservando elevati livelli di fedeltà fisica.
I risultati di questo lavoro dimostrano la capacità dell’approccio di generare pre-
dizioni accurate del campo di moto in un ampio intervallo di condizioni. Ciò
rappresenta non solo un passo significativo verso le potenzialità della CFD in tempo
reale, ma fornisce anche condizioni iniziali di alta qualità per simulazioni RANS
ad alta fedeltà, con conseguente riduzione dei costi computazionali e accelerazione
della convergenza.
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Capitolo 1

Fondamenti teorici

1.1 Modelli di Turbolenza
Le simulazioni effettuate in questa tesi si basano sul modello RANS (Reynolds-
Averaged Navier-Stokes), ampiamente utilizzato per la simulazione di flussi tur-
bolenti. Pertanto, risulta fondamentale richiamare i concetti teorici alla base di
questo approccio, descrivendone i principi, le ipotesi e le principali equazioni, al
fine di ottenere un quadro chiaro e completo del modello di turbolenza impiegato.
Un flusso è turbolento quando, a numeri di Reynolds abbastanza elevati, si ma-
nifestano delle instabilità che portano ad un moto caotico. Un flusso può essere
considerato turbolento quando ha un comportamento non stazionario, multi-scala
e ha una struttura tridimensionale.
La simulazione di flussi turbolenti può essere svolta con tre approcci:

• Direct Numerical Simulations (DNS): è l’approccio più accurato dato che
non aggiunge ulteriori ipotesi oltre all’assunzione di fluido Newtoniano, ma è
anche il più oneroso. Si vanno ad integrare in maniera diretta le equazioni di
Navier-Stokes con una griglia sufficientemente fine, in particolare il numero di
punti della griglia è proporzionale al numero di Reynolds che caratterizza il
problema:

#punti ∝ Re
9
4

inoltre la simulazione deve essere necessariamente tridimensionale ed instazio-
naria.

• Large Eddy Simulations (LES): è un approccio che prevede l’integrazione
diretta delle equazioni di Navier-Stokes per le grandi scale della turbolen-
za, mentre le piccole scale vengono modellizzate attraverso un modello di
sottofiltro.
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1.1 – Modelli di Turbolenza

• Reynolds-Averaged Navier-Stokes (RANS): è un approccio che si basa
sulla media nel tempo delle equazioni di Navier-Stokes, con l’obbiettivo di de-
scrivere il comportamento medio del flusso turbolento, riducendo la complessità
computazionale rispetto ai due approcci precedenti.

Prima di tutto, scriviamo le equazioni di governo in forma differenziale nel caso di
flusso compressibile, in assenza di termini sorgente [1]

∂ρ

∂t
+

∂(ρv̄i)
∂xi

= 0

∂(ρv̄i)
∂t

+
∂(ρv̄j v̄i)

∂xj

= −
∂p

∂xi

+
∂τij

∂xj

∂(ρE)
∂t

+
∂(ρv̄jH)

∂xj

=
∂(v̄iτij)

∂xj

+
∂

∂xj

3
k

∂T

∂xj

4
(1.1)

dove il tensore degli sforzi viscosi τij nell’Eq. (1.1) è definito come

τij = 2µSij + λ
∂vk

∂xk

δij (1.2)

nel quale si può includere l’ipotesi di Stokes

λ = −
2
3µ (1.3)

Definiamo inoltre il tensore delle velocità di deformazione

Sij =
1
2

3 ∂v̄i

∂xj

+
∂v̄j

∂xi

4
(1.4)

1.1.1 Equazioni di Navier Stokes mediate alla Reynolds
Nel caso compressibile, si effettua una media alla Reynolds per mediare la densità e
la pressione, mentre si effettua una media alla Favre [2] per le altre variabili, quali
la velocità, energia interna, entalpia e temperatura tramite le seguenti relazioni [1]

ρ̄ = lim
T →∞

1
T

Ú t+T

t
ρ dt (1.5)

p̄ = lim
T →∞

1
T

Ú t+T

t
p dt (1.6)

ṽi =
1
ρ̄

lim
T →∞

1
T

Ú t+T

t
ρvi dt (1.7)
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1.1 – Modelli di Turbolenza

si sfruttano le grandezze definite per determinare le variabili conservative come
somma di due contributi, un valore medio e una fluttuazione

ρ = ρ̄ + ρ′ p = p̄ + p′ vi = ṽi + v′′
i (1.8)

L’applicazione delle medie alla Favre e alla Reynolds porta ad avere un nuovo
sistema di equazioni di governo, chiamate Favre and Reynolds-averaged Navier
Stokes equations [1]

∂ρ̄

∂t
+

∂(ρ̄ṽi)
∂xi

= 0

∂(ρ̄ṽi)
∂t

+
∂(ρ̄ṽj ṽi)

∂xj

= −
∂p̄

∂xi

+
∂

∂xj

1
τ̃ij − ρ̄ çv′′

i v
′′
j

2
∂(ρ̄Ẽ)

∂t
+

∂(ρ̄ṽjH̃)
∂xj

=
∂

∂xj

3
k

∂T̃

∂xj

− ρ̄]v′′
j h′′ + ]τijv

′′
i − ρ̄ çv′′

j K
4

+
∂

∂xj

è
ṽi

1
τ̃ij − ρ̄ çv′′

i v
′′
j

2é
(1.9)

si può notare che compare un termine aggiuntivo rispetto al tensore degli sforzi
viscosi, ovvero il tensore degli sforzi di Reynolds mediato alla Favre

τF
ij = −ρ̄ çv′′

i v
′′
j (1.10)

tale tensore deve essere determinato, entrano perciò in gioco i modelli di chiusura

1.1.2 Eddy-viscosity e modelli di chiusura
L’approccio di eddy-viscosity ideato da Boussinesq [3] prevede che il tensore degli
sforzi di Reynolds dipenda linearmente dal tensore delle velocità di deformazione,
tramite un fattore di proporzionalità che è la eddy viscosity, composta da un termine
anisotropo e uno isotropo

τF
ij = −ρ̄ çv′′

i v
′′
j = 2µT S̃ij −

32
3µT

4 ∂ṽk

∂xk

δij −
2
3ρ̄K̃δij (1.11)

notiamo l’energia cinetica turbolenta associata alle fluttuazioni K nel termine
isotropo e la eddy viscosity µT , ovvero una viscosità turbolenta legata anch’essa
alle fluttuazioni, che compare nel termine anisotropo.
I modelli di chiusura servono proprio a calcolare la eddy viscosity µT per determinare
il tensore degli sforzi di Reynolds che compare nelle equazioni RANS.
Esistono diversi modelli di chiusura:
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1.1 – Modelli di Turbolenza

• Modello K − ε, si aggiungono due equazioni di trasporto legate all’energia
cinetica turbolenta associata alle fluttuazioni K e la dissipazione di energia
cinetica turbolenta ε.

• Modello K − ω, anche in questo caso si aggiungono due equazioni di trasporto,
una in funzione sempre dell’energia cinetica turbolenta K, mentre la seconda
in funzione della dissipazione specifica ω

• Modello ibrido K − ε/K − ω, si sfrutta il modello K − ω in corrispondenza
di condizioni al contorno di parete dove risulta particolarmente efficace. Questo
modello è di tipo Shear Stress Transport (SST)

• Modello di Spalart-Allmaras, prevede l’uso di una sola equazione di
trasporto per la eddy viscosity tramite la variabile ν̃ che viene chiamata
modified eddy viscosity. L’equazione si presenta nella seguente forma,

∂(ρν̃)
∂t

+
∂(ρν̃v̄j)

∂xj

=
1
σ

∂

∂xj

5
ρ(ν + ν̃)

∂ν̃

∂xj

6
+ ρ

1
P − D

2
+ Π (1.12)

dove si può notare la presenza di una serie di termini tra cui uno instazionario,
convettivo, diffusivo, di produzione e distruzione, e dei termini misti ottenuti
in maniera empirica. In particolare i termini di produzione, distruzione e i
termini misti si possono espandere come segue,

P = Cb1ν̃S̃

D = Cw1fw

ν̃2

d2

Π =
Cb2

σ

∂ν

∂xj

∂ν

∂xj

−
1
σ

(ν + ν̃)
∂ρ

∂xj

∂ν̃

∂xj

(1.13)
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1.2 Modelli di Ordine Ridotto (ROM)
I modelli di ordine ridotto (Reduced Order Models, ROM) rappresentano strumenti
numerici concepiti per ridurre il costo computazionale di simulazioni ad alta fedeltà
mantenendo, al contempo, un’adeguata accuratezza nella rappresentazione dei
fenomeni fisici dominanti. In fluidodinamica computazionale (CFD), i modelli
ROM consentono di descrivere la dinamica di flussi complessi utilizzando un
numero molto più ridotto di gradi di libertà rispetto al modello completo (ad
esempio, RANS o LES), risultando particolarmente utili in:

• studi parametrici su ampi domini di progetto,

• problemi di ottimizzazione aerodinamica.

Il principio alla base di un modello ROM è la proiezione della soluzione di un
sistema originale in un sottospazio ridotto generato da un database di simulazioni
ad alta fedeltà, descritto nel Capitolo 3.
La costruzione di un modello ROM si articola tipicamente in tre fasi:

1. Generazione del database ad alta fedeltà, in cui vengono raccolte le
soluzioni del problema (campi di moto) per diverse condizioni parametriche
(ad esempio al variare del Mach, angolo di incidenza...);

2. Riduzione della dimensionalità, tramite l’identificazione di strutture
coerenti dominanti del flusso tramite tecniche di mappatura e registrazione;

3. Predizione a basso costo, che può essere ottenuta tramite proiezione
dinamica del sistema ridotto o, in approcci non intrusivi, tramite interpolazione
dei campi di moto nello spazio ridotto

Da un punto di vista metodologico, i modelli ROM si suddividono in:

• Intrusivi, costruiti proiettando le equazioni di Navier-Stokes su uno spazio
ridotto (es. Galerkin-POD)

• Non intrusivi, che operano esclusivamente sui dati simulati (snapshot), senza
modificare le equazioni di governo del sistema originale, si tratta di approcci
data-driven

Tradizionalmente, l’interpolazione tra snapshot viene effettuata in modo lineare
tramite metodi che generano predizioni ottenute tramite combinazioni lineari degli
snapshot presenti nel database di addestramento, ma tale approccio non tiene
conto dei fenomeni di trasporto che riguardano le strutture coerenti. Per superare
questo limite, si impiegano metodi di interpolazione non lineari basati sul
Trasporto Ottimale (Optimal Transport), che cercano di "spostare" le strutture
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1.2 – Modelli di Ordine Ridotto (ROM)

coerenti invece di mediarle.
In particolare, in questa tesi verrà adottata la Convex Displacement Interpo-
lation (CDI), un metodo non intrusivo e non lineare che combina concetti di
trasporto ottimale con l’interpolazione in spazi ridotti, utilizzando la Proper Ortho-
gonal Decomposition (POD) come tecnica di compressione dei dati, consentendo di
preservare al meglio le strutture coerenti del campo di moto. La CDI verrà discussa
in dettaglio nel Capitolo 3 e applicata alla predizione di flussi compressibili nel
Capitolo 4, mostrando come possa migliorare l’accuratezza delle predizioni ROM
rispetto a tecniche di interpolazione lineare.

Figura 1.1: Nel contesto delle simulazioni numeriche dirette, della modellazione
della turbolenza e dei modelli di ordine ridotto, segue un riepilogo di alcune delle
aree più rilevanti in cui il Machine Learning potrebbe migliorare la fluidodinamica
computazionale (CFD) [4]
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Capitolo 2

Metodi di interpolazione per
la predizione di flussi
compressibili

2.1 Interpolazione lineare vs non lineare

Le tecniche basate su modelli ridotti consentono di ridurre drasticamente il costo
computazionale rispetto a una campagna completa di simulazioni RANS. I modelli
di ordine ridotto si distinguono principalmente in approcci lineari e non lineari.
Nel seguito si presenta un confronto tra due strategie rappresentative: la Proper
Orthogonal Decomposition (POD) con interpolazione lineare dei coefficienti e
la Convex Displacement Interpolation (CDI).
Un modello lineare tratta i fenomeni complessi come la somma di singoli effetti
indipendenti. In altre parole, si basa sul principio di sovrapposizione: la soluzione
generale è la somma di soluzioni più semplici.
I metodi lineari falliscono per la loro incapacità di prevedere i fenomeni di
trasporto nella fluidodinamica (approssimano la soluzione per nuovi parametri
come combinazione lineare delle soluzioni associate a parametri presenti nel database
di addestramento).
L’idea è quella di identificare dei fenomeni non-lineari come vortici e urti e vedere
come cambia la loro posizione al variare dei parametri, è quindi necessaria una
mappatura per descrivere il trasporto dei fenomeni non-lineari: la mappatura
può essere fatta con interpolazioni non lineari (CDI). Inoltre la mappatura
può essere guidata da sensori che catturano i fenomeni non lineari (es. sensore di
Ducros che capta la divergenza della velocità)
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2.2 Proper Orthogonal Decomposition (POD)
La Proper Orthogonal Decomposition (POD) è una tecnica di riduzione dell’ordine
dei modelli (ROM) che consente di rappresentare il comportamento di un sistema
fisico descritto da equazioni alle derivate parziali (PDE) in uno spazio di dimen-
sione molto più bassa, mantenendo al contempo la maggior parte dell’energia o
dell’informazione del sistema originale.
Da un punto di vista matematico, la POD si basa sulla Singular Value Decom-
position (SVD) applicata a un insieme di snapshot del campo di soluzione di una
PDE, acquisiti in diversi istanti temporali o per differenti condizioni parametriche
(come nel nostro caso studio).

2.2.1 Formulazione generale
Sia u(x, µi) la soluzione di una PDE in funzione della variabile spaziale x ∈ Ω e
dei parametri µi ∈ P.
Durante una simulazione numerica (ad esempio CFD), si raccolgono Ns snapshot
del campo discreto:

u(x, µi) per i = 1, ..., Ns

che vengono organizzati in una matrice di dati:

X = [u1, u2, ..., uNs ] ∈ RNx×Ns

dove Nx è il numero di gradi di libertà spaziali (es. nodi o celle della discretizzazione
del dominio).

2.2.2 Applicazione della SVD
Si esegue la decomposizione ai valori singolari della matrice degli snapshot:

X = UΣV T (2.1)

dove:

• U = [ϕ1, ..., ΦNs ] contiene gli autovettori ortonormali nello spazio fisico (modi
spaziali POD)

• Σ = diag(σ1, ..., σNs) contiene i valori singolari, decrescenti e proporzionali
all’energia associata a ciascun modo.

• V contiene le coordinate parametriche degli snapshot.
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2.2 – Proper Orthogonal Decomposition (POD)

2.2.3 Riduzione del rango
La SVD consente di identificare la dimensionalità intrinseca del manifold parame-
trico. Troncando la decomposizione ai primi r valori singolari, si ottiene[5]:

X ≈ UrΣrV
T

r (2.2)

e quindi tramite la POD possiamo identificare una base ortonormale ridotta capace
di approssimare in modo efficiente tutti gli snapshot:

u(µ) ≈
rØ

k=1
ak(µ)ϕk

dove a(µi) è il vettore delle coordinate modali per il parametro µi ed è dato da:

a(µi) = ΣV T
(:,i) (2.3)

Il valore di r viene scelto in modo che una frazione prefissata di energia (o varianza)
sia preservata: qr

k=1 σ2
kqNs

k=1 σ2
k

≥ η, η ∈ [0.99,0.999]

2.2.4 Approssimazione fuori dai punti campione
Una volta ottenuti i modi POD, si può stimare la soluzione per un nuovo valore
del parametro µ∗ /∈ {µi} approssimando i coefficienti modali come funzione di µ:

ak(µ∗) ≈ Ik(µ∗)

dove Ik rappresenta un modello interpolativo o regressivo, ad esempio:

• Radial Basis Functions (RBF)

• Gaussian Process Regression (GPR)

• Reti neurali

• riduzione parametrica tramite Galerkin-Projection

e la ricostruzione lineare della soluzione avviene come:

û(µ∗) =
rØ

k=1
Ik(µ∗)ϕk (2.4)

La POD parametrica può essere interpretata come un metodo per identificare un
sottospazio lineare di dimensione minima che meglio approssima il manifold delle
soluzioni nel dominio parametrico P. In altre parole, la SVD fornisce la base
energeticamente ottimale per rappresentare le soluzioni parametrizzate nel senso
dei minimi quadrati.
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2.3 Convex Displacement Interpolation (CDI)
La Convex Displacement Interpolation (CDI) è una tecnica di interpolazione non
lineare che si basa sul concetto del trasporto ottimale e nasce per superare i limiti
delle approssimazioni lineari nei problemi parametrici in cui le soluzioni presentano
strutture coerenti, come urti, shear layer o vortici, che si spostano nel dominio al
variare dei parametri. La CDI riesce quindi a prevedere i fenomeni di trasporto
all’interno dei campi di moto.
I metodi lineari classici (come POD-Galerkin) faticano a rappresentare accura-
tamente il comportamento della soluzione, a causa della natura fortemente non
lineare del fenomeno fisico.

2.3.1 Formulazione matematica e proprietà
La metodologia CDI segue l’approccio introdotto da Cucchiara et al. [6] e può
essere formalizzato attraverso una decomposizione offline/online finalizzata alla
predizione del campo di moto, descritto da,

µ ∈ P → uµ ∈ M

Si definisce un insieme di parametri di addestramento,

Ptrain = {µk}ntrain
k=1 ⊂ P

e il corrispondente dataset delle soluzioni ad alta fedeltà,

Dtrain = {uµ : µ ∈ Ptrain}

Durante la fase di addestramento, per ogni elemento appartenente al dataset di
addestramento Dtrain, si raccolgono un insieme di punti Xraw

µ = {x
Nµ

i,µ }Nµ

i=1 ⊂ Ω̄ che
descrivono i principali fenomeni fisici che caratterizzano il campo di moto e che si
desidera monitorare. Si osservi che gli insiemi {Xraw

µ : µ ∈ Ptrain} non contengono
necessariamente lo stesso numero di elementi e non sono necessariamente accoppiati
tra loro.
Successivamente, si definiscono i punti di riferimento,

Xref := {xref
i }N

i=1

e i nuovi sensori,
Xµ := {xi,µ = xref

i + νi,µ}N
i=1

tali che il set Xµ approssimi Xraw
µ per tutti i µ ∈ Ptrain.

Durante la fase online, dato un nuovo valore per i parametri µ /∈ Ptrain, per prima
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cosa si applica un metodo di regressione (si usa la RBF per determinare l’approssi-
mazione µ ∈ P → X̂µ ∈ RN×d, ma prima si applica la POD per determinare una
rappresentazione equivalente) per prevedere la nuova posizione dei sensori,

X̂µ = {x̂i,µ = xref
i + ν̂i,µ}N

i=1

e successivamente si va ad identificare un set di k-nearest-neighbors,
Pµ

nn = {νi}k
i=1 ⊂ Ptrain

come terzo step, si definiscono le mappature {Φν : ν ∈ Pµ
nn} tali per cui ogni

mappatura Φν sia biettiva in Ω e,
Φν(x̂i,ν) ≈ x̂i,ν per i = 1, ..., N ν ∈ Pµ

nn

ed infine, si utilizza la formula che caratterizza la CDI e che fornisce l’approssima-
zione della soluzione,

ûµ =
Ø

ν∈P
µ
nn

ων
µũν dove ũν = uν ◦ Φν (2.5)

dove {ων
µ} rappresentano i pesi utilizzati per l’interpolazione e vengono determinati

come rappresentato nella fig. 2.1

2.3.2 Struttura dell’algoritmo
L’algoritmo CDI può essere formalizzato in due fasi: offline e online [6].

• Offline stage

svolto una volta

1. Generazione del dataset di addestramento tramite le simulazioni CFD ad
alta fedeltà Dtrain = {uµ : µ ∈ Ptrain}

2. Si identificano le strutture coerenti sotto forma nuvole di punti {Xraw
µ :

µ ∈ Ptrain}
3. Definizione del set di riferimento Xref e la nuvola di punti ordinata

{Xµ : µ ∈ Ptrain}

• Online stage

svolto per ogni µ ∈ P

1. Predizione dei nuovi punti X̂µ = {x̂i,µ}N
i=1 (POD + RBF)

2. Selezione dei parametri dei vicini più prossimi Pµ
nn = {νi}k

i=1 ⊂ Ptrain

3. Calcolo mappature Φν basate sui X̂µ e X̂ν : problema di ottimizzazione
4. Calcolo dei pesi {ων

µ : ν ∈ Pµ
nn} e stima della soluzione approssimata

tramite la 2.5
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Figura 2.1: Rappresentazione schematica della metodologia CDI per un semplice
problema 1D. [6]

(a) Dataset degli snapshots {uµ1 , uµ2} e la corrispondente posizione degli urti
(sensori), x̂µ rappresenta la posizione dell’urto per il parametro µ

(b) Snapshot mappati
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Capitolo 3

Database di simulazioni ad
alta fedeltà

In questo capitolo vengono descritte le simulazioni RANS utilizzate come database
di riferimento per la costruzione e validazione del modello ridotto basato su inter-
polazione non lineare.
Le simulazioni forniscono gli snapshot del campo di moto associati a diverse condi-
zioni operative, costruendo il dataset Dtrain utilizzato nelle fasi di addestramento e
test delle metodologie di interpolazione.
Due casi test sono stati analizzati:

1. Una presa d’aria subsonica di turbofan, impiegata per studiare e validare
la definizione dei sensori e la robustezza della procedura di registrazione.

2. Una presa supersonica a doppia rampa, utilizzata per valutare l’efficacia
della metodologia di Convex Displacement Interpolation (CDI) nel rappre-
sentare strutture fortemente non lineari e traslazionali, come gli urti e i fasci
d’espansione.

3.1 Presa subsonica TurboFan
La configurazione rappresenta una presa d’aria subsonica tipica di un motore
turbofan civile che presenta le seguenti caratteristiche:

• NACA 1-85-100 [7]

• Flusso transonico ad alto numero di Reynolds (Re ≈ 107)

• Equazioni RANS con il modello di turbolenza di Spalart-Allmaras e assunzione
di assialsimmetria

13



3.1 – Presa subsonica TurboFan

• Dominio computazionale discretizzato da circa 150 · 103 elementi

Figura 3.1: Griglia computazionale presa turbofan

Per la generazione del database di simulazioni ad alta fedeltà, sono stati considerati
due parametri:

• Mach di volo: 0.84 ≤ M∞ ≤ 0.89

• Mass Flow Rate (MFR): 0.61 ≤ MFR ≤ 0.74 con MFR =
ṁ

ṁ0
dove ṁ rappresenta la portata massica in ingresso nel motore, mentre ṁ0 la
portata massica calcolata a partire dai valori dell’indisturbato a monte

Inoltre l’MFR impone la pressione statica all’uscita della presa, che viene utilizzata
come condizione al contorno. L’urto risulta più forte per alti M∞ e bassi MFR.
Di seguito, in fig. 3.2, sono schematizzati i parametri utilizzati per le simulazioni
ad alta fedeltà che compongono il dataset di training e i casi test utilizzati per
validare i risultati dell’interpolazione non lineare effettuata tramite la metodologia
CDI.
Come già anticipato, le simulazioni ad alta fedeltà sono state svolte tramite un mo-
dello RANS, utilizzando un codice sviluppato in-house tramite linguaggio Fortran90
e i risultati ottenuti sono raffigurati nelle fig. 3.3, 3.4, 3.5
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Figura 3.2: Spazio dei parametri usato per il training e i test della presa subsonica
del turbofan

Figura 3.3: Campo di Mach per MFR = 0.61 al variare del Mach
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Figura 3.4: Campo di Mach per MFR = 0.67 al variare del Mach

Come si può osservare, la configurazione in esame è analoga a quella di un profilo
alare soggetto ad un flusso transonico, in cui il numero di Mach indisturbato a
monte supera il valore critico, M∞ > M∞,cr. In tali condizioni, sul dorso del profilo
si forma una regione localmente supersonica, comunemente indicata come bolla
supersonica, la cui estensione aumenta all’aumentare del Mach di monte.
Il flusso che attraversa questa regione viene quindi ricondotto a regime subsonico
da un’onda d’urto che si sviluppa sul dorso del profilo, determinando una brusca
variazione delle grandezze termodinamiche.
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Figura 3.5: Campo di Mach per MFR = 0.74 al variare del Mach

Come già anticipato, all’aumentare del numero di Mach a monte, l’intensità dell’on-
da d’urto cresce in modo significativo. Questo comportamento è dovuto al fatto
che, per valori più elevati di M∞, la regione supersonica che si sviluppa sul dorso
si estende maggiormente, e il salto di pressione necessario per riportare il flusso a
regime subsonico diventa più marcato. Analogamente, al diminuire del Mass Flow
Ratio (MFR), cioè quando la portata inghiottita dal motore si riduce rispetto a
quella disponibile al campo lontano, parte del flusso incidente viene deviato verso
l’esterno della presa, causando un’intensificazione dell’onda d’urto.
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3.2 Presa supersonica a doppia rampa
Le prese d’aria supersoniche rappresentano un componente chiave per i sistemi
propulsivi ad alta velocità. Nella seguente tesi si è utilizzato un caso test costituito
da una presa supersonica a doppia rampa, che è una configurazione di riferimento
ampiamente utilizzata nello studio dei flussi comprimibili, in quanto rappresenta
un sistema di compressione esterna che genera una sequenza controllata di urti
obliqui per rallentare il flusso e comprimerlo all’ingresso del condotto.
La geometria utilizzata è stata tratta dal lavoro del Professor Ferrero [8], ed è
definita dalle coordinate presenti in tab. 3.1,

Figura 3.6: Dominio computazionale presa supersonica a doppia rampa

Punto A B C D E F G H I L M N
x/L -0.500 -0.450 0.000 0.353 0.720 1.000 1.000 0.797 0.617 0.832 0.832 -0.500
y/L 0.000 0.000 0.000 0.0623 0.207 0.204 0.310 0.310 0.280 0.426 0.800 0.800

Tabella 3.1: Coordinate dei punti per il dominio computazionale

Le condizioni al contorno sono invece riportate nella tab. 3.2

Segmento Condizione al contorno
1-10, 1-2 Inlet

2-3, 3-4, 4-5, 6-7, 7-8 Parete solida
5-6, 8-9, 9-10 Outlet

Tabella 3.2: Condizioni al contorno presa a doppia rampa
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Il presente caso test è stato validato utilizzando i seguenti parametri, per i quali
sono forniti in letteratura dei valori sperimentali[9].
In particolare, per la validazione sono stati utilizzati i seguenti parametri: M∞ = 3,
incindenza i = 0◦, numero di Reynolds Re ≈ 1.3 · 106, riferito alla lunghezza assiale
della prima rampa.
La griglia computazionale utilizzata è composta da ≈ 91 · 103 elementi

Figura 3.7: Griglia computazionale presa a doppia rampa

Figura 3.8: Pressione sulla parete inferiore presa a doppia rampa

L’analisi della distribuzione di pressione sulla parete inferiore evidenzia una buona
concordanza tra i risultati numerici e le misure sperimentali, indipendentemente
dal modello fisico impiegato, sia esso Eulero o RANS. Per questo motivo si è optato
per l’utilizzo delle simulazioni Euleriane per la generazione del database.
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3.2 – Presa supersonica a doppia rampa

Per la generazione del database di simulazioni ad alta fedeltà, sono stati considerati
due parametri anche in questo caso test:

• Mach di volo

• Angolo di incidenza

La variazione dell’angolo di incidenza rappresenta un aspetto fondamentale nello
studio delle prestazioni delle prese d’aria supersoniche. Durante il volo reale, le
condizioni di incidenza variano in funzione dell’assetto del velivolo e delle manovre,
modificando significativamente la configurazione del campo di onde d’urto e, di
conseguenza, la capacità della presa di catturare e comprimere il flusso.
Secondo Fujii et al.[10], che hanno analizzato sperimentalmente e numericamente
l’effetto dell’angolo di incidenza sulla presa rettangolare del progetto Himico della
Jaxa, la variazione dell’incidenza influisce in modo rilevante su due parametri: il
Mass Capture Ratio (MCR) e il Total Pressure Recovery (TPR). Ciò è dovuto
principalmente a due fattori, l’aumento dell’area proiettata all’ingresso della presa
e la variazione della struttura degli urti obliqui.
La fig. 3.9 mostra lo spazio dei parametri utilizzati per costruire il database di
simulazioni ad alta fedeltà. Questa distribuzione di campioni consente di esplorare
il comportamento della presa in un ampio intervallo operativo, garantendo una
copertura adeguata nel dominio parametrico per l’interpolazione basata sulla CDI.

Figura 3.9: Spazio dei parametri di addestramento, presa a doppia rampa

Wassim Cherkaoui 20



3.2 – Presa supersonica a doppia rampa

Figura 3.10: Campo di Mach per M∞ = 2.4 al variare dell’incidenza

Il campo di moto è fortemente influenzato sia dal numero di Mach sia, in particolare,
dall’angolo di incidenza.
Per condizioni di incidenza nulla o comunque molto ridotta, il flusso è caratterizzato
da onde d’urto che si generano in corrispondenza delle rampe. L’interazione tra
queste onde d’urto produce un pattern caratteristico di compressione multirampa
che guida il flusso verso il canale interno.
All’aumentare dell’angolo di incidenza comporta un aumento virtuale della pendenza
delle rampe per il flusso che arriva dall’indisturbato a monte, di conseguenza gli
urti generati sulle due rampe hanno un’intensità maggiore.
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3.2 – Presa supersonica a doppia rampa

Tuttavia, esiste un limite fisico per la deflessione che l’urto può sostenere rimanendo
attaccato alla rampa, per questo motivo nel caso con M∞ si genera un’onda d’urto
curva e staccata, localizzata a monte del canale (fig. 3.10). Ciò causa un cattivo
funzionamento della presa d’aria dato che la configurazione degli urti non più quella
prevista per avere un funzionamento efficiente.
La scelta di inserire nel dataset di addestramento tali condizioni di funzionamento
limite ha lo scopo di rendere l’algoritmo significativamente più robusto, poiché
permette al modello di apprendere anche le transazioni altamente non lineari e
garantendo una maggiore stabilità nelle previsioni.

Figura 3.11: Campo di Mach per M∞ = 2.6 al variare dell’incidenza
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3.2 – Presa supersonica a doppia rampa

Figura 3.12: Campo di Mach per M∞ = 2.8 al variare dell’incidenza
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Capitolo 4

Applicazione della CDI per
la predizione

In questo capitolo si vanno ad estendere i concetti introdotti nella sezione 2.3,
presentando alcune delle metodologie più rilevanti attuate per i passaggi delle
fasi offline ed online dell’algoritmo di interpolazione non lineare basato sulla CDI,
mostrandone le proprietà più importanti.

4.1 Identificazione delle strutture coerenti
Per poter applicare l’interpolazione non lineare è necessario disporre di una rappre-
sentazione compatta ma informativa delle principali strutture coerenti presenti nei
campi di moto ad alta fedeltà che costituiscono il database, come le onde d’urto, le
regioni d’espansione e i vortici.
A tale scopo, si utilizzano dei sensori all’interno del dominio computazionale, in
grado di tracciare la posizione e l’evoluzione di tali strutture al variare dei parametri
fisici del problema.
Questi sensori non corrispondono a misurazioni fisiche, ma a marker numerici
estratti direttamente dalle soluzione RANS o Eulero, e sono definiti in modo da
catturare con alta sensibilità le variazioni locali che caratterizzano la presenza di
discontinuità.
All’interno dell’algoritmo sono stati implementati diversi sensori, ciascuno dei quali
ottimizzato per un determinato tipo di campo di moto.
L’identificazione dei sensori si basa sulla definizione di una funzione scalare di
rilevamento T, costruita in modo specifico per il problema considerato. Tale fun-
zione consente di individuare, all’interno del dominio computazionale Ω i punti
caratterizzati da discontinuità di campo, che risultano particolarmente significativi
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4.1 – Identificazione delle strutture coerenti

per la successiva interpolazione.
Dato il dominio discreto Ω, si definisce un insieme di punti Phf ⊂ Ω associato alla
soluzione ad alta fedeltà uhf

µ , la funzione scalare viene valutata in ogni punto della
mesh {T(x, uhf

µ ) : x ∈ Phf} per tutti i µ ∈ Ptrain. Si ottiene quindi il sottoinsieme
di punti selezionati come sensori, definiti come:

Xraw
µ = {xraw

i,µ } = {x ∈ Phf : T(x, uhf
µ ) ≥ tµ}

dove tµ viene chiamato threshold ed è una soglia di riferimento determinata in
funzione del valore medio o quantile dei risultati su tutto il set di addestramento.

4.1.1 Sensore di Ducros
La funzione scalare T che viene utilizzata come sensore, viene costruita in modo
specifico per il problema in esame ed è quindi fortemente dipendente dal tipo di
flusso e dal fenomeno fisico di interesse.
Nel caso di flussi comprimibili in regime transonico o supersonico, l’obbiettivo
principale è la rilevazione delle onde d’urto, per cui si utilizza il sensore di Ducros,
definito come:

ϕ1(x, u) :=
max(0, −∇ · v)ñ

(∇ · v)2 + ||∇ × v||22 + a2

||∇p||2
p + ε

(4.1)

dove v è il campo di velocità, p è la pressione, a è la velocità del suono e ε > 0 è
una tolleranza pari a 0.01. Tramite tale sensore si va a costruire la funzione scalare,
definita come:

T(xhf
k , uhf

µ ) = sup
x∈Dk

|ϕ(x, uhf
µ )| (4.2)

Nel presente lavoro, il sensore di Ducros è stato modificato e adattato in modo da
migliorare la capacità di individuare le regioni caratterizzate da elevati gradienti di
pressione e discontinuità locali.

4.1.2 Sensore di Mach
È stato inoltre impiegato un secondo sensore, dalla formulazione matematica più
semplice ma estremamente efficace nell’individuazione e tracciamento delle regioni
supersoniche all’interno del campo di moto.
Questo sensore risulta particolarmente adatto per i flussi transonici, come nel
caso della presa d’aria del turbofan, dove la formazione e l’evoluzione delle bolle
supersoniche rivestono un ruolo cruciale nella dinamica del flusso.
Il sensore basato sul numero di Mach, viene definito come:

ϕ2 =
||v||2

a
> 1 (4.3)
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dove ||v||2 =
√

u2 + v2 e a rappresenta la velocità del suono.

4.1.3 Sensore di Ducros corretto
Per ottenere una rilevazione più robusta e fisicamente consistente, è stato definito
un sensore combinato, indicato nel seguito come sensore di Ducros corretto, la
cui formulazione è la seguente:

ϕ = ϕ1 · ϕ2 · ϕ3 (4.4)

dove,

ϕ1 =
max(0, −∇ · v)ñ

(∇ · v)2 + ||∇ × v||22 + a2

||∇p||2
p + ε

(4.5)

ϕ2 =
I

1 se Mach > 1
0 altrimenti

(4.6)

ϕ3 =
I

1 se ∇p · v > 0
0 altrimenti

(4.7)

dove il sensore ϕ2 serve ad escludere lo strato limite che può essere fonte di instabilità
durante la fase di estrapolazione dei marker numerici che catturano le strutture
coerenti. Il sensore ϕ3 ha il compito di rilevare solamente le zone in cui il flusso
subisce una compressione.

4.1.4 Sensore basato sull’entropia
È stato infine introdotto un sensore basato sull’entropia, ideato nello specifico
per l’analisi di campi di moto completamente supersonici come nel caso test della
presa a doppia rampa. Ha l’obbiettivo di individuare e tracciare con precisione le
onde d’urto e le regioni in cui si verificano fenomeni che causano forti gradienti
d’entropia.
Il sensore si basa sulla valutazione del gradiente locale dell’entropia, che assume
valori elevati nelle zone caratterizzate da discontinuità termodinamiche.
La formulazione adottata è la seguente:

ϕ4 = |∇(ρvs)| (4.8)
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4.2 – Applicazione dei sensori al database

4.2 Applicazione dei sensori al database
Una volta definiti e validati i sensori (vedi Cap.5), essi sono stati applicati al
database di soluzioni CFD ad alta fedeltà relativi ai due casi test in esame.
Nell’Appendice A sono riportati i risultati completi dell’applicazione dei diversi
sensori ai database di simulazioni, mentre in questo capitolo vengono presentati solo
alcuni esempi rappresentativi, scelti per illustrare in modo chiaro il funzionamento
della procedura di rilevamento e la distribuzione dei punti caratteristici nel dominio
computazionale.

4.2.1 Caso test: Presa turbofan
Per il caso test relativo alla presa d’aria del turbofan, risulta particolarmente
interessante confrontare le mappe ottenute con il sensore di Ducros corretto con
quelle ottenute tramite il sensore di Mach, quest’ultimo impiegato per individuare
la bolla supersonica che si forma sul dorso del profilo.

(a) Ducros corretto (b) Sensore di Mach

Figura 4.1: Applicazione sensori al database per il caso M∞ = 0.89 e MFR = 0.67

Dal confronto tra le due distribuzioni si osserva che il sensore di Ducros corretto
individua in modo accurato le discontinuità principali del campo di moto, in
particolare l’onda d’urto che si forma sul dorso del profilo.
Il sensore di Mach, invece, permette di delimitare l’intera regione supersonica
associata alla bolla di flusso accelerato, il cui confine posteriore è proprio l’onda
d’urto. Questa caratteristica risulta particolarmente utile nella fase di predizione
mediante CDI, poichè consente di ottenere una ricostruzione del campo di moto
più estesa e fisicamente rappresentativa al variare dei parametri in gioco.
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(a) Ducros corretto (b) Sensore di Mach

Figura 4.2: Applicazione sensori al database per il caso M∞ = 0.87 e MFR = 0.67

(a) Ducros corretto (b) Sensore di Mach

Figura 4.3: Applicazione sensori al database per il caso M∞ = 0.84 e MFR = 0.67

Nelle figure 4.1, 4.2, 4.3 si può apprezzare il comportamento dei sensori applicati
al database di simulazioni al variare del numero di Mach. Nell’appendice A sono
messi a confronto sia al variare del Mach che al variare della MFR.
Per il sensore di Ducros corretto si è optato per la generazione di 200 punti con
una soglia di riferimento o threshold pari a tµ = 0.3. Mentre per il sensore di
Mach il numero di punti captati sale a 400 e il threshold è stato impostato pari a
tµ = 0.99. Ciò comporta che nel caso di utilizzo del sensore di Mach, l’impiego di
un maggiore numero di sensori comporta un incremento del costo computazionale e
di conseguenza anche dei tempi di calcolo, che tuttavia restano dell’ordine di pochi
minuti, risultando quindi trascurabili rispetto ai tempi ben più elevati necessari
per la generazioni delle soluzioni ad alta fedeltà.
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4.2.2 Caso test: Presa a doppia rampa
In questo caso test, dove sono presenti numerose onde d’urto e il campo di moto è
completamente supersonico, risulta inefficace il sensore di Mach, per questo motivo
l’interpolazione non lineare è stata svolta utilizzando il sensore di Ducros corretto
che è specializzato per il rilevamento di discontinuità nel dominio di calcolo.

(a) (b)

(c)

Figura 4.4: Applicazione sensore di Ducros corretto ai casi con M∞ = 2.4 e
incidenza variabile

Figura 4.5: Dettaglio del caso M∞ e i = 2◦
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4.2 – Applicazione dei sensori al database

In fig. 4.5 si può apprezzare nel dettaglio come il sensore di Ducros corretto riesce
a captare non solo le onde d’urto principali che si formano ma anche le varie
interazioni tra urti che si generano all’ingresso della presa a doppia rampa. Ciò
permette di generare, in fase di predizione, dei campi di moto che tendono alla
soluzione ad alta fedeltà.

(a)

(b)

(c)

Figura 4.6: Applicazione sensore di Ducros corretto ai casi con M∞ = 2.6 e
incidenza variabile
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(a)

(b)

(c)

Figura 4.7: Applicazione sensore di Ducros corretto ai casi con M∞ = 2.8 e
incidenza variabile

Per questo caso test, a differenza del precedente, sono stati necessari 380 punti
captati dal sensore di Ducros corretto a causa dell’elevato numero di discontinuità
presenti all’interno del campo di moto, inoltre è stata utilizzata una soglia di
riferimento o threshold pari a tµ = 0.35
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4.3 Allineamento delle nuvole di punti

Le nuvole di punti contenute in Xraw
µ non sono necessariamente delle stesse dimen-

sioni e più importante non sono ordinate, per questo motivo si sfrutta la point set
registration (PSR) per generare delle nuvole di punti ordinate [6],

Xµ = PSR(Xraw
µref , Xraw

µ ) µref ∈ Ptrain (4.9)

che consiste nel trovare una mappatura T : Rd → Rd che minimizzi la distanza,

dist(Y, T (X)) = max
y∈Y

3
min
x∈X

||y − T (x)||2
4

e l’output dell’algoritmo consiste in una mappatura deformata di punti T (X) come
si può apprezzare nella fig. 4.8

Figura 4.8: Mappatura dei punti ordinati T (X), presa a doppia rampa

dove si utilizza lo snapshot di riferimento che è tipicamente scelto come il centroide
dello spazio dei parametri, mentre lo snapshot ad esso associato è una buona
approssimazione del baricentro nello spazio delle soluzioni, e che quindi minimizza
le somme delle distanze dagli altri snapshot.
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4.4 Regressione
A partire dalle nuvole di punti ordinate {Xµ : µ ∈ Ptrain} si applica per prima
cosa la Proper Orthogonal Decomposition (POD) per la costruzione dei modi e per
ottenere una rappresentazione equivalente delle soluzioni

Xµk =
MØ

i=1
Ziβ

i
k con Z1, ..., ZM ∈ RN×d, β1

1 , ..., βM
ntrain

∈ R (4.10)

e successivamente si applica la regressione Radial Basis Function (RBF) per
determinare l’approssimazione µ ∈ P → X̂µ ∈ RN×d. In particolare si applica la
regressione RBF a ogni coefficiente dell’espansione:

β̂i = arg min
β∈Sϕ

λ||β||2Sϕ
+

ntrainØ
k=1

(β(µk) − βi
k)2 i = 1, ..., M

dove S rappresenta lo spazio nativo associato al kernel1 ϕ, mentre λ > 0 è un
coefficiente di regolarizzazione.
Infine si ottiene la stima,

X̂µ =
MØ

i=1
Ziβ̂

i
µ (4.11)

con m ≤ M

Facendo così si va prima ad esprimere il vettore come una combinazione di modi
moltiplicati per i coefficienti che dipendono dal valore del parametro e successiva-
mente si applica l’algoritmo di regressione a ciascun coefficiente. Il vantaggio è che
non c’è alcuna relazione tra l’algoritmo di regressione utilizzato e la costruzione dei
modi. Dato che i modi sono ortonormali, il valore ottimale per ciascun coefficiente
è la proiezione del vettore soluzione sul modo corrispondente, dunque si può inter-
pretare l’algoritmo di regressione come un algoritmo atto a prevedere la proiezione
della soluzione, che dipende dal parametro, nella direzione del modo corrispondente,
che non dipende dal parametro. La metodologia spiegata è giustificata dal fatto
che i coefficienti associati ai modi più "energetici" dipendono in modo più regolare
dal parametro e sono dunque più facili da stimare, in questo modo si può scegliere
in maniera sistematica il numero di modi.

1è un concetto chiave nella teoria dei metodi kernel e trova applicazione nel Machine Learning
quando i problemi sono caratterizzati da dataset di dimensionalità intermedia (numero di dati
compreso tra 10 ÷ 10000). Lo spazio nativo si riferisce specificamente allo spazio di Hilbert che è
matematicamente legato a una specifica funzione kernel tramite la teoria di regolarizzazione alla
Tikhonov
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4.5 Selezione dei k-vicini più prossimi
Il passo successivo consiste nell’individuazione dei parametri ν1, ..., νk ∈ Ptrain,
ovvero quelli che sono stati utilizzati per l’addestramento, che minimizzano la
distanza Euclidea da uno dei parametri µ ∈ P assegnati nella fase online, non
appartenente allo spazio dei parametri utilizzati per l’addestramento. La distanza
Euclidea è definita come:

dist(µ, ν) = ||µ − ν||2 (4.12)

questa scelta è dovuta al fatto che la distanza Euclidea è invariante rispetto alle
roto-traslazioni dei parametri. Questa è una proprietà chiave per la procedura che
caratterizza la CDI

4.6 Registrazione
La mappatura T (X) ottenuta in 4.3 non preserva i bordi del dominio computazio-
nale, quindi per ogni ν ∈ Pµ

nn è necessario trovare una mappatura Φν : Ω → Ω che
sia biiettiva in Ω e che soddisfi Φν(xref

i ) ≈ x̂ref
i per i = 1, ..., N .

Lo sviluppo di una procedura di registrazione generale che funzioni per ogni dominio
computazionale è il soggetto della ricerca attuale e per questo motivo ci si può
imbattere in errori per domini di calcolo particolari come la presa a doppia rampa.
Nell’algoritmo oggetto di questa tesi, sono stati implementati due tecniche di
registrazione:

• Elasticity-based registration [11]

• Optimization-based registration [12][13]

4.7 Scelta dei pesi
Avendo selezionato i vicini più prossimi caratterizzati dai parametri contenuti nello
spazio dei parametri di addestramento ν1, ..., νk ∈ Ptrain e dato il nuovo parametro
µ ∈ P, si vanno a calcolare i pesi come:

• Se il parametro non è presente tra quelli utilizzati per l’addestramento
dell’algoritmo µ /∈ Ptrain:

ων
µ =

dist(µ, ν)q
ν′∈P

µ
nn

1
distp(µ,ν′)

(4.13)
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• Se il parametro è tra quelli utilizzati per l’addestramento dell’algoritmo µ ∈
Ptrain, allora:

ων
µ =

I
1 µ = ν

0 altrimenti
(4.14)

L’esponente p ≥ 1 assume un valore maggiore per i parametri più vicini a quello
considerato per la predizione e inferiore per quelli più lontani.
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Capitolo 5

Risultati e analisi delle
prestazioni

In questo capitolo si vanno a esporre i risultati ottenuti tramite l’interpolazione
non lineare e a valutarne le prestazioni attraverso molteplici analisi. In particolare
si farà un’analisi comparativa dei sensori, valutando l’errore che si commette in
base al sensore utilizzato, in termini di distribuzione del coefficiente di pressione.
Tale analisi comparativa è stata svolta sul caso test della presa d’aria del turbofan,
in modo tale da valutare quale configurazione utilizzare per il secondo caso test, la
presa a doppia rampa.

5.1 Analisi comparativa dei sensori
Nel caso test della presa d’aria del turbofan, caratterizzato dalla presenza simultanea
di regioni subsoniche e supersoniche nel campo di moto, è stata condotta un’analisi
comparativa dei diversi sensori disponibili per la rilevazione delle strutture coerenti
e, come è stato anticipato, si è valutata la distribuzione del coefficiente di pressione
sul dorso del profilo data la presenza dell’onda d’urto.
Infine si è valutato l’errore, commesso dall’interpolazione non lineare rispetto alla
simulazione ad alta fedeltà, associato ad ogni sensore, validandone così l’efficacia.
Si è svolta l’interpolazione non lineare per i cinque casi studio rappresentati in fig.
3.2 e a seguire sono elencati i risultati ottenuti per i vari sensori.

5.1.1 Caso test 1: M∞ = 0.8882 e MFR = 0.6911
Per apprezzare l’efficacia dell’interpolazione non lineare ottenuta mediante la
metodologia CDI, è stata eseguita in parallelo anche l’interpolazione lineare tramite
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POD, i risultati delle due metodologie sono stati messi a confronto sia in termini
di distribuzione del coefficiente di pressione sul dorso del profilo, sia analizzando
l’errore rispetto alla soluzione CFD ad alta fedeltà.

(a) Convex Displacement Interpolation (CDI)

(b) Simulazione ad alta fedeltà

(c) Proper Orthogonal Decomposition (POD)

Figura 5.1: Caso test 1: Interpolazione tramite CDI e confronto del campo di
Mach tramite sensore di Ducros corretto
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In fig. 5.1 si può notare come l’interpolazione non lineare prevede un campo di
moto fedele alla simulazione ad alta fedeltà, mentre l’interpolazione lineare non
riesce a prevedere in maniera accurata i fenomeni di trasporto che caratterizzano
l’urto che si genera sul dorso del profilo. Si può apprezzare l’accuratezza della
previsione andando a rappresentare i marker numerici generati in fase di predizione,
sovrapposti al sensore applicato alla simulazione ad alta fedeltà,

Figura 5.2: Caso test 1: sovrapposizione dei sensori predetti e ad alta fedeltà,
Ducros corretto

In fig. 5.2 si può vedere come i sensori predetti dalla metodologia CDI si sovrap-
pongono perfettamente ai sensori applicati alla simulazione CFD ad alta fedeltà,
garantendo una predizione del campo di moto fedele alla realtà nonostante la non
linearità delle discontinuità, al variare dei parametri in gioco.
Inoltre si è andato a valutare l’andamento del coefficiente di pressione sia sul ventre
che sul dorso del profilo come si può notare in fig. 5.3 e in fig. 5.4. Come ci si poteva
aspettare, sul ventre non si notano grandi differenze, mentre sul dorso si nota come
l’interpolazione lineare fallisce proprio in presenza dell’onda d’urto, mentre la CDI
riesce a mantenere un andamento paragonabile a quello della simulazione ad alta
fedeltà
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Figura 5.3: Caso test 1: Distribuzione del coefficiente di pressione sul ventre,
Ducros corretto

Figura 5.4: Caso test 1: Distribuzione del coefficiente di pressione sul dorso,
Ducros corretto
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Infine si è generato un grafico che rappresenta la differenza tra la soluzione ottenuta
tramite interpolazione e la soluzione ad alta fedeltà,

(a) Convex Displacement Interpolation (CDI)

(b) Proper Orthogonal Decomposition (POD)

Figura 5.5: Caso test 1: Errore commesso dall’interpolazione

Dalla fig. 5.5 si può notare chiaramente come l’approccio lineare comporta gravi
errori circa il posizionamento dell’urto, mentre l’interpolazione non lineare effettuata
tramite la CDI predice in maniera efficace la posizione dell’urto al variare del Mach
e della MFR.
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5.1.2 Caso test 2: M∞ = 0.8673 e MFR = 0.6983
Analogamente al caso precedente, si procede applicando l’interpolazione e si
ottengono i seguenti campi di moto,

(a) Convex Displacement Interpolation (CDI)

(b) Simulazione ad alta fedeltà

(c) Proper Orthogonal Decomposition (POD)

Figura 5.6: Caso test 2: Interpolazione tramite CDI e confronto del campo di
Mach tramite sensore di Ducros corretto
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Anche in questo caso si può andare a visualizzare il confronto tra i sensori captati
dalla soluzione ad alta fedeltà con i marker numerici generati nella fase online della
predizione (fig. 5.7)

Figura 5.7: Caso test 2: sovrapposizione dei sensori predetti e ad alta fedeltà,
Ducros corretto

nuovamente la sovrapposizione risulta compatibile con la soluzione CFD ad alta
fedeltà, garantendo così una predizione accurata per quanto riguarda la posizione
dell’urto, mantenendo comunque le informazioni relative alla fisica del problema.
Anche per il seguente caso test si è andata a rappresentare la distribuzione del
coefficiente di pressione, sia sul dorso che sul ventre del profilo, in modo da
confrontare le soluzioni ottenute tramite interpolazione con la soluzione ad alta
fedeltà.
Dalla fig. 5.8 si nota come sul ventre del profilo entrambe le soluzioni approssimano
bene l’andamento della soluzione ad alta fedeltà. Mentre in fig. 5.9 si può apprezzare
come nonostante la distribuzione di pressione sia variata sul dorso del profilo, al
variare del Mach e della MFR, la soluzione ottenuta tramite CDI approssima in
maniera ottimale l’andamento, mentre la soluzione POD fallisce nuovamente in
presenza dell’onda d’urto, restituendo una distribuzione errata del coefficiente di
pressione sul dorso del profilo.
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Figura 5.8: Caso test 2: Distribuzione del coefficiente di pressione sul ventre,
Ducros corretto

Figura 5.9: Caso test 2: Distribuzione del coefficiente di pressione sul dorso,
Ducros corretto
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(a) Convex Displacement Interpolation (CDI)

(b) Proper Orthogonal Decomposition (POD)

Figura 5.10: Caso test 2: Errore commesso dall’interpolazione

In fig. 5.10 si nota come nella soluzione approssimata ottenuta tramite CDI nasce
un disturbo sul bordo d’attacco del profilo che però risulta trascurabile come si è
potuto valutare tramite la distribuzione del coefficiente di pressione sul dorso del
profilo. La soluzione ottenuta tramite interpolazione lineare fallisce anche in questo
caso, mostrando come la posizione dell’urto in fase di predizione sia totalmente
errata rispetto alla soluzione reale.

45 Wassim Cherkaoui



5.1 – Analisi comparativa dei sensori

5.1.3 Caso test 3: M∞ = 0.8661 e MFR = 0.6614
Analogamente ai casi precedenti, si procede applicando l’interpolazione e si otten-
gono i seguenti campi di moto,

(a) Convex Displacement Interpolation (CDI)

(b) Simulazione ad alta fedeltà

(c) Proper Orthogonal Decomposition (POD)

Figura 5.11: Caso test 3: Interpolazione tramite CDI e confronto del campo di
Mach tramite sensore di Ducros corretto
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Come fatto in precedenza, si effettua il confronto tra i marker numerici captati dal
sensore di Ducros corretto nella soluzione ad alta fedeltà con quelli predetti nella
fase online dell’interpolazione non lineare (fig. 5.12)

Figura 5.12: Caso test 3: sovrapposizione dei sensori predetti e ad alta fedeltà,
Ducros corretto

Figura 5.13: Caso test 3: Distribuzione del coefficiente di pressione sul ventre,
Ducros corretto
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Figura 5.14: Caso test 3: Distribuzione del coefficiente di pressione sul dorso,
Ducros corretto

Ancora una volta si può vedere come l’interpolazione lineare fallisce nella predizione
della posizione esatta dell’urto, comportando una distribuzione del coefficiente di
pressione errata. La metodologia CDI riesce a prevedere in maniera ottimale l’an-
damento, sovrapponendosi correttamente all’andamento estrapolato dalla soluzione
ad alta fedeltà.
Infine, in fig. 5.15, si può notare come si ripresenta lo stesso comportamento
riguardo il campo di errore generato dalla differenza tra le soluzioni approssimate e
la soluzione reale. In particolare la soluzione lineare comporta incongruenze sia per
quanto riguarda la posizione dell’urto sia per l’estensione della bolla supersonica a
monte dell’onda d’urto.
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(a) Convex Displacement Interpolation (CDI)

(b) Proper Orthogonal Decomposition (POD)

Figura 5.15: Caso test 3: Errore commesso dall’interpolazione

Dal campo di errore si può apprezzare come entrambi i metodi commettono un
errore massimo di circa ≈ 0.1. La differenza risiede nel fatto che l’interpolazione
non lineare riesce a captare in maniera ottimale la posizione dell’urto e ciò si
traduce in un campo di errore meno disturbato, ovvero si riduce la differenza tra il
campo di moto interpolato e quello di alta fedeltà.
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5.1.4 Caso test 4: M∞ = 0.8516 e MFR = 0.6578
Si procede applicando l’interpolazione e si ottengono i seguenti campi di moto,

(a) Convex Displacement Interpolation (CDI)

(b) Simulazione ad alta fedeltà

(c) Proper Orthogonal Decomposition (POD)

Figura 5.16: Caso test 4: Interpolazione tramite CDI e confronto del campo di
Mach tramite sensore di Ducros corretto
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Si effettua poi il confronto tra i marker numerici captati dal sensore di Du-
cros corretto nella soluzione ad alta fedeltà con quelli predetti nella fase online
dell’interpolazione non lineare (fig. 5.17)

Figura 5.17: Caso test 4: sovrapposizione dei sensori predetti e ad alta fedeltà,
Ducros corretto

Figura 5.18: Caso test 4: Distribuzione del coefficiente di pressione sul ventre,
Ducros corretto
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Figura 5.19: Caso test 4: Distribuzione del coefficiente di pressione sul dorso,
Ducros corretto

Dalla fig. 5.19 si può vedere ancora una volta l’errore commesso dalla POD
nell’approssimare l’andamento del coefficiente di pressione a parete. Mentre in fig.
5.20, in contrasto con il caso test precedente, non è più presente il disturbo sul
bordo d’attacco, sintomo di una predizione migliore del campo di moto tramite la
CDI. L’interpolazione lineare continua invece a non prevedere in maniera esatta la
posizione dell’urto sul dorso del profilo.
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(a) Convex Displacement Interpolation (CDI)

(b) Proper Orthogonal Decomposition (POD)

Figura 5.20: Caso test 4: Errore commesso dall’interpolazione

In questo caso test l’errore massimo commesso dalle due interpolazioni è para-
gonabile, ma il vantaggio della CDI è la maggiore precisione nella localizzazione
dell’urto.
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5.1.5 Caso test 5: M∞ = 0.8644 e MFR = 0.7384
Si procede applicando l’interpolazione e si ottengono i seguenti campi di moto,

(a) Convex Displacement Interpolation (CDI)

(b) Simulazione ad alta fedeltà

(c) Proper Orthogonal Decomposition (POD)

Figura 5.21: Caso test 5: Interpolazione tramite CDI e confronto del campo di
Mach tramite sensore di Ducros corretto

Wassim Cherkaoui 54



5.1 – Analisi comparativa dei sensori

Si effettua poi il confronto tra i marker numerici captati dal sensore di Du-
cros corretto nella soluzione ad alta fedeltà con quelli predetti nella fase online
dell’interpolazione non lineare (fig. 5.17)

Figura 5.22: Caso test 5: sovrapposizione dei sensori predetti e ad alta fedeltà,
Ducros corretto

Figura 5.23: Caso test 5: Distribuzione del coefficiente di pressione sul ventre,
Ducros corretto
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Figura 5.24: Caso test 5: Distribuzione del coefficiente di pressione sul dorso,
Ducros corretto

In questo ultimo caso test, oltre alla CDI, anche l’interpolazione lineare effettuata
tramite la metologia POD, porta a una soluzione che ha un andamento che appros-
sima fedelmente la distribuzione ottenuta dalla simulazione ad alta fedeltà. Questa
osservazione si può notare anche in fig. 5.25 dove il campo di errore associato alla
soluzione lineare risulta indisturbato in confronto ai precedenti casi test. Per quanto
riguarda l’interpolazione non lineare si è ripresentato il disturbo che si genera sul
bordo d’attacco del profilo, ma nonostante ciò la distribuzione del coefficiente di
pressione a parete ottenuto, approssima fedelmente la soluzione reale (fig. 5.24).
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(a) Convex Displacement Interpolation (CDI)

(b) Proper Orthogonal Decomposition (POD)

Figura 5.25: Caso test 4: Errore commesso dall’interpolazione

Dalla fig. 5.25 si può vedere come l’errore massimo, definito come la differenza tra
il campo di moto approssimato e quello di alta fedeltà, commesso dalla CDI è di
circa ≈ 0.07, mentre l’interpolazione lineare commette un errore massimo di circa
≈ 0.14.
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5.1.6 Marker numerici in fase di predizione
In questa sezione vengono presentati i risultati ottenuti nella fase online di predizione,
analizzando le prestazioni della metodologia CDI al variare del sensore impiegato
per la rilevazione delle strutture coerenti.
In particolare, vengono confrontate le distribuzioni dei marker numerici associate ai
tre sensori considerati: il sensore di Ducros corretto, il sensore di Mach e il sensore
basato sull’entropia.

(a) Sensore di Ducros corretto (b) Sensore di Ducros corretto

(c) Sensore di Mach (d) Sensore di Mach

(e) Sensore basato sull’entropia (f) Sensore basato sull’entropia

Figura 5.26: Casi test 1 (sx) e 2 (dx): Marker numerici dei sensori
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(a) Sensore di Ducros corretto (b) Sensore di Ducros corretto

(c) Sensore di Mach (d) Sensore di Mach

(e) Sensore basato sull’entropia (f) Sensore basato sull’entropia

Figura 5.27: Casi test 3 (sx) e 4 (dx): Marker numerici dei sensori
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(a) Sensore di Ducros corretto

(b) Sensore di Mach

(c) Sensore basato sull’entropia

Figura 5.28: Caso test 5: Marker numerici dei sensori

Ai marker numerici generati in fase predittiva dall’algoritmo per ogni sensore imple-
mentato, sono associate soluzioni del campo di moto ottenute tramite interpolazione
non lineare e per questo motivo risulta di particolare interesse fare un ulteriore
confronto tra i campi di Mach e i campi di errore al variare dei sensori impiegati.
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Il confronto tra le soluzioni ottenute impiegando i differenti sensori di rilevamen-
to delle strutture coerenti è stato eseguito per il caso test n. 1, scelto come
rappresentativo dell’insieme dei casi analizzati.

(a) Sensore di Ducros corretto

(b) Sensore di Mach

(c) Sensore basato sull’entropia

Figura 5.29: Caso test 1: Campi di Mach ottenuti al variare dei sensori

Tutti e tre i sensori forniscono un campo di moto coerente dal punto di vista fisico
come si può apprezzare dalla fig. 5.29.
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(a) Sensore di Ducros corretto

(b) Sensore di Mach

(c) Sensore basato sull’entropia

Figura 5.30: Caso test 1: Campi di errore ottenuti al variare dei sensori
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(a) Sensore di Ducros corretto

(b) Sensore di Mach

(c) Sensore basato sull’entropia

Figura 5.31: Caso test 1: Confronto distribuzione pressione a parete al variare
dei sensori

Tutti i sensori che sono stati impiegati per la predizione del campo di moto hanno
fornito una distribuzione del coefficiente di pressione a parete paragonabile al caso
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reale come si può vedere dalla fig. 5.31.
Dalla fig. 5.30 invece si può notare come il sensore di Mach e il sensore basato
sull’entropia generano maggiori disturbi a monte dell’onda d’urto, in particolare
sul bordo d’attacco del profilo. Di conseguenza si può affermare che i tre sensori
predicono in maniera ottimale la posizione dell’urto, ma solo il sensore di Ducros
corretto fornisce una predizione accurata anche nel resto del campo di moto.

5.1.7 Errore associato alla scelta dei sensori
Per apprezzare le prestazioni ottenute per i vari casi test, al variare del sensore
utilizzato, si è valutato l’errore in L2 definito come:

E =

öõõô qNw
i=1(Cp,HF − Cp,CDI)2

Nw

(5.1)

Caso test n° 1 2 3 4 5
Sensore di Ducros corretto 0.0335 0.0169 0.0156 0.0262 0.0112

Sensore di Mach 0.0360 0.0186 0.0174 0.0275 0.0118
Sensore Entropia 0.0580 0.0287 0.0280 0.0439 0.0192

Interpolazione lineare 0.0699 0.0567 0.0476 0.0616 0.0344

Tabella 5.1: Errore associato alla scelta dei sensori

Figura 5.32: Andamento dell’errore associato ai sensori al variare dei casi test
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5.2 Presa a doppia rampa
In questa sezione vengono presentati i risultati ottenuti tramite l’interpolazione
non lineare, basata sulla CDI, per i cinque casi test relativi alla seconda geometria
considerata, ovvero la presa d’aria a doppia rampa.
L’obbiettivo è valutare la capacità dell’approccio di ricostruire con accuratezza le
principali strutture del flusso, in particolare le onde d’urto generate dalla doppia
deflessione e le interazioni tra gli urti nel canale d’ingresso, al variare dei parametri
in gioco: Mach di volo ed incidenza (vedi fig. 3.9).

Figura 5.33: Spazio dei parametri, addestramento e interpolazione

In particolare, i parametri che caratterizzano i cinque casi test presi in esame sono:
• M∞ = 2.55 e i = 0.8◦

• M∞ = 2.75 e i = 0.3◦

• M∞ = 2.65 e i = 2.2◦

• M∞ = 2.70 e i = 3.0◦

• M∞ = 2.45 e i = 3.8◦

Per ciascun caso test vengono confrontate la soluzione interpolata e la corrispondente
soluzione CFD ad alta fedeltà, analizzando sia i campi di Mach che gli errori associati,
utilizzando come sensore quello di Ducros corretto. Nell’Appendice B sono messe a
confronto le restanti variabili primitive (densità, pressione e componenti di velocità).
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5.2.1 Caso test 1: M∞ = 2.55 e i = 0.8◦

(a) Convex Displacement Interpolation (CDI)

(b) Simulazione ad alta fedeltà

Figura 5.34: Caso test 1: Interpolazione tramite CDI e confronto del campo di
Mach tramite sensore di Ducros corretto

Il campo di Mach ottenuto tramite CDI conserva le proprietà fisiche più importanti
del flusso, incluse le regioni supersoniche e la posizione degli urti. Inoltre anche le
interazioni tra gli urti vengono riprodotte fedelmente e si nota un leggero disturbo
per quanto riguarda l’urto che si genera sulla prima rampa.
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Figura 5.35: Caso test 1: sovrapposizione dei sensori predetti e ad alta fedeltà

Figura 5.36: Caso test 1: Errore commesso dall’interpolazione

Nella fig. 5.35 sono riprodotti i sensori ottenuti tramite l’interpolazione, che si
sovrappongono in maniera coerente a quelli estrapolati dalla soluzione ad alta
fedeltà. Tale controllo risulta cruciale per quanto riguarda la qualità della soluzione
interpolata che si ottiene.
Dalla fig. 5.36 risulta una differenza massima tra il campo di Mach approssimato e
quello esatto di circa ≈ 0.13, ciò avviene nella zona in cui sono presenti le interazioni
tra gli urti, all’ingresso del canale della presa d’aria.
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5.2.2 Caso test 2: M∞ = 2.75 e i = 0.3◦

(a) Convex Displacement Interpolation (CDI)

(b) Simulazione ad alta fedeltà

Figura 5.37: Caso test 2: Interpolazione tramite CDI e confronto del campo di
Mach tramite sensore di Ducros corretto

Anche per il caso test 2 la metodologia CDI fornisce una ricostruzione del campo di
Mach coerente con la soluzione ad alta fedeltà per quanto riguarda la configurazione
degli urti, la loro intensità e le interazioni, nonostante la forte non linearità dei
fenomeni.
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Figura 5.38: Caso test 2: sovrapposizione dei sensori predetti e ad alta fedeltà

Figura 5.39: Caso test 2: Errore commesso dall’interpolazione

Per il seguente caso test si ottiene una migliore predizione per il posizionamento
dell’urto principale che si genera sulla prima rampa, ma nascono nuovi disturbi
all’interno del condotto. L’errore commesso è dello stesso ordine di grandezza del
precedente, con un valore massimo di ≈ 0.12, assicurando una predizione accurata.
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5.2.3 Caso test 3: M∞ = 2.65 e i = 2.2◦

(a) Convex Displacement Interpolation (CDI)

(b) Simulazione ad alta fedeltà

Figura 5.40: Caso test 3: Interpolazione tramite CDI e confronto del campo di
Mach tramite sensore di Ducros corretto

Tra i cinque casi test considerati per la presa a doppia rampa, il seguente presenta
un comportamento particolarmente interessante dal punto di vista fisico: essendo
i parametri operativi molto vicini alla transizione tra la configurazione con urto
attaccato e quella con l’urto staccato, la metodologia CDI predice un urto staccato
nonostante la soluzione esatta non lo abbia. In prossimità della frontiera tra i due
regimi di flusso, lo spazio dei parametri presenta un cambiamento topologico brusco,
che rende l’interpolazione particolarmente sensibile. Per risolvere tale problema si
potrebbe costruire un dataset di addestramento più fitto, specialmente in prossimità
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della transizione tra i due regimi.
Questa incongruenza tra il campo di Mach interpolato e quello ad alta fedeltà,
genera una zona particolarmente disturbata nel campo di Errore, all’ingresso del
condotto sulla seconda rampa (fig. 5.42).

Figura 5.41: Caso test 3: sovrapposizione dei sensori predetti e ad alta fedeltà

Figura 5.42: Caso test 3: Errore commesso dall’interpolazione
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5.2.4 Caso test 4: M∞ = 2.70 e i = 3.0◦

(a) Convex Displacement Interpolation (CDI)

(b) Simulazione ad alta fedeltà

Figura 5.43: Caso test 4: Interpolazione tramite CDI e confronto del campo di
Mach tramite sensore di Ducros corretto

Il quarto caso test rappresenta la configurazione per la quale la metodologia
CDI fornisce i risultati più accurati. Ciò è dovuto al fatto che i parametri che
lo caratterizzano si trovano esattamente a metà tra i parametri utilizzati per
l’addestramento. Trovarsi in una regione centrale dello spazio dei parametri implica
che la soluzione può essere ottenuta tramite una vera interpolazione tra gli snapshot
che appartengono a entrambi i lati del dominio.
In questo caso la registrazione delle nuvole di punti è particolarmente stabile,
le mappature risultano ben condizionate e le pesature dei vicini più prossimi
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producono una combinazione lineare nel manifold e questo permette di riprodurre
fedelmente la fisica del problema.
Il risultato è una predizione del campo di Mach praticamente sovrapponibile
alla soluzione ad alta fedeltà, con una corretta individuazione delle onde d’urto
nonostante la forte non linearità (vedi fig. 5.45).

Figura 5.44: Caso test 4: sovrapposizione dei sensori predetti e ad alta fedeltà

Figura 5.45: Caso test 4: Errore commesso dall’interpolazione
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5.2.5 Caso test 5: M∞ = 2.45 e i = 3.8◦

(a) Convex Displacement Interpolation (CDI)

(b) Simulazione ad alta fedeltà

Figura 5.46: Caso test 5: Interpolazione tramite CDI e confronto del campo di
Mach tramite sensore di Ducros corretto

In questo caso test si può apprezzare come l’interpolazione non lineare riesce a
captare la variazione del regime di flusso, prevedendo la presenza dell’urto staccato.
Nonostante ciò si nota un’incongruenza tra il campo di Mach generato dall’interpo-
lazione e quello relativo alla soluzione CFD di alta fedeltà, ciò è dovuto al fatto nel
dataset di addestramento sono presenti solamente due casi che rappresentano questo
tipo di regime di flusso, di conseguenza la predizione, in termini di posizionamento
dell’urto, non risulta accurata come si può vedere in fig. 5.48
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Figura 5.47: Caso test 5: sovrapposizione dei sensori predetti e ad alta fedeltà

Dalla fig. 5.47 si può notare una mancanza di marker numerici nella zona in cui
si presenta l’urto staccato, sintomo di una mancanza di dati relativi a questa
particolare configurazione delle strutture coerenti nel dataset di addestramento.

Figura 5.48: Caso test 5: Campi di errore ottenuti al variare dei sensori
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Capitolo 6

Conclusioni e sviluppi futuri

Il lavoro svolto ha permesso di valutare l’efficacia della Convex Displacement
Interpolation (CDI) nella predizione di campi di moto complessi, caratterizzati
da variazioni significative per quanto riguarda la topologia e dall’interazione tra
strutture coerenti.
I due casi test selezionati, la presa d’aria di un TurboFan e la presa a doppia rampa,
hanno fornito un banco di prova molto differenziato e hanno permesso di analizzare
il comportamento dell’interpolazione non lineare sia in condizioni transoniche sia
in condizioni completamente supersoniche.
Dai risultati si è visto come l’accuratezza predittiva è buona nella maggior parte dei
casi test considerati, con particolare efficacia nei casi in cui i parametri da interpolare
sono ben rappresentati all’interno dello spazio dei parametri di addestramento
dell’algoritmo.
Da un punto di vista computazionale, la generazione delle soluzioni interpolate
risulta estremamente vantaggiosa rispetto alle simulazioni CFD ad alta fedeltà:

• Per la presa d’aria del TurboFan, i tempi di predizione sono dell’ordine di
pochi minuti ≈ 3min per cinque casi test.

• Per la presa a doppia rampa, caratterizzata da una maggiore complessità e
da un campionamento di punti superiore tramite i sensori (circa 400 marker
numerici), i tempi si collocano nell’ordine delle decine di minuti.

L’algoritmo è stato sviluppato utilizzando il software Matlab ed è un algoritmo di
tipo seriale, perciò ci sono grandi margini di miglioramento e ottimizzazione del
codice per ridurre ulterioremente i tempi di calcolo.
Questi risultati confermano come la CDI sia uno strumento promettente per
applicazioni aerospaziali e permette di compiere un passo verso le simulazioni in
tempo reale.

77



Conclusioni e sviluppi futuri

Sono stati inoltre individuati alcuni limiti, in particolare nei casi che si trovano
nella zona di transizione tra una configurazione del campo di moto e un’altra,
per i quali si rende necessario un infittimento del dataset di addestramento, ma
essendo questo processo appartenente alla fase offline dell’algoritmo, si tratta di un
procedimento da svolgere una singola volta.
La tesi in esame apre la strada a diversi sviluppi futuri:

• Miglioramento della fase di allineamento delle nuvole di punti per rendere
la fase di registrazione più robusta e generalizzata. L’obbiettivo è quello di
ottenere una procedura in grado di operare su geometrie differenti, domini
computazionali non coincidenti.

• Si possono integrare tecniche data-driven, come ad esempio le reti neurali per
la regressione delle nuvole di punti e l’adozione di sensori adattivi (physics
informed sensors) che tengono conto della fisica del problema al variare del
caso test.

• Ottimizzazione dell’algoritmo non intrusivo basato sul trasporto ottimale
tramite un codice ad architettura modulare che sfrutti le potenzialità delle
GPU per accelerare i tempi di calcolo.
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Appendice A

Applicazione dei sensori al
database

Di seguito sono elencati i risultati ottenuti estrapolando i marker numerici utilizzan-
do i vari sensori physics-informed per ogni snapshot del dataset di addestramento
per il caso della presa d’aria del turbofan. In questo modo si fornisce una visione
completa del comportamento della tecnica di rilevazione delle strutture coerenti.

Figura A.1: Spazio dei parametri utilizzato per l’addestramento, presa d’aria del
turbofan

La fig. A.1 riporta lo spazio dei parametri utilizzato per la generazione del database.
Tale riferimento permette di interpretare più agevolmente le figure successive, che
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Applicazione dei sensori al database

mostrano l’applicazione dei vari sensori ai nove snapshot che compongono il database
di addestramento.

(a) M∞ = 0.84, Sensore di
Ducros corretto

(b) M∞ = 0.84, Sensore di
Mach

(c) M∞ = 0.84, Sensore ba-
sato sull’entropia

(d) M∞ = 0.87, Sensore di
Ducros corretto

(e) M∞ = 0.87, Sensore di
Mach

(f) M∞ = 0.87, Sensore basa-
to sull’entropia

(g) M∞ = 0.89, Sensore di
Ducros corretto

(h) M∞ = 0.89, Sensore di
Mach

(i) M∞ = 0.89, Sensore basa-
to sull’entropia

Figura A.2: Applicazione dei sensori al database di addestramento, MFR = 0.61
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Applicazione dei sensori al database

(a) M∞ = 0.84, Sensore di
Ducros corretto

(b) M∞ = 0.84, Sensore di
Mach

(c) M∞ = 0.84, Sensore ba-
sato sull’entropia

(d) M∞ = 0.87, Sensore di
Ducros corretto

(e) M∞ = 0.87, Sensore di
Mach

(f) M∞ = 0.87, Sensore basa-
to sull’entropia

(g) M∞ = 0.89, Sensore di
Ducros corretto

(h) M∞ = 0.89, Sensore di
Mach

(i) M∞ = 0.89, Sensore basa-
to sull’entropia

Figura A.3: Applicazione dei sensori al database di addestramento, MFR = 0.67
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Applicazione dei sensori al database

(a) M∞ = 0.84, Sensore di
Ducros corretto

(b) M∞ = 0.84, Sensore di
Mach

(c) M∞ = 0.84, Sensore ba-
sato sull’entropia

(d) M∞ = 0.87, Sensore di
Ducros corretto

(e) M∞ = 0.87, Sensore di
Mach

(f) M∞ = 0.87, Sensore basa-
to sull’entropia

(g) M∞ = 0.89, Sensore di
Ducros corretto

(h) M∞ = 0.89, Sensore di
Mach

(i) M∞ = 0.89, Sensore basa-
to sull’entropia

Figura A.4: Applicazione dei sensori al database di addestramento, MFR = 0.74
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Appendice B

Interpolazione: campi di
moto predetti

Di seguito sono riportati i campi di moto delle principali grandezze termodinamiche
calcolate mediante la CDI per i cinque casi test considerati. Oltre al campo di
Mach, già discusso nella tesi, vengono presentate:

• la densità ρ

• la pressione p

• la componente orizzontale di velocità u

• la componente verticale di velocità v

Per ciascuna variabile vengono confrontate la soluzione interpolata tramite la
metodologia CDI e la soluzione ad alta fedeltà, in modo da permettere un confronto
diretto sulla qualità dell’interpolazione. Le figure evidenziano la capacità della CDI
nel ricostruire correttamente le principali caratteristiche del flusso.
Le configurazioni sono organizzate per caso test, mantenendo lo stesso ordine
utilizzato nel capitolo dedicato alla fase di predizione (Cap. 5), così da facilitare il
confronto con le analisi presentate precedentemente.
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Interpolazione: campi di moto predetti

(a) densità, CDI (b) densità, Alta fedeltà

(c) pressione, CDI (d) pressione, Alta fedeltà

(e) u, CDI (f) u, Alta fedeltà

(g) v, CDI (h) v, Alta fedeltà

Figura B.1: Caso test 1: confronto risultati
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Interpolazione: campi di moto predetti

(a) densità, CDI (b) densità, Alta fedeltà

(c) pressione, CDI (d) pressione, Alta fedeltà

(e) u, CDI (f) u, Alta fedeltà

(g) v, CDI (h) v, Alta fedeltà

Figura B.2: Caso test 2: confronto risultati
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Interpolazione: campi di moto predetti

(a) densità, CDI (b) densità, Alta fedeltà

(c) pressione, CDI (d) pressione, Alta fedeltà

(e) u, CDI (f) u, Alta fedeltà

(g) v, CDI (h) v, Alta fedeltà

Figura B.3: Caso test 3: confronto risultati
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Interpolazione: campi di moto predetti

(a) densità, CDI (b) densità, Alta fedeltà

(c) pressione, CDI (d) pressione, Alta fedeltà

(e) u, CDI (f) u, Alta fedeltà

(g) v, CDI (h) v, Alta fedeltà

Figura B.4: Caso test 4: confronto risultati
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Interpolazione: campi di moto predetti

(a) densità, CDI (b) densità, Alta fedeltà

(c) pressione, CDI (d) pressione, Alta fedeltà

(e) u, CDI (f) u, Alta fedeltà

(g) v, CDI (h) v, Alta fedeltà

Figura B.5: Caso test 5: confronto risultati
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