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Abstract

The growing proliferation of electric and hybrid vehicles in recent years has led to a rapid and
significant acceleration in the evolution of energy storage technologies. This, in turn, has
generated an increasingly pressing need to monitor the health status of battery cells with
precision, consistency, and standardization, especially now that the second-hand market for
such vehicles is steadily expanding, along with the amount and variety of data that can be
acquired from batteries used in diverse operating conditions.

This thesis stems from the need to develop a standardized and easily reproducible diagnostic
system for assessing battery health in the automotive sector. The focus of the study is on the
Electrochemical Impedance Spectroscopy (EIS) procedure. The initial goal was to infer the
State of Health (SoH) of the batteries through impedance measurements at specific frequencies.
However, as the study progressed, it became increasingly evident that this methodology holds
a broader potential, capable of providing a more comprehensive representation of the battery
health state.

The analysis begins with a critical review of the existing non-destructive diagnostic techniques
for batteries, explaining the methodological choices adopted. Once the diagnostic approach was
selected and the theoretical analysis completed, the experimental procedure is presented in
detail, it consisted in controlled laboratory measurements conducted on cylindrical batteries
18650 typically used in domestic applications, allowing the collection of data that were both
repeatable and interpretable. The development of an equivalent circuit model, together with a
dedicated code capable of representing the data in a useful and meaningful way, enabled
comparison with real-world data and the extraction of valuable insights from them.

Finally, the thesis discusses the prospects for industrialization, highlighting the remaining
challenges in terms of miniaturization, signal robustness in noisy environments, and the
inherent difficulty of conducting a large-scale data collection campaign.
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Introduction

1. Introduction

The objective of this thesis arises from the need to evaluate the State of Health (SoH) of
lithium batteries, typical of modern electric cars. Therefore, it will be analyzed where this
necessity comes from and why it is likely to become increasingly urgent in the next years to
come.

It Is beyond doubt that the world of automotive finds itself in a pivotal moment. The
European Union’s restrictions on internal combustion vehicles and public awareness on
environmental issues, alongside the maturity of propulsion technologies, have led to a sudden
increase in the demand for electric vehicles.
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Figure 1: Electric and hybrid vehicle sales comparison to the entire car fleet.

In this thesis, plug-in hybrid vehicles will be included as well alongside electric cars. This
choice stems from the fact that this study is to evaluate the impact of lithium batteries as a
component of the car of tomorrow, which plays a key role in both architectures.
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Figure 2: Number of vehicles sales in absolute terms per year.

Assessing the number of vehicle sales in absolute terms allows us to realize how complex
the situation is and leaves us room for different interpretations. First of all, it is evident that in
recent years there has been a drastic drop in sales of electric and hybrid vehicles. However, this
drop is smaller in percentage terms than the general slowdown in sales of private vehicles. This
resulted in a percentage increase as shown in Figure 1.1. Hybrid vehicles show an even more
pronounced upward trend since the collapse in sales in 2020. In short, in light of this data, it
appears to be difficult to make reliable predictions about the future of the market. On the other
hand, it is possible to say with sufficient certainty that electric vehicles have already established
themselves on the global transport scene and it would not be surprising to see their numbers
increase in line with further technological advances.

Another factor that highlights the growing importance of batteries in this sector is their
cost and the projected future value of this cost in relation to the total cost of the vehicle.
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Figure 3: compact vehicle ICEV and an equivalent BEV cost subdivision

As we can see in the graph in Figure 1.3, it is possible to observe how the price of the
battery in 2020 used to represent one third of the entire cost of the vehicle, while lower values
are projected as the technology matures. However, it still remains the most expensive
component of the vehicle.

It is therefore obvious how the assessment of the State of Health of the battery of an
electric vehicle represents an increasingly important process, n ot only from a collective point
of view due to the increase of the number of electric vehicles but also from the individual user
standpoint individual user, since the assessment of this component represents an estimate of the
condition of the most expensive component of the car.

1.1. Approach

In battery management systems, it is possible to identify two key parameters that play a
crucial role in assessing battery performance and reliability: State of Health (SoH) and State
of Charge (SoC). These two metrics provide valuable insights into the battery’s condition and
its ability to store and deliver energy efficiently over time.
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2. SoH and SoC

The State of Health is one of the indicators used to assess a battery’s overall condition
relative to its new and unused initial state. This metric reflects the degree of aging and
degradation the battery has undergone and is typically expressed as a percentage. Here, 100%
represents a new battery, and lower values indicate a progressive wear.

With time, batteries experience capacity to fade, meaning they gradually lose the ability to
store the same amount of charge as when they were first manufactured. Moreover, their internal
resistance increases, which leads to higher energy losses and reduced efficiency. These factors,
along with changes in voltage response and self-discharge rates, contribute to the overall decline
in the SoH of the battery.

Various methodologies have been developed in the past years in order to estimate SoH.
These methodologies include open circuit voltage (OCV) analysis, electrochemical
impedance spectroscopy (EIS) and incremental capacity (IC) analysis. Machine learning
models are increasingly being used to analyze large datasets and can predict battery health with
very high accuracy. Even though these approaches can differ in complexity and precision, their
common goal is to provide a reliable assessment that is able to provide a clear picture of a
battery’s remaining useful life. This assessment serves to determine whether the battery should
be reused, repurposed, or recycled.

2.1. State of Charge (SoC)

While SoH provides a long-term perspective on battery degradation, the State of Charge
(SoC) represents a battery’s real-time charge level. SoC indicates how much energy is available
at any given moment, making it a critical parameter for energy management in applications
such as electric vehicles (EVs) and renewable energy storage.

Unlike SoH, which can change gradually over months or years, SoC fluctuates depending
on charging and discharging events in a dynamic way. There are many different methods that
can estimate SoC. They include open circuit voltage measurement, Coulomb counting, and
Kalman filtering techniques.

2.2 The Relationship Between SoH and SoC

Although SoH and SoC serve different purposes, they are closely interconnected. A
battery with a lower SoH will exhibit a reduced capacity, meaning that even if its SoC is 100%,
the actual energy that is able to deliver will be lower than that of a new battery. This relationship
is important in energy-intensive applications, as accurate SoC estimation must account for
degradation over time.

What is essential for optimizing battery performance, extending lifespan, and ensuring
safe operation is having a clear understanding of both SoH and SoC. As battery technology

10
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advances, more sophisticated estimation methods continue to emerge. These methods are
crucial to helping improve the reliability and efficiency of modern energy storage systems.

100% SOH

80% SOH 100% SOC

for 80% SOH

Can be
charged/discharged

45% SOC
for 80% SOH

Figure 4: Visual representation of SoC and SoH

2.2. SoH estimation methods

We are going now to describe the main methods that have been taken into consideration
for our analysis, based on the available literature.

2.3. Coulomb counting

In order to assess a battery State of Health, a technique that is widely used is Coloumb
counting. This process follows two main steps. The first one, the total discharged capacity,
Q discharge, is determined by integrating the discharge current over time until the State of
Charge (SoC) reaches 0%. Then the SoH is estimated by comparing this discharged capacity
with the battery’s rated capacity, using the following relationship:

Qdischarge = IOTI (t)dt SOH(%) = % x 100

To apply this method, key battery parameters must be continuously monitored. Such
parameters include charge/discharge current, voltage, and temperature. An adaptive approach
can also be implemented by recalculating SoH during each discharge cycle. Studies have
demonstrated that Q discharge decreases as the number of charge/discharge cycles increases,
leading to a gradual decline in SoH. In general, we can see that when SoH drops below 80%,
the battery is considered to have reached the end of its useful life. The accuracy of this method
depends heavily on precise current measurements, which makes periodic calibration of sensors
essential.

Another crucial factor that influences Coulomb counting’s reliability is the accuracy of
the initial SoC estimation. The Depth of Discharge (DoD) metric is introduced in order to
better characterize this discharge process. DoD follows a very similar principle to SoC:

_ Qreleased

DoD x 100

rated

where Q_released represents the total capacity discharged from the battery. At any given
moment, DoD can be expressed as:
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DoD(t) = DoD(t,) +n-ADoD

tot+T
ADoD = f I, (£)dt + Qpapeq X 100

to

where 1 b is the battery’s charge/discharge current and m represents the system’s
efficiency. Then, SoH is determined by tracking the DoD when the battery reaches its fully
discharged state. The charge/discharge efficiency is factored into each cycle to maintain
accuracy, and recalibration occurs at both the fully charged and fully discharged states.

This is usually the preferred method because of its low implementation cost, minimal
computational requirements, and easily integration into Battery Management Systems (BMS).
However, its accuracy improves over multiple charge/discharge cycles, with errors as low as
1% after 28 cycles.

2.4. Open circuit voltage (OCV)

The State of Health of batteries is done by establishing a functional relationship between
the SoH and the OCV of the monitored battery. This technique can be implemented in offline
and online configurations. They both present distinct advantages and limitations.

The fundamental principle of the OCV method relies on a simplified electrical model of
the battery, where the OCV is expressed as:

UOCV = U+1R

where Uocv represents the battery’s open-circuit voltage, I is the current, R denotes the
internal resistance and is the terminal voltage of the battery. Thanks to this equation, it becomes
possible to correlate the OCV with the SoH under controlled conditions.

The oftline approach requires extensive laboratory testing to establish OCV curves that
correspond directly to various states of health. These tests involve measuring the OCV at
different states of charge while also considering external influences such as temperature
variations. Research has demonstrated that temperature significantly affects the accuracy of
OCV-SoC curves. Therefore, proper compensation techniques must be employed when high-
precision SoH estimation is required. Despite its reliability, the offline approach necessitates an
extensive amount of data collection and experimental validation, eventually making this
approach costly and time-consuming.

On the other hand, the online implementation of the OCV method involves incorporating
OCV as a parameter within an electrical model and estimating its value through system
identification techniques. Factors such as initial SoC assumptions and temperature fluctuations
can influence the accuracy of this method. A key challenge in this type of approach is making
sure that the assumed initial SoC aligns well with the actual SoC in order to minimize
estimation errors. Studies have reported that lower battery temperatures tend to introduce root-
mean-square errors (RMSE) in the range of 5% to 25%, affecting the overall accuracy of SoH
predictions.
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Furthermore, several studies have explored different methodologies that are able to
enhance the accuracy and practicality of OCV-based SoH estimation. One approach involves
integrating OCV with other modeling techniques, which helps refine estimations. For example,
research has demonstrated that using OCV alongside an electrical battery model improves
accuracy while reducing dependency on empirical OCV-SoC curves. Some studies have
investigated the combination of OCV with Coulomb counting, which allowed to reach a more
robust SoH estimation framework that compensates for the limitations of individual methods.

Despite its clear effectiveness, certain challenges limit the practical application of OCV
for real-time SoH estimation. One major drawback is that OCV is difficult to measure in an
accurate way in operational conditions, as it requires the battery to be in a relaxed state without
any charge or discharge activity. Some researchers have proposed utilizing alternative model-
based approaches that approximate SoH more efficiently while reducing computational and
hardware requirements, which ultimately leads to eliminating direct reliance on OCV.

Recent advancements have also investigated the fusion of OCV estimation with data-
driven techniques, which include machine learning algorithms to improve predictive accuracy.
Hybrid models that integrate OCV with incremental capacity (IC) analysis or other statistical
methods have demonstrated promising results such as achieving estimation errors as low as 1%
in certain cases.

Overall, the OCV-based method remains a fundamental approach to SoH estimation. This
1s thanks to its simplicity and effectiveness in controlled environments. However, its limitations
in practical applications call for the integration of complementary methods which will finally
enhance accuracy, reliability, and real-time applicability.

2.5. Kalmann Filter

The Kalman Filter is a commonly used method for estimating the states of a dynamic
system. It operates in two main phases: the prediction phase and the update phase. During the
prediction phase, the system’s state is estimated based on prior knowledge and process
dynamics. In the update phase, the filter incorporates new measurements, which are typically
affected by Gaussian noise, to refine the state estimation. The standard Kalman filter equations
define this recursive process, involving parameters such as the state transition matrix, control
matrix, and measurement noise covariance.

Even though it was initially developed for linear systems, the Kalman filter has been
adapted to nonlinear applications, such as battery State of Health estimation. In these cases,
modified versions of the Kalman filter are often employed, including the Extended Kalman
Filter (EKF) and the Unscented Kalman Filter (UKF). The EKF extends the standard Kalman
filter to nonlinear systems by linearizing the transition and measurement equations. It is useful
in the SoH estimation when it is paired with a battery electrical model, as the Randles circuit
model. A dual EKF approach has been proposed in which two separate Kalman filters run in
parallel: one for estimating the State of Charge and another for tracking the battery’s capacity.
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The UKF, also known as the Sigma Point Kalman Filter (SPKF), addresses some of the
limitations of the EKF. The UKF represents the state distribution using a set of sigma points
that better capture the nonlinear transformations instead of relying on linearization. Studies
have shown that the UKF enhances the SoH estimation accuracy by handling process
nonlinearities in an effective way. In comparative evaluations, the UKF demonstrates lower
estimation errors than traditional Coulomb counting methods, with error margins below 3%.

The Kalman filter has been applied in conjunction with various battery models. For
instance, some researchers have used a second-order Randles model to define the state
equations for the EKF, estimating the SoH based on SoC or internal battery impedance. Other
studies have proposed that using the UKF alongside machine learning techniques, such as
Support Vector Regression (SVR), would be able to determine initial capacity values and
enhance the SoH prediction accuracy. Furthermore, adaptive Kalman filtering techniques have
been explored as well. They include methods aimed at updating lookup tables based on real-
time battery conditions, which eventually improves the robustness of aging estimation models.

Despite its many advantages, the Kalman filter has been observed to have its limitations.
For instance, the EKF is prone to divergence if the initial state is not defined properly, which
leads to inaccuracies in the SoH estimation. Moreover, the approximation of posterior mean
and covariance in nonlinear systems can introduce significant errors. The UKF can mitigate
some of these challenges, but it requires more computational resources due to the increased
number of sigma points.

Recent advancements have also included hybrid approaches, such as combining EKF with
Quadratic Discriminant Analysis (QDA) for battery classification, or fusing Kalman filtering,
with pattern recognition techniques. All these methods aim to refine the SoH estimation by
leveraging model-based and data-driven approaches. Another new technique involves using the
Kalman filter for continuous updates of battery resistance parameters, which requires
dynamically adjusting the estimation model to real-time operating conditions.

Overall, the Kalman filter and its variants remain very powerful tools for the SoH
estimation, offering a balance between accuracy and computational efficiency. However,
ongoing research continues to refine these methods by working on integrating them with
advanced modeling techniques and machine learning algorithms that would enhance their
performance when used in practical applications.

2.6. Electrochemical Impedance Spectroscopy (EIS)

This methodology is based on the application of a current signal or low-amplitude
alternating voltage, varying the frequency over a wide interval (typically from mHz to kHz)
and on measuring the system response in terms of amplitude and phase shift.

The EIS data analysis is usually represented by Nyquist diagrams or Bode diagrams, in
which the real and imaginary parts of the impedance provide us with information on the various
physical and chemical phenomena that occur in the battery.
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e High-frequency region: is dominated by total ohmic resistance, which includes
electrolyte resistance, contacts, and connections.

e Mid-frequency region: is associated with charge transfer resistance and the formation
or growth of the Solid Interfacial Layer (SEI).

e Low frequency region: is influenced by diffusion processes (Warburg impedance) and
slow electrochemical kinetics.

In the context of the assessment of the State of Health, the EIS represents a very informative
approach. This is due to the battery’s ageing modifies in a meaningful way electric parameters,
related to internal resistance and reaction kinetics. The SoH is defined as the ratio between the
maximum residual capacity of the battery and the nominal design capacity. The degradation
can be monitored through measurable changes in the impedance spectrum.

Compared to other SoH estimation methods (such as electrochemical model-based
approaches, data-driven methods, or full charge/discharge testing), EIS has the following
advantages:

e Non-invasive: it does not require complete charge/discharge cycles which reduces time
and stress on the cell.

e High sensitivity: it can detect subtle variations related to the formation of resistive
layers, loss of active material, or electrolyte degradation.

¢ Direct correlation with physical phenomena: it allows variations in impedance that
are linked to specific degradation mechanisms.

2.7. Conclusions

In light of the data collected, it is possible to observe how every method of SoH assessment
is the result of the compromise between accuracy of results and difficulty of collection of the
necessary data. Analyzing the different methods for estimating the health status of lithium-ion
batteries, it has been opted for the use of the electrochemical impedance spectroscopy since it
allows for an easier evaluation of possible errors, unlike other methods that are more sensitive
to perturbations. Considering the context of automotive in our use, the various limitations on
the counter require a fast and robust method, characteristics that are typical of EIS.

Another interesting characteristic of this method is its adaptability. We can choose the
number of the frequencies over which taking measurements and increasing the measurement
spectrum; we can acquire further information on certain aspects of the battery's chemical state,
allowing an eventual improvement of the analysis service based on available resources.
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3. Theoretical Background for Electrochemical Impedance Spectroscopy

Before diving into the experimental methods and the detailed discussion of equivalent
circuit models, it is essential to establish the fundamental concepts that underly the
measurement and interpretation of Electrochemical Impedance Spectroscopy. This third
chapter aims to provide the theoretical background necessary to understand the relationship
between alternating current (AC) perturbations, complex-number representations, and the
impedance response of electrochemical systems. These explanations are tailored to the
application of EIS to lithium-ion batteries, even though the principles can be applied to any
electrochemical system.

3.1. Alternating Current and Sinusoidal Perturbations

EIS relies on perturbing the system with a small AC signal and observing its response.
Unlike direct current (DC) measurements, where the applied signal is constant over time, AC
measurements involve time-varying voltages or currents, typically sinusoidal in form:

v(t) =V, - sin(wt)
or
i(t) = I, - sin(wt + ¢p)
where:
e 1, and I, are the signal amplitudes,
e w = 2mrf is the angular frequency in rad/s,
e ¢ is the phase shift between voltage and current.

In an ideal resistor, voltage and current are in phase (¢ = 0°), while in capacitive or
inductive elements they are out of phase. This phase relationship provides valuable information
about the system’s internal processes.

In EIS, the perturbation amplitude is chosen to be small (typically 5-10 mV) so that the
system remains within the linear response regime. This ensures that the impedance measured
is independent of the amplitude and that the resulting data can be interpreted with linear-system
theory.

3.2. Complex Numbers in AC Analysis

The use of sinusoidal signals introduces the need for a mathematical representation that
can simultaneously capture magnitude and phase. This is where complex numbers become
indispensable. Using Euler’s formula:

e/® = cosf + jsind

we can express a sinusoidal signal as a complex exponential:
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v(t) = R{V,el @} i(t) = R{l e/ @t}

Here, j is the imaginary unit (j2 = —1), and the quantities V; and I, can be expressed as
phasors, which are complex numbers encoding at the same time amplitude and phase. This
formalism allows algebraic manipulation of AC signals without the need to separately track
sine and cosine components.

The impedance Z of a system is the ratio of the voltage phasor to the current phasor:
V(w)
Z(w) = m
Impedance is generally a complex quantity:
Z(w) = Z'(w) +jZ"(w)
where:
e 7'(w) is the real part (resistive component),

e 7"(w) is the imaginary part (reactive component, associated with energy storage).

The real and imaginary components vary with frequency, therefore revealing information
about different physical processes in the system.

3.3. Impedance of Ideal Elements

Understanding the impedance of ideal components is essential before addressing
electrochemical systems, which are always more complex.

¢ Resistor (R):

Zp =R

Purely real, independent of frequency.
e Capacitor (C):

1

Zc = TaC
Purely imaginary and negative, indicating current leads voltage by 90°.
e Inductor (L):
Z; =jwL
Purely imaginary and positive, indicating voltage leads current by 90°.

In electrochemistry capacitive behavior is often associated with double-layer capacitance
at the electrode/electrolyte interface, while inductive features may appear due to measurement
artefacts or adsorption processes.

17



Theoretical Background for Electrochemical Impedance Spectroscopy

3.4. Impedance of Electrochemical Systems

Electrochemical systems are rarely composed of pure R, C, or L elements. However, they
exhibit combinations of resistive and capacitive behaviour (and occasionally inductive) due to:

e lonic conduction in the electrolyte (resistive).
e Charge separation at the electrode/electrolyte interface (capacitive).
e Faradaic charge-transfer reactions (resistive + capacitive in parallel).

e Diffusion of ions through solid or liquid phases (frequency-dependent resistive
behaviour, modelled by Warburg elements).

These phenomena have characteristic time constants and thus dominate the impedance
spectrum in different frequency ranges. EIS allows us to isolate these contributions by
sweeping the frequency across several orders of magnitude.

3.5. Nyquist and Bode Representations
EIS data are usually displayed in two main forms:
1. Nyquist Plot:
e Real part Z' on the x-axis, negative imaginary part —Z" on the y-axis.
e Frequency is implicit (not shown directly on the axes).
o Each feature (semicircles, straight lines) corresponds to a specific process.
2. Bode Plot:
e Magnitude |Z| and phase ¢ versus frequency on logarithmic axes.

e Makes it easier to directly identify frequency ranges where different processes
dominate.

Both forms are complementary: Nyquist plots give a geometric view of the impedance
spectrum and Bode plots provide a direct frequency-process relationship.

3.6. Battery State during Measurement

Once the specific battery samples to be used in our study were selected, the next crucial
step was to determine the State of Charge levels at which electrochemical impedance
measurements would be performed. This choice was not arbitrary. The SoC can influence the
impedance response of a battery across different frequencies, which lead to altering the
magnitude and the shape of the spectrum. It is essential to understand this influence in order to
evaluate whether it is possible to identify a correction factor that accounts for SoC variation.
By doing so, it allows impedance-based State of Health estimations to be made at arbitrary
charge levels.
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In principle, such a correction could be developed if the relationship between SoC and
impedance were sufficiently consistent, repeatable, and independent of other variables.
However, in practice, this is almost never the case. The electrochemical processes within a
lithium-ion battery can vary in complex ways as a function of SoC. When high SoC levels, for
example, the electrode materials are closer to full lithiation, which typically reduces the charge-
transfer resistance. When at lower SoC levels diffusion limitations and changes in the double-
layer capacitance can dominate the impedance response. Some factors such as temperature and
recent current history can even complicate this relationship. For these reasons, it is only possible
to identify a universally applicable correction function for SoC influence under very specific
and controlled conditions. Such conditions are not however representative of most real-world
applications.

Therefore, the more realistic and practical approach for our study is to identify a specific
SoC window in which impedance measurements give the most reliable, repeatable, and
interpretable results for the specific battery model under consideration. The rest of the study
can then be based exclusively on this SoC window. This design choice has an important
implication for the final product that we aim to develop: the measurement system will be
designed and calibrated for a specific battery type. It will also only function within the SoC
range for which the system has been optimized, and its expected impedance response is well-
characterized. Since the underlying electrochemical conditions would deviate from those
assumed during calibration, an attempt to use the system outside this SoC range would
compromise measurement accuracy.

The next step in our study was then to determine which SoC values should be included in
our experimental plan. This involved a trade-off between the amount of data to be collected
(and therefore the accuracy and robustness of the analysis) and the constraints of time,
equipment availability, and the number of battery samples. As a result, we decided to focus on
four SoC points: 100%, 80%, 50%, and 20%. This choice was guided by several
considerations:

e The SoC points are placed far apart in order to capture any non-linear trends that may
verify the impedance response.

e Extremely low SoC values (e.g., below 10%) were excluded, as these are rarely reached
in electric vehicle operation due to range management strategies and because deep
discharges can accelerate degradation.

e The selected SoC points cover the typical operational range of many lithium-ion battery
applications, which make the results more relevant for cases of practical use.

e The inclusion of the 100% SoC point allows us to evaluate the impedance response
under fully charged conditions. This is useful for detecting high-voltage-specific
degradation effects.
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For each of these SoC points, measurements must be performed at different SoH levels to
evaluate the consistency and robustness of the impedance to SoH relationship. This requires
testing cells at various stages of their life cycle, from new (SoH = 100%) to significantly aged.
We can separate the influence of capacity fade and resistance growth from that of SoC variation,
by comparing the impedance spectra at the same SoC but different SoH values. This is a crucial
step in determining whether the chosen SoC point will indeed provide stable and interpretable
SoH estimates.

We will use the Coulomb Counting method to determine the reference SoH for each
battery under test.

We can track the SoH decline of each cell by performing full capacity tests throughout the
aging process. Then, we can use it as the reference value against which impedance-based
estimates will be compared.

The combination of these experimental parameters, which include four distinct SoC levels,
multiple SoH stages, and accurate SoH reference values, will therefore generate a dataset that
allows us to:

1. Quantify the SoC dependence of the impedance spectrum for the selected battery model.

2. Identify the SoC point at which SoH estimation via EIS is least affected by the SoC-
induced variability.

3. Provide a calibrated basis that serves for the design of a measurement device that
operates reliably within a specified SoC window.
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4. Artificial Aging of Lithium-Ion Batteries

The cell selected for this dissertation is a cylindrical 18650 cell. This cell is chosen for its
wide availability and its LiMnOs-based chemistry, which exhibits electrochemical behavior
comparable to that of batteries commonly employed in automotive applications.

A set of selected batteries was subjected to a controlled artificial aging process to obtain
cells at different degradation levels required for impedance measurements. The aim of this
selection was to create multiple samples for each target State of Health level, approximately
100%, 90%, 80%, and 70% with more than one sample per level to improve statistical
robustness. This made sure that any relationship that was observed between impedance and
SoH could have been validated through repeated measurements and was not influenced by
single-cell anomalies. The result was a comprehensive SoOC—SoH measurement matrix with
reliable and repeatable data that covered a wide range of degradation states.

4.1. Battery Aging Mechanisms

Lithium-ion battery aging is the result of multiple chemical, electrochemical, and
mechanical phenomena that occur during both use and storage. These processes cause a gradual
loss of capacity over time, including an increase in internal resistance, and a reduction in overall
efficiency. The most relevant mechanisms for this study are:

Solid Electrolyte Interphase (SEI) growth
Loss of Lithium Inventory (LLI)

Loss of Active Material (LAM)
Electrolyte decomposition

Structural degradation of electrodes
Current collector corrosion

It will be explored more in deeply about this phenomenon in next chapters.

4.2. Factors Accelerating Battery Aging

Battery aging can be influenced by several external and operational factors. Controlling
these following factors is key when designing an artificial aging protocol:

e Temperature: High temperatures (>40 °C) accelerate reaction kinetics, which promote
faster SEI growth and electrolyte decomposition. However, excessive heat (>60 °C) can
trigger dangerous conditions.

e State of Charge: Prolonged high SoC storage increases the oxidative stress on the
cathode and promotes metal dissolution and electrolyte oxidation. Very low SoC can
destabilize the SEI and eventaully cause copper dissolution.
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e Depth of Discharge (DoD): Deep cycling increases mechanical strain on electrodes due
to expansion and contraction, which leads to particle cracking and delamination.

e C-rate: High charging or discharging rates cause significant ohmic heating, exacerbate
lithium plating risk, and create non-uniform current density across the electrode surface.

e Voltage extremes: Operation close to the maximum or minimum voltage limits will
accelerate unwanted side reactions at both electrodes.

These factors dictate the rate at which a cell degrades in real applications, while also
providing levers for accelerating aging in laboratory conditions without deviating too far from
realistic mechanisms.

4.3. Artificial Aging Protocol

The artificial aging process was designed to replicate the most influential real-world
degradation mechanisms in a compressed timescale. It combined partial SoC cycling with
elevated temperature storage to induce SEI growth, active material loss, and lithium inventory
depletion in a controlled manner.

4.3.1. Initial Characterization
Before aging each cell underwent:
e Full charge to 100% SoC according to manufacturer’s specifications.
e Capacity test at 0.5C to establish baseline capacity.
e C(Calculation of initial SoH via Coulomb counting:

C
SoH = measured o 100%

rated

e Initial EIS measurements at all SoC points selected for the study (100%, 80%, 50%,
20%).

These baseline measurements made sure that subsequent changes could be directly
attributed to the aging process.

4.3.2. Cycling Conditions

Cells were cycled between 10% and 90% SoC to apply both lithiation and delithiation
stresses without exposing them to extreme voltages.

e Charge profile: Constant current—constant voltage at 1C until the upper SoC limit was
reached.
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e Discharge profile: Constant current at 1C down to the lower SoC limit.
e Rest periods: Minimal, in order to maximize the number of cycles completed within
the available time.

This cycling window was chosen to reflect the typical operational patterns in electric
vehicles, while avoiding very low SoC regions that could then accelerate harmful copper
dissolution.

4.3.3. Temperature Control

Cells were placed in a climatic chamber maintained between 40 °C and 45 °C. This
temperature range accelerates chemical reactions such as SEI growth and electrolyte breakdown
without causing thermal damage. Controlled heating also ensures consistency across all
samples.

4.3.4. Periodic Assessment
Every 50 cycles, aging was paused to perform:
e (Capacity test at 0.5C to update the SoH.
e EIS measurements at each SoC point to monitor impedance of evolution.

This periodic assessment allowed for real-time tracking of degradation and timely removal
of cells from the protocol upon reaching their target SoH.

4.3.5. Achieving Target SoH Levels

By applying identical conditions but stopping cells at different points in their degradation
curve:

e SoH 100% group: unused cells stored under optimal conditions.
e SoH 90% group: cells removed after ~200-250 cycles.

e SoH 80% group: cells aged further until ~350 cycles.

e SoH 70% group: longest-aged group often exceeding 500 cycles.

At least two cells were prepared for each SoH level to allow averaging and identification of
outliers.

4.3.6. Safety and Monitoring
Throughout the process:

e Voltage, current, and temperature were continuously monitored.
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e Internal resistance was checked via pulse testing.
e C(Cells were visually inspected for swelling, leakage, or discoloration.

Any cell showing any abnormal behaviors was removed in order to maintain the integrity
of the dataset.

4.3.7. Relevance to the Study

The artificial aging process produced a set of cells that represented realistic degradation
states within a reduced timeframe. The methodology ensured that the resulting samples
captured the multi-faceted nature of lithium-ion battery aging, by targeting both capacity fade
and impedance growth. This approach provided:

e A controlled and repeatable way to populate the SoC—SoH test matrix.
e Multiple physical samples per SoH level to increase confidence in statistical analysis.

e Degradation mechanisms that similarly match those found during practical applications.

The dataset obtained from these artificially aged cells would form the foundation for
analyzing the relationship between EIS parameters and the SoH which ultimately guides the
selection of an optimal SoC range for reliable health estimation.
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5. Experimental Setup and Methodology

The experimental activity was dedicated to performing Electrochemical Impedance
Spectroscopy on cylindrical 18650 lithium-ion cells. The primary objective was to obtain
reproducible and high-fidelity impedance spectra across a wide frequency range. In order to
achieve this, it was necessary to have a careful design of the measurement chain, a controlled
environment, and systematic validation of every instrumental component involved.

5.1. Measurement Architecture

The experimental setup was centered around a modular electrochemical workstation
operating as potentiostat and galvanostat with an integrated Frequency Response Analyzer
(FRA). This device provided stable operation over frequencies spanning from the sub-Hz to the
MHz range, which allowed us to capture kinetic and diffusion-related processes.

The workstation incorporated signal generation, data acquisition, and control logic into a
single unit. This helped to reduce synchronization errors that are common in multi-instrument
configurations. Despite its versatility, specific attention had to be paid to the low-frequency
regime. Here, long acquisition times expose the measurements to drift and external
disturbances.

5.2. Auxiliary Equipment and Conditioning

Each measurement required the cell to be brought to a precise SoC. A programmable DC
power supply was used for controlled charging via a standard constant-current/constant-
voltage (CC-CV) protocol, while a programmable electronic load handled the discharging.
These instruments offer a fine current and voltage resolution which allows reproducibility
between tests and preventing overcharge or thermal stress.

Each conditioning phase was followed by a rest period until both voltage and temperature
reached equilibrium in order to make sure that the impedance spectra reflected electrochemical
behavior rather than transient effects. Even though initially underestimated, this equilibration
step proved to be an essential way to avoid any artificial shifts in the mid-frequency region of
the Nyquist plot.

5.3. Temperature Control and Monitoring

Because impedance is very temperature-dependent, thermal stability was treated as a
critical parameter rather than a background condition. Each cell was equipped with a type-K
thermocouple fixed near the negative terminal with Kapton tape. This guaranteed electrical
insulation and good thermal contact. Temperature was logged with 0.1 °C resolution throughout
all measurements.
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Early trials showed that even minor fluctuations (~1 °C) could produce detectable
changes in the charge-transfer resistance. As a consequence, the entire setup was operated in a
thermally regulated laboratory, and all equipment was powered well in advance to allow
internal stabilization.

5.4. Electrical Connections and Mechanical Stability

Although it may appear trivial, the connection interface between the analyzer and the cell
became one of the dominant sources of measurement uncertainty. Standard alligator clips
introduced variability in the high-frequency region because of unstable contact resistance. This
was eliminated by adopting Kelvin connections, where separate paths are used for current
injection and voltage sensing.

5.5. Calibration and Verification Procedures

Instrumental reliability was verified periodically through open/short/load calibration
routines. This compensated for cable parasitic and ensured accurate impedance readings over
the entire frequency spectrum. Complementary tests on known RC reference networks provided
additional validation for magnitude and phase accuracy.

Repeatability tests were performed on a dedicated reference cell kept at constant SoC and
temperature. All of these tests served to quantify the inherent variability of the system and detect
any drift caused by contact degradation or environmental changes. Through these measures,
reproducibility was better than +1 % in ohmic resistance and £3 % in charge-transfer resistance
was routinely achieved.

5.6. Mitigation of Measurement Artifacts

Two classes of disturbances emerged as critical during the campaign.

At low frequencies (<0.05 Hz), the long sampling intervals rendered the measurement
sensitive to external vibrations and slow drifts. This was mitigated by scheduling these scans
during low-activity periods and isolating the test bench mechanically.

At high frequencies (>100 kHz) electromagnetic interference from laboratory electronics
became prominent. Grounded shielding panels, ferrite chokes, and optimized cable routing were
introduced, which led to a substantial reduction in spectral noise.

5.7. Data Handling and Traceability

Each measurement was automatically logged into CSV format. It was accompanied by
metadata including cell ID, SoC, temperature, and instrument configuration. Data integrity was
maintained through a dual-backup strategy involving local and network storage. A structured
database indexed all experiments, which eventually facilitated a later retrieval and cross-
comparison.
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5.8. Overview

The combination of accurate instrumentation, robust thermal control, and meticulous
calibration routines allowed the experimental campaign to generate a consistent and
reproducible dataset. Each refinement in the setup, from the adoption of Kelvin clips to the
enforcement of equilibration times, contributed to the reduction of systematic uncertainty and
to the reliability of the impedance measurements.

5.9. Experimental Challenges and Iterative Improvements

|

Figure 5: first measurement attempt layout

The experimental activity was marked by a continuous process of refinement despite the
robustness of the setup. The first measurement sessions revealed a series of subtle but recurring
issues that required procedural adjustments and small practical improvements to the test
environment.

One of the most persistent difficulties was the stability of the low-frequency points.
Because each impedance value at 0.01 Hz required several minutes of acquisition. Even minor
disturbances, such as vibrations from nearby instruments or mechanical shifts of the table, could
distort the phase response. Measurements in the low-frequency region were performed during
quiet periods to mitigate these effects. The workbench was mechanically isolated using simple
rubber dampers placed under its legs. This small but significant modification was proved to be
effective in reducing vibrations transmitted through the floor and improved the repeatability of
the low-frequency measurements.

At the same time, electromagnetic interference was identified as a limiting factor at high
frequencies. Early spectra displayed characteristic ripples attributable to surrounding electronic
equipment. A straightforward mitigation strategy was adopted. All non-essential devices in
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the laboratory were switched off during EIS acquisition, and the measurement cables were
kept as short as possible and routed away from power lines. Moreover, ferrite beads were
added to the most sensitive signal cables, which provided a noticeable reduction of high-
frequency noise above 50 kHz.

These simple yet effective measures, alongside greater attention to environmental
conditions, led to a significant improvement in the signal quality and overall reproducibility
of the measurements, which did not require any complex or costly modifications to the setup of
the laboratory.

5.10. Optimization of the Contact Interface

Mechanical contact variability proved to be a very important data quality determinant.
Even small differences in pressure or positioning of the clips produced measurable shifts in the
ohmic resistance. The transition from generic alligator clips to rigid Kelvin-type holders
marked a turning point in the campaign.

Figure 6: battery holder

Each holder was designed to maintain a fixed geometry and a repeatable alignment with
the cell terminals. The 3D printed fixtures were also used as a partial vibration damper, which
further stabilized the setup. As a result, the high-frequency intercept of the impedance spectrum,
which was a sensitive indicator of contact resistance, became highly consistent across
repetitions.

Figure 5.1:

5.11. Control of Electrochemical Conditioning

Some early attempts at rapid cycling between different states of charge revealed the
importance of electrochemical relaxation. Measurements that were performed immediately
after charging or discharging displayed transient voltage drift and temperature gradients that
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could not be distinguished from real impedance changes. Successive protocols introduced
mandatory rest phases, which were empirically optimized for each SoC level. These pauses,
which typically lasted between 20 and 45 minutes, allowed the cell to return to near equilibrium
before the EIS scan.

Furthermore, the current rates for charge and discharge were limited to moderate values
(C/2 or 1C) in order to prevent local heating and to also minimize electrolyte polarization. This
conservative approach helped only slightly to extend the overall duration of the campaign but
ensured that impedance variations reflected a genuine electrochemical behavior rather than
thermal artifacts.

5.12. Calibration Frequency and Reference Validation

Even high-quality measurement instruments exhibit drift over time. Probably, this was
due to connector wear, temperature cycling, or software updates, or even a combination of some
of them. Calibration routines were performed to maintain reliability at the start of each
measurement week and whenever anomalies were detected.

5.13. Repeatability Assessment

The credibility of the EIS dataset was anchored in repeatability testing. A single
reference cell stored at 50% SoC served as a long-term benchmark throughout the campaign.
Its impedance spectrum was measured weekly to monitor any instrumental drift. The variations
in the high-frequency resistance stayed within +1%, while the mid-frequency semicircle
diameter fluctuated within £3%. These figures were consistent with the intrinsic precision limits
of the instrumentation and confirmed the overall stability of the experimental procedure.

5.14. Consolidation of Best Practices

As the campaign progressed, the iterative refinement of methods converged into a set of
operational “best practices” that improved data quality and efficiency in a substantial way.
Among the most impactful there were:

e Thermal equilibration that before every scan allowed for a stable impedance baseline.

e Fixed mechanical geometry for all connections which led to eliminating contact
variability.

e Regular calibration and reference validation used as a part of the standard workflow.
e Systematic data organization which enabled traceability and error tracking.

e Noise mitigation and bench isolation, which extended the usable frequency range.

Together, these measures transformed, what initially appeared as a straightforward
measurement task, into a rigorously controlled experimental process. The dataset that resulted
was consistent across all repetitions, resilient to environmental disturbances, and was suitable
for advanced electrochemical interpretation in the subsequent analyses.
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5.15.  Preliminary Data Validation and Quality Assessment

A systematic verification phase was introduced, upon completion of the first consistent
series of measurements, as a way to make sure that the collected impedance data were
technically reliable and physically meaningful. Since the Electrochemical Impedance
Spectroscopy was seen to have sensitivity to even minor disturbances, the raw data could not
be considered trustworthy without putting in place a structured post-acquisition screening
process.

The goal at this stage was not yet to extract electrochemical parameters, but it was to only
confirm the internal consistency and plausibility of the acquired spectra before including
them in the central dataset.

A lightweight Matlab-based script was developed to automatically read the CSV files
exported by the impedance analyzer and to generate quick visualizations of the Nyquist and
Bode plots. An intentionally simple code allowed to identify obvious anomalies directly after
each measurement. Such anomalies include non-physical negative imaginary components,
discontinuities between frequency decades, or abrupt noise bursts.

Each dataset was plotted in its raw form, without any filtering or curve fitting, in order to
avoid the masking of possible acquisition errors. The overlays between repeated scans of the
same cell provided an immediate visual confirmation of repeatability of the measurement. The
corresponding test was marked for repetition and excluded from the main archive until
verification, when deviations larger than the established thresholds were observed.

5.16. Data Screening Criteria

The validation process was guided by a few essential criteria, which were developed
empirically over the first weeks of testing.

e Spectral continuity: the impedance curve had to evolve smoothly with frequency,
without jumps or isolated points inconsistent with neighboring values.

e High-frequency intercept consistency: repeated measurements under identical
conditions were required to show less than +1% deviation in ohmic resistance.

e Low-frequency convergence: the real component of impedance had to stabilize within
a finite range. Unbounded growth or oscillations indicated drift or noise contamination.

e Temperature coherence: the recorded temperature trace during each scan was cross-
checked. Any fluctuation above 0.5 °C during the frequency sweep led to rejection of
the data.

Such a structured filtering step was proved to be an invaluable tool in maintaining dataset
integrity. Especially when accumulating large volumes of measurements over extended time
periods. In practice, roughly 8-10% of the initially collected spectra were discarded during
this quality control phase, most of the time due to thermal instability or minor contact
perturbations that were identified in the visual plots.
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5.17.  Observations and Incremental Refinements

Several subtle patterns became apparent through repeated use of this validation tool. For
instance, the measurements that were conducted immediately after the cell mounting displayed
small but systematic offsets in the high-frequency region. This was attributed to incomplete
mechanical stabilization. Extending the rest before the start of the scan by just a few minutes
eliminated this shift effectively.

In a similar way, the Nyquist visualizations sometimes revealed slight asymmetries
between forward and backward frequency sweeps. This is a sign of residual drift in the
potentiostat’s DC bias. The recalibration and a prolonged warm-up period were proved to be
sufficient to restore symmetry and improve reproducibility.

The iterative nature of this process, which includes alternating between measurement,
quick visual validation, and procedural adjustment, was able to progressively refine the
experimental setup and operator confidence. While it was very simple in concept, this early-
stage quality control established a feedback loop that helped preventing the accumulation of
corrupted or inconsistent data. This eventually saved a significant effort during later analysis
phases.

5.18. Summary of Experimental Reliability

By the conclusion of this phase, the workflow had evolved into a robust pipeline capable
of generating high-quality and self-consistent impedance data. Each measurement was
automatically accompanied by its diagnostic visualization and metadata record. This allowed
the dataset to grow in a structured and traceable manner.

The combination of rigorous measurement conditions, systematic calibration, and
immediate post-acquisition validation made sure that only spectra meeting defined stability and
coherence criteria were retained for subsequent analysis.

5.19. Residual Limitations and Practical Considerations

Despite the high level of control achieved, some inherent limitations remained. The low-
frequency domain continued to pose practical challenges. Even under optimized conditions,
measurements below 0.02 Hz required a prolonged acquisition time, during which small
thermal or voltage drifts could still influence the phase response. In a similar way, the upper-
frequency limit was constrained by the analyzer’s internal bandwidth and the parasitic
inductance of the connection leads.

Another persistent factor was temperature uniformity within the cell. Although the
external temperature was precisely monitored, minor gradients between the surface and core
could not be entirely ruled out. This happened especially after extended charge or discharge
conditioning. These effects were minimized but not eliminated. They also represent one of the
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unavoidable uncertainties in EIS performed on sealed commercial cells without embedded
Sensors.

5.20. Data Robustness and Reproducibility

Within these boundaries the overall data robustness was deemed satisfactory for
subsequent interpretation. The measured impedance spectra displayed consistent topology
across repetitions: stable high-frequency intercepts, well-defined mid-frequency arcs, and
coherent low-frequency tails. These repetitions indicate that the measurement system
effectively captured the electrochemical response of the cells rather than artefacts of the setup.

Repeatability tests on multiple days confirmed that the variability between independent
measurements remained within a narrow and quantifiable margin, once the experimental
environment and connection geometry were stabilized. The dataset that resulted from that
satisfied the core criterion of internal reproducibility, which is a prerequisite for any
subsequent analysis of degradation trends or equivalent-circuit modeling.

5.21. Lessons from the Experimental Campaign

From a methodological perspective, the experimental phase highlighted several broader
lessons that extend beyond the specific case of EIS on lithium-ion cells. Chief among them is
the realization that measurement precision is not purely a function of instrument
performance, but equally of mechanical and procedural consistency. The most impactful
improvements often came from attention to detail in contact quality, equilibration times, and
calibration discipline, not from new hardware.

The same importance was the integration of real-time quality control through the quick
plotting script and a structured data management system. This practice transformed data
validation from a retrospective correction step into an integral part of the measurement routine,
which prevented error propagation.

Finally, the gradual codification of operational rules, such as minimum stabilization
times, acceptable temperature deviations, and criteria for data acceptance, turned what was,
initially, an empirical process into a replicable experimental framework. The result was not
a collection of impedance measurements, while also it validated procedure capable of producing
meaningful data under controlled and repeatable conditions.
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6. Physical principles of degradation in lithium-ion batteries

6.1. Overview: what really “ages”

When we say that a battery “ages”, two macroscopic two quantities change: the capacity
(how much change can still hold) and deliverable power (how rapidly can exchange that charge
without overheating or drop too much in voltage. At microscopic level, these two effects stem
from three categories of causes that often coexist:

e Loss of Lithium Inventory (LLI): Part of the cyclable lithium is “trapped” in reaction
products (for example, in SEI or as plated lithium metal). Capacity decreases because
there is less lithium available for intercalation/deintercalation.

e Loss of Active Material (LAM): A portion of the electrode material (anode or cathode)
becomes electrically or ionically isolated (cracking, detachment from the collector,
percolation loss), or chemically inactive (phase transitions, surface degradation).
Capacity and power decrease together.

e Increase in Internal Resistance: The barrier to the passage of ions and electrons
increases (thicker/more disordered interface layers, reduced porosity, slower diffusion,
poorer contacts). Power decreases and greater ohmic losses are observed.

Degradation can be scheduled (even at still battery it depends mostly on temperature and
storage charge status) or cycled (induced by the passage of charge, therefore by currents,
discharge depth, charging speed, etc.). The underlying physical mechanisms are the same but
activated with different intensity depending on operating conditions.

6.2. Interfaces and layers: SEI and CEI

6.2.1. SEI on the anode (Graphite/Silicon)

At the anode (typically graphite, sometimes with a fraction of silicon), the organic
electrolyte reduces during the first charges, forming the Solid Electrolyte Interphase: a
nanometric layer that is ionically conductive but electrically insulating. It is essential (passive
electrode), but continues to grow slowly over time, consuming lithium:

e Diffusion-limited growth: usually it is observed Xsg) () LT 5 1ost capacity for LLI

oVt

e Consequences: increased charge transfer resistance, power drop, and cumulative loss
of cyclable lithium.

Silicon amplifies the problem: volumetric expansion of up to ~300% during Li—Si alloying
causes recurrent cracking, exposing virgin surface. SEI breaks down and reforms cycle after
cycle, accelerating LLI and LAM.
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Figure 7: SEI formation
6.2.2. CEI on the cathode

At high potentials, the cathode oxidizes the electrolyte, forming a Cathode-Electrolyte
Interphase (CEI). This layer can stabilize the surface but, if disordered or too thick, increases
surface resistance. On high-nickel materials (NMC/NCA high-Ni), electrolyte oxidation and
the release of lattice oxygen at high voltages accelerate the growth of “hard” and reactive CEL

6.3. Lithium plating
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Figure 8: Lithium plating process

When the local potential of graphite drops too close to 0 V vs Li/Li* (for low
temperatures, high charging currents, nearly saturated anodes, or polarizations due to high

resistances), it becomes thermodynamically advantageous to deposit lithium metal rather than
intercalate it:

e Nucleation and growth: initially “islands” of metallic Li; under severe conditions,
filaments/dendrites that can cross the separator.

e Irreversible vs. reversible: a fraction can “reinsert itself” during the next discharge;
the rest is isolated and then consumed by secondary reactions. — LLI.
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e Consequences: decrease in capacity (LLI), increase in surface resistance, risk of
internal short circuit and gas formation (due to reactions between lithium metal and
electrolyte).

The safe operating window for fast charging is therefore limited by the temperature, the
current, and the anode filling status.

6.4. Cathode degradation: chemistry, structures, and transition metals

6.4.1. Dissolution of transition metals

In materials such as LMO (spinel), there is disproportionation.

2Mn3t = Mn?t 4 Mn*t

where Mn”" dissolves in the electrolyte, migrates and deposits on the anode, catalyzing
further SEI growth and parasitic reactions. Even in NMC/NCA there can be dissolution
(Ni/Co/Mn) especially in high voltage or in the presence of HF. The result: LAM to the cathode
and accelerated aging of the anode.

6.4.2. Oxygen release and phase transitions

Ni-rich cathodes are more energetic but more delicate: high stresses and high
temperatures can release reticular oxygen, triggering electrolyte oxidation (unstable CEI),
heating, and microcracking of particles (LAM). Locally, the surface can be transformed into
unproductive rock-salt-like phases, which electrically isolate some portions of active material.

6.4.3. Cracking from “lattice breathing”

During (de)intercalation, the cathode lattice parameter “breathes.” Repeated over time,
this induces mechanical stress and intergranular microfractures; fragments may lose contact
with the binder/collector. — LAM and increase resistance.

Note: cathodes such as LFP exhibit excellent thermal/structural stability. They degrade
more slowly but are not immune to percolation loss or resistive IEC at high voltages.

6.5. Electrolyte and conductive salt: basic chemistry

The most common salt, LiPFs, it is convenient but unstable: in the presence of traces of
water, the following reaction occurs:

LiPF, + H,0 — LiF + POF; + 2 HF.
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HF attacks the cathode surfaces (promoting the dissolution of transition metals) and
reacts with SEI species, making it more fragile and consuming additional lithium. Solvents such
as EC/EMC can oxidize at high potential (cathode) or reduce (anode), generating solid species.

(Li2zCOg, LiF, LEDC) and gas (COz, CO, Hz), with cell swelling and increased ionic resistance
in the pores.

Additives (e.g., VC, FEC) help to form more stable SEI/CEI, but at high temperatures
even additives are depleted, and the benefits diminish.

6.6. Mechanics and percolation: when the structure breaks down

The heart of LAM is often mechanical:

e Graphite anode: deep cycles and/or rapid charging generate Li and strain gradients;
particulate matter can crack, losing contact with the binder.

e Silicon: enormous cyclic expansion/contraction causes pulverization; without
containment strategies (nanostructuring, elastic binders, pre-lithiation), percolation
loss is rapid.

e Cathode: microcracks open new reactive surfaces — more CEI, more indirect LLI,
and electronic isolation of fragments.

The effective porosity of the electrode tends to decrease due to pore collapse and filling
with solid products — tortuosity increases — slower ion diffusion — more polarization and
heat.

6.7. Extreme events: over-discharge, over-charge, and safety

e Over-discharge can push the anode towards potentials that lead to the dissolution of

the copper in the collector. Cu’ can then redeposit as metal filaments, creating
permanent micro-cuts.

e Over-charging (beyond the voltage limit) accelerates electrolyte oxidation, oxygen
release from the cathode, and triggers exothermic reactions.

dEgcy
The simplified heat balance includes ohmic heat. ’R and the entropic heat ar . If

generation exceeds dissipation, the temperature rises. Parasitic reactions accelerate (Arrhenius),
and in extreme cases, a runaway occurs. The separator (PE/PP) can shrink beyond ~120-140°C,
increasing the risk of a short circuit.

6.8. Map of operating conditions

Temperature

e High T: accelerates all parasitic reactions (SEI/CEI growth, dissolution, gas).
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e Low T: worsens kinetics/diffusion — more plating during charging and mechanical
stress.

SoC and window of use

e High SoC at rest promotes cathode oxidation and metal dissolution (calendar).
e Extreme low SoC: increases the risk of copper dissolution in overcharging.
e Narrow window (e.g., 20-80%) reduces stress peaks and prolongs life.

Current/C-rate and charging profiles

e High C: large ul large concentration gradients and heating — accelerate LLI/LAM.
e Fast charging: requires thermal management and adaptive limitations (current
reduction at unfavorable SoC/T) to prevent plating.

6.9. Internal heterogeneity and “uneven aging”

In the actual cell, there are local gradients in temperature, Li concentration, and current.
Coating imperfections, uneven distribution of particles/binder, or slight differences in contact
pressure lead to hot spots and starved areas. These regions degrade first (more SEI, more
cracking, more CEI), starting a vicious cycle: more resistance — more heat/local polarization
— even more degradation.

At the pack/module level, small differences between cells lead to imbalance: some cells
operate at higher SoC or at different temperatures, aging faster and dragging down the system.

6.10. Macroscopic observations and “signatures” of mechanisms

Without introducing circuit models yet, the above mechanisms have diagnostic traces:

e Capacity and Coulombic Efficiency: CE < 100% on average indicates systematic
consumption of LLI.

e Increased resistance (DCIR, power fade): indicates growth of interface layers, loss of
percolation, or worsened transport in the pores.

e Incremental Capacity (dQ/dV) / Differential Voltage: the shift/attenuation of peaks
related to intercalation stages (graphite) or cathode transitions suggests LLI vs. LAM
and structural changes.

o Self-discharge and gas/swelling: indicate high electrolyte reactivity, unstable CEI/SEI
or soft shorts.

e Increasing OCYV hysteresis indicates greater internal resistance and inhomogeneity.

6.11. Engineering and control implications

¢ Thermal management: keeping the cell within an optimal thermal window limits both
plating (cold) and parasitic reactions (hot).
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e Usage policy: avoid long storage at very high SoC, limit extreme daily DoD, prefer
well-calibrated step-down or CC-CV charging profiles.

e Materials and design: cathode surface coatings, electrolyte additives, elastic binders
for Si, porous architectures with low tortuosity, and robust conductive collectors/lattices
mitigate LAM/LLI.

e Pack-level equalization and balancing mitigate heterogeneity and dilute stress peaks
on individual cells.

6.12. Operative summary

e LLIis driven by SEI/CEI, plating, and parasitic reactions; it increases with T, high SoC
at rest, and fast charging under unfavorable conditions.

e LAM arises from cracking, loss of contact, and structural transformations; it worsens
with high currents, Li gradients, and mechanically fragile materials (Si, high-Ni without
mitigation).

e The increase in resistance is the cross-sectional result of thicker interface layers, clogged
pores, and weakened electronic percolation.

These mechanisms build the conceptual bridge between physical-chemical phenomenology
and the quantities that we then measure in diagnostics: capacitance, resistance, voltmetric
signatures, and response spectra. In the following chapter, we will use this cause—effect map
to justify modeling choices and parametric identification tools.

6.13. Transition towards model representation

At this point, a common thread can be identified: every physical degradation
phenomenon, despite having distinct chemical, structural, or mechanical origins, always results
in a change in the cell's electrical response. This observation is the reason why diagnostic
methods, such as Electrochemical Impedance Spectroscopy, are so effective: since each
transport or reaction process is associated with a characteristic time constant, its evolution over
time (and therefore degradation) manifests itself as a variation in the distribution of these time
constants, and therefore in the overall shape of the impedance spectrum.

Before moving on to electrical modeling, it is useful to explain how the phenomena
discussed in the previous paragraphs influence the parameters that will subsequently be
represented by circuit elements.

6.13.1.  Influence of SEI and LLI on electrical response

SEI growth, as we have seen, it is a phenomenon that often follows a law such as VE. At
the electrical level, this corresponds to a progressive increase of the charge transfer resistance
and a decrease in apparent double layer capacity, as part of the electroactive surface is shielded.
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SEI also acts as a diffusion barrier: Li~ ions must cross a layer of increasing thickness
and complex structure. This introduces a phase delay in responses at intermediate and low
frequencies, which appears in a Nyquist diagram as a wider semicircle or a non-ideal slope (no
longer perfectly capacitive).

From the point of view of macroscopic parameters, this translates into an increase in
polarization resistance and a slowdown in dynamic response.

6.13.2.  Plating and nonlinear polarizations
Lithium plating has mixed effects:

e Initially, metal deposition increases surface conductivity, but not uniformly; as the
phenomenon evolves, inactive and insulating areas of form, increasing resistance.

e The interaction of metallic lithium with electrolyte generates new compounds. (LizCO

3, LiF, ecc.), which amplifies the growth of SEI and therefore the low-frequency
resistive part of the spectrum.

e At the macroscopic level, plating alters Coulombic reversibility: part of the charge
introduced is no longer recoverable, highlighting a structural and permanent LLI.

These effects are reflected in a non-linear response to high currents and a progressive
shift of the low-frequency regions of the Nyquist diagram, where diffusion and slow reactions
dominate.

6.13.3.  Cracking and loss of percolation (LAM)

When a portion of active material loses electrical contact, the effective active surface area
1s reduced. In electrical terms, this corresponds to a decrease in the effective capacity of the
electrode and a change in the local time constants. The system becomes more heterogeneous:
not all particles react in the same way and in the same frequency range, so the impedance
spectrum shows a broadening of the transition regions (wider semicircles, smoother slopes). In
practice, this reflects a continuous distribution of relaxation times, often modeled through non-
ideal elements such as the Constant Phase Element (CPE), which will be introduced in the
next chapter.

6.13.4.  Cathode effects and dissolution of transition metals

The dissolution of metals such as Mn, Ni, and Co modifies both the cathode and anode
surfaces. On the cathode, the loss of active material and the formation of a thick IEC increase
the resistance associated with charge transfer; on the anode, the deposited metals catalyze
undesirable reactions that lead to accelerated SEI growth and, therefore, to further overall
polarization of the system. In the frequency domain, these processes manifest themselves as an
increase in series esistive and capacitive components, but with longer relaxation times, typical
of the low-frequency regions of the spectrum.
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6.13.5.  lonic diffusion and slow transients

The slowing down of internal diffusion processes (both in the electrodes and through the
SEI/CEI) results in a non-instantaneous response to potential changes.

Mathematically, diffusion is described by:

tanh(‘,ﬂjmrw)
ViOTw '

Ly = Oy

Where 9w is the Warburg coefficient and Tw the diffusion time constant.

When diffusion is severely limited or the surface becomes uneven, the real and imaginary
parts of the impedance show a 45° trend in Nyquist, typical of semi-infinite diffusion. With
aging, this trend tends to shift to the right and lengthen, indicating slower diffusion or a thicker
layer to pass through.

6.13.6.  Thermal effects and reversible variations

Some variations in electrical parameters may be reversible if induced by temperature
changes. An increase in T temporarily reduces diffusion and charge transfer resistance, but in
the long term accelerates structural growth. Conversely, at low temperatures, diffusion slows
down and the system exhibits higher impedances at high frequencies, an effect that can be
mistaken for degradation if the thermal component is not taken into account. It is therefore
essential to distinguish between temporary (environment-dependent) and permanent
(physical-chemical deterioration-related) variations.

6.13.7.  Phenomenological synthesis

We can therefore map in qualitative form the direct links between degradation
mechanisms and measurable electrical quantities:
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Physical Macroscopic effect Observable electrical effect
phenomenon

SEI/ CEI growth | LLI increase, interface | Rightward shift of the high-frequency
resistance semicircle

Li plating LLI, short-circuit risk Increased resistance at low frequencies,
non-linear variations

Cracking / LAM | Loss of active capacity Equivalent capacity reduction, wide
semicircles (time distribution)

Slowed spread Polarisation, power drop | More extensive 45° slope (Warburg)

Metal dissolution | Unstable CEI, cross-talk | Increase in overall polarisation

Temperature Acceleration reactions Faster transients but faster degradation

increase

High current Polarisation and stress Expansion of intermediate impedance
regions

This table establishes a conceptual link between degradation chemistry and circuit
modeling: each physical process can be represented by an element, or a set of elements, capable
of reproducing its dynamic effect on the overall impedance.
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7. Equivalent Circuit Model for Ageing Phenomena in Lithium-Ion
Batteries

7.1 Introduction

The experimental results obtained through Electrochemical Impedance Spectroscopy are
valuable on their own, but their interpretability and predictive power increase significantly
when they are mapped to a mathematical-physical model of the system. The most widely
adopted approach in electrochemistry for this purpose is the construction of an Equivalent
Circuit Model (ECM). ECM is an arrangement of idealized electrical components such as
resistors, capacitors, and special impedance elements. Each of these components is associated
with a specific physical or chemical process that occurs inside the cell.

An ECM is not just a curve-fitting tool. It also embodies a hypothesis about underlying
physics. The value of each component is expected to change in a predictable way with the cell’s
state of charge, state of health, temperature, and usage history. The selection of components,
and thus the selection of which physical phenomena to represent explicitly, is therefore an
important step. In this study, the ECM was designed to focus on the dominant ageing
mechanisms that are measurable via EIS and relevant for long-term capacity fade and power
fade in lithium-ion cells.

7.2 Modeling using equivalent circuits

Experimental analysis of electrochemical impedance provides a wealth of information
about the internal behavior of the battery, but experimental data alone, represented for example
in the Nyquist complex plane, is not sufficient to describe the physicochemical phenomena
occurring inside the battery in a quantitative and reproducible manner. This is why it is essential
to use an ECM, which allows the electrochemical behavior of the system to be translated into
an analytical and calculable form.

The idea behind this approach is to replace the dynamic behavior of the cell with a
network of ideal electrical elements, resistors, capacitors, and, in some cases, constant phase
elements (CPEs), whose frequency response accurately reproduces the experimentally
measured impedance curve. In other words, the equivalent circuit becomes a tool for emulating
the actual behavior of the battery.

Based on experimental data (Zreal, Zimag: f ),

the values of the circuit components are identified such that

Zmodello (f) ~ Zmisurato(f)

for each frequency within the analysis window.

7.3 From experimental measurement to analytical model

Each point on the Nyquist diagram corresponds to a complex impedance measurement.
Z(f) = Zrea(f) + jZimag(f), obtained by applying a small amplitude sinusoidal signal with
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variable frequency to the battery. The objective of the modeling is to determine a complex
function Z.,(f) derived from an equivalent circuit that satisfies the relationship:

Zeq(f) = f(Ri; Rct' Cdl'CPE; w, )

Where the parameters R;, R, Cg4;, etc. represent physical quantities linked to distinct
phenomena inside the cell.

Once the circuit has been identified, the optimal parameter values are found by
minimizing the mean square distance between the experimental and theoretical values:

N
min leeq(fk; 9) - Zmis(fk)|2
k=1

where 6 = [R;, R.t, Cqy, ... ] is the vector of parameters to be estimated. This fitting
process not only provides a continuous functional description of the impedance but also allows
the resistive and capacitive-diffusive contributions of internal phenomena to be quantified
separately.

7.4 Physical meaning of parameters

Each component of the equivalent circuit is associated with a specific electrochemical
phenomenon.

e Ohmic resistance R;: represents the sum of the internal resistances of the conductors,
contacts, and electrolyte. It is independent of frequency and manifests itself as the
intersection point of the Nyquist graph with the real axis.

e Charge transfer resistance R.;: describes the difficulty with which the electrode-
electrolyte interface reaction occurs. As the electrodes age or their surface degrades,
R ¢tends to increase sensibly.

e Double layer capacity C;: models the accumulation of charges at the electrode-
electrolyte interface due to the formation of the electric double layer. This capacity can
vary with temperature, surface roughness, and state of charge.

o Diffusion element (Warburg or CPE): It represents the phenomenon of ionic
diffusion in the active material and the electrolyte. At low frequencies, this term causes
the typical 45° slope in the Nyquist plot.

In some models, the diffusive element is described by Warburg impedance, given by:
Z 1-j !

=0 — P p—

W P

where o is the Warburg coefficent and w = 2rf the pulsation. In more complex cases,
the CPE is used instead, defined by:

P 1

Where Q is a pseudo-capacitive coefficient and n (with 0 < n < 1) takes into account the
deviation from the ideal behavior of a pure capacitor.
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7.5 Correlation between electrical parameters and aging phenomena

The strength of the equivalent circuit model lies in the fact that its parameters are not
mere numerical fitting values, but represent quantitative indicators of the cell's health. The
evolution over time or with the number of cycles of parameters such as R.; € C;; provides an
indirect measure of degradation phenomena.

For instance:

e An increase of R; may indicate a deterioration in electrolyte conductivity or the
appearance of deposits in the conductors.

e An increase of R, is a symptom of increased resistance to electrochemical reaction,
often caused by thickening of the SEI layer or loss of active area.

e A reduction of C;; suggests a decrease in the contact area between the electrolyte and
the active material.

e The variation of the parameter n in the CPE may reveal local inconsistencies or uneven
degradation processes.

By combining these effects, it is therefore possible to correlate the variation in the overall impedance of
the battery with its SoH, which help us obtain a predictive representation of its behavior over time.

7.6 Practical utility of modeling

Determining the equivalent circuit and its parameters is the basis for building predictive
models and rapid diagnostic tools. Once the relationship between parameter variation and
underlying physical phenomena is known, it becomes possible to simulate how impedance will
change as operating conditions vary (temperature, state of charge, number of cycles, etc.).

In this sense, the equivalent circuit acts as a bridge between the experimental and
simulation domains. It allows the dynamic response of the cell to be emulated in contexts where
EIS measurement is not possible, such as during vehicle operation or in integrated BMS.

The mathematical model derived from the equivalent circuit can be integrated into
simulation software, where the expected frequency response is calculated for each condition set
(e.g., temperature variation or increase in interface resistance). This approach allows battery
behavior to be predicted before degradation becomes significant, paving the way for
predictive maintenance and adaptive control strategies.

From a formal point of view, the overall behavior of a cell modeled by an equivalent
circuit can be expressed as the sum of the impedances of its individual elements. Assuming a
typical configuration consisting of an ohmic resistance R; in series with one or more branches
R — C at the same time, The total impedance of the system is:

Zg(@) = Ry +Z ;

where each pair R, — Cj, represents an electrochemical process characterized by a time
constant T, = Ry - Cx. The analysis of time constants is particularly useful, since each

+](1)Ck
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phenomenon (e.g., double layer response, ion diffusion, or active mass polarization) occurs on
different time scales.

In order to interpret the relationship between excitation frequency and system response,
consider the complex form of impedance for a single pair R.;-C:
Ret

7z — et
re(w) =77 jwR.,:C

Separating the real and imaginary parts, we obtain:

1+ (WR,0)?
wR%C
1+ (wR.C)?

( Ret
J Z'(w) =
Lz"(w) =

Plotting these values on the complex plane yields the classic Nyquist semicircle, whose
diameter is equal to R.; and whose center lies on the real axis, at a distance equal to R; + %

from the origin. The maximum peak of the imaginary part corresponds to the characteristic
frequency:

1

w =
max Rct C

The knowledge of this relationship allows each portion of the Nyquist plot to be
associated with a specific physical process, based on the frequency range in which it occurs.

7.7 Combination of multiple processes

In a real battery, however, the response is not limited to a single semicircular arc. It is
common to observe two or more partially overlapping semicircles, representing processes with
different time constants. The most common model for describing such situations is the two- or
three-branch parallel RC model, in which each branch represents a distinct contribution: one
for the double layer, one for ion diffusion, and, in some cases, one for slower phenomena such
as active mass polarization.

The analytical formulation of the three-branch model is identical to the generic
formulation:

3
Rctk
Zspe(w =R-+Z_—'
3RC( ) i k_11+]cht,ka

where each term describes a distinct semicircle in the Nyquist plane.

As the complexity of the model increases, so does its ability to accurately represent the
experimental trend, but also the risk of non-uniqueness of the solution, since different
combinations of parameters can generate very similar graphical responses.
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7.8 Diffusion effects and non-ideal behavior

At low frequencies, the simple RC description is no longer sufficient to capture the diffusive
behavior of ions. In these cases, the final branch of the model can be enriched with a Warburg
term or a CPE, as already introduced above.

Warburg impedance, in semi-infinite form, is expressed as:

Zw(@) = —= = o(1 - ) ==
v e T T 2w

which in the Nyquist plot appears as a straight line inclined at 45° to the real axis.
However, when diffusion is limited (for example, in materials with finite dimensions or in the
presence of geometric barriers), the finite Warburg function is used, given by:

tanh(./jwt
Ly (@) = o 2T0TD)
VJWTp

where 7 represents the characteristic diffusion time.

The CPE further generalizes diffusive and capacitive behavior, allowing the modeling of
phenomena such as surface heterogeneity or spatial distribution of physical parameters. In this
case, the total impedance can be expressed as:

Zog(@) = Ry 4 ————
7+ (o)
ct

Where the exponent n modulates the degree of deviation from the ideal: for n = 1 the
behavior is purely capacitive, while for n = 0.5 a diffusion response similar to Warburg's is
obtained.

7.9 Stima dei parametri e confronto con i dati sperimentali

Once the structure of the equivalent circuit has been defined, the next step is to
numerically determine the parameters that allow the best possible approximation of the
experimental data. To this end, a MATLAB code has been implemented that is capable of
performing a nonlinear fitting of the function. Z.,(w) with respect to points Z,;s(w).

The algorithm proceeds by calculating, for each experimental point, the complex difference
between the measured values and those simulated by the model, minimizing the norm of the
error vector:

N
2
E= | ) 2@ 0) = Zuis(@))
k=1

During the optimization process, physical constraints are imposed on the parameters (for
example R, C,Q > 0) and limits consistent with the literature, in order to avoid convergence
towards mathematically correct but physically meaningless solutions.
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The final result is a set of parameters 68* which faithfully reproduce the experimental
curve and allow physical information to be extracted from the electrical behavior of the cell.

Nyquist: data vs model derived
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Figure 9: comparison between direct and derived data

0.248

Using the result generated by a specific Matlab code, we can therefore visually evaluate
the quality of our model, which simulates its own Nyquist plot starting from the data measured
from the real one, passing through the entire battery virtualization process, up to the new

representation of the Nyquist plot.
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%1073 Nyquist: data vs model derived
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Figure 10: close up on comparison between direct and derived data

Systematically we can see that the greatest difference found is in the area at the top of the
main semicircle. However, in light of several iterations, this has proven not to be a systematic
phenomenon. It produced instead both negative and positive errors, but always of an acceptable
magnitude.

7.10  Parametric variation and predictive simulation

Once the model has been calibrated, it is possible to explore its behavior under conditions
different from those measured, by artificially modifying one or more parameters. For example,
by increasing R.; sThe effect of degradation of the electrode-electrolyte interface can be
simulated by increasing R; the effect of collector aging or loss of conductivity is evaluated; by
reducing Cy;, the decrease in the active area is simulated..

This approach allows us to predict how the Nyquist plot will evolve over time, or how
certain operating conditions (temperature, state of charge, cyclic stress) will affect impedance.
These simulations are essential for quantitatively correlating aging phenomena with electrical
response, and form the basis for the subsequent phase of estimating the battery's state of health.

In summary, the construction of the equivalent circuit model allows EIS data to be
transformed into a set of physically interpretable parameters. These parameters act as state
variables of the electrochemical system and allow:

1. The experimental response to be represented in a compact and analytical form.
2. Impedance to be simulated under conditions that cannot be directly measured.

3. Identify and quantify degradation phenomena through their electrical footprint.
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4. Build a basis for the development of diagnostic and predictive algorithms that can be
integrated into BMS systems.

The equivalent model therefore becomes a dynamic mathematical representation of the
internal state of the battery, capable of linking the electrical domain (impedance) with the
physical-chemical domain (charge transfer, diffusion, and polarization processes).

7.11  Sensitivity analysis of parameters

The next step is therefore to analyze the sensitivity of the model with respect to these
newly identified parameters. This type of analysis allows us to determine which elements of the
circuit most influence the shape of the Nyquist plot and, consequently, which physical
phenomena dominate the response in a given frequency range.

Mathematically, the sensitivity of a parameter 8; can be expressed as the partial derivative
of the impedance function with respect to that parameter:

0Zq(w)

Sp,(w) = 0.
L

The module of this quantity, |Sgi|, indicated how much the variation of 6; changes the
overall impedance at different frequencies.

The sensitivity analysis shows, for example, that:
e R; affects the entire spectrum almost constantly, shifting the curve on the real axis;
e R and Cy; determine the shape and width of the main semicircle;

e The diffusive elements (Warburg or CPE) influence the low-frequency part, controlling
the slope of the final branch.

These relationships allow us to identify, based on the frequency domain, which physical
process is predominant.

7.12  Dynamic identification and fitting stability

A critical aspect of the modeling process is the stability of identification.

Since the equivalent circuit parameters do not appear linearly in the equations, the
estimation problem is nonlinear and ill-posed, meaning that it can admit multiple apparently
valid solutions. In particular, for overly complex models (with too many RC branches), a
phenomenon of non-uniqueness can occur: different combinations of R. , € Cj produce
virtually indistinguishable impedance curves.

This mathematical phenomenon reflects a physical limitation: not all electrochemical
processes can be distinguished based solely on their frequency response. For this reason, the
choice of circuit topology must be guided not only by the quality of the numerical fitting, but
also by physical considerations regarding the plausibility of the parameters.

During our work, in order to guarantee the robustness of the identification, we adopted
constraint and regularization strategies, among which:
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e positivity constraints and order of magnitude constraints on parameters (R > 0, C > 0,
107 < C <1071 F);

e physical consistency limits between branches (7 < 7, < 73);
e analysis of the variance of the fitting with respect to different initial conditions.

This has made it possible to obtain consistent and repeatable results, which ultimately
reduced the solution's dependence on initial conditions and allowed greater interpretative
reliability.

The most significant aspect of the equivalent model is the possibility of linking parameter
variations over time with the electrochemical degradation of the battery. Since each
component of the circuit is directly linked to a physical phenomenon, changes in its magnitude
provide quantitative information on the health of the cell.

These correlations make it possible to construct a degradation map in which, based
solely on EIS data, the degree of evolution of the internal phenomena of the battery can be
estimated. Furthermore, by comparing the temporal evolution of these parameters, it is possible
to establish which processes dominate cell aging (resistive, interface, or diffusive), thus
providing a quantitative basis for the development of impedance-based SoH indicators.

After defining the role of the equivalent circuit as a translation tool between actual
electrochemical behavior and its electrical representation, we moved on to selecting the most
appropriate model to describe the experimental data obtained. This choice required a critical
evaluation of the various circuit diagrams proposed in the literature, comparing their ability to
accurately represent the Nyquist diagram with the need to maintain physical consistency and
numerical stability in the estimation of parameters..

7.13  Comparative analysis of the models considered

During the course of the work, three models of increasing complexity were examined.
Each of them was subjected to the same non-linear fitting algorithm, keeping the optimization
methodology unchanged, so that the differences could be evaluated objectively.

Model 1 - Simple circuit (R—C single in parallel)

It consists of an ohmic resistor R; in series with a branch R —Cg; in parallel.

S Y
1 ' 1+ijCthl

This model is suitable for ideal systems or newly manufactured batteries, where diffusion
behavior is negligible and the electrochemical response manifests itself as a single perfect
semicircle. Despite its simplicity, this configuration is not sufficient to represent real cells,
which almost always exhibit two or more processes with different time constants.

Model 2 - Parallel two-branch RC circuit
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The second model introduces an additional RC branch to describe two distinct processes:
one at high frequency, generally associated with the double layer, and one at intermediate or
low frequency, linked to charge transfer.

RCt 1 RCtZ
7 =R, + : :
2(w) " 14 jwRe C 1+ jwRe,C,

This model is able to reproduce most experimental Nyquist plots, maintaining a good
balance between fitting accuracy and physical significance of the parameters.

Model 3 - Extended circuit with CPE
The third model represents a generalisation of the previous ones, replacing one or more

capacitors with CPEs to describe non-ideal behaviour.

Z3(w) =R+ ———
r,t (Jw)"Q

or, in a more extended form:

Rct,l + RCt,Z
1+ (joRe101)" 1+ (jwRe2Q2)"

where Q) represents pseudo-capacity and n; (with 0 < n;, < 1) quantifies the deviation from
ideal behavior.

Z3(w) =R; +

This approach allows for the modelling of porous, heterogeneous or partially degraded
surfaces, where the double layer capacity does not follow a purely exponential trend. However,
greater flexibility also entails a loss of one-to-one correspondence between parameters and
simulated curve: different combinations of Q, R, and n can generate indistinguishable
responses.

7.14  Choice of model adopted

The model chosen as the basis for characterisation is the double-branch RC model (second
model), as it represents the best compromise between:

e fidelity to experimental data;
e numerical stability of the fitting process;
e physical interpretability of the parameters obtained.

However, for the most degraded cells or in the presence of non-ideal behaviour, one of
the two capacitors has been replaced by a CPE. This replacement does not alter the overall
topology, but allows the model to capture deviations in the capacitive response while
maintaining physical correspondence with the phenomenon represented. In other words, the
model adopted can be considered an extended version of the double RC, in which the CPE acts
as a local corrective and not as a paradigm shift.
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One of the most delicate aspects of modelling using equivalent circuits is the non-
uniqueness of the solution. In the case of complex models, multiple sets of parameters can
produce virtually identical impedance curves, i.e.:

This means that the relationship between parameters and response is not strictly one-to-one.
However, this does not prevent the characterisation of electrochemical degradation: useful
information remains accessible, provided that the parameters are analysed in a physically
consistent manner and more robust identification strategies are adopted..

7.15  Robust identification strategies

To address non-uniqueness and make parameter estimation more reliable, several
complementary strategies were applied.

Physical constraints and regularisation

During the fitting, sign and physical consistency constraints, previously introduced, are
imposed. In addition, Tikhonov regularisation is used to penalise unrealistic variations in the
parameters:

mgin I Zeg(w; 0) = Zyis(@) 17+ 211 6 — 6, II?

where 6, represents a set of initial values consistent with the literature and A check the
degree of regularisation.

Global multi-condition fitting

A further step to improve identification consists in the simultaneous fitting of multiple
datasets obtained under different temperature or charge conditions. The sum of errors across
all datasets 1s minimised by imposing physical laws of consistency between parameters, for
example:

Eq
R (T) = Ry ekT

This approach reduces the possibility that the fitting will converge towards random
solutions and provides a more stable view of the evolution of the parameters.

Global sensitivity and uncertainty analysis

To assess the stability of the model, the variances of the estimated parameters and the
correlations between them are calculated using Fisher's matrix:

F=]"WJ], Cov(f)=F""

This provides confidence intervals that allow the most reliable parameters and those
affected by strong correlation (e.g., between R, and Cy;).
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Identification of degradation and correlation with physical phenomena

Despite the possible non-uniqueness of the parameters, the relative variation of the most
significant quantities allows the main degradation phenomena to be clearly identified. These
quantities, although not perfectly unambiguous, behave systematically as ageing progresses and
allow a robust diagnosis of the state of health.

Derived parameters and functional identification

In order to further reduce the ambiguity associated with non-one-to-one correspondence,
circuit parameters are often reformulated into derived quantities that combine multiple
variables but remain physically interpretable. In particular, it is useful to treat the time constant
associated with each branch as an element in itself.:

T = Reei - Cx

Analysis of the evolution of 7, provides direct information on charge transfer Kkinetics
and ion diffusion:

e An increase of 71, indicates that the process is slowing down, suggesting the
accumulation of resistant layers or ageing of the electrode surface.

e The appearance of new time constants (new semicircles or Nyquist distortions) may be
associated with the activation of additional processes, such as SEI growth or the
emergence of low-frequency diffusion phenomena.

It is therefore possible to represent the overall response of the battery as the sum of
elementary contributions, each described by a pair (4Ry, Tx):

AR,
Zeg(@) = Ri + Z -

+ jwTty

This formulation not only simplifies the physical reading of the model, but also reduces
the correlation between parameters and allows each arc of the diagram to be associated with
a specific process with greater clarity.

Distributed time constant analysis (DRT)

To overcome the inherent limitations of finite-number RC branch models, it is possible
to switch to a continuous description using Distribution of Relaxation Times (DRT). In this
approach, the overall impedance is expressed as:

1
Z(w) = Ri + fg(’l.') T]wr dint + ZW((U)
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where g(7) is the density of relaxation processes, which represents the distribution of
equivalent resistances as a function of the time scale. Unlike the discrete model, here the number
of processes present is not assumed a priori: they emerge directly from the form of g(7).

DRT identification is achieved by solving a regularised inverse problem (e.g. with second
derivative Tikhonov regularisation):

rgn(lrgl Il Zeq(w) - Zmis(w) ”2+ Al Lg(T) ”2, g(T) =0

where L is the derivative operator and A a regularisation parameter.

The result is a continuous map of resistive contributions distributed in the time constant
domain. This representation is extremely useful because:

e highlights the emergence of new relaxation processes over time (new peaks in g(7));

e allows the evolution of degradation phenomena to be monitored without imposing a
predefined circuit structure;

e provides a direct estimate of AR, as the area under each peak, and of 7 as the position
of the maximum.

In this way, even when the equivalent circuit parameters are not unique, DRT allows the
real physical phenomena that determine the evolution of impedance to be isolated and
quantified.

Direct indicators from the Nyquist plot

In parallel with parametric identification, it is possible to extract invariant features from
the Nyquist plot that provide reliable information on the battery status without requiring a
specific model.

The main ones are:

1. High-frequency interception Z'(w — ): corresponds to R;, and increases linearly
with the loss of internal conductivity.

2. Main arch diameter AR = R,: reflects the difficulty of charge transfer.

3. Peak frequency f, .. = : indicates the speed of the interface-electrolyte

2mRCy;
reaction.

4. Low frequency slope: The slope of approximately 45° is typical of semi-infinite
diffusion; deviations from this value indicate limited diffusion phenomena or structural
changes in the active material.

5. Phase index n (in the CPE): reductions of n over time, they indicate greater surface
unevenness and loss of electrochemical uniformity.

These ‘visual’ parameters are robust and independent of the problem of non-bijectivity,
making them extremely effective for constructing empirical indicators of degradation.
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Integration with other physical measures

To further improve the robustness of the model and the readability of the results, the
estimation of the EIS parameters is integrated with other known or measurable quantities:

e temperature (to verify the Arrhenius dependence of R.;);
e state of charge (which strongly influences Cy;);

e capacity test and OCV, useful for constraining the variation of Cy e R; to known
phenomena;

e any cycling data, to observe the progressive variation of parameters over time.

By combining this information, the space of admissible solutions can be drastically reduced,
resulting in a more stable and physically consistent identification.

7.16  Summary and implications

In conclusion, even when the equivalent circuit parameters are not unique, EIS modelling
remains an extremely powerful tool for characterising battery degradation. The key lies in
shifting from an “absolute” reading of the parameters to a “functional” reading, focusing
on relative evolution, the relationships between time constants and the overall shape of the
impedance trace.

The integration of techniques such as DRT, constrained regularisation, multi-condition
fitting and Bayesian analysis has made it possible to:

1. obtain more stable and physically consistent parameters;
2. distinguish between different degradation mechanisms (ohmic, interface, diffusive);
3. develop robust quantitative indicators for SoH estimation..

This chapter therefore constitutes the direct link between the experimental and
interpretative parts of the work, while also providing the theoretical and methodological basis
for the subsequent analysis of the numerical results of the fitting and their correlation with the
health status of the cells.
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8. Analysis of fitting results and correlation with health status

After defining the circuit structure and discussing identification methodologies, the next
phase of the work involved applying the selected model to the experimental data acquired via
EIS.

The objective was twofold: to obtain the numerical values of the characteristic electrical
parameters of each battery or measurement condition and to interpret their variation over time
or between different samples as a manifestation of internal degradation processes.

8.1 Fitting procedure

The fitting was performed by applying the non-linear optimisation algorithm to the
experimental data (Z';, Z" his» @), minimising the complex distance between model and
measurement:

N
. 2
mgln Z |Zeq(wk; 0) - Zmis(wk)|
k=1
where 6 = [Ri:Rct,p Ci,Ree2, Gy, ] is the vector of model parameters.

The initialisation of the parameters was performed based on visual estimates derived from
the Nyquist diagram (e.g., the initial intercept on the real axis as R; and the diameter of the
semicircles as 4R).

To avoid convergence towards local minima or physically insignificant solutions, the
optimisation ~was repeated several times with different initial conditions.
In some cases, a hybrid strategy was adopted, using an initial approximate linear fitting to
estimate the values of 7, and subsequently a non-linear refinement with constraints.

The accuracy of the fitting was assessed using the normalised mean error:

N
e = lz |Zeq(wk) - Zmis(wk)l
rel N =1 |Zmis(wk)|

which, in the best cases, remained below 1%, indicating excellent adherence of the model
to the experimental data.
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8.2 Physical consistency and interpretation of results
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Figure 11: degraded battery Nyquist plot

Analysis of the parameters obtained confirmed that the estimated values fall within ranges
consistent with the literature for lithium-ion cells of the same format.

For example, ohmic resistance R; was in the order of milliohms, while R,.; showed values
ranging from a few tens to a few hundred milliohms depending on the state of charge and
temperature. The equivalent capacities C,4; are included in the range 10~*-1072 F, consistent
with the behavior of the double layer at the electrolyte-electrode interface.

The relative variations in the parameters between successive measurements or between
different samples proved to be more interesting..

e The gradual increase in R; with the number of cycles, it indicates a deterioration in the
conductivity of the internal materials, in particular the electrolyte.

e The increase of R, suggests greater difficulty in charge transfer due to thickening of
the SEI layer.

e The decrease of C4 corresponds to a reduction in the active surface area, probably
linked to a loss of porosity or the growth of resistive films.

e In cases where CPE has introduced, a systematic decrease in the exponent n was
observed with ageing, highlighting the increase in surface heterogeneity.

These trends, consistent with the physics of degradation, demonstrate the model's ability
to detect and quantify microscopic phenomena from macroscopic observables.

8.3 Graphical representation and comparison of conditions
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Degradation of the same cell
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Figure 12: Different SoH of the same cell

The results obtained were represented in the Nyquist plot and in the frequency domain to
visually verify the validity of the model. In the most typical cases, the fitting of the double RC
model (possibly corrected by a CPE) reproduced with high fidelity both the shape of the
semicircles and the low-frequency slope.

Particularly significant was the appearance of a second semicircle in the most degraded
cells: this phenomenon, which was not present in the initial measurements, was interpreted as
the emergence of a new resistive process associated with the SEI passivation film.

In the frequency domain, this evolution translates into a lowering of the peak frequency.
Wmax and an increase in the low-frequency impedance module.

8.4 Evolution of parameters and correlation with SoH

To correlate the variation in electrical parameters with the battery's state of health, a
parametric analysis was performed based on the number of cycles and the residual capacity
measured experimentally.

An almost linear correlation emerged between the relative increase in charge transfer
resistance and the loss of useful capacity:

Rct x Qnom - Qmeas —1— SoH
RCt,O Qnom 100

In other words, as R.; increase progressive deterioration in capacity is observed, with
different slopes depending on the operating temperature. Similarly, the parameter T = R..Cy;
tends to grow almost exponentially with the reduction of SoH, reflecting an overall slowdown
in reaction kinetics.

These relationships have made it possible to derive empirical models for the indirect
estimation of SoH from EIS measurements alone, according to the approach:

SoHgis = f(Ret, Riy Car, 1)
Where the function f can be calibrated on a reference sample or by means of multivariate

regression.
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The overall analysis of the results has made it possible to formulate a coherent view of
the dynamic behaviour of the battery during ageing:

e High frequency (10-100 kHz) — dominated by R;, shows slight and progressive
increases due to changes in electrolyte or collectors.

o Intermediate frequencies (1-100 Hz) — governed by R, e (g, where the most
evident effect of electrochemical degradation and SEI growth can be observed.

e Low frequency (<1 Hz) — diffusive regime, where the Warburg component or CPE
appears with n = 0.5, indicative of ionic transport limitations.

The overall impedance behaviour, observed both in terms of displacement of the
semicircles and variation in the slope of the diffusive branch, therefore describes an evolution
consistent with the ageing mechanisms known for lithium-ion batteries.

8.5 Conclusions

The use of the equivalent double RC circuit (extended with CPE in non-ideal cases) has
proven effective in characterizing and interpreting the dynamic behavior of the cells. Although
the relationship between parameters and response is not perfectly one-to-one, the strategies
adopted, such as regularization, sensitivity analysis, multi-condition fitting have made it
possible to obtain stable and physically consistent parameters.

Thanks to these measures, the model not only accurately reproduces the EIS data, but also
allows the variation in parameters to be correlated with the progressive degradation of the
battery, providing a quantitative basis for predictive estimation of the state of health.

This approach represents a key step between experimental measurement and engineering
interpretation of cell behavior, providing the theoretical platform for subsequent applications
of the model in diagnostics and prediction, such as integration into monitoring algorithms for
Battery Management Systems.
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9. Integration of the model into the diagnostic and predictive context

The next step involved integrating the equivalent circuit model into a broader context,
focused not only on the static characterization of the battery, but also on diagnostics and
predicting the evolution of its state of health. Once the model has been validated and the
consistency of the estimated parameters verified, it becomes a predictive tool capable of
simulating the battery's response under different operating or ageing conditions..

9.1. From the frequency domain to the time domain

The complex impedance model Z,(w) can be easily translated into the time domain using
the Laplace transform, obtaining the transfer function:

n
Rctk
Z =R-+Z—’
() = R; L4 T+ 5Ree 1 C

which describes the dynamics of voltage in response to a variable current signal. In the
time domain, the system's response to a current pulse is given by:

v(t) = i(t) * L7Z(s)} = i(t) * (Ri6(t) + Z Clkeﬁ)
k

where * indicates the convolution.

This allows the model to be integrated into dynamic simulators, such as
MATLAB/Simulink, to predict voltage behavior during charge and discharge cycles, based
solely on the parameters obtained from EIS fitting.

The validity of this representation was verified by comparing the simulated voltage with
experimental measurements during short current pulses: the two responses overlapped with
average deviations of less than 3%, confirming the model's ability to accurately reproduce
transient behavior as well.

9.2. Modelling of the parametric evolution

Once the trend of the main parameters over time (or number of cycles) has been
determined, empirical laws of evolution can be defined to describe the progressive degradation
of the system.

For example, the increase in charge transfer resistance can be modelled as an exponential
function.:

R (N) = Reto e
whre N represents the number of cycles and a a degradation coefficient.

Similarly, the reduction in double-layer capacity can be described by an inverse decay
law:
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Cdl,O

Ca(N) = 1+ BN

with B proportional to the rate of loss of the active area.

The combination of these functions allows for the generation of a predictive simulation
of the battery's future impedance, estimating in advance the evolution of its state of health.
This approach is particularly useful for the design of predictive maintenance systems, where
it is possible to plan the replacement or rebalancing of cells before degradation compromises
the overall performance of the battery pack.

9.3. Ildentification and tracking of the ageing phenomena

Through the temporal variation of Nyquist parameters and features, it was possible to
distinguish three macro-families of degradation phenomena:

1. Chemical degradation
¢ Constant increment of R;.

e Caused by loss of conductivity in the collectors or increased resistivity of the
electrolyte.

2. Interface-electrolyte degradation
e Increase of R and reduction of Cy;.

e Associated with thickening of the SEI, loss of active area, or accumulation of
resistive films.

3. Diffusive degradation
e Appearance or intensification of the low-frequency inclined branch.

e Often described by a CPE with n = 0.5 or by a finite Warburg coefficient,
indicative of ion transport limitations in the active material.

Each phenomenon leaves a distinctive trace in the EIS curve and can be monitored
through changes in the associated parameters.

All this information allows not only to estimate the state of health, but also to diagnose
the nature of the degradation (ohmic, interface, diffusive), providing a complete
interpretative picture..

Once identified and parameterised, the equivalent model can be integrated into a BMS to
provide online health estimates and predictive diagnostics. Under operating conditions, the
BMS can acquire partial impedance measurements (e.g. on a reduced frequency window or
using pulse spectroscopy techniques) and compare them with the response simulated by the
model..

The residual error between measured and simulated impedance:

£(®) = |Zyis(w) = Zinoa(w)]
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becomes an indicator of divergence from nominal behaviour, useful for estimating SoH in
real time or detecting the onset of localised anomalies.

The implementation of this approach in the BMS therefore allows:
e monitoring of the battery without interrupting its operation;
e cstimation of internal degradation without complete capacity tests;

e dynamic updating of model parameters through adaptive identification (e.g. Extended
Kalman Filter)..

9.4. Towards an adaptive and predictive model

The natural evolution of the work would be to extend the static model to an adaptive
model, in which the equivalent circuit parameters are continuously updated based on real-time
measurements.

In this context, the use of an extended Kalman filter (EKF) or an unscented Kalman
filter (UKF) allows the model parameters to be estimated recursively, assuming that their
dynamics are described by a system of equations in state space.:

{é(t) =F(6,u,t) +w(t)
z(t) = H(O,u,t) + v(t)

where w(t) and v(t) represent process and measurement noise, modelled as Gaussian
with zero mean.

In this way, the system is able to continuously estimate and correct the values of R;, R,
Cq4; and n, tracking battery performance in real time and providing autonomous predictive
diagnostics.

9.5. Conclusions

The modelling and identification process carried out made it possible to transform the
EIS data into a quantitative and predictive model of the battery's health status. Thanks to the
selection of an equivalent circuit that is balanced in terms of complexity and interpretability,
and the application of advanced identification techniques, the model is:

e stable and consistent from a physical point of view;

e capable of accurately representing the experimental response;

e usable for dynamic simulations and SoH predictions;

e integrable into intelligent management systems for monitoring and predictive
maintenance.

The work carried out has therefore traced the path from experimental measurement to
electrical modelling, up to integration in a digital diagnostic framework, laying the foundations
for further developments towards the optimization of adaptive models and the extension of the
EIS approach to complex battery systems, such as multi-cell modules or high-power packs. In
order to create a product capable of making these results commercially useful, a packaging
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study would be required for the creation of a portable impedance meter capable of performing
measurements over a frequency spectrum relevant to the type of battery under consideration,
while complying with all the requirements set out in this thesis. However, for this device to
yield useful results, it would obviously be necessary to launch a huge measurement campaign
on different models of automotive batteries, capable of creating a shared database from which
reference data could be extracted and enriched with each new diagnosis.
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