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Abstract 
 

The increasing adoption of electric vehicles and stringent global sustainability targets highlighted 

the challenge of improving energy efficiency, particularly through an optimisation of the thermal 

management system. Considering this, the aim of this thesis is to develop in Matlab/Simulink a 

model of the Thermal Management System (TMS) that can serve as a foundation for the future 

implementation of a Model Predictive Control (MPC) strategy, designed to maximise energy 

efficiency while keeping the battery and cabin within the desired thermal limits. 

To achieve this, two complementary modelling approaches are developed: a Physics-based model 

and a data-driven model. 

The Physics-based model is based on fundamental thermodynamic laws and is implemented 

using simplified equations. Its main advantage lies in being usable immediately, in complete 

independence from a possible database. The model is validated through a comparison with a 

MathWorks Simscape reference model, demonstrating an optimal compromise between accuracy 

and computational efficiency, with ten times less simulation time. 

The data-driven model, on the other hand, uses neural networks trained on EFFEREST 

experimental data to capture the system's complex nonlinear relationships under different 

operating conditions, including battery heating/cooling and cabin climate control. 

The results of the study are analysed and discussed in the final chapter. The simplified Physics-

based model offers generalizability and fast execution times (about 0.7 seconds), showing decent 

alignment with the Simscape reference model, which takes 71 seconds per simulation. The data-

driven model provides a better estimation of the thermal management system and higher 

computational performance (0.2 seconds). However, this approach is highly dependent on the 

training dataset, thus requiring a large amount of data across different operating conditions. 

Through detailed benchmarking, this work provides not only a robust modelling foundation for 

the future development of predictive control strategies, but also operational guidelines for 

selecting the most suitable approach based on specific design requirements, paving the way for 

electric vehicles with greater range and optimized thermal performance. 
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1. Introduction 
Thermal Management in Electric Vehicles 

The motor sector has been fundamentally reshaped over recent decades, driven by the dual 

necessity of reducing greenhouse gas emissions and phasing out fossil fuels. The internal 

combustion engine, that has powered mobility for the last few centuries, is now struggling to 

meet stringent new demands for sustainability and energy efficiency (International Energy 

Agency (IEA), 2024). Hence, the change to alternative propulsion systems, especially electric 

ones, is considered a global strategic move of the extreme importance (Moultak, 2017). 

International environmental policies are strongly supporting the transition to more eco-friendly 

transportation. In line with the Green Deal objectives, the European Union has established that, 

from the year 2035 onwards, only zero-emission vehicles will be able to be registered. 

(European Commission, Fit for 55, 2021). Furthermore, current regulations mandate a reduction 

in average CO₂ emissions for new vehicles by 15% by 2025 and 37.5% by 2030, compared to 2021 

levels (Regulation (EU) 2019/631). 

Globally, a similar regulatory trajectory is taking shape. Recent analyses of policies adopted up to 

2024 suggest a potential peak in road transport CO₂ emissions around 2025, followed by a steady 

decline. Compared to previous projections, this shift could result in up to 23 billion tonnes of 

avoided cumulative emissions by 2050, with an additional 13 billion tonnes potentially avoided if 

current national targets are fully achieved. However, a substantial gap remains between these 

projections and the more ambitious pathway required to meet the Paris Agreement goals, 

highlighting an urgent need for more decisive and coordinated global action. 

 
Figure 1 Projected global well-to-wheel CO2 emissions from road transport compared with an emissions pathway 

compatible with Paris Agreement goals of keeping warming under 2 °C (Moultak, 2017) 
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In the pursuit of deep decarbonization for transport, battery electric vehicles (BEVs) have 

emerged as a leading technological pathway. Their rapid market uptake is being driven not only 

by policy measures but also by continuous technological advancements in order to improve their 

performance and affordability. This momentum is reflected in the data: global new registrations 

for BEVs surged to around 14 million in 2023, a striking 35% year-on-year increase that pushed 

the total number on the world's roads to over 40 million (International Energy Agency (IEA), 

2024). Looking ahead, Bloomberg NEF projects that this trend will continue to accelerate, with 

battery electric vehicles (BEVs) expected to account for approximately 34% of global passenger 

car sales by 2032 (BloombergNEF, 2024). 

 
Figure 2 Global electric car stock trends 2010-2023 (International Energy Agency (IEA), 2024) 

 

This growth has been enabled by multiple technological and infrastructural factors: increased 

energy density of lithium-ion batteries, improvements in power electronics efficiency, and the 

widespread deployment of public and private charging networks (Funke & al., 2019). However, 

the diffusion of BEVs does not simply represent a substitution of the thermal engine; rather, it 

signifies a systemic shift involving the entire value chain—from vehicle design and manufacturing 

to energy management, logistics, and strategic materials. 

 

Current Challenges: Range, Efficiency, and Consumer Perception 

Despite significant progress, the widespread adoption of electric vehicles continues to face 

technical and conceptual challenges. One of the main obstacles is so-called “range anxiety,” 

which refers to the fear of limited residual driving range and the perceived lack of charging 

infrastructure (Nicholas, 2020). This psychological barrier is intensified by a general unfamiliarity 
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with EV technology and the practical challenges of planning long journeys within the constraints 

of a still-developing charging network. While equipping vehicles with larger batteries seems an 

obvious solution to alleviate range concerns, this approach introduces significant trade-offs. It 

negatively impacts manufacturing cost, overall vehicle weight, charging duration, and the total 

environmental footprint of the vehicle (Neubauer & Wood, 2014). Consequently, research efforts 

are increasingly focused on optimizing energy consumption, aiming to improve the overall vehicle 

system efficiency without increasing nominal energy capacity. 

 

Thermal Management in BEVs: Challenges and Opportunities 

One of the main factors influencing the operational efficiency of a BEV is the Thermal Energy 

Management system (TEM), which represents the second largest energy consumer after the 

propulsion system (Lokur & al., 2024). This system is responsible for regulating the thermal 

balance of three critical subsystems: 

• The passenger cabin, to ensure occupant comfort in all climatic conditions; 

• The battery pack, which must operate within an optimal temperature range (typically 20–

40°C) to guarantee efficiency, safety, and longevity (Kim, Oh, & Lee, 2019); 

• The electric propulsion unit, comprising the motor and inverter, which requires heat 

dissipation to prevent performance drops and damage (Kim, Oh, & Lee, 2019). 

In extreme environments, thermal management can drastically impact vehicle range. According 

to several studies, the HVAC usage can alone reduce driving range by 30% and 35% (Luo & al., 

2020). The impact can be even more severe, as demonstrated by testing on a Ford Focus Electric, 

which exhibited range reductions of 53.7% in extreme heat and 59.3% in severe cold under the 

UDDS driving cycle  (Jeffers & al., 2015). 

Beyond this immediate range penalty, inefficient thermal management accelerates battery 

degradation. The alternating thermal and mechanical load cycles accelerate cycle aging 

phenomena, causing mechanical stress, increased internal resistance, and capacity degradation 

(Ma, et al., 2018) (Dubarry & Liaw, 2009). Consequently, optimizing the thermal management 

system is not merely a performance enhancement but a critical engineering imperative for 

extending vehicle lifespan and improving its overall sustainability. 
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Figure 3 Impact of extreme temperatures on electric vehicle battery range during summer and winter conditions 
(Najman, 2022; Career, 2025) 

 

Objectives and Structure of the Research 

Motivated by the challenges associated with thermal management in electric vehicles, this thesis 

focuses on developing accurate predictive models capable of describing the thermal behaviour of 

key vehicle subsystems under real-world operating conditions. 

The models target two main domains: 

• The passenger cabin, where thermal management affects comfort and energy consumption; 

• The battery pack, where maintaining optimal temperature conditions is essential for 

performance, safety, and lifespan. 

The thermal management system is modelled using two complementary approaches: a physics-

based model, which provides an accurate representation of energy dynamics, and a data-driven 

model with neural networks, which offers a computationally efficient alternative for real-time 

applications. 
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2. Thermal energy management system 
 

Thermal Management in Electric Vehicles  

The thermal management system is a fundamental component for ensuring vehicle performance, 

efficiency, and operational safety. Many powertrain components produce heat that must be 

dissipated through a refrigerant circuit to keep the components within their optimal operating 

temperature range, thereby optimizing their function and preventing damage. 

In the electric vehicle, the primary waste heat transferred to the coolant comes from the motor, 

power electronics, and battery. As can be seen from the figure below, the ideal battery 

temperature range is between 20°C and 40°C, while the motor and power electronics can operate 

at higher temperatures in the range of 20°C to 150°C. Consequently, only the battery requires 

additional cooling, so there is a dedicated loop connected to the main one by means of a chiller. 

Cooling this smaller loop below ambient temperature rather than the full cooling loop would 

require less energy to run the compressor, which increases the vehicle's range. (Holcomb, 2022) 

 

Figure 4 Operating Temperatures for Vehicle Components (Holcomb, 2022) 

Additionally, the thermal management system serves a crucial purpose in maintaining cabin 

comfort. The waste heat extracted from the powertrain components can be used to heat the 

cabin, further enhancing energy efficiency. In cold environments, the battery can be heated using 
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an auxiliary heater, a heat pump, or by repurposing waste heat from the motor and power 

electronics. 

System setup 

This section introduces Zeekr Technology Europe’s thermal energy management system (ZTEM) 

and cabin setup. The following picture illustrates the configuration where hot air from the 

condenser is expelled outside the cabin, while cold air from the evaporator is directed into the 

cabin. (Lokur, Murgovski, & Larsson, 2024)  

 

Figure 5 ZTEM (Lokur, Murgovski, & Larsson, 2024) 

 

 As it is possible to see from the picture, The ZTEM consists of: 

• Battery Coolant Circuit: defined in blue, this circuit is responsible for maintaining the battery 

pack within the optimal temperature range. The main components are: 

o Chiller: connects to the main refrigerant circuit and helps regulate the temperature 

by absorbing excess heat from the battery pack. 

o Battery Cooling Plate: a flat heat exchanger located beneath the battery pack, in 

direct thermal contact with the cells. Heat generated within the cells is transferred to 

the coolant circulating through the plate. 

o Battery Coolant Pump: circulates the coolant within the battery loop, ensuring 

continuous flow through the cooling plate and the chiller. 

• ED coolant circuit: in green, this circuit is dedicated to the thermal management of the 

electric motor and inverter, which generate heat due to electrical and magnetic losses. 
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The main components of this circuit are: 

o E-Motor: Generates propulsion and produces heat during operation, requiring active 

cooling. 

o E-Drive Coolant Pump: Generates coolant flow through the e-drive loop, enabling 

effective heat transfer from the motor, inverter, and DC–DC converter toward the 

radiator or the water-cooled condenser (WCC). 

o Radiator: Dissipates thermal energy from the coolant to the ambient air. This is the 

primary point of heat rejection for the system. 

o Radiator Fan: Forces airflow through the radiator, ensuring sufficient heat rejection, 

especially at low vehicle speeds or during idle conditions. 

• refrigerant circuit: represented with the green loop, it is regulated through a vapor 

compressor refrigeration (VCR) cycle, which usually use as refrigerant the R134a. Constituting 

the base of the HVAC system, it presents the following components: 

o Compressor: generates the refrigerant mass flow rate, while simultaneously 

increasing the fluid pressure and temperature.  

o Water-Cooled Condenser (WCC): a condenser integrated with the e-drive coolant 

loop. It allows the refrigerant to transfer heat to the ED coolant, promoting thermal 

coupling between subsystems and improving system flexibility. 

o Condenser: enables heat rejection to the environment (air-cooled). Inside the 

condenser, the refrigerant undergoes a phase change from high-pressure vapor to 

liquid, releasing thermal energy. 

o Expansion valve (electronic EXV): reduces the refrigerant pressure downstream of 

the condenser and upstream of the evaporator (or chiller). This pressure drop results 

in a significant reduction of refrigerant temperature, enabling evaporation. Electronic 

valves allow fine control of refrigerant flow. 

o Evaporator: absorbs heat from the air allowing the refrigerant to evaporate, 

transitioning from liquid to vapor at low pressure. 

o Chiller: a heat exchanger between the refrigerant and the battery coolant. It allows 

the refrigerant to remove heat from the battery loop, providing active cooling of the 

battery pack. 

The refrigerant cycle can be easily visualized with a pressure-enthalpy diagram. The 

saturation curve separates the regions of compressed liquid (to the left), superheated vapor 

(to the right), and the two-phase mixture (below the dome). 
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Figure 6 Pressure-Enthalpy chart of the refrigerant fluid (Lokur, Murgovski, & Larsson, 2024) 

At point 2, the fluid is in a superheated vapor state. During isentropic compression, it reaches 

a high-pressure, high-temperature superheated vapor state at point 3. The work of the 

compressor (Wcompressor) is defined as the enthalpy difference (h3− h2). 

Next, the fluid enters the condenser, where two phases occur. First, there is desuperheating, 

where the vapor is cooled at constant pressure until it reaches the saturated vapor line. This 

is followed by condensation at constant temperature and pressure, where the vapor 

condenses into a liquid. At point 4, the liquid reaches a subcooled condition, which is 

controlled by the expansion valve. During the 3-4 transition, the fluid rejects heat to the 

surroundings, which is defined as Qcondenser (h4-h3). 

Afterward, the high-pressure liquid enters the expansion valve, where it undergoes an 

isenthalpic process. On the diagram, this is represented by a vertical line, as the pressure 

drop depends solely on the restriction of the valve, resulting in no work and no heat transfer. 

At point 1, the liquid-vapor mixture enters the evaporator, where it absorbs heat from the 

surroundings (Qevaporator = h2-h1) and boils at constant pressure and temperature, 

returning to point 2. 

The integration of these subsystems, facilitated by two 4-way valves, creates a flexible thermal 

management system. This allows thermal energy to be redirected between the cabin, battery, 

and powertrain circuits, enabling the system to adapt efficiently to varying demands and 

prioritize between comfort and performance. 
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Working conditions 

The operational strategy of the thermal management system shifts significantly based on external 

ambient conditions, dictated by divergent thermal needs. 

• Under hot weather conditions, the priorities are cooling and heat dissipation. The Air 

Conditioning system is activated to cool the cabin for occupant comfort, while 

simultaneous and active cooling of the battery and the electric motor is required to 

prevent overheating and maintain performance and longevity. In this mode, represented 

in Figure 5 ZTEM, the chiller is active and guarantees heat rejection from the battery 

coolant circuit to the refrigerant cycle. The WCC's role is diminished, and it can be 

bypassed by adjusting the mass flow rate in the electric motor circuit, which is itself 

maintained within its optimal operating range by rejecting heat directly to the ambient 

air via the radiator. To provide cabin comfort, the A/C system is active, and the air 

handling dampers are set to open the path connected to the cold evaporator, as shown in 

the reference diagram. All heat extracted by the evaporator and the battery chiller is 

ultimately rejected to the external environment by the condenser. 

 

• Under cold weather conditions, the system's primary objectives are heating and thermal 

maintenance. It must raise the cabin air temperature to ensure passenger comfort and, 

crucially, increase the temperature of the battery and the electric motor to bring them 

into their optimal, efficient operating range.  

 
Configuration without heat pump 

 
The first configuration presented is without the heat pump mode, therefore cabin 

heating during winter conditions is uniquely provided by a PTC heater (Positive 

Temperature Coefficient heater), which is an electrical resistance that directly converts 

electrical energy into heat. In this mode, the refrigerant circuit is not reversed, and the 

compressor is not employed for cabin heating, but it remains active to ensure battery or 

electric component thermal management through the chiller and the water-cooled 

condenser. Consequently, the air directed into the cabin is heated solely by the PTC 

element, which results in high energy consumption and a reduction in vehicle range. 
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Figure 7 Thermal management system without heat pump in cold weather condition 

 

Configuration with heat pump 

In contrast, the configuration with a heat pump is specifically designed to operate with a 

reversible refrigerant cycle, made possible by the inclusion of a four-way valve that 

allows the inversion of the refrigerant flow. This strategic reversal allows waste heat from 

the electric powertrain to become the primary thermal source, significantly reducing the 

energy required for heating compared to reliance on PTC heaters alone (UFI Filter, 2023), 

though these electric heaters are retained for rapid initial warming or supplemental heat 

during extreme demand. 

After the initial stage, the system reaches its efficient mode by operating in reverse: the 

four-way valves direct the high-pressure refrigerant leaving the compressor to the cabin 

evaporator, which, in this configuration function as a condenser, rejecting its latent heat 

into the passenger compartment. Then, the refrigerant passes through the expansion 

valve, which gives an isenthalpic expansion that drastically decrease its pressure and 

temperature. After that, the refrigerant passes through the exchangers that play the role 

of evaporators, such as the traditional condenser and the water-cooled condenser (WCC). 

The WCC efficiently absorbs waste heat from the electric motor, which reduces the needs 

of the radiator fan that can remain off or operate at low speeds. This approach maximizes 

heat recovery and minimizes energy loss.  

To maintain the battery within its optimal operating range during a cold start, a PTC 

heater may be used to quickly raise the battery temperature. However, once the initial 

warm-up is complete, thermal management is maintained through a connection with the 

chiller, which actively transfers heat to the battery’s coolant during winter conditions. 
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This approach uses both the waste heat recovered from the powertrain and the heat 

pump’s capacity, thereby increasing overall system efficiency. 

 

 

Figure 8 Thermal management system with heat pump in cold weather condition 

 

In cold conditions, the heat pump system efficiently manages thermal needs by 

recovering waste heat from the powertrain and reducing reliance on high-consumption 

PTC heaters. This approach minimizes energy demand for heating, extends battery range 

by 10–25%, and helps overcome one of the key limitations of electric vehicles in winter 

operation. 

The following chart reports findings from a Recurrent Auto study, showing the driving 

range in miles under different cabin heating conditions (no heat, heat pump, resistance 

heater) across different ambient temperatures, expressed in degrees Fahrenheit (32°F = 

0°C, 14°F = –10°C). 

 

Figure 9 Driving range in cold ambient temperatures- comparison of heating methods (UFI Filter, 2023)  
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Lithium-ion batteries 

Lithium-ion batteries are the predominant power source in battery electric vehicles (BEVs) due to 

their high energy density (up to 705 Wh/L) and exceptional power density (up to 10,000 W/L), 

which enable extended range and strong performance. However, their performance and safety 

are highly sensitive to temperature variations, with both low and high temperatures presenting 

significant challenges. 

• At low temperatures, lithium-ion batteries suffer from increased electrolyte viscosity, 

leading to reduced ionic conductivity and elevated internal resistance. Charge-transfer 

resistance also rises significantly, impairing electrochemical kinetics, particularly during 

charging. Lithium-ion diffusion within electrodes slows down, further limiting 

performance. Additionally, low temperatures promote lithium plating on anodes, 

increasing the risk of dendrite formation and internal short circuits. These combined 

effects severely degrade battery capacity and safety under cold conditions. (Ma, et al., 

2018) 

• At high temperatures, lithium-ion batteries experience accelerated aging due to 

increased reaction kinetics, leading to degradation of electrodes, electrolyte 

decomposition, and structural damage. Heat generation from reversible and irreversible 

electrochemical processes raises internal temperatures further, intensifying these effects. 

Prolonged exposure also destabilizes the solid electrolyte interface (SEI) and promotes 

harmful phase transitions. Critically, excessive heat can trigger thermal runaway—an 

uncontrollable exothermic chain reaction—posing severe safety risks including fire or 

explosion. (Ma, et al., 2018) 

The role of the BMS is crucial: through continuous monitoring and regulation of operational 

parameters, it helps mitigate thermal effects, optimize efficiency, and ensure the long-term safety 

of the battery system. 
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3. Physics-Based Modelling of Thermal Models 
 

3.1 Methodological Approach 

To accurately represent the thermal behaviour of an electric vehicle’s key components under 

varying operating conditions, a physics-based modelling framework is implemented. This 

approach relies on fundamental thermodynamic principles and heat transfer equations, ensuring 

a high degree of Physical interpretability while maintaining computational efficiency suitable for 

system-level simulations and control-oriented applications. 

A dynamic battery model is developed using Simulink, based on the structure presented in 

Dynamic Lithium-Ion Battery Model  (Gao, Liu, & Dougal, 2002), in order to accurately reproduce 

the electro-thermal behaviour of the battery pack by accounting for the temperature 

dependence of electrical properties and heat generation during charge–discharge cycles.  

For the HVAC system, the modelling follows the control-oriented approach proposed in Control-

oriented Model for Thermal  Energy Management of Battery Electric Vehicles  (Lokur, Murgovski, 

& Larsson, 2024), which enables a simplified yet effective representation of energy flows across 

different operational modes. 

As a reference, the Simscape Thermal Management Model provided by MathWorks (Electric 

Vehicle Thermal Management, s.d.) is used. This model is adapted to match the architecture and 

requirements of the studied system, ensuring full compatibility with the structure of the 

implemented physics models. 

Furthermore, a series of benchmark simulations is conducted to test and validate each 

component of the HVAC cycle—such as the compressor, condenser, evaporator, and expansion 

valve. The results obtained from the developed physics-based models are compared against 

those of the Simscape reference model to ensure consistency and accuracy. 

The overarching objective of this chapter is to develop a simplified physics-based model for 

simulating the dynamic behaviour of the refrigeration cycle in a Battery Electric Vehicle (BEV). 

The model draws inspiration from Lokur, Murgovski, & Larsson (2024), who proposed a control-

oriented framework capable of capturing EV thermal dynamics efficiently.  

The modelled system is constructed based on the following simplifying assumptions: 

1.  Cooling Configuration: The battery is air-cooled, while the powertrain group (e-motor and 

power electronics) is liquid-cooled. 
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2.  Radiator Dynamics: The dynamics of the temperature difference (ΔT) across the radiator are 

considered negligible; the radiator is modelled assuming steady-state conditions. 

3.  Battery Electrical Properties: The battery's internal resistance is a function of its temperature; 

this dependency is explicitly considered in predicting the system's electrical behaviour. 

4.  Flow Control: An additional control variable, representing a deviation from the nominal speed 

profile, is associated with the cooling circuit pump flow rate. 

5.  Passenger Cabin Thermal Model: A lumped-parameter thermal model is used for the vehicle 

cabin under the following hypotheses: 

- The internal thermal mass is represented as a single entity with average thermal 

properties. 

- All internal components are assumed to be at the same temperature. 

- Internal surfaces possess uniform thermal properties and are therefore modelled with a 

single representative temperature. 

6.  Refrigerant Circuit: The refrigerant circuit is implemented in detail, with particular focus on 

the modelling of its fundamental components: the compressor, condenser, electronic expansion 

valve (EEXV), and evaporator. 

 

3.2 Vehicle & Powertrain Thermal Interactions 
 

Vehicle Dynamics and Powertrain Model 

The prediction model of the vehicle dynamics calculates the total power required to follow a 

given speed profile. This is based on a force balance and considers different resistive and inertial 

components acting on the vehicle. 

The reference speed is modified to allow a deviation from the nominal speed trajectory: 

𝑣ref_mod  =  𝑣ref +  𝑑𝑒𝑙𝑡𝑎_𝑣ref 

The total traction power demand is composed of multiple contributions: 

𝑃req = 𝑃roll + 𝑃aerodrag + 𝑃𝛼 + 𝑃ax + 𝑃s𝑥 + 𝑃s𝑦 

• Rolling resistance power: 𝑃roll = (𝑓0 + 𝑓1 ⋅ 𝑣ref_mod + 𝑓2 ⋅ 𝑣ref_mod
2 ) ⋅ 𝑚 ⋅ 𝑔 ⋅ 𝑣ref_mod 
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Where 𝑓0, 𝑓1, 𝑓2 : rolling resistance coefficients, 𝑚: vehicle mass, 𝑔: gravitational 

acceleration 

• Aerodynamic drag power: 𝑃aerodrag = 0.5 ⋅ 𝜌air ⋅ 𝑆 ⋅ 𝐶drag ⋅ 𝑣ref_mod
3 

Where  𝜌air : air density, 𝑆 : frontal area of the vehicle, 𝐶drag: aerodynamic drag coefficient 

• Power associated with the road gradient: 𝑃𝛼 = 𝑚 ⋅ 𝑔 ⋅ sin(𝛼ref) ⋅ 𝑣ref_mod 

Where 𝛼ref: road slope angle 

• Power associated with vehicle acceleration:   𝑃ax = 𝑚 ⋅ 𝑎𝑥 ⋅ 𝑣ref_mod 

Where 𝑎𝑥: longitudinal acceleration 

• Longitudinal tyres slip power loss: 𝑃s𝑥 = ( 𝑃req

𝑣ref_mod
) ⋅ 𝑣s𝑥 = ( 𝑃req

𝑣ref_mod
) ⋅ [

(
𝑃req

𝑣ref_mod
)

𝐶long_slip_eq
⋅ 𝑣ref_mod] 

Where 𝐶long_slip_eq: longitudinal slip equivalent coefficient 

• Lateral tyres slip power loss: 𝑃s𝑦 = 𝐶𝑓 ⋅ 𝛼𝑓
2 ⋅ 𝑣ref_mod + 𝐶𝑟 ⋅ 𝛼𝑟

2 ⋅ 𝑣ref_mod 

Where 𝐶𝑓, 𝐶𝑟: cornering stiffness of front and rear tires,  ∝𝑓, ∝𝑟: front and rear tire slip 

angles, which are calculated as follows: 

𝑎𝑦 = 𝑣ref_mod
2 ⋅ 𝜌ref 

𝐹𝑦𝑓 = 𝑚 ⋅ 𝑎𝑦 ⋅ 𝑏
𝐿
 𝐹𝑦𝑟 = 𝑚 ⋅ 𝑎𝑦 ⋅ 𝑎

𝐿
 

𝛼𝑓  =  
𝐹𝑦𝑓

𝐶𝑓
    𝛼𝑟 = 𝐹𝑦𝑟

𝐶𝑟
 

Where 𝑎𝑦: lateral acceleration, 𝐿: wheelbase length, 𝑎, 𝑏: distances from the center of 

gravity to rear and front axles 

 

 

Electric Motor and Drivetrain Loss Modelling 

The electric motor provides the mechanical power required to drive the wheels, denoted as 𝑃req. 

However, not all the electric power from the battery is converted into mechanical output due to 

drivetrain and motor losses.  
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To represent the smooth transition between motor traction and regenerative braking modes, a 

sigmoid-based expression is used (Dalboni, et al., 2021): 

𝑃driv = 𝑃em,min +
𝑃req − 𝑃em,min

1 + 𝑒−𝑤ss(𝑃req−𝑃em,min)
 

- 𝑃driv: Smoothened driveline power 

- 𝑃req: Required driving power (previous section) 

- 𝑃em,min : Minimum allowable electric motor power (for regen braking) 

- 𝑤ss > 0: Sigmoid slope coefficient defines the degree of smoothness between traction 

and braking regimes. 

The friction brake power is described with the difference:  𝑃req − 𝑃em,min. 

The total mechanical power the electric motor must provide includes drivetrain losses: 

𝑃mech,em = 𝑃driv + 𝑃loss,drivetrain 

The torque required from the electric motor is calculated as: 

𝑇em =
𝑅𝑤 ⋅ 𝑃mech,em

𝑣ref_mod
 

Where 𝑅𝑤: Effective wheel radius and 𝑣ref_mod: reference vehicle speed 

The power losses are modelled using a 2D polynomial as a function of motor torque and speed 

(Dalboni, et al., 2021):  

𝑃loss,drivetrain = ∑ (∑ 𝑝dr,m,n𝑇em
𝑛

5

𝑛=0

) (
𝜏𝑣ref_mod

𝑅𝑤
)

𝑚5

𝑚=0

 

𝑃loss,powertrain = ∑ (∑ 𝑝em,m,n𝑇em
𝑛

5

𝑛=0

) (
𝜏𝑣ref_mod

𝑅𝑤
)

𝑚5

𝑚=0

 

The coefficients of the previous polynomial expressions (𝑝dr,m,n, 𝑝em,m,n ) vary as a function of the 

powertrain temperature, 𝜏: gear ratio 

The total power drawn from the battery is: 

𝑃batt = 𝑃mech,em + 𝑃loss,powertrain + 𝑃𝑎𝑢𝑥 

Where   𝑃𝑎𝑢𝑥 : auxiliary systems power demand (e.g., lighting, electronics) 
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The motor's temperature is modelled using the energy balance: 

𝐶mot
𝑑𝑇em

𝑑𝑡
= 𝑃loss,powertrain + 𝐾1(𝑇amb − 𝑇em) − 𝑄coolant 

Where Cmot is the thermal capacity of the motor, Tem is the motor's temperature, Tamb is the 

ambient temperature and K1 is the heat transfer coefficient 

𝑄coolant = 𝑐coolant ⋅ 𝑚̇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 ⋅ Δ𝑇 

Ccoolant is the specific heat capacity of the coolant, and 𝑚coolanṫ  is the coolant mass flow rate. 

Δ𝑇 is the temperature difference between the inlet and outlet of a body cooled, considered 

constant. 

𝑃cooling pump = ∑ 𝑐𝑛

𝑁

𝑛=0

⋅ (𝑚̇𝑐𝑜𝑜𝑙𝑎𝑛𝑡)𝑛 

Where cn are the coefficients for each polynomial terms. 
 

 

3.3 Cabin thermal model 

Assuming that passenger thermal comfort is achieved when the cabin air temperature reaches a 

reference value, this section aims to define the relationship between the cabin air temperature 

(Tca) and the heat exchanged among the passengers, the environment, and the interior surfaces. 

(Lokur, Murgovski, & Larsson, 2024) 

 
Figure 10 Cabin setup (Lokur, Murgovski, & Larsson, 2024) 

The cabin air temperature dynamics are computed as follow: 

𝑑𝑇𝑐𝑎(𝑡)
𝑑𝑡

=
𝑄ℎ + 𝑄𝑠𝑟𝑓 + 𝑄𝑚 − 𝑄𝑎𝑐

α1ρ𝑎𝑐𝑝𝑎𝑉𝑐
 

Where 𝑇𝑐𝑎: cabin air temperature, α1: fitted coefficient, ρ𝑎: air density, 𝑐𝑝𝑎: specific heat capacity 

of air, 𝑉𝑐: cabin volume 
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Heat contributions: 

• 𝑄ℎ: heat rejection by the passengers: 

𝑄ℎ = ∑ 𝑎𝑖𝑇𝑐𝑎
𝑖

𝑛

𝑖=0

 

 Where 𝑎𝑖: coefficients characterizing heat output dependent on cabin air temperature. 

• 𝑄𝑠𝑟𝑓: heat from the interior surfaces: 

𝑄𝑠𝑟𝑓(𝑇𝑐𝑎, 𝑇𝑠𝑟𝑓) = ℎ𝑠𝑟𝑓𝐴𝑠𝑟𝑓 (𝑇𝑐𝑎(𝑡) − 𝑇𝑠𝑟𝑓(𝑡)) 

Where ℎ𝑠𝑟𝑓: heat transfer coefficient between cabin air and interior surfaces, 𝐴𝑠𝑟𝑓 heat 

transfer area, 𝑇𝑠𝑟𝑓: interior surface temperature 

• 𝑄𝑚: heat transfer from interior parts: 

𝑄𝑚(𝑇𝑐𝑎, 𝑇𝑚) = ℎ𝑚𝐴𝑚(𝑇𝑐𝑎(𝑡) − 𝑇𝑚(𝑡)) 

Where ℎ𝑚: heat transfer coefficient, 𝐴𝑚: effective heat transfer area, 𝑇𝑚: temperature of 

interior mass components 

• 𝑄𝑎𝑐: the refrigeration capacity of the air conditioning system 

𝑄𝑎𝑐 = 𝑊𝑒𝑣,𝑎(𝑡) ∙ 𝑐𝑝𝑎 ∙ (𝑇𝑒𝑣,𝑎𝑖𝑛(𝑇𝑐𝑎) − 𝑇𝑒𝑣,𝑎𝑜𝑢𝑡) 

Where 𝑊𝑒𝑣,𝑎: mass flow rate of air through the evaporator, 𝑇𝑒𝑣,𝑎𝑖𝑛: inlet air temperature 

to the evaporator, a mix of cabin and ambient air, 𝑇𝑒𝑣,𝑎𝑜𝑢𝑡: outlet air temperature from 

the evaporator 

The air entering the evaporator is a combination of cabin air and ambient air (Figure 5). 

Consequently, the inlet temperature 𝑇𝑒𝑣,𝑎𝑖𝑛 depends on the recirculation door position 

𝐺𝑟𝑒 ∈ [0,1]: 

𝑇𝑒𝑣,𝑎𝑖𝑛(𝑇𝑐𝑎) = 𝐺𝑟𝑒𝑇𝑐𝑎(𝑡) + (1 − 𝐺𝑟𝑒)𝑇𝑎 

 

The rate of change in interior surface temperature is expressed as: 

𝑑𝑇srf(𝑡)
𝑑𝑡

=
−𝑄srf + (𝑇esrf − 𝑇srf(𝑡))/𝑅𝑇

α2𝑚srf𝑐𝑝srf

 

Where 𝑚srf ∶ mass of the interior surfaces, 𝑐𝑝srf  : specific heat capacity of the interior surface, 

𝑇esrf: exterior surface temperature, 𝑅𝑇: thermal resistance between the interior and exterior 

surface of the cabin, α2: fitted coefficient. 
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The rate of change of the interior mass temperature is expressed as: 

𝑑𝑇𝑚(𝑡)
𝑑𝑡

=
1

α3𝑚𝑚𝑐𝑝𝑚

(𝑄𝑚 + τwin𝐴win𝐺sol) 

Where 𝑚𝑚 : interior mass of the car, including seats, dashboard, steering wheel and floor carpet; 

𝑐𝑝𝑚 : specific heat capacity of interior mass, 𝜏win: transmittance factor of windows, 𝐴win ∶ heat 

transfer area of the windows, 𝐺sol: solar radiation power density, α3: fitted coefficient. 

 
 

 

3.4 Lithium-Ion Battery Model 

The model aims to replicate both the electrical and thermal behaviour of the battery by 

incorporating nonlinear equilibrium potentials, as well as rate- and temperature-dependent 

effects. It simplifies the system by assuming uniform electrochemical and thermal processes 

throughout the battery, neglecting spatial variations in concentration, phase distribution, and 

potential. (Gao, Liu, & Dougal, 2002). 

The battery can be schematized using an equivalent circuit model composed of the following 
elements: 

• Equilibrium potential (E): Represents the open-circuit voltage. 

• Internal resistance: Modelled with two components: 

o Ohmic resistance (𝑅1): Accounts for ionic and electronic 
conduction losses. 

o Polarization resistance (𝑅2): Captures kinetic and 
concentration overpotentials. 

• Effective capacitance (𝐶): Represents the transient response 
due to charge accumulation in the double layers at the 
electrode–electrolyte interface, typical of porous electrodes. 

 

Electrical Battery Model 

Considering the electrical battery model, the equilibrium potential is modelled using a four-step 

procedure: 

1. To accurately model the equilibrium potential, a reference voltage curve is selected 

from a typical discharge cycle and fitted with an n-th order polynomial, representing 

the open-circuit voltage as a function of SOD, while excluding internal losses. The 

open-circuit voltage of a lithium-ion battery depends on its temperature and state of 

Figure 11 Equivalent circuit of lithium-
ion battery (Gao, Liu, & Dougal, 2002) 
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discharge (SOD), while the discharge capacity varies with both the discharge rate and 

temperature.  

The model defines the equilibrium potential 𝐸[𝑖(𝑡), 𝑇(𝑡), 𝑡] as: 

𝐸[𝑖(𝑡), 𝑇(𝑡), 𝑡] = 𝑣[𝑖(𝑡), 𝑇(𝑡), 𝑡] − 𝑅𝑖𝑛𝑡𝑖(𝑡) 

where 𝑣[𝑖(𝑡), 𝑇(𝑡), 𝑡] is the measured terminal voltage, and 𝑅𝑖𝑛𝑡 is the internal 

resistance. The voltage function is expressed as: 

𝑣[𝑖(𝑡), 𝑇(𝑡), 𝑡] =  ∑ 𝑐𝑘 𝑆𝑂𝐷𝑘[𝑖(𝑡), 𝑇(𝑡), 𝑡] + ∆𝐸(𝑇)
𝑛

𝑘=0

 

𝑐𝑘are the polynomial coefficients, and ∆𝐸(𝑇) is a temperature correction term. The 

state of discharge itself is computed dynamically as: 

𝑆𝑂𝐷[𝑖(𝑡), 𝑇(𝑡), 𝑡] =
1

𝑄𝑟
 ∫ ∝ [𝑖(𝑡)] ∙ 𝛽[𝑇(𝑡)] ∙ 𝑖(𝑡) 𝑑𝑡

𝑡

0
 

where 𝑄𝑟 is the reference capacity, and ∝ [𝑖(𝑡)] and 𝛽[𝑇(𝑡)] are the current and 

temperature correction factors, respectively. 
 

To model the open-circuit voltage as a function of the state of discharge (SOD), a 

reference discharge curve is selected at a known discharge current (in this case, 0.7 

A). Starting from the experimental data represented with squared marks in the 

following chart (Figure 12), the battery voltage is fitted using a polynomial function. 

The coefficients 𝑐𝑘 are obtained through this polynomial fitting process. 

2. a rate factor is introduced to account for how different discharge currents affect the 

capacity, normalized to one at the reference rate. 

 

Figure 12 Rate factor (Gao, Liu, & Dougal, 2002) 
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With respect to the previously defined reference curve, a new experimental discharge 

curve is introduced, acquired at a lower discharge current (0.28 A). This curve, 

represented by circles in Figure 12, displays a higher discharge capacity, denoted as b, 

due to reduced internal losses at lower current. 

To accurately capture the rate-dependent behaviour, the internal losses (𝑅𝑖𝑛𝑡 (𝑖𝑟 −

𝑖)) are also subtracted from the reference curve. This process yields a corrected 

version of the reference discharge profile (solid line) with a lower effective capacity, 

denoted as a. This correction allows for a direct comparison of usable capacities 

under different current conditions and enables the calculation of the rate factor ∝

(𝑖) = 𝑎
𝑏

 , which is used in the state-of-discharge computation. 

3. a temperature factor captures the influence of temperature variations on discharge 

behaviour, also set to one at the reference temperature.   

 

Figure 13 Temperature factor and temperature-dependent potential-correction term 

 (Gao, Liu, & Dougal, 2002) 

The temperature factor is determined by analysing discharge curves at a constant 

reference current of 0.7 A but at different constant temperatures. The reference 

temperature is set at 23°C, represented by circles, and normalized to have a unit 

discharge capacity. A second discharge curve, corresponding to a lower temperature 

of -10°C and depicted with squares, exhibits a reduced discharge capacity, denoted as 

d. 

To account for temperature effects, the reference curve is shifted to best fit the flat 

portion of the low-temperature discharge curve. To quantify this effect, the reference 

curve is shifted to best fit the flat portion of the low-temperature discharge curve, 
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resulting in an adjusted discharge capacity c. The temperature factor β is then 

calculated as the ratio between these capacities: 𝛽 (𝑇) = 𝑐
𝑑

 

4. a potential correction term adjusts the equilibrium potential for temperature-induced 

changes, ensuring accuracy across varying operating conditions. 

This term is derived from the shifted reference curve, which best fits the flat portion 

of the low-temperature discharge curve, ensuring that the model accurately captures 

the effect of temperature on the battery’s equilibrium potential across different 

operating conditions. 

The Simulink model developed to replicate the equilibrium potential behaviour of the battery is 

based on the previously described set of equations. It implements the dynamic relationships 

among current, temperature, and state of discharge to compute the open-circuit voltage under 

varying conditions. 

 

Figure 14 Electrical battery model 
 

To capture the battery’s transient behaviour under dynamic loading conditions, capacitive effects 

must be considered. These arise primarily from double-layer formation at the electrode/solution 

interface and capacitance from diffusion processes (also known as pseudo-capacitance). These 

phenomena become particularly relevant when the rate of electrochemical reactions increases, 

as in high-power applications or hybrid configurations with supercapacitors. In the proposed 

model, these effects are represented by a single lumped capacitance placed in parallel with one 

branch of the internal resistance, denoted as R₂.  

By combining the electrochemical characteristics of the battery with the equivalent-circuit 

representation, the terminal voltage and current are related by: 
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𝑖(𝑡) =
1

𝑅2
 [𝑣(𝑡) − 𝐸[𝑖(𝑡), 𝑇(𝑡), 𝑡] − 𝑅1𝑖(𝑡)] + 𝐶

𝑑
𝑑𝑡

[𝑣(𝑡) − 𝐸[𝑖(𝑡), 𝑇(𝑡), 𝑡] − 𝑅1𝑖(𝑡)] 

This formulation enables the decomposition of the total current into two parallel components: 

one flowing through the resistor 𝑅2 and the other through the capacitor 𝐶 

𝑖(𝑡) = 𝑖𝑅2(𝑡) + 𝑖𝐶(𝑡) 

𝑖𝑅2(𝑡) =
1

𝑅2
 [𝑣(𝑡) − 𝐸[𝑖(𝑡), 𝑇(𝑡), 𝑡] − 𝑅1𝑖(𝑡)] 

 𝑖𝐶(𝑡) = 𝐶
𝑑
𝑑𝑡

[𝑣(𝑡) − 𝐸[𝑖(𝑡), 𝑇(𝑡), 𝑡] − 𝑅1𝑖(𝑡)]  

In addition, the total power loss in the battery is computed as: 

𝑃𝑙𝑜𝑠𝑠(𝑡) = 𝑖2(𝑡)𝑅1 +
1

𝑅2
[𝑣(𝑡) − 𝐸[𝑖(𝑡), 𝑇(𝑡), 𝑡] − 𝑅1𝑖(𝑡)]2 

accounting for the ohmic dissipation in both 𝑅1 and 𝑅2. 

The transient behaviour of the battery, including the effects of the parallel resistance R₂ and the 

lumped capacitance, is implemented in Simulink as shown in the Figure 15Figure 15. 

 

 

Figure 15 Transient response of the battery 

 

Thermal Battery Model 

To accurately compute the temperature-dependent equilibrium potential at each simulation step, 

the battery temperature is dynamically calculated through a thermal energy balance. This model 

primarily accounts for heat generated by internal resistive losses and heat exchanged with the 

surrounding environment. 
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𝑚 ∙ 𝑐𝑝 ∙
𝑑𝑇(𝑡)

𝑑𝑡
= 𝑖(𝑡)2 ∙ 𝑅1 +

1
𝑅2

[𝑣(𝑡) − 𝐸[𝑖(𝑡), 𝑇(𝑡), 𝑡] − 𝑅1𝑖(𝑡)]2 − ℎ𝑐𝐴[𝑇(𝑡) − 𝑇𝑎] 

The thermal model is implemented in Simulink as follows: 

 
Figure 16 Thermal battery model 

Battery Model 
The comprehensive battery model integrates both the electrical and thermal sub-models within a 

Simulink environment. This combined approach enables simultaneous simulation of the battery’s 

voltage response and temperature dynamics under varying load conditions.  

 
Figure 17 Battery model 

The simulations are performed using discharge current as input, which is obtained from 

experimental data recorded during a WLTP test at 85°C, with a cooling flow rate of 12 liters per 

minute (12 lpm) and a DC voltage of 700 V. 
 

In Case 1, with an ambient temperature of 23 °C and an initial battery temperature of 20 °C, the 

State of Charge (SOC) starts at 100% and gradually decreases to about 94% after 1800 seconds. 
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The battery temperature slightly rises from 293 K (20 °C) to nearly 296 K (23 °C) during the test. 

The internal resistance remains low and stable, oscillating between 4.5 and 5.5 x10^-4 Ohm, 

allowing for moderate power losses with occasional peaks reaching up to 6000 W. 
 

 
Figure 18 Battery simulation: Tamb = 23°C; Tbatt = 20°C 

In Case 2, where the ambient temperature is still 23 °C but the battery starts cold at 0 °C, the SOC 

decreases more slowly, reaching about 96.5% after 1447 seconds. However, the internal 

resistance is significantly higher, varying between 0.5 and 2 x10-3 Ohm, almost four times greater 

than in Case 1. The resistance starts high but gradually drops as the battery temperature rises. 

This higher resistance causes greater variability in power losses and a reduced overall efficiency. 

The battery temperature increases slowly from 273 K (0 °C) to around 278 K (5 °C). The initial 

large temperature difference between the battery and the ambient environment causes 

increased energy dissipation due to the low starting temperature. 
 

 
Figure 19 Battery simulation: Tamb = 23°C; Tbatt = 0°C 



26 
 

 

In Case 3, with an ambient temperature of 0 °C and battery temperature at 20 °C, the SOC 

behaves similarly to Case 1, decreasing to about 94% after 1800 seconds. The internal resistance 

remains low and stable around 4.5-5 x10^-4 Ohm, with contained and regular power losses. The 

battery temperature stays nearly constant around 293 K (20 °C) throughout the test but shows 

oscillatory behaviour between 292.5 K and 294 K. This non-monotonic trend is influenced by the 

interaction between thermal dispersion to the colder environment and internal heating from 

energy losses. Initially, the battery cools due to the colder ambient temperature, then slightly 

warms toward the end of the cycle. 

 

 
Figure 20 Battery simulation: Tamb = 0°C; Tbatt = 20°C 

  



27 
 

3.5 Refrigerant circuit 

In a closed-loop refrigerant cycle operating under steady-state conditions, the principle of mass 

conservation applies. This means that the mass flow rate of the refrigerant remains constant 

throughout the entire system : 

𝑚̇comp = 𝑚̇cond = 𝑚̇exp = 𝑚̇evap = 𝑚̇ 

The dynamic behaviour of the refrigeration system is described using a set of differential 

equations based on thermodynamic principles, including mass and energy conservation, and 

empirical relations derived from system identification and manufacturer data. 

Under steady-state conditions, the pressure at the compressor inlet depends on the pressure 

drop at the expansion valves (stationary conditions), therefore its rate of change is: 

𝑑𝑝𝑐in
(𝑡)

𝑑𝑡
 =  𝛼𝑝𝑐𝑖𝑛 𝑝𝑐in(𝑡)  + 𝛽𝑃𝑐𝑖𝑛 Δ𝑝exv(𝑡)  

Where 𝛼𝑝𝑐𝑖𝑛  , 𝛽𝑃𝑐𝑖𝑛  :fitted coefficients, Δ𝑝exv:pressure drop across the expansion valves. 

The refrigerant temperature at the inlet of the compressor depends on the energy conservation 

along the cycle: 

𝑑𝑇𝑐𝑖𝑛(𝑡)
𝑑𝑡

= 𝛼𝑇𝑐𝑖𝑛 𝑇𝑐𝑖𝑛(𝑡)  +
𝛽𝑇𝑐𝑖𝑛 

𝑚̇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟(𝑡)𝑐𝑝𝑟ℎ

 (𝑄̇ev − 𝑄̇cond) 

Where  𝛼𝑇𝑐𝑖𝑛 , 𝛽𝑇𝑐𝑖𝑛  :fitted coefficients, 𝑄̇ev , 𝑄̇cond: heat transfer rates from the evaporator and to 

the condenser, 𝑐𝑝𝑟ℎ: specific heat capacity of the refrigerant at constant pressure. 

The rate of heat transfer, both in the evaporator and in the condenser, are modulated using the 

number of transfer units (NTU) method: 

• The heat rate from the evaporator: 

𝑄̇ev = (1 − exp(−𝑘𝑒𝑣)) 𝛼𝑒𝑣 𝐶ev,𝑚𝑖𝑛(𝑡)(𝑇ev,rin − 𝑇𝑒v,ain) 

The NTU describes heat transfer across a surface, and it’s denoted as  

𝑘𝑒𝑣  =  
𝑈𝑒𝑣 𝐴𝑒𝑣

𝐶ev,𝑚𝑖𝑛(𝑡) 

𝑈𝑒𝑣  is the heat transfer coefficient, 𝐴𝑒𝑣 the transfer area, 𝑇ev,rin is the refrigerant temperature 
at the inlet of the evaporator and 𝑇𝑒𝑣,𝑎𝑖𝑛 is the air temperature and 𝛼𝑒𝑣 is a fitted coefficient 
(characteristic of the evaporator and operating conditions) 
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To determine the maximum possible heat transfer rate in the heat exchanger, the minimum 
heat capacity rate must be used: 

𝐶ev,𝑚𝑖𝑛(𝑡)  =  𝑚𝑖𝑛[𝑚̇𝑒𝑣,𝑎 𝑐𝑝𝑎; 𝑚̇𝑒𝑣,𝑟 𝑐𝑝𝑟; ]   

𝑚̇𝑒𝑣,𝑎 is the air mass flow rate at the evaporator fan (control action), 𝑐𝑝a  is the specific air 
heat transfer; 𝑚̇𝑒𝑣,𝑟 is the refrigerant mass flow rate in the evaporator (control action), 𝑐𝑝𝑟  is 
the specific heat transfer of refrigerant 

Since the limiting heat capacity rate is typically determined by the air that imposes the main 
restriction on heat transfer, the expression can be simplified as follow:  

𝐶ev,𝑚𝑖𝑛(𝑡)  =  𝑚̇𝑒𝑣,𝑎 𝑐𝑝𝑎  

• The heat rate from the condenser: 

𝑄̇co = (1 − exp(−𝑘𝑐𝑜)) 𝛼𝑐𝑜 𝐶co,𝑚𝑖𝑛(𝑡)(𝑇co,rin − 𝑇𝑐𝑜,ain) 

The NTU describes heat transfer across a surface, and it’s denoted as  

𝑘𝑐𝑜  =  
𝑈𝑐𝑜 𝐴𝑐𝑜

𝐶co,𝑚𝑖𝑛(𝑡) 

𝑈𝑐𝑜  is the heat transfer coefficient, 𝐴𝑐𝑜 the transfer area, 𝑇co,rin is the refrigerant 
temperature at the inlet of the condenser and 𝑇𝑐𝑜,𝑎𝑖𝑛 is the air temperature and 𝛼𝑐𝑜 is a 
fitted coefficient (characteristic of the condenser and operating conditions) 

To determine the maximum possible heat transfer rate in the heat exchanger, the minimum 
heat capacity rate must be used: 

𝐶𝑐𝑜,𝑚𝑖𝑛(𝑡)  =  𝑚𝑖𝑛[𝑚̇𝑐𝑜,𝑎 𝑐𝑝𝑎;  𝑚̇𝑐𝑜,𝑟 𝑐𝑝𝑟]   

𝑚̇𝑥𝑜,𝑎 is the air mass flow rate at the condenser fan (control action), 𝑐𝑝a  is the specific air 
heat transfer; 𝑚̇𝑒𝑣,𝑟 is the refrigerant mass flow rate in the condenser (control action), 𝑐𝑝𝑟  is 
the specific heat transfer of refrigerant 

Since the limiting heat capacity rate is typically determined by the air that imposes the main 
restriction on heat transfer, the expression can be simplified as follow:  

𝐶co,𝑚𝑖𝑛(𝑡)  =  𝑚̇𝑐𝑜,𝑎 𝑐𝑝𝑎 

The electric power consumed by the compressor is expressed as a polynomial function of the 
refrigerant mass flow rate and pressure differential, based on manufacturer data: 

𝑃𝑐(𝑚̇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟, Δ𝑝𝑐) = ∑ ∑ σ𝑖𝑗𝑚̇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟
𝑖(𝑡)Δ𝑝𝑐

𝑗(𝑡)
3

𝑗=0

2

𝑖=0

 

𝜎𝑖𝑗 are fitted coefficients (manufacturing data)  
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Thermodynamic states 

The interconnecting tubes between the refrigeration system components are assumed to be 
well-insulated, minimizing both heat losses and pressure drops. The following relations 
describe the thermodynamic states at various key points of the cycle: 

Compressor outlet: 

𝑇𝑐out(𝑡) = 𝑇𝑐in(𝑡) + ∑ ∑ κ𝑖𝑗𝑚̇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟
𝑖(𝑡)Δ𝑝𝑐

𝑗(𝑡) 
3

𝑗=0

4

𝑖=0

 

Where 𝜅𝑖𝑗 are fitted coefficients for manufactures data. 

𝑝𝑐out
(𝑡) =  𝑝𝑐in

(𝑡)  +  ι Δ𝑝exv(𝑡) 

where 𝜄  is the correction factor for pressure drop in the tube. 

Condenser input: 

Since the tube is insulated and short, thermodynamic properties are assumed unchanged 
between compressor outlet and condenser inlet: 

 𝑇𝑐𝑜𝑖𝑛(𝑡)  =  𝑇𝑐out
(𝑡) 

𝑝𝑐𝑜𝑖𝑛(𝑡)  =  𝑝𝑐out
(𝑡) 

Condenser output: 

The condensation process is assumed to be isobaric (constant pressure): 

𝑝𝑐𝑜𝑜𝑢𝑡(𝑡)  =  𝑝𝑐𝑜𝑖𝑛(𝑡) 

The outlet temperature is decreased based on the condenser heat rejection rate: 

𝑇𝑐𝑜𝑜𝑢𝑡(𝑡)  =  𝑇𝑐𝑜𝑖𝑛(𝑡)  −   
𝛼𝑇𝑐𝑜𝑜𝑢𝑡  

𝑚̇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟(𝑡)𝑐𝑝𝑟ℎ

 𝑄̇co 

Where 𝛼𝑇𝑐𝑜𝑜𝑢𝑡  is a fitted coefficient 

Expansion valve input: 

𝑇𝑒𝑥𝑖𝑛(𝑡)  =  𝑇𝑐𝑜𝑜𝑢𝑡(𝑡) 

𝑝𝑒𝑥𝑖𝑛(𝑡)  =  𝑝𝑐𝑜𝑜𝑢𝑡(𝑡)  

Expansion valve output: 

The expansion process is considered adiabatic and isenthalpic, meaning the enthalpy of the 
refrigerant remains constant: 
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𝑝𝑒𝑥𝑜𝑢𝑡(𝑡) = 𝑝𝑐𝑜𝑢𝑡(𝑡) − Δ𝑝exv 

The pressure drop in the expansion valve Δ𝑝exv is a control action. 

The refrigerant temperature after expansion is calculated from its enthalpy and pressure: 

𝑇𝑒𝑥𝑜𝑢𝑡(⋅) = 𝑇sat,lp(𝑝𝑒𝑥𝑜𝑢𝑡) −
𝐻lp(⋅) − 𝐻sat,lp(𝑝𝑒𝑥𝑜𝑢𝑡)

𝑐pr,lp
 

where  𝑇sat,lp and 𝐻sat,lp are saturation temperature and saturation enthalpy of the refrigerant 
at low pressure, respectively, 𝑐pr,lp is the specific heat capacity of the refrigerant at low 
pressure, 𝑝𝑒𝑥𝑜𝑢𝑡 is the outlet refrigerant pressure at the expansion valve and  𝐻lp is refrigerant 
enthalpy at the EEXV exit. 

The enthalpy 𝐻lp is calculated based on high-pressure conditions before expansion: 

𝐻lp(⋅) = 𝐻sat,hp(𝑝𝑒𝑥𝑖𝑛) + 𝑐pr,lp (𝑇𝑒𝑥𝑖𝑛(𝑡) − 𝑇sat,hp(𝑝cout)) 

where 𝐻sat,hp is saturation enthalpy and 𝑇sat,hp is saturation temperature of the refrigerant at 
high pressure. 

Evaporator input: 

𝑝𝑒𝑣,𝑟𝑖𝑛 =  𝑝𝑒𝑥𝑜𝑢𝑡  

𝑇𝑒𝑣,𝑟𝑖𝑛 =  𝑇𝑒𝑥𝑜𝑢𝑡  

Evaporator output: 

𝑝𝑒𝑣,𝑟𝑜𝑢𝑡  =   𝑝𝑐in
(𝑡) 

𝑇𝑒𝑣,𝑟𝑜𝑢𝑡 =  𝑇𝑐in
(𝑡) 

Simulink model 

Based on the analytical framework established in the preceding section, a numerical model 

has been implemented within the Simulink environment to simulate the dynamic behaviour 

of a thermodynamic refrigeration cycle. The primary objective of this model is to compute 

the key thermodynamic states of the refrigerant, specifically its temperature and pressure, at 

each defined point throughout the system. This computational approach facilitates a realistic 

representation of the cycle's performance under a diverse set of operational conditions. 

The model's core inputs are the refrigerant mass flow rate, which governs the working fluid in 

circulation; the air mass flow rate across the evaporator, which determines its heat 

absorption capacity; and the pressure drop between the evaporator and compressor, which 

defines the compressor's inlet conditions and the low-pressure side of the cycle. 



31 
 

 

Figure 21 Refrigerant circuit model 

The simulation time is reported in the graph below, showing that it takes approximately 0.7 

seconds to run the model.  

To ensure a fair comparison between the Simscape model, the simplified Simulink model, and 

the neural network-based approach, all simulations were performed on the same hardware: 

an 11th Gen Intel® Core™ i7-1165G7 CPU @ 2.80 GHz, with 4 cores and 8 logical processors. 

 

 

Figure 22 Computational time in the refrigerant circuit model 

 

 
Electric vehicle thermal management - MathWorks 

The reference model for this work is the Electric Vehicle Thermal Management system 

developed by MathWorks (Electric Vehicle Thermal Management, s.d.) As illustrated in the 

accompanying figure, this model represents a comprehensive thermal management system. 

However, for the sake of simplicity and to maintain a focused scope, the present study will 

utilize only the section highlighted in blue, which corresponds to the base refrigerant circuit, 

excluding the chiller. This subsystem accurately models the vapor-compression cycle, 

including its key components—the compressor, condenser, expansion valve, and 

evaporator—enabling a detailed analysis of the thermodynamic behaviour aligned with the 

physics-based Simulink model. 
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Figure 23 Electric vehicle thermal management (Electric Vehicle Thermal Management, s.d.) 

A detailed analysis of the modelling approach for each element of the refrigeration cycle is 

presented in the following section. 

The following report shows the simulation time of the Simscape model, which is 

approximately 10 times longer than that of the simplified Simulink model. This significantly 

impacts its suitability for real-time applications. 

 

 

Figure 24 Computational time in the Electric vehicle thermal management 

 (Electric Vehicle Thermal Management, s.d.) 

 

Compressor 

The compressor regulates the cooling power within the refrigeration cycle and is controlled 

by the input signal cmd_comp, which sets the compressor’s angular velocity. In the 

Simscape model, the compressor is implemented as a positive displacement two-phase 

compressor with a displacement volume of 80 cm³/rev, a nominal compression ratio of βₙₒₘ = 

4.6, a nominal inlet pressure of pᵢₙ,ₙₒₘ = 0.3 MPa, an isentropic efficiency of ηᵢₛₑₙ = 0.65, and a 

volumetric efficiency of ηᵥₒₗ = 0.9. These parameters define the compressor’s thermodynamic 

and operational characteristics in the system.  
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Figure 25 Compressor block (Electric Vehicle Thermal Management, s.d.) 

 

 

Condenser 

The subsystem comprises a tube-and-fin condenser integrated with a liquid receiver, 

designed to ensure efficient heat rejection and refrigerant management. The condenser fan is 

regulated by the control input cmd_fan, which modulates its rotational speed as a 

percentage of the maximum capacity. Ambient conditions including temperature (T), pressure 

(P), relative humidity (RH), and CO₂ concentration are integral inputs to the model as they 

directly govern the convective heat transfer characteristics. The liquid receiver serves a 

critical role in separating vapour and ensuring only subcooled liquid refrigerant is delivered to 

the expansion valve, thereby enhancing system stability and efficiency. To facilitate 

performance analysis, sensors SR1 and SR2 are strategically placed upstream and 

downstream of the condenser to monitor key thermodynamic properties of the refrigerant. 

 

Figure 26 Condenser block (Electric Vehicle Thermal Management, s.d.) 
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Expansion valve 

The expansion valve model regulates refrigerant mass flow into the evaporator and is 

designed for a nominal heat transfer capacity of 2000 W. A thermostatic sensing bulb controls 

valve actuation by monitoring the evaporator outlet temperature. The valve opening adjusts 

proportionally to the superheat, which represents the temperature difference between the 

bulb reading and the saturation temperature at evaporator pressure. This proportional 

adjustment enables dynamic modulation of refrigerant flow to maintain optimal 

thermodynamic conditions and ensure efficient evaporator performance. 

 

Figure 27 Expansion valve block (Electric Vehicle Thermal Management, s.d.) 

 

Evaporator 

The evaporator is a rectangular tube-and-fin heat exchanger where the refrigerant absorbs 

heat from the air. It includes two sensors (at inlet and outlet) to monitor key refrigerant 

properties, and a thermostatic bulb at the outlet that controls the opening of the expansion 

valve. 

 

Figure 28 Evaporator block (Electric Vehicle Thermal Management, s.d.) 
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Comparison of the refrigerant circuits’ models 
 

 Energy balance 

The presented graphs show a comparison between two models used for the thermodynamic 

analysis of a refrigeration system, with a fluid mass flow rate of approximately 0.0045 kg/s. 

The first graph is generated using the reference model developed in Simscape. It can be 

observed that after an initial transient phase characterized by oscillations, the system reaches 

a stable steady state. In this condition, the net heat transfer—defined as the difference 

between the heat exchanged at the condenser and the heat absorbed by the evaporator—

matches perfectly the fluid power. This result confirms the energy balance compliance as 

dictated by the laws of thermodynamics. 

 

Figure 29 Energy balance - Simscape model 

The second graph shows results from the approximate physics-based model, founded on 

analytical formulations with calibrated coefficients to ensure energy consistency. In this case, 

the system reaches steady state rapidly without displaying transient oscillations. The net heat 

transfer again corresponds to the fluid power, confirming the correct application of the 

energy balance. 
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Figure 30 Energy balance – Physics-based model 

The comparison between the two models highlights that the Simscape model is capable of 

accurately representing the real system dynamics, including initial transient phenomena, 

whereas the approximate physics-based model provides a simplified and steady-state 

description. The latter is useful for quick analyses and energy balance verification but does 

not capture the time-dependent dynamics that may influence system behaviour. 

 

Step input 

Considering the Simscape model, two simulations are performed for comparison: one with a 

constant mass flow rate and one with a step input. This approach allows for the analysis of 

both the steady-state behaviour and the transient response of the refrigeration system. 

The results show that, under the step input, pressure, temperature, and thermal power 

experience a brief delay and some oscillations before stabilizing, highlighting the system’s real 

dynamics such as fluid inertia and thermal capacitance. Conversely, the constant flow 

simulation represents the steady-state condition without transients. The analysis thus 

demonstrates how the Simscape model is effective both in describing equilibrium conditions 

and in capturing the system’s dynamic behaviour following sudden input changes. 
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Figure 31 Pressure response - Simscape model 

 

Figure 32 Temperature response - Simscape model 

 
Figure 33 Power response - Simscape model 

 



38 
 

Refrigerant Mass Flow Rate and Power Balance 

The two plots present a comparison of the thermal power within the refrigeration cycle as a 

function of refrigerant mass flow rate. It can be observed that in both instances, the 

magnitude of the heat transfer occurring in the evaporator and the condenser increases with 

higher mass flow rates. This behaviour aligns with established thermodynamic principles. 

Nevertheless, an inconsistency becomes apparent in the physics-based model when 

examining the net power (Figure 35). Specifically, the net heat transfer does not correspond 

to the fluid power supplied by the compressor. This discrepancy signifies a violation of the 

first law of thermodynamics, indicating that the physics-based model does not accurately 

represent the energy balance under the given conditions. Conversely, the Simscape model 

produces thermodynamically consistent results, wherein the net heat transfer matches the 

compressor power, thereby validating its adherence to fundamental energy conservation 

principles (Figure 34Figure 34). 

 

Figure 34 Power vs refrigerant mass flow rate – Simscape 
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Figure 35 Power vs refrigerant mass flow rate – Physics-based model 

 

Air Mass Flow Rate and Power Balance 

This chapter analyses the relationship between heat transfer and the air mass flow rate 

through the condenser (ṁ_air_condenser), comparing the performance of the reference 

Simscape model with the developed physics-based model. 

In the Simscape model, the heat transfer demonstrates limited sensitivity to variations in air 

mass flow rate. A modest increase is observed as the flow rate rises from 0.1 kg/s to 0.27 

kg/s, with condenser heat transfer increasing from approximately 1.2 kW to 1.4 kW. Beyond 

this threshold, the heat transfer remains almost stable. The model exhibits strong 

thermodynamic consistency, as the fluid power delivered by the compressor aligns closely 

with the net system heat transfer, thereby adhering to energy conservation principles. 

Additionally, the mechanical power supplied to the compressor marginally exceeds the fluid 

power, which appropriately accounts for mechanical losses. 
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Figure 36 Power vs air mass flow rate – Simscape 

The physics-based model exhibits distinct behavioural characteristics. The evaporator heat 

transfer remains largely consistent across variations in condenser air flow, showing minimal 

sensitivity to changes in ṁ_air. Meanwhile, the condenser demonstrates significantly greater 

dependence on air mass flow rate, with heat rejection showing a pronounced positive 

correlation with increasing ṁ_air. This enhanced sensitivity aligns closely with fundamental 

heat transfer principles governing forced convection processes. 

Moreover, this model exhibits occasional discrepancies between net heat transfer and 

compressor fluid power. This deviation stems from the model's simplified structure, which 

relies on empirical correlations and parameterized approximations rather than enforcing 

strict thermodynamic conservation laws. While this approach successfully captures general 

system behaviour across operational conditions, it does not guarantee precise energy balance 

in all scenarios. 

 

Figure 37 Power vs air mass flow rate – Physics-based model 
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Pressure-Temperature diagram 

The figures present the reference pressure-temperature (p-T) diagram, highlighting all 

characteristic thermodynamic states of the refrigeration cycle. Points A, B, C, and D represent 

the refrigerant conditions at key system sections: evaporator, compressor, condenser, and 

expansion valve, respectively.  

The Simscape model, illustrated in Figure 38Figure 38, serves as the reference for validating 

the proposed physics-based modelling approach. 

 
Figure 38 p-T diagram - Simscape 

In the physic-based model, the thermodynamic states represented in the pressure-

temperature (p-T) diagram reveal significant inaccuracies in the predicted values of TB when 

compared to expected thermodynamic behaviour. This deviation is originated from the 

compressor model, where the outlet temperature Tout(t) is calculated using a polynomial 

expression based on mass flow rate and pressure rise: 

𝑇𝑐out
(𝑡) = 𝑇𝑐in

(𝑡) + ∑ ∑ κ𝑖𝑗𝑚̇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟
𝑖(𝑡)Δ𝑝𝑐

𝑗(𝑡) 
3

𝑗=0

4

𝑖=0

 

The root cause of this deviation lies in the insufficiently accurate estimation of the polynomial 

coefficients κij, which are determined using linear interpolation from a restricted dataset. 

This methodological limitation propagates through the model, also compromising the 

accuracy of TC. 
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Figure 39 p-T diagram – Physis-based model 

For this reason, a better version of the diagram, in which the TB values are directly imposed, 

is also presented. This allows for a clearer visualization of the expected cycle behaviour.  

 

Figure 40 p-T diagram - Physics-based model 
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3.6  Bench models 
The goal of this work is to test each block of an HVAC system individually on a simulation bench, 

in order to collect data under various operating conditions. The collected data will be used to 

generate plots and build look-up tables. By combining multiple parameters, the study aims to 

better understand the system behaviour and performance across different working ranges. 

 

3.6.1 Condenser 

The condenser in a vehicle HVAC system is analysed using a Condenser Bench modelled in 

Simulink/Simscape (Condenser and Evaporator, s.d.) to evaluate its thermal performance. It 

functions by transferring heat from the refrigerant to the surrounding air, causing the 

refrigerant to condense from a superheated vapor into a two-phase mixture and eventually 

into a subcooled liquid. The condenser is a critical component, as variations in its efficiency 

impact refrigerant phase transitions, pressure levels, and the overall energy performance of 

the refrigeration cycle 

The bench integrates four main components: 

• A fan, which controls airflow through the system based on input speed; 

• An environment block, which simulates external ambient conditions such as pressure, 

temperature, relative humidity, and CO₂ concentration; 

• A condenser model, where heat transfer between the refrigerant and moist air occurs, 

transitioning the refrigerant from superheated vapor to subcooled liquid; 

• A mass flow source, which injects refrigerant into the condenser loop. 

 
Figure 41 Condenser Bench (Condenser and Evaporator, s.d.) 
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The analysis doesn’t aim to merely reproduce the expected phase change process, but rather 

to quantify how the condenser responds when subjected to variations in its control 

parameters. For this reason, the refrigerant mass flow rate and the fan speed are 

systematically modified, while ambient conditions are kept constant in order to isolate the 

influence of the operating variables. 

 

Control action 

Refrigerant mass flow rate  (kg/s) mdot_r [0.004526, 0.0062, 0.00743, 0.0077] 

Condenser fan speed control (%) omega_fan [0.05, 0.1, 0.33, 0.5] 

 

 

 

 

 

 

 

 

 

 

 

Effect of refrigerant mass flow rate 

The plot displays a strong linear increase in the heat transfer rate 𝑄̇ as the refrigerant mass 

flow rate increases from 0.0045 kg/s to 0.0077 kg/s. The thermal power output grows from 

approximately 960 W to over 1650 W across this range. This trend aligns with thermodynamic 

expectations, as the transferred heat is directly proportional to the mass flow rate times the 

enthalpy change of the refrigerant ( 𝑄̇ =  𝑚̇𝑟 ∆ℎ). 

At a higher flow rate, more refrigerant mass carries thermal energy into the condenser, 

increasing the overall heat transfer. This result indicates that mass flow rate is a dominant 

control variable for regulating condenser performance, making it a powerful tool for thermal 

load management in HVAC systems. 

Operating conditions 

Refrigerant Pressure (MPa) P  [0.9, 1.0, 1.1, 1.2] 

Refrigerant Temperature Reservoir Input (K) TB [330, 345, 360, 375] 

Refrigerant Temperature Reservoir Output (K) TC [300, 315, 330] 

Environment 

Pressure (MPa) P_env  0.101325 

Temperature (°C) T_env 30 

Relative Humidity (%) RH_env 0.4 

CO2 Fraction CO2_env 4e-4 

Table 1 Condenser bench operating variables 
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Figure 42 Condenser heat transfer rate over refrigerant mass flow rate 

 

Effect of fan speed 

Contrary to the mass flow rate, the influence of fan speed on  𝑄̇  appears to be negligible 

within the tested range (5% to 50% of maximum speed). The heat transfer rate remains 

virtually constant around 965–966 W, showing a variation of less than 1%. 

This behaviour suggests that, under the given operating conditions (low refrigerant mass flow 

and moderate ambient temperature), the air-side convective heat transfer is not a limiting 

factor. The airflow provided by the fan, even at lower speeds, is sufficient to maintain the 

condenser’s effectiveness. Additional increases in fan speed do not result in improved 

thermal performance, highlighting that the system might already be operating in a thermally 

efficient convective regime. 

 
Figure 43 Condenser heat transfer rate over fan speed 
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Effect of refrigeration pressure 

The following graph shows an inverse relationship between refrigerant pressure and heat 

transfer rate. As the pressure increases from 0.9 MPa to 1.2 MPa, the thermal output 

decreases from approximately 966 W to 943 W.  

This trend is explained by the fundamental thermodynamics of the refrigerant.  An increased 

pressure raises saturation temperature of the refrigerant, as a consequence the temperature 

gradient between the refrigerant and the surrounding air, which is the driving force for heat 

transfer, is reduced.  Moreover, at higher pressures, the latent heat released during phase 

change may decrease and the total enthalpy change (Δh) is reduced. 

 Since this experiment is conducted on a bench model where the mass flow rate is held 

constant, the reduction in enthalpy change (Δh) directly results in a lower thermal output (𝑄̇). 

Therefore, under these fixed conditions of mass flow, temperature, and air flow, a higher 

operating pressure diminishes the condenser's heat rejection capacity. 

 
Figure 44 Condenser heat transfer rate over refrigerant pressure 

 

Effect of refrigeration temperature reservoir input  

The correlation between inlet refrigerant temperature and condenser heat transfer rate 

results linear, because increasing TB from 330 K to 375 K results in a rise in 𝑄̇ from around 

965 W to more than 1180 W.  

This trend is expected for two key reasons. First, a higher inlet temperature means the 

refrigerant enters the condenser with a greater initial thermal energy content. This directly 

increases the enthalpy difference available for rejection. Second, the higher refrigerant 
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temperature creates a larger mean temperature difference against the ambient air, which is 

the primary driving force for convective heat transfer.  

 
Figure 45 Condenser heat transfer rate over refrigerant inlet temperature TB 

 

Effect of refrigeration temperature reservoir output  

The plot demonstrates that adjusting the outlet refrigerant temperature, TC, within a range of 

292 K to 294 K, has a negligible effect on the system's heat transfer rate. The thermal output 

remains stable at approximately 965 W despite these variations. 

This suggests that the outlet refrigerant temperature is a dependent variable determined by 

the system's energy balance, not an independent control parameter.  Consequently, its 

variation (TC) has a negligible effect on the total heat rejection capacity. This is because the 

predominant latent heat is rejected during the phase change process, with only a minor 

additional contribution from sensible cooling in the subsequent subcooling region. 

 
Figure 46 Condenser heat transfer rate over refrigerant outlet temperature TC 
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A structured lookup table (LUT) is generated from the simulation data to comprehensively 

map the condenser's thermal behaviour across a wide range of operating conditions. This LUT 

enables the identification of critical performance trends and input-output dependencies, 

forming an essential resource for component-level analysis and a verifiable model for 

integration into broader system simulations. 

 

Figure 47 Condenser LUT 

To gain a more comprehensive understanding of the system's behaviour, the heat transfer 

rate is visualized within a multi-variable operational space. A three-dimensional surface plot 

is constructed, mapping 𝑄̇ against the primary controlling variables: refrigerant pressure (P) 

and inlet temperature (TB). This mapping is further elaborated by generating a family of 

surfaces, each corresponding to a distinct refrigerant mass flow rate (𝑚̇𝑟). 

 

 

Figure 48 3D Map of Qcondenser(P,TB) for different 𝑚̇𝑟 
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3.6.2 Evaporator 

Following the condenser analysis, the focus shifts to the evaporator, the component 

responsible for cooling and dehumidifying the cabin air. While its thermodynamic role in the 

refrigeration cycle has been established, this section examines how its performance varies 

under different operating conditions. The evaporator's ability to maintain a stable cooling 

capacity is the fundamental link to passenger comfort; therefore, a thorough understanding 

of its component-level behaviour is crucial for optimizing the design and control of the entire 

HVAC system. 

To conduct this investigation, a dedicated simulation test bench was developed in 

Simulink/Simscape. The bench integrates the following key components: 

• a blower, which regulates the airflow across the heat exchanger; 

• an environment block, reproducing the climatic conditions of the passenger cabin; 

• the evaporator model, where the refrigerant absorbs heat from the incoming air and 

undergoes phase change from liquid to vapor; 

• a mass flow source, ensuring refrigerant supply to the circuit. 

 
Figure 49 Evaporator Bench (MathWorks, s.d.) 

The simulation campaign is designed to evaluate evaporator performance under controlled 

conditions. Refrigerant mass flow rate and blower speed are systematically varied as 

independent control variables, with all environmental boundaries maintained at fixed values. 

This strategy enabled a precise analysis of their individual effects on both system-level cooling 

capacity and local refrigerant thermodynamic properties. 
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Control action 

Refrigerant mass flow rate (kg/s) mdot_r [0.004526, 0.0062, 0.00743, 0.0077] 

Evaporator fan mass flow rate control (%) mdot_a/mdot_a,max [0.2, 0.3, 0.4, 0.5] 

 

 

 

Effect of refrigerant mass flow rate 

A linearly proportional relationship is evident between the refrigerant mass flow rate (𝑚̇) and 

the evaporator's heat transfer rate (𝑄̇). According to thermodynamic principles, a higher mass 

flow rate increases the enthalpy flow rate, thus enhancing the refrigerant's capacity to absorb 

thermal energy from the air and intensifying the heat exchange process. 

 
Figure 50 Evaporator heat transfer rate over refrigerant mass flow rate 

Operating conditions 

Refrigerant Pressure (MPa) P [0.05, 0.1, 0.2, 0.25] 

Refrigerant Temperature Reservoir Input (K) TD [235, 250, 265, 275] 

Refrigerant Temperature Reservoir Output (K) TA [250, 265, 280];  

Environment 

Pressure (MPa) P_env 0.101325 

Temperature (°C) T_env 30 

Relative Humidity (%) RH_env 0.4 

CO2 Fraction CO2_env 4e-4 

Table 2 Evaporator bench operating variables 
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Effect of ait mass flow rate 

The plot demonstrates that the influence of air flow rate on heat transfer is secondary to that 

of the refrigerant mass flow rate. The effect of air flow exhibits a non-linear behaviour with 

diminishing returns: while an initial increase in air flow enhances heat transfer by improving 

convection, the marginal gain decreases significantly beyond a normalized air flow rate of 

approximately 0.35. At this point, the dominant thermal resistance is no longer on the air 

side, making further increases in air flow energetically unjustifiable relative to the limited 

performance improvement achieved.  

 
Figure 51 Evaporator heat transfer rate over air mass flow rate 

 

Effect of refrigerant pressure 

The data reveals a steep increase in the heat transfer rate, 𝑄̇, as pressure rises from 0.05 MPa 

to an optimum of 0.10 MPa, an enhancement attributed to highly efficient two-phase boiling. 

Beyond this peak, further pressure increases elevate the saturation temperature, shifting the 

refrigerant away from its ideal state for latent heat absorption and consequently degrading 

evaporator performance. 
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Figure 52 Evaporator heat transfer rate over refrigerant pressure 

 

Effect of refrigerant inlet temperature 

The plot indicates that an increase in the refrigerant inlet temperature TD leads to a 

consistent decrease in the absolute heat transfer rate |𝑄̇|, signifying a reduction in the 

evaporator's heat absorption capacity. This behaviour is governed by thermodynamic 

principles, as a higher TD reduces the temperature difference between the refrigerant and 

the air, thus diminishing the driving potential for heat exchange. Consequently, the bench 

models shows that system performance is maximized by minimizing the refrigerant inlet 

temperature. 

 

Figure 53 Evaporator heat transfer rate over refrigerant inlet temperature 
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Effect of refrigerant outlet temperature 

The experimental results demonstrate that the air outlet temperature (TA) has a negligible 

influence on the heat transfer rate (𝑄̇) across the tested operational range. This indicates that 

the evaporator's thermal performance is predominantly governed by the inlet conditions and 

refrigerant-side properties. 

 
Figure 54 Evaporator heat transfer rate over refrigerant outlet temperature 

 

The simulation results are subsequently post-processed and compiled into a lookup table 

(LUT). This LUT provides a compact yet comprehensive representation of the evaporator's 

performance, defining the heat transfer rate as a function of the following key parameters: 

refrigerant mass flow rate, air mass flow rate, refrigerant pressure, and refrigerant inlet and 

outlet temperatures. 

 
Figure 55 Evaporator LUT 
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To better visualize the evaporator's behaviour, a three-dimensional performance map is 

constructed using the evaporator pressure and the refrigerant inlet temperature as the 

primary independent variables. The heat transfer rate (𝑄̇) is represented on the vertical axis. 

This mapping is further elaborated by generating a family of surfaces, each corresponding to 

a distinct refrigerant mass flow rate. 

 

Figure 56 3D Map of Qevaporator(P,TD) for different 𝑚̇𝑟 

 
 

3.6.3 Expansion valve 

The expansion valve's performance is evaluated using a specialized test bench that replicates 

automotive HVAC conditions. Its primary function is to create a precise pressure drop, 

resulting in an isenthalpic (constant enthalpy) process that reduces refrigerant temperature. 

This phase change is essential for effective evaporation and heat absorption. The valve also 

critically regulates superheat to ensure system efficiency and protect the refrigerant loop. 

The bench setup is composed of the following key components: 

• Controlled Reservoir: Simulates the thermodynamic state of the refrigerant by allowing 

control over pressure, enthalpy, and vapor quality. This ensures the desired input 

conditions are maintained for testing. 

• An Expansion Valve: enforces the pressure reduction and initiates the cooling process by 

enabling the expansion of the refrigerant into a lower-pressure region.  

• A Mass Flow Source: Regulates and injects the refrigerant mass flow into the test loop, 

allowing simulation of different operating loads and conditions typical of condenser 

output. 
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• An Accumulator: Acts as a passive volume that collects and separates liquid and vapor 

refrigerant after expansion. It allows the outlet pressure to evolve naturally without being 

imposed, enabling accurate simulation of pressure drop across the expansion valve. 

 
Figure 57 Expansion valve bench 

 

An experimental simulation is conducted to investigate the pressure drop characteristics of an 

expansion valve. A parametric study is performed by systematically varying the three key 

independent variables: refrigerant mass flow rate, inlet pressure, and inlet temperature. All 

other boundary conditions are maintained at constant values to isolate the individual effect 

of each parameter on the resultant pressure drop. 

Control action 

Refrigerant mass flow rate (kg/s) mdot_r [0.004526, 0.0062, 0.0077] 

 

Operating conditions 

Refrigerant Pressure (MPa) P [0.9, 1.0, 1.1, 1.2] 

Refrigerant Temperature Reservoir Input (K) TC [300, 315, 330] 

Environment 

Pressure (MPa) P_env 0.101325 

Temperature (°C) T_env 30 

Relative Humidity (%) RH_env 0.4 

CO2 Fraction CO2_env 4e-4 

Table 3 Expansion valve bench operating variables 
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Effect of refrigerant mass flow rate 

The following plot characterizes the relationship between the pressure drop (ΔP) and the 

refrigerant mass flow rate (ṁr) under constant inlet conditions of 300 K and 1.1 MPa. The 

data shows a strong positive correlation, with ΔP increasing from approximately 1.035 MPa to 

1.065 MPa as ṁr was raised from 4.5 x 10-3 kg/s to 8 x 10-3kg/s. 

This trend is consistent with fundamental fluid dynamics, because the pressure drop across a 

restrictive valve orifice can be approximated to be proportional to the square of the flow rate 

(ΔP ∝ ṁr²) for turbulent flow conditions. The observed relationship confirms that the valve’s 

performance aligns with expected behaviour, where increasing flow rates result in higher 

frictional and dynamic pressure losses. 

 

Figure 58 Expansion valve pressure drop over refrigerant mass flow rate 

 

Effect of refrigerant inlet pressure 

To isolate the effect of inlet pressure on valve performance, simulations are conducted at a 

constant mass flow rate of 0.0061 kg/s and a constant inlet temperature of 300 K. The data 

indicates that ΔP increases with higher inlet pressure due to increased fluid density at 

constant flow rate and temperature. An increase in inlet pressure leads to a higher fluid 

density at constant flow rate and temperature. As a result, a denser refrigerant flowing 

through a fixed valve orifice experiences increased frictional and momentum losses, causing a 

larger pressure drop (ΔP). This highlights that the valve’s pressure drop is influenced not only 

by the flow rate but also by the operating pressure conditions. 



57 
 

 

Figure 59 Expansion valve pressure drop over refrigerant inlet pressure 

 

Effect of refrigerant inlet temperature 

The results demonstrate that inlet temperature has a negligible effect on the pressure drop 

across the valve. Over a 30 K operational range, the pressure drop varied by less than 0.001 

MPa, which is insignificant. Therefore, inlet temperature is not a critical variable for 

predicting pressure drop, with mass flow rate and inlet pressure being the primary 

influencing factors. 

 

Figure 60 Expansion valve pressure drop over refrigerant inlet temperature 

Then, the data are organized into a Look-Up Table (LUT) that characterizes the pressure drop 

(ΔP) across the expansion valve as a function of key operating parameters: refrigerant inlet 

temperature, inlet pressure, and mass flow rate. The LUT is structured as a three-dimensional 

matrix, enabling efficient interpolation between data points. 
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Figure 61 Expansion valve LUT 

 

To illustrate the expansion valve’s behaviour, a 3D map is created with inlet pressure and 

refrigerant temperature as independent variables, and the pressure drop (ΔP) on the vertical 

axis. Multiple surfaces represent different refrigerant mass flow rates. 

 

 

Figure 62 3D Map of ΔP(Pin,TC) for different 𝑚̇𝑟 
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3.6.4 Compressor bench 

The compressor’s primary role is to compress the refrigerant coming from the evaporator, 

increasing its pressure and temperature to enable condensation and heat rejection to the 

vehicle’s surroundings. Its performance directly affects energy efficiency, cooling capacity, and 

the overall reliability of the HVAC system. 

A dedicated test bench is used for experimental characterization, designed to replicate 

realistic operating conditions and accurately evaluate key performance parameters. The setup 

consists of: 

• An Inlet Reservoir: Defines the refrigerant suction conditions by imposing pressure and 

temperature at the compressor inlet. It acts as an infinite volume, ensuring stable and 

reproducible boundary conditions for mass flow and performance evaluation. 

• A Positive Displacement Compressor: With a fixed displacement of 80 cm³/rev, it 

compresses the refrigerant vapor from the evaporator to higher pressure and 

temperature. Its performance is characterized by an isentropic efficiency of 65% and a 

volumetric efficiency of 90%, key parameters for determining mass flow, work, and 

discharge conditions based on operating speed and suction state. 

• An Accumulator: Serves as a buffer volume at the compressor outlet, stabilizing pressure 

fluctuations and dampening pulsations generated by the compression process. It ensures 

smoother flow delivery to the downstream circuit, protects system components from 

sudden transients, and provides a more realistic representation of discharge conditions 

 

Figure 63 Compressor Bench 

A parametric study is performed by systematically varying the three key independent 

variables: compressor speed, inlet pressure, and inlet temperature. The objective of this 

study is to investigate the effect of these variables on the compressor work.  

Control action 

Compressor speed control (%) omega_r [0.3,0.6,0.8] 
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Effect of pressure ratio Pout / Pin 

The following plot shows that compressor power increases monotonically with the pressure 

ratio Pout/Pin, displaying a slightly convex upward trend. This trend can be explained through 

thermodynamics, as the energy required for compression increases nonlinearly due to the 

combined effects of real-gas behaviour and growing system irreversibility, such as increased 

mechanical friction and internal leakage. Consequently, operating at elevated compression 

ratios result in significantly greater power consumption, highlighting the importance of 

optimizing the compression level for energy efficiency. 

 

Figure 64 Compressor work over pressure ratio 

 

Effect of Inlet Temperature 

The plot shows a slight increasing trend in compressor power as the inlet temperature 

increases from 250 K to 280 K. This behaviour is coherent with the fundamental 

thermodynamic expectation that, for a fixed mass flow rate and pressure ratio, the specific 

compression work increases linearly with inlet temperature. 

Operating conditions 

Refrigerant Pressure Ratio  Pout / Pin [4.5, 5.25, 6, 8] 

Refrigerant Temperature Reservoir Input (K) TA [250, 265, 280] 

Table 4 Compressor bench operating variables 
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Figure 65 Compressor work over inlet temperature 

 

Effect of Compressor speed 

The graph demonstrates a strong linear correlation between compressor work and rotational 

speed. When speed increases from 30% to 80% of its maximum value, the compressor work 

rises proportionally from 0.18 kW to 0.53 kW. This linear relationship occurs because the 

compressor work is directly proportional to the refrigerant mass flow rate, which is controlled 

by the compressor speed. 

 

Figure 66 Compressor work over rotational speed 
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The experimental data are used to generate a look up table in function of compressor speed 

percentage, refrigerant temperature at the compressor inlet and the pressure ratio Pout/Pin.

  

 

Figure 67 LUT Compressor 

 

To better highlight the relationships among the variables, a 3D surface plot is generated. 

 

 

Figure 68 3D map of 𝑊𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 for different 𝜔/𝜔𝑚𝑎𝑥  
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4. Neural Network-Based Modelling of Thermal Models 

4.1 Methodological Approach 

To accurately and efficiently predict the thermal system performance of an electric vehicle under 

real-world driving conditions, a data-driven approach utilizing neural networks (NNs) is 

implemented. This methodology provides an optimal balance between predictive accuracy and 

computational efficiency. Due to the complex, nonlinear behaviour of the vehicle's thermal 

system, which is influenced by numerous variables, the primary objective is to develop a 

predictive model capable of learning the intricate correlations between operational conditions, 

environmental factors, and the vehicle's thermal response. 

The thermal system's behaviour varies significantly depending on the active operational mode. 

Consequently, the problem is decomposed into four distinct sub-problems, each modelled by a 

dedicated neural network. These four modes, and their corresponding functions, are: 

• Battery Heating: Actively increases the temperature of the battery pack. 

• Battery Cooling: Actively decreases the temperature of the battery pack. 

• Cabin Heating: Modulates the temperature of the passenger compartment. 

• Cabin Cooling: Reduces the temperature of the passenger compartment. 

For each of these modes, a specific neural network is developed and trained on a dedicated 

subset of the complete dataset to ensure optimal performance for its specific function. 

EFFEREST circuit  

In the Efferest model, three main thermal circuits can be distinguished:  

• the cooling circuit (in green),  

• the ED cooling circuit positioned on the left (in blue), 

• the battery circuit on the right (also in blue). 

The overall operating principle is similar to that of the system previously analysed; however, the 

heating function is also explicitly represented in this configuration. During winter conditions, 

Pump 2 plays a particularly important role, as it allows the battery temperature to be quickly 

increased by means of the PTC heater. 

In the event that heating of the passenger compartment is required, there is a dedicated branch 

that includes the heater core, which exchanges heat with the evaporator. In heat pump mode, 
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the latter acts as a condenser, allowing heat to be transferred to the coolant circuit and, 

consequently, to the passenger compartment. 

The PTC heater can also be used for rapid heating of the cabin, making it particularly useful 

during start-up or thermal transient. Once steady state conditions are reached, its use is 

progressively reduced, in order to improve the overall efficiency of the system. 

During summer operation, on the other hand, Pump 3 is more important, which allows the 

battery circuit to be reconfigured, excluding unnecessary branches and keeping only the cooling 

function active. 

 

Figure 69 EFFEREST circuit model 

 

4.2  Battery Heating mode (BH) 
Problem definition 

The Battery Heating mode is activated when the battery temperature falls below its optimal 

operating range, generally under cold ambient conditions. Proper thermal management in this 

mode is crucial to preserve battery efficiency, longevity, and safety. 

The modelling task is divided into two related regression problems, each addressed by a 

dedicated neural network: 
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• Estimation of the battery temperature rate of change, 𝑑𝑇𝑏𝑎𝑡𝑡
𝑑𝑡

, which captures the thermal 

dynamics of the battery as it responds to heating and environmental conditions. 

• Prediction of the required electric heating power, 𝑃𝑒𝑙  , necessary to achieve or maintain 

the target battery temperature. 

Both networks take as input key operational and environmental features and output their 

respective predictions. This division allows for specialized learning focused on the distinct 

Physics-based phenomena governing thermal variation and power consumption. 

 

Battery Heating Dataset – EFFEREST 

The simulation datasets from the EFFEREST project, representing the system behaviour during 

the Battery Heating (BH) phase of an electric vehicle, have the variables defined below. It 

contains constant conditions and time-series signals sampled at 0.1 s, both used as input for 

training neural networks.  

Initial Conditions for generating EFFEREST data 

• Heat loss in the high voltage battery (Qloss_HVBattery_W = [0, 1000, 2000, 3000, 4000, 5000, 

6000, 7000, 8000, 9000, 10000]) 

• Ambient temperature (Tambient_degC = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30]) 

• Initial battery surface temperature (Ts_BATT_start_degC = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 

25, 30]) 

Time-Series Signals (sampled at 0.1s) 

• Battery surface temperature (Ts_BATT_degC) 

• On-board charger temperature (Ts_OBC_degC) 

• Coolant temperature entering battery (Tco_BAT_in_degC) 

• Coolant temperature exiting battery (Tco_BAT_out_degC) 

• Coolant mass flow rate to battery (mdot_co_BAT_kgps) 

• Coolant mass flow rate to OBC (mdot_co_OBC_kgps) 

• PTC heater electric power (Pel_PTC_W) 

• Pump 2 electric power (Pel_pump2_W) 

• Thermal power delivered by PTC (Q_PTC_W) 
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Network Architecture and Data - Estimation of  𝒅𝑻𝒃𝒂𝒕𝒕
𝒅𝒕

  

The neural network for estimating the derivative of the battery surface temperature is a 

feedforward model structured as follows:  

• Input Layer: 3 neurons corresponding to: 

-  Ambient temperature 𝑇𝑎𝑚𝑏 

-  Battery surface temperature 𝑇𝑏𝑎𝑡𝑡 [Real-time battery surface temperature] 

-  Battery heat loss 𝑄𝑙𝑜𝑠𝑠 =

{0, 1000 , 2000 , 3000 , 4000 , 5000 , 6000 , 7000 , 8000 , 9000 , 10000]; [𝑊] 

• Hidden Layer 1: 8 neurons 

- Activation function: Swish 

• Hidden Layer 2: 8 neurons 

- Activation function: Swish 

• Output Layer: 1 neuron 

- Output: estimated Pel 

-  Activation function: Linear 

The data are sampled at a fixed time step of 0.1 seconds (10 Hz), resulting in a total dataset size 

of 64,051,281 samples, with 3 input features and one target output.  

The dataset is split as follows: 

• ~99.89% for training 

• 0.1% for validation 

• 0.01% for testing 

 
Figure 70 Neural network architecture for Battery Heating mode: estimation of dTbatt/dt 
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Training Configuration - Estimation of  𝒅𝑻𝒃𝒂𝒕𝒕
𝒅𝒕

 

• Batch Size: 8192 

• Number of Epochs: 30 

• Optimizer: Adam (Adaptive Moment Estimation) 

• Learning Rate: 5×10−3 

• Loss Function: Mean Squared Error (MSE) 

All input features are normalized to the [0,1] range prior to training.  

 

Figure 71 Training and validation loss over epochs for NN dTbatt/dt 

 

Testing - Estimation of  𝒅𝑻𝒃𝒂𝒕𝒕
𝒅𝒕

 

The model is evaluated on a test dataset composed of samples not used during training, 

representing typical operating conditions of the Battery Heating mode. Quantitative assessment 

is performed using standard regression metrics, including the Root Mean Squared Error (RMSE).   

𝑅𝑀𝑆𝐸 =  √ 
1
𝑁

 ∑( 𝐷𝑎𝑡𝑎 𝑖  −  𝑁𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖)2

𝑁

𝑖=1

 

The model achieved an RMSE of 0.00576, indicating high accuracy in estimating the battery 

surface temperature derivative. This low RMSE value demonstrates the neural network’s 

capability to accurately predict thermal variations of the system under realistic conditions. 
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Figure 72 dTbatt/dt: Test output vs NN prediction 

Qualitative analysis through plots comparing predicted versus actual values further confirms the 

model’s good fit, with minimal deviations and no evident systematic error patterns. Residual 

errors may be attributed to noise in the simulation data or limitations in capturing complex 

thermal dynamics of the system. 

 

Figure 73 dTbatt/dt - qualitative analysis: Test output vs NN prediction 

This architecture provides a balance between model complexity and training efficiency, enabling 

the network to learn the nonlinear thermal behaviour of the battery system with a compact and 

computationally efficient structure. 
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Simulation of the Neural Network – Estimation of  𝒅𝑻𝒃𝒂𝒕𝒕
𝒅𝒕

 

To rigorously assess the predictive performance of the trained neural network, a dedicated 

simulation framework is developed within the Simulink environment, designed to replicate the 

thermal behaviour of a battery system using experimental data derived from the EFFEREST test 

campaign. 

The model accepts as input a representative dataset composed of: 

• Ambient temperature (Tamb), 

• Battery temperature (Tbatt), 

• Heat loss (Qloss). 

All input variables are first subjected to normalization within the [0, 1] range, using the same 

scaling parameters (minimum and maximum values) applied during the training phase. This 

preprocessing step ensures consistency between the training and inference phases and maintains 

the validity of the network’s learned representations. 

The normalized inputs are subsequently fed into the neural network, which provides as output 

the time derivative of the battery temperature (dTbatt/dt). This thermal gradient is then 

integrated over time using a numerical solver to reconstruct the temperature profile of the 

battery, Tbatt(t). The reconstructed profile is then compared to the experimentally measured 

battery temperature, enabling a quantitative evaluation of the network’s predictive accuracy. 

 

Figure 74 Simulink model for testing dTbatt/dt Neural Network 

 

In addition to serving as a validation platform, the Simulink model is also employed to conduct a 

sensitivity analysis aimed at investigating the impact of solver configuration on both accuracy and 
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computational efficiency. Specifically, the ODE solver ode4 (Runge-Kutta) is utilized in 

combination with varying values of the fixed step size. The objective of this analysis is to identify 

the optimal balance between numerical precision and simulation runtime. 

 

Figure 75 Sensitivity analysis - computational time comparison 

 

Each configuration is evaluated in terms of the Root Mean Square Error (RMSE) between the 

simulated and measured battery temperatures, as well as the computational time required for 

execution. The results of this analysis are summarized in Table 5.  

 

 

 

 

 

Fixed step-size Simulation time (s) Ts_BATT  (RMSE) 

0,001 137.795 6.5647 °C 

0,01 14.507 6.5647 °C 

0,1 2.584 6.5648 °C 

1 1.427 6.5651 °C 

5 1.271 6.5665 °C 

15 1.317 6.5632 °C 

Table 5 Sensitivity analysis dTbatt/dt 
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A time step of 0.1 s is determined to be the most suitable, providing a detailed representation of 

system dynamics without incurring excessive computational cost. 

To validate the Simulink model integrated with the neural network, selected input data from the 

EFFEREST dataset are used. The trained neural network is used to evaluate the derivative of the 

battery temperature 𝑑𝑇𝑏𝑎𝑡𝑡
𝑑𝑡

, which is plotted in the following graph. 

 

Figure 76 Derivative of the battery temperature (dTbatt/dt) over time, computed by the neural network. 
v 

This derivative is then numerically integrated to reconstruct the temperature profile, which is 

compared to the original data. The model’s performance is evaluated using the Root Mean 

Square Error (RMSE), resulting in an average value of 6.50 °C. 

 

Figure 77 Battery temperature (Tbatt) over time 
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Network Architecture and Data - Estimation of  Pel 

The aim of this NN is to estimate the total electrical power consumption, defined as: 

𝑷𝒆𝒍 =  𝑷𝒆𝒍 𝑷𝑻𝑪 +   𝑷𝒆𝒍 𝒑𝒖𝒎𝒑𝟐 

The first attempt to train the neural network for Pel estimation is conducted using the following 

architecture: 

• Input Layer: 3 neurons corresponding to: 

-  Ambient temperature 𝑇𝑎𝑚𝑏 [𝑑𝑒𝑔𝐶]  

-  Battery surface temperature 𝑇𝑏𝑎𝑡𝑡 [𝑑𝑒𝑔𝐶]   

-  Battery heat loss 𝑄𝑙𝑜𝑠𝑠 [𝑊] 

• Hidden Layer 1: 8 neurons 

- Activation function: Swish 

• Hidden Layer 2: 8 neurons 

- Activation function: Swish 

• Output Layer: 1 neuron 

- Output: estimated Pel 

-  Activation function: Linear 

The data are sampled at a fixed time step of 0.1 seconds (10 Hz), resulting in a total dataset size 

of 64,050,000 samples, with 3 input features and one target output.  

The dataset is split as follows: 

• ~99.89% for training 

• 0.1% for validation 

• 0.01% for testing 

 

Figure 78 Neural network architecture for Battery Heating mode: estimation of Pel 
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Training Configuration - Estimation of Pel 

• Batch Size: 8192 

• Number of Epochs: 30 

• Optimizer: Adam (Adaptive Moment Estimation) 

• Learning Rate: 5×10−3 

• Loss Function: Mean Squared Error (MSE) 

All input features are normalized to the [0,1] range prior to training.  

 

Figure 79 Training and validation loss over epochs for NN Pel 
 

Testing - Estimation of  Pel 

The neural network developed for Pel estimation is evaluated on the independent test dataset. 

The model achieved an RMSE of 1.82×102 W. Considering that Pel values span up to 10,000 W, 

this error can be regarded as acceptable in relative terms, as it indicates that the network is 

generally capable of capturing the power demand dynamics.  

 

Figure 80 Pel: Test output vs NN prediction 
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Regarding the qualitative analysis on the test set, the predicted and actual Pel trends show an 

overall consistent match. Nevertheless, slight discrepancies can be observed: the predicted 

slopes are often steeper than the actual ones, and not all peak values are accurately captured by 

the network. 

 
Figure 81 Pel- qualitative analysis: Test output vs NN prediction 

 

Simulation of the Neural Network - Estimation of  Pel 

To evaluate the performance of the neural network, the Pel versus time plots must be 

considered. Building upon the previously developed dTbatt/dt simulation framework, the model 

is extended to include the neural network for Pel prediction. This network directly estimates the 

electrical power demand, which is then compared to the corresponding measurements from the 

EFFEREST dataset. The input variables are identical to those used for the dTbatt/dt network, 

ensuring consistent preprocessing and enabling a coherent assessment of the network’s 

predictive accuracy. 

 

Figure 82 Simulink model for testing Pel and dTbatt/dt Neural Network 
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The same sensitivity analysis is also performed for the current model, with the results 

summarized in the following table. As in the previous case, the analysis confirms that a fixed time 

step of 0.1 s provides the best compromise between numerical accuracy and computational 

efficiency and will therefore be adopted for all subsequent simulations. 

 

 

 

 

 

Figure 83 reports the comparison between the measured EFFEREST data and the outputs of the 

Simulink model integrating the neural network for Pel.  

 

Figure 83 Electric power (Pel) over time 

The measured data (dashed lines) are compared with the simulations from the Simulink model 

integrating the neural network (solid lines). Overall, the model correctly reproduces the dynamics 

of the low-temperature configurations: the predicted curves faithfully follow both the initial peak 

phase and the decay toward the steady-state regime, with contained deviations in magnitude and 

phase. 

However, for the last two configurations (Tamb = 25°C and Tamb = 30°C), significant discrepancies 

are observed. In these cases, the simulation shows substantial errors in the magnitude of the 

Fixed step-size Simulation time (s) Ts_BATT  (RMSE) Pel (RMSE) 

0,001 132.080 6.5647 °C 434.14 W 

0,01 12.639 6.5647 °C 434.20 W 

0,1 1.729 6.5648 °C 434.82 W 

1 0.925 6.5651 °C 443.52 W 

5 0.850 6.5665 °C 487.93 W 

15 0.846 6.5632 °C 568.43 W 

Table 6 Sensitivity analysis dTbatt/dt and Pel 
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peaks (sometimes overestimated or not reconstructed with the same amplitude), as well as in the 

slope of the curves during transient phases: the predicted response tends to have steeper slopes 

and a decay with different temporal characteristics compared to the data.  

Refinement of the Neural Network for Pel Prediction 

Due to the limitations observed in the previously presented neural network, a refined version is 

developed. While preserving the same preprocessing methodology, this updated model 

introduces architectural modifications aimed at enhancing its ability to capture nonlinear system 

dynamics. Specifically, an additional hidden layer is introduced, and the number of neurons per 

layer is increased from 8 to 64, thus improving the network’s representational capacity. The most 

significant refinement, however, lies in the input set: alongside the original variables, the 

previous battery temperature (Tbatt_prev), corresponding to the value recorded 10 seconds 

earlier, is included to account for temporal dependencies, while the coolant temperature 

difference (ΔT_co = T_co,BAT_out – T_co,BAT_in) is incorporated to directly capture the thermal 

exchange occurring within the cooling circuit. The new configuration is detailed below. 

• Input Layer: 5 neurons corresponding to: 

- Ambient temperature (Tamb) 

- Battery surface temperature (Ts_batt) 

- Battery surface temperature 10s prior (Ts_batt_prev) 

- Battery heat loss (Qloss) 

- Temperature difference of the battery coolant (deltaT_co) 

• Hidden Layer 1: 64 neurons 

- Activation function: Swish 

• Hidden Layer 2: 64 neurons 

- Activation function: Swish 

• Hidden Layer 3: 64 neurons 

- Activation function: Swish 

• Output Layer: 1 neuron 

- Output: estimated Pel 

-  Activation function: Linear 

• Training details: 

- Batch size: 2056 

- Epochs: 50 

- Optimizer: Adam (adaptive moment estimation) 



77 
 

- Learning Rate: 5 × 10⁻³ 

The data are sampled at a fixed time step of 0.1 seconds (10 Hz), resulting in a total dataset size 

of 63,923,181  samples, with 5 input features and one target output.  

 
Figure 84 Neural network architecture for Battery Heating mode: estimation of Pel 

The training process of the refined neural network confirmed its ability to learn the system's 

dynamics. Both training and validation losses exhibited a smooth, decreasing trend across 

epochs, converging to values on the order of log(10) without any evidence of overfitting. This 

convergence indicates that the prediction error is consistently minimized for both the training 

and validation sets, demonstrating that the model generalizes well to unseen data. The low 

magnitude of the final losses further supports the adequacy of the chosen architecture and input 

set in capturing the nonlinear relationships governing the electrical power demand. 

 
Figure 85 Training and validation loss over epochs for NN Pel 
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The model produces a low RMSE of 1.96 W, corresponding to an approximate relative error of 2–

3% with respect to typical Pel values. This demonstrates that the deviations between predicted 

and measured values are minimal and that the network accurately reproduces the overall power 

demand dynamics. 

 

Figure 86 Pel- qualitative analysis: Test output vs NN prediction 

 

A qualitative comparison between the predicted and actual Pel signals shows an excellent 

agreement, with the simulated and measured trends appearing almost identical. Deviations are 

minimal and hardly noticeable, indicating that the network accurately captures the system 

dynamics. 

 

Figure 87 Electric power (Pel) over time 

Applying this neural network to the same configurations as those previously tested, a significant 

qualitative improvement can be observed in the agreement between reference data and 
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simulations. This enhancement is quantitatively supported by the reduction of the root mean 

square error (RMSE) from 434.8 W (Figure 83) to 2.40 W (Figure 87Figure 87).  

The following table reports the RMSE values of Pel for each of the tested curves in Simulink. All 

tested conditions confirm the network’s ability to accurately generalize across a wide range of 

scenarios, consistently maintaining an average prediction error of around 2 W—equivalent to just 

0.02% on a typical power value of 10,000 W. 

Tamb [°C] Tbatt [°C] Qloss [W] Pel RMSE (W) 

-20 -20 0 3.39 

-20 -10 5000 1.81 

0 -10 4000 1.88 

0 0 8000 2.49 

0 10 10000 2.58 

10 10 4000 3.53 

25 20 3000 0.99 

30 25 5000 2.56 

Table 7 RMSE values for different simulation of Pel 
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4.3 Battery Cooling mode (BC) 

Problem definition 

The Battery Cooling mode activates when the battery temperature exceeds its optimal operating 

range, typically in hot ambient conditions. Proper thermal management in this mode is essential 

to maintain battery performance, lifespan, and safety. 

The modelling task is divided into two related regression problems, each addressed by a 

dedicated neural network: 

• Estimation of the battery temperature rate of change, 𝑑𝑇𝑏𝑎𝑡𝑡
𝑑𝑡

. 

• Prediction of the required electric heating power, 𝑃𝑒𝑙  . 

 

Battery Cooling Dataset – EFFEREST 

The EFFEREST dataset of battery cooling has the following information: 

Initial Conditions for generating data 

• Heat loss in the high voltage battery (Qloss_HVBattery_W = [0, 1000 , 2000 , 3000 , 4000 , 

5000 , 6000 , 7000 , 8000 , 9000 , 10000]) 

• Ambient temperature (Tambient_degC =[40,35,30,25,20,15]) 

• Initial battery surface temperature (Ts_BATT_start_degC = [40,35,30,25,20,15]) 

Time-Series Signals (sampled at 0.1s) 

• Battery surface temperature (Ts_BATT_degC) 

• On-board charger temperature (Ts_OBC_degC) 

• Battery coolant inlet temperature (Tco_BAT_in_degC) 

• Battery coolant outlet temperature (Tco_BAT_out_degC) 

• Battery coolant mass flow rate (mdot_co_BAT_kgps) 

• Compressor electric power (Pel_comp_W) 

• Fan electric power (Pel_Fan_W) 

• Pump electric power (Pel_pump3_W) 
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Simulation of the Neural Network - Estimation of  𝒅𝑻𝒃𝒂𝒕𝒕
𝒅𝒕

 

To develop the neural network aimed at estimating the time derivative of the battery 

temperature, two simulations are performed: the first one using three input variables, and the 

second one using five. 

• Neural Network a: 

- Input Layer: 3 neurons 

▪  Ambient temperature (Tamb) 

▪ Battery surface temperature (Ts_batt) 

▪ Battery heat loss (Qloss) 

- Hidden layers: 

▪ 2 hidden layers with 8 neurons each 

▪ Activation function: Swish 

- Output Layer: 1 neuron 

▪ 𝒅𝑻𝒃𝒂𝒕𝒕
𝒅𝒕

  

- Training details: 

o Dataset: 14256396x4    

o Batch size: 2056 

o Epochs: 30 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

• Neural Network b: 

- Input Layer: 3 neurons 

▪  Ambient temperature (Tamb) 

▪ Battery surface temperature (Ts_batt) 

▪ Battery heat loss (Qloss) 

- Hidden layers: 

▪ 2 hidden layers with 64 neurons each 

▪ Activation function: Swish 

- Output Layer: 1 neuron 

▪ 𝒅𝑻𝒃𝒂𝒕𝒕
𝒅𝒕

  

- Training details: 

o Dataset: 14256396x4    

o Batch size: 2056 
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o Epochs: 30 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

• Neural Network c: 

- Input Layer: 3 neurons 

▪  Ambient temperature (Tamb) 

▪ Battery surface temperature (Ts_batt) 

▪ Battery heat loss (Qloss) 

- Hidden layers: 

▪ 2 hidden layers with 64 neurons each 

▪ Activation function: ReLU 

- Output Layer: 1 neuron 

▪ 𝒅𝑻𝒃𝒂𝒕𝒕
𝒅𝒕

  

- Training details: 

o Dataset: 14256396x4    

o Batch size: 2056 

o Epochs: 30 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

 

The different neural network configurations for the estimation of 𝒅𝑻𝒃𝒂𝒕𝒕
𝒅𝒕

 have been developed, 

trained, and tested entirely in the MATLAB environment, using the same criteria for splitting the 

dataset into training, validation, and testing described above. 

In the quantitative analysis, the Root Mean Squared Error (RMSE) has been adopted as the main 

evaluation parameter, as it allows to measure the average deviation between the values 

predicted by the network and those measured. 

During the training phase, the RMSE is calculated on the derivative of the battery temperature, 
𝒅𝑻𝒃𝒂𝒕𝒕

𝒅𝒕
 and represents the error with respect to the real derivative present in the dataset. 

However, in complete system simulations, the required output is the temperature of the battery 

itself ( 𝑻𝒃𝒂𝒕𝒕), obtained by integration of the derivative. 

For this reason, an additional RMSE is calculated in the simulations that evaluates the estimated 

battery temperature deviation from the actual data, in order to verify the actual accuracy of the 

network in the dynamic context of the system. 



83 
 

All the results obtained from the quantitative analyses and simulations are reported in Table 8 

Testing and simulation RMSE for each Battery Cooling dTbatt/dt neural network configuration, 

which allows a direct comparison between the tested configurations. 

 

Configuration Architecture 
RMSE training (°C/s) 

dTbatt/dt 

RMSE simulation (°C) 

Tbatt 

NN a 3 inputs (Tamb, Ts_batt, Qloss) 

2 hidden layers (swish) 

8 neurons 

2.68e-03 2.24 

NN b 3 inputs (Tamb, Ts_batt, Qloss) 

2 hidden layers (swish) 

64 neurons 

3.034e-03 1.86 

NN c 3 inputs (Tamb, Ts_batt, Qloss) 

2 hidden layers (ReLU) 

64 neurons 

2.50e-03 1.93 

 Table 8 Testing and simulation RMSE for each Battery Cooling dTbatt/dt neural network configuration 
 

Afterward, a qualitative analysis is conducted to assess the accuracy of the neural network model 

compared to experimental data. In particular, the temporal trend of the battery temperature is 

observed, comparing the simulated values (solid lines) with those measured (dotted lines). From 

the graphs obtained, it can be seen that the simulations provided by the neural network show a 

linear trend over time. This behaviour can be attributed to the fact that the network has been 

trained to estimate the time derivative of temperature (𝑑𝑇batt
𝑑𝑡

), while the complete temperature 

profile (𝑇batt) has been derived through a numerical integration of this derivative. 

Therefore, in the absence of significant temporal variation in the estimated derivative, the model 

produces a nearly linear thermal response, failing to accurately reproduce the nonlinear 

dynamics observed in the experimental data, such as stabilization phases or slope variations 

related to complex thermal effects (e.g. heat exchanges with the environment, variable heat 

capacity, etc.). In some cases, there is a fair amount of overlap between simulation and real data, 

while in others the network tends to overestimate or underestimate thermal evolution. This 

suggests that the model, while able to capture a general trend, needs further improvement to 

accurately model the entire system dynamics. 
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Figure 88 NN a 

 
Figure 89 NN b 

 

Figure 90 NN c 

 



85 
 

The analysis of the results shows that an increase in the number of neurons in the hidden layers 

leads to a significant qualitative improvement in the performance of the neural network. In 

particular, comparing the NN a and NN b models, both characterized by the same structure and 

activation function (Swish), but with 8 and 64 neurons respectively, a significant reduction in 

error is observed on the battery temperature simulation, which goes from 2.24 °C to 1.86 °C.  This 

suggests that a greater expressive capacity of the network, obtained by increasing the number of 

neurons, allows a better approximation of the complex thermal dynamics of the system. 

Furthermore, comparing NN b and NN c, which share the same structure and number of neurons 

but differ in activation function (Swish vs ReLU), it is noted that the Swish function provides 

superior performance. Specifically, NN b (Swish) achieves a lower simulation RMSE than NN c 

(ReLU), at 1.86 °C and 1.93 °C, respectively.  This confirms that Swish is more effective for non-

linear thermal modelling, thanks to its smooth, non-monotonic nature 

 

Model selection and performance validation 

After selecting the NN b neural network, which provided the best accuracy and generalization 

ability, a detailed analysis of the training and testing phases is carried out. 

As it can be seen from the graph, the simulation reached 2.1 × 10⁵ iterations, allowing for very 

stable training and validation losses at extremely low values, around 10⁻⁵. This indicates that the 

network has effectively learned the target function without significant overfitting. However, there 

are sporadic spikes that may be due to data noise or momentary jitters, but do not affect training 

stability or convergence. 

 

 
Figure 91 Training and validation loss over epochs for NN dTbatt/dt 
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The neural network is subsequently tested on previously unseen data to evaluate its predictive 

capabilities. As shown in the graph, while the predicted output (orange line) does not perfectly 

follow the reference data (blue line), it still captures the overall trend with reasonable accuracy. 

This indicates that the model retains acceptable generalization performance, even under new 

operating conditions. 

 
Figure 92  dTbatt/dt - qualitative analysis: Test output vs NN prediction 
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Network Architecture and Data - Estimation of  Pel 

To develop a neural network capable of accurately estimating the required electric cooling power 

(Pel), numerous modelling attempts are carried out. 

The target variable Pel is defined as the total electric power used by the cooling system, 

calculated as the sum of: 

𝑃𝑒𝑙 =  𝑃𝑒𝑙 𝑐𝑜𝑚𝑝 +  𝑃𝑒𝑙 𝐹𝑎𝑛 + 𝑃𝑒𝑙 𝑝𝑢𝑚𝑝3 

 

Different combinations of input features are tested alongside varied neural network 

architectures, creating multiple model configurations: 

• Neural Network A: 

- Input Layer: 3 neurons 

▪  Ambient temperature (Tamb) 

▪ Battery surface temperature (Ts_batt) 

▪ Battery heat loss (Qloss) 

- Hidden layers: 

▪ 2 hidden layers with 8 neurons each 

▪ Activation function: Swish 

- Output Layer: 1 neuron 

▪ Electric power (Pel) 

- Training details: 

o Dataset: 14256396x4    

o Batch size: 2056 

o Epochs: 30 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

• Neural Network B: 

- Input Layer: 3 neurons 

▪  Ambient temperature (Tamb) 

▪ Battery surface temperature (Ts_batt) 

▪ Battery heat loss (Qloss) 

- Hidden layers: 

▪ 2 hidden layers with 64 neurons each 
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▪ Activation function: Swish 

- Output Layer: 1 neuron 

▪ Electric power (Pel) 

- Training details: 

o Dataset: 14256396x4    

o Batch size: 2056 

o Epochs: 30 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

• Neural Network C: 

- Input Layer: 3 neurons 

▪  Ambient temperature (Tamb) 

▪ Battery surface temperature (Ts_batt) 

▪ Battery heat loss (Qloss) 

- Hidden layers: 

▪ 2 hidden layers with 64 neurons each 

▪ Activation function: ReLU 

- Output Layer: 1 neuron 

▪ Electric power (Pel) 

- Training details: 

o Dataset: 14256396x4    

o Batch size: 2056 

o Epochs: 30 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

• Neural Network D: 

- Input Layer: 4 neurons 

▪  Ambient temperature (Tamb) 

▪ Battery surface temperature (Ts_batt) 

▪ Battery surface temperature 10s prior (Ts_batt_prev) 

▪ Battery heat loss (Qloss) 

- Hidden layers: 

▪ 2 hidden layers with 64 neurons each 

▪ Activation function: Swish 

- Output Layer: 1 neuron 
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▪ Electric power (Pel) 

- Training details: 

o Dataset: 14216796 x 5     

o Batch size: 2056 

o Epochs: 30 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

• Neural Network E: 

- Input Layer: 4 neurons 

▪  Ambient temperature (Tamb) 

▪ Battery surface temperature (Ts_batt) 

▪ Battery surface temperature10s prior (Ts_batt_prev) 

▪ Battery heat loss (Qloss) 

- Hidden layers: 

▪ 3 hidden layers with 64 neurons each 

▪ Activation function: Swish 

- Output Layer: 1 neuron 

▪ Electric power (Pel) 

- Training details: 

o Dataset: 14216796 x 5     

o Batch size: 2056 

o Epochs: 30 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

• Neural Network F: 

- Input Layer: 4 neurons 

▪  Ambient temperature (Tamb) 

▪ Battery surface temperature (Ts_batt) 

▪ Battery surface temperature10s prior (Ts_batt_prev) 

▪ Battery heat loss (Qloss) 

- Hidden layers: 

▪ 3 hidden layers with 256 neurons each 

▪ Activation function: Swish 

- Output Layer: 1 neuron 

▪ Electric power (Pel) 
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- Training details: 

o Dataset: 14216796 x 5     

o Batch size: 2056 

o Epochs: 50 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

• Neural Network G: 

- Input Layer: 5 neurons 

▪  Ambient temperature (Tamb) 

▪ Battery surface temperature (Ts_batt) 

▪ Battery surface temperature10s prior (Ts_batt_prev) 

▪ Battery heat loss (Qloss) 

▪ Battery coolant mass flow rate (mdot_co) 

- Hidden layers: 

▪ 3 hidden layers with 64 neurons each 

▪ Activation function: Swish 

- Output Layer: 1 neuron 

▪ Electric power (Pel) 

- Training details: 

o Dataset: 14216796 x 6     

o Batch size: 2048 

o Epochs: 50 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

• Neural Network H: 

- Input Layer: 5 neurons 

▪  Ambient temperature (Tamb) 

▪ Battery surface temperature (Ts_batt) 

▪ Battery surface temperature10s prior (Ts_batt_prev) 

▪ Battery heat loss (Qloss) 

▪ Temperature difference of the battery coolant (deltaT_co) 

- Hidden layers: 

▪ 3 hidden layers with 64 neurons each 

▪ Activation function: Swish 

- Output Layer: 1 neuron 
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▪ Electric power (Pel) 

- Training details: 

o Dataset: 14216796 x 6     

o Batch size: 2048 

o Epochs: 50 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

 

All neural network configurations are developed and trained in MATLAB, using the previously 

defined data splits for training, validation, and testing. The Root Mean Squared Error (RMSE) is 

adopted as the primary performance metric, as it quantifies the average deviation between the 

predicted and measured values of Pel. A first evaluation is conducted over the entire test dataset 

to produce a global RMSE value for each configuration, ensuring that all models are compared 

under the same statistical conditions. However, while this global RMSE offers a valuable measure 

of accuracy, it does not fully capture the ability of the models to reproduce the temporal 

dynamics of Pel in realistic operating scenarios. To address this, a qualitative assessment is also 

carried out by selecting representative time sequences from the dataset and comparing the 

predicted and measured Pel profiles. For each sequence, the RMSE is calculated and then 

averaged to obtain the “RMSE simulation,” which emphasizes the capability of the networks to 

track rapid fluctuations and transient behaviours. The results of both evaluations are summarized 

in Table 9, where for each configuration the global and qualitative RMSE values are reported side 

by side to facilitate direct comparison.  

 

Configuration Architecture 
RMSE training 

(W) 

RMSE simulation 

(W) 

NN A 3 inputs (Tamb, Ts_batt, Qloss) 

2 hidden layers (swish) 

8 neurons 

461.65 390.60 

NN B 3 inputs (Tamb, Ts_batt, Qloss) 

2 hidden layers (swish) 

64 neurons 

437.52 362.25 

NN C 3 inputs (Tamb, Ts_batt, Qloss) 

2 hidden layers (ReLU) 

64 neurons 

488.57 467.83 
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NN D 4 inputs (Tamb, Ts_batt, Ts_batt_prev, 

Qloss) 

2 hidden layers (swish) 

64 neurons 

431.87 340.39 

NN E 4 inputs (Tamb, Ts_batt, Ts_batt_prev, 

Qloss) 

3 hidden layers (swish) 

64 neurons 

416.22 308.76 

NN F 4 inputs (Tamb, Ts_batt, Ts_batt_prev, 

Qloss) 

3 hidden layers (swish) 

256 neurons 

411.60 304.95 

NN G 5 inputs (Tamb, Ts_batt, Ts_batt_prev, 

Qloss, mdot_co) 

3 hidden layers (swish) 

64 neurons 

97.92 

 

62.30 

 

NN H 5 inputs (Tamb, Ts_batt, Ts_batt_prev, 

Qloss, deltaT_co) 

3 hidden layers (swish) 

64 neurons 

20.45 20.98 

Table 9  Testing and simulation RMSE for each Battery Cooling Pel neural network configuration 

 

Complementing these numerical results, Figure 93 - Figure 100 display the time histories of Pel 

for the selected sequences, overlaying predicted and measured values to allow a visual 

assessment of model accuracy and dynamic tracking performance, thereby highlighting the 

strengths and limitations of each network architecture. 
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Figure 93 NN A 

 

Figure 94 NN B 

 

Figure 95 NN C 
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Figure 96 NN D 

 

Figure 97 NN E 

 

Figure 98 NN F 
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Figure 99 NN G 

 

Figure 100 NN H 

The comparative analysis of the neural-network configurations reveals a coherent progression in 

accuracy driven primarily by the informativeness of the input set and, to a lesser extent, by 

architectural choices (depth, width, activation). Baseline models with three inputs (Tamb, Ts_batt, 

Qloss) exhibit relatively high errors: NN A (Swish, 2 hidden layers × 8 neurons) attains 

RMSE_train=461.65W, indicating that limited capacity constrains the mapping from coarse 

thermal descriptors to Pel. Increasing capacity at fixed inputs improves performance: NN B 

(Swish, 2×64) reduces RMSE_sim to 362.25W, whereas replacing Swish with ReLU at identical 

width/depth (NN C, ReLU, 2×64) degrades accuracy to RMSE_train=488.57W and 

RMSE_sim=467.83W.  



96 
 

This contrast isolates activation choice as a relevant factor, with Swish’s smooth, nonmonotonic 

response better capturing the mild nonlinearities typical of thermal-electrical couplings than 

piecewise-linear ReLU.  

Introducing short-term state information through Ts_batt_prev  yields a clear step forward even 

at constant width: NN D (Swish, 2×64; 4 inputs: Tamb, Ts_batt, Ts_batt_prev, Qloss) reaches 

RMSE_train=431.87W and RMSE_sim=340.39W, showing that minimal temporal context helps 

the network disambiguate transients that temperatures alone cannot resolve. Deepening the 

network architecture by increasing the number of layers, while maintaining a fixed number of 

inputs and outputs, further enhances the predictive accuracy of the neural network: NN E (Swish, 

3×64) improves to RMSE_train=416.22W and RMSE_sim=308.76W, consistent with added 

hierarchical feature extraction; by contrast, widening substantially at the same depth (NN F, 

Swish, 3×256) yields only a marginal gain (RMSE_train=411.60W; RMSE_sim=304.95W), 

suggesting diminishing returns from brute-force capacity once a minimal temporal feature is 

present.  

The most pronounced accuracy gains arise when coolant-loop information is incorporated, 

aligning with first-principles heat-balance considerations for cooling power: adding the coolant 

mass-flow rate mdot_co (NN G, Swish, 3×64; 5 inputs) reduces errors dramatically to 

RMSE_train=97.92W and RMSE_sim=62.30W, reflecting the direct influence of flow-driven heat 

removal on compressor/fan/pump electrical demand. Replacing mdot_co with the coolant 

temperature rise ΔTco=Tco,in−Tco,out (NN H, Swish, 3×64; 5 inputs) delivers the best results by a 

wide margin—RMSE_train= 20.45W and RMSE_sim=20.98W. 

Across all the models, the NN H configuration, which incorporates ΔTco as a key input, achieved 

the best performance, proving to be the most accurate and reliable model for Pel estimation. 

 

Model selection and performance validation 

After selecting the neural network architecture H that demonstrated the best performance in 

terms of accuracy and generalization, a more in-depth analysis of the training and testing phases 

is conducted. The training process lasted approximately two hours and involved 350,000 

iterations. During this phase, the network progressively minimized the loss function, as shown in 

Figure 101, which displays the evolution of both the training and validation loss. The convergence 

behaviour and the absence of significant overfitting confirm the effectiveness of the learning 

strategy and the regularization techniques adopted.  
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Figure 101 Training and validation loss over epochs for NN Pel 

 

Once training is completed, the network is tested on previously unseen operating conditions, 

consistently demonstrating excellent predictive capabilities. The high level of agreement between 

the simulated and reference values confirms the network's ability to generalize beyond the 

training data and to provide reliable estimations across a variety of conditions. 

 

 
Figure 102 Pel- qualitative analysis: Test output vs NN prediction 
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4.4  Cabin Cooling mode (CC) 
 

Problem definition 

Cabin cooling is a critical function in automotive HVAC systems, especially in electric vehicles 

where thermal loads impact both passenger comfort and energy consumption. To support 

efficient thermal management, a neural network model is developed to estimate the cooling 

power (Pel) based on key operating parameters. This data-driven approach captures the 

nonlinear behaviour of the system and enables accurate prediction across a range of conditions. 

 

Cabin Cooling Dataset – EFFEREST 

The EFFEREST dataset of cabin heating mode HVAC has the following information: 

Initial Conditions for generating data 

• HVAC inlet air temperature (T_A_HVAC_in_degC =[45,40,35,30,25,20,15,10]) 

• Ambient temperature (T_ambient_degC =[45,40,35,30,25,20,15,10]) 

• Inlet air relative humidity (rH_A_HVAC_in_pct =[30,40,50,60,70,80,90]) 

• Setpoint evaporator outlet air temperature (SP_T_A_Evap_out_degC =[5,10,15]) 

• Blower control signal (blower_pct =[100,80,60,40,30,20]) 

Time-Series Signals (sampled at 0.1s) 

• HVAC outlet air temperature (T_A_HVAC_out_degC) 

• HVAC outlet air mass flow rate (mdot_A_HVAC_out_kgph) 

• HVAC outlet air relative humidity (rH_A_HVAC_out_pct) 

• Compressor electric power (Pel_Comp_W) 

• Fan electric power (Pel_Fan_W) 

• Blower electric power (Pel_Blower_W) 

• Air-side evaporator heat load (Q_A_Evap_W) 

 

Simulation of the Neural Network - Estimation of  𝑷𝒆𝒍 

In cabin cooling mode, an accurate estimation of the total electric power consumption (Pel) is 

essential for both optimising system performance and enabling real-time control strategies in 

vehicle thermal management. 

The target variable Pel is defined as the sum of the main electrical loads of the HVAC system: 

𝑃𝑒𝑙 =  𝑃𝑒𝑙 𝑐𝑜𝑚𝑝 + 𝑃𝑒𝑙 𝐹𝑎𝑛 +  𝑃𝑒𝑙 𝑏𝑙𝑜𝑤𝑒𝑟 
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To simulate the total electric power consumption (Pel) in cabin cooling mode, three neural 

networks are developed and compared to determine the best-performing model. The difference 

between these networks is in the set of input features: 

• Neural Network L: 

- Input Layer: 4 neurons 

▪  Ambient temperature (Tamb) 

▪ Setpoint evaporator outlet air temperature (SP_evap) 

▪ Air-side evaporator heat load (Q_A_evap) 

▪ Air temperature difference of the battery coolant (deltaT_A = T_A_HVAC_out 

- T_A_HVAC_in) 

- Output Layer: 1 neuron 

▪ Electric power (Pel) 

• Neural Network M: 

- Input Layer: 4 neurons 

▪  Ambient temperature (Tamb) 

▪ Setpoint evaporator outlet air temperature (SP_evap) 

▪ Air-side evaporator heat load (Q_A_evap) 

▪ HVAC outlet air mass flow rate (mdot_A) 

- Output Layer: 1 neuron 

▪ Electric power (Pel) 

• Neural Network N: 

- Input Layer: 5 neurons 

▪  Ambient temperature (Tamb) 

▪ Setpoint evaporator outlet air temperature (SP_evap) 

▪ Air-side evaporator heat load (Q_A_evap) 

▪ HVAC outlet air mass flow rate (mdot_A) 

▪ Air temperature difference of the battery coolant (deltaT_A = T_A_HVAC_out 

- T_A_HVAC_in) 

- Output Layer: 1 neuron 

▪ Electric power (Pel) 

 

All three neural networks are built on a common architecture, summarized as follows: 

- Hidden layers: 

▪ 3 hidden layers with 64 neurons each 
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▪ Activation function: Swish 

- Training details: 

o Batch size: 2048 

o Epochs: 50 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

 

A comparative analysis is performed to evaluate the effectiveness of three neural network 

configurations, all trained and validated in MATLAB. Model performance is quantitatively 

assessed using Root Mean Squared Error (RMSE) through a two-step evaluation process. First, a 

global RMSE on the test dataset and validation process provides a consistent benchmark across 

all models. Second, a targeted simulation RMSE is computed on representative time sequences to 

critically appraise each model's proficiency in replicating complex transient dynamics. 

The analysis reveals a clear progression in predictive accuracy. The initial configuration, using the 

input features [T_amb, SP_Evap, Q_A_evap, ΔT_air], demonstrates satisfactory performance with 

a training RMSE of 172.50 W and a simulation RMSE of 144.90 W. A significant improvement is 

observed when the input ΔT_air is replaced with the mass flow rate, mdot _A. This modification 

reduces the training RMSE to 147.05 W and, more notably, the simulation RMSE to 90.49 W, 

indicating a superior ability to model dynamic behaviour. Ultimately, the best overall 

performance is achieved by a combined model incorporating all available inputs, which yields the 

lowest errors of 137.11 W (training) and 84.56 W (simulation), confirming that this 

comprehensive feature set provides the most accurate and dynamically consistent model. 

 

Configuration Inputs RMSE training (W) RMSE simulation (W) 

NN L 
Tamb, SP_evap, Q_A_evap, 

deltaT_A 
172.5 144.90 

NN M 
Tamb, SP_evap, Q_A_evap, 

mdot _A 
147.05 90.49 

NN N 
Tamb, SP_evap, Q_A_evap, 

mdot _A, deltaT_A 
137.11 84.56 

Table 10 Testing and simulation RMSE for each Cabin Cooling neural network configuration 

 

A qualitative analysis is conducted to evaluate the efficacy of three distinct neural network (NN) 

models in accurately representing the real-world behaviour of a system. Specifically, each model 
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is tasked with simulating identical reference curves, and their electrical power outputs (Pel) are 

rigorously compared against the corresponding available experimental data. The evaluation is 

based on four key criteria: qualitative adherence to reference data, accuracy in the transient 

phase, temporal stability, and consistency across diverse operational conditions. 

The first neural network, NN L, exhibited significant limitations. Its adherence to experimental 

data is only partial, with visible deviations observed across multiple curves, particularly under 

high-power conditions. The model demonstrates a weak representation of the system's initial 

transient phase, failing to accurately capture its early-stage dynamics. While overall stability is 

sufficient, the simulations are not lacking minor irregularities. Furthermore, consistency across 

different operational scenarios is highly variable, leading to heterogeneous performance from 

case to case. 
 

 

Figure 103 NN L 

 

A substantial improvement is observed in the second model version, NN M. This iteration showed 

markedly enhanced precision in tracking the experimental data, with a much closer overlap 

between simulated and real curves, especially in high-power scenarios. Its performance in the 

transient phase is also superior, although minor discrepancies persist under certain conditions. 

The model exhibited good temporal stability without anomalous oscillations, and its consistency 

across various cases is generally satisfactory, despite slight performance variations. 
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Figure 104 NN M 

The third version, NN N, represents the greatest outcome. Its simulations demonstrate high 

adherence to the experimental data, with output curves precisely following the real system's 

behaviour throughout the entire temporal interval. The model exhibits a superior ability to 

capture transient dynamics, coupled with enhanced stability that yields smoother output curves 

and highly consistent performance across all operational conditions. 

 

Figure 105 NN N 

 

Model selection and performance validation 

The analysis demonstrates a clear progression in performance with each iterative enhancement 

of the model architecture. Among the evaluated networks, Neural Network N emerges as the 

most accurate, stable, and generalizable version. Its superiority is quantitatively confirmed by its 
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optimal Root Mean Squared Error (RMSE), establishing it as the most suitable candidate for 

simulating the Cabin Cooling Mode across diverse operating conditions. 

The robustness of Neural Network N is further reinforced by its training history. The network 

undergoes nearly 400,000 iterations, effectively minimizing the loss function to values on the 

order of 10²(log scale). As depicted in Figure 106Figure 106 Training and validation loss over 

epochs for NN PelFigure 106, the training and validation loss curves exhibit smooth and stable 

convergence without indications of overfitting, affirming the effectiveness of the learning 

strategy and regularization methods employed. 

 

Figure 106 Training and validation loss over epochs for NN Pel 

Generalization capability is conclusively validated through testing on previously unseen data. The 

predictions show close alignment with experimental measurements, confirming that the model 

accurately captures the underlying thermal dynamics. These results solidly establish Neural 

Network N as a reliable and generalizable solution for real-world simulation of the Cabin Cooling 

Mode. 
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Figure 107 Pel- qualitative analysis: Test output vs NN prediction 

4.5 Cabin Heating mode (CH) 
 

Problem definition 

Cabin heating is a key function in automotive HVAC systems, especially in electric vehicles where 

waste-heat sources are limited. To ensure comfort with minimal impact on energy consumption, 

a neural network model is developed to estimate the heating power (Pel) from key operating 

parameters, capturing system nonlinearities and enabling accurate performance prediction. 

 

Cabin Heating Dataset – EFFEREST 

The EFFEREST dataset of cabin heating mode HVAC has the following information: 

Initial Conditions for generating data 

• HVAC inlet air temperature (T_A_HVAC_in_degC =[-20,-15,-10,-5,0,5,10,15,20]) 

• Inlet air relative humidity (rH_A_HVAC_in_pct =[20,40,60,80,100]) 

• Setpoint Coolant-to-Air Heat Exchanger (CoHX) inlet air temperature 

(SP_T_C_CoHX_in_degC=[25,35,45,55,65,75,85]) 

• Blower control signal (blower_level_pct=[100,80,60,40,20]) 

Time-Series Signals (sampled at 0.1s) 

• HVAC outlet air temperature (T_A_HVAC_out_degC) 

• HVAC outlet air mass flow rate (mdot_A_HVAC_out_kgph) 

• Blower electric power (Pel_Blower_W) 

• PTC electric power (Pel_PTC_W) 
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• Pump2 electric power (Pel_Pump2_W) 

• HVAC outlet air relative humidity (rH_A_HVAC_out_pct) 

• Air-side CoHX heat load (Q_A_CoHX_W) 

 

 

Simulation of the Neural Network - Estimation of  𝑷𝒆𝒍 

In cabin heating mode, accurate estimation of the total electrical power consumption (Pel) is 

crucial for system optimisation and real-time thermal management. The target variable is defined 

as the sum of the main HVAC electrical loads: 

𝑃𝑒𝑙 =  𝑃𝑒𝑙 𝑃𝑇𝐶 +  𝑃𝑒𝑙 𝑝𝑢𝑚𝑝2 +  𝑃𝑒𝑙 𝑏𝑙𝑜𝑤𝑒𝑟 

To simulate the total electric power consumption (Pel) in cabin heating mode, three neural 

networks are developed and compared to determine the best-performing model. The difference 

between these networks is in the set of input features: 

• Neural Network P: 

- Input Layer: 5 neurons  

▪  HVAC inlet air temperature (T_A_HVAC_in_degC) 

▪ Setpoint Coolant-to-Air Heat Exchanger (CoHX) inlet air temperature 

(SP_T_C_CoHX_in_degC ) 

▪ Air-side CoHX heat load (Q_A_CoHX_W) 

▪ HVAC outlet air mass flow rate (mdot_A_HVAC_out_kgph) 

▪ Air temperature difference of the battery coolant (deltaT_A = T_A_HVAC_out 

- T_A_HVAC_in) 

- Output Layer: 1 neuron 

▪ Electric power (Pel) 

• Neural Network Q:  

- Input Layer: 4 neurons 

▪ Blower control signal (blower_level_pct) 

▪ Air-side CoHX heat load (Q_A_CoHX_W) 

▪ HVAC outlet air mass flow rate (mdot_A_HVAC_out_kgph) 

▪ Setpoint Coolant-to-Air Heat Exchanger (CoHX) inlet air temperature 

(SP_T_C_CoHX_in_degC ) 

- Output Layer: 1 neuron 
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▪ Electric power (Pel) 

• Neural Network R: 

- Input Layer: 5 neurons 

▪ HVAC inlet air temperature (T_A_HVAC_in_degC) 

▪ Blower control signal (blower_level_pct) 

▪ Air-side CoHX heat load (Q_A_CoHX_W) 

▪ HVAC outlet air mass flow rate (mdot_A_HVAC_out_kgph) 

▪ Setpoint Coolant-to-Air Heat Exchanger (CoHX) inlet air temperature 

(SP_T_C_CoHX_in_degC ) 

- Output Layer: 1 neuron 

▪ Electric power (Pel) 

All three neural networks are built on a common architecture, summarized as follows: 

- Hidden layers: 

▪ 3 hidden layers with 64 neurons each 

▪ Activation function: Swish 

- Training details: 

o Batch size: 2048 

o Epochs: 50 

o Optimizer: Adam (adaptive moment estimation) 

o Learning Rate: 5 × 10⁻³ 

A quantitative analysis is conducted to evaluate the performance of the three neural networks, 

which are distinguished by their input features. The first network, with inputs [T_in, SP_col, 

Q_CoHX, mdot_out, dT_air], yielded a training RMSE of 453.30 W and a simulation RMSE of 

331.34 W. The second network, utilizing the reduced input set [blower_level, Q_CoHX, mdot_out, 

SP_col], resulted in a training RMSE of 573.30 W and a simulation RMSE of 331.94 W. The third 

configuration, with inputs [T_in, blower_level, Q_CoHX, mdot_out, SP_col], showed the highest 

errors, with a training RMSE of 594.10 W and a simulation RMSE of 339.27 W. 

It is important to note the distinction between these error metrics. The training RMSE is 

computed on random sequences of previously unseen combinations, leading to inherent 

variability and providing only a partial assessment of robustness. In contrast, the simulation 

RMSE is calculated on a consistent, standardized dataset for all models, making it a more reliable 

and valid benchmark for comparative performance. 
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On this basis, the second network demonstrates the most favourable balance. Despite its higher 

training error and reduced number of inputs, it maintains a simulation accuracy nearly identical 

to the first, more complex network.  

Configuration Inputs RMSE training (W) RMSE simulation (W) 

NN P 
T_in, SP_col, Q_coHX, 

mdot_out, dT_air 
453.3 331.34 

NN Q 
blower_level, Q_coHX, 

mdot_out, SP_col 
573.3 311.94 

NN R 
T_in, blower_level, Q_coHX, 

mdot_out, SP_col 
594.1 339.27 

Table 11 Testing and simulation RMSE for each Cabin Heating neural network configuration 

A qualitative comparison of the neural network predictions against real experimental data reveals 

significant insights into their dynamic behaviour, particularly during transient phases. 

The models generally demonstrate good accuracy in predicting steady-state power values (Pel), as 

indicated by the close alignment of the solid prediction lines with the dashed real-data lines 

under constant conditions. However, a critical limitation is observed in the networks' ability to 

accurately capture transient responses. 

In cases with high power peaks followed by steep decays (e.g., the green curve), the model tends 

to overestimate the magnitude and accentuate the transient, failing to reproduce the dynamic 

variations. Conversely, for lower-amplitude transients (e.g., the yellow curve), the response of the 

network appears delayed and attenuated, highlighting its ability in capturing fine temporal 

dynamics with sufficient accuracy. 

This inaccuracy may derive from limitations in the training data. The experimental protocol set 

many parameters as constant inputs to observe the system's dynamic response to other 

variables. Therefore, the dataset could result not sufficiently representative of operating 

conditions with a sharp power reduction in steady state. 
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Figure 108 NN P 

 

 
Figure 109 NN Q 
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Figure 110 NN R 

Between the networks, the second configuration NN Q demonstrates the most favourable 

balance. A key advantage is its consistent prediction that are coherent with physic, as the model 

doesn’t estimate any negative Pel value. Furthermore, it achieves robust steady-state 

performance with a reduced input set, making it the most efficient and generalized model, 

despite the inherent dataset limitations for a fully accurate dynamic representation. 

 

Model selection and performance validation 

Considering the training history of Neural Network Q, the model demonstrates a notable 

increase of robustness, as training iterations progress.  Following a rapid initial decrease, both the 

training and validation losses converge and stabilize around a value of approximately 10⁴. 

Although some fluctuations remain visible, the overall trend suggests that the network has 

reached a stable learning regime.  
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Figure 111 Training and validation loss over epochs for NN Pel 

The performance of Neural Network Q is further evaluated on a test dataset. As shown in Figure 

112, the predicted output (orange) closely matches the actual data (blue) across most samples, 

confirming the model's good generalization capability. A slight discrepancy is observed in 

correspondence with a transient, where the network struggles to fully capture the rapid change. 

Despite this, the overall prediction accuracy remains high, supporting the effectiveness of the 

trained model. 

 
Figure 112 Pel- qualitative analysis: Test output vs NN prediction 
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4.6 Integrated Model for Thermal Modes 

After generating and analysing the four modes predicted by the Thermal Management system, a 

complete model is created in Simulink. Since the modes cannot be activated simultaneously, the 

system provides for an exclusive selection. The user is then prompted to specify the desired 

mode as input, corresponding to: 

• Mode 1 → Battery Heating (BH) 

• Mode 2 → Battery Cooling (BC) 

• Mode 3 → Cabin Cooling (CC) 

• Mode 4 → Cabin Heating (CH) 

Within the Simulink model, a Variant Subsystem has been used for each mode: based on the 

value of the input mode, only the corresponding subsystem is activated. Each subsystem is 

implemented individually and uses user-chosen inputs from the data in the database. This 

modular design provides greater clarity in the model, facilitates maintenance and allows for 

possible extension to additional operating modes.  

 

Figure 113 Unified Simulink model covering all four modes  
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To evaluate the performance of the model under realistic operating conditions, test cases are 

considered. The system then runs a full simulation for the chosen configuration, and two key 

indicators are recorded: 

• Computation time – to evaluate how quickly the neural network returns valid output; 

• Prediction accuracy – assessed via the Root Mean Square Error (RMSE) between the 

network output and the baseline data. 

The test is repeated for different combinations of input modes and conditions, as shown in the 

following table. 
 

Mode Inputs Simulation Time (s) RMSE simulation (W) 

BH 
Tamb = 25°C, Tbatt=-20°C, 
Qloss=4000 W 

0.317 2.2984 

BH 
Tamb=30°C, Tbatt=-10°C, 
Qloss=8000 W 

0.374 3.2723 

BH 
Tamb=-15°C, Tbatt=20°C, 
Qloss=2000 W 

0.427 1.1259 

BH 
Tamb=0°C, Tbatt=-5°C, 
Qloss=5000 W 0.276 0.6252 

BC Tamb=20°C, Tbatt=30°C, 
Qloss=8000 W 0.150 60.1550  

BC Tamb=30°C, Tbatt=15°C, 
Qloss=4000 W 0.153 6.1192 

BC Tamb=40°C, Tbatt=15°C, 
Qloss=6000 W 0.149 12.8090 

BC Tamb=15°C, Tbatt=40°C, 
Qloss=0 W 0.185 23.5134 

CC Tamb=20°C, Tin=40°C,  
SPevap =15°C 0.150 23.3075 

CC Tamb=35°C, Tin=15°C,  
SPevap =5°C 0.163 29.7905 

CC Tamb=45°C, Tin=45°C,  
SPevap =5°C 0.114 47.3018 

CC Tamb=30°C, Tin=20°C, 
SPevap=10°C 0.155 30.5242 
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CH blower=100%, SPCoHX=45°C 0.181 322.1938 

CH blower=20%, SPCoHX=35°C 0.156 363.9424 

CH blower=60%, SPCoHX=85°C 0.173 93.9526 

CH blower=80%, SPCoHX=55°C 0.163 96.8090 

Table 12 Computation Time & RMSE Across Modes and Inputs 

 

As can be seen, the results confirm that the model provides accurate predictions in a very short 

time (≈ 0.2 seconds), demonstrating its suitability for real-time applications or for integration into 

embedded systems. 
 

 

 

 

Figure 114 Computational time across different modes 

 

The following graphs show the results produced by neural networks for the different modes using 

the combinations described in the table. In each graph there are also the corresponding lines of 

real data, and from the comparison it can be seen that the neural network is very effective in all 

cases. 
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Figure 115 Neural network results and real data for the different modes (in order: BH, BC, CC, CH) 
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5. Comparative Analysis of Physics-Based and Neural 
Network Modelling Approaches 

 

This chapter proposes a comparison between the Physics-based and data-driven models, based on a 

critical analysis of their distinctive characteristics, advantages and limitations. 
 

Complexity and implementation 

The Physics-based model is inherently very sophisticated from the early stages of development. 

Although simplified formulations have been developed with the aim of reducing the computational 

demands, a substantial part of the model take recourse in coefficients derived by fitting operations. 

These fitted parameters are difficult to replicate in different scenarios and often require complex 

experimental campaigns to be validated. The consequence is that the reliability of the model 

continues to rely heavily on the context within these parameters are obtained and their accuracy. In 

fact, even small inaccuracies in their determination make the output deviate by large amounts, 

compromising the ability of the model to produce consistent and reproducible results. In other 

words, having fitted coefficients makes the entire system fragile: the more the complexity of the 

model is reduced through simplifications, the more the need to overcompensate with accurate 

fittings increases, which however reduce the overall robustness. While the models of the individual 

components (compressor, condenser, evaporator and expansion valve) provide valuable information 

on local phenomena, their combination into a complete cycle highlights this dependence on fitted 

parameters, showing problematic consistency and reliability replicating in matching the performance 

of a real system over a wide range of operating conditions. 

The data-driven model is based upon a reversed scheme in relation to Physics-based models. The 

construction of a neural network requires a long and accurate training process, which involves the 

collection of large amounts of data representative of the system, the selection of a suitable 

architecture, and the parameter tuning through the utilization of iterative approaches that can be 

particularly expensive both in terms of time and computational resources. In addition, during the 

validation phase, there is also the need to check the model for its ability to generalize well to new 

data, and this implies additional testing, tuning, and potentially multiple iterations of retraining. This 

initial complexity represents a significant barrier, especially in scenarios where data is scarce or 

difficult to acquire. 

However, once the training is complete and a validated model is obtained, the implementation of the 

network is surprisingly simple. In a development environment, executing a trained neural network is 
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typically computationally efficient, making such models especially well-suited for real-time 

applications, including predictive control, dynamic system monitoring, and automated diagnostics. 

This benefit of paying a high cost of training initially but with simplicity of operational 

implementation is a strength of data-driven neural models, especially in tasks where speedy 

computation and model adaptability are relevant issues. 

 

Accuracy and predictive power 
The Physics-based model aims to reproduce thermal dynamics through the formulation of the 

principles of thermodynamics. The results show that, while the model is based on solid theoretical 

foundations, it captures the general behaviour of the reference refrigeration cycle but with some 

differences in detail. These differences do not originate from systematic errors in the formulation, but 

from the complex parametric calibration and simplifications introduced, which compromise the 

fidelity of the model by reducing its predictive reliability in real contexts. 

In the data-driven model, numerous attempts at configuration and training have provide the 

capability to obtain reproductions that are more similar to real data. However, its accuracy is not 

uniform: while in certain operating regimes the deviations are negligible, in others there are greater 

discrepancies. This sensitivity depends both on the quality and consistency of the training dataset, as 

well as on the ability of the input features to adequately represent the intrinsic Physics-based 

dynamics. A paradigmatic case is thermal prediction: although the network with reasonable accuracy 

predicts the time derivative of the battery temperature (dTbatt/dt), the numerical integration of this 

signal gives an excessively linearized trend, unable to reproduce the complex nonlinearity of the real 

phenomenon. 

 

Robustness 

The Physics-based model has the advantage of being able to be used in any condition, since it is not 

based on a dataset for training, but on well-defined Physics-based principles, expressed through 

mathematical equations. This allows the model to be used from the early stages of design, even in 

hypothetical scenarios or not yet experimentally verified. However, the practical application of these 

models is often limited due to the high level of detail required and the complexity associated with the 

calibration phase. These aspects reduce its effectiveness and flexibility in operational contexts, 

particularly for real-time control applications. 
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The data-driven model, once trained, is faster and more efficient than a Physics-based model, but 

has less capacity for generalization. The neural network effectively learns the data provided during 

training, but its reliability is reduced when it is applied to conditions not represented in the training 

dataset. Therefore, if the data used for training do not cover the different operating conditions in a 

representative way, the model may face significant difficulties in providing accurate predictions in 

scenarios not previously observed. 

 

Computational efficiency 

The Physics-based model involves a high computational load, especially when it involves the 

integration of multiple thermodynamic subsystems. This complexity results in long simulation time, 

approximately 0.7 seconds per run (Figure 22 Computational time in the refrigerant circuit 

modelFigure 22), and significant compute resource utilization. These characteristics strictly limit their 

use within predictive control algorithms, where fast response times and high operational efficiency 

are required. 

The data-driven model, on the other hand, involves a high computational cost in the initial training 

phase, which is particularly complex and time-consuming, ranging from 1 to 10 hours. However, once 

the training is complete, the neural network offers an extremely fast execution, with an average 

computational time of 0.2 seconds (Table 12 Computation Time & RMSE Across Modes and Inputs). 

This makes it well-suited for integration into real-time simulations and predictive control algorithms. 
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6. Conclusion 
 

In this thesis work, a Thermal Management System (TMS) model for electric vehicles was developed, 

with the primary objective of faithfully reproducing the behaviour of the real system. 

The research is organized through modelling, comparison of analysis and validation of different 

methods approaches, to identify the most effective solution in terms of guaranteeing passenger 

comfort and safety of critical car components. The ultimate goal is achieved by maintaining the 

optimal temperature ranges for the battery, electric motors and power electronics, which are 

essential conditions to ensure both operational efficiency and overall vehicle safety. 

The modelling began with the implementation of a simplified Physics-based method, which was then 

compared to a high-fidelity model made in Simscape by MathWorks, taken as a reference. At the 

same time, the study of the system's behaviour was deepened through the creation of benchmark 

models, aimed at isolating and analysing the dynamics of the individual main components. 

A parallel line of research explored the potential of a data-driven methodology, based on machine 

learning algorithms, thus representing an innovative complement to traditional modelling 

techniques. This model was refined through multiple simulations, which explored different 

architectures and operating conditions, allowing for continuous improvement of neural network 

performance and the achievement of optimal results. 

From the comparative analysis of the three modelling approaches, the following significant results 

emerge: 

• The simplified physics model stood out for its reduced simulation times (about 0.7 seconds) 

and a remarkable ability to generalize. The results obtained showed a satisfactory agreement 

with the Simscape reference model, proving to be a valid tool for preliminary analyses and 

scenarios in which speed of calculation is a priority. 

• The Simscape model, developed by MathWorks, confirmed expectations in terms of accuracy 

and Physics-based detail, providing a reliable benchmark for validating the other models. 

However, this high fidelity comes with a significantly higher computational effort, which limits 

its use in contexts that require repeated simulations or rapid turnarounds. 

• The data-driven model represented a virtuous compromise between the two previous 

methodologies, combining the advantages of the Physics-based approach in terms of 

efficiency, with a predictive accuracy comparable to that of the high-fidelity model. The 

computational performance, even faster than the simplified model, suggests its ideal 
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application in real-time control and online optimization contexts. The main limitation of this 

method lies in its reliance on a large, varied, and high-quality dataset for training. 

 

Future developments 

In conclusion, the results obtained in this study, particularly the ones related to the data driven 

approach can represent the foundations to develop a long-term predictive control strategy for 

optimizing thermal management in electric vehicles. The goal will be the design of an architecture 

capable of dynamically coordinating the main thermal subsystems, optimizing energy allocation, and 

improving both range and battery life. 

Specifically, the controller will target two main domains: 

• Thermal management of the cabin, minimizing energy consumption related to comfort; 

• Thermal management of the battery, maintaining ideal operating conditions and reducing 

thermal and cyclic degradation. 

The methodology involves integrating predictive thermal models with advanced control techniques, 

such as Model Predictive Control (MPC). The algorithm will leverage real-time operational data, 

environmental forecasts, and driving profile information to anticipate thermal demands and optimize 

control actions over extended time horizons.  

The ultimate objective is to contribute to the development of intelligent technologies for sustainable 

electric mobility, providing an effective solution to one of the main technological barriers still present 

in the market. 
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