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Abstract

Space robotics increasingly relies on compliant manipulation for safe, low-impact
docking under pose uncertainty. PACOMA is a 6-RUS (Revolute–Universal–
Spherical) parallel continuum manipulator designed for low-impact docking. This
thesis develops a control-oriented flexible multibody framework at the leg level,
modeling a planar surrogate as a four-bar mechanism with two rigid links and one
flexible Timoshenko beam. The beam is discretized via the finite element method
and coupled to the rigid links through holonomic constraints, yielding differential-
algebraic equations implemented in MATLAB and integrated with a generalized-α
scheme. Two self-contained verification blocks support the framework: a compact
rigid four-bar baseline and an isolated beam module. These are used for symbolic
EOM checks and static/modal validations, as well as preliminary time-domain
comparisons within a commercial multibody dynamics environment (MSC Adams).
A leg-level rigid–flexible–rigid prototype is also assembled in MSC Adams to
mirror the MATLAB formulation; quantitative cross-validation is deferred until
the coupled model attains stable convergence. The resulting leg-level simulation
pipeline exposes clear interfaces for state-space extraction and is structured for
model-based control, with particular attention to LQR-type design in subsequent
development. While comprehensive end-effector load cases and closed-loop tests on
the coupled flexible model are reserved for future work, the thesis consolidates the
modeling stack needed to scale from leg-level analysis to the full 6-RUS architecture.
The framework aligns with PACOMA’s goals—safe interaction through compliant
limbs and robustness to docking misalignment—and outlines a practical roadmap
to complete flexible coupling and transition from simulation to control.
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Chapter 1

Introduction

1.1 Motivation and Background
Robots for space applications need to be safe during contact, robust to pose errors,
and light on the base during docking and servicing. Serial arms are flexible to use,
but add mass and inertia along the chain. This can increase impact forces and
makes thermal and dust protection harder. Parallel robots are stiffer and more
accurate thanks to the closed kinematic loops, but if they are fully rigid they can
still create large forces when the pose is wrong.

Figure 1.1: Docking scenario with PACOMA placed between two spacecraft [1, 2].
The compliant legs mitigate contact forces and accommodate misalignment during
capture.
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Parallel continuum robots replace some rigid parts with flexible elements. This
adds passive compliance, so the robot can tolerate misalignment and keep contact
forces low. PACOMA is a 6-RUS parallel continuum robot for docking [1, 2] and
similar tasks in space. RUS means that each leg has a Revolute, a Universal, and a
Spherical joint. The end effector (EE) connects to the base through six compliant
legs. The motors and most sensors sit on the lower base to simplify thermal control
and protect the hardware.

1.2 PACOMA at a Glance
Each of the six legs has four main parts: (i) a proximal rigid link driven by a base
actuator, (ii) a universal joint, (iii) a leaf-spring unit with a pre-tensioned tendon
and a damper, (iv) a spherical joint at the EE [1]. Most of the compliance comes
from the leaf-spring–tendon unit. The tendon adds pretension so the spring keeps
a stable curved shape; the damper reduces rebound.

Figure 1.2: PACOMA overview: (a) CAD design; (b–d) prototype sub-assemblies
[1].

A typical prototype uses titanium leaf springs (rectangular section, about 1.2 mm
thick, 77 mm wide, and about 500 mm long, as in the PACOMA prototype [1]), a
pre-load of about 100 mm, and quasi-direct-drive actuators with a working range
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near ±20◦ through a small parallelogram linkage. The pretension–damper unit
provides damping around 15 N s cm−1 and includes a linear sensor on the tendon
path. In tests and simulations, PACOMA shows smooth motion and low-impact
contacts during docking. For example, with a misalignment of about 7.5◦ the peak
contact force is around 45.5 N [1].

No. Component Role / Notes

1 End-effector Interface to docking surface / payload.
2 Spherical joint EE-side passive orientation.
3 Titanium leaf spring Main compliant element (continuum leg).
4 Pretension tendon Applies pre-load to set curvature.
5 Universal joint Intermediate passive joint (U).
6 Actuator Base-mounted drive (QDD).
7 Revolute joint Motor output joint (R).
8 Parallelogram linkage Motion transmission / range shaping.
9 Coil spring (pretension) Provides pretension on the tendon path.
10 Damper Dissipates energy, smooths contact.
11 Pulley set Guides tendon path/mechanics.
12 Linear potentiometer Measures tendon travel distance.

Table 1.1: Legend for Fig. 1.2.

1.3 From PACOMA to a Control-Oriented Leg-
Level Planar Simplified Model

Modeling all six compliant legs in full 3D is the end goal, but for control design
a simpler step is adopted at the initial stage. This thesis therefore develops and
evaluates a 2D leg-level model, referred to as the planar simplified model. It keeps
the key rigid–flexible effects that matter for docking, but is lighter to analyze and
control.
Concretely, a single compliant leg is represented within a minimal four-bar configu-
ration consisting of two rigid links and one flexible link:

• the flexible link is a Timoshenko beam,
• the beam is discretized with finite elements,
• holonomic constraints enforce the joints between rigid and flexible parts and

the loop closure,
• the equations of motion are differential–algebraic and we integrate them with

a generalized-α scheme.
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Figure 1.3: Numbered sketch of one PACOMA leg. 1: fixed revolute at the base.
2: fixed revolute at the end effector (EE). 3: lower rigid link (base link). 4: flexible
beam. 5: upper rigid link (EE link). 6: revolute joint between lower rigid link and
flexible beam. 7: revolute joint between flexible beam and upper rigid link.

This model is enough to study compliance, how energy moves between rigid and
flexible parts, and the interface forces at the joints. There have been used two small,
stand-alone blocks to check and validate the work: (i) a compact rigid four-bar
baseline, and (ii) an isolated flexible beam module. These help with symbolic
checks, static and modal tests, and first comparisons with a commercial multibody
tool (MSC Adams).

1.4 Modeling Assumptions
We keep the model simple with a few assumptions:

1. Planar reduction: the leg is studied in 2D. The motion is projected onto a
plane that captures the main deformation relevant to docking.

2. Flexible beam: the flexible link follows Timoshenko beam theory (it includes
shear deformation and rotary inertia). Linear finite elements are used; each
node has three degrees of freedom: axial displacement u, transverse displace-
ment v, and rotation θ.

3. Rigid links: the proximal and distal links are rigid bodies with lumped mass
and inertia. Clearances and friction in the joints are neglected.

4. Coupling: kinematic compatibility is applied between rigid and flexible parts
with holonomic constraints. External loads can act on the end effector (EE).

4
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5. Time integration and damping: the equations are integrated with the generalized-
α scheme. Material and numerical damping are set with explicit parameters
and reported in the simulations.

Choice of Timoshenko beam model. In previous PACOMA-related work,
the compliant legs were modeled as Cosserat rods, providing a geometrically exact
description that can capture all deformation modes of a three-dimensional slender
body [2]. In that context, however, the analysis was restricted to a kinetostatic
setting and focused on equilibrium configurations of the continuum structure rather
than on its full dynamic response. In contrast, the goal of this thesis is to derive and
simulate a dynamic rigid–flexible leg model, with explicit inertial coupling between
the rigid links and the flexible beam, and to integrate it in a time-stepping pipeline
suitable for control-oriented studies. For this reason a planar Timoshenko beam
model is adopted as a compromise between fidelity and algorithmic complexity: it
retains shear deformation and rotary inertia, matches well-established finite-element
formulations in structural dynamics, and leads to sparse mass and stiffness matrices
that are easier to handle within the generalized-α time integrator used throughout
the work. The Cosserat formulation remains more general, but the Timoshenko
model is sufficiently rich for the planar leg-level dynamics considered here, while
being simpler to implement and to interface with standard rigid multibody solvers.

1.5 Thesis Roadmap
This introduction motivates the leg-level surrogate of PACOMA as a stepping
stone toward the full 6-RUS architecture [1, 2]. The remainder of the thesis
follows the plan in the chapter outline: a brief baseline on the rigid four-bar, the
flexible beam module and its modal/static validation, the coupled rigid–flexible
four-bar with DAE and generalized-α integration, and concluding perspectives
toward leg-to-platform scaling and model-based control (LQR).

1.6 Software used: MATLAB and ADAMS View
This thesis uses two tools. MATLAB is the main environment [3] for modeling,
equation assembly, and simulation. ADAMS View serves as an external reference
[4] for cross-checks.

MATLAB (modeling and simulation)
The planar simplified model of one leg is implemented in MATLAB. The flexible
link is built with the finite element method (Timoshenko beam [5]) and coupled

5
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to the two rigid links through holonomic constraints. The differential–algebraic
equations are integrated with a generalized-α scheme [6]. Plots, mode shapes, and
static checks are produced in MATLAB.

ADAMS View (external reference)
Three reference models are built in ADAMS View to mirror the MATLAB setup:

• a rigid four-bar baseline,

• an isolated flexible beam with FE Part (same length, section, and material
data),

• a leg-level rigid–flexible–rigid assembly matching the planar simplified model.

ADAMS is used only to check shapes, static deflection, and basic time responses
under the same geometry and loads. Later chapters refer back to this section when
comparisons are shown.

Consistency rules for comparisons
To keep MATLAB and ADAMS aligned:

• the same units and gravity setting are used,

• rigid-link geometry and mass properties are matched,

• beam data (length, cross section, E, G, density) are matched and the mesh is
chosen to obtain comparable mode shapes,

• the joint layout and constraints mirror the MATLAB model,

• initial conditions and load cases are replicated,

• outputs are taken at the same points (beam ends and joint angles).

Scope and limits
ADAMS is used only for cross-checks. Tool-specific features that are not part
of the thesis model are avoided. Any necessary differences in numerical settings
(integrator or tolerances) are noted alongside each comparison.
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Code availability
All MATLAB scripts, symbolic generation files, and ADAMS input decks developed
for this thesis are available in a GitLab repository hosted at Chalmers:

https://git.chalmers.se/m2/dynamics/rail/constrained_rigid_
flexible_modeling/master-thesis-piero

The repository contains the rigid four–bar baseline, the isolated flexible beam
models, and the full rigid–flexible leg model used in the simulations presented in
the following chapters.
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Chapter 2

Rigid four–bar model

This chapter builds a rigid four–bar mechanism and uses it as a baseline before
adding a flexible beam. The baseline has three goals: (i) check that the symbolic
equations of motion are correct; (ii) compare two ways to enforce the closed kine-
matic loop—an implicit constrained formulation written as a Karush–Kuhn–Tucker
(KKT) saddle–point system that yields a differential–algebraic equation (DAE),
and an explicit geometric reduction that produces a single ordinary differential
equation (ODE); (iii) verify that the simulated motion matches a commercial
multibody reference when the physical data and tolerances are aligned. Such
a comparison between implicit DAE and explicit reduced ODE formulations is
common in constrained multibody dynamics; see, for instance, [7] for a related
discussion in a different robotic setting. Parts of the MATLAB structure follow
standard practice; many steps were inspired by an internship report and then
rewritten to fit the geometry and solvers used here [8].

Table 2.1: Symbols used in the rigid four–bar model chapter.

O, C Ground revolute joints (fixed pivots of bars 1 and 3). m
A, B Moving revolute joints connecting the three bars. m
rOC Ground offset vector from O to C in the global frame. m
L1, L2, L3 Lengths of bars 1, 2, and 3, respectively. m
i Bar index, with i ∈ {1,2,3}. –
mi Mass of bar i. kg

Symbol Description Units
(SI)

Continued on next page
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Table 2.1: Symbols used in the rigid four–bar model chapter. (Continued)

Ii Planar mass moment of inertia of bar i about its
centre of mass.

kg m2

pG1,pG2,pG3 Position vectors of the centres of mass of bars 1, 2,
and 3 in the global frame.

m

q =è
q1 q2 q3

éT Generalized coordinate vector (joint angles of the
three bars).

rad

q1 Absolute angle of bar 1 about the ground joint O. rad
q2 Relative angle of bar 2 with respect to bar 1 at joint

A.
rad

q3 Absolute angle of bar 3 about the ground joint C. rad
q̇, q̈ Generalized velocity and acceleration vectors. rad/s,

rad/s2

T Total kinetic energy of the rigid four–bar mechanism. J
U Gravitational potential energy. J
L = T − U Lagrangian of the rigid four–bar system. J
g Gravitational acceleration, acting along the negative

y–direction.
m/s2

M(q) 3× 3 mass matrix of the open–chain system,
expressed in generalized coordinates.

kg m2

c(q̇,q) Vector of gravity and velocity–dependent terms in the
open–chain equations of motion.

N m

τ Vector of applied generalized torques acting on the
three joints.

N m

ϕ(q) Vector of position–level loop–closure constraints
enforcing that joints A and B meet the tip of bar 3.

m

K(q) Constraint Jacobian matrix, i.e., the Jacobian of ϕ(q)
with respect to q (sometimes denoted Jc in the
literature).

m

k(q̇,q) Right–hand side of the acceleration–level constraint
equation, defined from −K̇(q̇,q) q̇.

m/s2

Symbol Description Units
(SI)

Continued on next page
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Table 2.1: Symbols used in the rigid four–bar model chapter. (Continued)

λ Vector of Lagrange multipliers associated with the
loop–closure constraints (constraint reactions).

N

H Vector of generalized forces entering the residual of
the equations of motion.

N, N m

Kt Tangent stiffness matrix, defined as ∂H/∂q. N m
Ct Tangent damping matrix, defined as ∂H/∂q̇. N m s
rq Residual of the equations of motion in the KKT

system.
N, N m

rλ Residual of the position constraints, i.e., ϕ(q). m
S Effective tangent (iteration) matrix used in the

Newton step of the generalized–α scheme.
–

αm, αf Generalized–α integration parameters controlling
numerical dissipation.

–

β, γ Newmark–type integration parameters derived from
αm and αf .

–

βp, γp Effective parameters multiplying M and Ct in the
generalized–α iteration matrix.

–

ρ∞ Target spectral radius at infinity used to select αm

and αf .
–

∆t Time step size for time integration. s
y Independent generalized coordinate used in the

explicit geometric reduction (chosen as y = q1).
rad

γj(y) Geometric mapping from the scalar coordinate y to
the full configuration q on branch j ∈ {1,2}.

rad

G(y) Reduction Jacobian matrix ∂γj/∂y. –
g(y, ẏ) Kinematic bias term defined as Ġ(y) ẏ. rad/s
My(y) Scalar reduced mass term in the explicit single–DOF

ODE.
kg m2

cy(ẏ, y) Reduced generalized force term (gravity and inertial
contributions) in the explicit ODE.

N m

Symbol Description Units
(SI)

Continued on next page
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Table 2.1: Symbols used in the rigid four–bar model chapter. (Continued)

τy(y) Reduced generalized torque appearing in the explicit
ODE.

N m

q0, q̇0 Initial generalized position and velocity, chosen to
satisfy the loop–closure and velocity constraints.

rad, rad/s

Symbol Description Units
(SI)

2.1 Geometry and generalized coordinates

The mechanism has three rigid bars and four revolute joints. Bar 1 rotates about
the ground point O, bar 3 rotates about the ground point C, and bar 2 connects
the moving points A and B. The ground anchors are

O = [0.15, 0.00] m, C = [0.00, 0.40] m,

so the ground offset is

rOC =
C
−0.15
0.40

D
m.

Link lengths are

L1 = 0.12 m, L2 = 0.50 m, L3 = 0.19 m.

Angles are gathered as

q =


q1

q2

q3

 ,
where q1 is the absolute angle of bar 1 about O; q2 is the relative angle of bar 2 with
respect to bar 1 at A; q3 is the absolute angle of bar 3 about C. In the nominal
assembled pose,

q1 = 0, q3 = 0.4899 rad (≈ 28.07◦),

while q2 is fixed by loop closure.

11



Rigid four–bar model

O

A

B

C

L1 = 0.12 m

L2 = 0.50 m

L3 = 0.19 m

q1

q3

q2

0.15 m

0.4 m

x

y

Figure 2.1: Geometry of the rigid four–bar.

Table 2.2: Fixed geometric and physical parameters used in the rigid four–bar model.

O Lower ground revolute joint position
in the global frame

(0.150, 0.000) m

C Upper ground revolute joint position
in the global frame

(0.000, 0.400) m

rOC Ground offset vector from O to C (−0.150, 0.400) m
L1 Length of bar 1 0.12 m
L2 Length of bar 2 0.50 m
L3 Length of bar 3 0.19 m
m1 Mass of bar 1 1 kg
m2 Mass of bar 2 1 kg
m3 Mass of bar 3 1 kg

Symbol Description Value Units (SI)

Continued on next page
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Table 2.2: Fixed geometric and physical parameters used in the rigid four–bar model.
(Continued)

I1 Planar inertia of bar 1 about its centre
of mass

0.0012 kg m2

I2 Planar inertia of bar 2 about its centre
of mass

0.020833 kg m2

I3 Planar inertia of bar 3 about its centre
of mass

0.003008 kg m2

g Gravitational acceleration (pointing in
negative y)

9.81 m/s2

∆t Time step size for time integration
(rigid four–bar tests)

0.01 s

ρ∞ Target spectral radius at infinity
(generalized–α scheme)

0 –

Symbol Description Value Units (SI)

2.2 Kinematics, energies, and open–chain dynam-
ics

Each bar i ∈ {1,2,3} has mass mi, length Li, and planar inertia Ii = 1
12miL

2
i . The

centers of mass in global coordinates are

pG1 =
C
0.15 + L1

2 cos q1
L1
2 sin q1

D

pG2 =
C
0.15 + L1 cos q1 + L2

2 cos(q1 + q2)
L1 sin q1 + L2

2 sin(q1 + q2)

D

pG3 =
C

L3
2 cos q3

0.40 + L3
2 sin q3

D
.

Differentiating gives velocities and then the kinetic energy T . The gravitational
potential U uses gravity g along −y. With the Lagrangian L = T − U , the
open–chain equations of motion are

M(q) q̈ + c(q̇,q) = τ (2.1)

where M is the 3× 3 mass matrix and c collects gravity and velocity–dependent

13
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terms. For the chosen coordinates:

M(q) =


1
3m1L

2
1 +m2L

2
1 + 1

3m2L
2
2 +m2L1L2 cos q2

1
3m2L

2
2 + 1

2m2L1L2 cos q2 0
1
3m2L

2
2 + 1

2m2L1L2 cos q2
1
3m2L

2
2 0

0 0 1
3m3L

2
3



c(q̇,q) =


−
1
q̇1 + q̇2

2

2
m2L1L2 q̇2 sin q2 +m1g

L1
2 cos q1 +m2g

1
L1 cos q1 + L2

2 cos(q1 + q2)
2

1
2m2L1L2 q̇

2
1 sin q2 +m2g

L2
2 cos(q1 + q2)

m3L3g
2 cos q3



2.3 Loop closure and constraint equations
The two moving tips A and B must meet the tip of bar 3, so two position constraints
are enforced:

ϕ(q) =
0.15 + L1 cos q1 + L2 cos(q1 + q2)− L3 cos q3

L1 sin q1 + L2 sin(q1 + q2)− 0.40− L3 sin q3

 = 0.

The constraint Jacobian (often denoted Jc in the literature) is here written as

K(q) =
−L1 sin q1 − L2 sin(q1 + q2) −L2 sin(q1 + q2) −L3 sin q3

L1 cos q1 + L2 cos(q1 + q2) L2 cos(q1 + q2) L3 cos q3

 .
Time–differentiating gives velocity and acceleration compatibility:

K(q) q̇ = 0, K(q) q̈ = k(q̇,q) = − K̇(q̇,q) q̇. (2.2)

These relations support both approaches below.

2.4 Implicit constrained dynamics (KKT, index–3
DAE)

Idea
The implicit way adds Lagrange multipliers λ ∈ R2 that represent the unknown
joint reactions. The equations form a KKT system:C

M(q) K(q)T

K(q) 0

D C
q̈
−λ

D
=
C
τ − c(q̇,q)

k(q̇,q)

D
, ϕ(q) = 0. (2.3)

This is an index–3 DAE: positions, velocities, and accelerations must all be consistent
with the constraints [9, 10].
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Time stepping
Time integration uses the generalized–α method [6]. Two parameters (αm, αf)
(chosen from a target spectral radius ρ∞) control how much high–frequency content
is damped while keeping second–order accuracy. At each step:

1. Predictor: build provisional (qn+1, q̇n+1).

2. Newton loop: assemble residuals

rq = M q̈ − (τ − c) + KTλ, rλ = ϕ(q) (2.4)

and the effective tangent

S =
C
βpM + γpCt + Kt KT

K 0

D
, βp = 1− αm

β(1− αf )∆t2 , γp = γ

β(1− αf )∆t .

Here Kt = ∂H/∂q and Ct = ∂H/∂q̇ are consistent linearizations of the
generalized forces.

3. Update: solve for corrections to (q, q̇, q̈,λ) until the combined residual norm
is below tolerance.

Pros and cons
Pros: constraints are enforced at position level (no drift); no need to choose an
independent coordinate; works robustly across most configurations. Cons: each step
solves a coupled linear system of size n+m; the DAE needs consistent initial data
and a well–conditioned K; with ρ∞ < 1 the method adds controlled high–frequency
damping, which slightly reduces amplitudes in conservative tests unless steps and
tolerances are very tight.

1 % Residuals
2 rq = M(q)*qdd - ( params .tau - c(q,qd)) + K(q).’*lam;
3 rlam = phi(q);
4
5 % Effective tangent
6 S11 = params .betap*M(q) + params . gammap *Ct(q,qd) + Kt(q,qd);
7 S12 = K(q).’;
8 S21 = K(q);
9 S22 = zeros (2);

10
11 % Solve [S11 S12; S21 S22 ]*[ dq; dlam] = -[rq; rlam]

Listing 2.1: Implicit generalized-α step (KKT DAE).
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2.5 Explicit geometric reduction (single ODE)

Idea
The explicit way picks one angle as the independent coordinate,

y = q1,

and solves the two position constraints for the other two angles. This gives two
geometric branches:

γj(y) =


y

q
(j)
2 (y)
q

(j)
3 (y)

 , j ∈ {1,2}.

Differentiating gives the reduction Jacobian and the kinematic bias,

G(y) = ∂γj

∂y
, g(y, ẏ) = Ġ(y) ẏ. (2.5)

Replacing q = γj(y) and q̇ = G(y)ẏ in the open–chain equations produces the
scalar ODE

My(y) ÿ + cy(ẏ, y) = τy(y) (2.6)

with
My = GTM G, cy = GT (c + M g) , τy = GTτ .

The ODE is integrated with an adaptive explicit Runge–Kutta method (order 4/5).

Pros and cons
Pros: the state dimension reduces to one; evaluation is fast; if the correct branch is
kept and tolerances are tight, the motion matches the reference very closely. Cons:
one must choose and keep the proper branch; near dead–center poses the mapping
becomes ill–conditioned; explicit RK is not symplectic and can show slow energy
drift for large steps.

1 % State y = [q1; dq1]
2 q = gamma(y(1)); % [q1; q2; q3]
3 G = Gmap(y(1)); % dgamma /dy (3x1)
4 gk = Gdot(y(1) , y(2)); % bias term dG/dt * ydot
5
6 My = G.’*M(q)*G;
7 qy = [y(2); G(2)*y(2); G(3)*y(2) ];
8 cy = G.’*( c(q, qy) + M(q)*gk );
9 tauy = G.’* params .tau;
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10
11 dydt = [ y(2); (tauy - cy)/My ];

Listing 2.2: Explicit reduction: right-hand side for the scalar ODE.

2.6 Initial conditions and consistency
Starting values must satisfy the constraints. Given (q1, q3) and the geometry, q2
comes from ϕ(q0) = 0 by choosing the branch that matches the build. Velocities
must satisfy K(q0) q̇0 = 0. In the implicit formulation, initial accelerations and
multipliers come from the KKT system with the selected torques and gravity.
If these consistency conditions are not met, the DAE may show large transient
constraint forces and spurious oscillations [9, 10].

2.7 Numerical behavior and comparison
The explicit geometric reduction replicates the commercial multibody reference to
plotting accuracy over the entire test window with matched physics and numerically
comparable tolerances. This agreement validates the reduced mapping γj(y) and
its Jacobian G(y), as well as the accuracy of the symbolic expressions for the mass
matrix and generalized forces. In other words, the single-DOF formulation captures
the dynamic evolution of the rigid four-bar with virtually no discernible loss of
fidelity once the proper geometric branch is chosen.

In contrast, when integrated with ρ∞ < 1 and moderate tolerances, the implicit
DAE formulation shows a mild amplitude decay. This behavior is anticipated: the
trajectory is repeatedly projected back onto the constraint manifold by the Newton
iterations, and the generalized-α scheme introduces controlled high-frequency nu-
merical dissipation. Over longer horizons, the combination of these effects results
in a slight phase shift and a small but discernible decrease in oscillation ampli-
tude. These discrepancies are not structural; they diminish when the time step
is decreased, the nonlinear tolerances are tightened, and the algorithmic damping
is eliminated by setting ρ∞ → 1. The two formulations converge toward identical
trajectories in the limit of extremely small steps and extremely stringent tolerances.

In general, the two strategies work well together. As long as the mechanism stays
on a clearly defined geometric branch and away from singular poses, the explicit
route is very effective and numerically light; in these situations, it provides near-
reference accuracy with little overhead. In contrast, the implicit route is more
reliable and systematic throughout the whole configuration space. It can handle
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transitions, near-singular configurations, and arbitrary load cases without requiring
special handling because it enforces the loop closure directly at the algebraic level.
Because of these factors, the implicit DAE functions as a trustworthy baseline and
verification tool across the wider configuration range, while the explicit formulation
is well suited for quick simulation and control design once a branch is fixed.

Figure 2.2: Joint angles: explicit ODE (solid blue) vs. commercial reference
(dashed red).

Figure 2.3: Angular velocities: explicit ODE (solid blue) vs. commercial reference
(dashed red).
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Figure 2.4: Joint angles: implicit DAE (blue) vs. explicit ODE (red). The implicit
solution shows the expected amplitude reduction due to high–frequency damping.

Figure 2.5: Angular velocities: implicit DAE (blue) vs. explicit ODE (red). The
damping trend is consistent across all joints.
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Figure 2.6: Animation of MATLAB simulation with explicit solver (only gravity
force applied)

Figure 2.7: Animation of ADAMS simulation (only gravity force applied)
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Chapter 3

Timoshenko Beam

This chapter documents the single Timoshenko beam module used for symbolic
checks, analytical comparisons, static/modal validation, and as a flexible component
to be coupled at leg level in the PACOMA architecture. The beam model is linear
elastic (small strains/rotations), includes shear deformation and rotary inertia,
and is discretized via two-node Timoshenko elements suitable for dynamics and
control-oriented reduction [5, 11, 12, 13, 14, 15, 16, 17, 6, 18].

3.1 Kinematics and Strains
Let x denote the beam axis and y the transverse direction. Timoshenko kinematics
(planar bending) assumes

ux(x, y, t) = u(x, t)− y ωz(x, t), uy(x, y, t) = v(x, t), (3.1)

with nonzero strains

εxx = ∂u

∂x
− y ∂ωz

∂x
, γxy = ∂v

∂x
− ωz. (3.2)

Stress resultants (κ is the shear factor) are

N = EAu′, M = EI ω′
z, V = κGA (v′ − ωz) , (3.3)

and yield the virtual internal work

δWint =
Ú L

0

è
EAu′δu′ + κGA (v′ − ωz)(δv′ − δωz) + EI ω′

zδω
′
z

é
dx. (3.4)

The kinetic energy is T = 1
2
s L

0 [ρA(u̇2 + v̇2) + ρIω̇2
z ] dx.
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Table 3.1: Symbols, units, and conventions used in the Timoshenko beam chapter.

x, y Local coordinates: beam axis x, transverse direction
y

m

X, Y Global Cartesian coordinates of the beam axis m
u(x, t), v(x, t) Midline displacements: axial u, transverse v m
ωz(x, t) Cross-section rotation about the out-of-plane z-axis rad
ux(x, y, t)
uy(x, y, t)

Components of the displacement field at (x, y) m

εxx Normal (axial) strain –
γxy Shear strain –
κb Bending curvature κb = ω′

z 1/m
N, V,M Internal resultants: axial force N , shear V , bending

moment M
N, N, N·m

px(x, t) Axial distributed load per unit length N/m
q(x, t) Transverse distributed load per unit length N/m
m(x, t) Distributed bending moment per unit length (if

present)
N

N0, N(x) Axial pre-load: constant N0 or position-dependent
N(x)

N

E Young’s modulus Pa
ν Poisson’s ratio –
G Shear modulus

1
= E/[2(1 + ν)]

2
Pa

κ Shear correction factor (Timoshenko) –
A Cross-sectional area m2

I Second moment of area for bending in the x−y plane m4

b, h Cross-section dimensions (width b, height h) m
ρ Material density kg/m3

ρA Mass per unit length (translational inertia) kg/m
ρI Rotary inertia per unit length (about z) kg·m
L Total beam length m

Symbol Description Units (SI)

Continued on next page
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Table 3.1: Symbols, units, and conventions used in the Timoshenko beam chapter.
(Continued)

Le Length of a single finite element m
Ne Number of Timoshenko elements in the mesh –
ξ Reference (local) coordinate on [−1,1] for each

element
–

L1(ξ), L2(ξ) Linear Lagrange shape functions on ξ ∈ [−1,1] –
α Element orientation angle with respect to the global

X-axis
rad

qe Element nodal DOF vector [u1, v1, ω1, u2, v2, ω2]T – (m, rad)
ue(x) Element displacement vector field, interpolated from

qe

m, rad

N(ξ) Block shape matrix that maps qe to (u, v, ωz) –
B(ξ) Strain–displacement matrix such that εe = B qe 1/m
L Differential operator used to build B(ξ) –
εe Element strain vector [εxx, γxy, κb]T –, –, 1/m
σe Element stress-resultant vector [N, V,M ]T N, N, N·m
D Constitutive matrix diag(EA, κGA,EI) N, N, N·m
M0 Diagonal matrix diag(ρA, ρA, ρI) for kinetic energy kg/m,

kg/m,
kg·m

Ke,Me Element stiffness and mass matrices in local axes N/m, kg
Re Local-to-global rotation matrix for one node –
Te Transformation matrix blkdiag(Re,Re) for the

element
–

Ce Boolean connectivity matrix assembling element
DOFs into global DOFs

–

Kg(N0) Geometric stiffness matrix associated with axial
pre-load N0

N/m

K,M Global stiffness and mass matrices after assembly N/m, kg

Symbol Description Units (SI)

Continued on next page
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Table 3.1: Symbols, units, and conventions used in the Timoshenko beam chapter.
(Continued)

D Global damping matrix (Rayleigh form
D = αM + βK)

N·s/m

q(t) Global vector of generalized coordinates (nodal
DOFs)

– (m, rad)

q̇(t), q̈(t) Generalized velocity and acceleration vectors m/s, m/s2

F (t) Global vector of generalized external forces N, N·m
α, β Rayleigh damping coefficients (mass- and

stiffness-proportional)
s−1, s

ζi Modal damping ratio of mode i –
λi Eigenvalue of the generalized eigenproblem

Kϕi = λiMϕi

rad2/s2

ωi Natural circular frequency of mode i, ωi =
√
λi rad/s

fi Natural frequency of mode i, fi = ωi/(2π) Hz
ϕi Mode shape (eigenvector) associated with ωi –
ρ∞ Target spectral radius at infinite frequency

(generalized-α)
–

∆t Time step of the time integration scheme s
(·)′ Derivative w.r.t. x (e.g. u′ = ∂u/∂x) –
˙(·) Derivative w.r.t. t (e.g. v̇ = ∂v/∂t) –

Symbol Description Units (SI)

Y

X

node xi node xi+1
1

2
3

4

5
6

Figure 3.1: Two-node Timoshenko element and its nodal degrees of freedom
[u, v, ωz].

For a rectangular cross-section, the shear correction factor is usually taken as
κ = 5/6. A more refined expression proposed by Cowper is κ = 10(1 + ν)

12 + 11ν ,
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which accounts for non-uniform shear stress distribution [12]. For reference, the

geometric properties of a rectangular section are A = b h and I = b h3

12 , where
h is the dimension along the transverse direction y and b is the width in the
out-of-plane direction. Regarding the kinetic energy terms, the translational and
rotary contributions appear as ρA(u̇2 + v̇2) and ρI ω̇2

z , respectively.

3.2 Strong Form and Boundary Conditions
Under the Timoshenko kinematics of Sec. 3.1, the beam is governed by a sec-
ond–order system in the axial displacement u(x, t), the transverse displacement
v(x, t), and the cross–section rotation ωz(x, t). In the absence of an initial axial
pre-stress, the strong form reads [13, 15]

ρA ü−
1
EAu′

2′
= px(x, t), (3.5a)

ρA v̈ −
3
κGA

1
v′ − ωz

24′
= q(x, t), (3.5b)

ρI ω̈z −
1
EI ω′

z

2′
+ κGA

1
v′ − ωz

2
= m(x, t), (3.5c)

where px(x, t) is an axial distributed load (if any), q(x, t) is a transverse distributed
load, and m(x, t) is a distributed bending couple per unit length. All symbols are
explained in Table 3.1.

Axial pre-load and geometric stiffness
If a constant axial force N0 acts along the beam, the bending equation acquires
the usual geometric-stiffness term, so that (3.5b) becomes

ρA v̈ −
3
κGA(v′ − ωz)

4′
+N0 v

′′ = q(x, t) (3.6)

and analogously a spatially varying N(x) induces a position-dependent geometric
term. In the notation often used in structural dynamics, that contribution is
represented at the discrete level by a geometric stiffness matrix Kg(N0) added to
the elastic K (see Sec. 3.3).

Boundary data (essential vs natural)
At the end sections x = 0 and x = L, boundary conditions can be specified either
as essential (Dirichlet) conditions on the primary fields,

u = ū, v = v̄, ωz = ω̄,
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or as natural (Neumann) conditions on the resultants

N = EAu′, V = κGA (v′ − ωz), M = EI ω′
z. (3.7)

Typical cases are:

• Clamped end: u = 0, v = 0, ωz = 0.

• Simply supported: v = 0, M = 0 (axial u free or prescribed depending on the
problem).

• Free end: N = 0, V = P̄ (or V = 0), M = M̄ (or M = 0).

Connection to the FEM discretization
The goal of the finite element method is to approximate (3.5) in space by inter-
polating the unknowns with shape functions. Over each two–node Timoshenko
element e of length Le,

u(x) ≈N (x) ue, v(x) ≈N (x) ve, ωz(x) ≈N(x) ωe,

with N = [L1, L2] the linear shape functions in ξ ∈ [−1,1] and the element nodal
vector qe = [u1, v1, ω1, u2, v2, ω2]T . The weak form obtained from (3.5a)–(3.5c)
leads to the element matrices reported in Sec. 3.3; assembling them over the mesh
yields the semi-discrete model Mq̈ + Dq̇ + Kq = F (t) used for the simulations
and analytical checks.

3.3 Weak Form and Two-Node Timoshenko Ele-
ment

Variational (weak) form.
Let δu, δv, δωz be admissible virtual fields. By multiplying the strong form of
Sec. 3.2 by the virtual fields and integrating by parts, the weak statement isÚ L

0

5
EAu′ δu′ + κGA

1
v′ − ωz

21
δv′ − δωz

2
+ EI ω′

z δω
′
z

6
dx =

Ú L

0

1
px δu+ q δv +mδωz

2
dx +

5
N δu+ V δv +M δωz

6x=L

x=0
(3.8)

with resultants N = EAu′, V = κGA (v′ − ωz), M = EI ω′
z. Essential (Dirichlet)

boundary conditions set the corresponding natural (Neumann) terms to zero at
the constrained ends.
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Two-node interpolation (one element).
Discretize the beam into Ne Timoshenko elements. On a generic two-node element
e of length Le, use linear C0 interpolation for the three primary fields:

u(x) ≈
2Ø

i=1
Li(ξ)ui, v(x) ≈

2Ø
i=1

Li(ξ) vi, ωz(x) ≈
2Ø

i=1
Li(ξ)ωi,

with reference coordinate ξ ∈ [−1,1] and Lagrange polynomials L1 = 1−ξ
2 , L2 = 1+ξ

2 .
Collect nodal DOFs (Degrees of Freedom) into

qe = [ u1, v1, ω1, u2, v2, ω2 ]T , ue(x) = N(ξ) qe,

where the block shape matrix is

N(ξ) =

L1 0 0 L2 0 0
0 L1 0 0 L2 0
0 0 L1 0 0 L2

 .

Reference mapping and derivatives.
For an arbitrarily oriented straight element connecting (X1, Y1) to (X2, Y2),

X(ξ) = L1X1 + L2X2, Y (ξ) = L1Y1 + L2Y2,

the Jacobian is det J = Le

2 with Le =
ñ

(X2−X1)2 + (Y2−Y1)2. Chain rule gives

dLi

dx
= dLi

dξ

dξ

dx
= 2
Le

dLi

dξ
,

dL1

dξ
= −1

2 ,
dL2

dξ
= +1

2 . (3.9)

-1 M(ξ) +1 ξ

Y

X

x

M ′(X, Y )
α

X1

Y1

X2

Y2

Figure 3.2: Local coordinate system (left) – global Cartesian coordinate system
(right)
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ξ

N

−1 +10

N1(−1) = 1

N1(+1) = 0N2(−1) = 0

N2(+1) = 1

N1(0) = N2(0) = 1
2

N1(ξ) = 1− ξ

2 , N2(ξ) = 1 + ξ

2
Shape matrix rows:
N1 = [N1,0,0, N2,0,0] (axial u)
N2 = [0, N1,0,0, N2,0] (transverse v)
N3 = [0,0, N1,0,0, N2] (rotation θ)

Figure 3.3: Linear two-node shape functions on ξ ∈ [−1,1].

Discrete kinematics and strain–displacement operator.

Define the element “strain” vector εe = [ εxx, γxy, κb ]T = [ u′, (v′ − ωz), ω′
z ]T ,

with bending curvature κb = ω′
z. Introduce the differential operator

LT =



d

dx
0 0

0 d

dx
−1

0 0 d

dx

 , ⇒ εe = B(ξ) qe, B(ξ) = LT N(ξ).

For the linear two-node element this yields the explicit matrices

B(ξ) =


− 1
Le

0 0 1
Le

0 0

0 − 1
Le

−L1(ξ) 0 1
Le

−L2(ξ)

0 0 − 1
Le

0 0 1
Le

 .

Constitutive law (compact form).

In local element axes the stress–strain relation is

σe =

NV
M

 = diag
1
EA, κGA, EI

2
ü ûú ý

D

εe,

which is the matrix form of σ = D ε used in your scalar expression.
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Element matrices (local axes).
Using the weak form, Gauss quadrature on ξ ∈ [−1,1], and det J = Le/2, the
stiffness and mass matrices are

Ke =
Ú 1

−1
BT (ξ) D B(ξ) Le

2 dξ, (3.10)

Me =
Ú 1

−1
NT (ξ) diag

1
ρA, ρA, ρI

2
ü ûú ý

M0

N(ξ) Le

2 dξ. (3.11)

(Equivalently, one may write Me using separate Nu,Nv,Nω selectors.)

Local-to-global rotation and assembly.
If the element makes an angle α with the global X-axis, use

Re =

 cosα sinα 0
− sinα cosα 0

0 0 1

 , Te = blkdiag(Re,Re),

so that K(g)
e = T T

e KeTe and M (g)
e = T T

e MeTe. With the Boolean connectivity
Ce,

K =
NeØ
e=1

CT
e K(g)

e Ce, M =
NeØ
e=1

CT
e M (g)

e Ce.

Application case (cantilever with tip load).
For the standard test used throughout: left end clamped (u = v = ωz = 0 at
x = 0); right end free with a transverse tip load P (and/or tip moment M) applied
via a consistent nodal force vector. After imposing boundary conditions, the
semi-discrete dynamics reads

M q̈ + D q̇ + K q = F (t), D = αM + βK (3.12)

with (α, β) selected as in Sec. 3.7.

Selective Reduced Integration (anti-locking)
For slender elements (Le/h ≫ 1) the shear part of (3.10) may over-stiffen the
response (shear locking). An effective remedy is Selective Reduced Integration
(SRI): evaluate the κGA contribution (the shear block) with one Gauss point, while
keeping full integration (two Gauss points for linear mapping) for the axial EA and
bending EI terms [13, 15, 16]. This restores the correct shear compliance without
degrading axial/bending accuracy.
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3.4 Loads, Damping, and the Semi-Discrete Equa-
tions

The external actions considered here act per unit length along the beam axis.
A transverse distributed load q(x, t) produces a shear field and, after spatial
discretization, a consistent vector of generalized forces obtained by weighting q
with the transverse shape functions of each element and integrating over its span.
The special case of self-weight is directly included as q = ρAg, so that the gravity
load is treated on the same footing as any other distributed excitation.
After assembling all element contributions and enforcing essential boundary condi-
tions, the beam reduces to a finite number of generalized coordinates collected in
the vector q(t). The dynamics is governed by the second-order, linear, time-varying
system

M q̈(t) + D q̇(t) + K q(t) = F (t), (3.13)

where:

• M is the (symmetric, positive definite) mass matrix accounting for transla-
tional and rotary inertia of the Timoshenko kinematics;

• K is the (symmetric, positive semidefinite) elastic stiffness that includes axial,
shear, and bending contributions; geometric stiffness terms can be added if an
axial pre-load is present;

• D represents structural dissipation. Here a standard and effective description
is Rayleigh damping, which assumes a linear combination of inertia- and
stiffness-proportional contributions: D = αM + βK [13, 16, 17].

The coefficients α and β are not arbitrary: they are chosen so that two selected
modes of the structure exhibit prescribed damping ratios. This is particularly
convenient for vibration problems, where one wishes to control dissipation in the
low-frequency band without over-damping the higher modes (see Sec. 3.7 for the
identification formulas and their interpretation).

Equation (3.13) expresses conservation of linear momentum in generalized co-
ordinates. The left-hand side collects inertia, dissipation, and elastic restoring
forces; the right-hand side F (t) collects all generalized excitations (distributed
loads mapped to nodal form, tip forces/moments, base motions, etc.). Its structure
guarantees existence and uniqueness of solutions once initial conditions q(0), q̇(0)
are specified.
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3.5 Time Integration: Newmark and Generalized-
α

The semi-discrete system (3.13) is advanced in time with single-step schemes that
approximate accelerations and velocities over a finite time step ∆t. Two closely
related families are used in practice.

3.5.1 Newmark’s family.
Newmark introduces two parameters β and γ that regulate how acceleration is
interpolated within the time step [18]. With γ = 1

2 and β ∈ [1/6, 1/4] the method
is second-order accurate and unconditionally stable for linear systems. Intuitively,
γ = 1

2 centers the evaluation of acceleration in the interval [tn, tn+1], while β controls
the implicitness of the displacement update. Larger β values increase numerical
damping of very high frequencies while preserving accuracy in the frequency band
of interest.

3.5.2 Generalized-α scheme.
The generalized-α method preserves the same formal accuracy of Newmark but
introduces a tunable parameter ρ∞ ∈ [0,1], the desired spectral radius at infinite
frequency. Choosing ρ∞ < 1 gently damps spurious high-frequency content (which
is routinely generated by discretization and non-smooth loadings) while leaving the
low-frequency response essentially unchanged. The method automatically sets its
internal parameters (αm, αf , β, γ) as functions of ρ∞ (cf. [6]); the resulting linear
system has a fixed, effective tangent per step that combines M , D and K. In
practice, ρ∞ ∈ [0.5, 0.9] provides robust transients without polluting the band
where the physical modes lie.
Interpretation. Both schemes can be viewed as energy-consistent quadratures in
time. Newmark (with β = 1

4 , γ = 1
2) is often used as a baseline; generalized-α

adds a controlled “filter” at the tail of the spectrum to suppress numerical chatter
without affecting the dynamics of interest.

3.6 Modal Analysis and Worked Examples

3.6.1 The generalized eigenvalue problem.
In the absence of external forces and damping, the free vibration of the beam is
governed by

M q̈(t) + K q(t) = 0. (3.14)
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Looking for harmonic solutions q(t) = ϕ eiωt leads to the generalized eigenproblem

K ϕ = λM ϕ, λ = ω2. (3.15)

Each eigenpair (λi,ϕi) defines a natural circular frequency ωi =
√
λi and a mode

shape ϕi, i.e. a deformation pattern that oscillates sinusoidally at frequency fi =
ωi/(2π) without change of shape.

3.6.2 Orthogonality and normalization.
Because M and K are symmetric, eigenvectors associated with distinct eigenvalues
satisfy the classical orthogonality relations

ϕT
i M ϕj = δij, ϕT

i K ϕj = λi δij.

The first identity is a choice of mass normalization: it fixes the arbitrary scale of
each mode and is convenient for interpreting modal energies and effective masses.

3.7 Rayleigh Damping Identification
Rayleigh damping assigns to each mode i a damping ratio ζi = 1

2(α/ωi + β ωi).
Selecting two target modes (ω1, ω2) and prescribing the same ratio ζ in both leads
to two linear equations in the unknowns (α, β), whose solution is

α = 2ζ ω1ω2

ω1 + ω2
, β = 2ζ

ω1 + ω2
.

The α-term dominates at low frequency (mass-proportional damping), whereas
the β-term dominates at high frequency (stiffness-proportional damping). Placing
the identification at ω1 and ω2 anchors dissipation in the band of interest; modes
far below ω1 and far above ω2 become progressively under- and over-damped,
respectively—an effect often desirable to regularize the numerical tail.

3.8 Validation with a Cantilever Beam Test Case
To validate the numerical model implemented in MATLAB and MSC Adams, a
test case of modal analysis for a cantilever beam is considered. The reference
case is taken from the validation section of the OnScale platform, which provides
numerical results obtained from the software Ansys [19]. The cantilever beam has
the following properties:

• Material: Steel
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• Young’s modulus: E = 480GPa

• Poisson’s ratio: ν = 1 · 10−6

• Density: ρ = 7700 kg/m3

• Length: L = 1m

• Cross-section: b× h = 0.04m× 0.04m

Figure 3.4: Timoshenko beam geometry and boundary conditions used through-
out.

The boundary conditions impose a fixed constraint on one end of the beam, while
the opposite end remains free. The natural frequencies of the beam are computed
using the MATLAB code, the commercial software MSC Adams, and compared
with the reference values provided by Ansys.
The natural frequencies were calculated in MATLAB by solving the generalized
eigenvalue problem:

Kq = λMq (3.16)

where λ represents the eigenvalues, and q the corresponding eigenvectors. The
eigenvalues were extracted using the built-in eig function in MATLAB. The circular
frequencies were then obtained by:

ωi =
ñ
λi (3.17)

and the corresponding modal frequencies were computed as:

fi = ωi

2π (3.18)

The first three natural frequencies obtained are summarized in Table 3.2:
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Mode MATLAB [Hz] MSC Adams [Hz] Ansys [Hz]
1 51.1 50.97 50.97
2 322.4 317.7 317.5
3 913.3 881.97 880.6

Table 3.2: Comparison of the first three natural frequencies for the test-case
cantilever beam

As shown in Table 3.2, the numerical results obtained from the MATLAB im-
plementation are in excellent agreement with both the MSC Adams simulation
and the reference solution provided by Ansys. The small differences observed are
mainly due to numerical approximations and different implementations of the finite
element formulation.
This validation test case confirms the reliability of the numerical model for pre-
dicting the natural frequencies of dynamic simulations of Timoshenko beams using
the Finite Element Method. However, further analysis is required to validate the
damping properties and the final displacement values.

3.9 Numerical results
This section focuses on the numerical results of the Timoshenko beam described in
Figure 3.4 but with the geometrical and material properties described in Table 3.3.

Table 3.3: Fixed geometric, material, and numerical parameters used in the Timo-
shenko beam study.

L Total beam length 0.15 m
b Beam width (out-of-plane direction) 2.5 · 10−3 m
h Beam height (in x–y plane) 5 · 10−3 m
E Young’s modulus of the beam material 70·109 Pa
ν Poisson’s ratio 0.33 –
G Shear modulus G = E/[2(1 + ν)] 2.63·1010 Pa
κ Shear correction factor (Timoshenko) 5/6 –
ρ Material density 2600 kg/m3

Symbol Description Value Units (SI)

Continued on next page
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Table 3.3: Fixed geometric, material, and numerical parameters used in the Timo-
shenko beam study. (Continued)

Ne Number of Timoshenko elements in
the mesh

10 –

∆t Time step of the time integration
scheme

1 · 10−4 s

Tend Final simulation time in the transient
analysis

5 s

P Vertical external force applied at the
beam free-end

5 N

g Acceleration of gravity 9.81 m/s2

q Distributed load due to gravity per
unit length q = ρAg

0.318 N/m

Symbol Description Value Units (SI)

Comparing the outcomes from the MATLAB implementation and the MSC Adams
software. Two different cases are analyzed: with and without gravity applied to
the beam.
For both cases, the displacement of the beam on the right side in a static state can
be calculated using the analytical formulation. Let ∆L represent the displacement
of the free end under an applied force P :

∆L = PL3

3EI (3.19)

The corresponding displacement obtained from MATLAB and MSC Adams is
compared to the analytical solution, showing excellent agreement with a small
discrepancy, which is due to numerical approximations and to the discretization
(i.e., the number of elements) used in the numerical analysis, affecting the precision
of the results.
When gravity is applied, the beam is subjected to both the applied force and the
self-weight distributed along its length. The static deflection is recalculated by
including the gravity effect, which modifies the displacement equation to:

∆Lgravity = PL3

3EI + qL4

8EI (3.20)

where q = ρAg is the distributed load per unit length due to gravity. The numerical
results again show consistent agreement between MATLAB, MSC Adams, and the
analytical solution, confirming the correctness of the implemented model in both
cases.
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The final displacements for both cases are summarized in Table 3.4, when a force
of 5 N is applied.

Case MATLAB [mm] MSC Adams [mm] Analytical [mm]
Without Gravity 3.0807 3.0875 3.0857

With Gravity 3.0918 3.0986 3.0968

Table 3.4: Comparison of final static displacements with and without gravity

Mode MATLAB [Hz] MSC Adams [Hz]
1 186.5 186.1
2 1177.6 1160.9
3 3337.8 3227.4
4 6659.7 6261.9
5 8656.8 8647.9

Table 3.5: Modal frequencies of the beam

The final static deflection is nearly the same in all three methods (analytical solu-
tion, MATLAB finite element model, and MSC Adams simulation), both with and
without gravity, according to the results shown in Table 3.4. The slight variations
in boundary condition implementation, solver tolerances, and numerical discretiza-
tion (finite element mesh resolution) are all responsible for the small differences,
which are on the order of a few microns. The physical properties of the beam
are consistent with the limited impact of gravity on the total displacement: the
self-weight contribution is significantly less than the displacement caused by the
applied tip force due to the beam’s very low mass per unit length, small span, and
modest cross-section dimensions.

The correspondence between MATLAB and MSC Adams is equally satisfactory from
a dynamic perspective. With shear deformation, rotary inertia, and consistent mass
representation, the implemented Timoshenko formulation captures the expected
dynamic behavior of the structure, as demonstrated by the close agreement of the
natural frequencies listed in Table 3.5. The mode-shape visualizations in Sec. 3.10,
which show the distinctive bending and axial patterns predicted by classical beam
theory, further support this alignment between the two computational models.
Overall, the findings show that the MATLAB finite element implementation is
dependable for both modal and static predictions, matching the behavior of a
commercial multibody platform in every test that was carried out.
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Figure 3.5: Displacement-Velocity-Acceleration of the last node (MATLAB and
Adams results)

Figure 3.6: Comparison of damping results between MATLAB and MSC Adams
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Figure 3.7: Animation of MATLAB simulation (only gravity force and vertical
end-node force applied).

Figure 3.8: Animation of ADAMS simulation (only gravity force and vertical
end-node force applied).

Figure 3.5 shows the displacement, the velocity, and the acceleration of the last node
of the beam in the first instants of simulation. The results in Adams and MATLAB
are very similar, showing the consistency of the MATLAB implementation code.
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Figure 3.6 compares the results of the last node between MATLAB and Adams
over a longer time period, highlighting the compatibility between the two simula-
tions (with the same damping and same final values of displacement, velocity and
acceleration).

This simulation generates a very high oscillation frequency of the beam, and due
to the resulting computational load, only a few tenths of a second of the animation
can be displayed in this document, as shown in Figures 3.7 and 3.8.

3.10 Natural frequencies

The following figures show the lowest five natural modes of the cantilever beam
analyzed as shown in Table 3.5. In the figures, the color blue means low deformation
(e.g. in all the figures the left end is blue because is clamped), while color the red
color indicates large deformation.

Figure 3.9: Representation of the first frequency: 186.5 Hz

Figure 3.10: Representation of the second frequency: 1177.6 Hz
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Figure 3.11: Representation of the third frequency: 3337.8 Hz

Figure 3.12: Representation of the fourth frequency: 6659.7 Hz

Figure 3.13: Representation of the fifth frequency: 8656.8 Hz (the beam lengthens
and shortens linearly)
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Chapter 4

Simplified Flexible Multi
Body Simulation Model of
PACOMA Leg Mechanism

This chapter describes a first rigid–flexible implementation of the four–bar mecha-
nism, developed as an intermediate step between the purely rigid four–bar baseline
and the final rigid–flexible formulation presented in the next chapter. The same
physical system is considered: two rigid links of lengths L1 and L3 are grounded at
their left ends and connected by a flexible coupler of length L2, modeled as a planar
Timoshenko beam. However, a number of modeling choices in this first attempt
turned out to constrain the beam to behave almost as a rigid link, and to introduce
unnecessary stiffness and numerical difficulties. These limitations motivated the
revised formulation later adopted in the thesis.
The objective of this chapter is twofold: (i) to document the structure of the first
rigid–flexible model (generalized coordinates, energies, constraints and solver), and
(ii) to clearly identify the main inconsistencies with respect to the target physical
problem and to the final implementation.

Table 4.1: Symbols used in the simplified flexible multi body simulation model
chapter.

L1, L2, L3 Lengths of lower rigid link, flexible coupler, and
upper rigid link

m
Symbol Description Units (SI)

Continued on next page
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Table 4.1: Symbols used in the simplified flexible multi body simulation model
chapter. (Continued)

L0 Vertical offset between the two ground hinges (height
of point C)

m

P1 Ground hinge of the lower rigid link, P1 = (0.150,0)
in global coordinates

m

q1, q2, q3 Joint angles: absolute angle of link 1, relative angle
between link 1 and the undeformed flexible link,
absolute angle of link 3

rad

q̇i, q̈i First and second time derivatives of the joint angles rad/s,
rad/s2

Ne Number of Timoshenko beam elements used for the
flexible link

–

Nn Number of beam nodes, Nn = Ne + 1 –
b, h Width and height of the rectangular cross-section of

the flexible link
m

ui, vi, θi Axial displacement, transverse displacement, and
cross-section rotation at node i of the flexible link

m, m, rad

q Global vector of generalized coordinates
[q1, q2, q3, qd,1, . . . , qd,nd ]T

– (m, rad)

qrig Subvector of rigid coordinates, (q1, q2, q3)T rad
qd Subvector of active flexible DOFs of the beam – (m, rad)
nd Number of active DOFs of the flexible link –
m1,m3 Masses of the lower and upper rigid links kg
ρ Material density of the flexible link kg/m3

A Cross-sectional area of the flexible link m2

I Second moment of area of the flexible link m4

g Gravitational acceleration m/s2

Krig Kinetic energy of the two rigid links J
Ugrav,rig Gravitational potential energy of the rigid links J
Kflex,trans Translational kinetic energy of the flexible link J

Symbol Description Units (SI)

Continued on next page
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Table 4.1: Symbols used in the simplified flexible multi body simulation model
chapter. (Continued)

Kflex,rot Rotational kinetic energy of the flexible link J
Ugrav,flex Gravitational potential energy of the flexible link J
Ustress Elastic strain energy of the flexible link J
L Lagrangian of the rigid–flexible system J
re(x, t) Position vector of a representative point on element e

in the global frame
m

xe, xe+1 Coordinates of the end points of element e along the
beam axis

m

ωe(x, t) Section rotation field along element e rad
y(x, t) Vertical coordinate of the deformed neutral axis m
K Global stiffness matrix of the flexible link (assembled

from element matrices)
N/m

M(q) Global mass matrix of the rigid–flexible system kg
h(q, q̇) Vector collecting Coriolis, centrifugal, gravitational

and elastic generalized forces
N, N·m

τ Vector of applied generalized torques on the rigid
links

N·m

λ Vector of Lagrange multipliers (constraint reactions) N, N·m
ϕ(q) Loop–closure constraint vector – (m)
K(q) Constraint Jacobian, ∂ϕ/∂q –
Krig(q) Part of the constraint Jacobian associated with the

rigid coordinates
–

r(first)
B Tip position of the flexible link in the first model,

computed as if the coupler were rigid
m

St Iteration (tangent) matrix of the generalized-α
Newton scheme

–

Kt Tangent stiffness matrix of the internal forces N/m
Ct Tangent damping matrix (non-proportional part) N·s/m

Symbol Description Units (SI)

Continued on next page
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Table 4.1: Symbols used in the simplified flexible multi body simulation model
chapter. (Continued)

βp, γp Effective generalized-α parameters multiplying M
and Ct in St

–

ρ∞ Target spectral radius at infinite frequency for the
generalized-α scheme

–

αR, βR Rayleigh damping coefficients (mass- and
stiffness-proportional)

s−1, s

C(flex)
R Rayleigh damping matrix acting on the flexible DOFs N·s/m

Mflex Flexible-part submatrix of the mass matrix used in
Rayleigh damping

kg

Kt,flex Flexible-part submatrix of the tangent stiffness used
in Rayleigh damping

N/m

fdamp Damping generalized force vector used in the residual
of the equations of motion

N, N·m

q̇, q̈ Generalized velocity and acceleration vectors (m/s,
rad/s),
(m/s2,
rad/s2)

Symbol Description Units (SI)

4.1 Geometry, coordinates and finite element
mesh

The geometry of the mechanism is the same used throughout the thesis. The lower
rigid link of length L1 is connected to the ground at the point

P1 = (0.150, 0) m,

the upper rigid link of length L3 is grounded at height L0 along the vertical axis,
and the flexible leaf spring of length L2 connects the tip of link 1 to that of link 3.
The configuration of the two rigid bars is described by the angles q1 and q3 measured
from the horizontal, while q2 denotes the relative rotation between the lower rigid
link and the undeformed axis of the flexible link.
The flexible coupler is discretised as a 2D Timoshenko beam with Ne elements and
Nn = Ne + 1 nodes. In this first implementation the number of elements is

Ne = 10,
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and the flexible link is modeled as a rectangular beam with height h = 1.2 mm
and width b = 77 mm, matching the PACOMA prototype dimensions [1] and
reported in Table 4.2. Each node has three mechanical degrees of freedom (DOFs):
a longitudinal displacement u along the undeformed beam axis, a transverse
displacement v, and a rotation θ of the cross–section. However, only the internal
nodes i = 2, . . . , Ne are fully active. The first and last nodes are treated as pinned
ends, with only the rotational DOF activated,

node 1 : (u1, v1, θ1) = (0,0, θ1), node Nn : (uNn , vNn , θNn) = (0,0, θNn),
(4.1)

so that the translational DOFs at the beam ends are completely suppressed.
Collecting the three rigid angles and the active nodal DOFs of the beam into a
single vector, the generalized coordinates are written as

q =
è
q1 q2 q3 qd,1 . . . qd,nd

éT
=
C
qrig
qd

D
, (4.2)

where qrig = (q1, q2, q3)T and qd collects the nd active DOFs of the flexible link, as
defined by the mesh numbering.

O

A

B

C

L1 = 0.12 m

L2 = 0.50 m

L3 = 0.19 m

q1 = 0 rad

q3 = 0.49 rad

q2 = 1.78 rad

0.15 m

L0 = 0.4 m

X

Y

Figure 4.1: Rigid-flexible model’s initial geometry.

Figure 4.1 shows the initial geometry of the rigid-flexible model. L1 is the length
of the lower rigid bar connected to the actuator. L3 is the length of the upper
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rigid bar, representing the end effector. L2 is the length of the titanium leaf spring
before buckling due to the pretension applied by the tendon, as indicated in Table
1.1.

Table 4.2: Fixed geometric, material, and numerical parameters used in the simpli-
fied flexible multi body simulation model.

P1 Ground hinge of the lower rigid link in
global coordinates

(0.150, 0.000) m

L0 Vertical offset between the two ground
hinges (height of point C)

0.40 m

L1 Length of the lower rigid link 0.12 m
L2 Length of the flexible coupler (beam) 0.50 m
L3 Length of the upper rigid link 0.19 m
b Width of the rectangular cross-section

of the flexible link
77 · 10−3 m

h Height (thickness) of the rectangular
cross-section of the flexible link

1.2 · 10−3 m

Ne Number of Timoshenko beam elements
used for the flexible link

10 –

Nn Number of beam nodes (Nn = Ne + 1) 11 –
E Young’s modulus of the flexible link

material
120 · 109 Pa

ν Poisson’s ratio of the flexible link
material

35 –

G Shear modulus of the flexible link
material

4.444 · 1010 Pa

κ Shear correction factor (Timoshenko)
for the flexible link

5/6 –

ρ Material density of the flexible link 4502 kg/m3

m1 Mass of the lower rigid link 1 kg
m3 Mass of the upper rigid link 1 kg
g Gravitational acceleration 9.81 m/s2

Symbol Description Value Units (SI)

Continued on next page
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Table 4.2: Fixed geometric, material, and numerical parameters used in the simpli-
fied flexible multi body simulation model. (Continued)

∆t Time step size used in the
generalized–α integration

1 · 10−3 s

ρ∞ Target spectral radius at infinity
(generalized–α scheme)

0 –

Symbol Description Value Units (SI)

4.2 Energies in the first rigid–flexible formulation

4.2.1 Rigid links
The two rigid bars are modelled as slender rods with lumped rotation around their
left hinge. Their kinetic energy is

Krig = 1
6m1L

2
1q̇

2
1 + 1

6m3L
2
3q̇

2
3, (4.3)

and the gravitational potential reads

Ugrav,rig = m1g
L1

2 sin q1 +m3g
L3

2 sin q3 +m3gL0, (4.4)

where the constant term m3gL0 can be omitted without affecting the equations of
motion.

4.2.2 Flexible link: kinetic energy
The flexible coupler is described in terms of nodal DOFs defined in the global
frame. In this first implementation, the translational kinetic energy is evaluated
by reconstructing the velocity of a representative point on each element using an
analytical expression

re(t) =
C
xe(t)
ye(t)

D
,

which depends on q1, q2 and on the element nodal DOFs through the shape
functions. The squared velocity ∥ṙe∥2 is obtained by symbolic differentiation and
then expressed back in terms of the generalised velocities. The translational kinetic
energy of the flexible link is finally computed as

Kflex,trans = 1
2 ρA

NeØ
e=1

Ú xe+1

xe

∥ṙe(x, t)∥2 dx, (4.5)
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which is numerically evaluated by a one–point Gauss rule per element in the actual
implementation.
The rotational kinetic energy is constructed in a similar spirit. For each element, the
section rotation is interpolated by the rotational shape functions and the squared
angular velocity is integrated along the beam, leading to

Kflex,rot = 1
2 ρI

NeØ
e=1

Ú xe+1

xe

ωe(x, t)2 dx. (4.6)

Here, however, the rotation field is approximated as the sum of a “rigid” component
proportional to q̇1 + q̇2 and a flexible contribution depending on the nodal rotations,
which tends to underestimate the coupling between axial, shear and bending
motions for larger deformations.

4.2.3 Flexible link: gravitational and elastic energy
The gravitational energy of the flexible link is defined by integrating the vertical
position of the deformed neutral axis over the beam length. In this first model, the
deformed geometry of the beam is reconstructed from the undeformed mesh geom
and from the nodal displacements u and v, using the current orientation of each
element, but still with respect to the initial straight configuration of the leaf. The
resulting potential energy reads

Ugrav,flex = ρAg
NeØ
e=1

Ú xe+1

xe

y(x, t) dx. (4.7)

The strain energy Ustress is computed using a linear Timoshenko element stiffness
matrix assembled over the initial geometry. For each element, a 6 × 6 stiffness
matrix is obtained in a local frame aligned with the initial axis of the beam and
then rotated to the global frame. The global stiffness matrix K is built by standard
finite element assembly and the elastic energy is written as

Ustress = 1
2 qT

d K qd. (4.8)

This choice is formally consistent with a small–deflection Timoshenko beam, but it
neglects the change of orientation of each element and any geometric nonlinearity
in the strain measure. An additional scalar parameter allows the stiffness energy to
be scaled by a large factor, effectively turning the flexible link into a nearly rigid
coupler for debugging purposes.

4.2.4 Lagrangian and equations of motion
Collecting all contributions, the Lagrangian of the first rigid–flexible model is

L = Krig +Kflex,trans +Kflex,rot −
1
Ugrav,rig + Ugrav,flex + Ustress

2
. (4.9)
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The equations of motion are obtained by standard Lagrange equations with con-
straints. In compact form, the dynamics can be written as

M(q) q̈ + h(q, q̇) = τ −K(q)Tλ, ϕ(q) = 0, (4.10)

where M is the mass matrix, h collects Coriolis, centrifugal, gravitational and
elastic terms, τ is the vector of generalized torques applied to the rigid links, and
λ are the Lagrange multipliers enforcing the loop–closure constraint ϕ(q) = 0.

4.3 Rigid loop–closure constraint and its conse-
quences

The most critical modelling choice in this first implementation lies in the treatment
of the loop–closure constraint. The mechanism is topologically equivalent to a
four–bar linkage and the constraint ensures that the tip of the flexible link coincides
with the tip of the upper rigid link. In the first model, however, the constraint
vector was written as if the coupler were rigid:

ϕ(q) =
C
0.150 + L1 cos q1 + L2 cos(q1 + q2)− L3 cos q3
L1 sin q1 + L2 sin(q1 + q2)− L3 sin q3 − L0

D
. (4.11)

The position of point B, at the end of the flexible link, is thus expressed as

r(first)
B =

C
0.150 + L1 cos q1 + L2 cos(q1 + q2)

L1 sin q1 + L2 sin(q1 + q2)

D
, (4.12)

which coincides exactly with the position of a rigid link of length L2 attached to
link 1 with relative angle q2. Crucially, the nodal displacements of the flexible link
do not appear in (4.11). As a result, the Jacobian matrix of the constraints has
the structure

K(q) = ∂ϕ

∂q
=
è

Krig(q) 02×nd

é
, (4.13)

so that the flexible DOFs are completely absent from the loop–closure conditions.
This modelling choice has two important consequences:

• the kinematic closure of the mechanism is enforced as if the flexible link were
a rigid bar of length L2, driven only by (q1, q2, q3);

• the elastic displacements of the beam cannot participate in satisfying the
loop–closure; they only enter the internal elastic forces and energies, but they
do not influence the position of point B in the constraint equations.
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In practice, this means that the three rigid angles q1, q2 and q3 evolve almost
exactly as in the rigid four–bar baseline, while the flexible link is forced to deform
“on top of” the rigid motion without any possibility to relieve the kinematic closure
through its own DOFs. The last node of the beam is pinned in translation, and the
loop constraint sees only the undeformed, straight configuration of the coupler. The
combined effect is that the flexible link behaves as an extremely stiff element, with
very small displacements at the tip and a dynamic response that is much closer
to a rigid four–bar than to the leaf–spring mechanism observed in the multibody
reference model.

4.4 Time integration and damping in the first
DAE solver

4.4.1 Generalized-α scheme with fixed tangent
The system (4.10) is an index–3 differential–algebraic equation and is integrated in
time using a generalized-α method. The solver advances the state (q, q̇, q̈) and the
Lagrange multipliers λ over each time step by solving a nonlinear system obtained
from the discrete form of the equations of motion and constraints.
In the first implementation, the iteration matrix for the Newton scheme was
assembled as

St =
C
βp M + γp Ct + Kt KT

K 0

D
, (4.14)

where Kt is the tangent matrix of the internal forces with respect to q, including
the contribution of KTλ, and Ct is the tangent of the non–proportional damping
term. To reduce computational cost, the tangent stiffness matrix was evaluated
once per time step, at the beginning of the Newton iteration, and then kept fixed
(“frozen” tangent) until convergence.
While this strategy is acceptable for moderately nonlinear problems, it turned
out to be fragile in combination with the stiff constraints discussed above. The
frozen tangent worsens the conditioning of the iteration matrix, especially when the
configuration changes appreciably within a single time step, and tends to increase
the number of Newton iterations or even cause convergence issues for larger time
steps.

4.4.2 Rayleigh damping and its limitations
The first solver also introduced Rayleigh damping on top of the tangent damping
matrix, with coefficients αR and βR tuned on the first two bending modes of the
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flexible beam. In the implementation, a Rayleigh matrix is assembled at each time
step by combining the mass and stiffness contributions on the flexible DOFs only,

C(flex)
R = αR Mflex + βR Kt,flex, (4.15)

where Mflex and Kt,flex are the submatrices of the mass and tangent stiffness
associated with the flexible coordinates. This Rayleigh contribution is added to
the tangent damping matrix in the iteration matrix of the generalized-α scheme.
At the residual level, however, the damping forces are evaluated using a simplified
Rayleigh term. In practice, only a mass–proportional term of the form

fdamp ≈ αR M q̇ (4.16)

is applied, while the stiffness–proportional part is neglected and the damping is
effectively distributed over all DOFs, not only the flexible ones. As a result, the
damping forces that enter the equations of motion are not fully consistent with the
Rayleigh matrix used in the tangent operator of the Newton iterations.
Combined with the generalized–α parameter choice ρ∞ = 0, which maximizes
algorithmic damping of high–frequency components, this setting leads to a strongly
damped response of the bending modes. In practice, the elastic vibrations of the
leaf spring are heavily attenuated.

4.5 Observed behavior and mismatch with the
target mechanism

The combination of a rigid loop–closure constraint, pinned translational DOFs at
both ends of the beam and a very stiff linear elastic model produced a dynamic
behavior that was qualitatively different from the expected one.
From a mechanical point of view, the flexible link could deform only in the interior
nodes, without moving its tip relative to the rigid geometry imposed by (4.11).
As a result, the curvature of the beam remained small and the vertical deflection
of the tip was much smaller than in the multibody reference model of the leaf
spring mechanism. The rigid angles q1 and q3 evolved almost identically to the rigid
four–bar baseline, confirming that the flexible link was not allowed to redistribute
the kinematic closure.
From a numerical point of view, the strongly constrained configuration and the
frozen tangent occasionally led to poorly conditioned iteration matrices, requiring
a large number of Newton iterations or very small time steps to achieve conver-
gence. The overdamped nature of the time integrator further masked the dynamic
contribution of the elastic modes.
These discrepancies highlighted that the first rigid–flexible formulation, although
structurally sound from a finite element and DAE point of view, did not faithfully

51



Simplified Flexible Multi Body Simulation Model of PACOMA Leg Mechanism

represent the mechanics of the actual leaf–spring mechanism and could not serve
as a reliable basis for comparison with the multibody model.

4.6 Key differences with the final rigid–flexible
formulation

The issues identified in this first implementation drove a substantial revision of the
model, leading to the final rigid–flexible formulation presented in the next chapter.
The main differences between the two versions can be summarised as follows:

• Loop–closure constraint. In the first model, the position of the coupler
tip B in the loop constraint is computed as if the link were rigid and depends
only on (q1, q2, q3). In the final formulation, the position of point B is recon-
structed from the current finite element geometry of the flexible link, using the
same routine employed for the energies. As a consequence, the loop–closure
constraint depends explicitly on the nodal DOFs and the elastic deformation
contributes to satisfying the closure.

• Boundary conditions of the flexible link. The preliminary mesh activates
only the rotational DOF at the first and last node of the beam, locking their
translations. In the final model, the rightmost node of the flexible link has
all three DOFs active, so that the tip position can move relative to the rigid
geometry. This is essential to reproduce the measured tip motion and the
Adams reference solution.

• Co–rotational versus reference–configuration energies. In the first
implementation, the elastic stiffness matrix is assembled using element matrices
referred to the initial straight configuration, and the coupling between rotations
and translations in the kinetic and potential energies is only approximate.
The final formulation consistently uses a co–rotational description: the current
geometry of each element is computed from the generalized coordinates and
the energies are evaluated in a local frame aligned with the deformed element.
This improves objectivity and allows for large rotations of the leaf spring
without spurious stiffening.

• Treatment of the constraints in the solver. The first solver introduces the
loop–closure constraint directly into the Lagrangian via Lagrange multipliers
and solves an index–3 DAE with the constraints enforced only at the accelera-
tion level. In the final solver, the constraints are handled by a combination
of Baumgarte stabilization and explicit projection of positions and velocities
onto the constraint manifold at each time step, which significantly improves
robustness and reduces drift.
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• Damping model. Rayleigh damping is introduced in a simplified way in the
first model and applied uniformly to all DOFs. In the final implementation, the
Rayleigh coefficients are identified from the bending spectrum of the flexible
link, and the associated damping is applied only to the flexible DOFs, while
the generalized–α parameters are chosen to reduce numerical dissipation and
preserve the physical damping of the system.

Figure 4.2: Trend of the angles of the two rigid links and the flexible beam (only
gravity force applied)

In summary, the first rigid–flexible implementation provided a useful intermediate
step to set up the finite element discretization, the symbolic generation of equations
of motion and the DAE solver. However, the combination of a rigid loop–closure
constraint, pinned boundary conditions at the beam tip and a linear stiffness matrix
assembled in the reference configuration effectively constrained the flexible link to
behave almost as a rigid coupler. For this reason, when the model is subject to
the action of gravity alone, the deformations of the flexible nodes and the angle
trends are similar between the MATLAB and Adams simulations, as can be seen in
Figures 4.2 and 4.3 and in the animations shown in Figures 4.4 and 4.5. However,
precisely because of this incorrect setting of the constraints, when attempting to
flex the flexible beam by constraining the lower rigid rod and applying an external
load to the upper rigid rod, the flexible beam does not flex and assume a completely
wrong, even leading to model failure due to inconsistency between loop closure and
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internal stress.
The final formulation overcomes these limitations by consistently including the
beam deformation in the loop closure, adopting a co–rotational description of the
flexible link and revising the constraint enforcement and damping strategies.

Figure 4.3: Longitudinal and transverse deformations of the middle node (only
gravity force applied)

Figure 4.4: Animation of MATLAB simulation (only gravity force applied)
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Figure 4.5: Animation of ADAMS simulation (only gravity force applied)
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Chapter 5

Full Flexible Multi Body
Simulation Model of
PACOMA Leg Mechanism

5.1 Aim and modeling scope

This chapter develops a planar rigid–flexible model that represents a single leg
of the parallel continuum mechanism in its operating configuration. The leg is
composed of two rigid links and one flexible beam discretized by Timoshenko
elements. The objective is to present the full derivation of the differential–algebraic
equations, the associated energies, the constraint treatment, and the numerical
integration strategy, with clear links to the structure of the implementation where
this clarifies the mathematics. Numerical results are not the focus here; rather, the
intention is to provide a transparent formulation that can be followed and audited
line by line.

Motion is assumed planar. The flexible beam undergoes large overall translations
and rotations but small strains in its element-local frames. Shear deformation
and rotary inertia are retained following Timoshenko kinematics. Gravity acts
uniformly along the negative y-direction. Material and section parameters are taken
as constant along the beam. A tendon connecting the inner and outer attachment
points provides static pretension and viscous action along the cable direction.
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Figure 5.1: Sketch of the desired PACOMA leg after pretension.

All geometric and material parameters used in the planar leg model are listed in
Table 5.2. They are consistent with the PACOMA prototype and with the MSC
Adams model developed in the project [1, 2].
The goal is to arrive at the modeling of a structure like the one in Figure 5.1, in
which the upper rigid bar representing the end effector of PACOMA is horizontal,

Table 5.1: Symbols used in the full flexible multi body simulation model chapter.

x, y Coordinates of the fixed inertial frame m
O,C Ground pivots of lower and upper rigid links m
A,B Connection points between rigid links and flexible

beam (beam ends)
m

P1 Ground hinge of the lower rigid link, P1 = (0.150,0)T m
L0, L1, L2, L3 Vertical offset of upper link base, lengths of lower

rigid link, flexible beam, and upper rigid link
m

h, b Height and width of the rectangular cross-section of
the flexible beam

m

Ne, Nn Number of Timoshenko elements and number of
nodes of the flexible beam (Nn = Ne + 1)

–

∆x Nominal element length of the flexible beam,
∆x = L2/Ne

m

q1, q2, q3 Generalized angles of lower link, baseline beam
orientation, and upper link (counterclockwise)

rad

Symbol Description Units (SI)

Continued on next page
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Table 5.1: Symbols used in the full flexible multi body simulation model chapter. (Con-
tinued)

q̇i, q̈i Generalized velocities and accelerations associated
with qi

rad/s,
rad/s2

q Global generalized coordinate vector [q1, q2, q3, q
T
d ]T (rad, m)

n Dimension of the generalized coordinate vector,
n = 3 + nd

–

qd Vector of active flexible DOFs of the beam (nodal
u, v, θ)

(m, rad)

nd Number of active elastic DOFs of the beam –
ActiveDOF Logical (Nn × 3) matrix indicating which of (u, v, θ)

is active at each node
–

nf Integer (Nn × 3) map from active nodal DOFs to
indices in qd

–

si Arc abscissa of node i along the beam, si = (i− 1)∆x m
x̄i Baseline (undeformed in local sense) position of node

i, Eq. (5.4)
m

xi Current global position of node i, Eq. (5.5) m
ψ Baseline beam direction, ψ = q1 + q2 rad
ψe Current element direction (co-rotational frame)

computed from the chord of element e
rad

te,ne Unit tangent and normal vectors of element e in
global coordinates

–

ui, vi, θi Axial, transverse displacement and cross-section
rotation at beam node i (local co-rotational frame)

m, m, rad

u(x), v(x), θ(x) Continuous axial, transverse, and rotational fields
over an element

m, m, rad

ξ Local natural coordinate of a Gauss point in an
element, ξ ∈ [−1,1]

–

N1(ξ), N2(ξ) Linear shape functions used to interpolate u, v, θ over
a two-node element

–

Symbol Description Units (SI)

Continued on next page

58



Full Flexible Multi Body Simulation Model of PACOMA Leg Mechanism

Table 5.1: Symbols used in the full flexible multi body simulation model chapter. (Con-
tinued)

Re 3× 3 co-rotational mapping from local (u, v, θ) to
global (x, y, θ) for one node

–

Te 6× 6 block-diagonal mapping blkdiag(Re,Re) for a
two-node element

–

ẋ(ξ) Global translational velocity at a Gauss point,
Eq. (5.8)

m/s

ẋbase Velocity induced by the motion of the lower-link tip,
Eq. (5.9)

m/s

ẋrigid(ξ) Velocity induced by the spin of the straight baseline
at distance s(ξ), Eq. (5.10)

m/s

ẋflex(ξ) Elastic contribution to velocity in the co-rotational
frame, mapped to global, Eq. (5.11)

m/s

ω(ξ) Cross-section angular velocity at a Gauss point,
Eq. (5.14)

rad/s

ε, γ, κ Axial strain, shear strain, and curvature in the
Timoshenko co-rotational formulation, Eq. (5.15)

–, –, 1/m

θ̄ Element-averaged section rotation, Eq. (5.16) rad
Le Element length (current or nominal, used in strain

measures)
m

E Young modulus of the beam material Pa
G Shear modulus of the beam material Pa
A Cross-sectional area of the flexible beam m2

I Second moment of area of the flexible beam m4

κ (Timoshenko) Shear correction factor in the Timoshenko
constitutive law

–

w Elastic energy density per unit length, Eq. (5.18) J/m
Ue Elastic strain energy of one element, Eq. (5.19) J
m1,m3 Masses of the lower and upper rigid links kg
ρ Material density of the flexible beam kg/m3

g Gravitational acceleration (acting along negative y) m/s2

Symbol Description Units (SI)

Continued on next page
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Table 5.1: Symbols used in the full flexible multi body simulation model chapter. (Con-
tinued)

Krigid Kinetic energy of the two rigid links, Eq. (5.20) J
Kbeam Translational + rotary kinetic energy of the flexible

beam, Eq. (5.21)
J

K Total kinetic energy of rigid links and beam,
K = Krigid +Kbeam

J

Ug,rigid Gravitational potential energy of rigid links,
Eq. (5.22)

J

Ug,beam Gravitational potential energy of the flexible beam,
Eq. (5.23)

J

Ustrain Total elastic strain energy of the beam, Eq. (5.24) J
U Total potential energy, U = Ug,rigid + Ug,beam + Ustrain J
ycm,1, ycm,3 Vertical coordinates of the center of mass of links 1

and 3
m

y(ξ) Current vertical coordinate of a Gauss point on the
beam

m

J Jacobian of the mapping from ξ to physical
coordinate (J = ∆x/2) in Gauss integration

m

wg Gauss quadrature weights (two-point rule, wg = 1) –
L Lagrangian of the rigid–flexible system, L = K − U J
E(q, q̇, q̈) Euler–Lagrange operator assembled over all

generalized coordinates, Eq. (5.28)
N, N·m

M(q) Generalized mass matrix, Hessian of kinetic energy
w.r.t. q̇

kg

H(q, q̇) Non-inertial term in the equations of motion,
Eq. (5.29)

N, N·m

C(q, q̇) Velocity-dependent (convective/Coriolis/gyroscopic)
part of H

N, N·m

g(q) Gravity contribution in generalized coordinates N, N·m
kint(q) Internal elastic forces from the strain energy N, N·m
Kt Tangent stiffness matrix, ∂H/∂q N/m

Symbol Description Units (SI)

Continued on next page
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Table 5.1: Symbols used in the full flexible multi body simulation model chapter. (Con-
tinued)

Ct Tangent damping matrix, ∂H/∂q̇ N·s/m
kloc

e ,mloc
e Local element stiffness and mass matrices in

co-rotational frame
N/m, kg

kax Axial part of local stiffness (unit EA/Le factor),
Eq. (5.32)

–

kfl Bending–shear part of local stiffness (unit EI/L3
e

factor)
–

mtr Consistent translational mass block (unit ρALe

factor)
–

mrot Rotary inertia block (unit ρILe factor) –
ϕ (shear index) Shear flexibility parameter ϕ = 12EI/(κGAL2

e) –
ce, se Cosine and sine of the element direction ψe –
ke,me Global element stiffness and mass matrices,

Eq. (5.35)
N/m, kg

Ae Boolean scatter matrix mapping element DOFs into
global DOFs

–

K,M Assembled global stiffness and mass matrices of the
beam (in the flexible DOF space)

N/m, kg

pB(q) Current global position of the flexible beam tip m
p3(q3) Current global position of the upper-link tip,

Eq. (5.38)
m

ϕ(q) Loop-closure constraint, mismatch pB(q)− p3(q3) m
Jc(q) Constraint Jacobian, ∂ϕ/∂q –
λ Lagrange multipliers associated with loop-closure;

reaction forces at the tip
N

ζ, ωB Baumgarte stabilization damping ratio and angular
frequency in the acceleration-level constraint,
Eq. (5.42)

–, s−1

zB, wB Code-level notation for ζ, ωB (Baumgarte
parameters)

–, s−1

Symbol Description Units (SI)

Continued on next page
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Table 5.1: Symbols used in the full flexible multi body simulation model chapter. (Con-
tinued)

B Lower-left block in the KKT system, linearization of
stabilized constraints

–

St Effective tangent matrix in generalized-α iterations,
Eq. (5.52)

N/m

rm, rc Residuals of the momentum equation and constraint
equation in the KKT system

N, m

Sλ Schur-complement matrix for multipliers in the KKT
system, Eq. (5.55)

–

pA(q) Current global position of the tendon attachment on
link 1

m

r(q) Relative vector from A to B, r = pB − pA m
L(q) Current tendon length, L(q) = ∥r(q)∥ m
L0 Tendon rest length used in the spring law m
e(q) or ê Unit direction of the tendon, e = r/∥r∥ –
JA,JB Jacobians of endpoints A and B with respect to

generalized coordinates
–

Jrel Relative Jacobian JB − JA, mapping q̇ to endpoint
relative velocity

–

F (q, q̇) Scalar tendon force from spring–damper law,
Eq. (5.46)

N

k (tendon) Tendon stiffness in the spring–damper model N/m
c (tendon) Tendon viscous coefficient in the spring–damper

model
N·s/m

f Global tendon force vector at endpoints (f = F e) N
Qten Generalized force vector contributed by the tendon,

Eq. (5.47)
N, N·m

Kten Elastic tangent of the tendon force, Eq. (5.48) N/m
τ Applied generalized load vector (actuation, external

torques/forces)
N, N·m

Symbol Description Units (SI)

Continued on next page
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Table 5.1: Symbols used in the full flexible multi body simulation model chapter. (Con-
tinued)

ρ∞ Target spectral radius at infinity for generalized-α;
controls high-frequency numerical damping

–

αm, αf Generalized-α parameters weighting accelerations
and forces, Eq. (5.50)

–

γ, β Newmark-like parameters derived from αm, αf ,
Eq. (5.50)

–

∆t Time step of the integration scheme s
qn+1

eff Algorithmic configuration state used to evaluate
residuals, Eq. (5.51)

(rad, m)

q̇n+1
eff , q̈n+1

eff Algorithmic velocity and acceleration states in
generalized-α

(rad/s,
m/s),

(rad/s2,
m/s2)

βp, γp Effective generalized-α coefficients multiplying M
and Ctot in St, Eq. (5.52)

–

CRay Rayleigh damping matrix, CRay = αRMff + βRKff N·s/m
αR, βR Rayleigh mass- and stiffness-proportional damping

coefficients, Eq. (5.58)
s−1, s

Ctot Total damping matrix in the iteration,
Ctot = Ct + CRay

N·s/m

Mff ,Kff Mass and stiffness submatrices restricted to flexible
DOFs

kg, N/m

ζ Target viscous damping ratio for the first bending
modes in the Rayleigh model

–

ω1, ω2 Circular frequencies of the first two bending modes of
the flexible beam

rad/s

ζ(ω) Resulting Rayleigh damping ratio at generic circular
frequency ω

–

Symbol Description Units (SI)
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5.2 Geometry, coordinates, and structure of the
unknowns

A fixed inertial frame (x, y) is adopted. The lower rigid link of length L1 is grounded
at the pivot

O =
C
0.150

0

D
m

and is described by a single generalized coordinate q1 (positive counterclockwise).
The upper rigid link of length L3 is grounded at

C =
C

0
L0

D

and is described by q3. The flexible beam of length L2 connects the tip of link 1 to
the tip of link 3. It is discretized into Ne two-node Timoshenko elements of nominal
length ∆x = L2/Ne. It has a rectangular cross-section, with height h = 1.2 mm
and a width b = 77 mm, as stated in the PACOMA report[1].
A baseline orientation parameter q2 encodes the mean direction of the beam
centerline prior to elastic deformation. The beam nodal elastic unknowns are, at
each node, the local axial displacement u, the local transverse displacement v, and
the cross-section rotation θ. The global vector of generalized coordinates is then
ordered as

q =
è
q1 q2 q3 q⊤

d

é⊤
∈ Rn, n = 3 + nd,

where qd ∈ Rnd collects the active degrees of freedom of the flexible beam’s nodes.
This ordering separates the minimal rigid coordinates from the deformable ones
and facilitates assembly and constraint handling.
Figure 5.2 shows the initial geometry of the rigid-flexible model. L1 is the length
of the lower rigid bar connected to the actuator. L3 is the length of the upper
rigid bar, representing the end effector. L2 is the length of the titanium leaf spring
before buckling due to the pretension applied by the tendon, as indicated in Table
1.1.
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O

A

B

C

L1 = 0.12 m

L2 = 0.50 m

L3 = 0.19 m

q1 = 0 rad

q3 = 0.49 rad

q2 = 1.78 rad

0.15 m

L0 = 0.4 m

X

Y

Figure 5.2: Rigid-flexible model’s initial geometry.

Table 5.2: Fixed geometric, material, and numerical parameters used in the full
flexible multi body simulation model.

O Ground pivot of the lower rigid link in
the planar leg model

(0.000, 0.000) m

C Ground pivot of the upper rigid link – m
P1 Ground hinge of the lower rigid link

(used in the planar reduction)
(0.150, 0.000) m

L0 Vertical offset between the two ground
hinges

0.40 m

L1 Length of the lower rigid link 0.12 m
L2 Length of the flexible beam (coupler) 0.50 m
L3 Length of the upper rigid link 0.19 m
b Width of the rectangular cross-section

of the flexible beam
77 · 10−3 m

Symbol Description Value Units (SI)

Continued on next page
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Table 5.2: Fixed geometric, material, and numerical parameters used in the full
flexible multi body simulation model. (Continued)

h Height (thickness) of the rectangular
cross-section of the flexible beam

1.2 · 10−3 m

Ne Number of Timoshenko elements
discretizing the flexible beam

10 (or 4) –

Nn Number of nodes of the flexible beam
(Nn = Ne + 1)

11 (or 5) –

E Young’s modulus of the beam material 120 · 109 Pa
ν Poisson’s ratio of the beam material 0.35 –
G Shear modulus of the beam material 4.444 · 1010 Pa
k (shear) Shear correction factor in the

Timoshenko constitutive law
5/6 –

ρ Material density of the flexible beam 4502 kg/m3

m1 Mass of the lower rigid link 1 kg
m3 Mass of the upper rigid link 1 kg
g Gravitational acceleration (negative

y–direction)
9.81 m/s2

∆t Time step size in the generalized–α
integration of the leg model

1 · 10−3 s

ρ∞ Target spectral radius at infinity
(generalized–α scheme)

0.8 –

Symbol Description Value Units (SI)

5.3 Modeling assumptions and rationale
A co-rotational beam formulation is adopted, following [20, 16]. The central idea is
to describe each finite element in a local frame that follows the current element
chord, so that large rigid motions are filtered out, while the elastic measures u, v, θ
remain relatively small. This approach preserves the familiar local Timoshenko
matrices [13, 14], confines geometric nonlinearities to a limited number of terms,
and makes explicit where the dependence on the baseline direction q1 +q2 enters and
where the elastic corrections act. The shear correction factor κ is taken according
to standard corrections for prismatic sections [5, 12].
Figure 5.3 shows the initial configuration, in which the flexible beam is straight
and an arbitrary configuration in which a pretension applied between the two end
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X

Y

q1 = 0 rad

q2 = 1.78 rad

ue

ve

θ

ui

uj

θ

ui

uj

θ

q3 = 0.49 rad

(a) Initial configuration

X

Y

q1

q2

ue

ve

q3

(b) Arbitrary configuration

Figure 5.3: Rigid-flexible model’s active degrees of freedom. Flexible beam
discretized with 2 elements just as example.

nodes tends to buckle the flexible beam. The three main angles q1, q2, q3 are shown
in blue, and the degrees of freedom active for each node are shown in gray. The
first node (connection between the lower rigid bar and the flexible beam) has only
the degree of freedom of rotation active, since the longitudinal and transverse
deformations are constrained by the rotational joint present at this point.
The holonomic loop-closure is expressed by the vector-valued map

ϕ(q) = pB(q) − p3(q3) ∈ R2 (5.1)

which measures in global coordinates the translational mismatch between the
flexible beam tip B and the tip of the upper rigid link. The constraint ϕ(q) = 0
enforces coincidence of the two points [21, 17].
The map pB(q) returns the current global position of the beam tip as a function of
all generalized coordinates q. Let P1 = (0.150, 0)⊤, L1 the lower-link length, L2
the beam length, and ψ = q1 + q2 the baseline beam direction. Denote by tNe(q)
and nNe(q) the unit tangent and normal of the last (co-rotational) beam element,
evaluated from the current chord of that element, and by uN+1, vN+1 the axial and
transverse nodal DOFs at the beam tip (active in this model). Then a convenient
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explicit representation is

pB(q) = P1 + L1

C
cos q1
sin q1

D
ü ûú ý

position of the lower-link tip

+ L2

C
cosψ
sinψ

D
ü ûú ý

baseline beam reach

+ uN+1 tNe(q) + vN+1 nNe(q)ü ûú ý
elastic correction at the tip

.

In the implementation this quantity is obtained by the routine current_geom_from_q,
which builds the full nodal geometry using the same co-rotational mapping; the
expression above makes explicit the dependence on q1, q2 and on the tip DOFs
uN+1, vN+1 [21].
The map p3(q3) returns the current global position of the tip of the upper rigid link
of length L3, whose base is fixed at C = [0, L0]⊤. It depends only on the single
generalized coordinate q3 and reads

p3(q3) =
C

L3 cos q3

L0 + L3 sin q3

D
. (5.2)

The Jacobian of the constraint, Jc(q) = ∂ϕ/∂q ∈ R2×n, follows as

Jc(q) = ∂pB

∂q
(q) − ∂p3

∂q
(q)ü ûú ý

=
è

0 0 −L3 sin q3
L3 cos q3

0
é

(5.3)

with the nonzero columns of ∂pB/∂q located at q1, q2 and at the indices correspond-
ing to the active tip DOFs uN+1, vN+1 (and, through the co-rotational frame, at
additional elastic DOFs that affect the last-element orientation). The projection
routine project_loop enforces ϕ(q) = 0 (and Jcq̇ = 0 at the velocity level) [10, 9,
22], thereby determining the absolute position of the beam tip. In practice, this
projection drives the pair (uN+1, vN+1) to the values required to satisfy closure,
while the section rotation θN+1 remains free.

1 function [q_corr , dq_corr ] = project_loop (q, dq , prop , L,
fixed_idx , nf)

2 % Position projection : solve phi(q)=0 by weighted min -norm
correction .

3 % Velocity projection : enforce Jc(q)*dq =0.
4 %
5 % Inputs :
6 % q, dq current state
7 % prop , L model parameters (for generated loop_phi / loop_Jc )
8 % fixed_idx logical mask of DOFs to keep fixed ( Dirichlet )
9 % nf numbering matrix for active (u,v,theta); used to clamp u,v

steps
10 %
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11 % Outputs :
12 % q_corr , dq_corr projected position and velocity
13
14 % Weights : very large for fixed DOFs -> minimal motion there
15 Wdiag = ones(n ,1);
16 Wdiag( fixed_idx ) = 1e12;
17
18 % Small safeguards
19 maxit = 8; tol = 1e -12;
20
21 % ---- Position - level projection : phi(q)=0 ----
22 for it = 1: maxit
23 phi = loop_phi (prop , L, q); % 2x1
24 if norm(phi ,2) < tol ,
25 break;
26 end
27
28 Jc = loop_Jc (prop , L, q); % 2xn
29 % WinvJt = W^{ -1} * Jc’ ( implemented with element -wise

division by Wdiag)
30 WinvJt = Jc.’ ./ Wdiag; % n x 2
31 S = Jc * WinvJt ; % 2 x 2
32
33 % Robust 2x2 inverse with light regularization if needed
34 detS = S(1 ,1)*S(2 ,2) - S(1 ,2)*S(2 ,1);
35 if ~ isfinite (detS) || abs(detS) < 1e -12
36 S = S + 1e -9* eye (2);
37 detS = S(1 ,1)*S(2 ,2) - S(1 ,2)*S(2 ,1);
38 end
39 Sinv = [ S(2 ,2) , -S(1 ,2); -S(2 ,1) , S(1 ,1) ] / detS;
40
41 dq_pos = - WinvJt * (Sinv * phi); % n x 1
42
43 % Optional clamp on elastic u,v increments ( stability aid)
44 if ~ isempty (nf)
45 rigid_off = 3;
46 uv_step_max = 1e -3; % m per iteration
47 iu = nf (: ,1); iu = iu(iu >0); idx_u = rigid_off + iu;
48 iv = nf (: ,2); iv = iv(iv >0); idx_v = rigid_off + iv;
49 dq_pos (idx_u) = max(min( dq_pos (idx_u), + uv_step_max ), -

uv_step_max );
50 dq_pos (idx_v) = max(min( dq_pos (idx_v), + uv_step_max ), -

uv_step_max );
51 end
52
53 dq_pos ( fixed_idx ) = 0; % honor fixed DOFs
54 q = q + dq_pos ;
55 if norm(dq_pos ,2) < tol ,
56 break;
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57 end
58 end
59
60 % ---- Velocity - level projection : Jc(q)dq = 0 ----
61 Jc = loop_Jc (prop , L, q); % 2xn
62 G = JcJc.’; % 2x2
63 detG = G(1 ,1)*G(2 ,2) - G(1 ,2)G(2 ,1);
64 if ~ isfinite (detG) || abs(detG) < 1e -12
65 G = G + 1e-9 eye (2);
66 detG = G(1 ,1)*G(2 ,2) - G(1 ,2)*G(2 ,1);
67 end
68 Ginv = [ G(2 ,2) , -G(1 ,2); -G(2 ,1) , G(1 ,1) ] / detG;
69
70 dq = dq - Jc.’ * ( Ginv * (Jc*dq) );
71 dq( fixed_idx ) = 0;
72
73 q_corr = q;
74 dq_corr = dq;
75 end

Listing 5.1: Constraint projection at position and velocity levels (project_loop).

1 function geom = current_geom_from_q (L1 , q, dx , Ne , nf)
2 % Build current global coordinates of the (Ne +1) beam nodes.
3 % Baseline : tip of link 1 + straight reach at angle psi = q1+q2.
4 % Elastic correction : local (u,v) mapped directly in global frame

at nodes.
5
6 P1 = [0.150; 0.0];
7 q1 = q(1);
8 q2 = q(2);
9 psi = q1 + q2;

10
11 base = P1 + [L1*cos(q1); L1*sin(q1)];
12
13 geom = zeros(Ne+1, 2);
14
15 for i = 1:( Ne +1)
16 s = (i -1) dx;
17 x0 = base + s*[ cos(psi); sin(psi)]; % baseline node position
18
19 % Local nodal DOFs ( active according to nf)
20 ui = 0; vi = 0;
21 iu = nf(i ,1); if iu >0, ui = q(3+ iu); end
22 iv = nf(i ,2); if iv >0, vi = q(3+ iv); end
23
24 xi = x0 + [ui; vi]; % current global node position
25 geom(i ,:) = xi.’;
26 end
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27 end

Listing 5.2: Co-rotational reconstruction of current beam-node positions
(current_geom_from_q).

5.4 Mesh, active degrees of freedom, and num-
bering

Let ActiveDOF ∈ {0,1}(Ne+1)×3 be the logical matrix that indicates which of the
triplet (u, v, θ) is active at each beam node. Its companion nf ∈ N(Ne+1)×3

0 maps
each active entry to a unique global index among the elastic coordinates. A simple
numbering routine increments a counter only when ActiveDOF(i, k) = 1. This
mapping, although basic, is the backbone of a clean assembly because it prevents
the introduction of spurious zero rows or columns and allows dispersion from
element to global without special cases at the ends.

5.5 Co-rotational kinematics of the beam
Let the arc abscissa of node i be si = (i− 1) ∆x. The baseline (undeformed-in-the-
local-sense) position is

x̄i(q1, q2) =
C
0.150

0

D
+ L1

C
cos q1

sin q1

D
+ si

C
cos(q1 + q2)
sin(q1 + q2)

D
. (5.4)

The current position augments the baseline by the nodal deformations expressed in
the local co-rotational frame of the element e that contains node i:

xi = x̄i + ui te + vi ne, te =
C
cosψe

sinψe

D
, ne =

C
− sinψe

cosψe

D
, (5.5)

where ψe is the current element direction obtained from the chord joining the two
current end nodes of element e as shown in Figure 5.3. A small regularization
O(10−9∆x) can be added under the square root in the chord length to avoid a
division by zero, as a protection from some unwanted problem.
For a two-node Timoshenko element the local shape matrix reads

N(ξ) =

N1 0 0 N2 0 0
0 N1 0 0 N2 0
0 0 N1 0 0 N2

 (5.6)

N1(ξ) = 1− ξ
2 , N2(ξ) = 1 + ξ

2 , ξ ∈ [−1,1].

71



Full Flexible Multi Body Simulation Model of PACOMA Leg Mechanism

Let c = cosψe and s = sinψe. The 3× 3 co-rotational mapping that converts local
nodal triplets (u, v, θ) into global increments (x, y, θ) for a single node is

Re =

c −s 0
s c 0
0 0 1

 .
For the two-node element the 6× 6 block-diagonal map is

Te = blkdiag(Re,Re) =



c −s 0 0 0 0
s c 0 0 0 0
0 0 1 0 0 0
0 0 0 c −s 0
0 0 0 s c 0
0 0 0 0 0 1


. (5.7)

This matrix sends the local element vector qloc
e = [uj, vj, θj, uk, vk, θk]⊤ to its global

counterpart via qglob
e = Te qloc

e .

Consider a Gauss point inside element e at abscissa

s(ξ) = sj + 1 + ξ

2 ∆x,

where sj is the arc position of node j and ∆x is the nominal element length. Its
global translational velocity is the sum of three physically distinct contributions:

ẋ(ξ) = ẋbaseü ûú ý
motion of the lower-link tip

+ ẋrigid(ξ)ü ûú ý
spin of the straight baseline at distance s(ξ)

+ ẋflex(ξ)ü ûú ý
elastic rate in the local frame, mapped to global

.

(5.8)

Each term can be written in closed form:

ẋbase = d

dt

AC
0.150

0

D
+ L1

C
cos q1

sin q1

DB
= L1q̇1

C
− sin q1

cos q1

D
(5.9)

ẋrigid(ξ) = d

dt

A
s(ξ)

C
cosψ
sinψ

DB
= s(ξ) (q̇1 + q̇2)

C
− sinψ
cosψ

D
, with ψ = q1 + q2 (5.10)

ẋflex(ξ) = R2(ψe)
C
u̇(ξ)
v̇(ξ)

D
, with R2(ψe) =

C
cosψe − sinψe

sinψe cosψe

D
(5.11)
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with the local elastic rates at the Gauss point obtained from the nodal rates as

u̇(ξ) =
è
N1(ξ) 0 0 N2(ξ) 0 0

é
q̇loc

e , (5.12)

v̇(ξ) =
è
0 N1(ξ) 0 0 N2(ξ) 0

é
q̇loc

e . (5.13)

Expression (5.8) separates kinematically the transport of the Gauss point by the
rigid motion of the lower link (5.9), the spin of the straight baseline induced by
ψ̇ = q̇1 + q̇2 at distance s(ξ) (5.10), and the elastic rate in the element co-rotational
frame mapped to global coordinates (5.11). In the small-strain co-rotational setting
the time variation of the local frame itself, which would generate higher-order con-
vective terms proportional to ψ̇e u(ξ) and ψ̇e v(ξ), is neglected in the translational
velocity because u and v are small by construction.

The angular velocity entering the rotary kinetic energy follows from the superposi-
tion of the baseline spin and the local interpolated section-rotation rate,

ω(ξ) = (q̇1 + q̇2) +
è
0 0 N1(ξ) 0 0 N2(ξ)

é
ü ûú ý

= N(3)(ξ)

q̇loc
e . (5.14)

5.6 Strain measures and constitutive density
In the co-rotational Timoshenko setting with a von Kármán enrichment [23, 16, 15],
axial strain is augmented to capture moderate rotations while keeping small strains.
Let x ∈ [0, Le] denote the element arc coordinate in the local (co-rotational) frame,
and let u(x), v(x), θ(x) be, respectively, the axial displacement, the transverse
displacement, and the cross-section rotation in that frame. The adopted measures
are

ε(x) = du

dx
(x) + 1

2

A
dv

dx
(x)
B2

; γ(x) = dv

dx
(x) − θ̄ ; κ(x) = dθ

dx
(x) (5.15)

where θ̄ is the element-averaged section rotation. In this work the average is taken
as the nodal mean

θ̄ = 1
2

1
θj + θk

2
(5.16)

which is constant over the element and coincides with the definition used in the
implementation.
With the two-node interpolation adopted for the triplet (u, v, θ),

u(x) = N1(x)uj +N2(x)uk

v(x) = N1(x) vj +N2(x) vk
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θ(x) = N1(x) θj +N2(x) θk

the element-wise derivatives are constant:
du

dx
= uk − uj

Le

,
dv

dx
= vk − vj

Le

,
dθ

dx
= θk − θj

Le

. (5.17)

Substituting (5.17) and (5.16) into (5.15) yields constant εx, γ, and κ over the
element (note that the nonlinearity enters through the quadratic term 1

2(vx)2, but
vx itself is constant). This property implies that a two-point Gauss rule integrates
exactly the element energy, as used in the codes [13, 14].
The Timoshenko constitutive density in the co-rotational frame reads

w = 1
2 EAε

2 + 1
2 κGAγ

2 + 1
2 EI κ

2 (5.18)

with E the Young modulus, G the shear modulus, A the cross-sectional area, I the
second moment of area, and k the shear-correction factor for the chosen prismatic
section [5, 14, 13]. Since the integrand is constant under (5.17), the element elastic
energy takes the compact form

Ue =
Ú Le

0
w dx = Le

è
1
2 EAε

2
x + 1

2 κGAγ
2 + 1

2 EI κ
2
é
. (5.19)

This expression is algebraically equivalent to the one assembled in the implementa-
tion, where the same measures ε, γ, κ are formed from nodal differences divided
by Le and the energy is accumulated as Ue ∆x.

5.6.1 Modeling remarks.

(i) The von Kármán axial strain ε = du
dx

+ 1
2

1
dv
dx

22
supplies the leading-order geometric

stiffening that is appropriate for operating configurations with moderate rotations
but small strains in the co-rotational frame. (ii) The shear measure γ = dv

dx
− θ̄

is the standard Timoshenko shear, which allows cross-sections to remain rigid
(no warping) without being constrained to remain orthogonal to the deformed
centroidal axis. (iii) The factor k accounts for the nonuniform shear distribution
over the section; for rectangular sections the canonical k = 5/6 is a widely accepted
approximation.

5.7 Energies and their physical content
Each rigid link is modeled as a slender, uniform rod rotating about a revolute joint
at one end. The kinetic energy of a rod of length L and mass m rotating with
angular speed q̇ about its end is

K = 1
2Iendq̇

2, Iend = 1
3mL

2,
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hence K = 1
6mL

2q̇2. Applying this to links 1 and 3 gives

Krigid = 1
6 m1L

2
1 q̇

2
1 + 1

6 m3L
2
3 q̇

2
3. (5.20)

The flexible beam contributes translational and rotary inertia. At a Gauss point
inside element e the translational velocity ẋ(ξ) is the global time derivative of the
point position, which—within the co-rotational setting—is naturally decomposed
as in Eq. (5.8). The cross-section angular velocity ω(ξ) follows from Eq. (5.14).
Using density ρ, area A, and area moment of inertia I, the kinetic energy density
at that point is

1
2ρA∥ẋ(ξ)∥2 + 1

2ρI ω(ξ)2.

Integrating over the element with the reference abscissa ξ ∈ [−1,1] and the affine
map x(ξ) yields the Jacobian J = ∆x/2. Using two-point Gauss quadrature
(weights wg = 1) and summing over all elements gives

Kbeam =
NeØ
e=1

2Ø
g=1

è
1
2ρA ∥ẋ∥

2 + 1
2ρI ω

2
é

(e,g)
J wg (5.21)

J = ∆x/2 ; wg = 1.

The use of the two-point rule is consistent with the linear interpolation adopted
for (u, v, θ) and with the co-rotational mapping (see, e.g., [13, 14, 5]).
The gravitational potential energy of link 1 is m1g ycm,1 with the center-of-mass
ordinate ycm,1 = L1

2 sin q1; similarly for link 3, whose base is offset by L0 in the
vertical direction, ycm,3 = L0 + L3

2 sin q3. Therefore the gravitational potential
energy of the rigid links is

Ug,rigid = m1g
L1
2 sin q1 + m3g

1
L0 + L3

2 sin q3
2
. (5.22)

For the flexible beam, the gravitational density is ρAg y, where y(ξ) is the current
global vertical coordinate of the Gauss point obtained from the co-rotational
reconstruction. With the same two-point rule used for kinetics,

Ug,beam =
NeØ
e=1

2Ø
g=1

ρA g y(ξ) J wg. (5.23)

This expressions mirrors the implementation in which y(ξ) comes from
current_geom_from_q.
Let w denote the constitutive energy density in the element’s co-rotational frame,

w = 1
2EAε

2 + 1
2kGAγ

2 + 1
2EI κ

2,
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with strain measures (ε, γ, κ) defined in Eqs. (5.15)–(5.17). The beam strain energy
is the sum of elemental contributions

Ustrain =
NeØ
e=1

Ú ∆x

0
w dx. (5.24)

Since du
dx

, dv
dx

, and dθ
dx

are element-wise constant with the adopted interpolation, a
two-point Gauss scheme evaluates Ustrain exactly (see [16, 15, 13]).
The total kinetic and potential energies are

K = Krigid +Kbeam, U = Ug,rigid + Ug,beam + Ustrain.

The Lagrangian is defined as the difference

L(q, q̇) = K(q, q̇) − U(q), (5.25)

and serves as the starting point for deriving the equations of motion via the
Euler–Lagrange equations with holonomic constraints. In compact form one obtains
the standard multibody structure:

M(q) q̈ + H(q, q̇) = τ (5.26)

ϕ(q) = 0 (5.27)
where M is the configuration-dependent mass matrix, H collects Coriolis/centrifugal,
gravity, and internal elastic forces, τ denotes applied generalized loads, and ϕ
encodes the loop closure; see [21, 14].

5.8 Euler–Lagrange operator, mass matrix, and
non-inertial term

Let L(q, q̇) = K(q, q̇)− U(q) be the Lagrangian of the rigid–flexible leg. For each
generalized coordinate qi the Euler–Lagrange operator is

Ei(q, q̇, q̈) = d

dt

A
∂L
∂q̇i

B
− ∂L

∂qi

. (5.28)

Collecting the components into E(q, q̇, q̈) ∈ Rn and introducing the applied gener-
alized loads τ , the unconstrained equations of motion read E(q, q̇, q̈) = τ .
It is convenient to isolate the part that multiplies accelerations from the remaining
effects. The generalized mass matrix and the non-inertial term are defined by

M(q) = ∂E

∂q̈
(q, q̇, q̈), H(q, q̇) = E(q, q̇, q̈) − M(q) q̈, (5.29)

76



Full Flexible Multi Body Simulation Model of PACOMA Leg Mechanism

so that the standard form

M(q) q̈ + H(q, q̇) = τ (5.30)

is obtained. Since L = K − U and K is quadratic in q̇ in this model, the mass
matrix is the velocity Hessian of the kinetic energy

M(q) = ∂2K
∂q̇ ∂q̇

(q)

hence it is symmetric and, under standard independence and positivity assumptions
on the inertia data, positive definite. The configuration dependence of M arises
from the co-rotational frames; the off-diagonal blocks encode the inertial coupling
between rigid angles and flexible degrees of freedom.
The term H(q, q̇) collects all contributions that do not multiply accelerations. A
useful interpretation splits it as

H(q, q̇) = C(q, q̇) + g(q) + kint(q),

where C contains convective, Coriolis/centrifugal, and gyroscopic effects generated
by the q-dependence of ∂K/∂q̇ (and vanishes at q̇ = 0), g = ∂Ug/∂q is the gravity
contribution, and kint = ∂Ustrain/∂q is the internal elastic force derived from the
strain energy. Equivalently,

H(q, q̇) =
3

∂K
∂q
− d

dt
∂K
∂q̇

4
ü ûú ý

velocity-dependent and geometric terms

+ ∂U
∂q

(q)ü ûú ý
gravity + elasticity

.

Implicit time integration and Newton iterations require the consistent linearizations
of H with respect to the state,

Kt(q, q̇) = ∂H

∂q
(q, q̇), Ct(q, q̇) = ∂H

∂q̇
(q, q̇), (5.31)

which are exact Jacobians (not ad-hoc approximations). They assemble the iteration
matrix used by Newton’s method and generalized-α; for the latter, the effective
tangent typically appears as βp M + γp Ct + Kt. Retaining consistency in these
derivatives preserves the expected quadratic convergence and the stability properties
of the integrator.
When holonomic constraints are present, the form (5.30) becomes

M(q) q̈ + H(q, q̇) + Jc(q)⊤λ = τ, ϕ(q) = 0,

where Jc(q) = ∂ϕ/∂q is the constraint Jacobian and λ are Lagrange multipliers. In
practice, the same M , H , Kt, and Ct defined above are used within the constrained
solver and in the projection steps that enforce the loop closure at position and
velocity levels.
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5.9 Element matrices and global assembly
This section summarizes how the elemental stiffness and mass matrices are formed
in the co-rotational Timoshenko setting and how they are mapped and assembled
into the global operators. The discussion follows standard finite-element practice
for beams [13, 14, 15].

Local element operators (co-rotational frame)
Consider a two-node Timoshenko beam element of current chord length ∆x ex-
pressed in its co-rotational local frame {t, n}, with the nodal degrees of freedom
ordered as

qloc
e =

è
uj vj θj uk vk θk

é⊤
,

where u is axial, v transverse, and θ the section rotation about the out-of-plane
axis. The local (material) stiffness splits into an axial part and a bending–shear
part,

kloc
e = EA

∆x kax + EI

∆x3
1

1 + ϕ
kfl, ϕ = 12EI

κGA∆x2 , (5.32)

where ϕ is the usual shear-flexibility index; ϕ → 0 recovers the Euler–Bernoulli
limit, while finite ϕ introduces Timoshenko shear compliance with correction factor
κ. The consistent element mass matrix adds translational and rotary inertia
contributions,

mloc
e = ρA∆xmtr + ρI ∆xmrot, (5.33)

whose 6× 6 blocks (kax,kfl,mtr,mrot) are the canonical arrays for the two-node
Timoshenko element; their explicit expressions are here reported (see also [13, 14]).
Let Le = ∆x denote the element length and ϕ = 12EI/(κGAL2

e). The axial part is

kax =



1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

The bending–shear part is

kfl =



0 12 6L 0 −12 6L
12 12ϕ 6Lϕ −12 −12ϕ 6Lϕ
6L 6Lϕ (4 + ϕ)L2 −6L −6Lϕ (2− ϕ)L2

0 −12 −6L 0 12 −6L
−12 −12ϕ −6Lϕ 12 12ϕ −6Lϕ
6L 6Lϕ (2− ϕ)L2 −6L −6Lϕ (4 + ϕ)L2


.
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The consistent translational mass block is

mtr = 1
420



140 0 0 70 0 0
0 156 22L 0 54 −13L
0 22L 4L2 0 13L −3L2

70 0 0 140 0 0
0 54 13L 0 156 −22L
0 −13L −3L2 0 −22L 4L2


.

The rotary inertia block acting on the θ-DOFs is

mrot = 1
6



0 0 0 0 0 0
0 0 0 0 0 0
0 0 2 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 2


.

The full local matrices are then

kloc
e = EA

L
kax + EI

L3
1

1 + ϕ
kfl, mloc

e = ρALmtr + ρILmrot.

In a co-rotational formulation the only operation needed to express the element
operators in global coordinates is a rigid rotation consistent with the current
element chord. Let the element direction be ψe, the rotation matrix be Re:

ce = cosψe, se = sinψe, Re =

 ce se 0
−se ce 0
0 0 1

 .
The 6× 6 transformation acting on the element nodal vector is the block diagonal

Te = blkdiag(Re,Re) =



ce se 0 0 0 0
−se ce 0 0 0 0
0 0 1 0 0 0
0 0 0 ce se 0
0 0 0 −se ce 0
0 0 0 0 0 1


. (5.34)

With this mapping, the global element matrices are obtained by congruence:

ke = T⊤
e kloc

e Te, me = T⊤
e mloc

e Te. (5.35)

No further geometric terms are introduced at this stage: the co-rotational approach
preserves the canonical local operators and accounts for large rigid motions through
Te only [16, 15].
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Boolean assembly into global operators
Let Ae be the Boolean (scatter) matrix that places the six element DOFs into their
positions in the global vector of active coordinates. Its construction follows the
active-DOF numbering, so that locked DOFs simply do not appear in Ae. The
global stiffness and mass matrices are assembled as

K =
NeØ
e=1

A⊤
e keAe, M =

NeØ
e=1

A⊤
e meAe. (5.36)

By construction K and M are symmetric. The mass matrix M is positive definite
on the subspace of independent coordinates; the stiffness K is positive semidefinite
if rigid-body modes are unconstrained and becomes positive definite once boundary
conditions and loop constraints are enforced [17, 21].

A practical and robust diagnostic is to compare the assembled matrices for an
inclined mesh against a reference assembly built for a horizontal mesh of the same
segmentation and properties, related by a global rotation. Denote by (Kincl,Mincl)
the operators assembled with element-wise rotations as in (5.35), and by (Kx,Mx)
those assembled with all elements aligned with the global x-axis. Let T be the
global block-diagonal rotation that applies Re to each node that carries the full
triplet (u, v, θ). Then one expects the congruence relations

Kincl ≈ T⊤KxT, Mincl ≈ T⊤MxT,

and the relative Frobenius norms
∥Kincl −T⊤KxT∥F

∥Kx∥F

≪ 1, ∥Mincl −T⊤MxT∥F

∥Mx∥F

≪ 1, (5.37)

which effectively detect mistakes in local-to-global rotations, DOF ordering, or
Boolean scatter; see, [24, 25]. This check mirrors the verification used in the
implementation and is recommended as a regression test whenever the mesh
description or numbering changes.

5.10 Loop-closure and constrained equations
The mechanism has a single holonomic closure that enforces coincidence between
the flexible beam tip and the tip of the upper rigid link. Let pB(q) ∈ R2 denote the
current global position of the beam tip, obtained from the co-rotational geometry
(Section 5.9 and the routine current_geom_from_q), and let

p3(q3) =
C

L3 cos q3

L0 + L3 sin q3

D
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be the current tip of link 3, whose base is fixed at C = [0, L0]⊤. The vector-valued
constraint map

ϕ(q) = pB(q) − p3(q3) ∈ R2 (5.38)

measures the translational mismatch in global coordinates. Imposing ϕ(q) = 0
closes the loop by making the two tips coincide.

The constraint Jacobian is

Jc(q) = ∂ϕ

∂q
(q) ∈ R2×n. (5.39)

Rank Jc(q) = 2 in the configurations of interest, i.e., there are no alignment sin-
gularities that make the two scalar constraints locally dependent. Under this
rank condition, the local constraint collector {q : ϕ(q) = 0} is smooth and of
codimension 2.

Introducing Lagrange multipliers λ ∈ R2 with the physical meaning of constraint
reaction forces at the tip, the unconstrained standard form

M(q) q̈ + H(q, q̇) = τ (5.40)

is augmented to the semi-explicit index-2 DAEM(q) q̈ + H(q, q̇) + Jc(q)⊤λ = τ,

ϕ(q) = 0,
(5.41)

where Jc(q) = ∂ϕ/∂q. This form enforces the closure at the position level and
ensures that the reaction forces do no work along admissible virtual displacements.

5.10.1 Acceleration-level stabilization (Baumgarte).
During time integration the constraint ϕ(q) = 0 can slowly drift away from zero
because of numerical errors. A simple way to limit this drift is to add the following
acceleration-level correction

Jc(q) q̈ + 2 ζ ωB Jc(q) q̇ + ω2
B ϕ(q) = 0, (5.42)

where: ϕ(q) ∈ R2 is the two-component constraint function (it should be zero),
Jc(q) = ∂ϕ/∂q is its Jacobian, q are the generalized coordinates, q̇ and q̈ are
velocity and acceleration, ζ ∈ [0,1] is a dimensionless damping ratio, and ωB > 0
is a stabilization angular frequency (in s−1). The last term, ω2

B ϕ(q), pulls the
positions back toward zero constraint error; the middle term, 2 ζ ωB Jc(q)q̇, damps
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the constraint-related velocities; the first term ensures the correction acts at the
acceleration level. In the code, this appears with coefficients 2 zB wB and w2

B, so
that ζ = zB and ωB = wB.
Choosing the two parameters follows common practice in constrained multibody
dynamics. It is convenient to tie the frequency to the time step ∆t so that the
correction acts on the same time scale as the integrator, for example

ωB = κ

∆t , κ ∈ [10, 30],

and to use a well-damped setting for ζ, e.g. ζ ≈ 0.5–0.9. These ranges are widely
used and documented in the literature on constrained dynamics and DAEs; see
[26, 21, 10, 22]. With this choice, the stabilization acts as a critically sized “vir-
tual spring–damper” on the constraints: too small ωB allows drift to accumulate,
whereas too large ωB makes the algebraic block overly stiff and can degrade Newton
convergence.

For completeness, many solvers add to (5.42) also a projection step after each cor-
rector (positions: weighted least squares to enforce ϕ(q) = 0; velocities: orthogonal
projection to enforce Jc(q) q̇ = 0), which further reduces drift without requiring
very large ωB [9, 10].

After each nonlinear corrector step (or whenever the user chooses), the positions
and velocities are corrected so that the loop-closure constraint is satisfied again.
This procedure is usually called a projection step.
The correction for the positions is computed by solving a small weighted least-
squares problem: it finds the smallest change in the coordinates that brings the
constraint value ϕ(q) back to zero, while keeping some degrees of freedom almost
fixed if they are assigned a large weight:

min
∆q

1
2 ∆q⊤W ∆q subject to ϕ(q + ∆q) = 0,

with a positive diagonal weight W = diag(wi) that can be used to keep selected
coordinates effectively fixed by setting large weights wi. Linearizing ϕ(q + ∆q) ≈
ϕ(q) + Jc(q)∆q yields the closed-form correction

∆q = −W−1 Jc(q)⊤
3

Jc(q) W−1 Jc(q)⊤
4−1

ϕ(q), (5.43)

so that q ← q + ∆q satisfies ϕ(q) = 0 up to linearization error. Velocities are then
orthogonally projected onto the null space of the constraints,

q̇ ← q̇ − Jc(q)⊤
3

Jc(q) Jc(q)⊤
4−1

Jc(q) q̇, (5.44)

82



Full Flexible Multi Body Simulation Model of PACOMA Leg Mechanism

which enforces Jc(q) q̇ = 0. These two steps mirror the routine project_loop and
are numerically robust as long as rank Jc = 2.

Within an implicit integrator (e.g., generalized-α), the nonlinear residual for the
momentum equation and the stabilized constraints is linearized at each iteration.
Denote by St the effective tangent arising from the scheme (a combination of M, Ct,
and Kt), and by rm and rc the current residuals of the momentum and constraint
equations, respectively. The Newton step solves a saddle-point (KKT) system of
the form C

St J⊤
c

B 0

D C
∆q
∆λ

D
= −

C
rm

rc

D
, B ≡ βp Jc + γp

åJc, (5.45)

where the blocks βp, γp and åJc depend on the chosen time integrator and on the
stabilization (5.42). Eliminating ∆q by a Schur complement on the 2× 2 multiplier
block provides a well-conditioned update for ∆λ, after which ∆q is recovered by
a single back-substitution. This is the pattern implemented in the solver, with a
mild diagonal regularization of St to improve numerical robustness.

5.10.2 Practical checks.
Regularly monitoring rank Jc, the norm of ϕ(q) after projection, and the size of
the correction ∆q in (5.43) is good practice. Large projections or loss of rank often
signal near-singular configurations (e.g., aligned bars) that require smaller time
steps or alternative parameterizations.

The formulation above is standard in constrained multibody dynamics and differ-
ential–algebraic equations [9, 10].

1 function phi = loop_phi (prop , q, nf)
2 % loop_phi Two closure constraints : beam tip B equals link -3 tip.
3 % Inputs :
4 % prop : struct with P1 (2x1), L0 , L1 , L2 , L3
5 % q : generalized coordinates [q1;q2;q3; qd]
6 % nf : (Ne +1) x3 numbering of active DOFs (u,v,theta)
7 % Output :
8 % phi : 2x1 mismatch pB - p3 ( should be zero at closure )
9

10 q1 = q(1); q2 = q(2); q3 = q(3);
11 psi = q1 + q2;
12
13 % Link -1 tip (point A)
14 pA = prop.P1 + prop.L1 * [cos(q1); sin(q1)];
15
16 % Beam tip (point B): baseline reach + (u,v) tip in GLOBAL axes
17 pB = pA + prop.L2 * [cos(psi); sin(psi)];
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18 i_tip = size(nf ,1);
19 iu = nf(i_tip ,1); iv = nf(i_tip ,2);
20 if iu >0, pB = pB + [q(3+ iu); 0]; end
21 if iv >0, pB = pB + [0; q(3+ iv)]; end
22
23 % Link -3 tip
24 p3 = [ prop.L3*cos(q3);
25 prop.L0 + prop.L3*sin(q3) ];
26
27 phi = pB - p3; % 2x1
28 end
29
30
31 function Jc = loop_Jc (prop , q, nf)
32 % loop_Jc Jacobian of the closure constraint phi(q).
33 % Inputs / Output as in loop_phi . Output : Jc is 2-by -n.
34
35 q1 = q(1); q2 = q(2); q3 = q(3);
36 psi = q1 + q2;
37 n = numel(q);
38 Jc = zeros (2,n);
39
40 % d pB / d q1 and d pB / d q2 ( baseline contributions )
41 Jc (: ,1) = [-prop.L1*sin(q1) - prop.L2*sin(psi);
42 prop.L1*cos(q1) + prop.L2*cos(psi)];
43 Jc (: ,2) = [-prop.L2*sin(psi);
44 prop.L2*cos(psi)];
45
46 % d(-p3)/dq3
47 Jc (: ,3) = [ +prop.L3*sin(q3);
48 -prop.L3*cos(q3) ];
49
50 % Tip DOFs (u,v) mapped 1:1 in GLOBAL axes
51 i_tip = size(nf ,1);
52 iu = nf(i_tip ,1); iv = nf(i_tip ,2);
53 if iu >0, Jc(:, 3+iu) = [1;0]; end
54 if iv >0, Jc(:, 3+iv) = [0;1]; end
55 end

Listing 5.3: Loop-closure maps: position constraint phi(q) and Jacobian Jc(q).
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5.11 Tendon model, endpoint Jacobians, and static
pretension

A cable (tendon) is modeled between a point A near the tip of link 1 and the
flexible–beam tip B (as in the PACOMA concept, cf. [1]). Let

r(q) = pB(q)− pA(q), L(q) = ∥r(q)∥, e(q) = r(q)
L(q) ,

be, respectively, the relative position, its length, and the unit direction from A to
B in global coordinates.

The endpoint positions depend on the generalized coordinates q. The beam tip
pB(q) comes from the co-rotational geometry used for the flexible limb
(current_geom_from_q), so it depends on (q1, q2) and on the active nodal DOFs of
the last beam node (uN+1, vN+1), as well as weakly on nearby elastic DOFs through
the last-element orientation. The upper-link tip p3(q3) is handled by loop-closure
and does not enter the tendon directly.
The attachment on link 1 is placed at

pA(q) =
C
0.150

0

D
+ L1

C
cos q1
sin q1

D
ü ûú ý

tip of link 1

so its Jacobian has a single nonzero column (with respect to q1):

JA(q) ≡ ∂pA

∂q
(q) , JA(: ,1) =

C
−L1 sin q1
L1 cos q1

D
, JA(:, i) = 0 (i /= 1).

The beam-tip Jacobian

JB(q) ≡ ∂pB

∂q
(q)

includes: (i) the rigid contribution from (q1, q2) along the baseline direction, and
(ii) the mapping of the tip DOFs uN+1, vN+1 in the current local frame. In practice,
the code fills the two nonzero columns for uN+1 and vN+1 with [1 0]⊤ and [0 1]⊤ in
global axes, and adds the baseline part in the first two angle columns. The relative
Jacobian

Jrel(q) = JB(q) − JA(q)

maps generalized velocities to the relative endpoint velocity: ṙ = Jrel(q) q̇.
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5.11.1 Spring–damper along the cable line.
A linear spring–damper acts only along the current cable direction e(q). The scalar
cable force is

F (q, q̇) = k
1
L(q)− L0

2
+ c e(q)⊤Jrel(q)q̇ü ûú ý

relative speed along the cable

, (5.46)

and the corresponding global force at the endpoints is f = F e (tension is positive).
By virtual work, the generalized force contributed by the tendon is obtained by
the standard Jacobian–transpose mapping [27, 28]:

Qten(q, q̇) = Jrel(q)⊤ f = Jrel(q)⊤ e(q)F (q, q̇). (5.47)

For Newton iterations it is useful to include the (rank–2) elastic tangent of the
spring along the current direction,

Kten(q) = Jrel(q)⊤
1
k e(q)e(q)⊤

2
Jrel(q), (5.48)

which follows from linearizing the spring part of (5.46).

5.11.2 Static pretension problem.
A pretensioned reference shape is found by solving a static equilibrium with the
loop closed. One seeks q⋆ such that internal elastic forces and gravity balance the
tendon, while the tip B still coincides with the upper-link tip. Using the notation
of Section 5.9,

H(q,0)ü ûú ý
gravity + elastic at rest

+ Qten(q,0)ü ûú ý
spring tension

= 0, ϕ(q) = 0. (5.49)

The solution proceeds with Newton’s method on the residual R(q) = H(q,0) +
Qten(q, 0), using the consistent tangent Kt(q, 0) + Kten(q) inside each iteration. It
is often convenient to hold q3 at a target value (e.g., q3 = 0) as a hard constraint in
the linear system; q1 can also be fixed if desired. After each Newton step, a short
projection enforces the loop closure ϕ(q) = 0 (section 5.10).

As an illustration of the target operating posture produced by (5.49), Fig. 5.4
shows a rendering from MSC Adams in which a spring–damper along the tendon
pulls the flexible limb outward, producing a stable pretensioned shape. The image
is provided only to clarify geometry and intended deformation. On MSC Adams,
the pretensioned configuration requires 10 seconds to stabilize, it is not possible to
get a static pretension starting from the rest position.
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Figure 5.4: Qualitative rendering of the pre-tensioned leg (MSC Adams). The
cable runs from a point near the tip of link 1 to the flexible–beam tip, generating
an outward bend under pretension. Colors indicate bending intensity; red bars are
the rigid links.

Figure 5.5: Angles q1, q2 and q3 during the pretensioning transient.
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Figure 5.6: The displacement of the three internal nodes of the flexible beam
(when it is divided into 4 elements) during the pretensioning transient.

Figure 5.7: Spring deformation during the pretensioning transient.
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Figure 5.8: Spring force during the pretensioning transient.

Figure 5.5 shows the behavior of the three rigid angles during the pretensioning
transient. This transient is the movement of the model from a state like the
one represented in Figure 5.2 to the final pretensioned model shown in Figure
5.4, which is the starting point for dynamic simulations. Figure 5.6 shows the
displacements during the pretension transient of the three internal nodes of a
4-elements Timoshenko beam, where the "first node" indicates the closest internal
node to the lower rigid link, and the "last node" the closest one to the upper rigid
link.
Figures 5.7 and 5.8 present, respectively, the evolution of the deformation and
the force developed by the spring–damper during the transient pretension phase
carried out in MSC Adams. This stage of the simulation is crucial, as it defines the
initial mechanical state from which the subsequent dynamic response of the system
originates. To impose the desired prestress, an initial compressive load of 89 N
was applied to the spring. This specific value was determined through preliminary
analyses aimed at identifying the load level capable of guiding the flexible element
toward its optimal pretensioned configuration, while at the same time minimizing
undesired oscillations and ensuring a stable convergence of the mechanism toward
the targeted initial state. The selected pretension force therefore represents the
most effective compromise between achieving the required deformation and main-
taining numerical and mechanical stability during the transient process.
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A practical trick improve robustness: a very small geometric imperfection added to
a middle interior u-DOFs to make the beam choose a definite bending side under
tension, instead of converging to a symmetric but unstable straight state.

1 function [Qten , Kten , F, ehat , Llen] = tendon_loads (q, dq , prop ,
nf , k, c, L0)

2 % tendon_loads Spring - damper along the A->B line ( positive
tension ).

3 % Inputs :
4 % q,dq : state
5 % prop : struct with P1 , L0 , L1 , L2 , L3
6 % nf : numbering of active DOFs (u,v,theta)
7 % k,c : stiffness [N/m] and damping [N*s/m]
8 % L0 : rest length [m]
9 % Outputs :

10 % Qten : generalized force (n x 1)
11 % Kten : elastic tangent (n x n), rank 2
12 % F : scalar cable tension (N)
13 % ehat : unit direction 2x1 from A to B
14 % Llen : current cable length (m)
15
16 % Endpoints
17 q1 = q(1); q2 = q(2);
18 pA = prop.P1 + prop.L1 * [cos(q1); sin(q1)];
19
20 psi = q1 + q2;
21 pB = pA + prop.L2 * [cos(psi); sin(psi)];
22
23 % Tip (u,v) in GLOBAL
24 i_tip = size(nf ,1);
25 iu = nf(i_tip ,1); iv = nf(i_tip ,2);
26 if iu >0, pB = pB + [q(3+ iu); 0]; end
27 if iv >0, pB = pB + [0; q(3+ iv)]; end
28
29 % Relative vector , length , direction
30 r = pB - pA;
31 Llen = max(norm(r), 1e -12);
32 ehat = r / Llen;
33
34 % Jacobians of endpoints (2 x n)
35 n = numel(q);
36 J_A = zeros (2,n);
37 J_A (: ,1) = [-prop.L1*sin(q1); prop.L1*cos(q1)]; % only q1
38
39 J_B = J_A; % includes q1 part
40 J_B (: ,2) = [-prop.L2*sin(psi); prop.L2*cos(psi)]; % q2
41 if iu >0, J_B (:, 3+iu) = [1;0]; end % u_tip
42 if iv >0, J_B (:, 3+iv) = [0;1]; end % v_tip
43
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44 Jrel = J_B - J_A; % dq -> rdot
45
46 % Scalar force of spring - damper along ehat
47 vrel = ehat.’ * (Jrel * dq); % relative speed
48 F = k*( Llen - L0) + c*vrel; % tension
49 fvec = ehat * F; % 2x1 nodal force
50
51 % Map to generalized forces and elastic tangent
52 Qten = Jrel.’ * fvec;
53 Kten = Jrel.’ * (k * (ehat*ehat.’)) * Jrel;
54 end

Listing 5.4: Tendon generalized force Qten and elastic tangent Kten.

Figure 5.9: Static pretension configuration predicted by the current co-rotational
Timoshenko model.

Figure 5.9 shows the static pretension configuration obtained by solving the nonlin-
ear equilibrium problem in Eq. (5.49) with the present co-rotational Timoshenko
formulation. Instead of producing a smooth outward bend qualitatively similar to
the MSC Adams reference in Fig. 5.4, the finite-element model keeps the beam
almost straight and concentrates the curvature in a single “kink” at the tip. This
is inconsistent with the expected post-buckling shape of a slender, initially straight
leaf spring under end–to–end compression and tendon pretension.
To better understand this behavior, a reduced four-element test mesh was used for
diagnostics. After convergence of the static solve, the element lengths and axial
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strains were post-processed directly from the nodal coordinates. The resulting data
are summarized in Table 5.3.

Element Le [m] Axial strain ε [-]
1 0.1308 4.65 · 10−2

2 0.1293 3.42 · 10−2

3 0.1286 2.87 · 10−2

4 0.0246 −8.03 · 10−1

Table 5.3: Element lengths and axial strains in the static pretension solution
of a four-element test mesh. The first three elements are in mild tension, while
almost the entire compression is localized in the last element, which exhibits an
unrealistically large negative strain.

The first three elements are slightly elongated and carry only moderate positive axial
strain, whereas the last element becomes extremely short, with an axial strain of
about −80%. From a mechanical viewpoint this equilibrium is not acceptable for the
titanium leaf spring considered here: the compression is numerically concentrated
in a single element instead of being smoothly distributed along the span, and the
local strain level is far beyond the range in which the adopted small-strain, von
Kármán co-rotational formulation is meant to operate [16, 15].
The mismatch between Fig. 5.9 and the target shape in Fig. 5.4 is therefore
interpreted as a limitation of the current modeling and discretization choices. In
particular:

• the present co-rotational Timoshenko model with von Kármán axial strain
assumes small strains in the element-local frame; the highly compressed last
element in Table 5.3 violates this assumption and pushes the formulation
outside its intended validity range;

• the static pretension problem is strongly nonlinear (the tendon force exceeds
the first Euler buckling load of the beam), and with a coarse mesh the Newton
iterations tend to converge to a localized post-buckling branch where one
element carries most of the compression, a behavior that is well known in
classical FEM post-buckling analyses when the discretization is too coarse or
the regularization too weak [16, 15];

• the pretension is applied only through an end–to–end tendon; no additional
distributed features (e.g. imperfections, auxiliary springs, or stiffness regular-
ization) are present to penalize a local collapse of the tip element relative to
the rest of the beam.

Several remedies could be considered in future work to obtain a pretensioned shape
that is quantitatively closer to the reference:
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• increasing the number of finite elements used in the static pretension stage,
so that the curvature can be distributed over many elements instead of being
forced to localize in one, but this choice would lead to an exponential increase
in computational costs;

• solving the static problem with a continuation or arc-length strategy, rather
than with simple load control, to follow the smooth post-buckling branch and
avoid snap-through to a strongly localized equilibrium;

• introducing a small geometric imperfection or additional regularization (for
example a very mild penalty on abrupt curvature changes near the tip) to
discourage the collapse of a single element and promote smoother shapes;

• re-tuning the tendon parameters (stiffness and imposed shortening) so that
the operating pretension level remains closer to the first buckling threshold
predicted by the linearized beam model.

In this thesis the pretensioned configuration actually used as a reference for the
leg motion is still taken from the high-fidelity MSC Adams model (Fig. 5.4),
while the MATLAB configuration in Fig. 5.9 is documented as a known limitation
of the current co-rotational implementation and as a starting point for future
improvements of the flexible-leg model.

5.12 Time integration: generalized-α scheme with
constraints

Time advancement is carried out with the second-order generalized-α method
for structural dynamics. The method is implicit, unconditionally stable under
standard parameter choices, and offers controllable damping of the very high-
frequency content while keeping second-order accuracy at the time step of interest
[6, 13, 17].

Parameters and algorithmic states
A single user choice, the target spectral radius at infinity ρ∞ ∈ [0,1], sets the high-
frequency numerical damping: ρ∞ = 1 gives no artificial dissipation (Newmark-like),
while ρ∞ → 0 increases decay of spurious high modes. Given ρ∞, the generalized-α
parameters are taken as

αm = 2ρ∞ − 1
ρ∞ + 1 ; αf = ρ∞

ρ∞ + 1 ; γ = 1
2 − αm + αf ; β = 1

4 (1− αm + αf )2

(5.50)
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which ensure second-order accuracy and the desired decay at infinity [6].
At time tn+1 = tn + ∆t, residuals and tangents are evaluated at the algorithmic
(weighted) states

qn+1
eff = (1− αf ) qn+1 + αf q

n (5.51)
q̇n+1

eff = (1− αf ) q̇n+1 + αf q̇
n

q̈n+1
eff = (1− αm) q̈n+1 + αm q̈

n

Predictor formulas of Newmark type supply initial guesses for (qn+1, q̇n+1, q̈n+1),
which are then corrected by Newton iterations.

Effective iteration matrix
Let M(q) be the generalized mass matrix and let H(q, q̇) collect all non-inertial
terms (elastic internal forces, gravity, and velocity-dependent effects) so that the
unconstrained form is M(q)q̈ + H(q, q̇) = τ (see the previous section). Linearizing
the discrete residual at the states (5.51) yields the effective matrix acting on the
configuration increment ∆q:

St = βp M + γp Ctot + Kt ; βp = 1− αm

β(1− αf ) ∆t2 ; γp = γ

β(1− αf ) ∆t
(5.52)

where Kt = ∂H/∂q and Ct = ∂H/∂q̇ are the consistent tangents. If structural
(Rayleigh) damping is used, it is added as

Ctot = Ct + CRay, CRay = αR M + βR Kt, (5.53)

with αR, βR explained in section 5.13 [17, 13].

Coupling with loop-closure constraints
Loop-closure is enforced by Lagrange multipliers λ ∈ R2 and, optionally, by an
acceleration-level stabilization (Baumgarte) to limit drift; denote ϕ(q) = 0 and
Jc(q) = ∂ϕ/∂q. Each Newton corrector solves the coupled systemC

St J⊤
c

B 0

D C
∆q
∆λ

D
=
C
−Rdyn
−rc

D
. (5.54)

Here Rdyn is the dynamic residual assembled with (5.51). The lower block depends
on the chosen constraint level: for a pure position correction, rc = ϕ(q) and
B = Jc(q); for acceleration-level stabilization, rc = Jc q̈+ 2ζBωB Jc q̇+ω2

B ϕ(q) and
B is the corresponding Jacobian with respect to q (see the dedicated section on
stabilization). Eliminating ∆q gives a 2× 2 Schur complement for ∆λ,

Sλ ∆λ = −rc + B S−1
t Rdyn ; Sλ = −B S−1

t J⊤
c . (5.55)
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After convergence at each step, positions and velocities are corrected to remove
any small residual violation of the loop: the position correction solves a weighted
least-squares problem that finds the smallest change ∆q bringing ϕ(q + ∆q) back
to zero while keeping selected coordinates effectively fixed via large weights; the
velocity correction enforces Jc(q) q̇ = 0. These simple projections are standard
for index-2 constrained mechanical systems and reduce the need for very strong
stabilization [9, 10].

Practical settings
The scheme is second-order accurate with (5.50). Values such as ρ∞ ≃ 0.5 provide
a good compromise between damping of high-frequency numerical content and
preservation of low-frequency motion; ρ∞ ≃ 0.7–0.9 reduces dissipation when
cleaner vibration content is desired. These ranges are widely used in structural
dynamics practice [6, 13].

1 function [dq_step , dlam] = ga_newton_step (q, dq , ddq , lam , pars ,
model)

2 % ga_newton_step Solve the coupled linear system for (Delta q,
Delta lambda )

3 % produced by the generalized -alpha corrector with constraints .
4 %
5 % Inputs :
6 % q,dq ,ddq : current iterates
7 % lam : current Lagrange multipliers
8 % pars : struct with fields :
9 % betap , gammap , tau , use_baumgarte ( logical ), zB , wB

10 % model : struct with function handles :
11 % [M,H,Kt ,Ct ,Cray] = model. operators (q,dq)
12 % phi = model. loop_phi (q)
13 % Jc = model. loop_Jc (q)
14 %
15 % Outputs :
16 % dq_step : configuration correction (n x 1)
17 % dlam : multiplier correction (m x 1), m = # constraints (

here 2)
18
19 % --- Operators and dynamic residual ( unconstrained form: M*ddq +

H = tau)
20 [M, H, Kt , Ct , Cray] = model. operators (q, dq);
21 if isempty (Cray), Cray = 0 * Ct; end
22 Rdyn = M*ddq + H - pars.tau;
23
24 % --- Generalized -alpha effective tangent S_t = betap*M + gammap *(

Ct+Cray) + Kt
25 St = pars.betap*M + pars. gammap *(Ct + Cray) + Kt;
26
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27 % --- Constraint residual and linearization block B
28 phi = model. loop_phi (q);
29 Jc = model. loop_Jc (q); % size m x n (m = 2 here)
30 if isfield (pars ,’use_baumgarte ’) && pars. use_baumgarte
31 % Acceleration -level stabilization :
32 % rc = Jc*ddq + 2*zB*wB*(Jc*dq) + wB ^2* phi
33 rc = Jc*ddq + 2* pars.zB*pars.wB*(Jc*dq) + pars.wB ^2* phi;
34 % Corresponding linearization wrt q for the lower block:
35 B = pars.betap*Jc + pars. gammap *(2* pars.zB*pars.wB*Jc);
36 else
37 % Pure position -level constraint in the Newton corrector
38 rc = phi;
39 B = Jc;
40 end
41
42 % --- Mild regularization on the configuration block ( improves

robustness )
43 n = numel(q);
44 m = size(Jc ,1);
45 if rcond(St) < 1e -12
46 St = St + 1e -9* speye(n);
47 end
48
49 % --- Build and solve the coupled linear system :
50 % [ St Jc’ ] [ dq_step ] = -[ Rdyn ]
51 % [ B 0 ] [ dlam ] [ rc ]
52 KKT = [ St , Jc.’;
53 B, zeros(m,m) ];
54 rhs = -[Rdyn; rc];
55
56 sol = KKT \ rhs;
57 dq_step = sol (1:n);
58 dlam = sol(n+1: end);
59 end

Listing 5.5: One generalized-α Newton corrector with constraints (direct KKT
solve).

5.13 Structural damping and selection of Rayleigh
coefficients

A small amount of structural damping is applied only to the flexible degrees of
freedom. In this way, spurious long-lasting vibrations of the beam are reduced,
while the motion of the rigid links is left essentially unchanged. The classical
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Rayleigh model is used on the flexible block,

CRay = αR Mff + βR Kff , (5.56)

where Mff and Kff are, respectively, the mass and stiffness submatrices restricted
to the flexible DOFs.
The two Rayleigh coefficients are chosen so that the first two bending modes of the
flexible substructure have a prescribed damping ratio ζ (for instance ζ = 1%–2%
in many engineering cases). The circular frequencies ω1, ω2 of these modes are
obtained from the standard eigenproblem

Kff ϕ = ω2 Mff ϕ (5.57)

sorting the roots in increasing order. Matching ζ at ω1 and ω2 gives the well-known
relations

αR = 2 ζ ω1ω2

ω1 + ω2
; βR = 2 ζ

ω1 + ω2
(5.58)

where αR has units of [s−1] and βR has units of [s]. For any other mode with
circular frequency ω, the resulting damping ratio varies smoothly as

ζ(ω) = 1
2

3
αR

ω
+ βR ω

4
.

This means that very low and very high modes remain only mildly damped, while the
first two targeted modes are close to the desired ζ [13, 17]. Additional attenuation
of very high frequencies comes from the generalized-α time integrator through the
choice of ρ∞ (see section 5.12).

5.14 Numerical conditioning and practical safe-
guards

Good numerical behaviour does not come for free. A few simple rules keep the
solver stable and predictable:

5.14.1 Scaling
Degrees of freedom have different physical units (radians for the rigid angles, metres
for the beam DOFs). A light scaling may be applied so that typical entries of the
residuals and of the Jacobians have comparable magnitudes. This usually improves
the behaviour of Newton iterations and of sparse factorizations [9, 10].

97



Full Flexible Multi Body Simulation Model of PACOMA Leg Mechanism

5.14.2 Constraint Jacobian
The loop Jacobian Jc(q) must keep full row rank (rank = 2) along the trajectory.
When the mechanism approaches a nearly singular pose, reduce the time step
and strengthen the position/velocity projection (increase the weights used to keep
selected coordinates fixed). Monitoring rank(Jc) and the norm of the constraint
residual after projection is a simple and effective check.

5.14.3 Consistent linearizations
Quadratic convergence requires derivatives computed from the unsimplified expres-
sions: form Kt = ∂H/∂q and Ct = ∂H/∂q̇ before algebraic cancellations. Early
simplifications of H can remove terms that are essential in the derivatives and slow
down, or even stall, the corrector.

5.14.4 Trust region on u, v

Limit the increment of axial and transverse beam DOFs within each Newton step
(for instance, by a backtracking line search that caps the maximum change of u
and v). This prevents unphysical jumps when the tangent is temporarily poor.

5.14.5 Mild regularization
If the iteration matrix St is close to singular (e.g. large pivot growth during a sparse
LU (lower–upper) factorization of St), add a small diagonal term proportional to
the average diagonals of M and Kt. This improves robustness without changing
the solution in a noticeable way.

5.14.6 Stabilization coefficients
Choose the Baumgarte coefficients proportional to the time step (stabilization
frequency ωB = κ/∆t with a moderate κ) to avoid an unnecessarily stiff correction
in the constraint equations [22].

5.15 Verification strategy
A short, focused verification plan helps isolate errors early and builds confidence in
the model and in the code. The following checks are inexpensive and informative.

1. Element-level patch tests. (i) Axial extension of a single element: prescribe
equal and opposite axial end forces and check that the displacement field is
linear and that the internal force matches EA/Le. (ii) Pure bending: prescribe
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end moments to produce a constant curvature and check the rotation field
and the bending energy. These tests validate the local matrices and the
co-rotational mapping.

2. Pinned–pinned modal test of the beam. Isolate the flexible beam with
pinned ends (rotation free, translations fixed) and solve Kffϕ = ω2Mffϕ.
The first two circular frequencies ω1, ω2 should follow the expected trend with
EI and ρA. Use them to set the Rayleigh coefficients via (5.58).

3. Static lowering under gravity. With gravity only, compute the static
equilibrium of the isolated beam. The tip deflection should scale linearly with
g and inversely with EI, and the deformed shape should remain smooth. This
confirms signs and units in the gravitational load and the elastic energy.

4. Closed-loop checks. For the full mechanism, verify that rank(Jc) = 2 at
representative configurations and that the post-projection residual ∥ϕ(q)∥ is
small. Perform the congruence test in (5.37) to detect possible mistakes in
local-to-global rotations, DOF ordering, or Boolean scatter.

5. Tendon pretension path. Vary the tendon rest length L0 (or the prescribed
shortening ∆) and solve the static problem with q3 fixed (for instance q3 =
0). The family of equilibria should evolve smoothly; a small, controlled
imperfection on selected interior u-DOFs should select deterministically the
bending side in the operating posture.

5.16 Simulations

In this section are available the dynamic simulations of the PACOMA leg model
starting from the pre-tensioned state and the gravity force should lead to a free-fall
behavior, as shown in Figure 5.11 where the simulation lasts 3 seconds. The
MATLAB animation, shown in Figure 5.10, shows that the model cannot handle
internal stresses well: the node deformations are enormous and the loop closure
fails.
Complete videos are available in the GitLab repository cited at the end of chapter
1.
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Figure 5.10: Animation of MATLAB simulation (free-fall after pretension).

Figure 5.11: Animation of ADAMS simulation (free-fall after pretension).
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Figure 5.12: Angles q1, q2 and q3 during the 3 seconds free-fall simulation after
the pretensioning transient.

Figure 5.13: The displacement of the three internal nodes of the flexible beam
(when it is divided into 4 element) during the 3 seconds free-fall simulation after
the pretensioning transient.
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Figure 5.14: Spring deformation during the 3 seconds free-fall simulation after
the pretensioning transient.

Figure 5.15: Spring force during the 3 seconds free-fall simulation after the
pretensioning transient.
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Chapter 6

Conclusions and Future
Work

6.1 Summary of contributions
This work has presented a planar rigid–flexible leg model composed of two rigid
links connected by revolute joints and a flexible Timoshenko beam modeled by
a co–rotational finite element discretization. The model includes gravity, elastic
strain energy with a von Kármán enrichment for moderate rotations, and a tendon
that links the lower rigid link to the beam tip through a linear spring–dashpot.
The loop closure between the beam tip and the upper link is enforced by Lagrange
multipliers, with optional acceleration–level stabilization and projection of positions
and velocities to keep the constraints satisfied. The equations of motion are
integrated in time by the generalized–α scheme, with consistent linearizations
and an optional Rayleigh damping applied to the flexible degrees of freedom only.
A verification plan has been outlined to check element matrices, co–rotational
mapping, modal properties, gravity sag, loop rank, and tendon pretension.
The main outcome is a coherent modeling pathway that starts from kinematics,
proceeds through energy terms, delivers a constrained set of equations suitable
for implicit time stepping, and is supported by practical safeguards for numerical
robustness. While the present implementation focuses on a single planar leg, the
structure of the formulation lends itself to extensions in several directions, discussed
next.

6.2 Limitations and possible extensions
The current formulation has several deliberate simplifications.
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Planar setting
Only planar motion is modeled. In situations where out–of–plane effects, torsion of
the flexible member, or three–dimensional tendon routing are relevant, a spatial
extension is required. A practical path is to retain the same co–rotational idea in 3D
(element frames attached to current chords) and to promote the scalar rotation θ to
a full spatial rotation (e.g. Tait–Bryan angles or quaternions) with an appropriate
update rule and consistent mass and stiffness terms [16, 13].

Timoshenko with von Kármán enrichment
The beam model assumes small strains in the element local frames, with geometric
nonlinearity handled by a von Kármán axial term. For very large rotations with
significant curvature redistribution, geometrically exact beam formulations of the
Simo–Reissner type offer a more faithful description at comparable mesh densities
[29]. For very slender members where axial stretching and curvature coupling are
dominant or where path–following through strong geometric softening is required,
absolute nodal coordinate formulations (ANCF) are an option, at the expense
of more degrees of freedom and stronger nonlinearity, significantly increasing the
computational effort [21].

Actuation and friction
The tendon is modeled as an ideal spring–dashpot acting along its current direction.
In real systems, friction at guides and pulleys, slack–take–up, and saturation of the
actuation appear. These effects can be added by replacing the linear spring with a
more detailed cable model (piecewise straight segments with friction coefficients)
and by including actuator limits and rate limits in the generalized force. Contact
at mechanical hard stops or at interfaces can be added with gap functions and
complementarity constraints.

Computational cost and implementation efficiency
The present implementation is primarily designed for clarity and consistency rather
than for speed. In particular, the co–rotational description requires updating the
orientation of every beam element, rebuilding local frames, and recomputing the
corresponding local–to–global transformations and constraint Jacobians at each
time step and at every Newton iteration. Together with the use of consistent
linearizations of all terms in the generalized–α scheme, this makes each solver
step relatively expensive and results in long runtimes for simulations of practical
duration.
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At this stage the codes provide a faithful reference implementation, but they are
computationally heavy and not yet suited for systematic parameter sweeps or
real–time applications. A natural line of future work is therefore to focus on
efficiency: profiling the current routines, reorganizing data structures, vectorizing
operations over elements, exploiting code generation or compiled back–ends, and
possibly introducing reduced–order models for the flexible dynamics. These steps
would preserve the structure of the formulation while significantly speeding up the
time integration.

6.3 LQR control in a nutshell
This section outlines a simple path to add a stabilizing state–feedback without
diving into implementation details. The idea is to regulate small motions around a
chosen operating posture by linearizing the model and applying a linear–quadratic
regulator (LQR) [30, 31].

6.3.1 1) Pick an operating point.
Select a static posture q⋆ (for instance the pretensioned shape with q3 = 0) that
satisfies the loop closure and static balance. The controller will act only for small
deviations around this posture.

6.3.2 2) Obtain a small linear model.
Linearize the constrained dynamics around (q⋆, q̇⋆ = 0) and keep a small set of
independent coordinates x (for example, the platform angle and one or two flexible
modal coordinates). In compact form:

ż = A z + Bu , z =
C
x
ẋ

D
(6.1)

where u is the control input (e.g. a tendon force or a motor torque). The linearization
can be produced either by eliminating the constraints with a projection basis, or by
forming and reducing the linearized KKT system; both routes give an equivalent
(A,B) near q⋆.

6.3.3 3) Choose the LQR weights.
Select two symmetric weighting matrices Q ⪰ 0 and R ≻ 0. The matrix Q tells
the controller which states should stay small (typically the rigid angle to be held
and the first flexible mode), and R penalizes aggressive actuation. A practical
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start is to put moderate positive values on the regulated positions and velocities in
Q, and to set R as a positive scalar that reflects the actuator limits.

6.3.4 4) Solve the Riccati equation and form the gain.
Solve the continuous algebraic Riccati equation (CARE)

A⊤P + PA−PBR−1B⊤P + Q = 0 (6.2)

and set the feedback u = −Kz with K = R−1B⊤P. If the controller runs at a
fixed sampling time, use the discrete-time CARE instead [30].

6.3.5 5) Keep it gentle with flexible modes.
To avoid exciting neglected high–frequency dynamics (spillover), keep the closed–loop
bandwidth comfortably below the first flexible mode not included in z, and penalize
modal velocities in Q to add damping. If needed, add a light structural damping
in the plant model (Rayleigh on the flexible subspace) and retune. These rules of
thumb are standard when controlling flexible structures [32, 33].

6.3.6 6) Test and iterate.
Implement u = −Kz in the nonlinear simulator, start with very small perturbations,
and increase the test envelope gradually. If not all components of z are measured,
add a simple observer (e.g. Luenberger or Kalman) using encoders and a tip
estimate; keep the observer bandwidth below the first neglected flexible mode.

This procedure gives a controller that holds the leg in its operating posture, damps
the dominant flexible motion, and respects actuator effort through R. More
advanced designs (multi–objective, robust, or centralized across several legs) can
be built on the same linearized blocks if needed.

6.4 From one leg to a six–leg parallel arrange-
ment

The final goal in PACOMA is a parallel continuum manipulator with multiple
flexible legs anchoring a payload or a docking ring [1]. Moving from a single planar
leg to a six–leg arrangement (in 2D or, more realistically, in 3D) can follow a
modular path.
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Model structure
Replicate the present leg model Nℓ times (e.g. Nℓ = 6). Each leg i has its own state
q(i) and its own tendon model. The legs connect a rigid base to a rigid platform.
Add the platform pose p (position and, in 3D, orientation) to the generalized
coordinates, and write one loop–closure for each leg that attaches its beam tip
to the corresponding platform anchor. The full constraint stack has size equal to
twice the number of legs in 2D (or three times in 3D). The mass matrix is block
diagonal in the leg blocks plus the platform block; the coupling between legs enters
entirely through the platform constraints. The global KKT system isC

blkdiag(S(1)
t , . . . ,S(Nℓ)

t ,Splat
t ) J⊤

c

Jc 0

D C
∆qall

∆λ

D
=
C
−Rall

dyn
−rc

D
,

with a sparse structure well suited for Schur–complement solvers. As the number
of legs grows, re–ordering and preconditioning become important.

Platform kinematics and geometry
Choose base and platform anchor locations. In 3D, use standard rigid–body
parameterizations for orientation (unit quaternions or exponential coordinates).
The Jacobians of the leg–to–platform constraints are obtained by differentiating
the platform anchor maps with respect to platform pose, and by reusing the leg tip
Jacobians already present in the single–leg model.

Actuation and allocation
If several tendons (one per leg) act on the platform, there is redundancy. At the
control level, map desired platform wrenches into tendon forces by solving a small
allocation problem that minimizes, for example, the sum of squared tendon forces
subject to lower/upper bounds and positivity of tension. In the model, represent
tendon forces as generalized forces on the leg and on the platform with equal
magnitude and opposite direction along each cable.

Control architectures
There are two main options.

• Centralized. Linearize the full reduced model of platform plus legs, and design
a single LQR (or H∞) that stabilizes the platform pose while damping the
first flexible modes of all legs. This gives the best performance but increases
the order of the design model.
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• Decentralized with coordination. Design one low–order LQR for the platform
(using a rigidified model) and several local LQRs per leg to damp flexible
motion. Then superimpose the platform command and the leg damping
commands. This is simpler and scales well. Care is needed to avoid fighting
actions; a simple priority scheme or a null–space projector for the leg damping
forces works in practice [32].

From plane to space
A realistic six–leg PACOMA is spatial. The extension follows the same ideas:
geometrically exact or 3D co–rotational beams for the legs, a 6–DoF platform, and
three scalar constraints per leg. The tendon routing must be modeled in space,
including friction at guides if present. Standard references on parallel manipulators
can guide anchor placement and conditioning [34].

Computing effort
The cost per time step grows with the number of elastic coordinates and number
of legs. Even so, the KKT matrix is sparse and has a repeating block structure.
A Schur complement on the small multiplier block, combined with sparse LU or
iterative solvers, keeps the cost manageable. For real–time or hardware–in–the–loop
tests, code generation, vectorization, and parallel assembly are recommended.

6.5 Concluding remarks
The present planar rigid–flexible leg model provides a solid basis to understand the
interplay between rigid–body motion, flexible deformation, tendon forces, and loop
closure in a PACOMA–like mechanism. The modeling choices are conservative
and intentionally simple, yet they capture the main physical effects and allow
a direct path toward control. The next steps are clear: (i) close the loop with
an LQR designed on the reduced linear model near the operating posture; (ii)
validate the predictions by comparison with an independent multibody tool (e.g.
ADAMS) and, where possible, with experiments on a laboratory prototype; (iii)
scale the formulation to multiple legs and to three dimensions. These developments,
carried out with the same attention to consistent linearizations, constraint handling,
and numerical safeguards, will enable a full–order model of a parallel continuum
manipulator and pave the way to guidance and control for docking tasks in space
[1].
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