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Supervisors: Prof. S. Tamea

Prof. G. De Lannoy

Co-supervisor: L. Busschaert

Academic Year 2024/2025





Acknowledgements

I would like to thank Politecnico di Torino for the scholarship that enabled me to
spend six months at the renowned Katholieke Universiteit Leuven.

I would also like to thank my supervisor, Professor Stefania Tamea, for supporting
my decision to write my thesis abroad and for recommending Professor Gabrielle De
Lannoy as my supervisor in Leuven.

Words cannot express how grateful I am to Gabrielle for trusting me even before she
knew me and for demonstrating her support throughout my time in Belgium. Her
knowledge and willingness to help enabled me to tackle the complex topics of this
thesis.

To Louise Busschaert, for your commitment and dedication in providing technical,
theoretical, and emotional support. During those busy months, you always found
time to help me in countless ways.

To Jonas, Devon, and Lucas (and Louise, again) for the daily waves of positive vibes
in the “Coolest Christmas Office”. It was always so pleasant to wake up and go to
work, knowing you were already there sticking Post-its on the hate wall.

To Michel, Marit, Fien, Brian, Yoojin, Hugo, Arijit, Jan, Elise, and to everyone in
the Soil & Water division for all the moments we shared. From growing crops in the
Geogarden, to weekends on the Belgian coast, karting in Brussels, and the countless
walks and runs in the forest, not to mention all the kitchen meetings to eat some
sweets for whatever reason.

I want to thank all my university friends and colleagues, especially Kiarash and
Azizullah, who shared lots of memories with me during these last two years in Turin.
University is nothing without community. I hope I was a good example to you as
you were (and still are) to me.

Ad Annamaria, Lorenzo, Annibale, Ginevra e Sara per il vostro indispensabile sup-
porto emotivo. Siete sempre stat3 presenti e disponibili, anche a mille chilometri di
distanza.

Alla mia famiglia, per aver creduto nei miei progetti e per esservi presi cura di
me nel momento del bisogno. Mi dispiace essere stato lontano quando avrei dovuto
ricambiare il sostegno.

Al Kontiki e tutt3 coloro lo animano, per essere state la mia seconda casa e famiglia,
un posto in cui rifugiarmi e sentirmi accolto, in cui esprimere l’affettività in modo
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Abstract

The AquaCrop crop growth model of the Food and Agriculture Organization was

recently integrated into NASA’s Land Information System Framework. This allows

unprecedented crop estimation and satellite data assimilation (DA) experiments at

regional scales. Satellite DA aims to combine a model and observations to reduce the

uncertainties in crop estimates. This thesis assimilates the Copernicus fraction of

vegetation cover (FCOVER) product to update the canopy cover (CC) and biomass,

and consequently winter wheat yield estimates, in the Piedmont Region of Italy

between 2017 and 2023. After calibrating the crop parameters, testing the model,

and developing the DA routines, three model ensembles (modes) were generated by

perturbing the model in various ways to estimate the model forecast uncertainty.

Forcing data and state variables were perturbed in all modes; mode 1 included

perturbation bias correction, mode 2 did not, nor did mode 3, which included an

additional variation of parameters. Next, the FCOVER observations for winter

wheat were assimilated with an ensemble Kalman filter. The results were compared

with other satellite products and field surveys of yield.

The ensemble mode 3 with the most degrees of freedom led to the best model-

only simulations compared to reference data, and came with the strongest DA up-

dates. The DA improved CC by design and enhanced the model’s dry above-ground

biomass production; however, yield estimates showed no clear improvement for all

ensemble modes. The DA increments to CC were constrained by a potential upper

boundary (CCpot), either as a result of exceeding physical boundaries or due to the

asynchrony between the model’s sowing date and the observations, and this in turn

limits the updates to yield. On balance, the most promising DA results were ob-

tained for the ensemble mode 2. Further studies are needed to understand how to

address the uncertainty of the planting date or crop stages in general, and investigate

the joint assimilation of soil moisture retrievals to overcome the degradation due to

vegetation DA updates during the information propagation within the model.
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Acronyms

i.c. Initial conditions

CGLS Copernicus Global Land Service

CLMS Copernicus Land Monitoring Service
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LIS(F) Land Information System (Framework)

LSM Land Surface Model

M1/M2/M3 Mode (experiment) 1/2/3

MERIT-DEM Multi-Error-Removed Improved-Terrain Digital Elevation Model

v
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Chapter 1

Introduction

As greenhouse gases continue to accumulate in the atmosphere and extreme mete-

orological events become stronger and more frequent (IPCC, 2021), it has become

crucial to estimate their impact on crop production to implement adaptation strate-

gies. The risk associated with the climate crisis can be tackled on three different

levels, by i) reducing the danger through mitigation of the extreme events, ii) limit-

ing the exposure of people and human activities to such events, and iii) decreasing

the vulnerability when the occurrence is inevitable (IPCC, 2022). The first option is

the most effective; however, the temporal inertia of both the policy implementation

and the climate system will result in increased frequency and intensity of danger-

ous accidents in the upcoming years (Riahi et al., 2017; Tebaldi and Friedlingstein,

2013). The extensive nature of the agricultural system leaves little space for expo-

sure limitation, and therefore risk must be addressed on the vulnerability level.

A better understanding of the dynamics of the agricultural ecosystem can help

farmers and institutions to manage and plan the use of resources more efficiently.

Furthermore, mid-range (i.e. seasonal) weather forecasting, coupled with crop mod-

els, can help in the short-term adaptation strategies. Several mathematical models

have been developed in an attempt to represent the field dynamics (Di Paola et al.,

2016). However, these models depend on a large number of parameters. They are

also heavily influenced by the system’s initial conditions (i.c.), which are the values

of the state variables at the beginning of the simulations. Additionally, local impacts

are difficult to model due to i) the coarse scale of meteorological forcings, ii) the

heterogeneity of local soil conditions, and iii) the complexity of crop-specific char-

acteristics (Stöckle and Kemanian, 2020). Therefore, while models are continuously

refined to describe reality more accurately, it is useful to explore whether other ap-
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proaches can overcome the fundamental limitations of this simplified representation.

The last decades have seen an exponential increase in the number of satellites.

According to the UCS database (2023), more than one thousand of these are dedi-

cated to Earth Observation (EO). Alongside the quantity, the resolution, the spectral

coverage, and the data processing have also improved (Belward and Skøien, 2015).

EO systems produce powerful datasets that provide “high-frequency, extensive data

for tracking environmental changes, assessing ecosystem health, and supporting re-

source management” (Zhao and Yu, 2025). However, satellite data also comes with

its downsides: it is non-continuous, both spatially and temporally, and it is still

subject to uncertainty.

Both crop models and EO have their strengths and limitations. Fortunately,

there is a mathematical procedure that enables these two sources of information to

interact and blend to produce the best possible analysis of a system’s state by opti-

mising uncertainties and filling any gaps. This procedure is called data assimilation

(DA) (Lahoz and Schneider, 2014).

1.1 Research goals

The assimilation of satellite-borne data is an innovative approach to reduce uncer-

tainty in crop yield estimates. Over the past few decades, DA has been applied and

studied in multiple contexts using different approaches (Moradkhani et al., 2018).

This thesis aims to explore the advantages of incorporating readily available opti-

cal satellite data into crop yield modelling. The selected case study focuses on the

production of rainfed soft winter wheat (WW) in Italy’s Piedmont region, between

2017 and 2023.

Agriculture covers around 35.6% of the region’s surface (Cavaletto, 2025). Ac-

cording to the Piedmont Region Data Warehouse (also known as the Anagrafe Agri-

cola Unica del Piemonte), the main grain crops are maize (20.5% of the cultivated

area), rice (20.5%) and wheat (14.0%, 96.6% of which is soft). These crops are

distributed heterogeneously throughout the region, with some areas, such as the

province of Vercelli, where rice production is concentrated, and the Alessandria

2
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area, which focuses more on wheat. Although WW is only the third most impor-

tant grain crop in the region, the area’s climate allows farmers to grow it relying

purely on direct rainfall. This information influenced the crop selection for the

study, since a variable dependent on human action, such as irrigation, could mask

the meteorologically induced interannual and spatial variability of crop yield.

The main objective of this study is to identify and quantify the ad-

vantages of using satellite data assimilation to update crop canopy cover

and biomass in a crop model at the regional scale, as opposed to the use

of the model alone.

1.2 Crop modelling

Like every living being, plants are complicated. The path from seed germination to

the quantification of the harvest is far from straightforward. Furthermore, different

species and cultivars can behave in many different ways. Plant growth depends

heavily on the environmental context, including geographical location, water avail-

ability, the presence of macro and micro nutrients in the soil, soil texture, proximity

to other plants, pests and diseases, salinity, and many other variables.

In an attempt to capture the main physical drivers in this process, various models

have been developed since the late 1960s (Bournan et al., 1996; Di Paola et al.,

2016). These models can be more or less complex, for example, by including or

excluding nutrient dynamics, and can be more general or focused on a particular

class of crops. Two main categories can be identified based on the goal of the

simulations: i) explanatory models, which aim to precisely describe specific crop

dynamics, usually characterised by a high amount of input data and parameters,

and ii) predictive models, where the highly detailed mechanics leave space to the

need for robustness, replicability and yield prediction (Di Paola et al., 2016).

Another useful classification is the spatial scale of the model application. The

majority of the models have been developed at the field scale, allowing for an ac-

curate calibration. However, their practical application may be limited, since a

smaller scale leads to a lower predictive power. Therefore, large-scale models have

3
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been developed either directly (Bondeau et al., 2007; Challinor et al., 2004; Deryng

et al., 2011; Hennicker et al., 2016; Osborne et al., 2015) or by converting and test-

ing field-scale models (Balkovič et al., 2013; Boogaard et al., 2013; de Roos et al.,

2021; Liu et al., 2007; Stöckle et al., 2014) in order to perform climate analyses or to

help regional authorities and policymakers. Regionalisation of crop models is often

obtained through some coupling with Geographical Information Systems (Liu et al.,

2007).

The model used in this thesis is the Food and Agriculture Organization of the

United Nations (FAO) crop growth model AquaCrop. It was originally developed

at the field scale, but it has recently been extended to run at the regional scale

(Busschaert et al., 2022; De Lannoy et al., in review; de Roos et al., 2021). AquaCrop

was primarily developed to simulate annual crops and, at its core, it utilises a simple

water balance. Since its release, it has been continuously improved, while preserving

a limited set of parameters and a simple setup, as the “target users [are] water

user associations, consulting engineers, irrigation and farm managers, planners and

economists” (Raes et al., 2025a).

While the most important AquaCrop processes are described in Section 2.2, it is

useful to introduce the concept of the general state-space model to lay the founda-

tions for the techniques used in this thesis. The primary objective of a model is to

estimate certain state variables. These can include leaf area index, soil water con-

tent, and biomass, among others. Their evolution is usually described by a system

of partial or ordinary differential equations, and the general solution in discretised

intervals can be described as follows:

xi+1 = f i+1,i(xi,ui+1,α), (1.1)

where the n state variables xi+1 (vector of size [n × 1]) are computed at time step

i + 1 based on the previous time step xi (which can also be referred to as initial

conditions, i.c.), some fixed parametersα and on external inputs ui+1. The evolution

is described by the non-linear system function f i+1,i.

Process-based models are usually deterministic, i.e. they do not intrinsically
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consider uncertainties. Therefore, an exact set of values for xi, ui+1, and α would

produce exact solutions. However, as the reader may appreciate, the knowledge

of the agricultural system is far from exact. Thus, the model’s output must be

interpreted as an estimate (i.e. x̂i) of the true values, to take into account for model

error (Reichle et al., 2002).

1.3 AquaCrop

AquaCrop is a crop growth model initially developed by FAO to simulate crop

yield production in response to water availability, calculate irrigation requirements,

and analyse management practices. It has been available with a graphical user

interface (GUI) since 2009, and has only recently been converted from Delphi/Pascal

to Fortran 90, expanding its applicability (De Lannoy et al., in review).

The model focuses on herbaceous annual and, more recently, on perennial crops.

The concepts are summarised in Figure 1.1. Plant development follows an iterative

computation of the canopy cover (CC) in response to soil water availability. CC,

which describes the soil fraction (0 ≤ CC ≤ 1) covered by green material, plays

a role in evapotranspiration (ET ), which in turn influences the water balance and

simultaneously drives dry biomass production (∆B+). Finally, the Harvest Index

(HI) quantifies the amount of accumulated biomass that constitutes the crop yield

(Y ).

1.3.1 Water balance

Soil is a porous medium typically filled with two fluids: air and water. It can be

considered as a water reservoir, with multiple inputs and outputs. Water content in

soil is generally quantified in terms of the volumetric or mass ratio of water to soil.

AquaCrop is based on volumetric water content, defined as θ [m3
water m

−3
soil].

Soil water content can be replenished via rainfall, irrigation, or capillary rise.

From a mechanical point of view, regardless of the soil type or texture, an excess

of water results in surface runoff or percolation due to the gravitational force. Con-

versely, the surface tension and capillary forces allow some water to be retained, a
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Figure 1.1: Flow chart of AquaCrop, available in the first chapter of the model’s

manual, with the main interactions (continuous lines) and the feedbacks (dashed

lines) between the processes. All the elements present in the chart can be found in

the original AquaCrop manual, Chapter 1 (Raes et al., 2025a).

quantity known as field capacity (θFC). In addition to these processes, water can

evaporate directly from the topsoil, or it can be taken up in the root zone and tran-

spired by the vegetation. Water uptake is driven by osmosis; therefore, not all of it

can be extracted from the soil. This level of depletion results in stress for the plant,

and the residual water is known as the wilting point (θWP ).

In the model, the differential flow equation is converted into a set of finite differ-

ence equations (Raes et al., 2025c); that is to say, the soil profile is subdivided into

multiple compartments. The link between the soil water balance and crop develop-

ment occurs through a two-way pathway: transpiration (Tr [mm day−1]) directly

depends on CC [-], but a shortage of water can also result in stomata closure, lead-

ing to a reduction in Tr and slower crop growth. This codependence can be resolved

if certain crop characteristics are known.

6



CHAPTER 1. INTRODUCTION 1.3. AQUACROP

1.3.2 Canopy development

Before running the simulations, AquaCrop requires a crop calibration. The following

description focuses on winter wheat (WW), an annual grain crop that is sown directly

in the fields. As shown in Figure 1.2, CC development can be divided into different

growth stages. First, the crop is sown, taking a certain amount of time to germinate.

After the germination phase, described in AquaCrop as the time for the 90% of seeds

to sprout, CC is set to an initial value CCo = cci · d, where cci is the surface area

covered by a seedling [m2
veg], multiplied by the plant density d [m−2

soil]. From that

point onwards, the plant growth is determined by a combination of two functions:

an exponential growth, followed by an exponential growth decay (Raes et al., 2025c):

CC = CCo e∆t·CGC if CC ≤ CCx

2
, (1.2)

CC = CCx −
CC2

x

4CCo

e−∆t·CGC if CC >
CCx

2
, (1.3)

where CCx [-] is the maximum canopy cover that the plant can reach without expe-

riencing stress, and the canopy growth coefficient (CGC, [°C−1 day−1] or [day−1])

determines how quickly this value can be reached. Although the model operates at

a daily resolution, crop development can also be based on thermal units, a heuristic

tool called Growing Degree Day (GDD, [°C day]). Therefore, ∆t can be interpreted

as either days or cumulative GDD depending on the calibration criteria used.

GDD are usually computed as the cumulative amount of degrees above a certain

threshold, called base temperature (Tbase [°C] ), that describes the lower limit below

which the plant cannot grow. Since AquaCrop runs at a daily resolution, a simplified

equation is introduced:

GDDi =
Tmax,i + Tmin,i

2
− Tbase, (1.4)

using the daily maximum and minimum recorded temperatures. Note that Tmax,i

[°C] is bounded by an upper limit (Tupper [°C] ) above which crop development no

longer increases with an increase in air temperature.
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To prevent the exponential growth decay from continuing indefinitely, the canopy

is set to CCx as soon as CC = 0.98 ·CCx. The moment at which the crop reaches its

maximum occurs before the middle part of the flowering stage. While B [t ha−1] is

accumulated from the start of the growth stage, this is the moment when the plant

begins to allocate resources to the harvestable product. As soon as the mid-season

ends, senescence begins, following this equation:

CC = CCx

1− 0.05

e

3.33 · CDC

CCx + 2.29
(∆t−∆tsen)

− 1


, (1.5)

where CDC ([°C−1 day−1] or [day−1]) is the canopy decline coefficient, which behaves

similarly to CGC, and ∆tsen ([°C day] or [day]) is the time from sowing to the start

of the senescence stage. The operator must set the length of the different stages to

match the specific crop phenology within the area under investigation.

This set of equations describes the crop behaviour under perfect conditions. How-

ever, there are four main mechanisms that can interfere: i) extreme temperatures

interrupt the growth, ii) water stress affects CGC and triggers early senescence, iii)

salinity imbalances may reduce CCx (not considered in this study), and iv) a lack of

nutrients in the soil or management practices can impact every stage of the canopy

development, so CGC, CCx and the ability to maintain the maximum cover during

the mid-season (De Lannoy et al., in review).

The implementation of these stresses follows different paths. Fertility impacts

are introduced as parameters, even though these can vary during the first part of

the growing season. Salinity can vary due to the quality of the irrigation water used.

Temperature stresses are directly determined by the forcings, thus influencing the

state variable CC. The most complex effects are produced by the water balance,

and the water stress must be re-computed daily during the simulation.

The actual CC is then used to compute the transpiration (Tri [mm day−1]) at

any given time i:

Tri = Ksi (KcWW,i CC∗
i ) ETo,i, (1.6)

where CC∗ is the corrected canopy cover taking into account the interrow micro-
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advection (which enhances Tr). Ks [-] (0 ≤ Ks ≤ 1) is the stress factor, including

both cold and water stresses. ETo [mm day−1] is the reference evapotranspiration,

computed using the FAO Penman-Monteith equation (Allen et al., 1998). Kc [-] is

the proportional factor, used to correct ETo from the reference grass to WW (Raes

et al., 2025a). Tr is then fed back into the water balance for the next day.

Figure 1.2: Canopy and root development along with the relative stages. Modified

from figure 2.10b1 in Raes et al. (2025b).

1.3.3 Biomass and yield production

Transpiration is a vital process for plant life, as it drives the transport of nutrients

from the root zone to the leaves, it cools down plant tissues, and allows CO2 to be

absorbed through the stomata. A strong relationship has been observed between

transpiration (Tr) and biomass production (Steduto et al., 2007). The accumulation

of biomass in the model is therefore described by the following equation:

Bi = Bi−1 +WP ∗ Tr

ETo

, (1.7)

where B [t ha−1] is the cumulative dry above-ground biomass, and WP ∗ [t ha−1]

is the normalised water productivity. As a final step, the dry yield is computed as

9
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follows:

Y = fHI HIo B, (1.8)

where HIo [kgy kg−1
B ] is the reference Harvest Index, which is cultivar-specific, and

fHI [-] is the adjustment factor that takes into account all the stresses (i.e. water,

heat and cold) that the plant sustained during the critical stages of Y formation.

AquaCrop presents another indirect link between B and CC. As previously

mentioned, the fertility stress is a parameter that affects CC in various ways. Its

purpose is to describe the finite amount of nutrients in the soil, which are depleted

as the season progresses. However, if other stresses affect plant growth more signifi-

cantly, the nutrients are consumed at a slower rate, increasing their availability later

in the season. This additional fertility is therefore modelled as a reduction in soil

fertility stress as a function of B. If the other stresses fade away, CC would be able

to grow more rapidly than normal. This example has been provided to highlight the

complexity of the system and to address the precise mechanics before altering the

state variables through DA.

1.4 Remote sensing in agriculture

The collection of data at the field scale is a common practice in the agricultural sec-

tor. From rain gauges and thermometers to soil moisture probes and pyranometers,

there are countless tools used to understand, monitor, and predict environmental

variables to guarantee an optimal crop health and production. However, the extent

of the cultivated surface requires equally extensive coverage for those variables, and

point measurements need to be extrapolated to cover such a large area. Point data

may not be fully representative of the condition of a field, due to either sensor’s

errors or spatial heterogeneity (Hendrickx et al., 2025). Technologies and scientific

procedures are being developed to tackle the lack of spatial representativeness. For

example, cosmic-ray neutron sensing (CRNS) is used to expand the spatial coverage

of top soil moisture to hectometric scale (McJannet et al., 2017). To cover regional

to global scales, the airborne and spaceborne missions are needed, with satellites for

earth observation being the most optimal solution to guarantee both good spatial

10
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and temporal coverage.

Earth observing remote sensing systems are characterised by three main ele-

ments: the sensor that collects the signal, the radiative interactions with the Earth’s

surface, and the processing to clean the information and deliver useful products. Ob-

servations in the agricultural sector can be collected in the visible, thermal infrared

(TIR), and microwave bands of the radiative spectrum. Visible and infrared sig-

natures can provide useful information about plant development, canopy efficiency

in absorbing photosynthetically active radiation, and biomass productivity (Moulin

et al., 1998), through either chlorophyll fluorescence or red and near-infrared (NIR)

reflectance. Passive and active microwave sensors operating in the 1-2 GHz (L-band),

4-8 GHz (C-band), and 8-12 GHz (X-band) ranges can also be used to measure veg-

etation water, and are very often used for the retrieval of SM data (de Roos et al.,

2024; Draper et al., 2012; Wigneron et al., 2017).

This study uses the fraction of vegetation cover (FCOVER) from the Copernicus

Global Land Service (CGLS) (2017) as its fundamental satellite product. Informa-

tion about green vegetation cover can be obtained from the green and red bands

in the optical spectrum and processed using machine learning to produce a reliable

dataset. However, the information coming from Earth’s surface, through the sen-

sor’s lenses, and being converted from spectral information to a simple number is

certainly affected by errors. Different land cover classes within the same pixel can

contaminate the signal, and imperfections in the transmission and processing of in-

formation can introduce noise, resulting in representativeness error and increasing

uncertainty in general.

1.5 Data assimilation

Kalman filter

As mentioned above, the model can only ever provide an estimate of x, which is

a vector of n state variables. The Kalman Filter (KF) can be used to reduce the

overall state estimation error through a combination of modelling and observations.

11
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Its general form can be written as follows:

x̂+
i = x̂−

i +Ki(y
o
i −H ix̂

−
i ), (1.9)

where yo are the m observations (vector of size [m × 1]), and the superscripts −

and + indicate the forecast (obtained from the model at a certain timestep i) and

the analysis of the variables (which will be fed to the model to compute x−
i+1),

respectively. K [n×m] is known as the Kalman gain:

K =
PHT

HPHT +R
. (1.10)

Its purpose is to allocate the optimal weights to the forecasted state variables and

observations while taking into account their respective variance-covariance matrices,

(P [n × n] and R [m × m]). The observation operator, H [n × m], connects the

state space and observation space, which would otherwise be incomparable, since

they usually belong to different physical domains. To understand how K works, it

is sufficient to note that if the forecasted state uncertainty P is close to zero, K

would also tend to zero, and Equation 1.9 would result in x̂+
i ≈ x̂−

i . Conversely,

if the observation uncertainty is low, K tends to 1 and the innovation (yoi −H ix̂
−
i )

would be almost entirely included in the analysis.

It should now be clear that the nature of the KF requires knowledge of the

uncertainties in both the model and the observations, and the former of these are

generally unknown and vary in time and space. Furthermore, the error covariance

between the modelled state variables and the associated ‘observation’ predictions

(state mapped into observation space) PHT and the error variance matrix of the

simulated ‘observation’ predictions HPHT need to be fully described. The most

effective strategy to solve these problems is to implement an ensemble Kalman Filter

(EnKF). In fact, by perturbing the state variables x̂−
i , the external forcing ui and

the model parameters α, it is possible to generate a set of simulations that differ

slightly from each other, called an ensemble. At each timestep, a variance-covariance

matrix Cov(x̂−
i , ŷ

−
i ) [n×m] can be computed based on the spread of the ensemble

members’ state x̂−
i and ‘observation’ predictions ŷ−

i . Equation 1.10 can now be

12
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rewritten in the following form:

Ki =
Cov(x̂−

i , ŷ
−
i )

Cov(ŷ−
i , ŷ

−
i ) +R

, (1.11)

where the only external input is R, which can be retrieved from the observation

provider or by estimating the uncertainty of the sensor and the retrieval process.

However, there are downsides to using a filter like the KF. Its statistical founda-

tions do not take into account physical conservation laws, meaning that the output

of what would otherwise be a continuous function may exhibit discontinuities (Janjić

et al., 2014), and need to be constrained to the physical bounds set by parameters.

To avoid discrepancies, one could update all the state variables and parameters in-

volved in the system, or choose a Particle Batch Filter or Smoother. During the

development of this thesis, these options were considered, but the KF turned out to

capture the dynamics reasonably well, and it is ideal for future real-time updating

and forecasting. Sticking to the Kalman filter raised interesting science questions

that could be explored further.

State-of-the-art in crop modelling DA

DA in crop modelling has mainly been focused on parameter estimation using

vegetation-specific observations at the field scale. The studies that applied DA

for state updating have often used an EnKF (Ines et al., 2013).

To date, the main assimilated satellite-borne variable is LAI, but DA procedures

have also been developed for soil moisture, vegetation indices, reflectance, above-

ground biomass, canopy nitrogen accumulation, and canopy cover (Dlamini et al.,

2023). Satellite-based LAI data have been used in regional crop DA to improve

the spatio-temporal variability of crop simulations, because a correction of absolute

values is sometimes difficult due to biases and coarse spatial resolution (Chen et al.,

2018; Jin et al., 2022). Remotely sensed canopy cover (FCOVER) has been used

less because most crop models have LAI as a state variable. However, canopy cover

retrievals have less long-term biases (Tenreiro et al., 2021) compared to models,

when the latter use canopy cover as a state variable.

13
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Nevertheless, assimilation of FCOVER introduces additional challenges, which

are discussed later in Section 3.2.2. As of the publication date of this thesis, the au-

thor is not aware of any regional crop data assimilation based on FCOVER retrievals

that have already been published in the scientific literature.

14



Chapter 2

Data and software

2.1 Study area

The analysis was carried out in the Piedmont region of Italy. The main reasons for

this choice were the presence of a considerable production of winter wheat and the

extensive availability of georeferenced data, which could be easily accessed via online

portals such as Geoportale Piemonte and the Data Warehouse Anagrafe Agricola.

Many layers were obtained from the former. The topsoil texture map was the small-

est of these layers and therefore determined the extent (44°18’07.5”N 7°07’13.9”E

to 45°45’26.8”N 9°10’26.8”E) of the Region of Interest (ROI) (Regione Piemonte,

2023a). This resulted in the exclusion of mountainous areas within the region, where

wheat production is negligible.

Piedmont is the far-west part of the Po Valley, where the major Italian river rises.

Being surrounded by the Alpine mountain range is a benefit from an agricultural

point of view, because the solid accumulation of water on top of it provides a steadier

water supply to the valley. The historical, cultural, and economic development

has been shaped to coexist with such environmental conditions. At the mountain

foothill, a complex irrigation system was developed even before 1850 and is still in

use today, allowing for the cultivation of more water-demanding crops (Baird Smith,

1852). Meanwhile, in the plains around Alessandria, rainfed agriculture of winter

wheat is still the major activity.

The spatial variability in crop production is not determined by precipitation

dynamics. A heterogeneous precipitation pattern indeed characterises the region,

and five different clusters can be identified (Baronetti et al., 2018). However, the two

clusters covering the ROI have similar precipitation distributions, with an average of
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Figure 2.1: Infographic map of the Piedmont Region, Italy, with information

related to elevation (Farr et al., 2007), lakes (Regione Piemonte, 2017), provincial

capitals and administrative boundaries (ISTAT, 2024). On top of it, the region of

interest (ROI) considered for this study is displayed.
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∼1000 mm of precipitation per year. This information has been used while choosing

the calibration criteria explained later in Section 3.3.1.

The ROI was obtained from the borders of the vector geometries of the Soil

texture map. Since the simulations were performed based on latitude and longitude,

the map was transformed from the Universal Transverse Mercator projection of the

World Geodetic System 1984 (WGS 84 / UTM zone 32N, EPSG:32632) to the

WGS 1984 (EPSG:4326). It was then rasterised using the grid of the assimilated

satellite-based CGLS FCOVER data as a reference (CGLS, 2017). This was done

to ensure a perfect overlap of all subsequent layers cut with it. The grid had an

angular resolution of 1/336° (∼300 m). A second ROI reference grid was obtained

by reducing the resolution to 1/112° (∼900 m), while still ensuring a perfect overlap

between the two. This double reference was necessary because the model would run

at a resolution of 900 m to keep the computational costs limited, while the satellite

products would be fed to the Land Information System without being upscaled.

2.2 Modelling tools

2.2.1 NASA - Land Information System Framework

AquaCrop has been designed to model crop development at the field scale (< 1 ha).

To enable regional or global analyses, it has recently been integrated into the Land

Information System Framework (LISF) (Kumar et al., 2006; Peters-Lidard et al.,

2007), which was developed by the National Aeronautics and Space Administration

(NASA) (De Lannoy et al., in review). This framework is optimised for scalable runs

with different Land Surface Models (LSM). It is a flexible tool that improves model

estimates of land surface conditions by assimilating satellite or ground observations

(Kumar et al., 2006; Peters-Lidard et al., 2007). It is written in Fortran 90, an

efficient coding language that is widely used in high-performance computing systems.

LISF comprises a core program, the Land Information System (LIS) which hosts

the models and assimilation module, a front-end processor (Land Data Toolkit,

LDT), and a post-processor (Land Verification Toolkit, LVT). LDT is a key compo-
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nent of data management and homogenisation. Among all the things, it is designed

to i) read and process the native (or raw) data files from the format provided by

their sources into a common grid, ii) apply quality control, and iii) generate the

model initial conditions (Arsenault et al., 2018). In this analysis, the post-processing

procedure was performed outside of LISF.

2.2.2 AquaCrop 7.2 integration

AquaCrop is composed of a multitude of parameters and processes that can be

adapted to the specific conditions of the analysed fields. In the recent LIS integration

(referred to as LIS-AquaCrop), some processes, such as varying groundwater levels,

crop rotation, perennial crops, and salinity stress, as explained by De Lannoy et al.

(in review), have not yet been included. Future development may also improve soil

information by providing the ability to define different layers with different textures

and thickness.

Another important aspect of the integration of AquaCrop in LIS is that it does

not consider lateral fluxes. Losses via runoff are simply taken out of the grid cell

without being reallocated to a neighbouring cell. Consequently, LIS-AquaCrop sim-

ulations currently lack interaction between adjacent pixels with regard to the water

balance. However, many models are characterised by these same horizontal settings,

even land surface models such as Noah-MP (Yang et al., 2011).

2.2.3 Additional tools

The process of collecting, interpreting, and managing raw georeferenced datasets was

partly conducted using the free and open-source Quantum Geographic Information

System (QGIS) in version Prizren 3.34.13. LIS simulations were run and stored on

the Linux-based KU Leuven Tier-2 clusters of the Vlaams Supercomputer Centrum

(VSC) High-Performance Computing (HPC) system. Access to its computational

power was via an on-demand connection, either directly or by opening interactive

sessions on the available version of Visual Studio Code. LDT and LIS outputs were

managed and visualised using Python version 3.6.8.
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2.3 Data

All the data useful for the analysis, and their respective sources, are listed below.

Due to the heterogeneous nature of the various input sources, they must be prepro-

cessed to ensure consistency. Spatial data has mainly been pre-processed in QGIS.

They were integrated with the rest of the analysis through the Python-based VS-

Code. Data management with Python and LIS was based on netCDF files, which

use different georeferencing criteria compared to QGIS TIFF files: the former points

at the centre, while the latter points at the top left corner of each pixel. It is im-

portant to manage the data carefully to avoid any subtle grid mismatch during the

process.

2.3.1 Crop masks

A crucial aspect of the entire analysis is precisely locating when and where WW was

cultivated in order to model WW (and perform the DA) in the correct locations.

Years for which this information is missing cannot be taken into account. The

first available products were the crop maps at the parcel level (1:2000) for the years

2021-2023 (Regione Piemonte, 2022, 2023b, 2024b). To extend this timeframe, other

products were considered, such as the EU Crop Map 2018 (D’Andrimont et al.,

2021). To increase the number further, the possibility of generating additional ad-

hoc maps was investigated using the WorldCereal “Private extraction” procedure

and the “Custom crop type map” model, freely available on GitHub (Van Tricht

et al., 2023). However, both the EU Crop map and the custom crop maps were no

longer necessary as soon as the new High Resolution Layer Croplands product of

the Copernicus Land Monitoring Service was released (CLMS, 2025). This product

covers the period between 2017 and 2021. For the overlapping year (2021), the

parcel-level product was chosen due to its higher resolution.

The same preprocessing procedure was followed for each year. All layers were

merged and transformed from WGS 84/UTM Zone 32N to WGS 1984. Then, a

Boolean filter was applied to extract only the wheat fields, which were rasterised

at a high resolution (10 m), and clipped to the domain. Using the 300-m reference
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grid, the percentage of WW fields was computed for each pixel, and, finally, only

those where at least 70% of the area was covered by wheat were kept. The same

procedure applies to the Copernicus Crop Layers, except that they are distributed

directly as 10-m resolution rasters.

2.3.2 Observed yield

Of all the required data, ground data plays a major role in many of the steps in this

analysis. First, observed crop yield is used as a reference for crop calibration. Some

simpler runs were performed using the AquaCrop GUI to minimise the discrepancy

between the predicted crop yield and the actual ground yield observations. Next,

soil texture, field extent, and soil depth, among other in-situ parameters, must be

collected to enhance the model’s accuracy and performance. Finally, at the end of

the simulations, the yield is used to validate and quantify any improvement in the

DA compared to the model alone. Given its importance, the more ground data, the

better. Since the analysis is performed on a regional scale and over several years,

it would be ideal to obtain validation data with the same spatial and temporal

resolution.

Data Warehouse

One of the initial datasets that best covered the domain was the annual agricultural

production for each crop type and municipality, which was provided by the Piedmont

Region Data Warehouse (Regione Piemonte, 2024a). However, upon examining the

distribution of the crop yield values, the modelled origin of the dataset became

apparent. Almost all the values were confined to the range 5.5-6
ton

ha
, or around

4.5
ton

ha
, with a clear gap in between. Production estimates were actually obtained

using the extent of the fields and a modelled yield for different climate zones.

GYGA

The second-best option for validating the analysis came from the Global Yield Gap

Atlas (GYGA, 2021). This dataset attempts to harmonise various data sources
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across the globe and is accessible at a national level, via climate zones and via

stations. However, the resolution is quite low, and only one station is available

across the entire ROI. Therefore, using GYGA data would only provide data for

temporal validation.

RICA-CREA

Losing the spatial dimension would have reduced the quality of the validation proce-

dure. Furthermore, if the observed data existed and were available only at a coarse

scale, this would possibly mean that they were sampled and then aggregated. The

GYGA researchers explained that they used the data with the best available res-

olution. In Italy, the source was Eurostat at the NUTS-2 level, corresponding to

regional resolution.

Eurostat’s data collection is based on a well-distributed randomised sampling

across the EU. Samples are taken at the farm level and aggregated for privacy

reasons and statistical significance. Each country has a designated entity responsible

for data collection and management. In Italy, the governmental entity responsible for

the collection is the Consiglio per la Ricerca in agricoltura e l’analisi dell’Economia

Agraria (CREA), and falls under the name Rete di Informazione Contabile Agricola

(RICA, 2023).

CREA provided the data aggregated at the municipal level, but only if there

were at least five samples over a 10-year period. Higher resolution was not feasible,

because it would not comply with the limits of the Italian Legislative Decree No.

196 of June 30, 2003 “Codice in materia di protezione dei dati personali” in terms

of privacy. The sample density is low, so the values may not be representative of

the entire municipality. However, they are the best approximation available for the

level of coverage required by this research.
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2.3.3 FCOVER and DMP

Fraction of green vegetation cover

The goal of this thesis is to study the potential of assimilating the fraction of green

vegetation cover (FCOVER) product from the Copernicus Global Land Service

(CGLS), which has near-real-time updates from 2014 and an angular resolution

of 1°/336 (∼300 m) (CGLS, 2017). With a dekadal resolution (i.e., approximately

10 days), it is a ready-to-use product based on processed satellite images (Wolfs

et al., 2022). It is made available either as a ‘near real time’ (also called ‘instanta-

neous’) product or as ‘historical’ time series. The description of the full processing of

satellite data is described in the Algorithm Theoretical Basis Document from Verger

and Descals (2022). The main characteristics are reported here to give a panoramic

view of its origins and quality.

PROBA-V Vegetation sensor was the source from 2014 to July 2020, then re-

placed by another pair of pushbroom sensors, Sentinel-3/OLCI A and B, with a

similar spatial resolution of ∼300 m. Image processing starts with applying atmo-

spheric distortion corrections and an algorithm to convert top-of-atmosphere (TOA)

radiance to top-of-canopy (TOC) reflectance, and applying quality flags for pixels

influenced by cloud coverage or covered by ice, snow, and water.

The core element in the production of FCOVER is the application of a neural

network technique (NNT). NNT has been trained on a subset of SPOT Vegetation

observations for PROBA-V Vegetation retrievals, and on a year of PROBA-V data

for Sentinel-3/OLCI to ensure consistency between the two datasets. The train-

ing yielded the parameters needed for the near-real time processing. Outliers have

been removed before both the training and the main procedure based on a multi-

dimensional validity domain of spectral bands (Baret et al., 2016). An exclusion

of unphysical values out of range is finally performed on the output of the NNT.

Areas characterised by evergreen broad-leaf forests have an independent NNT, and

the historical product is further polished, filling small gaps in the data retrieval.

However, this thesis involves the instantaneous product only; therefore, there are no

interpolated values.
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Dry matter productivity

The model validation in this thesis will employ satellite data of the Dry Matter

Productivity (DMP, [kg ha−1 day−1])(CGLS, 2018), a CGLS product with the same

temporal and spatial resolution as FCOVER. There are several ways to approximate

the daily dry biomass production estimates from space. Most often, it is deduced

from the fraction of photosynthetically active radiation absorbed by the green ele-

ments of the canopy (FAPAR, [-]) through the Monteith’s approach (Swinnen et al.,

2023):

DMP = SW × FAPAR× εc× εLUE× εT × εH2O× εCO2× εCUE× εres× 20, (2.1)

where SW [kJ m−2 day−1] (0.2 - 3.0 µm) is the total shortwave incoming solar

radiation, all the ε [-] terms are efficiencies, and the final multiplication is for the

conversion to agricultural units. εc is the climatic efficiency, which considers the

fraction of R that is useful for photosynthesis (0.4 - 0.7 µm) and is set globally

to 0.48; εLUE is related to the biome-specific maximum light use, therefore the

efficiency of the photosynthesis process under perfect conditions. εT and εH2O are the

temperature and water stresses, respectively. εCO2 is the carbon dioxide fertilization,

and εres all the residual stresses like diseases and nutrients availability. An important

parameter is the carbon use efficiency (εCUE = 0.5), which excludes the autotrophic

respiration and characterises the difference between the net and gross dry matter

productivity.

In the current DMP product, however, not all terms are considered yet. Both the

residual efficiencies and the water stress are, in fact, excluded from the computation.

It is nevertheless likely that future evolutions in the product will consider the effects

of water scarcity (Swinnen et al., 2023). εCUE may also need improvements to take

into account the C fraction that plants use for nutrient uptake or defence mecha-

nisms. This simplified version of the Monteith’s approach makes DMP more like a

‘potential’ dry matter productivity than an actual observation of such a quantity,

and this information must be considered while analysing the results of this study.

To summarise, DMP depends on meteorological variables (SW and T), land cover
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maps and corresponding LUE look-up tables, and, most importantly, FAPAR. The

latter is obtained through a similar procedure as FCOVER, where satellite retrievals

pass through a NNT and get published as both ‘near real time’ and ‘historical’

products (Baret et al., 2016).

Due to its incremental nature rather than cumulative nature and temporal in-

compatibility with the modelled B, it is not possible to use DMP directly in a DA

process. Additionally, DMP also considers biomass growing below ground (Wolfs

et al., 2023), and does not include water and fertility stresses. However, it can still

be important in the validation procedure, as it can be used to estimate the improve-

ments in correlation with the model output for a derived variable similar to DMP:

the positive dekadal increments of the above-ground biomass (∆B+).

Pre-processing

Even though the two products are retrieved independently, their correlation on the

WW fields during the growing seasons is quite high (R = 0.80), as shown in Fig-

ure 2.2.

Figure 2.2: Scatter plots between the two Copernicus satellite products: Fraction

of vegetation COVER (FCOVER) and Dry Matter Productivity (DMP).

Very little pre-processing has been applied to the CGLS FCOVER and DMP.
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Firstly, as the DA only operates during the growing season, only images from these

periods have been considered for assimilation and validation. To account for vari-

ability in growing season length, images were selected from mid-October to early

August of the following year. Then, each layer was labelled with the end date of

the dekad it referred to. Shifting them towards the middle of the dekad reduced the

introduction of biases in the assimilation process during the growing stage. Finally,

the crop masks were applied at the 300-m resolution to constrain the updates into

LIS to the wheat fields only.

In addition to the data itself, FCOVER files contain supplementary information

such as a quality flag and the root mean square error associated with each value.

The former describes the processes that have been applied during the retrieval; in

the high-resolution products, no interpolation method is used, and all outliers are

filtered out. The observation error estimate has a lot of potential to be integrated

into the DA procedure. However, the current LISF configuration does not include

settings for a varying observation accuracy. Future research may include the varying

accuracy to further optimise data assimilation.

2.3.4 Model input

Meteorological forcings

In AquaCrop, the required meteorological forcings are temperature T (daily max-

imum and minimum, Tmax and Tmin), rainfall, reference evapotranspiration ETo

and CO2 concentration. Temperature and rainfall are obtained directly from the

fifth generation of atmospheric reanalysis from the European Centre for Medium-

Range Weather Forecasts (ERA5) (Hersbach et al., 2020), with an angular spatial

resolution of 0.25° (∼25 km) and an hourly temporal resolution.

ERA5 forecasts do not include ETo directly, but it is calculated in LIS using the

FAO 56 Penman-Monteith equation (Allen et al., 1998):

ETo =
0.408 ∆ Rn + γ

900

T + 273
u2 δe

∆+ γ (1 + 0.34 u2)
, (2.2)
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where ∆ [kPa °C−1] is the slope of the vapour pressure curve, Rn [MJ m−2 day−1]

is the net radiation at the crop surface, γ [kPa °C−1] is the psychrometric constant,

T [°C] is the mean daily temperature, u2 [m s−1] is the wind speed at a height of

2 m, and δe [kPa] is the saturation vapour pressure deficit. These variables can all

be derived from a limited set of meteorological forcings, available from the ERA5

product: Tmax, Tmin [K], pressure [kPa], specific humidity [kg kg−1] wind speed u10

[m s−1] (corrected to 2 m), and the shortwave radiation at the Earth’s surface [W −2].

Due to the coarse resolution of the forcing data compared to that used to run the

model, a downscaling procedure was necessary. Simple spatial bilinear and temporal

linear interpolation was applied to all the variables. Temperature was also corrected

using a lapse rate based on the 1-km Multi-Error-Removed Improved-Terrain Digital

Elevation Model (MERIT-DEM) (Yamazaki et al., 2017).

In addition to the above meteorological forcings, AquaCrop also requires CO2

concentrations as input. The default yearly record of the Mauna Loa (Hawaii)

station measurements was used.

Crop parameters

Crop parameters are the most difficult to select and adjust due to their high vari-

ability in terms of environmental conditions, cultivars and local practices. Wherever

possible, local or regional information was used; otherwise, FAO guidelines were con-

sidered. The key crop parameters are listed in Table 2.1. Any not listed are based

on the default settings of the AquaCrop 7.2 GUI or its wheat default crop file.

The first aspect to determine is the length of the growing season, which is derived

from the sowing and harvesting periods. Local farmer consortia recommend sowing

early enough to allow the seedlings to experience their first frost once they have

developed at least three leaves, but no earlier than the second half of October, due

to disease pressure (Mosca and Reyneri, 2023).

While the size of a single seedling cco was kept at the default value of 1.50 cm
2, the

sowing density was set to 400,000 m−2, as the average value in the Emilia-Romagna

regional guidelines (2025). All the crop stages were determined according to FAO

Irrigation and Drainage Paper No. 56 (Allen et al., 1998), and were slightly tuned
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Table 2.1: List of winter wheat parameters that differ from the default crop file in

the AquaCrop GUI. The length of the stages was expressed in calendar days based

on Table 11 of Allen et al. (1998) and converted into thermal units using 2020 forcing

data near Alessandria. The effects of fertility stress have been calibrated based on

expert guidance regarding plant density and fertilisation practices.

Crop parameter Value Source or criterion
Max rooting depth 1 m Rivieccio et al. (2020)
Time to Maximum

918 GDD
Rasmussen and Thorup-Kristensen (2016)

rooting depth Rivieccio et al. (2020)
Time to Emergence 167 GDD

Allen et al. (1998) + Calibration
Time to Senescence 2080 GDD
Time to Maturity 2694 GDD
Time to Flowering 1281 GDD
Flowering length 198 GDD

CGC 0.004843 GDD−1 Internal computation
CDC 0.004739 GDD−1 0.10 < CCfinal < 0.20

Soil fertility
B reduction 60% GYGA (2021)

Fertility stress

KsCCx 5 %

Calibration
KsCGC 3 %

CCdecline 0.01 % GDD−1

KsWP ∗ 64 %

in the calibration process described in Section 3.3.1. The canopy decline coefficient

(CDC) was changed to keep CC at harvest in the range of 10-20%, as shown in the

default wheat crop file.

Another important aspect that depends on local conditions is the volume of soil

that the roots can explore. Estimates of the soil rooting depth of Italy, with a

resolution of 50 m by Rivieccio et al. (2020), were used to calculate the average

maximum rooting depth within the domain. Coupling this information with an av-

erage root growth rate of 0.9-1.2 mm °C day−1 (Rasmussen and Thorup-Kristensen,

2016), determined a root growth period after germination of 918 °C day.

Soil parameters

As previously mentioned at the beginning of this Chapter, the ROI was determined

based on the highly detailed Topsoil Texture map, which is part of the Carta dei suoli

1:50.000 of Geoportale Piemonte (Regione Piemonte, 2023a). This layer provides a

fine spatial variability of soil classes based on the USDA soil texture classification

27



2.3. DATA CHAPTER 2. DATA AND SOFTWARE

and was consequently matched with the default soil parameters in AquaCrop, i.e.,

i) saturation, ii) field capacity, iii) permanent wilting point, and iv) hydraulic con-

ductivity as described by De Lannoy et al. (2014). The Topsoil Texture map was

implemented after the homogenisation performed by the LDT toolkit.

Management and fertility

Field conditions and management rarely match the theoretical optimal requirements,

so they can significantly impact both crop development and the final harvest. The

causes of the yield gap (i.e. the difference between the actual and potential yields

under water-stressed conditions) are difficult to understand; they can be attributed

to environmental pressures, harvesting efficiency, or many other factors that depend

heavily on farmers’ decisions.

In AquaCrop, this problem is approached from two angles. First, a calibration

procedure is performed to determine the crop’s particular susceptibility to environ-

mental stresses and the extent to which practices can influence this. For instance, a

reduction in CCx due to water deficiency may be minimal (or even negligible) if the

crop is densely planted. Conversely, the CGC reduction during the growth stage

or CCx decline during the mid-season may be influenced by a lack of nutrients.

However, if the fields are fertile or the farmer supplements them with additional

fertilisers, this reduction can be mitigated. Secondly, it is possible to use the in-

formation contained in the yield gap to trace system inefficiencies from a lack of

biomass production. This is taken into account by reducing WP ∗ to establish a

consistent relationship between stresses and yield reduction.

In fact, the yield gap (defined as the relative difference between the water-limited

potential yield and the actual yield, i.e. Y g = (Y w − Y a) Y w−1 ) was found to be

approximately 40% (GYGA, 2021), so most of the stress impacts were attributed

to WP ∗, as farmers in this region depend on highly efficient mechanised operations,

dense planting, and external inputs.
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Chapter 3

Methodology

The methodology in this chapter covers both the structural model and DA back-

ground information, and the experimental setup. The background information in

Sections 3.1 and 1.5 informs decisions for the experimental setup in Section 3.3, but

covers cumbersome technical details that may be skipped by the scientific reader.

The study area was already introduced in Section 2.1 and the timeline of the

experiments is shown in Table 3.1. This table also summarizes the availability of

key datasets in time, which determined the experiment setup. It can be seen that

the main limiting factor for the temporal extent of the analyses is the availability of

crop masks and yield observations over the selected area. Details will be provided

below.

Table 3.1: Time coverage of the major elements of the analysis. The limiting

factors that bounded the analysis between 2017 and 2023 are the availability of crop

masks and the field observations.

< 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 >
Meteorology ERA5 reanalysis
Satellite data PROBA-V Sentinel-3/OLCI
Calibration AquaCrop GUI

Experiments

Spin-up Deterministic run
Spin-up M1 Ensemble OL & DA
Spin-up M2 Ensemble OL & DA
Spin-up M3 Ensemble OL & DA

Crop masks CLMS Crop Type Geoportale Piemonte
Yield
observations

RICA-CREA
GYGA Yw GYGA Ya Eurostat Ya

3.1 Model state and parameters

A proper model setup and an understanding of the state propagation in time are

crucial to successful DA experiments. In this section, we first briefly identify model
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state variables and parameters, and then discuss some model challenges that arose

from tracking state variables and parameters.

3.1.1 Procedure

The state variables in AquaCrop are CC, B, and the SM vector θ. These variables

propagate dynamically in time, in response to input forcings and physical laws

captured within the model. The nature of the state responses is determined by

multiple parameters, which are by definition not varying in time and calibrated

prior to the simulations. The calibration is based on the default WW crop file

available in AquaCrop, and the parameters involved are listed in Table 2.1. A

detailed description can be found in Section 3.3. Note that AquaCrop will transform

the calibrated parameters to state-dependent versions during the model simulation.

The state variables CC and B will be perturbed and updated, and a variation

criterion for the planting date and CCx (both parameters) will be included as well in

one of the experiments. However, both in the calibration procedure and the creation

of DA routines, the model presented some challenges that needed to be addressed.

3.1.2 Challenges

Implementing the entire ensemble DA system presented a series of challenges related

to tracing model state variables and parameters. Some were strictly related to

AquaCrop 7.2; others arose from the interaction with the DA procedure. Depending

on the challenge, it was either directly addressed directly in this thesis or it is

reported for further investigation.

It will be discussed later that DA could involve a perturbation and updating of a

selection of state variables, meteorological forcings, and model parameters. To keep

things simple, the analysis initially considered the CC variable only. On the other

hand, there is an additional set of variables that may interfere with the propagation

of the updates within the model: the dummy variables.

From a coding perspective, the model is split into different parts to represent the

dynamics in self-contained routines. This leads to the creation of multiple dummy
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variables, which may be a combination of other core parameters or state variables.

When DA is added as an artificial step to the iterative procedure of model state

propagation, it is necessary to check that all variables are physically self-consistent,

incl. state variables that are not updated by the DA algorithm.

Figure 3.1: Incremental implementation of the exponential canopy growth. The

green line (a) shows the function described by Equation 1.2, with soil fertility stress

being the only applied stress. After suffering additional stresses, CCi−1 is lower than

CCpot,i. The new exponential curve (b) is forced to intercept CCi−1 and, together

with the CGCAdj for day i, determines the required growing period ∆treq,i−1 from

CCo to CCi−1. The canopy cover on the following day (CCi) is computed directly

from the function (b). The slope of (b) may be shallower if CGCAdj < CGC.

In order to fully understand how the information is propagated into the model,

the equations describing CC development must be analysed. Equations 1.2, 1.3,

and 1.5 can be used to determine evolution in the absence of stresses of any kind.

However, they do not incorporate information collected during the early stages of

the growing season. Therefore, incremental functions must be derived from them.

For example, Equation 1.2 has been rewritten as the following set of equations:


∆treq,i−1 =

ln

(
CCi−1

CCo

)
CGCAdj

i)

∆treq,i = ∆treq,i−1 + ti ii)

CCi = CCo e∆treq,i CGCAdj , iii)

(3.1)

where ∆t identifies cumulative temporal or thermal units (i.e., calendar days or
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GDD) and t refers to a specific day (i.e., 1 for calendar days, or a certain amount

of GDDi). These are listed in Figure 3.1 to aid understanding. As the reader

will notice, the growth coefficient has been substituted with CGCAdj = CGC(1 −

KsCGC)KsW , to consider the effects of fertility and water stresses.

The same procedure can be applied to Equation 1.3, but with an additional step:

∆treq,i−1 =

ln

(
CC2

x,SF

4 CCo (CCx,SF − CCi−1)

)
CGCAdj

i)

∆ttot = ∆treq,i−1 + ti + (∆tCCx −∆ti−1) ii)

CCx,Adj = CCx,SF −
CC2

x,SF

4 CCo

e−∆ttot CGCAdj iii)

CCi = CCx,Adj −
CC2

x,Adj

4 CCo

e−∆treq,i CGCAdj . iv)

(3.2)

Also the upper boundary CCx is substituted by the dummy variable CCx,SF =

CCx(1 − KsCCx). Then, if CCi−1 ≪ CCpot,i−1, it means that the plant has expe-

rienced stress. In this scenario, as illustrated in Figure 3.2, these stresses can be

interpreted as a “time delay” and/or a decrease of CGC of the potential develop-

ment. However, the growth stages are fixed, and the time needed to reach maximum

canopy cover ∆tCCx , i.e. the moment when the plant cannot grow any more, is also

fixed. Therefore, an adjusted upper boundary (CCx,Adj) is calculated by intersecting

the delayed potential curve at the time of maximum canopy cover, ∆tCCx . CCx,Adj

is then used as the new asymptote to which the exponential decay aims, and the

next daily step in CC is computed.

CC finite differences function divergence

The aforementioned implementation of the iterative equations is flawed in AquaCrop

7.2, specifically in the computation of CCx,Adj. As can be seen in Figure 3.2, CCx,SF

is the asymptote of the potential curve, while CCx,Adj intercepts the new curve at

the point corresponding to ∆tCCx . While this may seem a minor difference, the

problem lies in the iterative nature of the procedure. In fact, at each time step, the

upper limit is underestimated, which slightly dampens canopy development. The

fundamental equation is an exponential decay; if the inaccuracy occurs far from the
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Figure 3.2: Incremental implementation of the exponentially decaying canopy

growth. The green line (a) shows the potential growth in the presence of soil fer-

tility stress. The function (b) is forced to pass through CCi−1. The recalculated

growth period ∆ttot is (usually) shorter than the initial one; therefore, the maxi-

mum reachable value is lower. The new upper limit CCx,Adj is defined as the value

of curve (b) corresponding to the total growth period, ∆ttot. The new time-step is

computed using the trajectory (c), which corresponds to equation iv) 3.2.

asymptote, the effect is negligible. However, as it approaches the asymptote, the

divergence increases, reducing the achievable CCx even without any stress being

applied.

The root of the problem arises from the interpretation of ∆tCCx : by definition,

it is the time (or the amount of GDD) required for the plant to reach 98% of

CCx. Thus, in the iterative procedure, the new CCx,Adj must be divided by 98% to

maintain consistency between the two versions of the growth dynamics.

While the problem can be solved in temporal units as described above, another

step is required for the thermal unit settings. Specifically, the cut-off percentage in

the code may not always be the same, since more than one GDD can occur per day

and the time interval between the start and end of growth ∆tCCx may fall in the

middle of the day. The GDD in ∆tCCx gets rounded up to complete the last day of

growth. Therefore, dividing CCx,Adj by 98% may lead to an overestimation of the

upper limit, resulting in worse consequences for the model: CCx,Adj could exceed
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one, producing unphysical results. The safest way to modify the iterative equation

is to introduce the following ratio:

ratio =
CCpot,98

CCx

= 1− CCx

4 CCo

e−CGC TCCx (3.3)

in the equation iii) 3.2:

CCx,Adj =
CCx,SF −

CC2
x,SF

4 CCo

e−Ttot CGCAdj

ratio
. (3.4)

It is yet to be clarified and tested whether the ratio should be a fixed value or

a function of the varying CCx,SF and CGCAdj. Hence, this bug fix has not been

included in the thesis. The correction may be applied in version 7.3 of AquaCrop.

Smoothing function

While testing and calibrating the crop development in both LIS and the GUI, a small

discontinuity appeared as soon as the crop got closer to CCx. This was caused by a

change of routines in the code and resulted in an almost negligible drop in CC.

As previously mentioned, the growing stage in AquaCrop ends when CC =

0.98 · CCx. The following day, the canopy cover should be set to CCx; however,

this would result in a discontinuity in the curve. Thus, the developers added a

“smoothing function”. Based on the original function in Eq. 1.3, it does not depend

on CCi−1, thus it could introduce a new discontinuity by itself, which would defeat

the initial purpose. Additionally, this function prevents the canopy cover from ever

reaching its limit.

These last two statements are the reason why this almost negligible problem

affected the implementation of DA. In fact, if CC is not computed based on the

previous day in the mid-season, neither the perturbation nor the DA updates shown

in Figure 3.3 would be integrated into the model. The first attempt to solve the

problem was to set the dummy variable CCx,Adj = CCi−1, as this is theoretically

correct. However, this resulted in a downward drift of the canopy cover, since CCx,Adj

was used as an asymptote. The final solution involved removing the smoothing
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function and reintroducing the upper discontinuity, while allowing noise and updates

to be applied to the system.

(CCi−1;B)

(CCi;B)

AquaCrop

(CCi;B)

Forcings (h)

Perturbation

Aggregation

Forcings (d)

(CCi−1;B)

Perturbation

DA updates

(CCi−1;B)

Day i Preparation for next day

Figure 3.3: Iterative AquaCrop workflow in LIS, including the integration of DA

modules (in bold). Rectangles represent data or state variables, while the diamonds

highlight the main routines. Each day, the hourly (h) forcings are perturbed (only

in the ensemble simulations), aggregated at the daily (d) resolution, and fed to the

main AquaCrop module. Simultaneously, the CC value from the previous day is

assigned to the current day’s CC value and enters the model. Once the new value

has been computed, the day ends, and CCi becomes CCi−1. B follows the same

path, but is recomputed directly. Finally, the state variables are perturbed (in the

ensemble simulations only) and get updated (in the DA simulations only).

Dormant phase

The latest model improvement relates to the yield formation. AquaCrop has inter-

esting functionality with regard to how plants respond to prolonged water stress. As

soon as there is insufficient water to sustain crop growth, CGC is affected, slowing

down the development. If the stress persists, early senescence may be triggered,

which actively reduces CC at a rate that varies depending on the severity of the
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stress. But, when the plant reaches a certain threshold min(CCo, CCdorm), it en-

ters what is called a “dormant phase”. During this phase, the plant slows down its

metabolism in an attempt to preserve a certain amount of water in its tissues. If

the stress continues, ETo is used as a cumulative metric to determine the critical

point at which the plant dies. Otherwise, if the soil water content is replenished in

time, the plant can start growing again.

Two problems in this module resulted in errors in the yield formation quantities.

Firstly, the plant can enter this routine after the growth stage, but it will not be

able to recover, resulting in a simple delay to its death. The second problem is

code-related. In the dormant phase, the plant metabolism stops, so there should

be zero production of new biomass and yield. However, when CCo > CCdorm, the

plant continues to form yield, which leads to an overestimation of the harvestable

product by 20-25%.There is more than one solution to this situation, yet the most

suitable for the physiology of a determinate crop, such as winter wheat, is to remove

the dormant phase after ∆tCCx .

3.2 FCOVER DA

3.2.1 Procedure

The mathematics behind DA have already been introduced in Section 1.5. From a

practical point of view, the model uncertainty will be approximated through ensem-

bles in this thesis, and an ensemble Kalman filter is chosen as the DA algorithm.

As previously mentioned, an ensemble can be generated by perturbing the state

variables, input, and parameters. This step must be performed carefully since, as

with the DA updates, it can break the model’s physical consistency. To limit incon-

gruences, perturbation settings and constraints must be chosen. They perturbations

can i) be additive or multiplicative, ii) follow a normal distribution (around a mean

of zero for the additive settings and one for the multiplicative settings), but iii)

with the exclusion of extreme values over a certain threshold, and iv) with temporal

and/or spatial correlation, or v) a cross-correlation matrix with the other perturbed
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variables. Finally, to force the OL ensemble mean to follow the same pattern as

the deterministic run, LIS can be configured with perturbation bias correction (Ryu

et al., 2009). Its application consists of the conservation of an unperturbed ensemble

member, which is used as a reference for the whole ensemble. Then the difference

between the ensemble mean and the unperturbed member is subtracted from all the

other particles.

Next, during the DA process, the state variables are updated each time there is

an observation:

̂ CC

B


+

j,i

=

̂ CC

B


−

j,i

+

 σ2

ĈC
−

Cov(ĈC
−
, B̂−)


i

σ2

ĈC
−
,i
+ σ2

FCOV ER

(FCOVER− ĈC
−
)j,i. (3.5)

In the aforementioned equation, j represents the ensemble member, i the time step,

FCOVER is the assimilated satellite observation (described in Section 2.3.3), and σ2

is the error variance of the simulated or observed canopy cover, i.e. for , σ2

ĈC
− and

σ2
FCOV ER, respectively. The uncertainty of FCOVER is fixed in time, as mentioned

in Section 2.3.3. The error covariance between the two state variables involved is

described by the following equation:

Cov(ĈC
−
, B̂−)i =

1

N − 1

N∑
j=1

(
ĈC

−
j,i − ĈC

−
i

)(
B̂−

j,i − B̂−
i

)
, (3.6)

where N is the number of ensemble members, and the overline (.) shows the ensemble

mean.

3.2.2 Challenges

The implementation of DA to update the cumulative state variables B and CC

poses some challenges. Unlike non-cumulative variables, their development in time

is quite heavily dictated by model dynamics that are difficult to perturb and update.

Growth stages depend heavily on sowing dates, and canopy cover is characterised

by both upper and lower boundaries.
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Boundaries

It is obvious to state that canopy cover is bounded between zero and one. However,

additional constraints further narrow the valid range within which the physical be-

haviour is observed. In the early days of the season, the seedling is protected from

dying (CCi ≤ 1.25 · CCo), and the curve cannot be altered. Then, the growth be-

comes sensitive to water stress; however, even if the soil is well watered, the crop

cannot grow beyond the CCpot curve. Furthermore, throughout the growing sea-

son, perturbations are bounded from below by CCo to prevent the artificial death

of some ensemble members. Finally, once the natural senescence is triggered, both

perturbations and DA updates have little to no effect on the canopy cover trajec-

tory, because the model forces the plant to reach the end of the growing season. In

summary, perturbations and updates have therefore only been enabled within the

physical boundaries of the model, and where their impact would be effective.

The presence of boundaries poses an additional problem when a variable is per-

turbed, as the ensemble mean begins to drift away from the unperturbed trajectory,

thereby introducing a bias. This can be compensated for by applying the perturba-

tion bias correction, but if the modelled canopy cover is already close to the bound-

ary, the ensemble spread would reduce again to almost zero. The upper boundary

identified by CCpot is the one that interferes the most. In fact, it prevents many

positive DA updates, leading to the introduction of another bias compared to the

open-loop.

The negative effects of this limitation are exacerbated when the growing seasons

of the observations and the model are not synchronised, because while one may

capture the dynamics, even a small shift can prevent updates in the correct direction.

The sowing date can be considered as an additional boundary, so setting the model

correctly is crucial, though this is almost impossible to predict.

LIS-AquaCrop initialisation

A core aspect of how AquaCrop handles crop development lies in its initialisation

procedure. Even though multiple seasons can be simulated in sequence, each one of
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them is run independently, and the single link between them is the propagation of

the soil water content i.c., to guarantee continuity.

Before a one-year simulation begins, the full record of climat input is read and

interpreted. This is used to compute the GDD for each day and to convert the

length of the growing stages from thermal units to calendar units for that year.

The current version of LIS-AquaCrop does not allow for perturbation during the

simulation of either the input temperatures or the length of the growing stages

during the simulation, as this would lead to inconsistencies in the code routines.

Fixed growing stages

The uncertainty surrounding the planting date may not be too relevant if the growth

stages could vary. However, it can be dangerous to interfere with the stages, since

the crop has been specifically calibrated with them, and the propagation of the

effects must be analysed in depth.

Another strategy to reduce the boundary constraints is to introduce a varying

sowing date. For example, if the observations show higher canopy cover than the

potential one, an ideal solution may be to redefine the growing season with an earlier

planting date. In such a scenario, the model would need to be restarted from there

to capture the new soil moisture dynamics.

The LIS-AquaCrop setup used in this analysis does not permit this. Hence, a

simpler criterion has been developed to allow the sowing date to vary a priori, i.e.

before the simulation starts.

3.3 Experiment setup

The experiments cover a deterministic run (Det), ensemble runs (also known as an

open-loop run, or OL), and data assimilation (DA) runs. All of them are preceded

by a spinup simulation, with a calibrated model discussed below.

The simplest and fastest configuration is the deterministic setup, in which the

model is run with a precise set of meteorological forcings and crop parameters, and

with no interference throughout the simulation. Thus, both the perturbation and
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Table 3.2: Experiment setup summary, with all the additional modules turned on

(Y) or off (N).

Forcing
perturbation

State
perturbation

Perturbation
bias correction

Parameter
variability

DA
updates

Det N N N N N

M1
OL Y Y Y N N
DA Y Y Y N Y

M2
OL Y Y N N N
DA Y Y N N Y

M3
OL Y Y N Y N
DA Y Y N Y Y

DA update modules (shown in Figure 3.3) are ignored. This is used as a reference

to quantify how much the generation of an ensemble run diverges from it. Since

the OL is just a practical intermediate step to obtain model forecast uncertainty

estimates that can later be used in the DA, it should not influence the behaviour of

the model, and the mean of the ensemble OL should, in theory, be equal (or close

to) the deterministic run. To check the consistency, the deterministic run will be

compared with the ensemble mean of the OL simulation to decide if there are any

drifts between both simulations.

The DA and its challenges are discussed in Section 3.2. Through DA, the hope

is to obtain better results than with the OL simulation, and to quantify this, the

ensemble mean DA output will be compared against the ensemble mean of the

OL and deterministic output. An important challenge to overcome in the DA is

the CCpot hard boundary. To optimize the DA design, three different setups, or

modes, of ensemble perturbations have been tested, and their associated three DA

simulations were evaluated. A summary of the settings used for the three modes is

shown in Table 3.2 and discussed in detail below.

3.3.1 Crop calibration

Crop calibration was performed in two steps in the AquaCrop GUI. First, the FAO

stages for WW must be converted from calendar days to GDD. As this procedure is

highly dependent on the input data, a minimal climate analysis was performed to

select an appropriate location and year from which to extract representative data

from the ERA5 reanalysis. Due to the proximity to the Alpine mountain range,
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there was a risk of heterogeneous climate conditions throughout the domain, which

would either necessitate the use of spatially aggregated data, or the calibration of

multiple crop files. However, by monitoring the variability of the maximum and

minimum temperatures, it was found that this was not the case, and ERA5 data

over the Alessandria province was selected. In terms of temperature patterns, 2020

was selected from the period 2014–2022 because it was the year closest to the area’s

average climate.

Second, after converting from temporal to thermal units, the stages were fine-

tuned using the full set of selected parameters. The aim was to approximate the

average GYGA actual yield and to capture visually the interannual variability. Fol-

lowing a simple deterministic run within LIS, the bias between the average yield

from the model and the GYGA reference was confirmed to be around −0.2 t ha−1.

3.3.2 Spin-up and deterministic reference

Models must be initialised with some initial conditions. In particular, AquaCrop

requires an initial soil water content for each specified compartment. As it is dif-

ficult to choose the exact i.c. that could describe the state of the system at that

specific moment, this selection is mainly determined by the operator. To minimise

this impact and allow the model to stabilise around a reasonable and independent

pattern, a spin-up run is performed. A 6-year spin-up was generated for each exper-

iment in this analysis, between October 2010 and October 2016. The deterministic

simulation continues thereafter and will only be evaluated from 2016 through the

end of August 2023. The three OL and DA runs start from the same restart file,

with the same randomiser seed per OL and DA pair, and are also evaluated through

August 2023.

3.3.3 Ensemble simulations

Three modes of ensemble perturbation are introduced below. All modes use per-

turbed forcings (shortwave radiation SW and rainfall P) and state variables (B and

CC) as listed in Table 3.3. An error cross-correlation of 0.5 was assigned to the
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Table 3.3: Ensemble perturbation parameters for forcings (SW and P) and state

variables (CC and B). The additive (+) perturbation follows a normal distribu-

tion around zero. Likewise, the multiplicative (×) one is based on a log-normal

distribution around one.

mode µ σ t-corr cross-correlation
SW × 1 0.4 24 h 1 −0.80 - -
P × 1 0.6 24 h −0.80 1 - -
CC + 0 0.01 [-] - - - 1 0.5
B + 0 0.01 [t/ha] - - - 0.5 1

state variables due to their close relationship within the model. The modes differ in

whether the parameters are also varied and whether perturbation bias correction is

activated or not.

Mode 1

The first experiment involves perturbed forcings and state variables with the bias

correction for perturbation turned on. It was predicted that the perturbation bias

correction would constrain the spread too much to allow the updates to force the

model out of its original path. This would result in a consistent OL-Det overlap,

but little to no improvements in the DA.

Mode 2

The second mode involves perturbed forcings and state variables without the bias

correction for perturbation. The focus is on quantifying the benefits and limitations

of this setting in order to assess its necessity, although its application is more math-

ematically rigorous. The OL metrics may degrade, but they should recover in the

DA run, possibly leading to an overall improvement.

Mode 3

As stated in Sections 1.5 and 2.2, parameters can be perturbed alongside state

variables and forcing inputs. The length of the crop stages would ideally be adjusted

to correct the sowing date estimates and account for calibration uncertainty. To

this end, a sowing date that varies based on rainfall criteria has been introduced
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in a manner similar to that available in the GUI. When a one-year simulation is

initialised, the perturbed rainfall is read. Then, by defining a sowing window and the

cumulative amount of rain that must fall within a certain period and the number of

occurrences required, the sowing date for each ensemble member can be determined.

For this analysis, two events of at least 15 mm of cumulative rain must occur within

a maximum of four days each between October 4th and November 3rd. If this does

not occur, the seeds are sown on the last day of the sowing window. The sowing

window is centred on the sowing date of the deterministic and Mode 1 and 2 runs.

During some tests, the maximum values of FCOVER were seen to exceed the

chosen CCx, therefore falling outside the physical domain of the model. While modes

1 and 2 handled this situation by forcing the perturbations (or later DA updates)

to stay below the potential line, this experiment introduces a varying CCx around

the calibrated value to soften the boundary and allow some members to get closer

to the observations.

It is hypothesised that this experiment will present additional spread in the early

and mid-season (via the rainfall criteria and varying CCx, respectively), which could

improve the metrics through DA without degrading OL precision.

3.4 Validation

The experiments have been evaluated from multiple sides in an attempt to gain a

tomographic view of overall performance and identify areas where data assimilation

has enhanced the model output, as well as aspects requiring further development.

Canopy cover and the dry above-ground biomass were compared to the FCOVER

and DMP satellite products, respectively. As the former was directly assimilated,

CC metrics are expected to improve in all circumstances, by design. The hope

is that the trivial improvements in CC would propagate to B together with the

direct updates of B to also improve the unobserved B and all other model variables.

Therefore ensemble mean OL and DA output of ∆B+ was evaluated against (not

assimilated) DMP satellite observations. Finally, improvements in yield estimates

were validated against the observed yield surveyed by RICA-CREA.
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Table 3.4: Aggregation criteria. Spatial aggregation consists of taking the linear

average of crop pixels within the coarser grid (for FCOVER and DMP) or the

municipality (for yield). Temporal aggregation is performed by taking the average

across the growing seasons in three different clusters each month (10 days, 10 days,

and the remaining chunk).* B has been converted to daily increments (∆B+) prior

to aggregation.

Resolution Aggregation
Spatial Temporal

FCOVER, DMP 1/336° ∼10 d Spatial
Modelled CC, B 1/112° 1 d Temporal*
Observed yield Municipality 1 y -
Modelled yield 1/112° 1 y Spatial

3.4.1 Dimensions management

To facilitate a comparison of model (deterministic, OL, or DA) output to the satellite

or survey reference data, the spatial and temporal dimensions and the aggregation

criteria are discussed. The aforementioned variables cannot be directly compared to

the model output due to different resolutions and must be aggregated, as shown in

Table 3.4. Furthermore, the model output was compared only during the growing

seasons, and where the crop masks identified WW.

Specifically, the modelled CC and B were averaged to 10-day values to meet the

temporal resolution of the satellite data. The 10-day satellite-observed FCOV ER

and CC were aggregated from 1/336° to the model resolution of 1/112°, using only

those fine-scale pixels that were covered with WW. The same procedure was applied

to the modelled yield, but the aggregation was performed from the model resolution

to the municipality level. At this stage, the metrics can be computed in space or

time, or across the entire spatio-temporal dataset.
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3.4.2 Metrics

The metrics used to evaluate the performance are the Pearson correlation coefficient

(R), the root mean square difference (RMSD), and the bias:

R =

∑N
j=1 (Mj −M)(Oj −O)√∑N

j=1 (Mj −M)2
√∑N

j=1 (Oj −O)2
, (3.7)

RMSD =

√√√√ 1

N

N∑
j=1

(Mj −Oj)2, (3.8)

bias =
1

N

N∑
j=1

(Mj −Oj), (3.9)

with N the sample size, M the analysed variable, and O the observations or reference

values. The sample average is given by M = 1
N

∑N
j=1 Mj, and the same applies to

O. The sample size and the elements included in the equations vary according to

the dimensions (time, space, time and space) along which the metrics are computed.

The above metrics are computed on the ‘raw’ data and on temporal anomalies.

The latter are important to study interannual and short-term variation in CC and

∆B+, and interannual variation in yield, because DA aims to improve this variation

by compensating for the uncertainty of coarse-scale meteorological data within the

model. The anomalies were computed by removing the average seasonal pattern for

CC and ∆B+ over the 2017-2023 time span, whereas yield anomalies were obtained

by simply removing the yearly average after aggregating at the municipality level.

The temporal metrics of the ‘raw’ data are presented in maps, with a temporal

metric for each location (grid cell or municipality). Spatio-temporal metrics result

in a single metric and are presented in summary scatter plots and tables. For

the anomalies, only spatio-temporal metrics are presented. However, for future

work, a computation of time-series anomaly R, RMSD, and bias for each pixel (or

municipality for yield) and a spatial aggregation of the results is recommended to

focus on the temporal (interannual, short-term) performance. Likewise, a future

study could consider similar metrics for spatial anomalies.
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Chapter 4

Results

4.1 Deterministic simulation

The quality of the LIS-AquaCrop simulations is evaluated in terms of canopy cover

CC, dry above-ground biomass production ∆B+, and dry yield. The spatio-temporal

average dry yield obtained during the deterministic run is 5.60 t ha−1, which is 0.02

t ha−1 higher than the observed values. Figure 4.1 shows the time average yield

for each municipality obtained from the surveys and simulated by AquaCrop. The

modelled yield values demonstrate the rigidity of the model: the spatial variability

is very limited. Conversely, the observations cover a range from 1 to 8.5 t ha−1. The

variability is also very limited in time as shown in Figure 4.2. This figure compares

the yield per year per municipality for the observations and deterministic simulation.

The temporal performance metrics for CC, ∆B+ and yield in Figure 4.3 show

a consistently high correlation with reference data for both CC and biomass pro-

duction. In contrast, yield exhibits a considerable spread, even towards negative R

values. The RMSD is high for all three variables, accounting for around one-quarter

of the reference values. However, the bias indicates that the mean standard differ-

ence reflects different behaviours: i) CC is usually overestimated by the model, ii)

∆B+, instead, is underestimated, and iii) Y is, by design, quite unbiased, attributing

the high RMSD to a symmetrical spread.

CC trajectory in the deterministic run was consistently close to the upper bound-

ary described by CCpot, anticipating low spread for Mode 1, and an ensemble mean

drift for both Modes 2 and 3.
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Figure 4.1: Time average of winter wheat yield per municipality. The average

values of the RICA samples are shown on the left (a), while the output of the

deterministic run is displayed on the right (b). There are white dots in b (no data)

due to the absence of wheat fields in the crop masks for those municipalities.

Figure 4.2: Scatter plots comparing the annual winter wheat dry yield with samples

from the RICA-CREA survey. Absolute values (a) and seasonal anomalies (b) for

the deterministic baseline. Sample sizes are used for visual purposes only.
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Figure 4.3: Spatial maps of temporal performance metrics for the deterministic

run. The rows show the Pearson R (a), the root mean square difference (RMSD, b),

and the bias (c). The columns describe the different variables: canopy cover (m),

biomass production (n), and yield formation (o). The circles in the latter represent

each municipality, and their size indicates the importance of wheat production,

based on the number of observations. The metrics are computed only for locations

with at least three years of observations. The mean and standard deviation in each

map are computed using equal weights for all the locations.
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4.2 Ensemble OL simulations

Figure 4.4: Average in-season spread of OL canopy cover generated by the per-

turbation of state variables and meteorological forcings. For Mode 3 (c) only, it

is also generated by the variability of crop parameters. Only Mode 1 (a) had the

perturbation bias correction turned on.

As mentioned in Chapter 3, canopy cover uncertainty is a fundamental aspect

of DA in this analysis. The three different methods of applying the perturbation

yielded three different spatial patterns of CC uncertainty, usually referred to as CC

ensemble standard deviation or ‘spread’. As expected, the first experiment (Mode

1) exhibits an overall lower spread of CC values among the ensemble members. The

average in-season spread maps in Figure 4.4 show that Mode 3 has higher localised

values (∼0.10) than Mode 2 (∼0.09), and Mode 1 (∼0.04). However, the spatial

average of Mode 3 is comparable to the settings where CCx and planting dates do

not vary in Mode 2.

An example of the ensemble members for Mode 2 is shown in Figure 4.5. Fall 2017

was the second driest autumn since 1958 in the Piedmont Region (Piemonte, 2018);

in fact, the perturbation of precipitation patterns caused early water deficiency and

delayed the emergence of some ensemble members.

Mode 2 has been used as a visual reference whenever it was not possible to show

all experiments. Time series of ensemble means and spreads will be discussed below,

along with the time series performance of the 3 modes.
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Figure 4.5: Time series of the variables CC, B, and Y for years 2018 and 2019 of

a model pixel in the Municipality of Alessandria (44°56’57.3”N : 8°33’13.5”E) for

Mode 2. Plots a) and b) are related to the OL, while c) and d) show the effects

of the DA updates. During Fall 2017, the delayed emergence of some members was

caused by water stress.

4.3 OL and DA performance

Time series of OL and DA simulations are first illustrated at the point scale to verify

their correctness. Thus, CC, ∆B+, yield, and soil moisture for a specific location

(Municipality of Alessandria, at 44°56’57.3”N : 8°33’13.5”E) in Mode 2 are shown

in Figure 4.6. The same time series for the other two modes can be consulted in

Appendix A (Figures A.4 and A.5). To avoid biases during site selection, the location

was chosen according to its importance for regional wheat production. Nevertheless,

the time series have been included for informational purposes only.
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For CC, the ensemble mean of the Mode 2 OL is typically lower than the de-

terministic run and CC growth is slightly delayed, because of perturbation bias

(compare with Figure A.4 which includes perturbation bias correction). For Mode

3 (Figure A.5), the growth is further delayed due to varying growing dates, even

though the sowing window was centred around the sowing date of Modes 1 and 2.

CC in the deterministic and Mode 2 OL thus often experience growth too early

compared to the satellite FCOVER observations. DA updates tend to delay this

phase when the ensemble spread is sufficiently large. In some years, the maximum

FCOVER values exceeded CCx, and the DA is bounded by the potential line to

preserve physical consistency. These effects are also visible in biomass production.

Additionally, low DMP values early in the season do not always correspond to low

vegetation cover observations.

Yield estimates are consistently lower when updates are applied, regardless of

growth patterns throughout the years. In 2021 and 2022, a lower maximum CC was

associated with higher soil moisture levels during the drier months.

4.3.1 Canopy cover

To examine the OL and DA performance at a regional scale, the results are divided

into the different analysed variables. Figure 4.7 confirms that all the metrics im-

proved in the scatter plots between CC and FCOVER, by comparing the Mode 2

DA and OL runs. The scatter plots for Mode 1 and 3 are shown in Figure A.6. Ta-

ble 4.1 summarizes the metrics. It is interesting to note the relative improvements

between experiments: Modes 2 and 3 achieved the highest correlations (0.87 and

0.86, respectively), but this was by improving OL runs that had already yielded

better R values themselves.

CC and FCOVER anomalies were computed by removing their respective cli-

matology, and then compared with each other (Figure 4.7, and Figure A.6). As

summarised in Table 4.1, the OL metrics are similar for all experiments, and, once

again, the improvements in the DA runs for modes M2 and M3 are higher than for

M1, which is a consequence of the higher ensemble spread in M2 and M3 and thus

stronger updates towards the FCOVER observations.
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Figure 4.6: Time series showing the state variables (a - canopy cover, b - 10-

day aggregated biomass production, derived from B, and d - 7-day smoothed soil

moisture) and yield formation (c) in a model pixel in the Municipality of Alessan-

dria (44°56’57.3”N : 8°33’13.5”E). The deterministic run is indicated in green, the

open-loop (OL) ensemble mean for Mode 2 is illustrated in violet, and the data

assimilation (DA) ensemble mean for Mode 2 is shown in orange. In graph a), the

spread represented covers two standard deviations (±1). The RICA-CREA values

in graph c) are provided for reference only. For the analysis, the model pixels were

aggregated at the municipality level prior to any comparisons being made.
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Figure 4.7: Scatter plots comparing the 10-day aggregated canopy cover with the

FCOVER observations. A comparison of the absolute values from the OL (a) and

DA (b) runs, and the seasonal anomalies (c and d), is shown for Mode 2. The lower

number of dots in the bottom two plots is due to locations with fewer than three

years of data being excluded.

4.3.2 Biomass production

The same analysis was performed on biomass production, after converting B to

∆B+ to make it comparable with the DMP satellite product. The scatter plots

in Figures 4.8 and A.7 show worse metrics than CC. The absolute values rarely

fall near the 1:1 line, and the OL runs are characterised by a clustering behaviour.

These patterns are consistent across all modes, with the first mode exacerbating the

division between clusters in both OL and DA. Anomalies produce smoother scatter

plots in all scenarios, with a high concentration of values around zero and a smaller

number of values spreading over a range of around ±50 kg ha−1 day−1 for both the

model and the observations.
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Table 4.1: Summary of the effects of perturbation (OL) and the performance of

DA, as measured by the difference between the in-season 10-day aggregated canopy

cover (CC10d) and the assimilated satellite product (FCOVER). Seasonal anomalies

are computed by removing the average seasonal growth pattern. The best values for

each metric are in bold, and the worst are in italics.

CC10d vs FCOVER
Det M1 M2 M3

OL DA OL DA OL DA
R [-] 0.66 0.70 0.78 0.75 0.87 0.75 0.86
RMSD [-] 0.27 0.25 0.19 0.21 0.14 0.20 0.15
Bias [-] 0.13 0.14 0.07 0.08 0.02 0.04 0.00
Seasonal anomalies
R [-] 0.30 0.34 0.58 0.37 0.70 0.32 0.64
RMSD [-] 0.14 0.14 0.13 0.13 0.11 0.15 0.11
Bias [-] 0.00 -0.01 -0.03 -0.01 -0.03 -0.01 -0.02

The metrics summarized in Table 4.2 for the absolute values present similar

patterns to those of the aforementioned CC state variable, with Mode 2 showing

the best values of all the experiments. DA runs always improve their corresponding

OL. Conversely, the picture is less clear when looking at the anomalies. R continues

to improve regardless of the experimental setup, while the RMSD and bias are less

consistent. Mode 1 DA shows the worst values for both of these metrics; likewise,

the procedure has a negative impact on the other two experiments, too.

4.3.3 Yield formation

The performance of DA is finally estimated by analysing the dry yield. The metrics

in Table 4.3 are computed across the entire survey dataset within the domain, in

terms of both space and time. They demonstrate that the deterministic and OL

simulations have a low average bias, but a low R, revealing a poor representation of

the spatio-temporal variability in yield. DA does not enhance the accuracy of the

model’s yield estimates in terms of bias and RMSD, but it slightly improves the R.

Figure 4.9 displays how the point cloud widens thanks to DA, but the R remains

close to the OL value. This effect is present in all modes.

Figure 4.10 shows that intra-annual spatial variability is never matched. How-

ever, M3 DA exhibits a greater spatial variation than other experiments. Yield after

55



4.3. OL AND DA PERFORMANCE CHAPTER 4. RESULTS

Table 4.2: A summary of the effects of perturbation (OL) and the performance

of DA is provided, similar to Table 4.1, by examining the metrics between the in-

season 10-day aggregated daily biomass production (∆B+,10d) and the corresponding

satellite product (DMP). Seasonal anomalies are computed by removing the average

seasonal growth pattern. The best values for each metric are highlighted in bold,

and the worst in italics.

∆B+,10d vs DMP
Det M1 M2 M3

OL DA OL DA OL DA
R [-] 0.32 0.31 0.38 0.38 0.49 0.48 0.49
RMSD [kg ha−1 d−1] 43.59 43.72 40.92 41.98 38.18 39.65 38.83
Bias [kg ha−1 d−1] 8.50 8.33 3.58 6.18 1.47 5.80 2.73
Seasonal anomalies
R [-] 0.25 0.25 0.35 0.27 0.39 0.27 0.40
RMSD [kg ha−1 d−1] 20.17 20.15 21.33 19.47 20.40 19.72 20.73
Bias [kg ha−1 d−1] -0.58 -0.55 -2.19 -0.49 -2.13 -0.26 -1.24

Table 4.3: A summary of the effects of perturbation (OL) and the performance

of DA is provided by considering the metrics between annual dry yield formation

(Y ) and the corresponding observed values (RICA-CREA). Seasonal anomalies are

computed by subtracting the interannual average. The best values for each metric

are in bold, and the worst are in italics.

Y vs RICA-CREA
Det M1 M2 M3

OL DA OL DA OL DA
R [-] 0.12 0.11 0.14 0.11 0.14 0.09 0.13
RMSD [kg ha−1] 1.39 1.40 1.52 1.44 1.65 1.49 1.67
Bias [kg ha−1] -0.10 -0.14 -0.58 -0.39 -0.84 -0.46 -0.80
Seasonal anomalies
R [-] 0.06 0.05 0.08 0.06 0.02 0.02 0.01
RMSD [kg ha−1] 1.07 1.07 1.09 1.07 1.14 1.10 1.19
Bias [kg ha−1] -0.02 -0.02 -0.03 -0.02 -0.03 -0.02 -0.03
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Figure 4.8: Scatter plots showing the relationship between the 10-day aggregated

dry above-ground biomass and the dry matter productivity observations. A com-

parison of the absolute values from the OL (a) and DA (b) runs, and the seasonal

anomalies (c and d), is shown for Mode 2. The lower number of dots in the bottom

two plots is due to locations with fewer than three years of available data being

excluded.

DA is almost always lower than the yield from the deterministic run or the OLs, re-

gardless of whether the observations are over- or under-estimated. Rarely do any of

the runs obtain yield values higher than 6 t ha−1; M3 seems to exceed the threshold

slightly more often.

4.4 Overall temporal performance

Whereas the performance assessment above focused on evaluating spatio-temporal

variability, this section summarizes the temporal performance metrics. Figure 4.11

shows the performance metrics computed over time series at each location and then
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Figure 4.9: Scatter plots depicting the relationship between annual winter wheat

dry yield and samples from the RICA-CREA survey. A comparison of the absolute

values from the OL (a) and DA (b) runs, and the seasonal anomalies (c and d), is

shown for Mode 2. Sample sizes are used for visual purposes only.

aggregated spatially to provide a final performance evaluation. Clear DA improve-

ments are evident in the CC performance, and similar patterns emerge for ∆B+.

In contrast, dry yield performance after DA has remained similar to that of the de-

terministic run at most, but is characterised by a general degradation in all metrics

and modes. The next chapter provides an interpretation of these results and makes

suggestions for future research.
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Chapter 5

Discussion

5.1 Model performance

Canopy cover

The comparison of simulated CC against satellite-observed FCOVER in the scatter

plots in Figure 4.7 shows model clusters around 0.80 and some clusters around low

values. The highest plateau is due to CCx. The lowest one is at CCo. Whereas the

flat cluster around 0.10 is likely due to the nature of AquaCrop, where routines are

typically characterised by hard boundaries. Additionally, canopy growth appears to

be generally faster and/or earlier in the season compared to FCOVER.

Better calibration could be performed in an attempt to match the satellite prod-

uct. On the other side, overestimation of CC allowed DA to update towards lower

values, and updates in the opposite direction (i.e., for values below the 1:1 line in the

CC scatter plots) were a rare occurrence due to the presence of the upper boundary

CCpot.

Biomass

The scatter plots that compare modelled dry above-ground biomass production to

the DMP Copernicus product show a particular circular pattern. As the model and

the satellite data are out of phase, the plants in the model produce earlier and enter

the senescence stage before their satellite equivalent.

DA can smooth out the clusters, but the circular pattern remains. It is possible

that this phenomenon may be reduced if CGC is lowered during the calibration

process. Likewise, other parameters may need to be updated alongside the state

variables to get better B estimates. For example, the Ks factor in eq. 1.6 can be
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corrected to raise the cold stress threshold. This suggests that DA can eliminate

some model inaccuracies, but a better crop calibration is still required for the core

state variable, CC.

Furthermore, the observed and simulated variables do not represent the same

quantities exactly. As mentioned in Subsection 2.3.3, the DMP should always be

higher than the model’s dry above-ground biomass production since the former also

considers biomass stored in the root zone, and does not include both water stress

and fertility effects (Swinnen et al., 2023). Therefore, the ∆B+ values of the earliest

part of the seasons (i.e., the arched clusters above the 1:1 line) differ drastically from

the expected outcome.

Yield

The regional implementation of AquaCrop within NASA’s LIS provides insight into

how crop growth responds to different meteorological conditions and soil textures.

Even though the Piedmont study domain is composed of a heterogeneous soil texture

map and spatially varying forcing data, the deterministic run on a regional scale

is characterised by a narrow spread in yield formation. This may be due to the

coarse resolution of the ERA5 reanalysis (0.25o × 0.25o) and the aggregation of

the model output at the municipality level, which partially evens out the spatial

variability. Nevertheless, it is evident that LIS-AquaCrop exhibits a degree of spatial

rigidity in itself. Likewise, as can be seen in Figures 4.9 and A.8, the LIS-AquaCrop

Y variations in space and time are narrow. One probable reason for this is the

calibration of the fertility stress. The GYGA reference values describe the annual

average yield gap from the potential rainfed scenario in the region, and are consistent

with the fertility stress definition used in this analysis. However, applying an average

fertility parameter across the entire domain can result in a hardly-bounded range

of values, which can limit the model’s performance if metrics are computed using

absolute yield. For example, a municipality with higher overall fertility than average

may experience a consistent bias between surveyed production and model output.

The lack of spatial variation due to the assumption of homogenous fertility can

be eliminated by only focusing on temporal metrics for raw and anomaly estimates.
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After DA, the hope is that the anomaly variation in yield would have improved

compared to their corresponding OL values, but this is not the case in Table 4.3.

5.2 Ensemble design

There are noticeable differences between the three pairs of OL and DA experiments

(modes). As expected, Mode 1 preserves an unbiased CC ensemble mean, whereas

Modes 2 and 3 typically exhibit lower CC values due to the proximity of the de-

terministic run to the potential curve. In fact, while the perturbation is normally

distributed around the mean, the presence of the upper boundary increases the

skewness of the ensemble distribution, making the mean diverge from the median

towards smaller CC. The presence of the potential upper boundary helps to main-

tain physical consistency, particularly when the observations are contaminated by

other land covers, as in the early part of the seasons in the Alessandria example (see

Figure 4.6). However, reasonable increments are also limited when the sowing date

and growth stages are out of phase with the observations.

This mechanism probably drastically limited the benefits of model updates in

Modes 2 and 3. The growth curve was usually dampened, and both flowering and

yield formation were occurring too early in the model. This left the maximum

FCOVER values in the senescence phase, or even when the modelled plants had

dried out and nutrient accumulation had ceased. It is probably the main reason

why the updated yield is consistently lower than in the open-loop runs, especially

in Mode 3.

Varying the sowing date and maximum canopy cover did not significantly increase

the ensemble spread compared to M2; therefore, the additional complexity may

not be required. On the other hand, the planting criteria could be modified to

ensure a more consistent distribution of members across the sowing window. Using

strict rainfall thresholds results in low variability. Furthermore, CCx variability

was partially limited due to the diverging finite differences implementation of the

exponential growth equation mentioned in Subsection 3.1.2.

The third experiment probably experienced a flaw in the rainfall criterion. In
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order to allow for a varying sowing date based on precipitation, this forcing variable

must be read before the simulation begins. However, the perturbation routine for

ensemble generation occurs later in the information flow. Introducing the criterion

requires an earlier perturbation that may not match the rainfall experienced by the

same particle during the simulation.

Given all the evidence, the settings used for Mode 2 strike the right balance

between effectiveness, mathematical correctness, and simplicity. Yet the variation

of model parameters preserves potential benefits that may have been overlooked due

to the limitations presented.

5.3 Model propagation

This thesis aims to exploit the dependence of Y on CC and use FCOVER observa-

tions to update Y . The reduction in the added value of the DA results in the step

between the computation of B and Y needs to be understood and solved. Similar to

the comparison between satellite products in Figure 2.2, the Pearson correlation has

been computed between the maximum in-season FCOVER value (FCOVERx) and

the corresponding surveyed yield values in Figure 5.1 to see if there is any relation-

ship between the interannual variation in FCOVER and yield. Although there may

be more effective methods of quantifying their alignment, and even if it is known

that the soil water balance interferes with the relationship between Y and CC, it

is nevertheless beneficial to recognise the absence of a direct connection between

observed FCOVER and observed yield.

Furthermore, canopy cover and soil moisture are coupled. SM is affected by

updating the CC using satellite observations. In the model, a negative CC increment

results in a lower B, and therefore less water is taken up from the root zone. This

increases its availability after the state variables are updated, resulting in growth

stimulation. Conversely, an observed decrease in CC may be caused by earlier

water stress, i.e., lower SM. These outcomes are completely opposite to each other

and impossible to predict with the current setup.

In addition to the ambiguous interaction between vegetation cover and soil mois-
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Figure 5.1: Relationship between the observed maximum in-season value of

FCOVER and the surveyed yield from RICA-CREA. The correlation is not sig-

nificant (p > 0.05).

ture, the timing of water stress affects the allocation of resources to the plant’s

productive elements, e.g., the kernel in the case of wheat. For example, reducing

biomass before flowering or during yield formation can result in fewer nutrients being

taken up from the soil and allocated to the green material, leaving a higher concen-

tration for the kernel and subsequently increasing fHI in Equation 1.8. Meanwhile,

water stress during flowering is detrimental to pollination efficiency, with obvious

effects on production that season. Therefore, precise quantification and timing of

water availability may be essential for yield estimation.

5.4 Validation

The model output has been analysed in many different ways in an attempt to capture

any useful information, i.e. to see if the DA could improve the temporal or spatial

(anomaly) variation of the various variables. For example, the overall metrics shown

in Figure 4.11 estimate the accuracy with which DA captures the temporal variability

for each municipality (yield) or grid cell (CC, ∆B+) with WW. The summary metric
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is displayed as the spatial mean and standard deviation over the entire domain. By

contrast, an evaluation of both the temporal and spatial variability is performed in

the Tables 4.1, 4.2 and 4.3. The corresponding Figure A.9 depicts the results for

the full dataset and therefore the spatio-temporal performance. Furthermore, the

metrics were also computed by taking a spatial average and calculating the temporal

dynamics in Figure A.10. Similarly, Figure A.11 shows the ability of DA to capture

variability across the domain after taking the average in every model pixel (for CC

and ∆B+) and each municipality (for Y ) over all years.

Opposite results were obtained for the Pearson correlation when examining the

spatial and temporal behaviours, suggesting that data assimilation can adapt the

model to some extent to correct for spatial patterns, on average. Nevertheless, DA

requires general improvements to enhance its performance regardless of the analysed

dimensions.

5.5 Future improvements

Advancements can be made from both a modelling and DA perspective. Within the

regional LIS application of AquaCrop, researchers will continue to activate features

that are currently only available in the field-scale AquaCrop version, or to adapt

them to vary spatially. One such feature is fertility stress, which may help to capture

spatial patterns in crop production if it becomes non-uniform. Spatially varying

water table depth will also be introduced to enhance model performance in specific

regions. Following up on the challenges detailed in Section 3.1.2, future versions of

the core model will present a more accurate incremental canopy cover growth curve,

enabling the crop to reach slightly higher maximum CC values, and removing a

possible bias in relation to the observations. Crop calibration is a time-consuming

process that limits the large-scale application of crop models. DA for state updating

is a promising approach that can reduce uncertainty in general and have a positive

impact on crop growth simulations, but the results suggest that parameter updating

could likely further improve the results.

DA within crop modelling systems is still in its infancy (de Roos et al., 2024),
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and the DA procedure of this study can benefit from further development. As this

study shows, the potential CC upper boundary creates a trade-off between physical

consistency and model uncertainty that requires further exploration. Dependency on

sowing timing not only affects the amplitude of vegetative growth but also constrains

physically sound out-of-phase curves. The ability to decouple these mechanisms

could greatly enhance the efficacy of data assimilation. This can be achieved through

the implementation of varying growth stages or by perturbing temperatures in the

forcing data.

While all the aforementioned options will likely improve DA, further progress is

needed to improve regional crop yield estimates with a view towards a stable mid-

range yield forecast. The assimilation of satellite-borne soil moisture observations

alongside vegetation cover can resolve the ambiguity of the effects of CC updates

on the soil water balance, in line with earlier studies that showed the benefit of joint

DA for land surface models (Heyvaert et al., 2024).
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Conclusions

The climate crisis is already leading to extreme meteorological events, which might

pose risks (IPCC, 2022) to food prediction in the future. Predictive tools are es-

sential for farmers to adapt their techniques both in the long term and during the

growing season. The joint benefits of mid-range weather forecast models and crop

models enriched with satellite data assimilation are potentially strategic and warrant

further study and testing.

This thesis contributes to the advancement of high-resolution crop forecasting by

assessing which DA techniques are the most suitable and effective in reducing model

uncertainties in crop yield estimates. Experiments were performed using AquaCrop

within NASA’s Land Information System, forced with reanalysis meteorological forc-

ing data to estimate winter wheat production in Italy’s Piedmont Region between

2017 and 2023. The Copernicus satellite product “Fraction of vegetation COVER”

(FCOVER) has been assimilated to update the model vegetation states, and the

propagation of the updates has been investigated to understand its impact on yield

formation. Evaluation was performed by computing a series of statistical metrics,

comparing the model-only and DA biomass estimates with the Dry Matter Pro-

ductivity (DMP) Copernicus product, and the yield estimates with observed yield

values from the RICA-CREA survey.

After adapting the AquaCrop code and its surrounding LISF routines, the DA

successfully updated canopy cover and biomass estimates in the model. However,

its propagation within the model was short-lived, resulting in small and inconsistent

updates to the dry yield. Future research could consider a series of adjustments

to improve DA efficacy by addressing three main elements. Firstly, LIS-AquaCrop

should be enhanced by implementing additional spatially varying parameters such as
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soil fertility stress, and by correcting some model inaccuracies. Secondly, the effects

of the bounded nature of canopy cover on the ability to apply DA increments must be

thoroughly examined. This would involve attributing the limit to unphysical values

only and finding solutions to the temporal stage mismatch. One possible solution

would be to introduce varying growing stages or to perturb input temperatures,

and to update crop parameters along with state variables during the DA. Finally,

implementing near-surface soil moisture satellite DA will be essential to complement

the techniques described in this thesis.

This thesis has advanced our understanding of the limits and potential of regional

crop DA. These promising advancements can now be used as a basis for future work

towards a safer, more reliable, and more predictable future for human nutrition.
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Land Operations ”Vegetation and Energy”, Product User Manual, Dry Matter
Productivity (DMP), Gross Dry Matter Productivity (GDMP) Net Primary Pro-
duction (NPP) Gross Primary Production (GPP), Collection 300m, Version 1.1,
Issue I1.30. Tech. rep., Copernicus. URL https://land.copernicus.eu/en/
products/vegetation/dry-matter-productivity-v1-0-300m.

Wolfs, D., Verger, A., Van der Goten, R., and Sánchez-Zapero, J. (2022). Copernicus
Global Land Operations ”Vegetation and Energy”, Leaf Area Index (LAI), Frac-
tion of Absorbed Photosynthetically Active Radiation (FAPAR) Fraction of green
Vegetation Cover (FCover), Collection 300m, Version 1.1, Issue I1.20. Tech. rep.,
Copernicus. URL https://land.copernicus.eu/en/products/vegetation/
fraction-of-green-vegetation-cover-v1-0-300m.

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal,
J. C., Sampson, C. C., Kanae, S., and Bates, P. D. (2017). A high-accuracy map
of global terrain elevations. Geophysical Research Letters, vol. 44:pp. 5844–5853.
ISSN 19448007. doi:10.1002/2017GL072874.

Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longuev-
ergne, L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y. (2011). The commu-
nity Noah land surface model with multiparameterization options (Noah-MP): 2.
Evaluation over global river basins. Journal of Geophysical Research, vol. 116:p.
D12110. ISSN 0148-0227. doi:10.1029/2010JD015140.

Zhao, Q. and Yu, L. (2025). Advancing Sustainable Development Goals through
Earth Observation Satellite Data: Current Insights and Future Directions. doi:
10.34133/remotesensing.0403.

78

https://land.copernicus.eu/en/products/vegetation/dry-matter-productivity-v1-0-300m
https://land.copernicus.eu/en/products/vegetation/dry-matter-productivity-v1-0-300m
https://land.copernicus.eu/en/products/vegetation/fraction-of-green-vegetation-cover-v1-0-300m
https://land.copernicus.eu/en/products/vegetation/fraction-of-green-vegetation-cover-v1-0-300m


Appendices

79





Appendix A

Additional figures

Figure A.1: Snapshot of model’s ensemble mean canopy cover in the middle of

the 2018 season for Mode 2. Visible patterns due to soil texture heterogeneity and

spatial variation of forcing data.
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Figure A.2: Time series of the variables CC, B, and Y for years 2018 and 2019

of a model pixel in the Municipality of Alessandria (44°56’57.3”N : 8°33’13.5”E) for
Mode 1. Plots a) and b) are related to the OL, while c) and d) show the effects

of the DA updates. During Fall 2017, the delayed emergence of some members was

caused by water stress.
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Figure A.3: Time series of the variables CC, B, and Y for years 2018 and 2019

of a model pixel in the Municipality of Alessandria (44°56’57.3”N : 8°33’13.5”E) for
Mode 3. Plots a) and b) are related to the OL, while c) and d) show the effects of

the DA updates.
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Figure A.4: Time series showing the state variables (a - canopy cover, b - 10-day

aggregated biomass production, derived from B, and d - 7-day smoothed soil mois-

ture) and the yield formation (c) in a model pixel in the Municipality of Alessandria

(44°56’57.3”N : 8°33’13.5”E). Deterministic run in green, open-loop (OL) ensemble

mean for Mode 1 in violet, and data assimilation (DA) ensemble mean for Mode

1 in orange. In graph a), the represented spread covers two standard deviations

(±1). The RICA-CREA values in graph c) are provided for reference only. For the

analysis, the model pixels were aggregated at the municipality level prior to any

comparisons.
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Figure A.5: Time series showing the state variables (a - canopy cover, b - 10-day

aggregated biomass production, derived from B, and d - 7-day smoothed soil mois-

ture) and the yield formation (c) in a model pixel in the Municipality of Alessandria

(44°56’57.3”N : 8°33’13.5”E). Deterministic run in green, open-loop (OL) ensemble

mean for Mode 3 in violet, and data assimilation (DA) ensemble mean for Mode

3 in orange. In graph a), the represented spread covers two standard deviations

(±1). The RICA-CREA values in graph c) are provided for reference only. For

the analysis, model pixels were aggregated at the municipality level prior to any

comparisons.
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Figure A.6: Scatter plots display the 10-day aggregated canopy cover versus the

FCOVER observations. A comparison between the absolute values from the OL (a)

and DA (b) runs, and the seasonal anomalies (c and d), is shown for Mode 1, and

the same is done for Mode 3 below (e, f, g, h).

86



Figure A.7: Scatter plots display the 10-day aggregated above-ground biomass

production versus the DMP observations. A comparison between the absolute values

from the OL (a) and DA (b) runs, and the seasonal anomalies (c and d), is shown

for Mode 1, and the same is done for Mode 3 below (e, f, g, h).
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Figure A.8: Scatter plots display the annual dry yield formation versus the RICA-

CREA survey. A comparison between the absolute values from the OL (a) and DA

(b) runs, and the seasonal anomalies (c and d), is shown for Mode 1, and the same

is done for Mode 3 below (e, f, g, h).
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Summary (Italian)

AquaCrop, il modello di crescita delle colture dell’Organizzazione per l’alimentazione

e l’agricoltura (FAO), è stato recentemente integrato nel Land Information System

Framework della NASA (LISF, quadro del sistema di informazione territoriale).

Ciò consente di effettuare stime sulle colture senza precedenti ed esperimenti di as-

similazione dei dati satellitari (data assimilation, DA) su scala regionale. La DA

satellitare mira a combinare un modello e le osservazioni per ridurre le incertezze

nelle stime sulla dinamica di crescita delle colture. Questa tesi assimila il prodotto

Copernicus relativo alla frazione di copertura vegetale (FCOVER) per aggiornare

la copertura verde del suolo (canopy cover, CC) e la biomassa e, di conseguenza, le

stime sulla resa del frumento invernale in Piemonte tra il 2017 e il 2023. Dopo aver

calibrato i parametri delle colture, testato il modello e sviluppato le routine DA,

sono stati generati tre insiemi (ensemble) di modelli (modes, modalità) perturbando

il modello in vari modi per stimare l’incertezza delle previsioni del modello. I dati

meteorologici e le variabili di stato sono stati perturbati in tutte le modalità. La

modalità 1 includeva la correzione del bias di perturbazione; la modalità 2 no, cos̀ı

come la modalità 3, che includeva invece un’ulteriore variazione di parametri. Suc-

cessivamente, le osservazioni FCOVER per il frumento sono state assimilate con una

tecnica chiamata ensemble Kalman filter (EnKF). I risultati sono stati confrontati

con altri prodotti satellitari e indagini sul campo relative alla resa.

La modalità 3, che presentava il maggior numero di gradi di libertà, ha portato

alle migliori simulazioni basate esclusivamente sul modello rispetto ai dati di riferi-

mento, e ha anche fornito gli aggiornamenti DA più significativi. L’assimilazione di

dati ha migliorato CC (da design) e la produzione di biomassa secca fuori terra del

modello; tuttavia, le stime di resa non hanno mostrato un chiaro miglioramento per

tutte le modalità di generazione di ensemble. Gli incrementi della DA su CC sono

stati limitati da un limite potenziale superiore (CCpot), sia che questi valori fossero

oltre i limiti fisici, sia a causa dell’asincronia tra la data di semina del modello e le
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osservazioni, e questo a sua volta limita gli aggiornamenti alla resa. I risultati DA

più promettenti sono stati ottenuti per la modalità ensemble 2. Sono necessari ulte-

riori studi per comprendere come affrontare l’incertezza della data di semina o delle

fasi di crescita delle colture in generale. L’assimilazione congiunta dei dati relativi

alla copertura vegetale e all’umidità del suolo dev’essere studiata al fine di superare

il degrado dovuto agli aggiornamenti DA della vegetazione durante la propagazione

delle informazioni all’interno del modello.
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