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Abstract

This thesis explores the new SysML v2 language, focusing on the improvements it offers
in interoperability compared to the previous version, SysML v1, which was limited by
ambiguity, imprecision, informal semantics, and difficulties in exchanging information
with external software.

SysML v2 introduces a textual representation based on formal semantics and a standardized
Application Programming Interface (API), which significantly enhances the communication
with external tools and addresses integration challenges of SysML v1.

A case study is presented to model a liquid hydrogen tank for electric aircraft using
SysML v2, demonstrating its practical application in aerospace systems with the use of
open-source tools.

The research adopts the Model-Based Systems Engineering (MBSE) methodology, includ-
ing Requirement Modeling, Operational Analysis, and Functional Analysis, to evaluate
SysML v2’s effectiveness in concrete applications.

The thesis emphasizes SysML v2’s interoperability with Simulink, facilitated by a com-
mercial software infrastructure. This integration aimed to verify specific requirements
post-simulation through the instantiation of an integrated analysis, showcasing the tool’s
potential and limitations in industrial contexts.

Ultimately, this thesis critically examines SysML v2’s capabilities and limitations, emphasiz-
ing its potential to enhance modeling workflows in aerospace systems. However, challenges
remain, particularly regarding tool limitations and the complexity of bidirectional data
synchronization between SysML v2 and Simulink.

Keywords: SysML v2, MBSE, Interoperability, Simulink, Liquid Hydrogen, Aerospace,
Systems Modeling
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Chapter 1

Introduction

1.1 Overview of the scenario

What is System Engineering?

Nowadays, systems are becoming increasingly complex, requiring a more structured and

precise way to design and manage them.

In this context, Systems Engineering emerges as a useful discipline, adopting a holistic

approach to manage such issues. [1]

The main objective of Systems Engineering (SE) is to manage and reduce the complexity of

projects. As a result, it contributes to a reduction of overall costs throughout the lifecycle

of the product. As illustrated in Figure 1.1, in most projects, expenses start low in the

early phases but grow steadily until the fabrication stage. The SE approach [2] reduces

the risk of re-engineering and the overall cost associated with design errors by promoting

an early investment of resources.

100% — Committed costs when
90% — appyling the SE
80% —
70% — 70% -~
60% — /’
50% — /’
40% — )/
30%— 0 3-6X
20% —
10% —,”
15%
Conceptual Product
design Design

Production Homologation,
Development andtesting assessmentto

Figure 1.1: The relevance of System Engineering to reduce costs [2].



An important branch of SE is Model-Based Systems Engineering (MBSE), where models
are used to represent and manage the system digitally [3], with applications such as digital
twins [4] as illustrated in figure 1.2.

Figure 1.2: A digital twin of an aircraft and its real part [5].

To pursue its goal, SE requires the use of an appropriate standard-based language to
effectively apply modeling [2]. One of the most widely used languages for model-based
design is Systems Modelling Language version 1 (SysML v1), which represents systems
through diagrams. However, the first version of SysML has shown some limits in keeping
models consistent and in connecting different software tools, sometimes leading to unclear
or ambiguous representations [6].

For this reason, a new version called Systems Modelling Language version 2 (SysML v2)
has been developed, illustrated in figure 1.3, which appears to offer a more precise and
flexible way of describing systems, and should improve interoperability.[7]. However, since
it is a new standard, companies are required to evaluate how and when to migrate from

<S>

the previous version [8].

Figure 1.3: SysML v2 : the next generation modeling language [8].



1.2 Problem definition

Motivations for the transition to SysML v2

SysML v2 has been recently adopted as a standard, leading to the beginning of the
transition period [9)].

The previous version, SysML v1, showed several difficulties in exchanging data among
different tools, while the new specification aims to improve interoperability and model
consistency, representing a major change with respect to the previous version that is taking
place right now [3, 6]. However, few studies have so far demonstrated these potentialities
in practice.

Moreover, aerospace systems are highly complex and safety-critical, which makes them a
particularly relevant domain for exploring the application of this new language [10].

At the same time, sustainability represents a major challenge for aviation, where hydrogen
is emerging as a promising fuel to achieve zero-emission propulsion [11].

The main objective of this work is to explore and test the practical use of SysML v2, with
particular focus on its interoperability with external simulation tools.

This work takes the opportunity to model a liquid hydrogen tank using the new
specification, demonstrating its capabilities and current limitations.

1.3 Main contribution of the thesis

This thesis gives an overview of the new modeling language SysML v2, discussing the
background of the language, its main features, advantages, and limitations, a comparison
with its predecessor with an analysis of possible applications .

The main contribution of this work is the practical exploration and critical evaluation
of the enhanced interoperability capabilities of SysML v1 with Simulink, conducted
through the use of a commercial software solution that enables the bridge between the
two environments. A secondary contribution concerns the application of the language in
the aeronautical domain, one of the first examples in this field where a case study on
liquid hydrogen tank storage is developed to demonstrate how SysML v2 can be used
in aerospace scenarios and how it may support companies operating in this sector. In
addition, a comparison with selected SysML v1 diagrams is included to highlight the main
differences between the two versions.



1.4 Methodology adopted

The methodology adopted consists of a literature review , used to identify the background,
the current gaps in SysML v2 research, and the main application areas. Secondly, the
study follows the MBSE workflow, moving from requirements definition to modeling and
simulation. Comparisons between SysML v1 and v2 through graphical representation
are made to highlight their main differences, advantages, and current limitations.
Finally, an experimental case study on hydrogen storage is developed to demonstrate
the applicability of the new language in a real aerospace context. The application follows
the main phases of the modeling process and explores the capability of SysML v2 to
interoperate with simulation tools, highlighting the integration between modeling and
analysis through commercial software.

1.5 Thesis organization

This thesis is organized to guide the reader from the theoretical concepts and the problem
definition to the practical applications and the final discussion as follows:

o Chapter 1 introduces the problem and shows how the work is organized.

o Chapter 2 reviews the background and related work on Systems Engineering,
MBSE, SysML, and the SysML v2 specification.

o Chapter 3 discusses the methodology adopted and the tools used.

o Chapter 4 describes the aeronautical case study, focusing on the modeling of a
liquid hydrogen tank using the new SysML v2 specification.

o Chapter 5 delineates the conclusions of the research, considers its limitations,
and indicates potential directions for future work.



Chapter 2

Background and State of the Art

This chapter provides an overview of SE, MBSE, SysML v1, and SysML v2, which are
essential for understanding the following parts. Furthermore, the chapter discusses the
state of the art as reported in the literature and provides a brief review of the case
study topics. Finally, it outlines the emerging trends identified in the literature, thus
introducing the next chapters.

2.1 Background

2.1.1 SE and MBSE background

Definition of Systems Engineering

As specified by the International Council on Systems Engineering (INCOSE), SE is defined
as “an interdisciplinary approach enabling the realization of successful systems” [12].
In few words, SE is an interdisciplinary branch of engineering that adopts a holistic
approach, focusing on the system as a whole, with the goal of satisfying the customer.
SE enables the fulfillment of needs that are crucial in the development of complex systems.
It supports the decomposition of complexity, cost reduction , digitalization of the
system, and ensures traceability throughout the entire lifecycle. In short, it identifies
the needs and provides the means to satisfy them, evaluates trade-offs, and integrates the
solution into the system. As a result, it brings project management (i.e., the organizational
development of the project) and design (i.e., the definition of the product elements) closer
together [2].

According to Brusa et al. [2], the four pillars of SE are: methodology, typically based on
the model-based approach, which can follow either a top-down or a bottom-up decom-
position of the system, tools, including both theoretical instruments, such as diagrams,
and software applications, language, for instance SysML vl and data management.
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In Figure 2.1, the V-model describes the life-cycle development of the product, which
highlights the holistic perspective of SE and the hierarchy of levels. The design
activity is separated from the production one: the first follows a top-down approach, while
the latter follows a bottom-up approach.

Disposal
Start p

Customer needs Homologation, disposal

Interaction with Stakeholders

Requirement analysis System testing

System level Assembly

System

Concept design System integration

Subsystem level Subsystem level

Subsystem

Preliminary design Subsystems integration

Component level Component Component level

Design synthesis Component testing

Figure 2.1: The V-model with a focus on product development in SE [2].

Definition of MBSE

MBSE, is defined by INCOSE as: "the formalized application of modeling in the
entire life cycle to support requirements, design, verification, analysis and validation" [12].
According to Friedenthal et al. [1], a model can be interpreted as a representation of
one or more concepts that may be realized in the physical world. MBSE is the application
of SE whose main artifact is the system model [3]. This approach allows a shift from a
document-centric view to a model-centric view, with relevant benefits such as reusability,
traceability, and automatic documentation [13].

The workflow of MBSE, as described by Friedenthal et al. [1], starts with the analysis
of stakeholder needs, which are specified into requirements, followed by the synthesis of
alternative system solutions and their evaluation. Traceability is maintained throughout
the entire workflow. Two methods are identified in MBSE: a traditional structured analysis
method, or alternatively a scenario-driven method, such as the Object-Oriented Systems
Engineering Method (OOSEM), which is described in detail by Brusa et al. [2].

The main challenges of MBSE include the integration of tools , the steep learn-
ing curve, the adoption of new methods and languages, as well as the efficient
management of models [1].



Evolution of the languages in SE

In this context, it is important to review the modelling languages that support this
approach, as illustrated in Figure 2.2.

As described by Brusa et al., the first modelling language considered is Unified Modelling
Language (UML), developed by Booch, Jacobson, and Rumbaugh starting in 1994 ,
with the aim of unifying different modelling methods [14, 2|. It was standardized by the
Object Management Group (OMG) in 1997 and subsequently approved as an international
standard in 2005 [14, 15].

SysML v1 is the most widely used modelling language for Systems Engineering. As
reported by Brusa et al. [2], it originated in 2001 from an INCOSE initiative. In 2006,
a consortium of vendors and industry representatives specified the language, and in the
same year the OMG officially adopted SysML v1 as a standard.

SysML v1 is an extension of UML, but it employs blocks rather than classes and, through
its diagrams, is capable of modelling the structure, behavior, and requirements of
a system. The first official release, SysML v1.0, was adopted in 2006, while the latest
version, SysML v1.7, was adopted in June 2024 [16, 17]. During this period, SysML has
provided significant contributions to SE [18].

However, several limitations of SysML v1 emerged over time, for instance the complexity,
the tool integration, and the semantic precision. As highlighted by Gray and Rumpe [6],
these issues motivated the development of a new version of the language.

As reported by Bajaj et al. [3], SysML v2 was developed by the SysML v2 Submission
Team (SST) to overcome these limitations, providing a more modular language and
improved tool interoperability. According to Friedenthal et al. [19], the The Request for
Proposal (RFP) was issued by the OMG in 2017, the beta specification was released in
2023 and SysML v2 was officially adopted by the OMG in July 2025, with Version 2.0
published in September 2025 [20].

Thus, at the moment of writing, the reference implementation is the SysML v2 Pilot
Implementation, specifically the 2025/07 release, which is also the version used in the
case study presented in the following chapters [21].

2.1.2 SysML Overview: Background and Limitations

As defined by OMG [22]: " The OMG Systems Modelling Language (SysML) is
a general-purpose modelling language for specifying, analyzing, designing, and
verifying complex systems that may include hardware, software, information, personnel,
procedures, and facilities."

According to Brusa et al. [2], SysML supports the modelling of requirements, structure,
behavior, and parameters. Consequently, the main diagrams, as illustrated in Figure 2.3,
are the following:



UML OMG SysML v2 SysML v2

Standard Request for Proposal Adoption & v2.0
2017 2023 2025
SysML v1.0 SysML v2
Adoption Beta

Figure 2.2: Timeline of UML and SysML evolution, leading to the adoption of SysML
v2.

« Requirements diagrams: requirements are represented in textual form, supporting
traceability and verification, often managed through external tools such as IBM
Engineering Requirements Management DOORS (DOORS), and where the hierarchy
of requirements is highlighted.

« Behavior diagrams: including the Use Case Diagram (UCD), State Machine
Diagram (SMD), Sequence Diagram (SD), and Activity Diagram (AD), which
describe the dynamic behavior of the system.

e Structure diagrams: based on the block as the fundamental unit, these include
the Block Definition Diagram (BDD), Internal Block Diagram (IBD), and Package
Diagram (PD), representing the static architecture and interconnections of the
system.

o Parametric diagrams: allow preliminary quantitative analysis of system perfor-
mance by linking parameters and constraints.

In addition, SysML introduces three diagrams not present in UML: the Block Definition
Diagram, the Internal Block Diagram, and the Parametric Diagram, which are highlighted
in Figure 2.4.



Structure Behavior

ibd act J

Requirements Parametrics

Figure 2.3: The Four Pillars of SysML v1: Structure, Behavior, Requirements, and
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As reported by Gray and Rumpe [6], the main limitations of SysML v1 can be summarized
as follows:

o Complexity in data exchange between different tools.
« Lack of precise syntax and formal semantics, which often leads to ambiguities.

o Strong dependency on vendor-specific libraries and extensions, which increases model
complexity and reduces portability across different tools.

o Limited modularity, which makes partial adoption difficult.

o Mainly descriptive and not executable, so models are often treated merely as
documentation rather than specification artifacts.

These limitations, widely recognized in the literature, have strongly motivated the devel-
opment of a new specification, as discussed in the following section.

2.1.3 SysML v2: Motivation and advantages

According to the OMG, SysML v2 is the next-generation systems modeling language,
providing stgnificant enhancements over SysML v1 in terms of precision, expressiveness,
usability, interoperability, and extensibility [23].

Alternatively, SysML v2 is defined as a "general-purpose modeling language for
modeling systems that is intended to facilitate a model-based systems engineering (MBSE)
approach. It provides the capability to create and visualize models that represent require-
ments, structure, behavior, as well as analysis and verification cases" [20], [24].

As highlighted by OMG  [16], SysML v2 introduces a number of key features, the most
relevant being:

« a new metamodel, independent from UML and grounded in formal semantics;

« enhanced visualization capabilities, including graphical, textual, and tabular
notations;

« astandardized Application Programming Interface (API) that simplifies model
access, enabling direct interaction between tools without relying on intermediate
files, whereas SysML v1 and UML only provide non-standard APIs [3, 1].

This capability is illustrated in Figure 2.5, which shows how the SysML v2 API
enables interoperability with different tools.
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Figure 2.5: API capabilities [19].

Main concepts and architecture

As represented in Figure 2.6, the core concepts are: requirements, constrained by Boolean
expressions that must evaluate to true or false, with the textual part extended to Boolean
logic and quantitative modeling; behavior, modeled in terms of functions, states, sequences,
and use cases, describing the system’s response over time; structure, which encompasses
concepts such as decomposition, interconnection, and classification, and expresses the
system’s parts and sub-parts; analysis, consisting of analysis cases with a clear mechanism
and a formally expressive language; and finally, verification, defined through verification
cases [16, 3].

Requirements

Behavior
| Analysis

- analysis cases
- expression language

- function-based
- state-based
- sequence-based

- use cases SysML v2
Language

Structure
- decomposition
- interconnection

- classification

™~ Verification
| - verification cases

View & Viewpoint

Figure 2.6: Core concepts of SysML v2 [3].
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According to the OMG documentation [25] and Almeida et al. [26], the architecture of
the language, illustrated in Figure 2.7, is divided into four layers: the root level, which
contains root syntactic elements; the core level, which includes the fundamental semantic
concepts and the formal declarative semantics; the kernel level, corresponding to the
kernel semantic library, i.e., the foundation for building modeling languages; and finally,
the system level, which contains the domain libraries and therefore defines the modeling
language for systems engineering.

Systems Modeling Language

(SysML) il —

-___Mmetamodel _____ | Systems and
Systems Syntax . Domain Model
_..semanticlibrary | Libraries
i i
1 . 1
i Kernel Modeling Language ;
1 ]
—| i (KerML) _| i
T R
Kemel Syntax Kern.el Model
| ___semanticlibrary ____[  Library

|
1

| I |
L semantic

Core  [EEEEE § Pffif'fiit_i?fl_____. Core Semantics

Syntax

i
i
I
v

Root

Syntax

Figure 2.7: The layered architecture of SysML v2 [27].

SysML v2 Objectives and Features

The main objectives of SysML v2, as defined by the OMG and the SysML v2 Submission
Team (SST) [16] and further discussed by Bajaj et al. [3], are to increase the adoption
and effectiveness of MBSE.
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To this end, SysML v2 introduces several improvements over SysML v1, including greater
precision and expressiveness of the language, enhanced consistency and integration
among concepts, and stronger interoperability with engineering tools and models. In
addition, it emphasizes usability for both model developers and end-users, as well as
extensibility to support domain-specific applications. A further objective is to provide a
clear migration path for SysML v1 users, ensuring continuity in industrial adoption.
As illustrated in Figure 2.8, one of the most distinctive features of SysML v2 is the
systematic reuse of patterns, implemented through the complementary concepts of
definition and usage. A definition element specifies the characteristics of a modeling
construct (e.g., a part, an action, or a requirement), while a usage element represents
an instance of that definition in a particular context. This approach enables multiple
usages of the same definition across different contexts, reducing redundancy throughout
the language.

«usage» «usage»

context1 context2

«usage» «usage»
usage1 usage2

ele oo
«definition»
DefinitionA

Figure 2.8: Definition-Usage reuse pattern in SysML v2 OMG [16].

2.1.4 Comparison between SysML vl and SysML v2

Limitations of SysML v1 and improvements in SysML v2

According to Molnar et al. [28], the main limitations of SysML v1 include the lack of
precise semantics, a disconnection between diagrams that represent the same
information, and poor interoperability between tools.
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In particular, SysML v1 relies on the XML Metadata Interchange (XMI), which is difficult
for tool vendors to use, since it is complex, redundant, and not suitable for modern
modeling environments [3, 29]. Moreover, the absence of a standardized file format and
the prevalence of vendor-specific implementations have often resulted in incompatibility
across tools [30].

SysML v2 addresses these issues by introducing a formal semantic foundation, pro-
vided by the Kernel Modelling Language (KerML), which ensures semantic precision and
consistency across models [24, 28]. As highlighted by Jansen et al. [7], SysML v2 improves
over its predecessor in terms of precision, expressiveness, and interoperability. It
also supports modeling multi-disciplinary systems and offers better integration and
harmonization of language concepts [31, 32].

Gray and Rumpe [6] emphasize that SysML v2 was designed to overcome the struc-
tural limitations of SysML v1 by becoming independent from UML, adopting a modular
architecture, and relying on a precise semantic foundation.

In summary, the main improvements introduced by SysML v2 compared to SysML v1 are:

a standard API with Representational State Transfer API (REST)/HTTP and
OSLC 3.0 bindings, enabling services to query and access models and manage
relationships with external data [3, 33];

« a new metamodel, extending the UML metamodel and “based on core declarative
semantics derived from formal logic”, enhancing precision and integration [8, 3,
32];

« both graphical and textual notations, improving model visualization while the
textual notation strengthens formal expressiveness [3];

« consistent reuse of patterns, allowing elements to be defined once and reused at
any level of abstraction, as shown in Table 2.1 [3, 32];

« a more flexible view and viewpoint mechanism to represent models and
stakeholder-related information. Unlike SysML v1, views do not have a one-to-one
correspondence with diagrams, but standard views provide similar information [8,
32]. A representation of the main differences is reported in Figure 2.9.
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Table 2.1: Syntax differences between SysML v1 and v2 [32].

SysML v2 SysML v1
part / part def part property / block
attribute / attribute def value property / value type
port / port def proxy port / interface block
action / action def action / activity
state / state def state / state machine
constraint / constraint def constraint property / constraint block
requirement / requirement def requirement
connection / connection def connector / association block
view / view def view
Legend B[] SysML v1 Diagrams;--«z
/" Allocated To g ‘S 2 E E g‘ ;c\:n é g
T £ S R 20§ o
S & 3338838 g¢E5
§oEerzad i
X2 E|E QX B2
— o~ m - w o [ w (s ]
Cll Il O C3 0 333
[} [ ] SysML v2 Standard View Definitions 1 TR S I BT B I (] ﬂ
.. 1 General view (gv) - A4 N
Q 2 Interconnection View (iv) 2 . .
Q 3 Action Flow View - (afv) w and w/o swimlane 1 e
Q 4 State Transition View (stv) 1 N
Q 5 Sequence View (sv) 1 4
.- 6 case view (ov) 1 4
-7 Geometry View (gev)
.= 8 Grid View (grv) 1 N
Q 9 Browser View (bv)

Figure 2.9: SysML v1-v2 view-diagram terminology differences [16].

The main standard views of SysML v2 include the general view, interconnection view,
action flow view, state transition view, and sequence view [16, 8|.

SysML v2 also provides greater expressiveness by introducing usage-based decomposition,
explicit membership relations, variability management, the representation of individuals
and snapshots, as well as temporal modelling through 4D semantics [32]. Further
differences with respect to SysML v1 can be found in specific modelling concepts, such as
ports, quantities and units, requirements, cases, and annotations [32].
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An example to show the differences

As shown by Jansen et al. [7], for a robot the difference between an IBD in SysML v1
and its counterpart in SysML v2 is illustrated in Figure 2.10 and Figure 2.11.

The IBD describes the structure of an autonomous robot that receives inputs, decides
subsequent actions through a controller, and activates the motor. In SysML v1, messages
are exchanged through different ports (typed and directed), while in SysML v2 there is
only one type of port, which simplifies the language. The textual notation is clearer,
with a main package that contains parts, interfaces, and definitions. Moreover, SysML v2
enables the import of libraries, e.g., ScalarValues for Boolean expressions.

01 | package 'EXE 2017 Rover' {
02 import ScalarValues::*;
03
04 // type definitions
05 part def Motor {...}
06 part def ControllerUnit { ...}
07 part def ObstacleSensor { ...}
08 part def MessageSubscriber { ... }
09
10 port def BooleanPort {
11 out signal : Boolean;
12 } // additional port definitions
13
ibd [Block] Rover [rover] ) 14 interface def MotorCommand {
15 end src : BooleanPort;
frontSensor dist : ~Distance| cmd : ~BooleanPort|_ left : 16 end tgt : BooleanPort;
: ObstacleSensor val: Distance i TeftMotorCommand | Motor 17 } // additional interface definitions
controller |: gooleanPort 18
: ControlUnit
inputChannel m : ~Message] cmd : ~BooleanPort|_ right : 19 part def Rover {
: MessageSubscriberjm : Message ‘f jﬁ‘gmMomr(;ommand Motor 20 // instantiation of parts
: BooleanPort 21 part left : Motor;
22 part right : Motor;
23 part frontSensor : ObstacleSensor;
Figure 2.10: IBD of a robot in SySML vl 24 part inputChannel : MessageSubscriber;
25 part controller : ControllerUnit;
[7]. 2| )
27
28 part rover : Rover {
29 interface : MotorCommand connect
30 src => controller::leftMotorCommand to
31 tgt => left::cmd;
32 // additional interface usages
33 }
34 |}

Figure 2.11: Textual representation of a
robot in SysML v2 [7].

In conclusion, SysML v2 represents a significant advancement over SysML v1, offering
greater precision, expressiveness, and potentials for interoperability [3].

2.2 State of the Art

After discussing the background of SysML v2, this section reviews the related work from
the literature.
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2.2.1 Methodological studies on MBSE with SysML v2

Motivated by these improvements, several methodologies have been proposed in the
literature to explore how the language can be applied in concrete and different engineering
contexts.

Heermann et al. [34] proposed a Development-Operation Integration (DevOps)-based
framework capable of automatically generating interfaces and structures of a Digital
Twin (DT) starting from textual SysML v2 models. Their approach, validated on an
electric vehicle charging case study, aims to reduce the gap between design and operation.
Saqui-Sannes et al. [35] as reported in Figure 2.12 emphasized the importance of reasoning
before modelling, proposing the use of mind maps to structure ideas during the early
design phases.

Mind maps ' J Patterns SysML v2 diagrams
(graphic or text)

-
-

, .
e Eac i . -, _-
lact/ Brainstorming P Categorizing R Instantiating e

Figure 2.12: Methodological approach for SysML v2 modeling: from brainstorming to
diagram instantiation, supported by mind maps [35].

In the field of reliability analyses, Vaicenavicius et al. [36] applied sysIDE to model an
Electric Power System (EPS) for Failure Mode, Effects, and Criticality Analysis (FMECA)
and Fault Detection, Isolation, and Recovery (FDIR) evaluation. Their study showed that
the tool already supports features such as syntax validation, semantic highlighting, and
autocompletion, while also pointing out open issues in the current SysML v2 standard.
Aleksandraviciene et al. [37] compared the application of SysML v1 and SysML v2 within
the MagicGrid framework, highlighting that the new language introduces a simplified
metamodel based on definitions and usages. While the textual notation was found to be
complex and tending to cause mistakes, it shows its potential for Artificial Intelligence
(AI) and the exchange with models. Moreover, the study noted a significant difference in
the functional analysis and in the use case specification.

Formal verification approaches with SysML v2

Beyond methodological applications, an emerging research direction concerns formal
verification. This field is a natural application for textual languages such as SysML v2,
whose aim is to verify that the design of a system conforms to defined properties.
Sebastian et al. demonstrated, using the SysMD notebook tool, how SysML v2 can be
applied in textual form to model requirements and constraints, following the approach
of the V-diagram moving from the left side to the right side [38].
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Molnar et al. [28] presented four application examples, including one on tank system, how
to verify, validate, and check the correctness of models using five tools, such as Imandra
and SysMD, confirming that the language is optimal to be used with rigorous approaches
based on formal logical semantics. One of the examples proposed by the authors is related
to a general tank, similar to the case study of the current study.

In another contribution, Hatcliff et al. [39], applied an extension of High-Assurance
Model-based Rapid engineering framework (HAMR) to real embedded systems, further
demonstrating the role of SysML v2 in formal verification contexts.

Regarding model validation, Cibrian et al. [40] proposed a metamodel-based method and
developed a dedicated validator to automate the verification and validation of SysML v2
models.

Meanwhile, Castellano et al. [41] introduced a Python-based framework for requirements
verification, integrating definition, simulation, and validation in line with the V-process
while also highlighting the risk of increased complexity.

To sum up, current methodologies are under development and not yet standardized,
while formal verification, which is a current issue, is still at an initial stage and quite
complex to apply. Overall, these studies focused on specific methodological aspects of
SysML v2, but they remain mostly conceptual or limited to partial workflows.

Similarly to Castellano et al. [41], the approach proposed in this thesis follows a closed-loop
methodology; however, differently from their work, it extends the method to a larger and
more complex system model within the aerospace domain.

Moreover, another important aspect emphasized in the literature is the interoperability,
considered as a key element of the new language.

2.2.2 Studies about interoperability

As shown in Section 2.1.4, the new systems modelling language demonstrates a strong
potential for interoperability with other tools, thanks to the standardized API and the
new textual notation which is particularly suited for file exchange [3, 24]. Recently, several
studies have highlighted concrete examples of interoperability with SysML v2.

As illustrated in Figure 2.13, Schwaiger et al. [30] applied SysML v2 to define Key
Performance Indicators (KPI) for Advanced Driver Assistance Systems (ADAS)
simulations, developing a Python-based parser that converts SysML v2 models into a
Python-compatible JavaScript Object Notation (JSON), stores them to Git, and supports
graph versioning and mapping into ArangoDB! for simulations. In this setup variables are
updated during execution and a KPI is obtained after each run.

1An open-source database that manages graphs, documents, and key-value data in a single system.
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Figure 2.13: Example of SysML v2 interoperability workflow [30].

Klaassen et al. [42], in the context of Multi Energy Systems (MES), used the open-
source Python tool SLY? to apply Next Generation Service Interface — Linked Data
(NGSI-LD) graph transformations at runtime. This approach enabled integration within
system models and supported semi-automated DT. Another example of using Python in
MBSE is given by Castellano et al. [41] as already discussed in previous paragraph, who
applied it for requirements verification.

A SysML v2-driven digital thread framework was developed by Heermann et al. [4] by
using tools such as SysMD, where Digital Twin and runtime monitoring are integrated to
enhance security in cyber-physical infrastructures.

Regarding the use of the API, Weilkiens et al. [24] demonstrated how it can be used to
access the model and to support modelling activities through a graphical user interface
developed with App Designer. This interface connects to the SysML v2 repository via the
API and enables the execution of analyses in MATLAB and Simulink. Furthermore, other
studies have shown how the API capabilities are applied in the avionics domain [10].
Litwin et al. stated that SysML v2 helps bridge the gap between SysML v1 and Architecture
Analysis and Design Language (AADL). They proposed a set of rules to convert AADL
models into SysML v2 and demonstrated them through a Unmanned Aerial Vehicle
(UAV) case study, using open-source AADL code. This work represents an initial step in

2SLY is a Python library for building parsers and interpreters.
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assessing the expressiveness of SysML v2.

In the context of the Model-Driven Engineering (MDE), Ferko et al. [43] demonstrated
how to translate DT models written in SysML v2 into Asset Administration Shell (AAS)
applying input-output transformations through Higher-Order Transformations (HOT)
employed in a vehicle case study. The approach relies on a peer-to-peer mapping
strategy combined with a pivotal model to ensure interoperability.

To conclude, as discussed in this paragraph, despite the progress achieved, most of the
tools are still in an experimental phase.

Nevertheless, the literature reviewed is closely related to SysML v2 interoperability,
although this thesis discusses the connection with Simulink. While most studies
address this aspect through proprietary codes and applications, this thesis specifically
investigates the bridge with Simulink through software such as MgNite, exploring an
approach not yet discussed in detail.

2.2.3 SysML v2 Applications in the aerospace sector

The new specification is supported by several companies in the aerospace sector that
actively joined the SST, including Airbus, Boeing, and Thales [44]. Recent studies have also
demonstrated its application in domains such as UAVs, avionics systems, and spacecraft
digital engineering. Kaiser et al. [45] proposed an MBSE workflow for a UAV application,
where SysML v2 is combined with Component Fault Trees (CFTs) to support modular and
reusable Model-Based Safety Analysis (MBSA), and applied aerospace safety standards
such as ARP4754A and ARP4761. Busch et al. [46] proposed an MBSE workflow for a
spacecraft constellation system as illustrated in Figure 2.14, modelling requirements
and architecture with SysML v2 by using Ansys ModelCenter combined with the web-
based Ansys SAM SysML v2 editor, in order to achieve virtual formal verification of
requirements and to perform trade studies.
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Figure 2.14: Schematic representation of a spacecraft constellation system: mission
trajectory and geostationary orbit modeled in Ansys STK [46].

Furthermore, Ahlbrecht et al.[10], in the context of avionic systems , used the stan-
dardized API to connect specific domain tools through an open-source ARINC 653 Linux
hypervisor, concluding that the new specification provides a standardized and interoperable
solution for avionics engineering.

To summarize, SysML v2 addresses the main limitations of SysML v1, enhancing consis-
tency, modularity, and design reuse [45], as well as facilitating collaboration between tools
[10].

While previous studies investigated in detail applications in UAV, spacecraft constellations,
and avionics, this work focuses on a case study of the aerospace field: hydrogen and its
storage, which is emerging as a green solution for the future of aircraft.

2.2.4 Hydrogen storage in aviation

The adoption of sustainable fuels is required to reach the net-zero target [47]. In this
context, hydrogen is clearly recognized as a promising alternative fuel [11], if not the
most likely energy carrier for the future of aviation [48], since its availability is virtually
unlimited [49]. Moreover, the first hydrogen-powered aircraft are expected to enter service
by 2025 [47]. On the other hand, liquid hydrogen aircraft must face significant challenges
related to cryogenic storage such as thermal insulation, tank geometry, and boil-off
control. Hydrogen contains 2.8 times more energy than kerosene, but on the other hand,
it is four times less dense, so it requires about four times the volume and therefore must
be stored in liquid form [47, 48].

According to Tiwari et al. [47], it is not practical to change the aircraft design, for instance
by adopting a Blended Wing Body (BWB). Foam and Multi-Layer Insulation (MLI)
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have been demonstrated to be the most effective solution, while composite tanks provide
advantages in terms of weight. Hydrogen-burning turbines are more developed; however,
hydrogen combustion produces Nitrogen Oxides (NOx), so studies are going in the direction
of fuel-cell based propulsion systems, which have the potential to achieve zero emissions.

Bagarello et al. [11] underline that reducing the weight of pressure vessels is essential to
make hydrogen tanks competitive, a goal achievable only through the use of advanced
materials. Their review compares alternative tank geometries, insulation methods, and
performance indicators such as boil-off rate, gravimetric, and volumetric efficiencies,
providing a structured basis for liquid hydrogen tank design in aviation.

According to Khandelwal et al. [48], hydrogen is considered an optimal solution also
considering the main issues emerging during combustion in turbines are related to NOx
emissions and water vapor. Techniques such as Lean Direct Injection (LDI) and
micro-mix methods have been demonstrated to effectively reduce those problems.

Winnefeld et al. [50] reported how to model the design of the tank, showing that they
can be a valuable solution compared to kerosene when considering the overall weight,
especially when fuel cells are deployed. Additionally, the mission profile clearly affects the
design of the insulation.

Verstraete et al. [51], comparing a regional airliner with a long-range transport aircraft,
demonstrated that integral cylindrical tanks with external insulation are preferred. They
highlighted that gravimetric efficiency significantly decreases for smaller tanks, also
showing how the mission profile affects tank design, and how a trade-off between thermal
requirements and structural requirements must be considered in the design. Massaro et al.
[52] identified cryo-compressed and liquid hydrogen as the most suitable solutions due
to their higher gravimetric efficiency and compactness. In addition, they showed that
electric aircraft are 25-50 percent heavier than traditional ones, suggesting that a
thermal coupling between the fuel cell and the tank could reduce the mass.

Mazzoni et al. [53] applied advanced methodologies such as Design of Experiments (DOE)
for the design of Liquid Hydrogen (LHs) tanks, showing that storing larger amounts of
LH, improves both gravimetric and volumetric efficiency. They also emphasized as future
work the use of MBSE with appropriate architectures to enhance the functional
and logical modelling of the tank.

The literature reviewed in this chapter will be used as the basis for the case study,
presented in Chapter 4, where it will be demonstrated how SysML v2 is applied for
the requirement modeling and the operational and functional analyses of the liquid
hydrogen tank for aeronautical application, following the MBSE methodology. To
provide a visual representation, a schematic view of a cryogenic tank configuration is
reported in Figure 2.15.
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Figure 2.15: Schematic of a cryogenic liquid hydrogen tank, showing fuel lines for
filling/discharging and the venting system [11].

2.2.5 Synthesis and gaps emerging from the literature

As highlighted in the literature, SysML v2 introduces many enhancements such as formal
semantics [28], modularity [6], the API, and re-use patterns [3]. These developments confirm
that SysML v2 is not merely an update of its predecessor, but rather a fundamental
transformation in the way systems are modeled [24]. However, as underlined by the
OMG, the transition requires both significant efforts and the adoption of a suitable strategy
8].

Current methodological approaches remain fragmented and are often limited to
experimental tools or proprietary codes, with open-source implementations still at an early
design.

Despite these limitations, interoperability emerges as a key potential, with reported
applications in autonomous driving, avionics, and model-to-model transformations.

In the aerospace field, studies have demonstrated the applicability of SysML v2 for
the design of UAVs, spacecraft constellations, and avionics systems, while aeronauti-
cal applications such as hydrogen tanks are well developed but, actually, still lack a
consolidated integration with MBSE practices.

In this context, since there are still no examples showing how to concretely apply SysML v2
within a standard MBSE workflow and how to connect the model to Simulink, the present
work aims to provide a practical evaluation of SysML v2 for requirement modeling,
operational, and functional analysis in an aeronautical case study focused on a liquid
hydrogen storage tank, together with an exploration of its interoperability capabilities
with Simulink.
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Chapter 3

Methodology and Tools

3.1 Introduction

The following chapter introduces the methodological framework adopted for the new
SysML v2 specification, in accordance with the MBSE process described in references |1,
2.

Furthermore, this section presents the tools employed in the case study described in Chap-
ter 4, illustrating how SysML v2 is applied both in its textual and graphical representations
to a real industrial system. It also describes the interoperability framework adopted to
integrate SysML v2 with Simulink.

Finally, the chapter outlines the overall workflow adopted in this study, which will be
applied in Chapter 4 to the hydrogen tank case study.

3.2 Methodology

This section presents the methodological approach adopted for the case study. In the
first part, an overview of the adopted MBSE process is provided, while the second part
describes how to practically implement the MBSE methodology in SysML v2 .

This approach enables the exploration of new modeling strategies and highlights the key
features introduced by the new specification, while preserving the systems engineering
knowledge established with SysML v1.

The aim is to introduce the transition from the previous to the current language, empha-
sizing the elements that can be reused and those that have evolved.

The adopted methodology is based on the workflow developed for an aeronautical case
study described in reference [2].
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3.2.1 Overview of the adopted MBSE process

As illustrated in Figure 3.1, the adopted workflow follows the typical MBSE process. It
begins with the elicitation and modeling of the requirements, followed by the operational
and functional analyses.

These phases were selected because they represent the core methodological steps of SE,
which are essential for establishing the system’s logical foundations and for demonstrating
the expressive capabilities of SysML v2.

Other parts of the MBSE process, such as needs analysis, physical analysis, and verification
and validation, are not addressed in this work, as they fall outside the intended scope.

Operational Analysis

Functional Analysis and Architecture

- J

Figure 3.1: Adopted workflow: MBSE process extended with a simulation-based analysis
phase for interoperability.

Requirements

For the modeling of the requirements, the methodology and principles described in
the official INCOSE guide have been adopted [54]. This reference provides best practices
to ensure clarity, consistency, and the absence of ambiguity within systems engineering
processes. In addition, detailed guidelines for organizing the requirements hierarchy and
structuring the model are described in reference [1].

Before identifying the specific requirements, it is necessary to define the mission of the
System of interest (SOI), which is also referred to as the top-level requirement [1]. From
this mission, the main specification levels are derived, ensuring logical traceability through
the use of derive and satisfy relationships.
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First, the Customer Specification is identified, containing the operational and safety
requirements. From this, the System Specification is derived, defining the functional and
performance requirements. Finally, the Subsystem Specification is modeled, addressing
the structural and design requirements, as illustrated in Figure 3.2.

CustomerSpecification\

«requirement» a ‘
systemMission Y
SystemSpecmcatlon\

SubsystemSpecification\

Figure 3.2: Requirement hierarchy for a generic system, starting from the mission
definition and deriving the Customer Specification, the System Specification, and the
Subsystem Specification.

Operational analysis

After the elicitation of the requirements, it is necessary to model the operational analysis,
which describes how the system interacts with its environment to fulfill the stakeholders’
needs and operational objectives, thus resulting in a stakeholder-centered approach.
In this phase, the system is treated as a black box, meaning that its internal structure is
not considered, but only its interactions with the actors within specific scenarios. Firstly,
as represented in Figure 3.3, the actors must be identified. Therefore, the methodology
requires defining the operational scenarios, starting from the operational requirements
identified in the previous phase.
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Figure 3.3: Logical flow of the Operational Analysis and Functional Analysis, from actors
to functions.

Therefore, use cases that represent the objectives of the actors must be identified.
Subsequently, it is possible to model the operational interactions between the actors and
the system that generally involve actions and messages.

Functional Analysis and Architecture

The functional analysis is system-centered, focusing on what the system does and how it
achieves the required functionalities.

While the operational analysis describes external interactions, the functional analysis
investigates the internal behavior of the system to realize the use cases.

The analysis is performed through the use-case—centric methodology, which is typical
for aeronautical case studies, as described by reference [2]. Its aim is to derive the system
functionalities by decomposing and allocating functions starting from the use cases
defined in the previous phase.

In parallel it is necessary to define the system architecture describing how the system
is organized and connected internally. This is modeled by defining the main subparts,
including the representation of ports and interfaces that enable interactions among the

components.

In this work, the purpose of the architectural definition is to provide the internal organiza-
tion of the system required to support the modeling of actions, flows, and interfaces, while
the Physical Analysis and the subsequent phases are not addressed.

The following section illustrates how the MBSE process was implemented using the
SysML v2 specification, highlighting its new syntactic and semantic constructs.
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3.2.2 Implementation of the MBSE methodology in SysML v2

This section describes how the MBSE methodology was implemented and integrated into
SysML v2 constructs to define the modeling approach adopted in this thesis. Figure 3.4
illustrates the workflow followed to build the model, representing a practical imple-
mentation of the MBSE process previously described and adapted to the SysML v2
environment. For each analysis phase, the corresponding syntactic elements of the new
specification are reported.

Model Organization
Packages, Libraries, Imports

Requirements Modeling
Definitions, Usages, Relations

Operational Analysis
Actors, Use Cases, Messages

l

Functional Analysis & Architecture
Actions, Flows, Ports, Parts

Simulation-based Interoperability
Analysis, Satisfy, Require

Figure 3.4: Workflow adopted in this work for the implementation of the SysML v2
model, showing the corresponding syntactic elements used at each stage.

Model Organization

The first step of the process is to properly organize the model. To ensure modularity, the
model follows a package-based organization consistent with the official documentation (see
Figure A.1). As illustrated in Figure 3.5, four main packages are defined. A dedicated
package contains the system specifications and design, including the requirements and
the structural-design elements, while separate packages are used for the Operational and
Functional Analyses. This organization maintains alignment with the traditional MBSE
process and facilitates the comparison and transition from SysML v1 to SysML v2 . All
definition elements are collected in a single package to improve model organization and
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enable reusability across the entire structure.

SystemModel \

Y
FunctionaIAnaIysis\ OperationaIAnaIysis\ SystemSpecificationAndDesign\ Definitions\

Figure 3.5: Example of the model organization adapted following the MBSE process.

In order to improve the management of the system, all packages are imported into the
main structure of the model using public imports (see Appendix B), which allows the
individual packages to be maintained in separate files.

To support the consistent use of physical units, the same logic is applied to the import
of standard libraries such as ISQ, that represents one of the advantages introduced by the
new specification, which provides a wide range of standardized and reusable libraries.
This modular organization also enables the reuse of elements defined in separate package
files, since they can be accessed throughout the entire model simply by importing them.

Requirements Modeling

Once the model structure has been defined, the next step is to model the requirements.
First, the requirement definitions, which represent the “types” of the requirements,
are modeled. The corresponding requirement usages are then instantiated and assigned
to subjects within a defined context.

To maintain traceability, hierarchy, and dependencies among requirements, the corre-
sponding SysML v2 constructs are adopted.

These relationships are collected in a dedicated package, as illustrated in Figure 3.6, to
improve the overall manageability of the model.

To improve the management and traceability of requirements, a useful methodological
practice is to assign a short name to each element. Each requirement definition is
identified by an incremental code, such as <71>, which uniquely marks its position within
the hierarchy. Correspondingly, the requirement usages can be labeled using a hierarchical
code, for example <I.1>, meaning the first usage derived from the first requirement
definition, and so on.

The requirements are modeled following the standard guidelines, ensuring both the trace-
ability and coherence of the specifications.
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RequirementReIationships\

RequirementDependencies\

RequirementDerivations\

RequirementRefinements\

Figure 3.6: Relationships organized in a unique package.

Operational Analysis in SysML v2

Once the requirements have been modeled, the Operational Analysis is carried out.

In SysML v1, operational behavior was typically represented using Use Case and Sequence
Diagrams. In this work, the corresponding modeling activity is implemented through actors,
messages, use case usages and definitions, represented in views such as the sequence and

action views.

To maintain continuity with SysML v1, the packages are named with similar names of

their corresponding diagrams.

After defining the actors, operational scenarios are modeled through wuse cases, while
interactions are represented by messages and event occurrences, ensuring precise exchanges

between actors.

An example is shown in Figure 3.7, which represents a sequence view of messages exchanged

in a typical authorization sequence.
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«pa It «pa rt»
user controlSystem

RequestAuthorizationMessage

AuthorizationAcceptedMessage

Figure 3.7: Example of a sequence view that describes the operational interaction between
the User and the Control System during an authorization request in SysML v2, using
message and event occurrences constructs.

This approach ensures continuity with the traditional representation while exploiting the

enhanced expressiveness of the new language.

Functional and Architecture Modeling

The workflow then proceeds with the definition of the Functional Analysis.

In SysML v1, functional behavior was typically represented using Activity, State Machine,
and Internal Block Diagrams.

In this work, the corresponding modeling activity is implemented through syntax elements
such as actions, flows, events, control structures, states, and transition and represented

through Interconnection, State, Action, and Sequence views.

Figure 3.8 shows an example of functional behavior for a generic control structure,
illustrating a typical construct used in the functional analysis phase, with a sequence of
actions and a decision node for a control-process application.
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«action»
ControlProcess
?
«action»
monitor
|
_____ [monitor.parametef >= threshold]
[monitor.parametqr < threshol !
< «action» «action»
L] performAdjustment stopAction
parameter _
\ Y,

Figure 3.8: Functional behavior modeled in SysML v2, showing the iterative monitoring
and adjustment process of a parameter until a threshold condition is satisfied.

The architecture of the system is modeled through parts, attributes, ports, interfaces, and
items. Connections between components are established through compatible ports, while

each item explicitly declares the transported quantity, and flows specify their directions.

Simulation-based interoperability analysis

The final stage is the simulation-based analysis that extends the MBSE process to the
simulation domain.

This phase requires the use of the analysis and analysis def constructs, which are
syntactic elements integrated into the language to model different types of analyses and
represents one of the key new features introduced in SysML v2.

This mechanism supports separate analyses based on different conditions, and each of
them is associated with specific requirements through the require expression, while
the requirements are linked to their corresponding usage subject through the satisfy
expression.

Modeling analyses may involve the modification, referencing, or specialization of existing
usages. These mechanisms are represented by expressions such as redefine, reference,
and specialize.

Finally, the analyses were executed to demonstrate the ability of SysML v2 to support
simulation-based verification and the exchange of data with external environments.

To highlight the evolution of SysML modeling constructs across the two versions, Table 3.1
summarizes the correspondence between the phases of the adopted MBSE process, the

32



diagrams used in SysML v1, and the constructs introduced in SysML v2.

Table 3.1: Conceptual mapping between the phases of the adopted MBSE process,

SysML v1 diagrams, and SysML v2 constructs.

Workflow phase

SysML v1 Representation

SysML v2 Representation

Requirements Requirement Diagram (RD) requirement def
textual relations requirement usage
derivation
dependency
refine
Operational Use Case Diagram (UCD) use case
analysis Sequence Diagram (SD) message

event occurrence

Functional &
Architectural
modeling

Activity Diagram (AD)

State Machine Diagram (SMD)
Block Definition Diagram
(BDD)

Internal Block Diagram (IBD)

action
state
part

port
interface
flow

Simulation-based
analysis

External to SysML (manual
trace)

analysis def
analysis usage
return

satisfy

In summary, the proposed methodology follows the entire MBSE approach, exploiting
in parallel the capabilities of SysML v2, thus enabling a first structured transition from
SysML v1.

It is worth noting that the new language introduces several conceptual differences, as
a consequence adopting the previous methodology may represent both an effort and a
constraint, as future modeling approaches are expected to evolve toward full alignment
with the new specification.

After defining the methodological framework, the following section describes the supporting

tools used for its implementation.

3.3 Tools

The selection of modeling tools represents a critical aspect of SE, as highlighted in [2].
This section presents the tools employed, the process used to generate the diagrams, and
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the overall framework adopted to enable interoperability with Simulink.

In this study, open-source and experimental tools have been selected, specifically aligned
with the SysML v2 Pilot Implementation, to explore the potential of SysML v2 in realistic
design scenarios [21]. The selected tools are the textual modeling environment SysIDE, the
graphical editor SysON, and the MgS framework provided by the Mg tool, which enables
the integration of Simulink with SysML v2. The following paragraphs briefly describe each
of them.

Table 3.2: Overview of the SysML v2 tools adopted in this work (based on the OMG
reference [8]).

Tool Key Features ‘ License
Open-source tools
SysIDE Textual modeling environment Open-
source
SysON Web-based graphical editor Open-
source

Commercial tools

Mg Framework enabling SysML v2 Simulink | Commercial
interoperability

3.3.1 SysIDE: Textual Editor

SysIDE is an open-source textual modeling environment that can be integrated
directly into Visual Studio Code (VS) [36]. In addition, it is aligned with the SysML v2
Pilot Implementation. The tool is a modern, flexible, and interoperable platform, and
in its open-source version it provides functionalities both as an editor and as a library
manager [55].

This editor will be extensively employed throughout the modeling of the case study,
exploiting the capabilities of the textual syntax of SysML v2 and its applicability within
the MBSE methodology. SysIDE also supports model visualization within Jupyter note-
books, allowing the automatic generation of diagrams from textual code using dedicated

visualization commands such as:

%viz --view mixed --style lr TankModel

Listing 3.1: Visualization command used in SysIDE to generate the diagrams.

With this command it is possible to automatically generate views such (e.g., tree, inter-
connection, state, action, sequence, and mixed) from the same textual code.
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As an illustrative example , in Figure 3.9 is reported the graphical representation for a
requirement definition rendered through SysIDE.

«requirement def»
<1> MassLimitationRequirement

doc

The actual mass shall be less than or equal
to the required mass.

attributes
massActual: MassValue
massReqd: MassValue

constraints
assume { massActual > 0[kg] }
require { massActual <= massReqd }

Figure 3.9: Example of a graphical representation in SysIDE for a requirement definition.

It is noteworthy that SysIDE encourages modelers to work with textual notation since a
limitation lies in the inability to modify views at runtime.

A possible solution could be the adoption of commercial software such as Cameo Systems
Modeler that allows to modify graphically the diagrams.

3.3.2 SysON: Graphical Editor

SysON is a graphical editor developed by Obeo [56]. It provides a set of main features,

which enable users to explore and visualize SysML v2 models from different perspectives:
o the General View, which offers a visualization of any elements;

o the Interconnection View, which highlights how system parts exchange informa-
tion and interact through their ports;

 the Textual Import/Export, which supports file exchange in textual form.

In the proposed workflow, models can be written in textual form using SysIDE and then
imported into SysON as “.sysml” files, where the diagrams can be modified or customized.
This integration partially compensates for one of the current limitations of SysIDE, which
does not allow graphical editing. Alternatively, the model can be created directly in
SysON and exported as SysML v2 textual code, ensuring bidirectional consistency between
graphical and textual representations.
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N e ~N
«part» «part»
valve : Valve tank : Tank
attributes €] - attributes
fuelOutputPort fuelFlow fuellnPort
MyalveMass : ValveMass tankDiameter : TankDiameter
l J . l ),
«part def» «part def»
Valve Tank
attributes attributes

ValveMass : 15QBase::MassValue

TankDiameter : I5QBase: LengthValue

Figure 3.10: Example of a General View in SysON representing the fuel exchange between
a valve and a tank using parts, ports, and flows.

Figure 3.10 shows the General View of a generic fuel flow from a valve to a tank. The
strength of the software lies in its flexibility and in the ease with which it allows users to
generate views, thereby promoting the adoption of SysML v2 even among those who are

not computer-science oriented.

3.3.3 Mg: Bridge with Simulink

Mg is a commercial framework developed by Mgnite [57], designed to enable interoperability
between SysML v2 and external engineering tools. The current release is still considered
experimental; however, it is officially recognized by the OMG as a SysML v2 tool [8].
Among its components, MgS provides the main bridge to Simulink, supporting the
mapping between SysML v2 models and Simulink models.

The bridge is enabled by three main components:

1. the MgS library, which generates the bridge by mapping SysML v2 elements to
Simulink blocks, as illustrated conceptually in Figure 3.11;

2. the magic commands (e.g., %MgS), which execute the interoperability scripts;

3. the MgSysML kernel, running in a Jupyter environment, which integrates the
MgS commands with the SysML v2 textual code.
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Code MgS Simulation

2 AW SIMULINK

Mapping

Figure 3.11: Conceptual representation of the SysML v2-Simulink mapping process
implemented through the MgS library.

This integration allows modelers to explore the interoperability of the new language and
to assess the feasibility of its connection with external simulation tools.

The MgS library extends SysML v2 by introducing specific actions, attributes, and
metadata designed to support the correspondence between SysML v2 constructs and
Simulink elements. In particular, it enables the mapping of blocks, ports, and parameters
to the simulation model, which can be executed and analysed within a Jupyter-based
environment.

Table 3.3 summarizes the main mapping concepts and their corresponding commands in
MgS.

This demonstrates that the library enables an effective mapping process and shows its

potential to support bidirectional interaction between SysML v2 models and Simulink.

Table 3.3: Summary of the main mappings between SysML v2 constructs and Simulink
elements in the MgS framework [58].

MgS Command in SysML v2 | Mapped Simulink Element
SimBlock Block

SimModel Model

SimCond Settings

SimAnalysis Analysis

SimRet Data Retrieval

Param Parameter pushing
Extension: :MATLAB MATLAB command

Exec Simulink analysis execution
Flow (from - to) Connection

An important aspect is the use of the StateSpaceRepresentation Standard Library,
which supports the mapping of dynamic systems by providing the fundamental constructs
employed by the MgS framework.
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These constructs, which are typically defined as attributes representing the input, output,
and state, are characteristic of control systems and are used to model the dynamic behavior
of Simulink blocks, as illustrated in Figure 3.12.

Input u(t) — State > Output y(t)

Figure 3.12: Conceptual representation of a dynamic system showing the in-
put—state—output relation used for SysML-Simulink mapping.

3.3.4 Current tools limitations

As previously discussed, SysIDE offers flexibility and integration with external environ-
ments (e.g., VS Code). However, it is not possible to manually edit the views, resulting in
a process that is constrained to the textual representation.

SysON allows users to freely design graphical models, but it is less rigorous because the
textual notation is not shown alongside the graphical editor, making it impossible for the
user to verify the underlying textual code.

Despite these limitations, the two tools have great potential, as they are aligned with the
OMG SysML v2 Pilot Implementation and are open-source. However, a unified environment
integrating both functionalities would represent the optimal solution.

Mg has promising capabilities, but the tool is still in an experimental phase, and several
modeling and interoperability limitations were encountered during the implementation.
These aspects will be discussed in the following chapter, together with the application to
the hydrogen tank case study.

Figure 3.13 summarizes the overall framework adopted in this study, illustrating the
interaction between the different tools chosen.
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Figure 3.13: Framework adopted to model the case study by using the SysML v2 Pilot
Implementation.

3.4 Summary

To summarize, this chapter presented the methodology and tools supporting the application
of SysML v2 within the MBSE workflow.

The proposed approach integrates requirements modeling, operational and functional
analysis, using both textual and graphical representations of SysML v2.

Interoperability with Simulink was achieved through a commercial tool that enables the
mapping of Simulink blocks with SysML v2 elements, allowing the simulation of system
behavior.

The methodology is replicable for aerospace subsystems and will be applied in the following

chapter to the liquid hydrogen tank case study.
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Chapter 4

Case Study: Liquid Hydrogen Tank

4.1 Introduction

This chapter presents the practical application of the modeling approach introduced in the
previous sections. The case study focuses on modeling a liquid hydrogen tank for aircraft
applications, using SysML v2, whose conceptual representation is shown in Figure 4.1.
The system has been chosen because, as highlighted in Chapter 2, few examples of
SysML v2 applications in the aeronautical domain have been developed so far. Moreover,
the topic remains of significant interest due to the increasing interest in electric aircraft,
and represents an ideal example to demonstrate the capabilities of the language through a
realistic industrial scenario.

In Chapter 3, the overall methodology and the adopted tools were introduced without
focusing on a specific application. In this chapter, the same process is applied in practice
to model a complex system.

The main objective of this case study is to evaluate, in its final stage, whether SysML v2
provides tangible improvements in model interoperability compared to SysML v1,
and to assess the current level of tool support for this capability.

To perform this, an initial modeling activity has been developed, taking into account the
main MBSE phases, including requirements modeling, the operational analysis, and the
functional analysis.

The modeling activity serves as a basis to explore the new language, its main enhancements
and limitations, and how it can be practically applied to aerospace applications.

The interoperability of SysML v2 with Simulink will be explored through the use of the
MgS infrastructure by modeling in SysML v2 and executing the simulations.

The model and its diagrams have been developed following the official SysML v2 notation,
as introduced in the reference materials [16, 59], by adapting the modeling activity to the
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case study of the liquid hydrogen tank.

H2 systems cold box Gas extraction

Inner vessel

Quter vessel

Suspension mount

Refuel/Extraction pipe

Level probe

Heater pipe Dewar principle insulation

Figure 4.1: Conceptual illustration of the liquid hydrogen tank considered in the case
study [60].
Two models have been developed :

 the first one, referred to as the extended case study, involves the main activity
of the MBSE methodology, with a complete modeling of the requirements, as well
as the interactions with actors in three specific scenarios and the description of the
functional behavior of the system.

« the second one, referred to as the simplified case study, is intended to simulate
the filling of the tank and will be used to evaluate the interoperability of SysML v2
through the use of the MgS bridge.

The second model inherits concepts of the first, but has been adapted and simplified to be
suitable for simulation-based analysis .
The structure of the chapter is as follows:

o Section 4.3 presents the requirement modeling of the main case study
e Section 4.5 analyses the operational aspects of the main case study
o Section 4.6 discusses the functionality of the main case study

e Section 4.7 presents the interoperability with Simulink, demonstrating the
mapping of the simplified case study through the MgS bridge

o Section 4.8 summarizes the main results
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4.2 Model Organization

In accordance with the modeling approach presented in Chapter 3, the development of
the tank model requires, as a first step, the definition of a structured model architecture.
Following the same structure illustrated in Figure 3.5, the model, here referred to as

TankModel, is organized into four main packages:

o Definitions, where all the the definition elements have been collected as illustrated
in Figure 4.2. The package contains all the definitions of the Actions, Use cases,
Attributes, Interfaces, Ports, Items, Requirements, Parts.

This organization enables all reusable elements to be located in a single package,
facilitating their management and reuse throughout the model development process.

£ Definitions
£ ActionsDefinitions ‘ E3 AttributeDefinitions ‘ £3 PortDefinitions l
T3 UseCaseDefinitions ‘ £ InterfaceDefinitions | £ ItemDefinitions ‘
£ PartDefinitions ‘ £3 RequirementDefinitions l

Figure 4.2: Definitions package containing all the definition elements of the model.

o TankSpecificationAndDesign illustrated in Figure 4.3 represents the specifications
of the tank and the design elements. It contains the mission, the requirements and its
relationships as well as the structure of the tank and a package about the verification.

o Operational Analysis contains all the modeled operational interactions with the
actors (see Section 4.5).

e Functional Analysis contains all the constructs that describes the functionality
of the system. (see Section 4.6).
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3 TankSpecificationAndDesign

3 TankStructure £3 TankVerification £ TankRequirements

£3 TankSpecification

E2 RequirementRelationships

£2 SystemSpecification

E2 MissionSpecification

3 CustomerSpecification

Figure 4.3: TankSpecificationAndDesign package that collects the design elements and
specifications.

All packages, together with the standard SI and ScalarValues libraries for physical units,
were imported into the model following the notation reported in Appendix C.

4.3 Requirements

After defining the overall model organization, the next step focuses on how the requirements
are modeled in SysML v2 for a liquid hydrogen tank . The requirements are defined
according to the INCOSE guidelines,; and follow the principles described in Chapter 3 [25,
54].

This is the first real step of the MBSE process and serves as a basis for future analyses,
translating the stakeholder needs ! into quantitative and qualitative constraints.

A comparison between the requirements modeled in SysML v1 and in SysML v2 will be
useful to highlight the main enhancements of the new specification.

Overall, this section is necessary to understand how the requirements have been modeled
in the simplified case study to enable the simulation-based analysis.

!The stakeholder needs have not been explicitly defined in order to simplify the discussion and focus
directly on the requirements, which represent the main difference between SysML v1 and SysML v2.
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4.3.1 Requirement rules: an overview

Before modeling the requirements, it is necessary to provide an overview of how they
should be correctly written, based on the reference [54].

First, requirements are not needs, and this distinction must be clear, since requirements
are derived from stakeholders’ needs. In textual representation, the verb “shall” is used
exclusively in requirements and never in needs. Moreover, the subject must always be
explicitly specified, and the sentence should be written in the active form.

Overall, requirements should be clear, complete, and verifiable. When a requirement is
measurable, it must include physical units and quantitative values. Redundancy and
ambiguity should be avoided, and vague terms are not allowed.

Finally, terminological consistency and traceability must be ensured throughout the entire

model.

4.3.2 Requirement Definitions

As a preliminary step, it is necessary to define the requirement definitions, which are

designed to be general and reusable, and are listed in Table 4.1.

Table 4.1: List of reusable requirement definitions implemented in the TankModel.

ID Requirement Definition
1 MassLimitationRequirement
2 BoilOffRateRequirement
3 PressureRangeRequirement
4 MinMassFlowrateRequirement
5  AvailabilityRequirement
6 StorageCapacityRequirement
7  MaterialEmbrittlementResistance
8  VentOpeningLogicRequirement
9 TankLengthRequirement
10 TankDiameterRequirement
11 NominalTemperatureRequirement
12 GravimetricEfficiencyRequirement
13 CostRequirement
14  MaxFluidHeightRequirement

They have been identified by an incremental numeric code. For instance, in Figure 4.4,
the requirement definition of the Pressure Range requirement is identified with the label
<3>. A useful convention is to name requirement definitions with an initial capital letter,

while using a lowercase initial for their corresponding requirement usages.
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The doc text expresses the requirement qualitatively, for instance stating that the internal
pressure of the tank shall remain within a safe range.

The require constraints, instead, define the quantitative conditions that the system must
satisfy, meaning that the actual pressure should be higher than the minimum value and
lower than the maximum one. This represents a significant improvement in SysML v2
compared to the previous version, since requirements can now be modeled quantitatively
and not only textually, allowing their integration into the system analysis.

For the requirement definition to be valid, the assume constraints state that the minimum
pressure must be greater than zero, and the maximum pressure must be higher than the

minimum one.

«requirement def»
<3> PressureRangeRequirement

doc
The internal pressure of the tank shall
remain within a safe operating range.
attributes
actualPressure: PressureValue
pressureMax: PressureValue
pressureMin: PressureValue

constraints
assume { pressureMin > 0[Pa] }
assume { pressureMax > pressureMin }
require { actualPressure >= pressureMin }
require { actualPressure <= pressureMax }

Figure 4.4: Typical formal requirement definition in SysML v2 describing the constraints
on the pressure range.

4.3.3 Mission Specification, Customer Specification and Opera-

tional Requirements

After defining the necessary definitions, the first step of the process is to specify the mission
of the SOI, according to the reference [1].

In this model, the tank system is the SOI which includes the containment structure,
sensors, valves, and control functions.

As illustrated in Figure 4.5, the mission is modeled as a requirement, referred to as
TankMission. It represents the top-level requirement from which all subsequent re-
quirements are derived, and states that the tank system shall ensure safe, efficient, and
continuous hydrogen storage under all operational scenarios.
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The figure also shows the derivation relationship modeled in SysML v2, connecting the
top-level mission requirement to its derived requirements such as the safeOperation,
efficientOperation and continuousOperation requirements.

The mission and customer requirements are expressed as textual statements that capture
stakeholder intent in qualitative form. They are not associated with reusable requirement
definitions and are instantiated only once within the model.

MissionSpecification

«requirement»
tankMission

doc

The tank system (SOI) shall enable safe,
efficient and continuous liquid hydrogen
storage and transfer across all operational
scenarios to support energy and
propulsion systems.

‘%ﬁvation»

«requirement» ‘

<#derivation» «#derivation»

«requirement»
continuousOperation

doc

«requirement»
safeOperation

efficientOperation
doc

The tank system shall prevent overpressure
and structural failure during all operating
and transient conditions to ensure safe

The tank system shall minimize hydrogen
losses during storage and transfer
operations, maintaining boil-off rates

The tank system shall enable continuous
24/7 hydrogen storage and supply
with minimal interruption throughout

doc

operation. below acceptable limits. operational cycles.

Figure 4.5: Hierarchical organization of the top-level requirements, illustrating the
derivation of safe, efficient, and continuous operation requirements from the tank mission.

As discussed in Chapter 3, the CustomerSpecification is derived from the TankMission.
This specification includes all the packages related to the customer and its requests, such
as the requirements on the operating environment, the operational requirements, and the
safety requirements.

Figure 4.6 illustrates how the requirement on the operating environment and the operational
requirements are derived from the TankMission. These derived requirements serve as the
starting point for the operational analysis, which will be further discussed in Section 4.5.
This derivation flow illustrates how SysML v2 supports top-down traceability from mission
to operational requirements.

Figure 4.7 shows the four operational requirements identified. For instance, the fuelin-
gAtGround requirement, labeled as <OR4>, prescribes that fueling operations are
permitted only during ground phases.
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OperationalRequirements \

«requirement»
tankMission

P Requirement

doc
The tank system shall enable safe, efficient,
and continuous storage and transfer of
liquid hydrogen across all operational
scenarios to support energy and
propulsion systems.

«#derivation» N

«requirement»
safeOperation

dog) «kderivation»
The tank system shall prevent overpressure F—————————%
and structural failure during all operating

and transient conditions to ensure safe

propulsion systems.

doc
The tank system (SOI) shall enable safe,
efficient and continuous liquid hydrogen
storage and transfer across all operational
scenarios to support energy and

operation.

«#derivation» «requirement»

<OR2> allPhasesContainmentMonitoring

doc
The tank system shall operate in all flight
phases, from take-off to landing, ensuring
LH, containment and monitoring only;
fueling operations shall not be performed
Lin flight.

#derivation»

«requirement»

<OR4> fuelingAtGround

doc

The tank system shall manage fueling
operations, allowing liquid hydrogen
fueling only during ground phases and
inhibiting it during taxi, take-off, flight,
and landing.

«requirement» g

«requirement>»
<OR1> missionEnvelope
doc
The tank system shall enable unrestricted
aircraft operation by ensuring the safe
containment of liquid hydrogen within the
defined mission environmental envelope.

«requirement>»

<OR3> degradedLossOfPower

doc
In abnormal or degraded conditions,
including single-fault events or loss of
power, the tank system shall automatically
reach and maintain a safe state through its
internal control and safety mechanisms.

Figure 4.6: Derivation

OperationalRequi remems\

of the operational requirements from the tank mission.

«requirement»
<OR1> missionEnvelope

,;1

:

«requirement»
N <OR3> degradedLossOfPower
«requirement»
<OR2> allPhasesContainmentMonitoring 1 doc

doc
The tank system shall enable unrestricted
aircraft operation by ensuring the safe
containment of liquid hydrogen within the
defined mission environmental envelope.

In abnormal or degraded

«requirement»
<OR4> fuelingAtGround

(

|

including single-fault events or loss of
power, the tank system shall automatically
reach and maintain a safe state without
imposing additional operational

doc
The tank system shall operate in all flight
phases, from take-off to landing, for LH2
containment and monitoring only; fueling
operations shall not be performed in flight.

restrictions beyond the applicable
procedures.

doc
The tank system shall permit LH2 fueling
during ground operations and shall inhibit
fueling during taxi, take-off, flight, and
landing phases.

Figure 4.7: Graphical representation of the derived Operational Requirements.
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4.4 System Specification

Following the discussion of the customer specifications, the subsequent step involves the
elicitation of the System Specification, which includes all requirements defined at the
system level.

Typical system-level requirements include both functional and performance ones.

For instance, Figure 4.8 shows the pressureRange requirement , which represents a
performance requirement.

perfurmancenequiremenis\

«requirement»
<3.1> pressureRangeRequirement: PressureRangeRequirement

doc

The liquid hydrogen tank shall operate
within a safe pressure range between 1.5
and 10 bar.

attributes
I> actualPressure = tank.internalPressure PressureRangeRequirement:actualPressure
I> pressureMin = 150000[Pa] PressureRangeRequirement:pressurehin
I> pressureMax = 1000000[Pa] RressureRangeRequirement:pressureMax
subject

]

«requirement def»
<3> PressureRangeRequirement
doc
The internal pressure of the tank shall
remain within a safe operating range.
attributes
actualPressure: PressureValue
pressureMax: PressureValue
pressureMin: PressureValue
constraints
assume { pressureMin > O[Pa] }
assume { pressureMax > pressureMin }
require { actualPressure >= pressureMin }
require { actualPressure <= pressureMax }

(tank: LiquidHydrogenTank

Figure 4.8: Definition and usage of the pressureRange requirement, belonging to the
System Specification.

This requirement is derived from the Safe Operation requirement, defined at the customer
level according to the derivation process described in Chapter 3. It is modeled as a
requirement usage, whose definition is the PressureRangeRequirement discussed
previously.

The subject of this requirement is a generic tank part, which includes the attribute
internalPressure.

The figure illustrates the graphical notation of the link between the requirement definition
and its usage, represented by an arrow with two points.

Figure 4.9 shows the graphical representation while in Listing 4.1 it is shown the corre-
sponding textual representation of the pressure range requirement usage.

48



For naming consistency, each requirement usage is identified using a decimal notation
that refers to its parent requirement definition. For instance, the usages derived from
the PressureRangeRequirement definition (identified as 3) are labeled as 3.1, 3.2,
and so forth.

The pressureRangeRequirement ensures that the system operates safely within the
pressure limits defined by the customer.

In general, according to reference [48] a tank must operate within the following pressure
range:

0.15 MPa < P <1 MPa (4.1)

«requirement»
<3.1> pressureRangeRequirement: PressureRangeRequirement

doc

The liquid hydrogen tank shall operate
within a safe pressure range between 1.5
and 10 bar.

attributes
I> actualPressure = tank.internalPressure PressureRangeRequirement::actualPressure
I> pressureMin = 150000[Pa] PressureRangeRequirement::pressureMin
I> pressureMax = 1000000[Pa] PressureRangeRequirement:pressureMax
subject

tank: LiquidHydrogenTank

Figure 4.9: Graphical representation of the pressureRange requirement in SysML v2.

requirement <’3.1°> pressureRangeRequirement
PressureRangeRequirement{
doc /* The liquid hydrogen tank shall operate within a safe
pressureRange between 1.5 and 10 bar. */
subject tank : LiquidHydrogenTank;
attribute redefines actualPressure = tank.internalPressure;
attribute redefines pressureMin = 150000 [Pa];

1000000 [Pal;}

attribute redefines pressureMax

Listing 4.1: Textual representation of the pressure range requirement in
SysML v2.

Listing 4.1 illustrates the textual representation of the requirement and, in particular,
shows how the inherited attributes pressureMin and pressureMax are redefined through
the redefines construct within the requirement usage to assign the specific values defined
above.

In addition, the actual pressure can be assigned to the internal pressure of the tank,
demonstrating the capability of the language to reuse model elements in different contexts.
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Furthermore, the ability of SysML v2 to model requirements, redefine attributes, and
assign values makes it particularly suitable for supporting system analysis and simulation

activities.

4.4.1 Tank Specification

Finally, after discussing the System Specification, the last step in the requirements
identification process is the definition of the Tank Specification.

This specification includes all structural and design constraint requirements defined at the
tank level.

For instance, regarding the design constraints, a typical requirement may impose a
limitation on the tank diameter, as illustrated in Figure 4.10, which specifies that the
diameter shall not exceed 4 meters. The figure shows both the requirement definition and
its corresponding usage.

The attribute tankDiameter is redefined, and the diameter of the tank part is assigned.
Similarly, the attribute maxAllowedDiameter is redefined and set to 1.5 m.

This example demonstrates the capability of the language to capture physical design
constraints and to support iterative design processes. It will also be used in the simulation-

based analysis discussed in Section 4.7.

DesignConstraintsRequirements\

«requirement def»

«requirement» <10> TankDiameterRequirement
<10.1> tankDiameterRequirement: TankDiameterRequirement doc
doc The tank diameter shall be less than or
The tank diameter shall not exceed 4 equal to the specified maximum.
meters to comply with fuselage constraints. o attributes
attributes ° maxAllowedDiameter: LengthValue

I> tankDiameter = tank.diameter FarkDiameterRequirement:tankDiameter tankDiameter: LengthValue
I> maxAllowedDiameter = 1.5[m] FankbiameterRequirement::maxAlowedBiameter constraints

subject assume { tankDiameter > O[m] }
tank: LiquidHydrogenTank require { tankDiameter <=

maxAllowedDiameter }

Figure 4.10: Definition and usage of the tankDiameter Requirement, belonging to the
Tank Specification.

In summary, Figure 4.11 presents an overall view of the requirement hierarchy, highlighting

the distinction between the customer, system, and design domains.

4.4.2 Requirement Relationships

The final step of the requirement modeling process consists in establishing the appropriate
relationships, ensuring proper hierarchy and traceability within the model. In the devel-
oped SysML v2 model, three types of relationships have been implemented: Dependency,
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OperationalRequirements | TankRequiI’ementS 5

CustomerSpecification\

[safetyRequirements, Operational/Safety

Operating Environmem‘

SystemSpecification

TankSpecification\ StructuralRequirements)

Structural/Design

/

FunctionalRequirements | ‘

DesignConstraintsRequirements

ReliabilityRequirements |

Figure 4.11: Hierarchical organization of the requirements of the tank showing the
decomposition into Customer, System, and Tank Specifications.

Refinement, and Derivation. Their textual syntax is provided in Appendix C, while
Table B.2 in Appendix B summarizes their meaning and correspondence with SysML v1.
To improve model organization, these relationships are collected into a dedicated package,
as discussed in Chapter 3 and illustrated in Figure 3.6.

Figure 4.12 compares the graphical representation of two requirements linked by a refine-
ment relationship in SysML v1 (a) and SysML v2 (b). In this example, the requirement on
the storage capacity is refined into a more specific requirement defining the tank diameter.
The figure illustrates the differences in how requirements are modeled in SysML vl
compared to SysML v2. In SysML v1, requirements are limited to an id and a descriptive
text, without the possibility to formally specify quantitative values or physical units. This
limitation highlights one of the key improvements introduced in SysML v2, which enables
the explicit and formal definition of quantitative attributes directly within requirements.
The textual representation of the refinement relationship in SysML v2 is reported in
Listing 4.2.

‘public import ModelingMetadata: :*;
‘dependency from tankDiameterRequirement to tankStorageCapacity {
metadata ModelingMetadata::Refinement;

|
3

Listing 4.2: Example of refinement relationship between requirements in SysML v2.

This relationship was modeled using the ModelingMetadata library demonstrating how
the language can exploit metadata to extend the domain.
The derivation relationship was already illustrated in Figure 4.5, while the corresponding
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[req] Requirement Diagram [TankModel] [RequirementRefinements] I%

«Requirement»
tankDiameterRequirement

RequirementRefinements \

id=10.1
text=The tank diameter shall not exceed 4 meters to
comply with fuselage constraints.

1

. 1
<<refine> 1
)

«Requirement»
tankStorageCapacity

id=6.1
text=The tank shall have a minimum storage capacity
of 200 L.

«requirement»
<10.1> tankDiameterRequirement: TankDiameterRequirement
doc
The tank diameter shall not exceed 4
meters to comply with fuselage constraints.

attributes
I> tankDiameter = tank.di TankDi q

1> maxAllowedDi = 4[m] Fenkbi g -:naxAHowedDi

subject

| tank: Tank

T
|
«#refinement»!
«depend» ;

«requirement»
ity: apacity

<6.1> tankStor

doc
The tank shall have a minimum storage
capacity of 200 L

attributes
I> capacityActual = tank.volume

I> capacityMin = 200[L] g

subject
tank: Tank

(a) Refine relationship in SysML v1 (Ren-

dered with Papyrus).

Figure 4.12: Comparison between the refine relationship in SysML v1 (a) and SysML v2
(b), highlighting the different representations of the tankDiameterRequirement and

(b) Refine relationship in SysML v2.

tankStorageCapacity requirements and their refine relationship in the two versions.

textual syntax is provided in Appendix C. The dependency relationships, instead, will
be shown in Section 4.5 and Section 4.6, linking the operational and functional elements

to the respective requirements.

In summary, the requirement modeling of the tank has demonstrated the capability of the

language to support the MBSE process, introducing several enhancements with respect to

SysML v1, such as:

« the quantitative and semantic formalization of requirements, enabling the

explicit definition of units, values, and measurable constraints;

e a more rigorous traceability, achieved through explicit relationships rather than

textual tags or notes;

e the use of metadata to extend the domain semantics in a controlled and standard-

ized way;

o the structured reuse of requirement definitions, improving model modularity and

consistency;

Some of these requirements will serve as the starting point for the operational analysis,

while others will later be used as constraints in the simulation-based interoperability

analysis.



4.5 Operational Analysis

Once the requirements have been modeled, the next step is to carry out the operational
analysis, which focuses on how the system operates to fulfill the defined requirements.
In the operational analysis, the objective is to model the interaction between the tank,
considered as a black box, and the external actors, without detailing the functional
aspects.

This phase is relevant because it allows identifying both the entities that interact with
the system, such as the operator responsible for controlling the fueling process, and the
operational scenarios in which these interactions take place, for instance the Ground
Fueling of the tank under specific conditions.

This analysis provides an understanding of how the tank interacts and communicates with

external entities.

4.5.1 Scenarios and Actors

Starting from the operational requirements derived in the previous section and shown in
Figure 4.7, the first step is to identify the actors. In a few words, the question to answer
is: who interacts with the system in the operational context?

Three actors are identified as depicted in Figure 4.13:
o The Operator, who is in charge of filling the tank on the ground .

e The Ground Fueling System, which is the system that provides fuel to the tank
on the ground.

e The User, who requires fuel from the tank and only operates in standby and

emergency contexts.

As reported in Figure 4.13, these actors are modeled as parts with their respective part
definitions, and are described through a doc element that specifies the qualitative meaning
of each actor.

The second step is to identify the operational scenarios, which formally describe the
environment and the conditions in which the system operates and interacts with external
entities [2].

Three operational scenarios for the case study are identified:

o Standby Scenario: the aircraft is on mission, and the tank supplies fuel to the
user. It is derived from OR1 and OR2.
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«part»
operator: Operator

«part» «part»
GFS: GroundFuelingSystem user: User
| |

||

V V V
«part def» «part def» «part def»
GroundFuelingSystem User Operator
doc doc doc
Ground Fueling system required to fill the The entity that requires hydrogen from the Human operator responsible for initiating
tank tank. and supervising the tank filling process.

Figure 4.13: Graphical representation of the actors modeled in SysML v2.

« Emergency Scenario: occurs when an emergency arises, and the objective is to
secure the tank. It is identified from ORS3.

e Ground Fueling scenario: consists of filling the tank on the ground, derived from
ORA.

Each of the scenarios is modeled as a separate package, as illustrated in Figure 4.14,
and each package contains the corresponding constructs in SysML v2 representing the
traditional sequence and use case diagrams used in SysML v1. Similarly, the actors are
collected in a single package.

In this chapter, only the Ground Fueling scenario, which describes the filling process
of the tank when the aircraft is on the ground, is detailed for simplicity and clarity.

The Ground Fueling scenario has been chosen because it represents the operational scenario
of the simplified case study presented in Section 4.7.

OperationaIAnalysis\

EmergencyScenario\ StandByScenario\ Ground FueIingScenario\ Actors \

Figure 4.14: Graphical representation of the Operational Analysis packages.

4.5.2 Use Cases

Once the actors have been modeled as parts and part definitions, the next step is to define
their objectives and goals to satisfy the operational context. In the Ground Fueling
scenario, the operator and the Ground Fueling System (GFS) are the main actors involved
in the interaction with the tank. The operator’s primary objective is to perform the
fueling process, which represents the first use case and includes two sub—use cases.
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use case def ExecuteGroundFueling {
objective ExecuteGroundFuelingObjective {
doc /* Perform the fueling process safely after authorization is
granted */
require OR4_FuelingAtGround;
b
subject tank: LiquidHydrogenTank;
actor GFS: GroundFuelingSystem;
s

Listing 4.3: Textual representation of the ExecuteGroundFueling use case definition in
SysML v2.

o Authorize Ground Fueling, which is requested by the operator

o Fzxecute Ground Fueling, which involves the GFS

Both sub—use cases are linked to the parent use case through an include relationship.

Figure 4.15b shows the graphical representation in SysML v2 of the performGroundFueling
use case. Each use case is represented as an instance of its corresponding definition.

The definition of the ExecuteGroundFueling use case, for instance, as illustrated
in Listing 4.3, is modeled by specifying its qualitative objective, the involved actors, the
subject, and the require clause that links it to the corresponding operational requirement.
Figure 4.15a illustrates the traditional UCD in SysML v1 corresponding to the SysML v2
construct presented in Figure 4.15b.

The comparison of the two views clearly shows that the SysML v1 diagram provides a
simple, yet limited, representation of the interaction between actors and use cases, while
SysML v2 offers a richer and more expressive modeling view.

In particular, SysML v2 explicitly defines the subject, the involved actors, and the sequence
of use cases by means of constructs such as first, then, and done, which enable the
modeling of temporal dependencies directly within the use case description. Furthermore,
SysML v2 supports the reuse of model elements through definitions and usages, and allows

direct linking of requirements to the corresponding use cases.
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uc [Te ] UCD [

i

«Block»

% tank

wants

-~ = o
L
Z- «include»

operator
2 authorizeGroundFueling

1 performGroundFuelingProcess,

«include» supports/ I

() executeGroundFueling

(a) Use case diagram of the Ground Fueling scenario

(SysML v1).

groundFuelingScenario\

«use case»

performGroundFueling: PerformGroundFueling

«use case def»
PerformGroundFueling

«include use case» actors
authorizeGroundFueling: AuthorizeGroundFueling operator: Operator
subject
tank: LiquidHydrogenTank
52
AN

«use case def»
AuthorizeGroundFueling

[ «include use case»
e

. . actors
xecuteGroundFueling: ExecuteGroundFueling operator: Operator

subject
tank: LiquidHydrogenTank

N

«use case def»
ExecuteGroundFueling

actors
GFS: GroundFuelingSystem
user: User

subject
tank: LiquidHydrogenTank

(b) Graphical representation of the performGroundFueling Use Case
in the Ground Fueling scenario (SysML v2).

Figure 4.15: Comparison between SysML v1 and SysML v2 representations of the use
cases for the Ground Fueling scenario.
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4.5.3 Messages and Event Occurrences

To completely define the Operational Analysis, it is necessary to model the interactions
between the actors and the tank.

Figure 4.16b illustrates the graphical representation of the construct through a sequence
view, where event occurrences and messages are modeled using SysML v2. The operator
sends a message to request authorization, which is then forwarded to the GFS. Once the
request is accepted, the fueling process begins.

Figure 4.16a shows the corresponding sequence diagram in SysML v1.

In SysML v2, the sequence of messages is formally described using the constructs first,
then, and done. In the Ground Fueling scenario, these constructs are used to represent
the chronological order of the fueling operations, starting from the authorization request
by the operator and ending with the completion of the fueling process. Each message
corresponds to a specific event occurrence associated with the involved parts, such as the
GFS, the operator, and the tank, and explicit references to these parts are required in
the textual representation. Although the overall graphical view of the interaction remains
similar in SysML v1 and SysML v2, the textual definition in SysML v2 allows a more
precise and formal modeling of the interactions.

To illustrate the textual notation, Listing 4.4 shows the message FlowHydrogen, which
is sent from the GF'S to the tank and modeled through the event occurrences depicted
in Figure 4.17.

message FlowHydrogen of FuelHydrogen
from GFS.SendFuelHydrogen
to tank.ReceivedFuelHydrogen;

Listing 4.4: Message definition between event occurrences.

«part» «part»
GFS: GroundFuelingSystem tank: LiquidHydrogenTank
event occurrences event occurrences
ReceivedFuelHydrogen SendFuelHydrogen

Figure 4.17: Graphical representation of the event occurrences of the tank and the GFS.

The temporal sequence of messages exchanged between the GFS, the operator and the
tank is explicitly modeled using the constructs first, then, and done. These constructs
describe the chronological order of the operations, from the authorization request to the
actual hydrogen transfer, as shown in Listing 4.5:
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sd [TankModel] SD [GroundFuelingScenario]

| :Operator | | Tank G
T

Request Fueling Authorization Message 1

! Request Service Ready Message

- - — = =7

<

Service Ready Message

A
L]
-]

Authorization Granted Message
Supply Start Message

Flow Hydrogen

(a) Detailed sequence diagram of the Ground Fueling scenario.

GroundFuelingScenariolnteraction

«pa rt» «pa rt» «pa rt»
operator tank GFS

RequestFuelingAuthorizationMessage

RequestServiceReadyMessage

ServiceReadyMessage

AuthorizationGrantedMessage

SupplyStartMessage

FlowHydrogen

(b) Sequence view of the Ground Fueling scenario interaction.

Figure 4.16: Comparison between the sequence diagram and the sequence view describing
the interactions among actors in the Operational Scenario.
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first start then RequestFuelingAuthorizationMessage;

first FlowHydrogen then done;

Listing 4.5: Temporal sequencing of messages using first, then, and done.

This formalism allows the message order and causal dependencies to be described directly
in the textual representation, making the sequence of exchanges precisely defined without
relying on graphical views.

To summarize, the operational analysis modeled in SysML v2 has demonstrated greater
formality and consistency, while preserving the conceptual views of traditional diagrams

and providing enhanced expressiveness.

4.6 Functional Analysis

The purpose of the functional analysis is to describe how the system behaves in order
to satisfy the objectives of the actors, for instance, how the filling process requested by
the operator is effectively performed.

According to the approach outlined in Chapter 3, since the case study concerns an aeronau-
tical system, a use—case—centric process has been adopted: functions are identified starting
from the use cases and then associated with the corresponding functional requirements.
To better understand how SysML v2 supports the representation of system functions, a
comparison with SysML v1 is provided.

Figure 4.18 illustrates how the Functional Analysis package is organized, maintaining the
same naming convention used in traditional SysML v1 diagrams. Each package contains
the corresponding SysML v2 constructs that provide the equivalent representation of the

SysML v1 diagram.

FunctionalAnalysis \

InternalBIockDiagram\_‘ S(ateMachineDiagram\“ EmergencyScenarioActivityDiagram\_’ S(andByScenarioActivi(yDiagram\\‘ GroundFuelingScenarioActivi(yDiagramk

Figure 4.18: Functional Analysis package.

4.6.1 Functional Use Cases, Actions, and Control Structures

The starting point of the functional analysis is the set of previously identified use cases.
In the Ground Fueling scenario, three use cases are defined: Perform Ground Fueling and
its two sub—use cases, Authorize Ground Fueling and Execute Ground Fueling.
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Regarding the Authorize Ground Fueling use case, it can be modeled within the
functional analysis through actions and control structures, as shown in Figure 4.19. A
decision node determines whether the fueling process proceeds: if authorization is denied,
the sequence of actions terminates; otherwise, the Supply Interaction is activated. The
authorization is represented in the model as a Boolean-type item, and the condition in the
decision node is satisfied only when this Boolean evaluates to true.

«use case»
authorizeGroundFueling

authorization tankoperator
® ] 0—0

«action» «use case def»
| [ requestAuthorization AuthorizeGroundFueling
l

L

[requestApthorization.authorization == tru@ - _‘|'
«action» «action»
supplylnteractionGroundFueling denyFueling

®

Figure 4.19: Functional representation of the Authorize Ground Fueling use case.

The Execute Ground Fueling use case is represented in the functional analysis through
the SupplyInteraction action, which includes the entire sequence of actions required to
execute the filling process.

Figure 4.20 illustrates the executeGroundFueling use case and its SupplylInteraction
modeled in SysML v2 as an action definition.

The process starts once the authorization signal is validated, ensuring that the system is
ready for fueling.

This authorization signal is modeled as a Boolean item, as shown in Listing 4.6:

[
‘then action AcceptAuthorization {
‘out authorization : Boolean;

‘constraint { authorization == true }

3

Listing 4.6: SysML v2 textual representation of the AcceptAuthorization action.

Once authorization is granted, the fueling process begins and is continuously followed
by a monitoring action. A decision node evaluates whether the monitored fuel volume
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Atank
1

«use case»
tankoperator GFS ( executeGroundFueling W

«use case def»
ExecuteGroundFueling

«perform action»
supplyInteractionGroundFueling
%7.

«action def»
Supplylinteraction

o

Y
«action» fuel
AcceptAuthorization
<
«action»
addFuel |
- «action» |
SupplyStart :
I
| —
1
I
1

1

|

! "

| «action»

'
i
1
N |
- == monitor - @
1 v

ey
authorization

fuelVolume

(a) Supply interaction modeled in SysML v2.

[act] Activity Diagram [TankModel] [Supplyinteraction] B‘

[ <<action>> AcceptAuthorization]

[ <<action>> SupplyStart ]

[fuelVolume > threshold]

<<action>> EndFilling
<<action>> Monitor

[else] @g

«valueType» fuelVolume

<<action>> AddFuel

«valueType» fuel

(b) Supply interaction in the Ground Fueling scenario (SysML v1).

> volumeThreshold]

Figure 4.20: Comparison between SysML v2 (top) and SysML v1 (bottom) representations

of the Supply Interaction.
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exceeds the defined threshold. If the tank is not yet full, additional fuel is supplied and
the monitoring cycle repeats until the threshold condition is satisfied.

The Supply Interaction is instantiated and allocated to the tank part contained in the
executeGroundFueling use case by means of the perform action construct. In this case,
the attribute volumeThreshold is redefined to 1000 L, corresponding to the typical fuel
capacity of an electrified aircraft.

use case executeGroundFueling: ExecuteGroundFueling {

part tank {

perform action supplyInteractionGroundFueling : SupplyInteraction {
attribute redefines volumeThreshold = 1000 [L];}}}

Listing 4.7: SysML v2 textual representation of the Supplylnteraction action performed
by the Liquid Hydrogen Tank.

For comparison, the equivalent behavior in SysML v1 is shown in Figure 4.20b. The
activity diagram uses elements such as CallBehaviorAction, InitialNode, FinalNode,
and DecisionNode, combined with control and object flows to describe the execution
logic.

In SysML v2, the same behavior is represented through action definitions and perform
statements, where input and output parameters replace the traditional use of pins. This
approach allows both the reuse of behavioral definitions and the direct allocation of actions
to parts, such as the tank.

Finally, SysML v2 introduces a more rigorous and formal syntax for behavioral interactions,

enabling future extensions toward simulation and analysis.

4.6.2 States description

Once the actions are modeled, the state transitions must be defined to fully characterize
the functional behavior of the system.

Figure 4.21a illustrates the state transitions modeled in SysML v2. These states account
for all possible configurations and operational modes of the tank. Starting from the entry
state, the system enters the StandBy state. Upon receiving an authorization signal, the
Authorizing state is activated, followed by the Filling state once the authorization is
granted. After 1000 s of fueling, or when the volume threshold is reached, the system
transitions to the Filled state. If the internal pressure exceeds a predefined limit, the
system switches to the SafeState, which remains active until the pressure drops below
the safety threshold, after which the system returns to the StandBy mode.

For instance, the textual representation of the transition from the Filling state to the
Filled state is modeled through the transition construct, using the first..accept..then
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—, «state def»
TankStates

actions

@ entry

state transition

o «state» o «state»
StandBy when pressure < 150000 [Pa] SafeState
actions aterafs) | —
«state»
@ entry © Filled

when tank.level >= tank.volumeThreshold

AuthorizeRequest when tank.pressure > tank.maxPressure

AuthorizationDenied

«state» «state» 17
© Authorizing © Filling

]

(a) State transition view of the TankStates realized with SysON (SysML v2).

after 1000 [s]

AuthorizationGranted

[stm] State Machine Diagram [TankModel] [TankStates] 'ﬁ

[pressure < 150000 Pa)

StandBy tm(3s) Filled SafeState
AuthorizationDenied AuthorizeRequest
km(1000s)
Filling [tank.level = tank.volumeThreshold]
Authorizing
[tank.pressure > tank.maxPressure]
AuthorizationGranted
- )

(b) State machine diagram of the Liquid Hydrogen Tank (SysML v1).

Figure 4.21: Comparison between SysML v2 states (top) and SysML v1 state machine
diagram (bottom) of the Liquid Hydrogen Tank.
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sequemnce:

‘transition FillingToFilledTimeout
‘first Filling

‘accept after 1000 ([s]

'then Filled;

Listing 4.8: SysML v2 textual representation of the transition from the filling to the
filled state

Finally, it is possible to assign the action to the instance of the tank in the Ground Fueling
scenario by using the exhibit state construct. This demonstrates the reuse capability of
SysML v2 also for state definitions:

‘part tank : LiquidHydrogenTank {
‘ exhibit state tankStates : TankStates;
ki

Listing 4.9: SysML v2 textual representation of the tank exhibiting the TankStates.

Figure 4.21b shows the state machine diagram in SysML v1 corresponding to the
TankStates. The diagram appears more ambiguous, since the types are not standardized
and are mostly defined manually by the user. Conversely, in SysML v2, the use of formal-
ized constructs such as first, accept, do, and done, together with the exhibit state
mechanism, enables a structured and reusable behavioral description that can be directly
employed for automated process simulation and verification.

This formalized behavioral specification provides the foundation for the internal block
representation discussed in the next section, where the structural interconnections among

system parts are modeled.
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4.6.3 Internal Block Diagram

Once the states have been defined it is necessary to define the functional internal structure
of the tank.

Figure 4.22a illustrates the fuel transfer from the Ground Fueling System to the tank
within the Ground Fueling scenario, highlighting the corresponding ports and interfaces
involved in the process. The complete structural representation, including all items, ports,
and connections defined for the scenario, is shown in Figure A.2, Appendix A.

The fuel, modeled as an item, flows from the Ground Fueling System to the tank through
the fuelGFSPort, which represents the conjugated port of the fuelTankPort. This flow is
expressed in the textual representation by using the dot notation to reference the connected
ports:

(flow of FuelHydrogen
‘ from GFS.fuelGFSPort.fuelSupply
‘ to tank.fueltankPort.fuelReturn;

Listing 4.10: Textual representation of the FuelHydrogen flow from the Ground Fueling
System to the tank in SysML v2.

In SysML v2, there is only one kind of port, while interfaces are defined as connections
whose ends are ports [59]. In Figure 4.22a, the interface connections are represented by
the bold lines. The interface between the tank and the GFS in textual syntax is modeled

as follows:

interface : Fuellnterface connect
supplierPort ::> tank.fueltankPort to
consumerPort ::> GFS.fuelGFSPort;

Listing 4.11: Textual representation of the FuelInterface connection between the tank

and the Ground Fueling System in SysML v2.

The corresponding representation of ports and flows in SysML v1 is the Internal Block
Diagram shown in Figure 4.22b. In SysML v1 there are several kinds of ports, such as
standard, full, flow, and proxy ports. This can lead to ambiguity, since the meaning of
the flow depends on the type of port used. Conversely, SysML v2 unifies all port kinds
into a single, simplified concept and formalizes interfaces explicitly. Moreover, the types
of exchanged items must be declared, resulting in a more precise and rigorous description
of system interactions.

After defining the main actions and their relationships within the functional model, it is

now necessary to derive the corresponding functional requirements.

65



tank: LiquidHydrogenTank GFS: GroundFuelingSystem
«port» ) ( «port»
fueltankPort: FuelPort fuelGFSPort: ~FuelPort
«item» l : FuelHydrogen ( «item>
MuelReturn: Fue[HydrogenJ‘ k’\fueISuppIy: FuelHydrogen
\ y, \ y,

(a) SysML v2 interconnection view of ports and fuel flows in the Execute
Ground Fueling Use Case.

ibd [TankModel] IBD [FuelingFunctionalArchitecture] b

«Block»
FuelingFunctionalArchitecture

«Block» «Block»
GroundFuelingSystem LiquidHydrogenTank
FuelHydrogenFlow

«FlowPort» T «flow»” T T = «FlowPort»
+ fuelGFSPort: Fuellnterface [1] ~ fuelTankPort: Fuellnterface [1]

(b) Internal Block Diagram of the use case execute Ground Fueling: SysML v1
representation.

Figure 4.22: Comparison between SysML v2 interconnection view and SysML v1 Internal
Block Diagrams for the Ground Fueling scenario.

4.6.4 Functional Requirements and Dependencies

The final step of the functional analysis is to guarantee the traceability and the dependencies

of the functional requirements.

It is necessary to derive the remaining functional requirements and to instantiate the
dependency relationships between the actions modeled in the functional analysis and

their corresponding functional requirements.

For instance, in Figure 4.23, within the Supplylnteraction action, a dependency has
been established between the monitor action and the functional requirement FuelVol-
umeMonitoring, as well as between the endFilling action and the functional requirement
FuelSupplyInterruption.
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«action def»
Supplylnteraction
g N ™
el fuel
AcceptAuthorization
«actions
addFuel
[monitor.fuelVolume < volumeThres;
«action» «action»
SupplyStart endFilling
«requirement»
~ ¢ — 4 »<FR2> FuelSupplyinterruptionRequirement
S doc
L — monitor The tanksystem shall be capable of
authorization interrupting the fuel supply when the tank
is filled.
subject
tank: LiquidHydrogenTank
( «requirement»
«depend» <FR1> FuelVolumeMonitoringRequirement
doc
The tank system shall be capable of
monitoring the fuel volume during the
filling operation to ensure proper tank
management.
subject
tank: LiquidHydrogenTank
fuelVolume

Figure 4.23: Example of dependency relationships between functional requirements and
their related actions in the Ground Fueling scenario.

67




4.6.5 Summary of the Extended Case Study

In summary, the Functional Analysis further develops the modeling framework initiated
with the requirements elicitation and the Operational Analysis.

This model has been used to highlight the differences between SysML v1 and SysML v2,
as well as the improvements introduced by the new language.

Finally, this modeling effort serves as the foundation for assessing the interoperability
potential of SysML v2 with external simulation environments, which will be demonstrated
in the next chapter.

4.7 Interoperability with Simulink

Following the modeling activities described in the previous sections, this part focuses on
the integration between SysML v2 and external simulation tools. In particular, it aims to
analyse the enhanced interoperability of SysML v2 with Simulink by investigating the
bridge that enables this integration.

The exploration of interoperability is central to this work, as the new language has shown
great promise in improving communication with engineering tools and is a key enabler for
an integrated environment required for the digital transformation.

This connection is implemented through the tool Mg, as discussed in Table 3.2, which
provides an integrated environment. Its library MgS, where the mapping scripts are
implemented, acts as a bridge between SysML v2 and Simulink by automatically using
the SysML v2 API.

Mg provides a modeling environment in which it is possible to model in SysML v2 and
run the corresponding simulation in Simulink directly within the same Jupyter notebook.
Such capability allows the user to verify the system’s behavior while remaining within the
MBSE environment, thus enabling a continuous workflow from system specification to
dynamic simulation.

In the previous sections, the extended case study was modeled using SysML v2 and
following the traditional MBSE process. In this section, a simplified model is developed
and adapted to facilitate the analysis, since the objective is to understand the mapping
between SysML v2 and Simulink.

The model simulates the tank filling process to verify the requirements on maximum
height and minimum volume using a numerical analysis in Simulink. For simplicity, only
the verification of the maximum height is discussed in this chapter.

This simulation enables the recursive design of the tank based on input parameters
provided to Simulink such as the tank diameter. The main goal is not to reproduce
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the complete physical behavior of the liquid hydrogen tank, but rather to establish a
minimal and clear framework for assessing SysML v2 interoperability within the
MBSE workflow.

Some codes used in this study are reported in the text, while the complete code is included
in Appendix D.

4.7.1 Case study: tank filling and Simulink Model

The simplified case study proposed aims to model the filling process of the liquid hydrogen
tank, where the outlet volume flow rate, the stored volume, and the liquid height of the
tank are dynamically evaluated over time.

The Simulink model, illustrated in Figure 4.25, consists of two main subsystems:

o the valve, whose opening is controlled manually through a switch, as shown in Fig-
ure 4.25(a);

o the tank, which constitutes the main subject of the analysis. It is modeled as a
cylindrical vessel, and its corresponding mathematical representation in Simulink is
shown in Figure 4.25(b).

Liquid hydrogen flows from the valve block to the tank block, and this fuel flow is modeled
in Simulink through a line labeled LH2.

The model is intended to demonstrate interoperability rather than physical accuracy.
Therefore, several simplifying assumptions were introduced: the fluid is considered
incompressible and isothermal, the tank is modeled as a perfect cylinder with a uniform
cross-section, and thermal effects, boil-off phenomena, and vaporization are neglected.

Two input parameters are provided to the model:

« the tank diameter, d, expressed in meters (m);

5/2 g1

o the efflux coefficient, ', expressed in m
These parameters represent the design parameters, as the analysis discussed in the next
section is executed based on the selected values. The process is iterative, allowing the
parameters to be modified until the requirements are satisfied.

As illustrated in Figure 4.25(a), when the valve is in its open configuration, it receives a
step input representing the liquid hydrogen volume flow rate.
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Figure 4.24: Representation of the Simulink model used to simulate the filling process.
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(a) Internal Simulink model of the valve
subsystem, featuring a manual switch that
allows the control of the valve opening.

%
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(b) Simulink model of the tank subsystem, which
implements a mathematical model within the tank
block and uses an integrator block.

Figure 4.25: Simulink subsystems representing the valve and the tank.

The Simulink model is based on a simplified mass balance of the liquid hydrogen. The
following relations define the basic behavior of the system.
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The cross-sectional area of the tank is computed from its diameter:
Ays = %dz (4.2)

The rate of change of the stored volume depends on the inlet and outlet flow rates:

av
0. — 4.
dt an Qout ( 3)
The liquid height is obtained from the calculated volume:
V
h = 4.4
m (4.4)

While the outlet flow rate is determined by the efflux coefficient C' and the liquid height:
Qout =C \/E (45)

The integration of Equation (4.3) provides the time evolution of the stored volume, which
is implemented in Simulink through an internal integrator block within the tank subsystem,
as illustrated in Figure 4.25(b).

4.7.2 SysML v2-Simulink Bridge

Having introduced the simplified case study and its corresponding Simulink model, the
next step consists in modeling the system architecture and performing the analysis in
SysML v2, followed by the model-to-model mapping with Simulink, implemented within
an integrated SysML v2 textual model file.

The main phases of this process are illustrated in Figure 4.26. As shown, the workflow is
divided into two sub-phases:

o General context. This phase defines the overall model structure, reusable defini-
tions, and general analyses applicable to any tank configuration. It involves importing
the required libraries, defining the model structure, establishing the mapping with
Simulink, and specifying the analysis to be performed. The corresponding SysML v2
model is named TM.

o Applied context. In this phase, the elements defined previously are instantiated
for the compact tank configuration with a smaller diameter, in order to verify the
maximum height and minimum volume requirements under given design constraints.

This includes assigning parameters, defining the flows, configuring the analysis, and
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finally evaluating its execution in Simulink. The corresponding SysML v2 model is
named CompactTM.

General Context (TM)

Library Structure Model Analysis
- a8

L]
1
Application Context (CompactTM) !
1

A4
Parameters Analysis Execution,
and Flow Setup Evaluation

Figure 4.26: Representation of the Interoperability Workflow.

The following subsections describe how the overall model is structured (general context)
and how it is instantiated for a specific configuration (application context).

4.7.3 General Context

This section provides an overview of how the general model is defined to enable the
SysML v2-Simulink bridge.

Library imports

Firstly, to enable the bridge, the MgS library must be imported. This library contains
all the mapping commands required to establish the connection between SysML v2 and
Simulink.

Another essential library is StateSpaceRepresentation, which provides extensions for
modeling dynamical systems through an input—output representation. This structure is
particularly suitable for mapping the inputs and outputs of the Simulink blocks.
Additional auxiliary libraries are also imported to define attribute types and ensure
consistency of physical units across the model, such as the International System of

Quantities (ISQ) library.

Structure Definition

Afterward, the structure of the model must be defined. As illustrated in Figure 4.27, the
Tank part definition includes three main attribute definitions:
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o TankInput, which contains the inlet volume flow rate );, as an attribute ;

o TankOutput, which contains the outlet volume flow rate Q,., the liquid height h,
and the computed volume V' as attributes;

o TankState, which represents the internal state of the system and includes the
variable Volume, modeled as an attribute.

Similarly, the Valve part definition is modeled as an attribute definition with an output
(), that is an attribute representing the valve outlet volume flow rate.

These attributes specialize the corresponding elements defined in the
StateSpaceRepresentation library. For instance, TankOutput is a specialization
of the Output attribute definition defined within that library.

«attribute def»
TankState

attributes
Volume: VolumeValue

®/ «attribute def»
™

«p'?gndlff» TankOutput
attributes attributes

Qout: VolumeFlowRateValue
V: VolumeValue

@\h:LengthValue

«attribute def»
TankInput

attributes
Qin: VolumeFlowRateValue

dischargeCoefficient: Real
tankDiameter: LengthValue

«attribute def»
«part def» ValveOutput

Valve (U attributes
Qo: VolumeFlowRateValue

Figure 4.27: Graphical representation of the part definitions for the Tank and the Valve
with their attributes definitions.

Model mapping

The mapping requires three steps:

e Model linking
o Parameter mapping

o Blocks mapping

73



Model linking To enable communication between SysML v2 and Simulink, the model
must be explicitly linked to the corresponding Simulink file. In this case, the SysML v2 part
tankModel is associated with the Simulink file TM. s1x through the SimModel command
shown in Listing 4.12.

part tankModel : TankModel {
@MgS: :SimModel (name = "TM");

}

Listing 4.12: Mapping of the SysML v2 tankModel part to the corresponding Simulink

model.

This command establishes the link between the two environments, ensuring the correct

exchange of information with the Simulink model.

Parameter mapping The model parameters, namely the tank diameter d and the
efflux coefficient C, are mapped to Simulink by redefining the corresponding attributes
through the Param command, using the same variable names adopted in the Simulink
model. For instance, the attribute tankDiameter is redefined and linked to the Simulink

parameter named "d", as shown below:

attribute redefines tankDiameter {
@MgS: :Param (name = "d");
}

Listing 4.13: Mapping of the SysML v2 parameter with the corresponding Simulink
variable.

Blocks mapping The Simulink blocks, such as the tank block shown in Figure 4.25, are
represented in SysML v2 as actions, since they have a behavioral nature and are mapped
to the corresponding Block element defined in the MgS library.

The code in Listing 4.14 shows how the tankBehavior action is mapped to the Simulink
block tank.

part redefines tank {

#simBlock action tankBehavior {
@MgS: :Block (name = "tank");
3

Listing 4.14: Mapping of the SysML v2 tank part to the corresponding Simulink block.
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All the MgS commands defined in the library include a metadata annotation that enables
the link between SysML v2 and Simulink. Figure 4.28 summarizes the main mappings:
the model name defined as a part, the parameters assigned to the tank, and the block

mappings of the tank and the valve, represented as actions with metadata annotations.

«part» «#simBlock»
‘ tank tankBehavior

attributes metadata
O I> tankDiameter Fank::tankBiameter Block o
‘tankModeI: TankModel I> dischargeCoefficient Tank::disehargeCoeficient name = "tank
metadata

SimModel
name = "TM"

I

«#simBlock»
valveBehavior
metadata
Block
name = "valve"

J

>~ 000000

Figure 4.28: Graphical representation of the tank model usages, where the metadata
annotations show the block and model mapping.

Analysis definitions

As discussed in Chapter 2, the analysis process is integrated within SysML v2.

First, an analysis definition must be modeled. In this case, TankAnalysis is defined as a
specialization of the SimAnalysis type in the MgS library, which provides the commands
required to establish the connection with the Simulink simulation.

The code in Listing 4.15 shows how TankAnalysis specializes SimAnalysis. This type of
analysis is generic and must be associated with both a subject and a requirement, while
its objective must be explicitly stated. In Figure 4.29, for example, the objective is to
determine whether the tank subject satisfies the corresponding TankRequirement.
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analysis def TankAnalysis specializes MgS::SimAnalysis {

}

Listing 4.15: Definition of TankAnalysis as a specialization of the MgS::SimAnalysis
type, which is an action definition.

¢

«analysis def» © «requirement»
TankAnalysis tankRequirement: TankRequirement

«objective»

«requirement»
tankAnalysisObjective
doc
the objective of this analysis is to determine

whether the subject tank can satisfy the
tankRequirement

Figure 4.29: Graphical representation of the TankAnalysis with its objective, its related
subject, and its associated requirement.

Max height analysis Therefore, after defining the general analysis, a more specific one
is introduced.

One of the analysis selected in this case study is to determine whether the requirement
about the maximum fluid height is verified, as illustrated in Figure 4.30.

«requirement def»
MaxHeightRequirement

doc
The maximum height of the tank must be
less than the required spec. «subject»
attributes >— tank

actualMaxHeight: LengthValue
requiredMaxHeight: LengthValue
constraints
require { actualMaxHeight >
requiredMaxHeight }

Figure 4.30: Graphical representation of the MaxHeight requirement definition.

The maximum height analysis detailed in Figure 4.31 is defined as a specialization of the
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‘analysis def MaxHeightAnalysis specializes TankAnalysis {

‘ return simulatedMaxHeight : LengthValue;
K

Listing 4.16: Definition of the MaxHeightAnalysis as a specialization of TankAnalysis.

previously introduced TankAnalysis, in order to inherit both the link with Simulink and
the structure defined in the general analysis.

The code in Listing 4.16 defines the MaxHeightAnalysis as a specialization of
TankAnalysis.

The example shows how the specialization mechanism of SysML v2 allows the inheri-
tance of analysis definitions and their associated links with Simulink, demonstrating the
language’s capability to support interoperability.

The analysis returns the variable simulatedMaxHeight, which represents the maximum
fluid height obtained from the simulation. This value can then be assigned to a corre-
sponding attribute in the system model, such as actualMaxHeight, to update the analysis
results, as shown in Listing 4.16.

«requirement»
maxHeightRequirement: MaxHeightRequirement ‘«subjecty
attributes tank
I> actualMaxHeight = simulatedMaxHeight MaxHeightRequirement::actuatMaxHeight
requiredMaxHeight: LengthValue

/ «requirement» )

maxHeightAnalysisObjective
«objective» doc
the objective of this analysis is to determine
whether the subject tank can satisfy the
maxHeightRequirement

constraints
require maxHeightRequirement )

«analysis def»
MaxHeightAnalysis

Figure 4.31: Graphical representation of the MaxHeight analysis with its objective, its
related subject, and its associated requirement.

4.7.4 Application Context

The application context represents the transition from the general model to a specific case,
where the defined elements are instantiated and the analysis can be executed.
In this work, the application context refers to the configuration in which the tank has a
smaller diameter, also known as the compact configuration or compact case.
The objective is to verify whether the selected diameter and efflux coefficient satisfy the

system requirements.
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The approach consists in specializing the model defined in the general context and applying
it to the compact case analysis as showed in Listing 4.17. This enables the reuse of all
previously defined properties.

part tankModelCompact :> tankModel {
part redefines tank { ... }

3

Listing 4.17: Specialization of the general TankModel into the compact configuration.

To fall within the compact case, the model must comply with the 4-meter size requirement
shown in Figure 4.32. If the diameter exceeds this value, the analysis is no longer valid, as
the requirement would not be satisfied. For the simulation a diameter of 3.9 m has been

chosen, which perfectly fits this category, falling within the compact-tank configuration.

«requirement»
smallTMRequirement: TankRequirement

doc
The diameter of the small tank shall be
lower than 4[m]

constraints
assume {
tankModelcompact.tank.tankDiameter <
4[m] }
subject

tank::> tankModelcompact.tank

Figure 4.32: Graphical representation of the smallTM requirement.

Parameters

Once the requirement used to determine whether the model falls within the compact case
has been instantiated, the first step of the application context is to assign the parameter
values according to the workflow proposed in Figure 4.26.

The parameter of the model, such as the tank diameter, is set to 3.9 m by redefining the
attribute inherited by the general tankModel.

part redefines tank {

attribute redefines tankDiameter = 3.9[m];

Listing 4.18: Parameter redefinitions for the compact tank model.

Figure 4.33 shows how the attributes are redefined within the subsets of the model in
the compact context. For instance, the tank diameter is set to 3.9 m and the discharge
coefficient to 3.2, which is considered dimensionless to simplify the code.
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«#simBlock»

«part» .
tank MankBehavior
attributes metadata
I> tankDiameter = 3.9[m] tenkBiameter Block o
" g I> dischargeCoefficient = 3.2 disehargeGoetficient name = "tank

«part»
ﬂankModelcompact :>TM::tankModel

>

«#simBlock»
valveBehavior
metadata
Block
name = "valve"

«part»
Avalve

Figure 4.33: Representation of the attribute assignment that assigns the values 3.9
and 3.2 to the diameter and discharge coefficient parameters, respectively through the
redefinition of the attributes.

Flow

After defining the parameters, the following phase focuses on establishing the physical
interactions between the components through the flow connections.

The liquid hydrogen LH, flow is mapped by using the same names as the input and output
of the Simulink blocks shown in Figure 4.25 and Figure 4.27.

The flow connection between the valve and the tank is implemented as follows:

flow LH2
from valve.valveBehavior.valveOutput.Qo

to tank.tankBehavior.tankInput.Qin;

Listing 4.19: Definition of the LH2 flow between the valve and the tank; this notation,
using identical names for the Simulink elements (input, output and the line), directly
maps the flow to the Simulink line named LH2.

In this case, (), represents the output of the valve, while ();, corresponds to its input. The
flow name LH,; must match the one defined in the Simulink model. Alternatively, if no
name is assigned to the line, it will be overwritten in Simulink by the name specified in

the mapping.

Analysis Setup

Once the parameters have been set to their design values, the simulation settings in the
maximum height analysis must be configured.

This is done by redefining the simCond attribute, which represents the simulation conditions
and is inherited from the SimAnalysis type.

For instance, in the maximum height analysis for the compact context, the initial time was
set to 50 seconds and the final time to 400 seconds by redefining the attributes fromTime
and toTime contained within the simCond attribute.
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The code in Listing 4.20 defines the analysis on the maximum liquid height for the compact
context and its simulation settings:

analysis maxHeightAnalysisSmall : MaxHeightAnalysis {
redefines simCond {
redefines fromTime = 50 [s];

redefines toTime = 400 [s];

3

Listing 4.20: Instantiation of the maxHeightAnalysisSmall analysis and setup of the

simulation parameters.

At the time of writing, the MgS tool is still experimental, and only the configuration of the
final simulation time is currently supported. Alternatively, MATLAB commands can be
defined directly within the SysML code through metadata annotations implemented in the
MgS library, for instance to set the initial simulation time, as illustrated in Figure 4.34.

«analysis»
maxHeightAnalysisSmall: MaxHeightAnalysis
parameters

out simulatedMaxHeight: LengthValue =
tankModelcompact.tank.tankBehavior.tankOutput.h
metadata

MATLAB

command =
“try,
set_param('TM','StartTime','50','StopTime','400');
catch, end"

references
I> simCond SimAnatysis::simGend
subject
tank::> CompactTM::tankModelcompact

Figure 4.34: Graphical representation of the maxHeight AnalysisSmall and its metadata
annotation used to extend MATLAB support for setting the analysis parameters.

In addition to these constraints on simulation settings, another limitation concerns the
definition of the analysis subject. The subject of the analysis must correspond to the entire
model. Otherwise, the file cannot be located. For instance, in the maxHeightAnalysis,
the subject must be tankModelCompact, which represents the overall model and not the
tank subpart, as reported in Listing 4.21.
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analysis maxHeightAnalysisSmall : MaxHeightAnalysis {
subject references tankModelCompact;

3

Listing 4.21: Instantiation of the MaxHeight Analysis for the compact tank configuration.

The final step of the analysis setup involves defining the recording and retrieval of the
simulation results. This is achieved through the SimRet command, which enables the
registration of the minimum, maximum, and final values, or alternatively, the entire time
series. In this analysis, the maximum value was selected, as the maximum liquid height
corresponds to the peak level reached during the simulation. Alternatively, in an equivalent
way, the final value could be used, since the process represents a filling operation.

Listing 4.22 shows how the simulation output is retrieved using the SimRet metadata:

analysis maxHeightAnalysisSmall : MaxHeightAnalysis {

return simulatedMaxHeight : LengthValue =
tankModelCompact.tank.tankBehavior.tankOutput.h {
@MgS: :SimRet {

ret = Retrieval: :MAX;

name = "simulatedMaxHeight";}}}

Listing 4.22: Retrieval of the simulation output using @MgS: : SimRet metadata.

Finally, as reported in Listing 4.23 the tank subpart is constrained to satisfy the maximum
height requirement, thereby allocating the requirement to the corresponding part of the

system.

satisfy maxHeightRequirementSmall by tankModelCompact.tank

Listing 4.23: Formal linking between the requirement maxHeightRequirementSmall and
the tank part that satisfies it.

Execution and Evaluation

The final step of the workflow is to execute the analysis and evaluate the results. To
perform the maximum height analysis and simulate the tank filling process in Simulink, the
execution is activated directly from the SysML textual environment through the following

command:
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Jmgs exec maxHeightAnalysisSmall

Listing 4.24: Execution command for the maxHeightAnalysisSmall analysis.

This enables the execution of the desired analysis using the same model, demonstrating
the flexibility and integration capability of the approach.

When the command is executed, the MgS interface automatically transfers the mapped
parameters and connections from the SysML model to Simulink, opens MATLAB and
the corresponding Simulink file, runs the simulation, and retrieves the defined results. A
message is then displayed indicating whether the simulation was successfully completed or
failed, along with any warnings about unmapped elements.

4.7.5 Simulation Results and Discussion

The results of the Simulink simulation include the outlet volume flow rate, the liquid
height, and the stored fuel volume inside the tank, as shown in the scopes of the Simulink
model in Figure 4.24.

Figure 4.35 presents the three output series, which exhibit a consistent dynamic behavior
that progressively increases until reaching a steady-state condition.

Among them, only the height variable was recorded for the analysis, while the other two
curves are included for completeness, as they are directly plotted by the Simulink model

and help to interpret the system dynamics.

The maximum height corresponds to the final value, equal to h = 9.77 m.
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Figure 4.35: Simulation results showing the time evolution of the outlet flow rate, stored
volume, and liquid height in the tank.

To validate the data retrieval mechanism, an auxiliary MATLAB script was implemented
to automatically collect the simulation outputs from the workspace.

The code in Listing 4.25 shows the simulation results obtained through the auxiliary script.

The logged variables are automatically named by the MgS bridge. For instance,
logb_h_tank TM_O refers to the logged signal of the liquid height A from the block
tank in the model TM. s1x.

The maximum height value was successfully recorded and retrieved in the MATLAB
workspace, confirming that the commands were correctly executed and that the communi-
cation between SysML v2 and Simulink was effectively established. As confirmed by the
feedback of the software Mg after the execution, the flow connection was properly mapped
to the LH2 line in Simulink, and the blocks were accurately mapped, while the simulation
was successfully executed.

The values of the parameters were successfully transferred to the model, resulting in
correctly set values of C' = 3.2 and d = 3.9, while the simulation time was properly
configured.

The result h = 9.76 m satisfies the maximum height requirement, confirming that the
initial values selected for the diameter and the efflux coefficient are consistent with the

requirements.
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=== O
Cc = 3.
d = 3.

delWorkspace: MgSimulinkTM ===

2

9

=== SimulationOutput: MgSimOut_TM ===

Logged elements : 3
logb_Qout_tank_TM_O

logb_V_tank_TM_O
logb_h_tank_TM_O

logb_h_tank _TM_O : SCALAR = 9.7656
Simulation time : t = [20 ... 400]

Listing 4.25: Excerpt of MATLAB console output showing the retrieved simulation
results from Simulink.

4.7.6 Assessment of the MgS-Based Interoperability Bridge

The interoperability bridge developed through the MgS library has enabled the connection
between the modeling language and the simulation software. In the following, a critical
evaluation of the SysML—-Simulink interoperability achieved through the MgS library is
presented, highlighting the main advantages and limitations of the current tool observed
during the simulation process.

Several advantages of the adopted infrastructure have emerged:

 Firstly, one of the demonstrated capabilities of the proposed approach lies in the au-
tomation and parameter management. Model parameters can be automatically
transferred from SysML v2 to Simulink by redefining their attributes, thus ensuring

automation within the model.

o A second capability concerns the connection with blocks and lines. The process
has demonstrated the correct mapping of SysML v2 actions to the corresponding
Simulink blocks. In cases where the mapping is not properly established, the tool
automatically generates warnings. Moreover, if a flow line in Simulink is missing or
has a different name, it can be automatically created or updated from the SysML v2
model, providing partial control of the Simulink elements directly from the textual

code.

o The last aspect is the flexibility of the analysis and the tool integration.
It is possible to run different analyses without changing either the Simulink or
the SysML model. Furthermore, the requirements and the analyses can be directly
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linked to the simulation outputs, demonstrating the integrated potential of the
framework. Moreover, the registration of the full time series and of the final value
was successfully achieved, as well as their retrieval in the MATLAB workspace.
In addition, since the MgS library is itself a SysML v2 library, it can be directly
imported and inspected within the same environment, for instance in VS, allowing

users to adapt its functionalities when required.

Despite these advantages, several disadvantages of the MgS tool were identified during
the simulation phase, due to the experimental version and the fact that it has not yet
been officially released in its final version:

o The first limitation concerns the mapping process, which currently supports only
action elements, preventing the linkage of other types. This represents a significant
constraint, as it forces the modeler to adapt the structure by using actions instead

of parts or other constructs.

Moreover, the MgS mapping elements are connected through metadata annotations
to Java code, which is not accessible to the user, as the library is not intended to be
modified.

In addition, the mapping should ideally allow bidirectional communication between
the two software tools, but this feature becomes less effective if both the SysML and

Simulink models must still be created manually.

e Secondly, regarding the analyses and simulation, the retrieval of the minimum,
maximum, and average values was not successful, since only the full series and the
final value were collected and the names of the output variables were not correctly
assigned. Furthermore, the fromTime attribute does not work and must be manually
managed through the MATLAB extension. Moreover, it is not possible to plot or
retrieve elements that are not inputs or outputs, such as the states, thus revealing a

major constraint in the StateSpaceRepresentation library.

o Another aspect is the tool constraint, since a Simulink model must exist before
modeling in SysML v2 and must be created manually, except for the flow lines.
In addition, the simulation must be executed within the MgS environment, which
operates through a local HTTP server hosting the Java components responsible
for the mapping process, thus not allowing a direct execution from the local disk

without the server.

Moreover, the MBSE workflow is difficult to maintain due to several constraints. For
instance, the analysis execution requires the subject to be the part associated
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with the Simulink model (for instance, the tankModelCompact that contains the
reference to the Simulink model file), meaning that it is not possible to define the
subject of the analysis as a part or subpart of the system, such as the tank part.

Finally, the current implementation does not support requirement verification
within the same integrated environment, thus requiring the use of an external

validation tool.

4.8 Summary of the Case Study

To summarize, the case study investigated in this chapter concerned the modeling of
a liquid hydrogen tank for aircraft applications using SysML v2. The objective of the
modeling activity was to concretely evaluate the potential of SysML v2 compared to the
previous version.

Two models were developed to this end: an extended case study, covering the MBSE
phases of Requirements, Operational Analysis, and Functional Analysis, and a simplified
model, aimed at exploring the interoperability of the modeling language with Simulink
through the MgS infrastructure.

The requirement modeling demonstrated major improvements in the quantitative for-
malization and traceability of requirements, while preserving the capabilities of SysML v1.
Regarding the operational analysis, among three scenarios identified, only the Ground
Fueling was presented for simplicity, yet it demonstrated robust and unambiguous model-
ing.

Overall, the operational analysis revealed greater precision and expressiveness, together
with enhanced reuse capabilities introduced by SysML v2.

The functionality of the system was modeled through its internal behavior, defining
the flows and the interfaces, and highlighting the direct comparison with SysML v1.
The final part represents the main objective of this work, which aims to demonstrate the
interoperability between SysML v2 and Simulink through the MgS framework.

The filling process of the tank has been modeled by verifying the requirements on the
minimum volume and the maximum height, although only the latter was discussed.
Advantages have emerged, such as integration, direct mapping, and modularity of the
analysis, but also several limitations, mostly linked to the experimental nature of the tool,
such as partial mapping, constraints on the subjects for the analysis, and the manual
setup in MATLAB.

The case study has demonstrated the coherence of the MBSE approach by using SysML v2,
which has revealed greater integration of the requirements, operational, and functional
aspects. The language has also demonstrated precision and a strong potential for interoper-
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ability, as shown by the mapping that confirmed its suitability for this type of connection,
thanks to its textual form and standardized API.
The model developed will serve as the basis for a critical evaluation of the language and

for the conclusions presented in the next chapter.
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Chapter 5

Conclusion

This final chapter concludes the thesis by discussing the main results, summarizing the
key contributions, and proposing possible directions for future work.

Based on the objectives defined in the introduction, this thesis evaluated the applicability
of SysML v2 within an MBSE framework, aiming to demonstrate how the language can

improve interoperability with external simulation environments such as Simulink.

5.1 Discussion and evaluation

This discussion reflects on how the achieved results address the main research objective,
critically evaluating what SysML v2 has improved and which areas still require further

development in terms of interoperability within an MBSE workflow.

5.1.1 Modeling results

Model organization and reuse The SysML v2 model developed for the liquid hydrogen
tank demonstrated that a modular and hierarchical organization effectively managed the
system’s structural complexity while ensuring maintainability across the whole model.
Through the explicit use of the definition—usage paradigm, the model revealed a tangible
methodological advantage: reusable components could be instantiated and adapted across
multiple contexts without duplication.

Formal traceability relationships (derive, refine, satisfy) and typical constructs
(specializes, redefines) ensured complete traceability across abstraction levels and
demonstrated the potential of reuse through property inheritance. This potential was
particularly highlighted through its direct implementation in the analysis workflow, for
instance when the general tank analysis was specialized into the analysis of the maximum
height, thus inheriting all the attributes defined in the general case.
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Quantitative requirement modeling By assigning explicit units, variables, and
constraints, each requirement modeled for the tank became a quantitative entity that
could be verified against simulation results rather than remaining a static textual statement.
This approach enabled the direct use of requirements in the analysis and simulation,
demonstrating both the increased rigor and the extended applicability. However, this
process required additional effort to configure the supporting libraries and define the
constraints.

Overall, quantitative formalization of the requirements demonstrated the feasibility of
linking SysML v2 requirements with simulation-based analysis.

Operational and Functional Analysis The Operational Analysis in SysML v2 iden-
tified the main actors and use cases of the ground-filling scenario, while the Functional
Analysis described the system’s behavior, from authorization to monitoring, highlighting
the capabilities and structure of SysML v2 in capturing system dynamics and interactions.
The explicit temporal semantics introduced by constructs such as first, then, and done
enabled a formal representation of sequential behavior that could not be explicitly ex-
pressed in SysML v1. This capability enhanced modeling rigor and supported a direct
correspondence between modeled actions and their simulated execution order.

In the implemented tank architecture, a single type of port was employed to represent
both physical and control connections, demonstrating the modeling simplification intro-
duced by SysML v2, while SysML v1 required specifying different types of ports, which
would have made the model more complex.

Moreover, the explicit definition of state transitions enhanced behavioral precision by
clearly specifying the sequence of transitions and formalizing the physical units associated
with temporal transitions. Additionally, it enabled the direct association of system states
with the tank components, improving the allocation these states.

Following the modeling activity, the analysis assessed the interoperability of the SysML v2
tank model with external simulation environments through the MgS bridge, establishing a
direct mapping to its Simulink counterpart.

5.1.2 Interoperability results

Implementation of the SysML v2-Simulink bridge The achieved mapping be-
tween SysML v2 flows and Simulink lines showed that SysML v2 can partially control
Simulink connections by overwriting the name of the Simulink lines, marking a first step
toward executable, bidirectional interoperability. The mapping of Simulink blocks with
the SysML v2 actions confirmed this capability, although complete control is not yet
implemented; however, it provides a solid basis for future development.
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The correct transfer of parameters and metadata confirmed that the information defined
at the model level can be easily interpreted by the simulation environment through the
standardized API, thus reducing issues related to incompatibility or difficult communication
with the non-standardized API typical of SysML v1.

This experiment proved the feasibility of an automated, model-based exchange mechanism,
while also highlighting that current interoperability still depends on partial manual
intervention due to the limited maturity of the bridge.

Simulation and validation of the tank filling process The tank-filling simulation
was executed directly from the SysML v2 environment, demonstrating the integration

between modeling and simulation within a single workflow.

The obtained liquid height met the specified requirement, confirming that the chosen
parameters were consistent with the design assumptions and validating the SysML v2-based

approach for designing a system that is consistent to the requirement constraints.

The simulation results were stored only in the MATLAB workspace, since the export
as external files was not supported, highlighting the data-persistence limitation in the
interoperability workflow.

Nevertheless, the integration still relies on manual configuration and supports only a
unidirectional data flow from SysML v2 to Simulink, without exploiting the real potential
for bidirectional synchronization, revealing that the conceptual maturity of SysML v2 is

not yet matched by the current implementation of supporting tools.

5.1.3 Limitations

Despite the promising results achieved, several limitations were encountered during this
work. First, SysIDE with the integrated Jupyter environment offered only limited and
non-editable views, shifting the workflow toward textual modeling, which may result
complex and less intuitive. Second, the need for manual mapping between SysML v2 and
Simulink highlighted the current immaturity of interoperability standards, confirming
that automation remains limited in this phase of tool development. Third, the overall
integration remains strongly dependent on Simulink, since the bridge does not yet support
bidirectional and synchronized control of blocks. Finally, these tool limitations and the
need for manual adjustments reduce the current feasibility of an industrial adoption of
the proposed workflow.
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5.1.4 Critical Assessment

Expectations. SysML v2 was expected to overcome the limitations of SysML v1 by
offering a more formal, coherent, and machine-readable language, improving semantic

consistency, reducing redundancy, and facilitating interoperability with external tools.

Results achieved. The tank model partially confirmed these expectations. The defini-
tion—usage paradigm reduced redundancy and improved readability, while the quantitative
representation of requirements enabled physical units and constraints with rigorous trace-
ability (dependency, refine, derive). Behavioral modeling proved expressive, as temporal
constructs (first, then, done) clarified the sequence of interactions. Interoperability tests
confirmed SysML v2’s capability to interact with external tools via standardized APIs,
though performance still depends on tool maturity.

Implications of the limitations. The limitations discussed above highlight that the
conceptual maturity of SysML v2 is not yet matched by tool maturity. The restricted
automation and the manual effort required for model synchronization indicate that the
adopted framework used to connect SysML v2 with Simulink is currently more suitable
for research and prototyping than for large-scale industrial deployment. These findings
emphasize the importance of continued tool development and standardization to fully
realize the language’s interoperability potential.

Industrial implications. SysML v2 represents a clear step forward in MBSE evolution,
providing the rigor and consistency needed for future standardization. However, large-scale
adoption depends on tool consolidation and the demonstration of validated industrial
applications enabling integrated digital workflows.

Summary. The analysis confirmed the conceptual maturity and current practical limi-
tations of the SysML v2 tools. The effective deployment of SysML v2 will depend on the
evolution of supporting tools and standardized integration frameworks.

5.2 Contributions

The following section summarizes the main contribution, emphasizing the methodological
framework developed, the practical modeling results achieved, and the results from the
SysML v2-Simulink interoperability exploration.
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5.2.1 Main Contributions

Three main contributions have been identified:

» (1) Methodological contribution: The traditional MBSE process was fully adopted
and applied to modeling with SysML v2, in order to best exploit its potential. Starting
from the mission of the tank system and deriving all system requirements, the
process continued through the definition of operational scenarios and the modeling
of functional behavior, up to the analysis and simulation with Simulink. This, along
with the specification of the tool framework, demonstrated an integrated workflow
entirely based on SysML v2, consistent with MBSE principles.

* (2) Modeling contribution. An entire model of the tank was developed and
organized in a modular, package-based structure. The requirements were formalized
quantitatively, including their constraints and assumptions, physical units and defi-
nition—usage pattern and ensuring the traceability across all levels. The Operational
Analysis described the interactions between the tank and the actors in the autho-
rization and execution use cases of the ground fueling scenario, detailing through
messages and event occurrences the information exchanged. The functional analysis
detailed the functional behavior by exploiting the expressiveness of SysML v2 to
model control structures, actions, state transitions, and flow descriptions through
the use of ports and interfaces.

* (3) Interoperability contribution. The most original contribution concerns the as-
sessment of the MgS bridge through the development of a specific SysML v2-Simulink
model. A complete workflow was implemented to transfer parameters and perform
the mapping between the two environments, distinguishing a general and a com-
pact context. In the latter, a concrete analysis of the tank’s maximum fluid height
was executed directly from the SysML v2 environment to activate the Simulink
simulation. The parameters were accurately transferred, the mapping of actions
and flows with Simulink blocks was successfully implemented, and the MATLAB
workspace correctly stored the selected results, whose retrieval was validated through
an additional MATLAB script. The resulting maximum height was 9.17 m, satisfying
the related requirement and justifying the chosen values of the diameter and the

efflux coefficient parameters for the liquid hydrogen tank.

5.2.2 Impact of the contributions

This work demonstrated the feasibility of applying SysML v2 to the modeling of a
complex aerospace system, represented by the liquid hydrogen tank, and proved that the
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language can integrate modeling and analysis within a single, coherent MBSE framework.
This achievement is particularly relevant for both research and industry, as it provides a
concrete reference implementation of the emerging SysML v2 standard and supports the

ongoing transition from SysML v1.

From an academic perspective, the work expands the current knowledge on MBSE
languages by offering a reusable modeling and interoperability framework that can serve
as a foundation for future studies on tool interoperability. From an industrial point of
view, the evaluation of the MgS bridge validated the interoperability potential between
SysML v2 and Simulink, confirming the correct parameter exchange and mapping while
highlighting the current tool limitations. This interoperability demonstration provides a
first step toward linking model-based design and simulation environments, leading the
way toward a more integrated digital engineering ecosystem.

Finally, the proposed SysML v2-Simulink integration lays the foundation for automated
and bidirectional data exchange. Overall, the thesis delivers one of the first tangible
demonstrations of model continuity with the use of SysML v2 across system design and
simulation, effectively bridging the gap between theoretical MBSE methodologies and
industrial practice.

5.3 Future work

This section outlines the possible directions for future work, aimed at extending and
consolidating the findings of this thesis.
Building upon the results achieved in this work, five main developments are identified:

1. Extension of the MBSE process. To achieve a complete system representation,
future work should extend the current modeling process to include customer needs
and to complete the physical and logical analyses, thus covering the entire system
development cycle.

2. Formal verification of requirements. To enhance rigor and consistency, re-
quirements could be formally verified, given their formal nature in SysML v2, using
model-checking tools such as Imandra. This would enable automatic, comprehensive
assessments and reduce the risk of errors that can significantly impact industrial
applications.

3. Improvement of interoperability. To address the current dependency on Simulink
and the manual mapping effort, future work should directly exploit the SysML v2
API to achieve automated and bidirectional synchronization with external simulation
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environments. Additionally, interoperability with other domains (e.g., CAD or FEM
tools) could be explored to realize a more complete analysis and extend the digital
thread.

4. Evaluation of commercial tools. The assessment of commercial SysML v2 tools
such as Cameo Modeler would allow understanding the extent to which they support
concurrent editing of textual and graphical representations, potentially improving

usability and adoption.

5. Exploration of advanced SysML v2 capabilities. Further investigation of
constructs such as views, individuals, and more advanced SysML v2 elements, would
help to fully exploit the semantics of the language and strengthen its role as a
unifying framework for modeling and analysis.

6. Al-assisted modeling and analysis. Future work could investigate the integration
of AI techniques such as LLM-based model generation or automated analysis from
SysML v2 textual models. Given the open and machine-readable nature of SysML v2,
AT could support the automatic creation of model elements, improve requirement
formalization, and assist in generating or validating interoperability mappings (e.g.,
MgS scripts), ultimately reducing modeling effort and improving model quality.

Overall, these developments would consolidate the proposed workflow into a fully integrated
MBSE framework capable of interacting with external tools such as Simulink and supporting
direct verification and validation of system requirements. The ultimate objective is to enable
the industrial adoption of SysML v2 within a continuous digital engineering ecosystem,
where modeling, simulation, and verification are fully integrated.

94



Appendix A

Additional figures

SimpleVehicleModel_
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1
VehicleConfiguration_a PartDefinitions AttributeDefinitions
1
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Vehicl iguration_b |
PortDefinitions InterfaceDefinitions
1 1 ]
PartsTree ActionTree VehicleVerification ] ]
ItemDefinitions RequirementDefinitions
Requirements View_Viewpoints ]
ActionDefinitions
-
I |
) Isa
| |

Figure A.1: Example of the model organization as proposed by OMG [29].
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Figure A.2: Detailed interconnection view of ports and interfaces for the Ground Fueling
scenario, emphasizing the exchanged flows of items.
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Appendix B

SysML v2 Syntax Elements and

Requirement Relationships

Table B.1: SysML v2 textual constructs used in this work.

Construct Syntax Example

Definition <kind> def <name> part def Tank

Usage <kind> <name> : <type> part tank : Tank

Requirement requirement def <name> requirement def MassReq

Import public import <pkg>::* public import ISQ::*

Specialization —:> Tank :> Component

Redefinition > attribute :» massLimit = 180 [kg]
Reference 1> end part hub ::> mainSwitch
Assignment = mass = 1500 [kg]

Table B.2: Main requirement relationships in SysML v2 [25, 2].

Type of Rela-| Description SysML v1 Cor-
tionship respondence
Dependency Connects two model elements to maintain trace- | ((trace))

ability without implying a logical hierarchy.
Refinement Specializes or details a requirement or model ele- | ((refine))
with metadata | ment, adding information.
Derivation Defines how a new requirement is derived from a | ((derive))
connection higher-level requirement.
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Appendix C

SysML v2 Codes

dependency from A::.. to B::..

metadata ModelingMetadata::Refinement;
derivation connection
end #original ::> A::..;

end #derive ::> B::..;

dependency from A::.. to B::..;

Listing C.1: Examples of requirement relationships in SysML v2: Refinement, derivation
connection and dependency.

[
‘package SystemModel

‘ public import ..::*;
L

package ..;

Listing C.2: Package organization and public import notation.
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Appendix D

TM and TMCompact Codes

The complete SysML v2 model, including the full textual definition of the TM
and CompactTM files, is available at the following repository: https://github.com/
giuseppescrimali/SysMLv2-Interoperability-TankModel

The code has been adapted from the public MgS and SysML v2 examples provided in the
official documentation and extended for research purposes within this thesis [57].

The MgS library used in this thesis was developed by Mgnite Inc. and distributed under a
non-exclusive research-use license [57]. The software has been used in accordance with its
terms and conditions, which prohibit redistribution or modification of the proprietary code.
Only excerpts of SysML v2 code developed by the author are included in this document,

while the original MgS source files remain the property of Mgnite Inc.
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