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Abstract 

 

The growing proliferation of electric and hybrid vehicles in recent years has led to a rapid and 

significant acceleration in the evolution of energy storage technologies. This, in turn, has 

generated an increasingly pressing need to monitor the health status of battery cells with 

precision, consistency, and standardization, especially now that the second-hand market for 

such vehicles is steadily expanding, along with the amount and variety of data that can be 

acquired from batteries used in diverse operating conditions. 

This thesis stems from the need to develop a standardized and easily reproducible diagnostic 

system for assessing battery health in the automotive sector. The focus of the study is on the 

Electrochemical Impedance Spectroscopy (EIS) procedure. The initial goal was to infer the 

State of Health (SoH) of the batteries through impedance measurements at specific frequencies. 

However, as the study progressed, it became increasingly evident that this methodology holds 

a broader potential, capable of providing a more comprehensive representation of the battery 

health state. 

The analysis begins with a critical review of the existing non-destructive diagnostic techniques 

for batteries, explaining the methodological choices adopted. Once the diagnostic approach was 

selected and the theoretical analysis completed, the experimental procedure is presented in 

detail, it consisted in controlled laboratory measurements conducted on cylindrical batteries 

18650 typically used in domestic applications, allowing the collection of data that were both 

repeatable and interpretable. The development of an equivalent circuit model, together with a 

dedicated code capable of representing the data in a useful and meaningful way, enabled 

comparison with real-world data and the extraction of valuable insights from them. 

Finally, the thesis discusses the prospects for industrialization, highlighting the remaining 

challenges in terms of miniaturization, signal robustness in noisy environments, and the 

inherent difficulty of conducting a large-scale data collection campaign. 
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1. Introduction 

The objective of this thesis arises from the need to evaluate the State of Health (SoH) of 

lithium batteries, typical of modern electric cars. Therefore, it will be analyzed where this 

necessity comes from and why it is likely to become increasingly urgent in the next years to 

come. 

It Is beyond doubt that the world of automotive finds itself in a pivotal moment. The 

European Union’s restrictions on internal combustion vehicles and public awareness on 

environmental issues, alongside the maturity of propulsion technologies, have led to a sudden 

increase in the demand for electric vehicles. 

 

 

Figure 1:  Electric and hybrid vehicle sales comparison to the entire car fleet. 

 

In this thesis, plug-in hybrid vehicles will be included as well alongside electric cars. This 

choice stems from the fact that this study is to evaluate the impact of lithium batteries as a 

component of the car of tomorrow, which plays a key role in both architectures. 
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Figure 2: Number of vehicles sales in absolute terms per year. 

Assessing the number of vehicle sales in absolute terms allows us to realize how complex 

the situation is and leaves us room for different interpretations. First of all, it is evident that in 

recent years there has been a drastic drop in sales of electric and hybrid vehicles. However, this 

drop is smaller in percentage terms than the general slowdown in sales of private vehicles. This 

resulted in a percentage increase as shown in Figure 1.1. Hybrid vehicles show an even more 

pronounced upward trend since the collapse in sales in 2020. In short, in light of this data, it 

appears to be difficult to make reliable predictions about the future of the market. On the other 

hand, it is possible to say with sufficient certainty that electric vehicles have already established 

themselves on the global transport scene and it would not be surprising to see their numbers 

increase in line with further technological advances. 

Another factor that highlights the growing importance of batteries in this sector is their 

cost and the projected future value of this cost in relation to the total cost of the vehicle. 
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Figure 3: compact vehicle ICEV and an equivalent BEV cost subdivision 

As we can see in the graph in Figure 1.3, it is possible to observe how the price of the 

battery in 2020 used to represent one third of the entire cost of the vehicle, while lower values 

are projected as the technology matures. However, it still remains the most expensive 

component of the vehicle. 

It is therefore obvious how the assessment of the State of Health of the battery of an 

electric vehicle represents an increasingly important process, n ot only from a collective point 

of view due to the increase of the number of electric vehicles but also from the individual user 

standpoint individual user, since the assessment of this component represents an estimate of the 

condition of the most expensive component of the car. 

1.1. Approach 

In battery management systems, it is possible to identify two key parameters that play a 

crucial role in assessing battery performance and reliability: State of Health (SoH) and State 

of Charge (SoC). These two metrics provide valuable insights into the battery’s condition and 

its ability to store and deliver energy efficiently over time. 
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2. SoH and SoC 

 

The State of Health is one of the indicators used to assess a battery’s overall condition 

relative to its new and unused initial state. This metric reflects the degree of aging and 

degradation the battery has undergone and is typically expressed as a percentage. Here, 100% 

represents a new battery, and lower values indicate a progressive wear. 

With time, batteries experience capacity to fade, meaning they gradually lose the ability to 

store the same amount of charge as when they were first manufactured. Moreover, their internal 

resistance increases, which leads to higher energy losses and reduced efficiency. These factors, 

along with changes in voltage response and self-discharge rates, contribute to the overall decline 

in the SoH of the battery. 

Various methodologies have been developed in the past years in order to estimate SoH. 

These methodologies include open circuit voltage (OCV) analysis, electrochemical 

impedance spectroscopy (EIS) and incremental capacity (IC) analysis. Machine learning 

models are increasingly being used to analyze large datasets and can predict battery health with 

very high accuracy. Even though these approaches can differ in complexity and precision, their 

common goal is to provide a reliable assessment that is able to provide a clear picture of a 

battery’s remaining useful life. This assessment serves to determine whether the battery should 

be reused, repurposed, or recycled. 

2.1.  State of Charge (SoC) 

While SoH provides a long-term perspective on battery degradation, the State of Charge 

(SoC) represents a battery’s real-time charge level. SoC indicates how much energy is available 

at any given moment, making it a critical parameter for energy management in applications 

such as electric vehicles (EVs) and renewable energy storage. 

Unlike SoH, which can change gradually over months or years, SoC fluctuates depending 

on charging and discharging events in a dynamic way. There are many different methods that 

can estimate SoC. They include open circuit voltage measurement, Coulomb counting, and 

Kalman filtering techniques. 

2.2 The Relationship Between SoH and SoC 

Although SoH and SoC serve different purposes, they are closely interconnected. A 

battery with a lower SoH will exhibit a reduced capacity, meaning that even if its SoC is 100%, 

the actual energy that is able to deliver will be lower than that of a new battery. This relationship 

is important in energy-intensive applications, as accurate SoC estimation must account for 

degradation over time. 

What is essential for optimizing battery performance, extending lifespan, and ensuring 

safe operation is having a clear understanding of both SoH and SoC. As battery technology 
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advances, more sophisticated estimation methods continue to emerge. These methods are 

crucial to helping improve the reliability and efficiency of modern energy storage systems. 

 

Figure 4: Visual representation of SoC and SoH 

2.2. SoH estimation methods 

We are going now to describe the main methods that have been taken into consideration 

for our analysis, based on the available literature. 

2.3. Coulomb counting 

In order to assess a battery State of Health,  a technique that is widely used is Coloumb 

counting. This process follows two main steps. The first one, the total discharged capacity, 

Q_discharge, is determined by integrating the discharge current over time until the State of 

Charge (SoC) reaches 0%. Then the SoH is estimated by comparing this discharged capacity 

with the battery’s rated capacity, using the following relationship: 

𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = ∫ 𝐼
𝑇

0
(𝑡)𝑑𝑡 𝑆𝑜𝐻(%) =

𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑄𝑟𝑎𝑡𝑒𝑑
× 100 

To apply this method, key battery parameters must be continuously monitored. Such 

parameters include charge/discharge current, voltage, and temperature. An adaptive approach 

can also be implemented by recalculating SoH during each discharge cycle. Studies have 

demonstrated that Q_discharge decreases as the number of charge/discharge cycles increases, 

leading to a gradual decline in SoH. In general, we can see that when SoH drops below 80%, 

the battery is considered to have reached the end of its useful life. The accuracy of this method 

depends heavily on precise current measurements, which makes periodic calibration of sensors 

essential. 

Another crucial factor that influences Coulomb counting’s reliability is the accuracy of 

the initial SoC estimation. The Depth of Discharge (DoD) metric is introduced in order to 

better characterize this discharge process. DoD follows a very similar principle to SoC: 

𝐷𝑜𝐷 =
𝑄𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑
𝑄𝑟𝑎𝑡𝑒𝑑

× 100 

where Q_released represents the total capacity discharged from the battery. At any given 

moment, DoD can be expressed as: 
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𝐷𝑜𝐷(𝑡) = 𝐷𝑜𝐷(𝑡0) + 𝜂 ⋅ 𝛥𝐷𝑜𝐷 

𝛥𝐷𝑜𝐷 = ∫ 𝐼𝑏

𝑡0+𝜏

𝑡0

(𝑡)𝑑𝑡 ÷ 𝑄𝑟𝑎𝑡𝑒𝑑 × 100 

where I_b is the battery’s charge/discharge current and η represents the system’s 

efficiency. Then, SoH is determined by tracking the DoD when the battery reaches its fully 

discharged state. The charge/discharge efficiency is factored into each cycle to maintain 

accuracy, and recalibration occurs at both the fully charged and fully discharged states. 

This is usually the preferred method because of its low implementation cost, minimal 

computational requirements, and easily integration into Battery Management Systems (BMS). 

However, its accuracy improves over multiple charge/discharge cycles, with errors as low as 

1% after 28 cycles. 

2.4. Open circuit voltage (OCV) 

The State of Health of batteries is done by establishing a functional relationship between 

the SoH and the OCV of the monitored battery. This technique can be implemented in offline 

and online configurations. They both present distinct advantages and limitations. 

The fundamental principle of the OCV method relies on a simplified electrical model of 

the battery, where the OCV is expressed as: 

𝑈𝑂𝐶𝑉 = 𝑈 + 𝐼𝑅 

where Uocv represents the battery’s open-circuit voltage, I is the current, R denotes the 

internal resistance and is the terminal voltage of the battery. Thanks to this equation, it becomes 

possible to correlate the OCV with the SoH under controlled conditions. 

The offline approach requires extensive laboratory testing to establish OCV curves that 

correspond directly to various states of health. These tests involve measuring the OCV at 

different states of charge while also considering external influences such as temperature 

variations. Research has demonstrated that temperature significantly affects the accuracy of 

OCV-SoC curves. Therefore, proper compensation techniques must be employed when high-

precision SoH estimation is required. Despite its reliability, the offline approach necessitates an 

extensive amount of data collection and experimental validation, eventually making this 

approach costly and time-consuming. 

On the other hand, the online implementation of the OCV method involves incorporating 

OCV as a parameter within an electrical model and estimating its value through system 

identification techniques. Factors such as initial SoC assumptions and temperature fluctuations 

can influence the accuracy of this method. A key challenge in this type of approach is making 

sure that the assumed initial SoC aligns well with the actual SoC  in order to minimize 

estimation errors. Studies have reported that lower battery temperatures tend to introduce root-

mean-square errors (RMSE) in the range of 5% to 25%, affecting the overall accuracy of SoH 

predictions. 
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Furthermore, several studies have explored different methodologies that are able to 

enhance the accuracy and practicality of OCV-based SoH estimation. One approach involves 

integrating OCV with other modeling techniques, which helps refine estimations. For example, 

research has demonstrated that using OCV alongside an electrical battery model improves 

accuracy while reducing dependency on empirical OCV-SoC curves. Some studies have 

investigated the combination of OCV with Coulomb counting, which allowed to reach a more 

robust SoH estimation framework that compensates for the limitations of individual methods. 

Despite its clear effectiveness, certain challenges limit the practical application of OCV 

for real-time SoH estimation. One major drawback is that OCV is difficult to measure in an 

accurate way in operational conditions, as it requires the battery to be in a relaxed state without 

any charge or discharge activity. Some researchers have proposed utilizing alternative model-

based approaches that approximate SoH more efficiently while reducing computational and 

hardware requirements, which ultimately leads to eliminating direct reliance on OCV. 

Recent advancements have also investigated the fusion of OCV estimation with data-

driven techniques, which include machine learning algorithms to improve predictive accuracy. 

Hybrid models that integrate OCV with incremental capacity (IC) analysis or other statistical 

methods have demonstrated promising results such as achieving estimation errors as low as 1% 

in certain cases. 

Overall, the OCV-based method remains a fundamental approach to SoH estimation. This 

is thanks to its simplicity and effectiveness in controlled environments. However, its limitations 

in practical applications call for the integration of complementary methods which will finally 

enhance accuracy, reliability, and real-time applicability. 

2.5. Kalmann Filter 

The Kalman Filter is a commonly used method for estimating the states of a dynamic 

system. It operates in two main phases: the prediction phase and the update phase. During the 

prediction phase, the system’s state is estimated based on prior knowledge and process 

dynamics. In the update phase, the filter incorporates new measurements, which are typically 

affected by Gaussian noise, to refine the state estimation. The standard Kalman filter equations 

define this recursive process, involving parameters such as the state transition matrix, control 

matrix, and measurement noise covariance. 

Even though it was initially developed for linear systems, the Kalman filter has been 

adapted to nonlinear applications, such as battery State of Health estimation. In these cases, 

modified versions of the Kalman filter are often employed, including the Extended Kalman 

Filter (EKF) and the Unscented Kalman Filter (UKF). The EKF extends the standard Kalman 

filter to nonlinear systems by linearizing the transition and measurement equations. It is useful 

in the SoH estimation when it is paired with a battery electrical model, as the Randles circuit 

model. A dual EKF approach has been proposed in which two separate Kalman filters run in 

parallel: one for estimating the State of Charge and another for tracking the battery’s capacity. 
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The UKF, also known as the Sigma Point Kalman Filter (SPKF), addresses some of the 

limitations of the EKF. The UKF represents the state distribution using a set of sigma points 

that better capture the nonlinear transformations instead of relying on linearization. Studies 

have shown that the UKF enhances the SoH estimation accuracy by handling process 

nonlinearities in an effective way. In comparative evaluations, the UKF demonstrates lower 

estimation errors than traditional Coulomb counting methods, with error margins below 3%. 

The Kalman filter has been applied in conjunction with various battery models. For 

instance, some researchers have used a second-order Randles model to define the state 

equations for the EKF, estimating the SoH based on SoC or internal battery impedance. Other 

studies have proposed that using the UKF alongside machine learning techniques, such as 

Support Vector Regression (SVR), would be able to determine initial capacity values and 

enhance the SoH prediction accuracy. Furthermore, adaptive Kalman filtering techniques have 

been explored as well. They include methods aimed at updating lookup tables based on real-

time battery conditions, which eventually improves the robustness of aging estimation models. 

Despite its many advantages, the Kalman filter has been observed to have its limitations. 

For instance, the EKF is prone to divergence if the initial state is not defined properly, which 

leads to inaccuracies in the SoH estimation. Moreover, the approximation of posterior mean 

and covariance in nonlinear systems can introduce significant errors. The UKF can mitigate 

some of these challenges, but it requires more computational resources due to the increased 

number of sigma points. 

Recent advancements have also included hybrid approaches, such as combining EKF with 

Quadratic Discriminant Analysis (QDA) for battery classification, or fusing Kalman filtering, 

with pattern recognition techniques. All these methods aim to refine the SoH estimation by 

leveraging model-based and data-driven approaches. Another new technique involves using the 

Kalman filter for continuous updates of battery resistance parameters, which requires 

dynamically adjusting the estimation model to real-time operating conditions. 

Overall, the Kalman filter and its variants remain very powerful tools for the SoH 

estimation, offering a balance between accuracy and computational efficiency. However, 

ongoing research continues to refine these methods by working on integrating them with 

advanced modeling techniques and machine learning algorithms that would enhance their 

performance when used in practical applications. 

2.6. Electrochemical Impedance Spectroscopy (EIS)  

This methodology is based on the application of a current signal or low-amplitude 

alternating voltage, varying the frequency over a wide interval (typically from mHz to kHz) 

and on measuring the system response in terms of amplitude and phase shift. 

The EIS data analysis is usually represented by Nyquist diagrams or Bode diagrams, in 

which the real and imaginary parts of the impedance provide us with information on the various 

physical and chemical phenomena that occur in the battery. 
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● High-frequency region: is dominated by total ohmic resistance, which includes 

electrolyte resistance, contacts, and connections. 

● Mid-frequency region: is associated with charge transfer resistance and the formation 

or growth of the Solid Interfacial Layer (SEI). 

● Low frequency region: is influenced by diffusion processes (Warburg impedance) and 

slow electrochemical kinetics. 

In the context of the assessment of the State of Health, the EIS represents a very informative 

approach. This is due to the battery’s ageing modifies in a meaningful way electric parameters, 

related to internal resistance and reaction kinetics. The SoH is defined as the ratio between the 

maximum residual capacity of the battery and the nominal design capacity. The degradation 

can be monitored through measurable changes in the impedance spectrum. 

Compared to other SoH estimation methods (such as electrochemical model-based 

approaches, data-driven methods, or full charge/discharge testing), EIS has the following 

advantages: 

● Non-invasive: it does not require complete charge/discharge cycles which reduces time 

and stress on the cell.  

● High sensitivity: it can detect subtle variations related to the formation of resistive 

layers, loss of active material, or electrolyte degradation. 

 Direct correlation with physical phenomena: it allows variations in impedance that 

are linked to specific degradation mechanisms. 

 

2.7. Conclusions 

In light of the data collected, it is possible to observe how every method of SoH assessment 

is the result of the compromise between accuracy of results and difficulty of collection of the 

necessary data. Analyzing the different methods for estimating the health status of lithium-ion 

batteries, it has been opted for the use of the electrochemical impedance spectroscopy since it 

allows for an easier evaluation of possible errors, unlike other methods that are more sensitive 

to perturbations. Considering the context of automotive in our use, the various limitations on 

the counter require a fast and robust method, characteristics that are typical of EIS. 

Another interesting characteristic of this method is its adaptability. We can choose the 

number of the frequencies over which taking measurements and increasing the measurement 

spectrum; we can acquire further information on certain aspects of the battery's chemical state, 

allowing an eventual improvement of the analysis service based on available resources. 
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3. Theoretical Background for Electrochemical Impedance Spectroscopy 

 

Before diving into the experimental methods and the detailed discussion of equivalent 

circuit models, it is essential to establish the fundamental concepts that underly the 

measurement and interpretation of Electrochemical Impedance Spectroscopy. This third 

chapter aims to provide the theoretical background necessary to understand the relationship 

between alternating current (AC) perturbations, complex-number representations, and the 

impedance response of electrochemical systems. These explanations are tailored to the 

application of EIS to lithium-ion batteries, even though the principles can be applied to any 

electrochemical system. 

3.1. Alternating Current and Sinusoidal Perturbations 

EIS relies on perturbing the system with a small AC signal and observing its response. 

Unlike direct current (DC) measurements, where the applied signal is constant over time, AC 

measurements involve time-varying voltages or currents, typically sinusoidal in form: 

𝑣(𝑡) = 𝑉0 ⋅ sin(𝜔𝑡) 

or 

𝑖(𝑡) = 𝐼0 ⋅ sin(𝜔𝑡 + 𝜙) 

where: 

• 𝑉0 and 𝐼0 are the signal amplitudes, 

• 𝜔 = 2𝜋𝑓 is the angular frequency in rad/s, 

• 𝜙 is the phase shift between voltage and current. 

In an ideal resistor, voltage and current are in phase (𝜙 = 0∘), while in capacitive or 

inductive elements they are out of phase. This phase relationship provides valuable information 

about the system’s internal processes. 

In EIS, the perturbation amplitude is chosen to be small (typically 5–10 mV) so that the 

system remains within the linear response regime. This ensures that the impedance measured 

is independent of the amplitude and that the resulting data can be interpreted with linear-system 

theory. 

3.2. Complex Numbers in AC Analysis 

The use of sinusoidal signals introduces the need for a mathematical representation that 

can simultaneously capture magnitude and phase. This is where complex numbers become 

indispensable. Using Euler’s formula: 

𝑒𝑗𝜃 = cos𝜃 + 𝑗sin𝜃 

we can express a sinusoidal signal as a complex exponential: 
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𝑣(𝑡) = ℜ{𝑉0𝑒
𝑗𝜔𝑡} 𝑖(𝑡) = ℜ{𝐼0𝑒

𝑗(𝜔𝑡+𝜙)} 

Here, 𝑗 is the imaginary unit (𝑗2 = −1), and the quantities 𝑉0 and 𝐼0 can be expressed as 

phasors, which are complex numbers encoding at the same time amplitude and phase. This 

formalism allows algebraic manipulation of AC signals without the need to separately track 

sine and cosine components. 

 

The impedance 𝑍 of a system is the ratio of the voltage phasor to the current phasor: 

𝑍(𝜔) =
𝑉̃(𝜔)

𝐼(𝜔)
 

Impedance is generally a complex quantity: 

𝑍(𝜔) = 𝑍′(𝜔) + 𝑗𝑍″(𝜔) 

where: 

• 𝑍′(𝜔) is the real part (resistive component), 

• 𝑍″(𝜔) is the imaginary part (reactive component, associated with energy storage). 

The real and imaginary components vary with frequency, therefore revealing information 

about different physical processes in the system. 

3.3. Impedance of Ideal Elements 

Understanding the impedance of ideal components is essential before addressing 

electrochemical systems, which are always more complex. 

• Resistor (R): 

  𝑍𝑅 = 𝑅 

  Purely real, independent of frequency. 

• Capacitor (C): 

  𝑍𝐶 =
1

𝑗𝜔𝐶
 

  Purely imaginary and negative, indicating current leads voltage by 90°. 

• Inductor (L): 

  𝑍𝐿 = 𝑗𝜔𝐿 

  Purely imaginary and positive, indicating voltage leads current by 90°. 

In electrochemistry capacitive behavior is often associated with double-layer capacitance 

at the electrode/electrolyte interface, while inductive features may appear due to measurement 

artefacts or adsorption processes. 
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3.4. Impedance of Electrochemical Systems 

Electrochemical systems are rarely composed of pure R, C, or L elements. However, they 

exhibit combinations of resistive and capacitive behaviour (and occasionally inductive) due to: 

• Ionic conduction in the electrolyte (resistive). 

• Charge separation at the electrode/electrolyte interface (capacitive). 

• Faradaic charge-transfer reactions (resistive + capacitive in parallel). 

• Diffusion of ions through solid or liquid phases (frequency-dependent resistive 

behaviour, modelled by Warburg elements). 

These phenomena have characteristic time constants and thus dominate the impedance 

spectrum in different frequency ranges. EIS allows us to isolate these contributions by 

sweeping the frequency across several orders of magnitude. 

3.5. Nyquist and Bode Representations 

EIS data are usually displayed in two main forms: 

1. Nyquist Plot: 

• Real part 𝑍′ on the x-axis, negative imaginary part −𝑍″ on the y-axis. 

• Frequency is implicit (not shown directly on the axes). 

• Each feature (semicircles, straight lines) corresponds to a specific process. 

2. Bode Plot: 

• Magnitude |𝑍| and phase 𝜙 versus frequency on logarithmic axes. 

• Makes it easier to directly identify frequency ranges where different processes 

dominate. 

Both forms are complementary: Nyquist plots give a geometric view of the impedance 

spectrum and Bode plots provide a direct frequency-process relationship. 

3.6. Battery State during Measurement 

Once the specific battery samples to be used in our study were selected, the next crucial 

step was to determine the State of Charge levels at which electrochemical impedance 

measurements would be performed. This choice was not arbitrary. The SoC can influence the 

impedance response of a battery across different frequencies, which lead to altering the 

magnitude and the shape of the spectrum. It is essential to understand this influence in order to 

evaluate whether it is possible to identify a correction factor that accounts for SoC variation. 

By doing so, it allows impedance-based State of Health estimations to be made at arbitrary 

charge levels. 
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In principle, such a correction could be developed if the relationship between SoC and 

impedance were sufficiently consistent, repeatable, and independent of other variables. 

However, in practice, this is almost never the case. The electrochemical processes within a 

lithium-ion battery can vary in complex ways as a function of SoC. When high SoC levels, for 

example, the electrode materials are closer to full lithiation, which typically reduces the charge-

transfer resistance. When at lower SoC levels diffusion limitations and changes in the double-

layer capacitance can dominate the impedance response. Some factors such as temperature and 

recent current history can even complicate this relationship. For these reasons, it is only possible 

to identify a universally applicable correction function for SoC influence under very specific 

and controlled conditions. Such conditions are not however representative of most real-world 

applications. 

Therefore, the more realistic and practical approach for our study is to identify a specific 

SoC window in which impedance measurements give the most reliable, repeatable, and 

interpretable results for the specific battery model under consideration. The rest of the study 

can then be based exclusively on this SoC window. This design choice has an important 

implication for the final product that we aim to develop: the measurement system will be 

designed and calibrated for a specific battery type. It will also only function within the SoC 

range for which the system has been optimized, and its expected impedance response is well-

characterized. Since the underlying electrochemical conditions would deviate from those 

assumed during calibration, an attempt to use the system outside this SoC range would 

compromise measurement accuracy. 

The next step in our study was then to determine which SoC values should be included in 

our experimental plan. This involved a trade-off between the amount of data to be collected 

(and therefore the accuracy and robustness of the analysis) and the constraints of time, 

equipment availability, and the number of battery samples. As a result, we decided to focus on 

four SoC points: 100%, 80%, 50%, and 20%. This choice was guided by several 

considerations: 

● The SoC points are placed far apart in order to capture any non-linear trends that may 

verify the impedance response. 

● Extremely low SoC values (e.g., below 10%) were excluded, as these are rarely reached 

in electric vehicle operation due to range management strategies and because deep 

discharges can accelerate degradation. 

● The selected SoC points cover the typical operational range of many lithium-ion battery 

applications, which make the results more relevant for cases of practical use. 

● The inclusion of the 100% SoC point allows us to evaluate the impedance response 

under fully charged conditions. This is useful for detecting high-voltage-specific 

degradation effects. 
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For each of these SoC points, measurements must be performed at different SoH levels to 

evaluate the consistency and robustness of the impedance to SoH relationship. This requires 

testing cells at various stages of their life cycle, from new (SoH ≈ 100%) to significantly aged. 

We can separate the influence of capacity fade and resistance growth from that of SoC variation, 

by comparing the impedance spectra at the same SoC but different SoH values. This is a crucial 

step in determining whether the chosen SoC point will indeed provide stable and interpretable 

SoH estimates. 

We will use the Coulomb Counting method to determine the reference SoH for each 

battery under test. 

We can track the SoH decline of each cell by performing full capacity tests throughout the 

aging process. Then, we can use it as the reference value against which impedance-based 

estimates will be compared. 

The combination of these experimental parameters, which include four distinct SoC levels, 

multiple SoH stages, and accurate SoH reference values, will therefore generate a dataset that 

allows us to: 

1. Quantify the SoC dependence of the impedance spectrum for the selected battery model. 

2. Identify the SoC point at which SoH estimation via EIS is least affected by the SoC-

induced variability. 

3. Provide a calibrated basis that serves for the design of a measurement device that 

operates reliably within a specified SoC window. 
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4. Artificial Aging of Lithium-Ion Batteries 

The cell selected for this dissertation is a cylindrical 18650 cell. This cell is chosen for its 

wide availability and its LiMn₂O₄-based chemistry, which exhibits electrochemical behavior 

comparable to that of batteries commonly employed in automotive applications. 

A set of selected batteries was subjected to a controlled artificial aging process to obtain 

cells at different degradation levels required for impedance measurements. The aim of this 

selection was to create multiple samples for each target State of Health level, approximately 

100%, 90%, 80%, and 70% with more than one sample per level to improve statistical 

robustness. This made sure that any relationship that was observed between impedance and 

SoH could have been validated through repeated measurements and was not influenced by 

single-cell anomalies. The result was a comprehensive SoC–SoH measurement matrix with 

reliable and repeatable data that covered a wide range of degradation states. 

4.1. Battery Aging Mechanisms 

Lithium-ion battery aging is the result of multiple chemical, electrochemical, and 

mechanical phenomena that occur during both use and storage. These processes cause a gradual 

loss of capacity over time, including an increase in internal resistance, and a reduction in overall 

efficiency. The most relevant mechanisms for this study are: 

● Solid Electrolyte Interphase (SEI) growth 

● Loss of Lithium Inventory (LLI) 

● Loss of Active Material (LAM) 

● Electrolyte decomposition 

● Structural degradation of electrodes 

● Current collector corrosion 

It will be explored more in deeply about this phenomenon in next chapters. 

4.2. Factors Accelerating Battery Aging 

Battery aging can be influenced by several external and operational factors. Controlling 

these following factors is key when designing an artificial aging protocol: 

● Temperature: High temperatures (>40 °C) accelerate reaction kinetics, which promote 

faster SEI growth and electrolyte decomposition. However, excessive heat (>60 °C) can 

trigger dangerous conditions. 

● State of Charge: Prolonged high SoC storage increases the oxidative stress on the 

cathode and promotes metal dissolution and electrolyte oxidation. Very low SoC can 

destabilize the SEI and eventaully cause copper dissolution. 
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● Depth of Discharge (DoD): Deep cycling increases mechanical strain on electrodes due 

to expansion and contraction, which leads to particle cracking and delamination. 

 

● C-rate: High charging or discharging rates cause significant ohmic heating, exacerbate 

lithium plating risk, and create non-uniform current density across the electrode surface. 

 

● Voltage extremes: Operation close to the maximum or minimum voltage limits will 

accelerate unwanted side reactions at both electrodes. 

These factors dictate the rate at which a cell degrades in real applications, while also 

providing levers for accelerating aging in laboratory conditions without deviating too far from 

realistic mechanisms. 

4.3. Artificial Aging Protocol 

The artificial aging process was designed to replicate the most influential real-world 

degradation mechanisms in a compressed timescale. It combined partial SoC cycling with 

elevated temperature storage to induce SEI growth, active material loss, and lithium inventory 

depletion in a controlled manner. 

4.3.1. Initial Characterization 

Before aging each cell underwent: 

● Full charge to 100% SoC according to manufacturer’s specifications. 

● Capacity test at 0.5C to establish baseline capacity. 

● Calculation of initial SoH via Coulomb counting: 

𝑆𝑜𝐻 =
𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝐶𝑟𝑎𝑡𝑒𝑑

× 100% 

● Initial EIS measurements at all SoC points selected for the study (100%, 80%, 50%, 

20%). 

These baseline measurements made sure that subsequent changes could be directly 

attributed to the aging process. 

4.3.2. Cycling Conditions 

Cells were cycled between 10% and 90% SoC to apply both lithiation and delithiation 

stresses without exposing them to extreme voltages. 

● Charge profile: Constant current–constant voltage at 1C until the upper SoC limit was 

reached. 
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● Discharge profile: Constant current at 1C down to the lower SoC limit. 

● Rest periods: Minimal, in order to maximize the number of cycles completed within 

the available time. 

This cycling window was chosen to reflect the typical operational patterns in electric 

vehicles, while avoiding very low SoC regions that could then accelerate harmful copper 

dissolution. 

4.3.3. Temperature Control 

Cells were placed in a climatic chamber maintained between 40 °C and 45 °C. This 

temperature range accelerates chemical reactions such as SEI growth and electrolyte breakdown 

without causing thermal damage. Controlled heating also ensures consistency across all 

samples. 

4.3.4. Periodic Assessment 

Every 50 cycles, aging was paused to perform: 

● Capacity test at 0.5C to update the SoH. 

● EIS measurements at each SoC point to monitor impedance of evolution. 

This periodic assessment allowed for real-time tracking of degradation and timely removal 

of cells from the protocol upon reaching their target SoH. 

4.3.5. Achieving Target SoH Levels 

By applying identical conditions but stopping cells at different points in their degradation 

curve: 

● SoH 100% group: unused cells stored under optimal conditions. 

● SoH 90% group: cells removed after ~200–250 cycles. 

● SoH 80% group: cells aged further until ~350 cycles. 

● SoH 70% group: longest-aged group often exceeding 500 cycles. 

At least two cells were prepared for each SoH level to allow averaging and identification of 

outliers. 

4.3.6. Safety and Monitoring 

Throughout the process: 

● Voltage, current, and temperature were continuously monitored. 
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● Internal resistance was checked via pulse testing. 

● Cells were visually inspected for swelling, leakage, or discoloration. 

Any cell showing any abnormal behaviors was removed in order to maintain the integrity 

of the dataset. 

4.3.7. Relevance to the Study 

The artificial aging process produced a set of cells that represented realistic degradation 

states within a reduced timeframe. The methodology ensured that the resulting samples 

captured the multi-faceted nature of lithium-ion battery aging, by targeting both capacity fade 

and impedance growth. This approach provided: 

● A controlled and repeatable way to populate the SoC–SoH test matrix. 

● Multiple physical samples per SoH level to increase confidence in statistical analysis. 

● Degradation mechanisms that similarly match those found during practical applications. 

 

The dataset obtained from these artificially aged cells would form the foundation for 

analyzing the relationship between EIS parameters and the SoH which ultimately guides the 

selection of an optimal SoC range for reliable health estimation. 
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5. Experimental Setup and Methodology 

 

 

The experimental activity was dedicated to performing Electrochemical Impedance 

Spectroscopy on cylindrical 18650 lithium-ion cells. The primary objective was to obtain 

reproducible and high-fidelity impedance spectra across a wide frequency range. In order to 

achieve this, it was necessary to have a careful design of the measurement chain, a controlled 

environment, and systematic validation of every instrumental component involved. 

5.1. Measurement Architecture 

The experimental setup was centered around a modular electrochemical workstation 

operating as potentiostat and galvanostat with an integrated Frequency Response Analyzer 

(FRA). This device provided stable operation over frequencies spanning from the sub-Hz to the 

MHz range, which allowed us to capture kinetic and diffusion-related processes. 

 

The workstation incorporated signal generation, data acquisition, and control logic into a 

single unit. This helped to reduce synchronization errors that are common in multi-instrument 

configurations. Despite its versatility, specific attention had to be paid to the low-frequency 

regime. Here, long acquisition times expose the measurements to drift and external 

disturbances. 

5.2. Auxiliary Equipment and Conditioning 

Each measurement required the cell to be brought to a precise SoC. A programmable DC 

power supply was used for controlled charging via a standard constant-current/constant-

voltage (CC–CV) protocol, while a programmable electronic load handled the discharging. 

These instruments offer a fine current and voltage resolution which allows reproducibility 

between tests and preventing overcharge or thermal stress. 

 

Each conditioning phase was followed by a rest period until both voltage and temperature 

reached equilibrium in order to make sure that the impedance spectra reflected electrochemical 

behavior rather than transient effects. Even though initially underestimated, this equilibration 

step proved to be an essential way to avoid any artificial shifts in the mid-frequency region of 

the Nyquist plot. 

5.3. Temperature Control and Monitoring 

Because impedance is very temperature-dependent, thermal stability was treated as a 

critical parameter rather than a background condition. Each cell was equipped with a type-K 

thermocouple fixed near the negative terminal with Kapton tape. This guaranteed electrical 

insulation and good thermal contact. Temperature was logged with 0.1 °C resolution throughout 

all measurements. 
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Early trials showed that even minor fluctuations (~1 °C) could produce detectable 

changes in the charge-transfer resistance. As a consequence, the entire setup was operated in a 

thermally regulated laboratory, and all equipment was powered well in advance to allow 

internal stabilization. 

5.4. Electrical Connections and Mechanical Stability 

Although it may appear trivial, the connection interface between the analyzer and the cell 

became one of the dominant sources of measurement uncertainty. Standard alligator clips 

introduced variability in the high-frequency region because of unstable contact resistance. This 

was eliminated by adopting Kelvin connections, where separate paths are used for current 

injection and voltage sensing. 

5.5. Calibration and Verification Procedures 

Instrumental reliability was verified periodically through open/short/load calibration 

routines. This compensated for cable parasitic and ensured accurate impedance readings over 

the entire frequency spectrum. Complementary tests on known RC reference networks provided 

additional validation for magnitude and phase accuracy. 

 

Repeatability tests were performed on a dedicated reference cell kept at constant SoC and 

temperature. All of these tests served to quantify the inherent variability of the system and detect 

any drift caused by contact degradation or environmental changes. Through these measures, 

reproducibility was better than ±1 % in ohmic resistance and ±3 % in charge-transfer resistance 

was routinely achieved. 

5.6. Mitigation of Measurement Artifacts 

Two classes of disturbances emerged as critical during the campaign. 

 

At low frequencies (<0.05 Hz), the long sampling intervals rendered the measurement 

sensitive to external vibrations and slow drifts. This was mitigated by scheduling these scans 

during low-activity periods and isolating the test bench mechanically. 

 

At high frequencies (>100 kHz) electromagnetic interference from laboratory electronics 

became prominent. Grounded shielding panels, ferrite chokes, and optimized cable routing were 

introduced, which led to a substantial reduction in spectral noise. 

5.7. Data Handling and Traceability 

Each measurement was automatically logged into CSV format. It was accompanied by 

metadata including cell ID, SoC, temperature, and instrument configuration. Data integrity was 

maintained through a dual-backup strategy involving local and network storage. A structured 

database indexed all experiments, which eventually facilitated a later retrieval and cross-

comparison. 
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5.8. Overview 

The combination of accurate instrumentation, robust thermal control, and meticulous 

calibration routines allowed the experimental campaign to generate a consistent and 

reproducible dataset. Each refinement in the setup, from the adoption of Kelvin clips to the 

enforcement of equilibration times, contributed to the reduction of systematic uncertainty and 

to the reliability of the impedance measurements. 

5.9. Experimental Challenges and Iterative Improvements 

 

Figure 5: first measurement attempt layout 

 

The experimental activity was marked by a continuous process of refinement despite the 

robustness of the setup. The first measurement sessions revealed a series of subtle but recurring 

issues that required procedural adjustments and small practical improvements to the test 

environment. 

 

One of the most persistent difficulties was the stability of the low-frequency points. 

Because each impedance value at 0.01 Hz required several minutes of acquisition. Even minor 

disturbances, such as vibrations from nearby instruments or mechanical shifts of the table, could 

distort the phase response. Measurements in the low-frequency region were performed during 

quiet periods to mitigate these effects. The workbench was mechanically isolated using simple 

rubber dampers placed under its legs. This small but significant modification was proved to be 

effective in reducing vibrations transmitted through the floor and improved the repeatability of 

the low-frequency measurements. 

 

At the same time, electromagnetic interference was identified as a limiting factor at high 

frequencies. Early spectra displayed characteristic ripples attributable to surrounding electronic 

equipment. A straightforward mitigation strategy was adopted. All non-essential devices in 
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the laboratory were switched off during EIS acquisition, and the measurement cables were 

kept as short as possible and routed away from power lines. Moreover, ferrite beads were 

added to the most sensitive signal cables, which provided a noticeable reduction of high-

frequency noise above 50 kHz. 

 

These simple yet effective measures, alongside greater attention to environmental 

conditions, led to a significant improvement in the signal quality and overall reproducibility 

of the measurements, which did not require any complex or costly modifications to the setup of 

the laboratory. 

5.10. Optimization of the Contact Interface 

 

Mechanical contact variability proved to be a very important data quality determinant. 

Even small differences in pressure or positioning of the clips produced measurable shifts in the 

ohmic resistance. The transition from generic alligator clips to rigid Kelvin-type holders 

marked a turning point in the campaign. 

 

 

Figure 6: battery holder 

 

 

Each holder was designed to maintain a fixed geometry and a repeatable alignment with 

the cell terminals. The 3D printed fixtures were also used as a partial vibration damper, which 

further stabilized the setup. As a result, the high-frequency intercept of the impedance spectrum, 

which was a sensitive indicator of contact resistance, became highly consistent across 

repetitions. 

 

Figure 5.1: 

5.11. Control of Electrochemical Conditioning 

Some early attempts at rapid cycling between different states of charge revealed the 

importance of electrochemical relaxation. Measurements that were performed immediately 

after charging or discharging displayed transient voltage drift and temperature gradients that 
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could not be distinguished from real impedance changes. Successive protocols introduced 

mandatory rest phases, which were empirically optimized for each SoC level. These pauses, 

which typically lasted between 20 and 45 minutes, allowed the cell to return to near equilibrium 

before the EIS scan. 

 

Furthermore, the current rates for charge and discharge were limited to moderate values 

(C/2 or 1C) in order to prevent local heating and to also minimize electrolyte polarization. This 

conservative approach helped only slightly to extend the overall duration of the campaign but 

ensured that impedance variations reflected a genuine electrochemical behavior rather than 

thermal artifacts. 

5.12. Calibration Frequency and Reference Validation 

Even high-quality measurement instruments exhibit drift over time. Probably, this was 

due to connector wear, temperature cycling, or software updates, or even a combination of some 

of them. Calibration routines were performed to maintain reliability at the start of each 

measurement week and whenever anomalies were detected. 

5.13. Repeatability Assessment 

The credibility of the EIS dataset was anchored in repeatability testing. A single 

reference cell stored at 50% SoC served as a long-term benchmark throughout the campaign. 

Its impedance spectrum was measured weekly to monitor any instrumental drift. The variations 

in the high-frequency resistance stayed within ±1%, while the mid-frequency semicircle 

diameter fluctuated within ±3%. These figures were consistent with the intrinsic precision limits 

of the instrumentation and confirmed the overall stability of the experimental procedure. 

5.14. Consolidation of Best Practices 

As the campaign progressed, the iterative refinement of methods converged into a set of 

operational “best practices” that improved data quality and efficiency in a substantial way. 

Among the most impactful there were: 

• Thermal equilibration that before every scan allowed for a stable impedance baseline. 

• Fixed mechanical geometry for all connections which led to eliminating contact 

variability. 

• Regular calibration and reference validation used as a part of the standard workflow. 

• Systematic data organization which enabled traceability and error tracking. 

• Noise mitigation and bench isolation, which extended the usable frequency range. 

 

Together, these measures transformed, what initially appeared as a straightforward 

measurement task, into a rigorously controlled experimental process. The dataset that resulted 

was consistent across all repetitions, resilient to environmental disturbances, and was suitable 

for advanced electrochemical interpretation in the subsequent analyses. 
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5.15. Preliminary Data Validation and Quality Assessment 

A systematic verification phase was introduced, upon completion of the first consistent 

series of measurements, as a way to make sure that the collected impedance data were 

technically reliable and physically meaningful. Since the Electrochemical Impedance 

Spectroscopy was seen to have sensitivity to even minor disturbances, the raw data could not 

be considered trustworthy without putting in place a structured post-acquisition screening 

process. 

 

The goal at this stage was not yet to extract electrochemical parameters, but it was to only 

confirm the internal consistency and plausibility of the acquired spectra before including 

them in the central dataset. 

 

A lightweight Matlab-based script was developed to automatically read the CSV files 

exported by the impedance analyzer and to generate quick visualizations of the Nyquist and 

Bode plots. An intentionally simple code allowed to identify obvious anomalies directly after 

each measurement. Such anomalies include non-physical negative imaginary components, 

discontinuities between frequency decades, or abrupt noise bursts. 

 

Each dataset was plotted in its raw form, without any filtering or curve fitting, in order to 

avoid the masking of possible acquisition errors. The overlays between repeated scans of the 

same cell provided an immediate visual confirmation of repeatability of the measurement. The 

corresponding test was marked for repetition and excluded from the main archive until 

verification, when deviations larger than the established thresholds were observed. 

5.16. Data Screening Criteria 

The validation process was guided by a few essential criteria, which were developed 

empirically over the first weeks of testing. 

• Spectral continuity: the impedance curve had to evolve smoothly with frequency, 

without jumps or isolated points inconsistent with neighboring values. 

• High-frequency intercept consistency: repeated measurements under identical 

conditions were required to show less than ±1% deviation in ohmic resistance. 

• Low-frequency convergence: the real component of impedance had to stabilize within 

a finite range. Unbounded growth or oscillations indicated drift or noise contamination. 

• Temperature coherence: the recorded temperature trace during each scan was cross-

checked. Any fluctuation above 0.5 °C during the frequency sweep led to rejection of 

the data. 

Such a structured filtering step was proved to be an invaluable tool in maintaining dataset 

integrity. Especially when accumulating large volumes of measurements over extended time 

periods. In practice, roughly 8-10% of the initially collected spectra were discarded during 

this quality control phase, most of the time due to thermal instability or minor contact 

perturbations that were identified in the visual plots. 
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5.17. Observations and Incremental Refinements 

Several subtle patterns became apparent through repeated use of this validation tool. For 

instance, the measurements that were conducted immediately after the cell mounting displayed 

small but systematic offsets in the high-frequency region. This was attributed to incomplete 

mechanical stabilization. Extending the rest before the start of the scan by just a few minutes 

eliminated this shift effectively. 

 

In a similar way, the Nyquist visualizations sometimes revealed slight asymmetries 

between forward and backward frequency sweeps. This is a sign of residual drift in the 

potentiostat’s DC bias. The recalibration and a prolonged warm-up period were proved to be 

sufficient to restore symmetry and improve reproducibility. 

 

The iterative nature of this process, which includes alternating between measurement, 

quick visual validation, and procedural adjustment, was able to progressively refine the 

experimental setup and operator confidence. While it was very simple in concept, this early-

stage quality control established a feedback loop that helped preventing the accumulation of 

corrupted or inconsistent data. This eventually saved a significant effort during later analysis 

phases. 

5.18. Summary of Experimental Reliability 

By the conclusion of this phase, the workflow had evolved into a robust pipeline capable 

of generating high-quality and self-consistent impedance data. Each measurement was 

automatically accompanied by its diagnostic visualization and metadata record. This allowed 

the dataset to grow in a structured and traceable manner. 

 

The combination of rigorous measurement conditions, systematic calibration, and 

immediate post-acquisition validation made sure that only spectra meeting defined stability and 

coherence criteria were retained for subsequent analysis. 

 

5.19. Residual Limitations and Practical Considerations 

Despite the high level of control achieved, some inherent limitations remained. The low-

frequency domain continued to pose practical challenges. Even under optimized conditions, 

measurements below 0.02 Hz required a prolonged acquisition time, during which small 

thermal or voltage drifts could still influence the phase response. In a similar way, the upper-

frequency limit was constrained by the analyzer’s internal bandwidth and the parasitic 

inductance of the connection leads. 

 

Another persistent factor was temperature uniformity within the cell. Although the 

external temperature was precisely monitored, minor gradients between the surface and core 

could not be entirely ruled out. This happened especially after extended charge or discharge 

conditioning. These effects were minimized but not eliminated. They also represent one of the 
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unavoidable uncertainties in EIS performed on sealed commercial cells without embedded 

sensors. 

5.20. Data Robustness and Reproducibility 

Within these boundaries the overall data robustness was deemed satisfactory for 

subsequent interpretation. The measured impedance spectra displayed consistent topology 

across repetitions: stable high-frequency intercepts, well-defined mid-frequency arcs, and 

coherent low-frequency tails. These repetitions indicate that the measurement system 

effectively captured the electrochemical response of the cells rather than artefacts of the setup. 

 

Repeatability tests on multiple days confirmed that the variability between independent 

measurements remained within a narrow and quantifiable margin, once the experimental 

environment and connection geometry were stabilized. The dataset that resulted from that 

satisfied the core criterion of internal reproducibility, which is a prerequisite for any 

subsequent analysis of degradation trends or equivalent-circuit modeling. 

5.21. Lessons from the Experimental Campaign 

From a methodological perspective, the experimental phase highlighted several broader 

lessons that extend beyond the specific case of EIS on lithium-ion cells. Chief among them is 

the realization that measurement precision is not purely a function of instrument 

performance, but equally of mechanical and procedural consistency. The most impactful 

improvements often came from attention to detail in contact quality, equilibration times, and 

calibration discipline, not from new hardware. 

 

The same importance was the integration of real-time quality control through the quick 

plotting script and a structured data management system. This practice transformed data 

validation from a retrospective correction step into an integral part of the measurement routine, 

which prevented error propagation. 

 

Finally, the gradual codification of operational rules, such as minimum stabilization 

times, acceptable temperature deviations, and criteria for data acceptance, turned what was, 

initially, an empirical process into a replicable experimental framework. The result was not 

a collection of impedance measurements, while also it validated procedure capable of producing 

meaningful data under controlled and repeatable conditions. 
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6. Physical principles of degradation in lithium-ion batteries  

 

6.1. Overview: what really “ages” 

When we say that a battery “ages”, two macroscopic two quantities change: the capacity 

(how much change can still hold) and deliverable power (how rapidly can exchange that charge 

without overheating or drop too much in voltage. At microscopic level, these two effects stem 

from three categories of causes that often coexist: 

● Loss of Lithium Inventory (LLI): Part of the cyclable lithium is “trapped” in reaction 

products (for example, in SEI or as plated lithium metal). Capacity decreases because 

there is less lithium available for intercalation/deintercalation. 

● Loss of Active Material (LAM): A portion of the electrode material (anode or cathode) 

becomes electrically or ionically isolated (cracking, detachment from the collector, 

percolation loss), or chemically inactive (phase transitions, surface degradation). 

Capacity and power decrease together. 

● Increase in Internal Resistance: The barrier to the passage of ions and electrons 

increases (thicker/more disordered interface layers, reduced porosity, slower diffusion, 

poorer contacts). Power decreases and greater ohmic losses are observed. 

Degradation can be scheduled (even at still battery it depends mostly on temperature and 

storage charge status) or cycled (induced by the passage of charge, therefore by currents, 

discharge depth, charging speed, etc.). The underlying physical mechanisms are the same but 

activated with different intensity depending on operating conditions. 

6.2. Interfaces and layers: SEI and CEI 

6.2.1. SEI on the anode (Graphite/Silicon) 

At the anode (typically graphite, sometimes with a fraction of silicon), the organic 

electrolyte reduces during the first charges, forming the Solid Electrolyte Interphase: a 

nanometric layer that is ionically conductive but electrically insulating. It is essential (passive 

electrode), but continues to grow slowly over time, consuming lithium: 

● Diffusion-limited growth: usually it is observed  → lost capacity for LLI 

. 

● Consequences: increased charge transfer resistance, power drop, and cumulative loss 

of cyclable lithium. 

Silicon amplifies the problem: volumetric expansion of up to ~300% during Li–Si alloying 

causes recurrent cracking, exposing virgin surface. SEI breaks down and reforms cycle after 

cycle, accelerating LLI and LAM. 
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Figure 7: SEI formation 

6.2.2. CEI on the cathode 

At high potentials, the cathode oxidizes the electrolyte, forming a Cathode-Electrolyte 

Interphase (CEI). This layer can stabilize the surface but, if disordered or too thick, increases 

surface resistance. On high-nickel materials (NMC/NCA high-Ni), electrolyte oxidation and 

the release of lattice oxygen at high voltages accelerate the growth of “hard” and reactive CEI. 

6.3. Lithium plating 

 

Figure 8: Lithium plating process 

When the local potential of graphite drops too close to 0 V vs Li/Li  (for low 

temperatures, high charging currents, nearly saturated anodes, or polarizations due to high 

resistances), it becomes thermodynamically advantageous to deposit lithium metal rather than 

intercalate it: 

● Nucleation and growth: initially “islands” of metallic Li; under severe conditions, 

filaments/dendrites that can cross the separator. 

● Irreversible vs. reversible: a fraction can “reinsert itself” during the next discharge; 

the rest is isolated and then consumed by secondary reactions. → LLI. 
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● Consequences: decrease in capacity (LLI), increase in surface resistance, risk of 

internal short circuit and gas formation (due to reactions between lithium metal and 

electrolyte). 

The safe operating window for fast charging is therefore limited by the temperature, the 

current, and the anode filling status. 

6.4. Cathode degradation: chemistry, structures, and transition metals 

6.4.1. Dissolution of transition metals 

In materials such as LMO (spinel), there is disproportionation. 

 

 where   dissolves in the electrolyte, migrates and deposits on the anode, catalyzing 

further SEI growth and parasitic reactions.   Even in NMC/NCA there can be dissolution 

(Ni/Co/Mn) especially in high voltage or in the presence of HF. The result: LAM to the cathode 

and accelerated aging of the anode. 

6.4.2. Oxygen release and phase transitions 

Ni-rich cathodes are more energetic but more delicate: high stresses and high 

temperatures can release reticular oxygen, triggering electrolyte oxidation (unstable CEI), 

heating, and microcracking of particles (LAM). Locally, the surface can be transformed into 

unproductive rock-salt-like phases, which electrically isolate some portions of active material. 

6.4.3. Cracking from “lattice breathing” 

During (de)intercalation, the cathode lattice parameter “breathes.” Repeated over time, 

this induces mechanical stress and intergranular microfractures; fragments may lose contact 

with the binder/collector. → LAM and increase resistance. 

Note: cathodes such as LFP exhibit excellent thermal/structural stability. They degrade 

more slowly but are not immune to percolation loss or resistive IEC at high voltages. 

6.5. Electrolyte and conductive salt: basic chemistry 

The most common salt, LiPF , it is convenient but unstable: in the presence of traces of 

water, the following reaction occurs: 
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HF attacks the cathode surfaces (promoting the dissolution of transition metals) and 

reacts with SEI species, making it more fragile and consuming additional lithium. Solvents such 

as EC/EMC can oxidize at high potential (cathode) or reduce (anode), generating solid species. 

(Li CO , LiF, LEDC) and gas (CO , CO, H ), with cell swelling and increased ionic resistance 

in the pores. 

Additives (e.g., VC, FEC) help to form more stable SEI/CEI, but at high temperatures 

even additives are depleted, and the benefits diminish. 

6.6. Mechanics and percolation: when the structure breaks down 

The heart of LAM is often mechanical:  

• Graphite anode: deep cycles and/or rapid charging generate Li and strain gradients; 

particulate matter can crack, losing contact with the binder.  

• Silicon: enormous cyclic expansion/contraction causes pulverization; without 

containment strategies (nanostructuring, elastic binders, pre-lithiation), percolation 

loss is rapid.  

• Cathode: microcracks open new reactive surfaces → more CEI, more indirect LLI, 

and electronic isolation of fragments. 

The effective porosity of the electrode tends to decrease due to pore collapse and filling 

with solid products → tortuosity increases → slower ion diffusion → more polarization and 

heat. 

6.7. Extreme events: over-discharge, over-charge, and safety 

● Over-discharge can push the anode towards potentials that lead to the dissolution of 

the copper in the collector. Cu  can then redeposit as metal filaments, creating 

permanent micro-cuts. 

● Over-charging (beyond the voltage limit) accelerates electrolyte oxidation, oxygen 

release from the cathode, and triggers exothermic reactions. 

The simplified heat balance includes ohmic heat.  and the entropic heat . If 

generation exceeds dissipation, the temperature rises. Parasitic reactions accelerate (Arrhenius), 

and in extreme cases, a runaway occurs. The separator (PE/PP) can shrink beyond ~120–140°C, 

increasing the risk of a short circuit. 

6.8. Map of operating conditions 

Temperature 

• High T: accelerates all parasitic reactions (SEI/CEI growth, dissolution, gas). 
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• Low T: worsens kinetics/diffusion → more plating during charging and mechanical 

stress. 

SoC and window of use 

• High SoC at rest promotes cathode oxidation and metal dissolution (calendar). 

• Extreme low SoC: increases the risk of copper dissolution in overcharging. 

• Narrow window (e.g., 20–80%) reduces stress peaks and prolongs life. 

 

Current/C-rate and charging profiles 

● High C: large  large concentration gradients and heating → accelerate LLI/LAM. 

● Fast charging: requires thermal management and adaptive limitations (current 

reduction at unfavorable SoC/T) to prevent plating. 

6.9. Internal heterogeneity and “uneven aging” 

In the actual cell, there are local gradients in temperature, Li concentration, and current. 

Coating imperfections, uneven distribution of particles/binder, or slight differences in contact 

pressure lead to hot spots and starved areas. These regions degrade first (more SEI, more 

cracking, more CEI), starting a vicious cycle: more resistance → more heat/local polarization 

→ even more degradation.  

At the pack/module level, small differences between cells lead to imbalance: some cells 

operate at higher SoC or at different temperatures, aging faster and dragging down the system. 

6.10. Macroscopic observations and “signatures” of mechanisms 

Without introducing circuit models yet, the above mechanisms have diagnostic traces: 

• Capacity and Coulombic Efficiency: CE < 100% on average indicates systematic 

consumption of LLI.  

• Increased resistance (DCIR, power fade): indicates growth of interface layers, loss of 

percolation, or worsened transport in the pores.  

• Incremental Capacity (dQ/dV) / Differential Voltage: the shift/attenuation of peaks 

related to intercalation stages (graphite) or cathode transitions suggests LLI vs. LAM 

and structural changes.  

• Self-discharge and gas/swelling: indicate high electrolyte reactivity, unstable CEI/SEI 

or soft shorts.  

• Increasing OCV hysteresis indicates greater internal resistance and inhomogeneity. 

 

6.11. Engineering and control implications 

• Thermal management: keeping the cell within an optimal thermal window limits both 

plating (cold) and parasitic reactions (hot).  
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• Usage policy: avoid long storage at very high SoC, limit extreme daily DoD, prefer 

well-calibrated step-down or CC-CV charging profiles.  

• Materials and design: cathode surface coatings, electrolyte additives, elastic binders 

for Si, porous architectures with low tortuosity, and robust conductive collectors/lattices 

mitigate LAM/LLI. 

• Pack-level equalization and balancing mitigate heterogeneity and dilute stress peaks 

on individual cells. 

6.12. Operative summary 

• LLI is driven by SEI/CEI, plating, and parasitic reactions; it increases with T, high SoC 

at rest, and fast charging under unfavorable conditions. 

• LAM arises from cracking, loss of contact, and structural transformations; it worsens 

with high currents, Li gradients, and mechanically fragile materials (Si, high-Ni without 

mitigation).  

• The increase in resistance is the cross-sectional result of thicker interface layers, clogged 

pores, and weakened electronic percolation. 

These mechanisms build the conceptual bridge between physical-chemical phenomenology 

and the quantities that we then measure in diagnostics: capacitance, resistance, voltmetric 

signatures, and response spectra. In the following chapter, we will use this cause→effect map 

to justify modeling choices and parametric identification tools. 

6.13. Transition towards model representation 

At this point, a common thread can be identified: every physical degradation 

phenomenon, despite having distinct chemical, structural, or mechanical origins, always results 

in a change in the cell's electrical response. This observation is the reason why diagnostic 

methods, such as Electrochemical Impedance Spectroscopy, are so effective: since each 

transport or reaction process is associated with a characteristic time constant, its evolution over 

time (and therefore degradation) manifests itself as a variation in the distribution of these time 

constants, and therefore in the overall shape of the impedance spectrum.  

Before moving on to electrical modeling, it is useful to explain how the phenomena 

discussed in the previous paragraphs influence the parameters that will subsequently be 

represented by circuit elements. 

6.13.1. Influence of SEI and LLI on electrical response 

SEI growth, as we have seen, it is a phenomenon that often follows a law such as . At 

the electrical level, this corresponds to a progressive increase of the charge transfer resistance 

and a decrease in apparent double layer capacity, as part of the electroactive surface is shielded. 
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SEI also acts as a diffusion barrier: Li  ions must cross a layer of increasing thickness 

and complex structure. This introduces a phase delay in responses at intermediate and low 

frequencies, which appears in a Nyquist diagram as a wider semicircle or a non-ideal slope (no 

longer perfectly capacitive). 

From the point of view of macroscopic parameters, this translates into an increase in 

polarization resistance and a slowdown in dynamic response. 

6.13.2. Plating and nonlinear polarizations 

Lithium plating has mixed effects: 

● Initially, metal deposition increases surface conductivity, but not uniformly; as the 

phenomenon evolves, inactive and insulating areas of form, increasing resistance. 

● The interaction of metallic lithium with electrolyte generates new compounds. (Li CO

, LiF, ecc.), which amplifies the growth of SEI and therefore the low-frequency 

resistive part of the spectrum. 

● At the macroscopic level, plating alters Coulombic reversibility: part of the charge 

introduced is no longer recoverable, highlighting a structural and permanent LLI. 

These effects are reflected in a non-linear response to high currents and a progressive 

shift of the low-frequency regions of the Nyquist diagram, where diffusion and slow reactions 

dominate. 

6.13.3. Cracking and loss of  percolation (LAM) 

When a portion of active material loses electrical contact, the effective active surface area 

is reduced. In electrical terms, this corresponds to a decrease in the effective capacity of the 

electrode and a change in the local time constants. The system becomes more heterogeneous: 

not all particles react in the same way and in the same frequency range, so the impedance 

spectrum shows a broadening of the transition regions (wider semicircles, smoother slopes). In 

practice, this reflects a continuous distribution of relaxation times, often modeled through non-

ideal elements such as the Constant Phase Element (CPE), which will be introduced in the 

next chapter. 

6.13.4. Cathode effects and dissolution of transition metals 

The dissolution of metals such as Mn, Ni, and Co modifies both the cathode and anode 

surfaces. On the cathode, the loss of active material and the formation of a thick IEC increase 

the resistance associated with charge transfer; on the anode, the deposited metals catalyze 

undesirable reactions that lead to accelerated SEI growth and, therefore, to further overall 

polarization of the system. In the frequency domain, these processes manifest themselves as an 

increase in series esistive and capacitive components, but with longer relaxation times, typical 

of the low-frequency regions of the spectrum. 
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6.13.5. Ionic diffusion and slow transients 

The slowing down of internal diffusion processes (both in the electrodes and through the 

SEI/CEI) results in a non-instantaneous response to potential changes. 

Mathematically, diffusion is described by: 

 

Where    is the Warburg coefficient and  the diffusion time constant. 

 

When diffusion is severely limited or the surface becomes uneven, the real and imaginary 

parts of the impedance show a 45° trend in Nyquist, typical of semi-infinite diffusion. With 

aging, this trend tends to shift to the right and lengthen, indicating slower diffusion or a thicker 

layer to pass through. 

6.13.6. Thermal effects and reversible variations 

Some variations in electrical parameters may be reversible if induced by temperature 

changes. An increase in T temporarily reduces diffusion and charge transfer resistance, but in 

the long term accelerates structural growth. Conversely, at low temperatures, diffusion slows 

down and the system exhibits higher impedances at high frequencies, an effect that can be 

mistaken for degradation if the thermal component is not taken into account. It is therefore 

essential to distinguish between temporary (environment-dependent) and permanent 

(physical-chemical deterioration-related) variations. 

6.13.7. Phenomenological synthesis 

We can therefore map in qualitative form the direct links between degradation 

mechanisms and measurable electrical quantities: 
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Physical 

phenomenon 

Macroscopic effect Observable electrical effect 

SEI / CEI growth LLI increase, interface 

resistance 

Rightward shift of the high-frequency 

semicircle 

Li plating LLI, short-circuit risk Increased resistance at low frequencies, 

non-linear variations 

Cracking / LAM Loss of active capacity Equivalent capacity reduction, wide 

semicircles (time distribution) 

Slowed spread Polarisation, power drop More extensive 45° slope (Warburg) 

Metal dissolution Unstable CEI, cross-talk Increase in overall polarisation 

Temperature 

increase 

Acceleration reactions Faster transients but faster degradation 

High current Polarisation and stress Expansion of intermediate impedance 

regions 

This table establishes a conceptual link between degradation chemistry and circuit 

modeling: each physical process can be represented by an element, or a set of elements, capable 

of reproducing its dynamic effect on the overall impedance. 
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7. Equivalent Circuit Model for Ageing Phenomena in Lithium-Ion 

Batteries  

7.1 Introduction 

The experimental results obtained through Electrochemical Impedance Spectroscopy are 

valuable on their own, but their interpretability and predictive power increase significantly 

when they are mapped to a mathematical-physical model of the system. The most widely 

adopted approach in electrochemistry for this purpose is the construction of an Equivalent 

Circuit Model (ECM). ECM is an arrangement of idealized electrical components such as 

resistors, capacitors, and special impedance elements. Each of these components is associated 

with a specific physical or chemical process that occurs inside the cell. 

An ECM is not just a curve-fitting tool. It also embodies a hypothesis about underlying 

physics. The value of each component is expected to change in a predictable way with the cell’s 

state of charge, state of health, temperature, and usage history. The selection of components, 

and thus the selection of which physical phenomena to represent explicitly, is therefore an 

important step. In this study, the ECM was designed to focus on the dominant ageing 

mechanisms that are measurable via EIS and relevant for long-term capacity fade and power 

fade in lithium-ion cells. 

7.2 Modeling using equivalent circuits 

Experimental analysis of electrochemical impedance provides a wealth of information 

about the internal behavior of the battery, but experimental data alone, represented for example 

in the Nyquist complex plane, is not sufficient to describe the physicochemical phenomena 

occurring inside the battery in a quantitative and reproducible manner. This is why it is essential 

to use an ECM, which allows the electrochemical behavior of the system to be translated into 

an analytical and calculable form. 

The idea behind this approach is to replace the dynamic behavior of the cell with a 

network of ideal electrical elements, resistors, capacitors, and, in some cases, constant phase 

elements (CPEs), whose frequency response accurately reproduces the experimentally 

measured impedance curve. In other words, the equivalent circuit becomes a tool for emulating 

the actual behavior of the battery. 

Based on experimental data (𝑍real, 𝑍imag, 𝑓),  

the values of the circuit components are identified such that 

𝑍modello(𝑓) ≈ 𝑍misurato(𝑓) 

for each frequency within the analysis window. 

7.3 From experimental measurement to analytical model 

Each point on the Nyquist diagram corresponds to a complex impedance measurement. 

𝑍(𝑓) = 𝑍real(𝑓) + 𝑗𝑍imag(𝑓), obtained by applying a small amplitude sinusoidal signal with 
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variable frequency to the battery. The objective of the modeling is to determine a complex 

function 𝑍eq(𝑓) derived from an equivalent circuit that satisfies the relationship: 

𝑍eq(𝑓) = 𝑓(𝑅𝑖, 𝑅𝑐𝑡, 𝐶𝑑𝑙 ,CPE,𝑊,… ) 

Where the parameters 𝑅𝑖, 𝑅𝑐𝑡, 𝐶𝑑𝑙, etc. represent physical quantities linked to distinct 

phenomena inside the cell. 

Once the circuit has been identified, the optimal parameter values are found by 

minimizing the mean square distance between the experimental and theoretical values: 

min ∑|𝑍eq(𝑓𝑘; 𝜃) − 𝑍mis(𝑓𝑘)|
2

𝑁

𝑘=1

 

where 𝜃 = [𝑅𝑖, 𝑅𝑐𝑡, 𝐶𝑑𝑙, … ] is the vector of parameters to be estimated. This fitting 

process not only provides a continuous functional description of the impedance but also allows 

the resistive and capacitive-diffusive contributions of internal phenomena to be quantified 

separately. 

7.4 Physical meaning of parameters 

Each component of the equivalent circuit is associated with a specific electrochemical 

phenomenon. 

• Ohmic resistance 𝑅𝑖: represents the sum of the internal resistances of the conductors, 

contacts, and electrolyte. It is independent of frequency and manifests itself as the 

intersection point of the Nyquist graph with the real axis. 

• Charge transfer resistance 𝑅𝑐𝑡: describes the difficulty with which the electrode-

electrolyte interface reaction occurs. As the electrodes age or their surface degrades, 

𝑅𝑐𝑡tends to increase sensibly. 

• Double layer capacity 𝐶𝑑𝑙: models the accumulation of charges at the electrode-

electrolyte interface due to the formation of the electric double layer. This capacity can 

vary with temperature, surface roughness, and state of charge. 

• Diffusion element (Warburg or CPE): It represents the phenomenon of ionic 

diffusion in the active material and the electrolyte. At low frequencies, this term causes 

the typical 45° slope in the Nyquist plot. 

In some models, the diffusive element is described by Warburg impedance, given by: 

𝑍𝑊 = 𝜎(1 − 𝑗)
1

√𝜔
 

where 𝜎 is the Warburg coefficent and 𝜔 = 2𝜋𝑓 the pulsation. In more complex cases, 

the CPE is used instead, defined by: 

𝑍𝐶𝑃𝐸 =
1

𝑄(𝑗𝜔)𝑛
 

Where 𝑄 is a pseudo-capacitive coefficient and 𝑛 (with 0 < 𝑛 < 1) takes into account the 

deviation from the ideal behavior of a pure capacitor. 
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7.5 Correlation between electrical parameters and aging phenomena 

The strength of the equivalent circuit model lies in the fact that its parameters are not 

mere numerical fitting values, but represent quantitative indicators of the cell's health. The 

evolution over time or with the number of cycles of parameters such as 𝑅𝑐𝑡 e 𝐶𝑑𝑙 provides an 

indirect measure of degradation phenomena. 

For instance: 

• An increase of 𝑅𝑖 may indicate a deterioration in electrolyte conductivity or the 

appearance of deposits in the conductors. 

• An increase of 𝑅𝑐𝑡 is a symptom of increased resistance to electrochemical reaction, 

often caused by thickening of the SEI layer or loss of active area. 

• A reduction of 𝐶𝑑𝑙 suggests a decrease in the contact area between the electrolyte and 

the active material. 

• The variation of the parameter 𝑛 in the CPE may reveal local inconsistencies or uneven 

degradation processes. 

By combining these effects, it is therefore possible to correlate the variation in the overall impedance of 

the battery with its SoH, which help us obtain a predictive representation of its behavior over time. 

7.6 Practical utility of modeling 

Determining the equivalent circuit and its parameters is the basis for building predictive 

models and rapid diagnostic tools. Once the relationship between parameter variation and 

underlying physical phenomena is known, it becomes possible to simulate how impedance will 

change as operating conditions vary (temperature, state of charge, number of cycles, etc.). 

In this sense, the equivalent circuit acts as a bridge between the experimental and 

simulation domains. It allows the dynamic response of the cell to be emulated in contexts where 

EIS measurement is not possible, such as during vehicle operation or in integrated BMS. 

The mathematical model derived from the equivalent circuit can be integrated into 

simulation software, where the expected frequency response is calculated for each condition set 

(e.g., temperature variation or increase in interface resistance). This approach allows battery 

behavior to be predicted before degradation becomes significant, paving the way for 

predictive maintenance and adaptive control strategies. 

From a formal point of view, the overall behavior of a cell modeled by an equivalent 

circuit can be expressed as the sum of the impedances of its individual elements. Assuming a 

typical configuration consisting of an ohmic resistance 𝑅𝑖 in series with one or more branches 

𝑅 − 𝐶 at the same time, The total impedance of the system is: 

𝑍eq(𝜔) = 𝑅𝑖 +∑
1

1
𝑅𝑐𝑡,𝑘

+ 𝑗𝜔𝐶𝑘

𝑛

𝑘=1

 

where each pair 𝑅𝑐𝑡,𝑘 − 𝐶𝑘 represents an electrochemical process characterized by a time 

constant 𝜏𝑘 = 𝑅𝑐𝑡,𝑘 ⋅ 𝐶𝑘. The analysis of time constants is particularly useful, since each 
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phenomenon (e.g., double layer response, ion diffusion, or active mass polarization) occurs on 

different time scales. 

In order to interpret the relationship between excitation frequency and system response, 

consider the complex form of impedance for a single pair 𝑅𝑐𝑡-𝐶: 

𝑍𝑅𝐶(𝜔) =
𝑅𝑐𝑡

1 + 𝑗𝜔𝑅𝑐𝑡𝐶
 

Separating the real and imaginary parts, we obtain: 

{
 
 

 
 𝑍′(𝜔) =

𝑅𝑐𝑡
1 + (𝜔𝑅𝑐𝑡𝐶)

2

𝑍″(𝜔) = −
𝜔𝑅𝑐𝑡

2 𝐶

1 + (𝜔𝑅𝑐𝑡𝐶)2

 

Plotting these values on the complex plane yields the classic Nyquist semicircle, whose 

diameter is equal to 𝑅𝑐𝑡 and whose center lies on the real axis, at a distance equal to 𝑅𝑖 +
𝑅𝑐𝑡

2
 

from the origin. The maximum peak of the imaginary part corresponds to the characteristic 

frequency: 

𝜔max =
1

𝑅𝑐𝑡𝐶
 

The knowledge of this relationship allows each portion of the Nyquist plot to be 

associated with a specific physical process, based on the frequency range in which it occurs. 

7.7 Combination of multiple processes 

In a real battery, however, the response is not limited to a single semicircular arc. It is 

common to observe two or more partially overlapping semicircles, representing processes with 

different time constants. The most common model for describing such situations is the two- or 

three-branch parallel RC model, in which each branch represents a distinct contribution: one 

for the double layer, one for ion diffusion, and, in some cases, one for slower phenomena such 

as active mass polarization. 

The analytical formulation of the three-branch model is identical to the generic 

formulation: 

𝑍3RC(𝜔) = 𝑅𝑖 +∑
𝑅𝑐𝑡,𝑘

1 + 𝑗𝜔𝑅𝑐𝑡,𝑘𝐶𝑘

3

𝑘=1

 

where each term describes a distinct semicircle in the Nyquist plane. 

As the complexity of the model increases, so does its ability to accurately represent the 

experimental trend, but also the risk of non-uniqueness of the solution, since different 

combinations of parameters can generate very similar graphical responses. 
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7.8 Diffusion effects and non-ideal behavior 

At low frequencies, the simple RC description is no longer sufficient to capture the diffusive 

behavior of ions. In these cases, the final branch of the model can be enriched with a Warburg 

term or a CPE, as already introduced above. 

Warburg impedance, in semi-infinite form, is expressed as: 

𝑍𝑊(𝜔) =
𝜎

√𝑗𝜔
= 𝜎(1 − 𝑗)

1

√2𝜔
 

which in the Nyquist plot appears as a straight line inclined at 45° to the real axis. 

However, when diffusion is limited (for example, in materials with finite dimensions or in the 

presence of geometric barriers), the finite Warburg function is used, given by: 

𝑍𝑊,fin(𝜔) = 𝜎
tanh(√𝑗𝜔𝜏𝐷)

√𝑗𝜔𝜏𝐷
 

where 𝜏𝐷 represents the characteristic diffusion time. 

The CPE further generalizes diffusive and capacitive behavior, allowing the modeling of 

phenomena such as surface heterogeneity or spatial distribution of physical parameters. In this 

case, the total impedance can be expressed as: 

𝑍eq(𝜔) = 𝑅𝑖 +
1

1
𝑅𝑐𝑡

+ (𝑗𝜔)𝑛𝑄
 

Where the exponent 𝑛 modulates the degree of deviation from the ideal: for 𝑛 = 1 the 

behavior is purely capacitive, while for 𝑛 = 0.5 a diffusion response similar to Warburg's is 

obtained. 

7.9 Stima dei parametri e confronto con i dati sperimentali 

Once the structure of the equivalent circuit has been defined, the next step is to 

numerically determine the parameters that allow the best possible approximation of the 

experimental data. To this end, a MATLAB code has been implemented that is capable of 

performing a nonlinear fitting of the function. 𝑍eq(𝜔) with respect to points 𝑍mis(𝜔). 

The algorithm proceeds by calculating, for each experimental point, the complex difference 

between the measured values and those simulated by the model, minimizing the norm of the 

error vector: 

𝐸 = √∑|𝑍eq(𝜔𝑘; 𝜃) − 𝑍mis(𝜔𝑘)|
2

𝑁

𝑘=1

 

During the optimization process, physical constraints are imposed on the parameters (for 

example 𝑅, 𝐶, 𝑄 > 0) and limits consistent with the literature, in order to avoid convergence 

towards mathematically correct but physically meaningless solutions. 
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The final result is a set of parameters 𝜃∗ which faithfully reproduce the experimental 

curve and allow physical information to be extracted from the electrical behavior of the cell. 

 

Figure 9: comparison between direct and derived data 

Using the result generated by a specific Matlab code, we can therefore visually evaluate 

the quality of our model, which simulates its own Nyquist plot starting from the data measured 

from the real one, passing through the entire battery virtualization process, up to the new 

representation of the Nyquist plot. 
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Figure 10: close up on comparison between direct and derived data 

Systematically we can see that the greatest difference found is in the area at the top of the 

main semicircle. However, in light of several iterations, this has proven not to be a systematic 

phenomenon. It produced instead both negative and positive errors, but always of an acceptable 

magnitude. 

7.10 Parametric variation and predictive simulation 

Once the model has been calibrated, it is possible to explore its behavior under conditions 

different from those measured, by artificially modifying one or more parameters. For example, 

by increasing 𝑅𝑐𝑡 sThe effect of degradation of the electrode-electrolyte interface can be 

simulated by increasing 𝑅𝑖 the effect of collector aging or loss of conductivity is evaluated; by 

reducing 𝐶𝑑𝑙, the decrease in the active area is simulated.. 

This approach allows us to predict how the Nyquist plot will evolve over time, or how 

certain operating conditions (temperature, state of charge, cyclic stress) will affect impedance. 

These simulations are essential for quantitatively correlating aging phenomena with electrical 

response, and form the basis for the subsequent phase of estimating the battery's state of health. 

In summary, the construction of the equivalent circuit model allows EIS data to be 

transformed into a set of physically interpretable parameters. These parameters act as state 

variables of the electrochemical system and allow: 

1.    The experimental response to be represented in a compact and analytical form. 

2.    Impedance to be simulated under conditions that cannot be directly measured. 

3.    Identify and quantify degradation phenomena through their electrical footprint. 
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4.    Build a basis for the development of diagnostic and predictive algorithms that can be 

integrated into BMS systems. 

The equivalent model therefore becomes a dynamic mathematical representation of the 

internal state of the battery, capable of linking the electrical domain (impedance) with the 

physical-chemical domain (charge transfer, diffusion, and polarization processes). 

7.11 Sensitivity analysis of parameters 

The next step is therefore to analyze the sensitivity of the model with respect to these 

newly identified parameters. This type of analysis allows us to determine which elements of the 

circuit most influence the shape of the Nyquist plot and, consequently, which physical 

phenomena dominate the response in a given frequency range. 

Mathematically, the sensitivity of a parameter 𝜃𝑖 can be expressed as the partial derivative 

of the impedance function with respect to that parameter: 

𝑆𝜃𝑖(𝜔) =
∂𝑍eq(𝜔)

∂𝜃𝑖
 

The module of this quantity, |𝑆𝜃𝑖|, indicated how much the variation of 𝜃𝑖 changes the 

overall impedance at different frequencies. 

The sensitivity analysis shows, for example, that: 

• 𝑅𝑖 affects the entire spectrum almost constantly, shifting the curve on the real axis; 

• 𝑅𝑐𝑡 and 𝐶𝑑𝑙 determine the shape and width of the main semicircle; 

• The diffusive elements (Warburg or CPE) influence the low-frequency part, controlling 

the slope of the final branch. 

These relationships allow us to identify, based on the frequency domain, which physical 

process is predominant.  

7.12 Dynamic identification and fitting stability 

A critical aspect of the modeling process is the stability of identification. 

Since the equivalent circuit parameters do not appear linearly in the equations, the 

estimation problem is nonlinear and ill-posed, meaning that it can admit multiple apparently 

valid solutions. In particular, for overly complex models (with too many RC branches), a 

phenomenon of non-uniqueness can occur: different combinations of 𝑅𝑐𝑡,𝑘 e 𝐶𝑘 produce 

virtually indistinguishable impedance curves. 

This mathematical phenomenon reflects a physical limitation: not all electrochemical 

processes can be distinguished based solely on their frequency response. For this reason, the 

choice of circuit topology must be guided not only by the quality of the numerical fitting, but 

also by physical considerations regarding the plausibility of the parameters. 

During our work, in order to guarantee the robustness of the identification, we adopted 

constraint and regularization strategies, among which: 
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• positivity constraints and order of magnitude constraints on parameters (𝑅 > 0, 𝐶 > 0, 

10−6 < 𝐶 < 10−1 F); 

• physical consistency limits between branches (𝜏1 < 𝜏2 < 𝜏3); 

• analysis of the variance of the fitting with respect to different initial conditions. 

This has made it possible to obtain consistent and repeatable results, which ultimately 

reduced the solution's dependence on initial conditions and allowed greater interpretative 

reliability. 

The most significant aspect of the equivalent model is the possibility of linking parameter 

variations over time with the electrochemical degradation of the battery. Since each 

component of the circuit is directly linked to a physical phenomenon, changes in its magnitude 

provide quantitative information on the health of the cell. 

These correlations make it possible to construct a degradation map in which, based 

solely on EIS data, the degree of evolution of the internal phenomena of the battery can be 

estimated. Furthermore, by comparing the temporal evolution of these parameters, it is possible 

to establish which processes dominate cell aging (resistive, interface, or diffusive), thus 

providing a quantitative basis for the development of impedance-based SoH indicators. 

After defining the role of the equivalent circuit as a translation tool between actual 

electrochemical behavior and its electrical representation, we moved on to selecting the most 

appropriate model to describe the experimental data obtained. This choice required a critical 

evaluation of the various circuit diagrams proposed in the literature, comparing their ability to 

accurately represent the Nyquist diagram with the need to maintain physical consistency and 

numerical stability in the estimation of parameters.. 

7.13 Comparative analysis of the models considered 

During the course of the work, three models of increasing complexity were examined. 

Each of them was subjected to the same non-linear fitting algorithm, keeping the optimization 

methodology unchanged, so that the differences could be evaluated objectively. 

 

Model 1 - Simple circuit (R–C single in parallel) 

It consists of an ohmic resistor 𝑅𝑖 in series with a branch 𝑅𝑐𝑡–𝐶𝑑𝑙 in parallel. 

𝑍1(𝜔) = 𝑅𝑖 +
𝑅𝑐𝑡

1 + 𝑗𝜔𝑅𝑐𝑡𝐶𝑑𝑙
 

This model is suitable for ideal systems or newly manufactured batteries, where diffusion 

behavior is negligible and the electrochemical response manifests itself as a single perfect 

semicircle. Despite its simplicity, this configuration is not sufficient to represent real cells, 

which almost always exhibit two or more processes with different time constants. 

 

Model 2 - Parallel two-branch RC circuit 
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The second model introduces an additional RC branch to describe two distinct processes: 

one at high frequency, generally associated with the double layer, and one at intermediate or 

low frequency, linked to charge transfer. 

𝑍2(𝜔) = 𝑅𝑖 +
𝑅𝑐𝑡,1

1 + 𝑗𝜔𝑅𝑐𝑡,1𝐶1
+

𝑅𝑐𝑡,2
1 + 𝑗𝜔𝑅𝑐𝑡,2𝐶2

 

This model is able to reproduce most experimental Nyquist plots, maintaining a good 

balance between fitting accuracy and physical significance of the parameters. 

 

Model 3 - Extended circuit with CPE 

The third model represents a generalisation of the previous ones, replacing one or more 

capacitors with CPEs to describe non-ideal behaviour. 

𝑍3(𝜔) = 𝑅𝑖 +
1

1
𝑅𝑐𝑡

+ (𝑗𝜔)𝑛𝑄
 

or, in a more extended form: 

𝑍3(𝜔) = 𝑅𝑖 +
𝑅𝑐𝑡,1

1 + (𝑗𝜔𝑅𝑐𝑡,1𝑄1)
𝑛1
+

𝑅𝑐𝑡,2

1 + (𝑗𝜔𝑅𝑐𝑡,2𝑄2)
𝑛2

 

where 𝑄𝑘 represents pseudo-capacity and 𝑛𝑘 (with 0 < 𝑛𝑘 < 1) quantifies the deviation from 

ideal behavior. 

This approach allows for the modelling of porous, heterogeneous or partially degraded 

surfaces, where the double layer capacity does not follow a purely exponential trend. However, 

greater flexibility also entails a loss of one-to-one correspondence between parameters and 

simulated curve: different combinations of 𝑄, 𝑅𝑐𝑡 and 𝑛 can generate indistinguishable 

responses. 

7.14 Choice of model adopted 

The model chosen as the basis for characterisation is the double-branch RC model (second 

model), as it represents the best compromise between: 

• fidelity to experimental data; 

• numerical stability of the fitting process; 

• physical interpretability of the parameters obtained. 

However, for the most degraded cells or in the presence of non-ideal behaviour, one of 

the two capacitors has been replaced by a CPE. This replacement does not alter the overall 

topology, but allows the model to capture deviations in the capacitive response while 

maintaining physical correspondence with the phenomenon represented. In other words, the 

model adopted can be considered an extended version of the double RC, in which the CPE acts 

as a local corrective and not as a paradigm shift. 
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One of the most delicate aspects of modelling using equivalent circuits is the non-

uniqueness of the solution. In the case of complex models, multiple sets of parameters can 

produce virtually identical impedance curves, i.e.: 

𝑍(𝜔; 𝜃1) ≈ 𝑍(𝜔; 𝜃2) with 𝜃1 ≠ 𝜃2 

This means that the relationship between parameters and response is not strictly one-to-one. 

However, this does not prevent the characterisation of electrochemical degradation: useful 

information remains accessible, provided that the parameters are analysed in a physically 

consistent manner and more robust identification strategies are adopted.. 

7.15 Robust identification strategies 

To address non-uniqueness and make parameter estimation more reliable, several 

complementary strategies were applied. 

 

Physical constraints and regularisation 

During the fitting, sign and physical consistency constraints, previously introduced, are 

imposed. In addition, Tikhonov regularisation is used to penalise unrealistic variations in the 

parameters: 

min
𝜃
∥ 𝑍eq(𝜔; 𝜃) − 𝑍mis(𝜔) ∥

2+ 𝜆 ∥ 𝜃 − 𝜃0 ∥
2 

where 𝜃0 represents a set of initial values consistent with the literature and 𝜆 check the 

degree of regularisation. 

 

Global multi-condition fitting 

A further step to improve identification consists in the simultaneous fitting of multiple 

datasets obtained under different temperature or charge conditions. The sum of errors across 

all datasets is minimised by imposing physical laws of consistency between parameters, for 

example: 

𝑅𝑐𝑡(𝑇) = 𝑅0 𝑒
𝐸𝑎
𝑘𝑇 

This approach reduces the possibility that the fitting will converge towards random 

solutions and provides a more stable view of the evolution of the parameters. 

 

Global sensitivity and uncertainty analysis 

To assess the stability of the model, the variances of the estimated parameters and the 

correlations between them are calculated using Fisher's matrix: 

𝐹 = 𝐽𝑇𝑊𝐽, Cov(𝜃) = 𝐹−1 

This provides confidence intervals that allow the most reliable parameters and those 

affected by strong correlation (e.g., between 𝑅𝑐𝑡 and 𝐶𝑑𝑙). 
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Identification of degradation and correlation with physical phenomena 

Despite the possible non-uniqueness of the parameters, the relative variation of the most 

significant quantities allows the main degradation phenomena to be clearly identified. These 

quantities, although not perfectly unambiguous, behave systematically as ageing progresses and 

allow a robust diagnosis of the state of health. 

 

Derived parameters and functional identification 

In order to further reduce the ambiguity associated with non-one-to-one correspondence, 

circuit parameters are often reformulated into derived quantities that combine multiple 

variables but remain physically interpretable. In particular, it is useful to treat the time constant 

associated with each branch as an element in itself.: 

𝜏𝑘 = 𝑅𝑐𝑡,𝑘 ⋅ 𝐶𝑘 

 

 Analysis of the evolution of 𝜏𝑘 provides direct information on charge transfer kinetics 

and ion diffusion: 

• An increase of 𝜏𝑘 indicates that the process is slowing down, suggesting the 

accumulation of resistant layers or ageing of the electrode surface. 

• The appearance of new time constants (new semicircles or Nyquist distortions) may be 

associated with the activation of additional processes, such as SEI growth or the 

emergence of low-frequency diffusion phenomena. 

It is therefore possible to represent the overall response of the battery as the sum of 

elementary contributions, each described by a pair (𝛥𝑅𝑘, 𝜏𝑘): 

𝑍eq(𝜔) = 𝑅𝑖 +∑
𝛥𝑅𝑘

1 + 𝑗𝜔𝜏𝑘

𝑛

𝑘=1

 

 

This formulation not only simplifies the physical reading of the model, but also reduces 

the correlation between parameters and allows each arc of the diagram to be associated with 

a specific process with greater clarity. 

 

Distributed time constant analysis (DRT) 

To overcome the inherent limitations of finite-number RC branch models, it is possible 

to switch to a continuous description using Distribution of Relaxation Times (DRT). In this 

approach, the overall impedance is expressed as: 

𝑍(𝜔) = 𝑅𝑖 + ∫ 𝑔(𝜏) 
1

1 + 𝑗𝜔𝜏
 𝑑ln𝜏 + 𝑍𝑊(𝜔) 
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where 𝑔(𝜏) is the density of relaxation processes, which represents the distribution of 

equivalent resistances as a function of the time scale. Unlike the discrete model, here the number 

of processes present is not assumed a priori: they emerge directly from the form of 𝑔(𝜏). 

DRT identification is achieved by solving a regularised inverse problem (e.g. with second 

derivative Tikhonov regularisation): 

min
𝑔(𝜏)

∥ 𝑍eq(𝜔) − 𝑍mis(𝜔) ∥
2+ 𝜆 ∥ 𝐿𝑔(𝜏) ∥2, 𝑔(𝜏) ≥ 0 

where 𝐿 is the derivative operator and 𝜆 a regularisation parameter. 

The result is a continuous map of resistive contributions distributed in the time constant 

domain. This representation is extremely useful because: 

• highlights the emergence of new relaxation processes over time (new peaks in 𝑔(𝜏)); 

• allows the evolution of degradation phenomena to be monitored without imposing a 

predefined circuit structure; 

• provides a direct estimate of 𝛥𝑅𝑘 as the area under each peak, and of 𝜏𝑘 as the position 

of the maximum. 

In this way, even when the equivalent circuit parameters are not unique, DRT allows the 

real physical phenomena that determine the evolution of impedance to be isolated and 

quantified. 

 

Direct indicators from the Nyquist plot 

In parallel with parametric identification, it is possible to extract invariant features from 

the Nyquist plot that provide reliable information on the battery status without requiring a 

specific model. 

The main ones are: 

1. High-frequency interception 𝑍′(𝜔 → ∞): corresponds to 𝑅𝑖, and increases linearly 

with the loss of internal conductivity. 

2. Main arch diameter 𝛥𝑅 = 𝑅𝑐𝑡: reflects the difficulty of charge transfer. 

3. Peak frequency 𝑓max =
1

2𝜋𝑅𝑐𝑡𝐶𝑑𝑙
: indicates the speed of the interface-electrolyte 

reaction. 

4. Low frequency slope: The slope of approximately 45° is typical of semi-infinite 

diffusion; deviations from this value indicate limited diffusion phenomena or structural 

changes in the active material. 

5. Phase index 𝑛 (in the CPE): reductions of 𝑛 over time, they indicate greater surface 

unevenness and loss of electrochemical uniformity. 

These ‘visual’ parameters are robust and independent of the problem of non-bijectivity, 

making them extremely effective for constructing empirical indicators of degradation. 
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Integration with other physical measures 

To further improve the robustness of the model and the readability of the results, the 

estimation of the EIS parameters is integrated with other known or measurable quantities: 

• temperature (to verify the Arrhenius dependence of 𝑅𝑐𝑡); 

• state of charge (which strongly influences 𝐶𝑑𝑙); 

• capacity test and OCV, useful for constraining the variation of 𝐶𝑑𝑙 e 𝑅𝑖 to known 

phenomena; 

• any cycling data, to observe the progressive variation of parameters over time. 

By combining this information, the space of admissible solutions can be drastically reduced, 

resulting in a more stable and physically consistent identification. 

7.16 Summary and implications 

In conclusion, even when the equivalent circuit parameters are not unique, EIS modelling 

remains an extremely powerful tool for characterising battery degradation. The key lies in 

shifting from an “absolute” reading of the parameters to a “functional” reading, focusing 

on relative evolution, the relationships between time constants and the overall shape of the 

impedance trace. 

The integration of techniques such as DRT, constrained regularisation, multi-condition 

fitting and Bayesian analysis has made it possible to: 

1. obtain more stable and physically consistent parameters; 

2. distinguish between different degradation mechanisms (ohmic, interface, diffusive); 

3. develop robust quantitative indicators for SoH estimation.. 

This chapter therefore constitutes the direct link between the experimental and 

interpretative parts of the work, while also providing the theoretical and methodological basis 

for the subsequent analysis of the numerical results of the fitting and their correlation with the 

health status of the cells. 
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8. Analysis of fitting results and correlation with health status 

After defining the circuit structure and discussing identification methodologies, the next 

phase of the work involved applying the selected model to the experimental data acquired via 

EIS. 

The objective was twofold: to obtain the numerical values of the characteristic electrical 

parameters of each battery or measurement condition and to interpret their variation over time 

or between different samples as a manifestation of internal degradation processes. 

8.1 Fitting procedure 

The fitting was performed by applying the non-linear optimisation algorithm to the 

experimental data (𝑍′mis, 𝑍″mis, 𝜔), minimising the complex distance between model and 

measurement: 

min
𝜃
∑|𝑍eq(𝜔𝑘; 𝜃) − 𝑍mis(𝜔𝑘)|

2
𝑁

𝑘=1

 

where 𝜃 = [𝑅𝑖, 𝑅𝑐𝑡,1, 𝐶1, 𝑅𝑐𝑡,2, 𝐶2, … ] is the vector of model parameters. 

 

The initialisation of the parameters was performed based on visual estimates derived from 

the Nyquist diagram (e.g., the initial intercept on the real axis as 𝑅𝑖 and the diameter of the 

semicircles as 𝛥𝑅). 

To avoid convergence towards local minima or physically insignificant solutions, the 

optimisation was repeated several times with different initial conditions. 

In some cases, a hybrid strategy was adopted, using an initial approximate linear fitting to 

estimate the values of 𝜏𝑘 and subsequently a non-linear refinement with constraints. 

The accuracy of the fitting was assessed using the normalised mean error: 

𝜀rel =
1

𝑁
∑

|𝑍eq(𝜔𝑘) − 𝑍mis(𝜔𝑘)|

|𝑍mis(𝜔𝑘)|

𝑁

𝑘=1

 

which, in the best cases, remained below 1%, indicating excellent adherence of the model 

to the experimental data. 



Analysis of fitting results and correlation with health status   

 

 57 

8.2  Physical consistency and interpretation of results  

 

Figure 11: degraded battery Nyquist plot 

Analysis of the parameters obtained confirmed that the estimated values fall within ranges 

consistent with the literature for lithium-ion cells of the same format. 

For example, ohmic resistance 𝑅𝑖 was in the order of milliohms, while 𝑅𝑐𝑡 showed values 

ranging from a few tens to a few hundred milliohms depending on the state of charge and 

temperature. The equivalent capacities 𝐶𝑑𝑙 are included in the range 10−4–10−2 F, consistent 

with the behavior of the double layer at the electrolyte-electrode interface. 

The relative variations in the parameters between successive measurements or between 

different samples proved to be more interesting.. 

• The gradual increase in 𝑅𝑖 with the number of cycles, it indicates a deterioration in the 

conductivity of the internal materials, in particular the electrolyte. 

• The increase of  𝑅𝑐𝑡,2 suggests greater difficulty in charge transfer due to thickening of 

the SEI layer. 

• The decrease of 𝐶𝑑𝑙 corresponds to a reduction in the active surface area, probably 

linked to a loss of porosity or the growth of resistive films. 

• In cases where CPE has introduced, a systematic decrease in the exponent n was 

observed with ageing, highlighting the increase in surface heterogeneity. 

These trends, consistent with the physics of degradation, demonstrate the model's ability 

to detect and quantify microscopic phenomena from macroscopic observables. 

 

8.3 Graphical representation and comparison of conditions 
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Figure 12: Different SoH of the same cell 

The results obtained were represented in the Nyquist plot and in the frequency domain to 

visually verify the validity of the model. In the most typical cases, the fitting of the double RC 

model (possibly corrected by a CPE) reproduced with high fidelity both the shape of the 

semicircles and the low-frequency slope. 

Particularly significant was the appearance of a second semicircle in the most degraded 

cells: this phenomenon, which was not present in the initial measurements, was interpreted as 

the emergence of a new resistive process associated with the SEI passivation film. 

In the frequency domain, this evolution translates into a lowering of the peak frequency. 

𝜔max and an increase in the low-frequency impedance module. 

8.4 Evolution of parameters and correlation with SoH 

To correlate the variation in electrical parameters with the battery's state of health, a 

parametric analysis was performed based on the number of cycles and the residual capacity 

measured experimentally. 

An almost linear correlation emerged between the relative increase in charge transfer 

resistance and the loss of useful capacity: 

𝑅𝑐𝑡
𝑅𝑐𝑡,0

∝
𝑄nom − 𝑄meas

𝑄nom

= 1 −
SoH

100
 

In other words, as 𝑅𝑐𝑡  increase  progressive deterioration in capacity is observed, with 

different slopes depending on the operating temperature. Similarly, the parameter 𝜏 = 𝑅𝑐𝑡𝐶𝑑𝑙 
tends to grow almost exponentially with the reduction of SoH, reflecting an overall slowdown 

in reaction kinetics. 

These relationships have made it possible to derive empirical models for the indirect 

estimation of SoH from EIS measurements alone, according to the approach: 

SoHEIS = 𝑓(𝑅𝑐𝑡, 𝑅𝑖, 𝐶𝑑𝑙 , 𝑛) 

Where the function 𝑓 can be calibrated on a reference sample or by means of multivariate 

regression. 
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The overall analysis of the results has made it possible to formulate a coherent view of 

the dynamic behaviour of the battery during ageing: 

• High frequency (10–100 kHz) → dominated by 𝑅𝑖, shows slight and progressive 

increases due to changes in electrolyte or collectors. 

• Intermediate frequencies (1–100 Hz) → governed by 𝑅𝑐𝑡 e 𝐶𝑑𝑙, where the most 

evident effect of electrochemical degradation and SEI growth can be observed. 

• Low frequency (<1 Hz) → diffusive regime, where the Warburg component or CPE 

appears with 𝑛 ≈ 0.5, indicative of ionic transport limitations. 

The overall impedance behaviour, observed both in terms of displacement of the 

semicircles and variation in the slope of the diffusive branch, therefore describes an evolution 

consistent with the ageing mechanisms known for lithium-ion batteries. 

8.5 Conclusions 

The use of the equivalent double RC circuit (extended with CPE in non-ideal cases) has 

proven effective in characterizing and interpreting the dynamic behavior of the cells. Although 

the relationship between parameters and response is not perfectly one-to-one, the strategies 

adopted, such as regularization, sensitivity analysis, multi-condition fitting have made it 

possible to obtain stable and physically consistent parameters. 

Thanks to these measures, the model not only accurately reproduces the EIS data, but also 

allows the variation in parameters to be correlated with the progressive degradation of the 

battery, providing a quantitative basis for predictive estimation of the state of health. 

This approach represents a key step between experimental measurement and engineering 

interpretation of cell behavior, providing the theoretical platform for subsequent applications 

of the model in diagnostics and prediction, such as integration into monitoring algorithms for 

Battery Management Systems. 
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9. Integration of the model into the diagnostic and predictive context 

 

 

The next step involved integrating the equivalent circuit model into a broader context, 

focused not only on the static characterization of the battery, but also on diagnostics and 

predicting the evolution of its state of health. Once the model has been validated and the 

consistency of the estimated parameters verified, it becomes a predictive tool capable of 

simulating the battery's response under different operating or ageing conditions.. 

9.1. From the frequency domain to the time domain 

The complex impedance model 𝑍eq(𝜔) can be easily translated into the time domain using 

the Laplace transform, obtaining the transfer function: 

𝑍(𝑠) = 𝑅𝑖 +∑
𝑅𝑐𝑡,𝑘

1 + 𝑠𝑅𝑐𝑡,𝑘𝐶𝑘

𝑛

𝑘=1

 

which describes the dynamics of voltage in response to a variable current signal. In the 

time domain, the system's response to a current pulse is given by: 

𝑣(𝑡) = 𝑖(𝑡) ∗ ℒ−1{𝑍(𝑠)} = 𝑖(𝑡) ∗ (𝑅𝑖𝛿(𝑡) +∑
1

𝐶𝑘
𝑘

𝑒
−

𝑡
𝑅𝑐𝑡,𝑘𝐶𝑘) 

where ∗ indicates the convolution. 

This allows the model to be integrated into dynamic simulators, such as 

MATLAB/Simulink, to predict voltage behavior during charge and discharge cycles, based 

solely on the parameters obtained from EIS fitting. 

The validity of this representation was verified by comparing the simulated voltage with 

experimental measurements during short current pulses: the two responses overlapped with 

average deviations of less than 3%, confirming the model's ability to accurately reproduce 

transient behavior as well. 

9.2. Modelling of the parametric evolution 

Once the trend of the main parameters over time (or number of cycles) has been 

determined, empirical laws of evolution can be defined to describe the progressive degradation 

of the system. 

For example, the increase in charge transfer resistance can be modelled as an exponential 

function.: 

𝑅𝑐𝑡(𝑁) = 𝑅𝑐𝑡,0 𝑒
𝛼𝑁 

whre 𝑁 represents the number of cycles and 𝛼 a degradation coefficient. 

Similarly, the reduction in double-layer capacity can be described by an inverse decay 

law: 
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𝐶𝑑𝑙(𝑁) =
𝐶𝑑𝑙,0
1 + 𝛽𝑁

 

with 𝛽 proportional to the rate of loss of the active area. 

The combination of these functions allows for the generation of a predictive simulation 

of the battery's future impedance, estimating in advance the evolution of its state of health. 

This approach is particularly useful for the design of predictive maintenance systems, where 

it is possible to plan the replacement or rebalancing of cells before degradation compromises 

the overall performance of the battery pack. 

9.3. Identification and tracking of the ageing phenomena 

Through the temporal variation of Nyquist parameters and features, it was possible to 

distinguish three macro-families of degradation phenomena: 

1. Chemical degradation 

• Constant increment of 𝑅𝑖. 

• Caused by loss of conductivity in the collectors or increased resistivity of the 

electrolyte. 

2. Interface-electrolyte degradation 

• Increase of 𝑅𝑐𝑡 and reduction of 𝐶𝑑𝑙. 

• Associated with thickening of the SEI, loss of active area, or accumulation of 

resistive films. 

3. Diffusive degradation 

• Appearance or intensification of the low-frequency inclined branch. 

• Often described by a CPE with 𝑛 ≈ 0.5 or by a finite Warburg coefficient, 

indicative of ion transport limitations in the active material. 

Each phenomenon leaves a distinctive trace in the EIS curve and can be monitored 

through changes in the associated parameters. 

All this information allows not only to estimate the state of health, but also to diagnose 

the nature of the degradation (ohmic, interface, diffusive), providing a complete 

interpretative picture.. 

Once identified and parameterised, the equivalent model can be integrated into a BMS to 

provide online health estimates and predictive diagnostics. Under operating conditions, the 

BMS can acquire partial impedance measurements (e.g. on a reduced frequency window or 

using pulse spectroscopy techniques) and compare them with the response simulated by the 

model.. 

The residual error between measured and simulated impedance: 

𝜀(𝜔) = |𝑍mis(𝜔) − 𝑍mod(𝜔)| 
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becomes an indicator of divergence from nominal behaviour, useful for estimating SoH in 

real time or detecting the onset of localised anomalies. 

The implementation of this approach in the BMS therefore allows: 

• monitoring of the battery without interrupting its operation; 

• estimation of internal degradation without complete capacity tests; 

• dynamic updating of model parameters through adaptive identification (e.g. Extended 

Kalman Filter).. 

9.4. Towards an adaptive and predictive model 

The natural evolution of the work would be to extend the static model to an adaptive 

model, in which the equivalent circuit parameters are continuously updated based on real-time 

measurements. 

In this context, the use of an extended Kalman filter (EKF) or an unscented Kalman 

filter (UKF) allows the model parameters to be estimated recursively, assuming that their 

dynamics are described by a system of equations in state space.: 

{
𝜃̇(𝑡) = 𝐹(𝜃, 𝑢, 𝑡) + 𝑤(𝑡)

𝑧(𝑡) = 𝐻(𝜃, 𝑢, 𝑡) + 𝑣(𝑡)
 

where 𝑤(𝑡) and 𝑣(𝑡) represent process and measurement noise, modelled as Gaussian 

with zero mean. 

In this way, the system is able to continuously estimate and correct the values of 𝑅𝑖, 𝑅𝑐𝑡, 
𝐶𝑑𝑙 and 𝑛, tracking battery performance in real time and providing autonomous predictive 

diagnostics. 

9.5. Conclusions 

The modelling and identification process carried out made it possible to transform the 

EIS data into a quantitative and predictive model of the battery's health status. Thanks to the 

selection of an equivalent circuit that is balanced in terms of complexity and interpretability, 

and the application of advanced identification techniques, the model is: 

• stable and consistent from a physical point of view; 

• capable of accurately representing the experimental response; 

• usable for dynamic simulations and SoH predictions; 

• integrable into intelligent management systems for monitoring and predictive 

maintenance. 

The work carried out has therefore traced the path from experimental measurement to 

electrical modelling, up to integration in a digital diagnostic framework, laying the foundations 

for further developments towards the optimization of adaptive models and the extension of the 

EIS approach to complex battery systems, such as multi-cell modules or high-power packs. In 

order to create a product capable of making these results commercially useful, a packaging 
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study would be required for the creation of a portable impedance meter capable of performing 

measurements over a frequency spectrum relevant to the type of battery under consideration, 

while complying with all the requirements set out in this thesis. However, for this device to 

yield useful results, it would obviously be necessary to launch a huge measurement campaign 

on different models of automotive batteries, capable of creating a shared database from which 

reference data could be extracted and enriched with each new diagnosis. 
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