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Abstract

More frequent and intense heatwaves are just one of the consequences of anthropogenic
climate change. Cities are among the areas most exposed and vulnerable to heat, generating
what is known as the Urban Heat Island (UHI) effect. This phenomenon has been largely
studied in recent years, especially using thermal sensors on satellites, but few studies
investigate the phenomenon at the microscale, providing more accurate data.

The present study aims to investigate the urban microclimate of a section of District 6 in the
city of Turin on a day classified as a heatwave in August 2025, using airborne LiDAR and
thermal infrared data at 1 m resolution. Among the primary objectives are to study the
thermal response of different soil types during daytime and nighttime hours. Simultaneously,
the study models, using a GIS-based approach, the variation in shading and solar irradiance
received at ground level throughout the day, as well as estimates other geometric factors such
as the Sky View Factor, which describes urban canyoning. These models derive from Digital
Elevation Models (DEMs) obtained from LiDAR surveys.

The statistical analyses that are conducted on the same study area provide results consistent
with those found in the literature and highlight the important role of shading and vegetation
in decreasing surface temperatures during daytime hours.

Using a dynamic shade optimisation approach, the study aims to provide various pedestrian
routes to reach different areas of the study area, minimising sun exposure throughout the day.
This can help increase thermal comfort and highlight the most vulnerable zones, known as
hot spots, as well as the safe spots. Moreover, the study provides an easily replicable
methodological approach to identify heat-vulnerable areas where mitigation measures can be

adopted to reduce vulnerability.

Keywords:

Urban Heat Island (UHI), LiDAR, Airborne Thermal Remote Sensing, DEM-based
Modelling, Urban Heat Vulnerability.
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1. Introduction

1.1 Purpose and Scope of the Study

Understanding the dynamics of urban thermal behaviour is becoming increasingly important
due to the continuous rise of global temperatures and because of the more frequent and severe
heatwaves due to climate change. Urban areas are very vulnerable to the Urban Heat Island
(UHI) phenomenon, which occurs when temperatures within the urban fabric are much
higher with respect to temperatures experienced in rural areas. The primary goal of this
research is to investigate the phenomenon of UHI within a strongly anthropized environment,
with a focus on identifying microclimatic variations at a very detailed scale. This is done
through high-resolution remote sensing data. The UHI phenomenon is investigated using low
altitude aerial surveys, instead of the lower resolution satellite imagery that is often affected
by atmospheric noise. The use of LiDAR (Light Detection and Ranging) technology is an
essential component of the methodology, and by using the resulting 3D point clouds, very
detailed 3D models of the urban fabric are created. These models allow to identify and
classify urban features, such as streets, trees and buildings, and also to better understand the
spatial distribution of heat. In addition, the study analyses the GIS-based tools estimating
solar radiation and shading patterns. Moreover, the Sky View Factor (SVF) provides
additional information about urban geometry.

The research aims to:

1. Identify the areas where the UHI effect is most pronounced by integrating thermal
imaging obtained in the thermal infrared spectra during aerial surveys conducted in
the daytime and at night, with solar irradiance and shading models;

2. Understand how urban materials behave in terms of heat storage and dissipation;

3. Determine potential cool spots, such as places that are better shaded by vegetation or

constructions and that are less exposed to direct sunlight.

Results aim to help create more resilient cities and safer areas for people that are more
vulnerable by suggesting urban development methods that are focused on climate change
mitigation and adaptation strategies.

The study is structured into several sections, each focusing on different topics that are all

essential for the understanding of the UHI phenomenon and the development of a



vulnerability assessment. The first step involves conducting a climatic analysis using data
from a meteorological station near the study area, to provide robust climatological basis for
the analysis of UHI. Furthermore, this section is crucial, as the analysis of maximum and
minimum temperature trends over that period enables the identification of days classified as
heatwaves and nights defined as tropical nights. Then, another section is dedicated to the
extraction of digital elevation models, obtained through the processing of data acquired using
LiDAR technology. From these data, the land cover class related to tree canopy is extracted,
which is then used as a soil type in the land use map. An important section is the GIS
analysis, which uses the previously obtained elevation models to identify and model shaded
areas, the SVF, and solar irradiance over the study area. All this information, together with
the section dedicated to the acquisition and analysis of thermal images, is integrated into the
statistical analysis, which represents the core of the work. This phase provides fundamental
information on the behaviour of the urban fabric during a heatwave. Finally, the last section
focuses on the assessment of urban heat vulnerability during heatwaves using a dynamic
route optimisation approach. The model considers temperature and shading to identify routes
with higher thermal comfort and areas most exposed to heat, providing useful suggestions for

urban planning. The entire methodology is summarised in the diagram below (Figure 1.1).
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Figure 1.1 - Methodological framework



1.2 Study Area

The study corresponds to a part of District 6, which is in the northeastern part of the city of
Turin, in Italy. With a total surface of about 2.000 km? the area lies between the
neighbourhoods of Regio Parco and Barriera di Milano, which exhibit significant socio-
cultural complexity and human landscape alteration. The study area is shown in Figure 1.2.
The existence of earlier studies and data that can be examined and integrated with the

information collected during this investigation supports the choice of this area.
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Figure 1.2 - Study area: a section of District 6 in Turin

The study area is characterised by strong landscape heterogeneity. It mostly includes
impermeable urban elements such as asphalt and concrete, as well as residential areas and
industrial buildings with roofs that facilitate heat retention and contribute to overheating of
the area, especially during the summer season. Moreover, in the area it is possible to notice
the limited presence of green spaces with adequate vegetation capable of providing shelter
from direct sunlight during the hottest days. This may have a negative impact on the ability of

these green areas to mitigate the effects of climate change and to reduce the effects of the



UHI. Furthermore, the social characteristics of the area make it even more vulnerable to the
potential risks resulting from heatwaves and heat stress. For this reason, it is essential to
study and investigate the vulnerability of these regions in order to encourage the development

of new strategies to counteract the impact of UHIs.



2.Heatwaves and Urban Heat Islands

2.1 Overview of Climate Change, Heatwaves, and Urban Heat
Islands

Climate change is one of the most pressing global challenges of the 21st century (Feulner,
2015). According to WMO, it refers to a long-term change in the state of the climate that can
be identified by changes in the mean and/or the variability of its properties. The current
changes in climate are primarily caused by increased concentrations of greenhouse gases
(GHGs) in the atmosphere since the Industrial Revolution due to human activities (IPCC,
2013) such as the combustion of fossil fuels (coal, oil and gas), deforestation, land use
change, increasing livestock farming, agricultural activities, etc. (IPCC, 2018). These gases
trap heat from the sun, leading to a rise in average global temperatures (United Nations, n.d.).
The consequences of climate change are very serious and can be seen in natural, social and
business threats (European Commission & Directorate-General for Climate Action, n.d.),
impacting ecosystems, weather patterns, sea levels, and human societies (EEA, 2025). The
Sixth Assessment Report of the IPCC (2023) states that hot extremes, including heatwaves,
have become more frequent and intense since the 1950s across most regions of the world, due
to human-caused climate change. Heatwaves are defined as “prolonged period of much-
warmer-than-average weather” (Copernicus, 2024). Although there is no universally accepted
definition of a heatwave, several criteria and thresholds have been proposed and tested in the
scientific literature. These extreme heat events have become more common globally and they
pose risks to ecosystems and human health (WMO, 2023). Temperatures in Europe are
warming twice as fast as the global average, with 2024 recorded as the hottest year (World
Meteorological Organization & European Union, 2025). Moreover, the warmest 10 years
experienced by the region have been since 2007, in particular the last 3 years have been the
warmest on record. In fact, 19 of the 23 most severe European heatwaves since 1950 have
occurred since 2000 (WHO, 2025). Heatwave’s risks are particularly pronounced in urban
environments, where the combination of climate change and city characteristics creates what
is known as the Urban Heat Island (UHI) effect. Moreover, urban population exposure to
extreme heat has strongly increased in recent decades due to both climate change and rapid
urbanisation (Tuholske et al., 2021). WMO defines urban climate as local climate that is

modified by interactions between the built-up area and regional climate. The UHI effect
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results from interactions between the urban environment and atmospheric processes, leading
to elevated temperatures in cities compared to surrounding rural areas (Collier, 2006;
Santamouris, 2015). Oke (1982) provided an analysis of the energetic mechanisms driving
this phenomenon. This analysis shows how changes in surface properties and energy fluxes
contribute to urban warming. This effect arises in urban environments due to factors such as
vegetation cover, season, extent of built-up areas, time of day, population density, the
presence of water bodies, and other variables (Deilami et al., 2018). Urban surfaces absorb
and retain more heat than surrounding rural surfaces. Materials commonly used in cities, such
as asphalt, concrete, bricks, and roofing tiles, have low albedo and high thermal mass,
meaning they absorb solar radiation during the day and release it slowly at night, keeping
urban areas warmer (Vujovic et al., 2021). This temperature difference worsens the health
risks associated with heatwaves, especially for vulnerable populations including the elderly,
young children, people with pre-existing medical conditions, and those living in low-income
neighbourhoods with limited access to cooling infrastructure (Harlan et al., 2006), by
increasing the incidence of heat exhaustion, heat stroke, cardiovascular diseases, and
respiratory illnesses (van Daalen et al., 2024). HWs combined with UHIs have been linked to
spikes in mortality rates during hot seasons in many cities worldwide. Numerous
epidemiological studies have demonstrated the adverse effects of high temperatures on
human health. For instance, Baccini et al. (2008) and Oudin Astrém et al. (2015) conducted
comprehensive analysis across different European cities and found that elevated heat levels
were associated with an increase in mortality rates. Heatwave-related mortality in the
European Region is estimated to have increased by over 30% in the past 20 years, with more
than 61,000 heat-related deaths recorded in 2022. That year, Italy was the most affected
country, accounting for almost 18,000 of these deaths (Ballester et al., 2023). In 2023, the
number of heat-related deaths was 47,000 (WHO, 2025). A particularly concerning aspect of
urban heat stress is the occurrence of hot nights, where minimum temperatures remain high.
Normally, nighttime temperatures provide relief from daytime heat. However, in urban areas
affected by the UHI effect, the retention of heat prevents this natural cooling, prolonging heat
exposure (Possega et al., 2022). As a result, urbanisation contributes to the increase in
nighttime temperature extremes (Schatz & Kucharik, 2015; Sun et al., 2019). This heat stress
can impact sleep and cognitive function, and increase the risk of heat-related illnesses. This
means that hot nights significantly worsen the health impact of heatwaves (Buguet et al.,

2023).



2.2 Climate Analysis

For a comprehensive understanding of temperature dynamics, and thus of the impact of
heatwaves, it is essential to establish the foundations of a climatic study that describes the
long-term behaviour of temperatures in the area. In particular, to ensure statistical robustness,
it is required a temporal baseline of at least 30 years of continuous temperature observations.
The meteorological data used in this study are obtained from the National Centers for
Environmental Information (NCEI) of NOAA. Among the four available weather stations
surrounding the Turin area (Torino Caselle, Torino Venaria, Torino Bric Croce, and Aeritalia
Torino) the Torino Caselle station was selected. This station is managed by ENAV and is
located within the Turin-Caselle airport area at 287 meters above sea level (45°11'30.65"N,
7°39'02.39"E), and it is approximately 11 km far from the study area (Figure 2.1). This
choice is motivated by the station’s dataset, which allows for the reconstruction of a 30-year

baseline with consistent daily records.
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Figure 2.1 - Location of Torino Caselle weather station



2.2.1 Long-term Temperature Analysis

The first phase of the climatic analysis focuses on detecting the existence of a trend in the
daily maximum and minimum temperatures recorded at the station between January 1995 and
December 2024. After an initial cleaning phase, gaps in the data are identified. These gaps
are filled to maintain temporal continuity using the long-term daily mean, corresponding to
the 30-year average of maximum or minimum daily temperatures. Once the gaps are filled,
the seasonality is removed in order to extract a clear temperature trend. To remove this
seasonality, a spectral analysis is performed by applying a Fast Fourier Transform (FFT),
which converts the series from the time domain into the frequency domain. The FFT
produces both amplitude and phase spectra, from which the three main harmonic components

can be identified:

- First harmonic: reflects the annual oscillation;
- Second harmonic: reflects the seasonal cycle;

- Third harmonic: adjusts the shape.

By combining the first three harmonic components with their corresponding amplitudes and
phases, the Periodic Component (PC) is reconstructed. The Periodic Component can be

expressed as:
PC = Ay cosQ2nf; + ¢1) + A, cos(2nf, + ¢p5) + Ascos 2mfs + ¢p3) (Eq. 2.1)
Where:

- A4, A;, Az are the amplitudes of the first, second, and third harmonic components;
- ¢1, P2, P3 are the phase shifts of the first, second, and third harmonics;

- f1, f2, f3 are the frequencies of the first, second, and third harmonics:

o f1= 3%6 cycles/day
o fo= é cycles/day

o fz= % cycles/day

The value 366 is used instead of 365.25 because in the dataset all years include

February 29th. In non-leap years this day is recorded as “no data.”



Harmonic components are typically centred around zero, but in this study they are adjusted
using the mean of the observed temperatures to centre the harmonics relative to the actual
temperature trend. Then, residuals are obtained by subtracting this periodic model from the
gap-filled series. Finally, a linear regression is applied to the residuals to verify the existence
of a temperature trend. The trends for maximum and minimum daily temperatures are shown

in Figure 2.2.
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Figure 2.2 - Maximum and minimum temperatures from Ist January 1995 to 31st December 2024: (4) Maximum
temperatures, (B) Residuals of maximum temperatures, (C) Minimum temperatures; (D) Residuals of minimum temperatures

Results of the linear regression on the residuals are presented in Table 2.1 and show a
warming trend in both cases. Maximum daily temperatures show an increase of
+0.063 °C/year, while minimum daily temperatures show an increase of +0.060 °C/year. The

p-values confirm that these trends are highly statistically significant.

Table 2.1 - Regression results on residuals of daily maximum and minimum temperatures

Temperature Intercept Slope Daily Slope Annual p-value
Tmax -0.939 0.000171 0.0626 6.522e-56 **x*
Tmin -0.893 0.000163 0.0595 2.238e-77 **x*



2.2.2 Heatwaves Analysis

In this section, the presence and characteristics of HWs in Turin are analysed using
temperature data from the Torino Caselle station from 1st January 1995, to 24th August 2025.
HW days were identified using the Heat Wave Magnitude Index (HWMI), which quantifies
the maximum magnitude of HWs within a given year. In this case, a HW is defined as a
period of at least three consecutive days during which daily maximum temperatures exceed
the threshold determined for the reference period (1995-2025). The threshold corresponds to
the 90th percentile of daily maximum temperatures, calculated within a centred 31-day

moving window (Russo et al., 2014):

2025 day+15

Ag = U U Ty (Eq.2.2)
y=1995 i=day-15
Where:
— Ajg is the threshold;
— U is the union of datasets;

— T, is the daily T4y of the year y and the day i.

The same criterion is applied in previous UHI studies, such as Todeschi et al. (2022). Days
that exceed the 90th percentile but do not occur in a sequence of at least three consecutive
days are classified as “hot days.” For each year, the duration and frequency of HWs, the
number of HWs during the summer months (June to September) and the total number of hot
days are found. For 2025, data are analysed only up to 24th August. Data from 25th August
to 30th September are treated as “no data”. So, the number of hot days and HWs during the
reference period may be underestimated, as potential events occurring in late August and
September are not included. The results are presented in Figure 2.3.

Results in Figure 2.4 show how the total number of hot days and HW days increased
significantly from 1995 to 2025. It is interesting that starting from 2014, every subsequent

year experienced at least one HW.
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Figure 2.4 - Annual frequency of hot days and HWS with trend lines

The linear regression applied to the period 1995-2024 shows a statistically significant
positive trend (Table 2.2). The trend shows that HW days are increasing by +0.37 days per

year, while total hot days are increasing by +0.56 days per year.
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Table 2.2 - Linear regression results of HW and hot days

Sl
Variable Intercept ope R? p-value
(days/vear)
HW Days -743.220 0.373 0.191 0.0159 *
Total Hot Days -1121.136 0.563 0.295 0.00192 ==

2.2.3 Tropical Nights Analysis

Minimum temperatures have proved to be very important in determining the presence of
tropical nights in Turin. The definition of a tropical night varies depending on the
geographical area that is considered. In European countries, a night is defined as tropical
when the minimum recorded temperatures do not fall below 20 °C (Copernicus, 2025).

By setting a threshold of 20 °C, the series of minimum temperatures from 1995 to 2025 was
analysed, considering the months from June to September. The results are shown in Figure
2.5.

Through the linear regression of the data shown in Figure 2.6, it is possible to see the positive
trend present in the series. The results are shown in Table 2.3. Specifically, the trend of
increase in the number of tropical nights is highly statistically significant, with an average
increase of about +0.63 tropical nights per year. The results are consistent with the trend of

minimum temperatures in the same region.
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Figure 2.5 - Daily distribution of tropical nights
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Figure 2.6 - Annual frequency of tropical nights with trend line

Table 2.3 - Linear regression results of tropical nights

Intercept

Slope

2 -
(nights/year) R p-value

-1256.658

0.633 0.338 0.000752 #x*
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3.LiDAR Technology

3.10verview of LIDAR

Understanding and mitigating the effects of the UHI effect requires a complete knowledge of
the city’s physical configuration, including building geometry, vegetation cover and the types
of materials of surfaces. One of the most effective technologies for obtaining this level of
detailed spatial information is LiDAR (Light Detection and Ranging). LiDAR is an active
remote sensing method which uses laser pulses to measure distances from a sensor to surfaces
on the Earth. These pulses are emitted from a transmitter and bounce back from surfaces, to
be captured by a receiver that then translates them into electrical signals (Wasser, 2024). This
process allows for the creation of high-resolution 3D point clouds, which enable the
generation of digital elevation models (DEMs).

LiDAR systems are implemented across different platforms, each specialised to specific

applications and environments (Mehendale & Neoge, 2020):

- Airborne LiDAR: installed on aircraft or helicopter, used in topographic mapping,
forestry, and environmental monitoring due to its efficiency in capturing broad-scale
information. It has two subtypes:

o Topographic LiDAR: used in forestry, urban planning, environmental
monitoring, etc.

o Bathymetric LiDAR: used to map underwater areas near coastlines, shores,
and banks.

- Terrestrial LiDAR: used to survey highways and railways, urban mapping, manage
facilities, create 3D models for spaces, etc. It has two subtypes:

o Mobile LiDAR: mounted on moving platforms such as cars, boats, or trains. It
is used to analyse road infrastructure, locate incoming road signs, light poles,
etc.

o Static LiDAR: used in engineering, archaeology, mining, and surveying.

Regardless of the platform, all LIDAR systems rely on some core components (Lohani &

Ghosh, 2017):

14



- LiDAR sensors: the laser scanner is used to generate short-width laser pulses, transmit
them toward the ground, scan the ground below while transmitting pulses, and the
photodetector receives the return signal. By measuring the time it takes for each pulse
to return, the system calculates the distance to the surface;

- GNSS receiver: the GNSS unit mounted on the aircraft works in tandem with a
ground-based GNSS base station receiver and observes the 3D position of the aircraft
at each epoch of GNSS observation;

- IMU sensor: the Inertial Measurement Unit (IMU) records the accelerations and
orientations of the aircraft using accelerometers and gyroscopes.

- Onboard computer: timestamps the different data produced by the above sensors
using the GNSS time and archives raw data;

- Digital camera: it is common to also have a medium format digital camera along with
the LiDAR sensor, as it provides colour information of the terrain, offering additional

useful information.

The fundamental principle behind a LiDAR system is the time-of-flight method obtained
through light reflection. The emitted pulse travels at a very high speed, corresponding to the
speed of light. Since this speed is known, it is possible to compute the following formula to

retrieve the distance (Mehendale & Neoge, 2020):

cAt
Distance = - (Eq. 3.1)

Where:

- c s the speed of light;

- At is the time the laser pulse took to go and come back to the sensor.

By repeating this process hundreds of thousands of times per second, it is possible to obtain a
very detailed point cloud representing points acquired on the surface, each one corresponding
to a precise position in space. These points also contain additional metadata, such as GPS
timestamp, intensity, scan angle, return angle, and type of classification. These data are
usually stored using a standardised file structure, the LAS file format. Figure 3.1 illustrates

the airborne LiDAR survey system.
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Figure 3.1 - Schematic of the airborne survey system

3.1.1 Laser Properties

The laser properties of the LiDAR system are fundamental. The beam divergence refers to
how much the laser beam spreads as it travels, influencing the laser footprint size on the
ground and the system's spatial resolution, with a smaller footprint providing higher-
resolution data. The relationship between flight height (h), beam divergence (y), and footprint
diameter (A4;) is given by Baltsavias (1999):

A =hy (Eq. 3.2)

Another critical property is intensity, defined as the ratio of strength of reflected light to that
of emitted light. Intensity is not a function of the laser itself. It depends on the reflectance of
the target surface. Surfaces with higher reflectance or perpendicular angles of incidence
return more energy, which improves the detectability of features in the data. Intensities are in
fact useful information for classifying land cover in LiDAR data (Song et al., 2002). The
intensity usually produces a grey scale pseudo-ortho from just the LiDAR data itself.

Finally, the pulse rate, the scan rate and the platform’s speed determine the density of the
point cloud.

Moreover, two other factors that strongly influence and determine data reliability are
accuracy and resolution. The study by Passalacqua et al. (2015) provides typical values for

airborne LiDAR systems, as reported in Table 3.1. Resolution refers to the number of points
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acquired per square meter, and higher densities correspond to more detailed representations
of terrain features. Vertical and horizontal accuracy refer to terrain elevation and planimetric

position, respectively (ASPRS, 2004).

Table 3.1 - Typical specifications of airborne LiDAR systems

Best georeferenced or

Spatial Typical point , Smallest
) measurement accuracy (vert/horiz) ,
extent (km?)  density (pts/m?) (m) footprint (m)
10 - 100s 1-100 0.05/0.2-0.2/0.6 0.1-1

3.2 LiDAR Data Processing and Products

Before being used, the raw data recorded by LiDAR acquisitions undergo a series of
processes.

The first step is pre-processing, where the raw data are georeferenced using the values
recorded by the onboard GNSS and IMU systems. In this step, the data are also calibrated to
improve accuracy and correct for any errors and cleaned of external noises.

Once the pre-processing and data cleaning phase is done, the classification phase begins,
where each data point is assigned a specific category.

Once classified, the LIDAR data can be used to generate different results. Among the most
important results is the Digital Elevation Model (DEM), a 3D model representing the Earth's
surface, including the Digital Terrain Model (DTM) and the Digital Surface Model (DSM)
(Manune, 2007). The DTM represents the terrain surface, excluding points characterizing
features such as buildings and vegetation (Figure 3.2A). The DSM represents the Earth's
external surface, including elements such as buildings and vegetation (Figure 3.2B). Another
variant is the Non-Vegetated Surface (NVS), that represents a DSM that includes only human
structures and buildings (Figure 3.2C) (Guth et al., 2021).

These models lay the foundation for the creation of secondary models, derived to extract
more detailed information and features (Guth et al., 2021). For example, the normalised DSM
(nDSM) is calculated by subtracting the DTM from the DSM, and the result provides a model
representing the heights of objects above ground level. The Canopy Height Model (CHM)
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represents the vegetation height by subtracting the NVS from the DSM, offering a model for
studying urban greenery or forest areas (Croneborg et al., 2020).

As documented in recent publications, these acquisitions are very useful for monitoring
infrastructure and vegetation as well as analysing urban morphology (Takhtkeshha et al.,
2024). In the context of urban HWs, LiDAR data enables the extraction of 3D models of the
urban fabric, capturing elements such as building heights and shapes, urban canyons, and
other factors that influence heat distribution. It is also useful for mapping green spaces and
urban parks, which are increasingly essential for contrasting the effects heatwaves through
shade and evapotranspiration (Hofierka et al., 2017; Pyszny et al., 2020). Moreover, when
combined with thermal imagery, LiDAR data also enables the visualisation of heat
distribution on the urban fabric, helping to identify hotspot and cool spot areas and serving as

a basis for determining mitigation strategies (Mandanici et al., 2016).

Figure 3.2 - (A) Digital Surface Model (DSM); (B) Digital Terrain Model (DTM); (C) Non-Vegetated Surface (NVS)
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3.2.1 LiDAR Data Processing and Validation

To implement the general workflow described in Section 3.2, it was used LiDAR data
acquired by the Politecnico di Torino in 2022. The files containing the point clouds are in
LAS file format. There are 15 files, each covering an area of 0.25 km?, for a total investigated
surface of 3.75 km? and a total of 106,401,261 acquired points. The LAS point cloud is
georeferenced using the EPSG:32632 (WGS 84 / UTM Zone 32N) coordinate reference
system, as specified in the file metadata. The characteristics of each used file are shown in
Table 3.2. The acquisitions used a nadir-oriented sensor, directing laser pulses vertically
downward. By processing these data in a GIS environment, specifically using ENVI LiDAR
6.1 software, it is possible to obtain useful outputs, including DTM, DSM, and orthophoto of
the area. The resulting rasters are then clipped to the study area initially described, covering
approximately 54% of the surface analysed by the LiDAR survey. Figure 3.3 highlights
complementary attributes of the point cloud in a portion of the study area. Specifically,
Figure 3.3A shows the dataset in RGB (true colour), providing a representation of buildings,
roads, and vegetation. Figure 3.3B shows the elevation of points. Figure 3.3C shows
automatic point classification. Only ground points have been classified, which are
fundamental for generating the Digital Terrain Model (DTM), while the remaining
unclassified points (mainly buildings and vegetation) provide the basis for generating the
Digital Surface Model (DSM). Finally, Figure 3.3D displays LiDAR intensity in grayscale.

The resulting DSM and DTM (Figure 3.4 and Figure 3.5) are generated at a high spatial

resolution of 1 m/pixel and serve as input for subsequent analysis steps.

19



Foints
| Unciassiiec

M Grounc

Figure 3.3 - Complementary attributes of the LIDAR point cloud in a portion of the study area. (A) True colour RGB; (B)
Point elevation; (C) Automatic point classification, (D) LiDAR intensity
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Figure 3.4 - Digital Terrain Model (DTM) of the study area
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Figure 3.5 - Digital Surface Model (DSM) of the study area
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Table 3.2 - Summary of LiDAR point cloud files used in the study

32 399500 32 397500 32 397500 32 397500 32 398000
4994500.las  4993500.las  4994000.las  4994500.las  4993500.las
399500 397500 397500 397500 398000
400000 398000 398000 398000 398500
4994500 4993500 4994000 4994500 4993500
4995000 4994000 4994500 4995000 4994000
207.797 220.285 221.363 222.896 217.156
248.162 268.916 278.512 281.22 267.243
499.998 499.998 499.999 499.999 499.998
499.997 499.998 499.999 499.999 499.998
40.365 48.631 57.149 58.324 50.087
7456073 7760433 7413074 7900047 7228035
32 398000 32 398000 32 398500 32 398500 32 398500
4994000.1as  4994500.las  4993500.las  4994000.las  4994500.las
398000 398000 398500 398500 398500
398500 398500 399000 399000 399000
4994000 4994500 4993500 4994000 4994500
4994500 4995000 4994000 4994500 4995000
218.008 214.567 209.81 212.75 209.84
269.177 269.814 258.906 266.239 254.479
499.998 499.999 499.998 499.998 499.998
499.999 499.999 499.999 499.999 499.999
51.169 55.247 49.096 53.489 44.639
7611386 7211955 7611650 7715762 7264767
32 399000 32 399000 32 399000 32 399500 32 399500
4993500.las  4994000.las  4994500.las  4993500.las  4994000.las
399000 399000 399000 399500 399500
399500 399500 399500 400000 400000
4993500 4994000 4994500 4993500 4994000
4994000 4994500 4995000 4994000 4994500
209.023 209.22 209.1 208 206.923
279.896 250.441 257915 252.765 249.643
499.998 499.998 499.998 499.999 499.998
499.999 499.998 499.998 499.999 499.998
70.873 41.221 48.815 44.765 42.72
6207252 6747651 6388841 8831150 3053185
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3.2.2 Validation with Ground Control Points

Before the model is used, it is essential to perform a data validation process to ensure the
dataset’s accuracy and reliability. This step is critical because even small positional or
elevation errors in LiDAR-derived models can propagate through subsequent analyses,
leading to inaccurate results. The validation process in this study compares the LiDAR-
derived model with a set of reliable ground control points (GCPs). These GCPs are obtained
from the Geoportal of the Piedmont Region (Geoportale Regione Piemonte) and correspond
to geodetic benchmarks whose positions and elevations are determined through precise
geomatic surveys. Each benchmark includes an elevation value expressed in meters above sea
level. These points help identifying and quantifying any error present in the model. Within
the defined study area, a total of 233 points is initially identified after filtering out those with
incomplete or invalid elevation data. An additional filtering step removes GCPs located on
building roofs and under vegetation, as these elevated surfaces can distort ground elevation
measurements. Polygons representing volumetric building units are obtained from the
Geoportal of the Piedmont Region and used as spatial masks to exclude all GCPs on building
surfaces. For vegetation, a manual visual approach is used to remove points. In total, 91
points are removed after applying both building roof and vegetation filters, leaving 142
ground-level points suitable for validation (Figure 3.6). The elevation values from these
points are then compared with the corresponding cell values in the LiDAR-derived DTM.
Statistical measures are calculated to assess the DTM’s vertical accuracy, as shown in Table
3.3 and in Figure 3.7.

The analysis shows a negative bias of -0.047 m, indicating a very small underestimation of
ground elevation on average. The RMSE is 0.215 m, with a median absolute residual of 0.074
m, suggesting overall good accuracy. These results confirm the DTM’s reliability for further

analysis.
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Figure 3.6 - Ground Control Points (GCPs)

Table 3.3 - DTM vertical accuracy,

Metric Value
Total points 233
Excluded points 91
Valid points 142
Min residual (m) -1.031
Max residual (m) 1.656
Bias (mean error) (m) -0.047
RMSE (m) 0.215
MAE (m) 0.119
Std dev o (m) 0.21
Sth percentile |resid| (m) 0.013
Median |resid| (m) 0.074
95th percentile |resid| (m) 0.286
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Figure 3.7 - (A) Residuals distribution; (B) Absolute error distribution

3.3 Feature Extraction from LiDAR Data

A fundamental step in determining the actual surface area covered by tree vegetation within
the study area is the calculation of the Canopy Height Model (CHM). This model provides
information on the extent of vegetation, which is essential for a more detailed analysis of how
green areas influence temperature. Initially, the normalised Digital Surface Model (nDSM) is
derived by subtracting the DTM from the DSM using the raster calculator in QGIS. This
model includes elements such as trees, but also buildings, vehicles, and low vegetation, while
assigning a value of 0 to all pixels corresponding to ground level. To ensure that only features
capable of producing significant shading are considered, a filtering process is applied with a
threshold of 3 meters. Elements below 3 m in height are set to 0. Moreover, to isolate
vegetation exclusively, a mask is applied to exclude buildings and other volumetric
structures, based on data provided by the Piedmont Region Geoportal. Finally, the data are
vectorised to obtain a vector format representation of tree-covered green areas, which will be
used for subsequent spatial analyses.

The same nDSM was used to derive models characterising only the buildings. In this case,
vegetated areas were excluded, allowing for the extraction of the relative height of each
building. The resulting raster contains only built structures and allows visualisation of
building heights. A combined visualisation of canopy and building heights is presented in

Figure 3.8.
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Figure 3.8 - Combined visualisation of building (red) and vegetation canopy (green) heights in the study area

3.3.1 Land-Use and Land-Cover Classification

The analysis to determine the main soil categories within the area of interest is performed
using various input data from the Piedmont Region Geoportal and the LiDAR-derived tree
cover. Specifically, the files are pre-processed in an initial phase of cleaning and correcting
the geometry. During this process, care is taken to avoid data redundancy, ensuring that each
part of the study area is assigned to a single thematic class and that multiple classes do not
describe the same area. After these corrections, each input data is mapped to a final thematic
class, as shown in Figure 3.9. Buildings and volumetric units are classified as Built-up,
vehicular circulation areas as Roads, green spaces and agricultural land as Green areas, trees
as Trees, water bodies as Water bodies, and all remaining classes are grouped under Other.
Finally, the area of each individual class is calculated and compared with the entire study area
as a percentage to determine its share of the study. The final distribution of classes is

summarised in Table 3.4.
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Figure 3.9 - Classification of land-use and land-cover

The results of the analysis of the main components of land cover and use in the area show
that the most prevalent component is buildings, which account for 24.57%. These values are
typical of urbanised areas. It is important to note that this category includes the roof surfaces
of residential and commercial buildings as well as those of industrial areas. The materials
used for these roofs can significantly vary (tiles, concrete, metal, plastic roofing, etc.) so their
thermal behaviour and response to solar exposure could also differ. Green areas, including
green spaces, urban parks, and agricultural land, also represent a high percentage,
corresponding to 21.93%. In particular, the largest green areas are located in Parco
dell'Arrivore and Parco della Confluenza di Piazza Sofia. Considering tree-covered areas,
which account for 13.71% of the total, the combination of these two classes, both mostly
permeable and subject to evapotranspiration, brings the overall percentage to 35.64%. These
areas are the most important for UHI mitigation strategies, as their increased presence leads
to reduce surface temperatures. Vehicular circulation areas represent a relatively high
percentage at 13.71%. These surfaces, made of impermeable materials with low albedo
values such as concrete and asphalt, heat up rapidly on the hottest days, exacerbating the UHI

phenomenon. Water bodies are very limited, since the boundaries of the study area stop at the
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banks of the Po River and do not include the river itself, and correspond only to the pond in

Parco dell’ Arrivore. Finally, the "Other" category corresponds to various classes which are

not sufficiently specific and fall within areas with different material types and permeability

values. To avoid potential classification errors, these were grouped into a single category and

excluded from subsequent analyses.

Table 3.4 - Summary of land-use and land-cover classes

Input Description  Output Percentage
Buildings
Circ_6_020102_EDIFICIO (main Built
uilt-
structures) 24.57%
up
I :
Circ_6 020101 UNITA VOLUMETRICA Vollll;nit?m
Circ 6 010101 AREA DI CIRCOLAZIONE Vehicular
circulation Roads 13.95%
VEICOLARE areas
Circ_6 060401 AREA VERDE Gr:;nnspaflfs, Green
urban parks ce 21.93%
Agricultural areas
Circ_ 6 060106 COLTURA AGRICOLA 2 land
Tree canopy
Trees from LiDAR Trees 13.71%
extraction
Natural or Water
Circ_6 040102 _SPECCHIO D'ACQUA artificial water . 0.25%
- - - . bodies
bodies
All remaining
(all other classes) land-use/land- ~ Other 25.59%

cover classes
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4.Shadow Analysis

Shadows occur when objects totally or partially occlude direct light from a source of
illumination. When considering the shadow cast by a typical high-rise building, there are two
shadows present: the cast shadow and the self-shadow. A cast shadow is projected by the
object in the direction of the light source (the one cast on the ground) and the self-shadow is
the part of the object which is not illuminated by direct light (i.e., the facade of the building).
The part of a cast shadow where direct light is completely blocked by an object is called the
umbra, while the part where direct light is partially blocked is called the penumbra (Arévalo
et al., 2008; Dare, 2005). In nadiral remote sensing, almost all shadows are cast shadows
because the sensor looks straight down.

Shadow analysis examines how buildings, trees, and other structures influence the amount of
sunlight reaching different areas throughout the day, as they can reduce local temperatures by
limiting direct solar exposure (Huang & Wang, 2019). A study by Martinelli et al. (2015)
revealed that shaded areas provide improved thermal conditions and greater outdoor comfort.
In fact, temperatures in shaded areas are cooler than in unshaded areas.

Shadow analysis often relies on urban models derived from LiDAR data, which provide
detailed DSMs. Researchers often use these models to assess how buildings influence
shading in public areas, making them essential in urban planning decisions that focus on
thermal comfort (Konarska et al., 2014; Zwolinski & Jarzemski, 2015).

Simulation software such as UMEP-SOLWEIG (Lindberg et al., 2018) allow shadow studies.
In particular, this model simulates shadows using the “shadow volume” approach described
by Ratti & Richens (1999). In this method, the raster DSM is shifted according to the Sun's
azimuth angle and lowered at each iteration based on the Sun’s elevation angle to calculate
shadow volumes. A portion of the shadow volume is determined at each iteration, and the
entire shadow volume is generated by taking the maximum value for each iteration. This is
stored in a new DSM. The shadow volume image is then subtracted from the original DSM to
generate the map of shadows. The result is a Boolean image, in which pixels with values
lower than zero are in sunshine (assigned value = 1) and those with values greater than zero
are in shade (assigned value = 0). The final output visualises shadow distribution at specific
times or over extended periods, and the dynamics of shadows depend on factors such as

urban geometry and orientation, greenery, time and location.
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Using the same software in QGIS, it is possible to analyse the daily shading pattern for a
specific date. For this study, the date considered is August 15th, corresponding to the
acquisition of remotely sensed aerial thermal data over Turin. The shading distribution within
the study area, simulated from sunrise to sunset with hourly variability, is shown in Figure
4.2. Furthermore, Figure 4.1 shows the complete daily shading pattern, providing an
overview of areas that are most shaded or exposed to sunlight throughout the specific day.
Specifically, observing the trend percentage of solar radiation exposed and the shaded area
throughout the day (Figure 4.3), shaded areas are abundant in the morning, reaching about
90% at 7:00, and then declining to a minimum of about 19% around 13:30 (solar noon at
13:34) when sunlight exposure is highest, before rising again in the evening. It is important to
note that this pattern is derived from a nadir-based DSM, which does not capture the three-
dimensional structure of tree canopies. Consequently, the shade under trees when the sun is
high is not represented, so the percentage of ground shading is slightly underestimated during
these periods. Finally, for the purposes of this study, the shaded and unshaded areas at solar
noon are vectorised in order to be used as the basis for subsequent statistical analyses, which

will be discussed in Section 8. These areas are shown in Figure 4.4.
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Figure 4.1 - Cumulative daily shading map
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Figure 4.2 - Shading simulation
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Figure 4.4 - Solar noon shading simulation
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5. Urban Canyons and Sky View Factor

Urban geometry plays a critical role influencing the UHI effect. In particular, the thermal and
radiative balance of cities is greatly affected by so-called urban canyons. Oke was the first to
create a theory of urban canyons (Nunez & Oke, 1977; Oke, 1976). According to this theory,
an urban canyon is a three-dimensional space between buildings which has a bottom (the
road) and two boards (building walls). A key parameter that governs the radiative exchanges
in these areas is the Sky View Factor (SVF), which quantifies how open or enclosed a
location is relative to surrounding urban features through a dimensionless measure between
zero and one, representing totally obstructed and free spaces, respectively (Oke, 1981).
Mathematically, the SVF at a given point is defined as the ratio of the radiation received (or
emitted) by a planar surface to the radiation emitted (or received) by the entire hemispheric
environment (Watson & Johnson, 1987). When obstructions such as buildings or vegetation

are present, the visible sky is reduced, lowering the SVF (Figure 5.1).

SVF =1 0<SVF<1

Figure 5.1 - Concept of Sky View Factor (SVF): open sky (SVF = 1) vs obstructed locations (0 < SVF < 1)

Usually SVF are calculated by image-based and computational methods. A typical example
of this method is a fisheye photograph (Figure 5.2) combined with image processing
techniques which help to distinguish sky from obstacles (Honjo et al., 2019). When
photographic data is unavailable, the assessment of the SVF may be carried out using GIS-
based methods. Moreover, as indicated by Himmerle et al. (2011), the use of advanced 3D-

modeling techniques could also be considered.
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Golden Gate Bridge Eiffel Tower Time Square Singapore Zoo

San Francisco (US) Paris (FR) New York (US) Singapore (Asia)
(37,81008°, -122,47643°) (48,85283°, 2,34940°) (40,75734°, -73,98831°) (1,40290°, 103,79545°)
SVF =0.87 SVF = 0.42 SVF=0.37 SVF=10.19

(PO0

Figure 5.2 - lllustration of SVF derivation: Google Street View fisheye images (top), horizon detection (bottom), and
resulting SVF (bold) for four worldwide locations (Middel et al., 2018)

In this study, the UMEP (Urban Multi-scale Environmental Predictor) plug-in on QGIS is
used to calculate the SVF. The output is a continuous raster with values between 0 and 1
(Figure 5.3), which is then classified into five categories to simplify spatial analysis and
visualisation (Figure 5.4). In the SVF analysis, both buildings and vegetation are assumed to
affect sky visibility. The High class covers 29.7% of the area, the Moderate class 24.1%, and
the Very High class 20.3%. This indicates that the area is characterised by a strong presence
of open spaces that are directly exposed to solar radiation, and potentially most at risk during
the daytime of the hottest sunny days. The areas with Very Low SVF values constitute the
7.9% of the area.
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Figure 5.3 - Sky View Factor (SVF)
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Figure 5.4 - Classified SVF
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SVF plays a double role in regulating the temperature of a city. In the daylight, high SVF
values result in direct solar irradiance on the exposed surfaces. These surfaces have a higher
heat yield (Jiao et al., 2019). In contrast, at night, high SVF values help in the release of
longwave radiation from urban canyons to the surrounding environment, leading to cooling.
If an urban area has low SVF, the night heat release is limited. Consequently, these surfaces
exhibit higher minimum temperatures and are also subjected to longer periods of heat stress,
especially during HWs (Palusci & Cecere, 2022; Syrios & Hunt, 2007).

Another factor influenced by urban morphology is airflow. The low SVF value areas are
usually less ventilated due to the physical obstacles present. This results in a situation of a
stagnant microclimate which aggravates the UHI because of limited heat dispersion (Nunez
& Oke, 1977).

Open urban spaces such as squares, very wide streets, and parking areas are quite different
because even though they have high SVF, they mostly lack vegetation and shading. These
spaces get direct solar radiation for the entire day, and if these areas are not well covered by
trees or other shields, they are very likely to become hot and increase health risks during
HWs. As a result, both narrow streets with low SVF and open spaces with high SVF can

create thermally stressful conditions.
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6. Solar Irradiance and Radiative Exchange in Urban
Area

6.1 Fundamentals of Solar Irradiance

A key factor contributing to the UHI effect is solar irradiance. The Earth's climate and energy
systems are powered by the Sun (IPCC, 2013; Lindsey, 2009). Radiation heat transfer is the
process by which energy is exchanged between bodies in the form of electromagnetic waves.
This is the only form of energy transfer that can take place in a vacuum such as the region
between the Sun and the Earth. The energy flux due to radiation on a surface, referred to as
irradiance E, is measured in watts per square meter (W/m?) in the SI system and is defined as
the radiant flux received by a surface per unit area. It is related to the incident radiant flux @
by:
. ao (Eq. 6.1)

dA
Irradiance varies with factors such as time of day, latitude, season, atmospheric conditions,
and the Earth's orbit. As shown in Figure 6.1, the total irradiance E incident on a surface can

be expressed as the sum of three distinct components (Matius et al., 2021):

E = Egirect + Ediffuse + Ereflected (Eq. 6.2)
Where:

- Direct irradiance (E jrect) 18 the part of the solar irradiance that directly reaches a
surface without being scattered or reflected by the atmosphere. It is a function of the
solar incidence angle 6 and the direct normal irradiance Epy (the solar radiation

received on a surface perpendicular to the Sun’s rays):

Egirece = Epn cos 6 (Eq. 6.3)

- Epy depends on factors such as the day of the year, atmospheric conditions, and solar
altitude;

- Diffuse irradiance (Egifryse) is the part of the solar irradiance that is scattered by
molecules and particles in the atmosphere and arrives at the surface from all

directions. It depends on atmospheric conditions and the tilt angle of the surface;
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- Reflected irradiance (Eyefiecteq) TEpresents the part of the solar irradiance that has
bounced off surrounding surfaces, such as the ground or nearby buildings, and
subsequently arrives at the point of interest. The amount depends on the reflectance

(albedo) of the surrounding surfaces, as well as surface geometry.

Sun Clouds, particulate,
A atmospheric gases

Ground and buildings

i ER
LETRTRRTRRNTIN

Figure 6.1 - Direct, diffuse, and reflected irradiance

6.2 Radiative Properties and Energy Balance in Urban
Environments

Urban surfaces interact with solar irradiance according to fundamental optical properties that

satisfy the conservation relation:
a+t+p=1 (Eq. 6.4)
Where:

- «a is the fraction of incident solar irradiance absorbed by the material (absorptivity);
-t is the fraction transmitted through the material (transmissivity);

- p is the fraction reflected by the material (reflectivity).

For most surfaces characterising urban environments, transmission is negligible (7 = 0),

reducing the relation to:
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This suggests that the surface absorbs any solar radiation that is not reflected (Kehagia et al.,
2019). It is essential to formulate the concept of energy balance in order to more accurately
describe energy dynamics in urban areas. The general energy balance equation is derived

from the first rule of thermodynamics:

Energy gains = Energy losses + Energy storage (Eq. 6.6)

In an urban system, energy inputs, primarily from solar radiation and anthropogenic heat

sources, are distributed through various pathways, including (Lin et al., 2017):

- Convection;
- Evaporation and transpiration;
- Storage in urban materials;

- Horizontal advection.

This can be expressed as:
Gr+qr =qg +q, +qs +qqa (Eq. 6.7)
Where:

- g, 1s the net radiative heat flux;

- qr is the anthropogenic heat input;

- qg 1s the sensible heat flux;

- q is the latent heat flux;

- (s is the heat stored in urban materials;

- @y 1s the net horizontal heat advection.

The main component of energy input in urban environments is solar irradiance absorbed by
surfaces, which directly influences the energy balance of the system. The way a surface
interacts with incoming radiation is governed by its radiative properties, including
absorptivity (o), reflectivity or albedo (p) and emissivity (¢). Urban materials are commonly
characterised by high absorptivity for solar irradiance and low albedo, resulting in a wide
fraction of the incoming solar irradiance absorbed by surfaces. This absorbed energy
increases the energy of urban surfaces, raising their temperature. Absorbed energy is then

conducted deeper, emitted as radiation, or transferred to air near the surface by convection
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(Kaloush et al., 2008). The instantaneous absorbed solar irradiance on an urban surface can

be expressed as described by Incropera & DeWitt (1996):
Qsolar = @ (Edirect + Ediffuse + Ereflected) (Eq- 6-8)

The albedo represents the fraction sunlight that is diffusively reflected by a surface, and it can

be defined as:

p=1—-a«a (Eq. 6.9)

The values of albedo assumed by urban surfaces varies depending on the construction
materials used, with values ranging from 0 to 1, corresponding to total absorption or
refraction, respectively (Sangiorgio et al., 2020). Some common absorptivity and albedo

values for different surfaces are provided in Table 6.1 (Nichols Consulting Engineers, 2012).

Table 6.1 - Representative absorptivity and albedo values for various surfaces

Surface Type Absorptivity a Albedo p
Fresh Asphalt 0.95 0.05
Fresh Grey Portland Cement 0.65 0.35
Black Soil 0.87 0.13
Desert Sand 0.60 0.40
Bare Soil (land) 0.83 0.17
Cool Pavement Coatings 0.50 0.50
Aged Asphalt 0.80 0.20
Arctic Region 0.23 0.77
Green Grass 0.75 0.25
White Portland Cement 0.20 0.80
Aged Portland Cement 0.71 0.29
White Roof Coatings 0.12 0.88
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From a climate perspective, albedo acts as a defence against solar heating, and it is
considered one of the most efficient factors in mitigating the UHI effect (Hayes et al., 2022;
Morini et al., 2016; Sangiorgio et al., 2020). For example, in the case of Salento’s white
cities, the high albedo of limestone surfaces contributed to a rare reverse UHI effect during
HWs (De Razza et al., 2024). Moreover, materials and surfaces characterised by a
combination of low albedo and emissivity values tend to absorb and retain heat during the
day and release it very slowly at night, intensifying the UHI effect.

Emissivity values are essential for understanding how closely a surface behaves to an ideal
black body, and are dependent on the type of material and the surface texture, as shown in the

following table (Table 6.2):

Table 6.2 - Representative emissivity values for various surface materials

Material Emissivity €
Asphalt 0.88
Brick 0.90
Concrete, rough 0.91
Glass, smooth (uncoated) 0.95
Limestone 0.92

Marble (polished) 0.89 to 0.92
Paint (including white) 0.90

Paper, roofing or white 0.86 to 0.88
Plaster, rough 0.89

The emitted long-wave thermal radiation from these surfaces follows the Stefan-Boltzmann

law:
Qemic = €oT* (Bq- 14)
Where:
- ¢ is the surface emissivity;

41



- 0= 567x10"% W-m K™ is the Stefan-Boltzmann constant;

- T is the surface temperature in K.

However, surfaces also receive longwave radiation from the atmosphere and surrounding

objects. The net longwave radiative flux is given by:
qr,longwave = e(Ry — UT4) (Eq. 6.10)

Where R;; is the incoming longwave radiation. The net radiative heat flux (g,) exchanged
between an urban surface and the environment can be obtained from the balance of incoming
and outgoing shortwave and longwave radiation. Mathematically, it can be expressed as

described by Bretheron (2023):
qr = aE + (R, — oT?) (Eq. 6.11)

This net radiative balance determines how much energy is retained or released by the surface.

6.3 Solar Radiation Models

Solar radiation models are useful for estimating quantities such as solar irradiance in areas
where measurement stations are unavailable or limited. Numerous models developed in a GIS
environment have been proposed in the literature. Among them, one of the most used is the
r.sun module, described by (Hofierka & Suri, 2002). The r.sun module is a comprehensive
model for estimating solar radiation and is fully integrated into the open-source GRASS GIS
environment. Irradiance prediction is implemented through the r.sun.incidout sub-model,
which calculates the solar incidence angle and the three components of instantaneous solar
irradiance (direct, diffuse, and reflected) (W/m?). The results can be generated either without
terrain shadowing (default) or with shadowing effects enabled, under both clear-sky and
overcast conditions.

This calculation requires only a few input, such as elevation, slope and aspect which can be
derived from LiDAR data, together with the day number and local solar time. Other optional
parameters can be adjusted to adapt the simulation to specific conditions. The outputs

generated by the r.sun.incidout model are summarised in Table 6.3.
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Table 6.3 - Outputs produced by the r.sun.incidout model

Parameter Units
Solar incidence angle Decimal degrees
Direct irradiance W/m?
Diffuse irradiance W/m?
Reflected irradiance W/m?
Total Irradiance W/m?

With this algorithm, using the data of the study area, it is possible to obtain a solar irradiation
model characterising the area on 15th August 2025, focusing on the peak solar hour, when
the sun is at noon (at 13:34 local time). In Figure 6.2, it is possible to see the three
components that determine the irradiance received at ground level. The main component is
certainly direct irradiance. The total irradiance is shown in Figure 6.3. Since the model refers
to a summer day, calculated at the time of maximum solar elevation and without accounting
for atmospheric interference, the resulting irradiance values are very high across most of the
study area. For a better understanding of the distribution of solar irradiance over the area, a
classification is performed based on the level of total irradiance. Specifically, 5 classes were
used ranging from “Very Low” to “Very High”. The thresholds are 200, 400, 600, and 800
W/m?. The Very High class covers about 52% of the area, while the High (11%), Moderate
(5%), and Low (4%) classes together represent about 20%. The Very Low class accounts for

28% of the area. The spatial distribution of these classes can be seen in Figure 6.4
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Figure 6.2 - Modelled solar irradiance: (A4) Direct irradiance; (B) Diffuse irradiance; (C) Reflected irradiance
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Figure 6.3 - Total solar irradiance
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Figure 6.4 - Classified solar irradiance

Additional results from the solar radiation analysis show the duration of solar exposure across
the study area. Using the r.sunhours model it can be seen that the most exposed areas are the
rooftops of tall buildings and urban parks, which reach peak exposure times of approximately
11 hours of total solar radiation during the day (Figure 6.5). The corresponding total daily
radiant exposure (Figure 6.6), instead, ranges from a minimum of approximately 405
Wh/m?-day to a maximum of approximately 7,348 Wh/m?-day, and it is obtained using

r.sun.insoltime model.
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Figure 6.5 - Total insolation time
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Figure 6.6 - Total daily solar irradiance
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7. Thermal Remote Sensing

7.1 Principles of Thermal Remote Sensing

Thermal remote sensing is a type of passive remote sensing that refers to the measurement of
energy emitted by the Earth's surface. This energy does not include the energy reflected by
the surface. Thermal remote sensing is based on the infrared (IR) portion of the
electromagnetic spectrum, more specifically the longwave infrared region. The IR spectrum
is divided into several sub bands based on wavelength and source, specifically whether the
radiation is reflected or emitted. The Near-Infrared (NIR) ranges from 0.7 to 1.3 um, the
Short-Wave Infrared (SWIR) from 1.3 to 3 pm, the Mid-Wave Infrared (MIR) from 3 to
5 um, the Long-Wave or Thermal Infrared (TIR/LWIR) from 8 to 14 pm, and finally the Very
Long-Wave Infrared (VLWIR) from 14 to about 1000 um. Most thermal sensing is performed
in the 8-14 um region because it contains the peak energy emissions of most of the Earth's
surface features. Reflected infrared (NIR and SWIR) originates from sunlight bouncing off
the Earth's surface, while emitted infrared (MIR, TIR, and VLWIR) comes from the heat of
the objects themselves. These characteristics are resumed in Table 7.1. Every object with a
temperature above absolute zero (-273.15°C or 0 K) emits energy in the form of
electromagnetic radiation (Prakash, 2000). This fundamental principle of physics can be
described by Planck’s radiation law (Planck, 1914), a mathematical relationship formulated
in 1900 by German physicist Max Planck, which quantifies the spectral-energy distribution

of radiation emitted by a blackbody according to the formula:

2mhc?

E,(A,T) = " [exp (kg_;) - 1] (Eq. 7.1)

Where:

- h=6.626 x 10734 J-sis Planck’s constant;

- ¢ =2.998 x 108 m/s is the speed of light;

- kg = 1.381 x 10723 J/K is the Boltzmann constant;
- Ais the wavelength in um;

- T is the absolute temperature of the object in K.
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Most of the radiation released by a black body at temperatures of several hundred degrees
Kelvin is infrared. Higher temperatures cause emissions at shorter wavelengths which occur

within the visible spectrum (Nguyen et al., 2021).

Table 7.1 - Summary of infrared spectral regions

IR Band Wavelength Range Radiation Type Source
(um)
NIR 0.7-13 Reflected Solar
SWIR 1.3-3.0 Reflected Solar
MIR 3.0-5.0 Reflected + Emitted Solar + Thermal
TIR / LWIR 8.0-14.0 Emitted Thermal
VLWIR 14.0 - ~1000 Emitted Thermal

Thermal remote sensing estimates the object's radiant temperature Ty, also known as
“brightness temperature”. Specifically, it is the temperature a black body would need to
match the observed radiative intensity of a grey body object.

This temperature is not directly measured by the thermal camera. The acquisition process
initially measures the infrared radiation emitted by the object at the surface and converts it
into an electrical signal proportional to the intensity of energy received by the sensor. This
signal is then processed using algorithms based on the Planck and Stefan-Boltzmann laws to
obtain the associated radiant temperature and generate the thermal image. It is important to
note that the radiant temperature does not always coincide with the kinetic temperature Ty of
an object. The latter, also known as “true temperature”, represents the temperature generated
by the vibration of molecules within objects and is measured by thermometers using
conventional temperature scales (°F, °C, K). However, the two temperatures are related to

each other via emissivity (€) (Sabins & Ellis, 2020), as shown in the following formula:

Tr = Ve Tk (Eq. 7.2)

This means that the two temperatures coincide only when the investigated object is a

blackbody, with an emissivity of 1. In reality, no body behaves perfectly like a blackbody,
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and therefore will have emissivity values lower than 1. Therefore, the true temperature of an
object will always be higher than its radiant temperature. However, in cases of surfaces with
high emissivity and absence of reflections the radiant temperature is a good approximation of
the kinetic temperature of the same object, while in many practical applications these
temperatures differ, especially when the surface of the investigated object has very low
emissivity values and high reflection. In these cases, to obtain a more accurate estimate of the
object's true temperature, the measurement should be corrected and compensated using the
object's emissivity (Dash et al., 2002).

The two main categories of factors influencing the kinetic temperature are the thermal
characteristics of the materials and the heat energy budget. Heat energy budget includes
factors such as solar heating, longwave upwelling and downwelling radiations, heat transfer
at the earth-atmosphere interface and active thermal sources. A material's thermal
conductivity, specific heat, density, heat capacity, thermal diffusivity, and thermal inertia are
examples of its thermal properties (Prakash, 2000). In addition to the material of emitting
objects, other factors that should be considered include the temperature, humidity, reflective
surfaces, wind and convection airflow of the intended operational environments. Cloud, rain
and dust are likely to affect thermal cameras as they reduce visibility through scattering
caused by particles present in the atmosphere. However, since infrared radiation has a longer
wavelength than visible light, it is less attenuated by denser media.

An other important law in remote sensing is Wien's displacement law, published in 1893. It
allows calculating, for any temperature Ty, the wavelength A,,,, at which the emitted power
of a blackbody is maximal (Payra et al., 2023; Wien, 1893). This law is expressed by the

following equation:

k
Amax = T (Eq. 7.3)
R
Where k is a constant equal to 2898 um-K and Ty is the radiant temperature expressed in K.

In Figure 7.1, the emissive power spectrum obtained using the Planck’s equation is shown,

along with the locus of Wien's equation.
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Figure 7.1 — Spectral emissive power vs wavelength

It can be observed that as the emitted power increases, A,,,, shifts toward shorter
wavelengths and the temperature increases. The dominant wavelength A,,,,, helps determine
the most appropriate wavelength for the detection instruments used in remote sensing,
according to the temperature of the observed object. For example, considering the Sun’s
surface as a blackbody, it emits at a temperature of about 5800 K, with a peak around 0.5 um,
corresponding to the visible yellow/green band. In contrast, objects with lower temperatures
exhibit peak emission at longer wavelengths. In fact, the Earth's surface, with an average

temperature of about 288 K, emits mostly around 10 pum, in the TIR range.

7.2 Resolution of Thermal Images

The quality of thermal images obtained through remote thermal surveys depends heavily on
their spatial and radiometric resolution. These two resolutions are closely linked. Specifically,
they have an inverse relationship, meaning that improving one necessarily reduces the other.
A crucial factor in influencing resolutions is the Instantaneous Field of View (IFOV), which

represents the smallest target size detectable by an imaging system and represents one pixel
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of the sensor array, determining the smallest resolvable object size. The IFOV can be
calculated using the following formula (Massimo Micieli, 2019):

_P
IFOV =7 (Eq. 7.4)

Where p is the side dimension of the pixel element (expressed in mm) and f is the focal
length of the sensor (expressed in mm). The generated IFOV is typically measured in radians
or milliradians, representing the solid angle through which the individual pixel "looks" at the
scene. When considering resolution, it is important to consider the ground area covered by
each pixel, also known as Ground Sample Distance (GSD), which is a function of the

distance from the sensor (h) and the IFOV, through the relationship (Massimo Micieli, 2019):

GSD = h-IFOV (Eq. 7.5)

GSD is typically expressed in m/pixel. It is observed that at a constant distance from the
object, the wider the IFOV, the larger the GSD. This leads to a decrease in spatial resolution
and an increase in radiometric resolution, as the sensor receives a more intense and detailed
thermal signal, as the pixel contains the radiation emitted by a larger surface, and increases
the signal-to-noise ratio (SNR). Conversely, smaller IFOVs result in smaller ground areas
(lower GSDs) and increase visible detail, generating a better spatial resolution. In this case,
the SNR captured on a smaller surface increases, and it shows a negative impact on the

radiometric resolution (ODonohue, 2023).

7.3 Acquisition and Processing of High-Resolution Thermal and
Multispectral Data

Thermal remote sensing, as previously mentioned, is one of the most suitable techniques for
studying medium to large scale thermal phenomena. It allows for a better understanding of
energy balances, providing useful information regarding the behaviour of different soil types,
whether man-made or natural, permeable or impermeable, and different materials that
respond according to their characteristics. These acquisitions are essential for a
comprehensive understanding of UHIs, as they can detect surface temperatures effectively

and accurately.
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In this study, the thermal and multispectral data useful for studying the thermal behaviour of
the Turin area were acquired on August 15th and 16th, during one of the most significant
HWs in the region in 2025, during day and night conditions, respectively. Furthermore, the
night of August 16th has already been classified as a tropical night by the analyses carried out
in Section 2.2.3. The presence of data acquired during both night and day hours allows to
better understand the behaviour of these systems during the hottest periods of the year. The
acquisition campaigns were conducted using a CESSNA 4004 aircraft (Figure 7.2), operated
by ATV Airborne Sensing Italia Srl, which is specialised in high-precision and high-
resolution aerial surveys. The aircraft was equipped with a Dual Digi-THERM (IGI) thermal

system (Figure 7.3) consisting of:

- Two Infratec VarioCam HD thermal cameras, sensitive in the 7.5-14 pm range;

- A PhaseOne iXM150 multispectral sensor, for high-resolution RGB imaging.

The survey was designed to capture both thermal and multispectral data over the
Municipality of Turin, enabling the analysis of UHI distribution and the detailed mapping of
the territory. Specifically, thermal cameras acquired the radiant temperature of surfaces,

while the multispectral sensor provided high-resolution RGB images.

Figure 7.2 - Aerial survey aircraft (CESSNA 4004)
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Figure 7.3 - Dual Digi-THERM (IG1) thermal system

Table 7.2 summarises the main characteristics of the flight plan, including both the technical
aspects and the operational parameters adopted during the acquisitions.

The coverage provided by the 12 flight lines is continuous, and the overlap values allow for
the reconstruction of detailed maps of the city. Figure 7.4 shows the 12 flight paths flown by
the aircraft during the day and at night, respectively. Thermal images acquired at a flight
altitude of approximately 6,300 ft (~ 1,920 m) have a GSD of approximately 100 cm. Each
pixel corresponds to about 1 meter on the ground. This resolution allows for the identification
of features such as building roofs, roads, or industrial buildings, making it suitable for the
purposes of this study. Multispectral images have a lower GSD of approximately 16 cm,
corresponding to a higher spatial resolution, with much more detailed pixels that allow for the
identification of smaller features. Finally, the quality of satellite positioning was guaranteed
using the permanent GNSS TORI and TOGR stations, equipped with LEICA GR30 receivers

and precision antennas.

Figure 7.4 - Flight paths for the study: (A) Daytime flight; (B) Nighttime flight
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Table 7.2 - Main technical and operational parameters of the flight plan

Parameter

Specification

Project area
Aircraft
Flight altitude

Number of flight lines

Thermal imaging system

Multispectral sensor
Stabilization platform
Navigation system
Thermal imagery GSD
Thermal image overlap
Multispectral imagery GSD
Multispectral image overlap

Daytime survey

Nighttime survey

GNSS reference stations

Municipality of Turin
CESSNA 404
~ 6,300 ft

12

Dual Digi-THERM
(2 x Infratec VarioCam HD,
7.5-14.0 um, 30 mm, 1024 x 768 px)
PhaseOne iXM150 (RGB, CMOS,
150 mm, 14,204 x 10,652 px)

Somag GSM
GPS/INS AeroControl + CCNS-5
~ 100 cm
77% forward / 40% side
~16 cm

90% forward / 50% side

15 August 2025 - 12:45 to 14:45
(local time)
16 August 2025 - 03:45 to 05:50
(local time)
TORI (Turin) and TOGR
(Turin MAN INT), equipped with
LEICA GR30 receivers

Once the images captured by the airborne system are obtained, a portion of the study area is
selected to carry out the thermal analysis. This approach is chosen because, for the
subsequent analyses to be conducted, only the portion of the images that depict the
underlying terrain in a way very close to an orthophoto is used. This is due to the insufficient
overlap between lateral shots, which prevents the creation of a sufficiently accurate
orthophoto of the entire study area for metric or centimeter-level analysis. In general, the

construction of an orthophoto is possible, but in this study, due to the required level of
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accuracy, it is preferred to select an area that is visually compatible with an orthophoto,
where geometric distortions are less significant. This is done by cropping the originally
acquired images, keeping only 35% of the original width, starting from the side
corresponding to the camera acquisition, which can be either right or left.

In the specific case of this study, the following thermal images falling within the study area

are selected:

- TR 07 3041, Flight strip 7, image N. 20, camera right (daytime acquisition 15/08);
- TR _07 3045, Flight strip 7, image N. 24, camera right (daytime acquisition 15/08);
- TR 07 3049, Flight strip 7, image N. 28, camera right (daytime acquisition 15/08);
- TR 07 1377, Flight strip 7, image N. 21, camera right (nighttime acquisition 16/08);
- TR 07 1381, Flight strip 7, image N. 25, camera right (nighttime acquisition 16/08);
- TR 07 1385, Flight strip 7, image N. 29, camera right (nighttime acquisition 16/08).

Daytime thermal images on the selected area are acquired at 13:46 local time, while
nighttime thermal images are taken at 04:40 local time. The fact that the daytime acquisition
time is very close to the solar noon on that specific day (occurring at 13:34) allows for a
minor approximation of about ten minutes, enabling the thermal data to be considered as
captured during the daily solar peak. This supports the use of the previously calculated
shading and irradiation models.

The choice of this area is also influenced by the availability of corresponding images
acquired at different times. This enables a focused study of the differences in thermal
behaviour throughout the day. A further crop is applied to the thermal images to select only
the area corresponding to both the daytime and nighttime acquisitions, resulting in a final
examined area of 0.43 km?, corresponding to approximately 20% of the original study area.
This surface portion includes various land cover classes, distributed in a sufficiently
homogeneous way to consider the area a good sample for analysing the characteristics of
different urban zones.

The thermal images are georeferenced using QGIS. To georeferenced the images acquired on
August 15th, a total of 282 ground control points are used, while for the nighttime acquisition
on August 16th, 339 ground control points are used. The used GCPs can be visualised in

Figure 7.5 and a more detailed description is available in Table 7.3.
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The selection of ground control points is done visually using the available orthophoto, with
recognizable buildings, roads, and other surfaces as references. The georeferencing method
used is a third-degree polynomial transformation, which visually produces the best results
among the available options, but requires many ground control points distributed across the
entire area to be georeferenced. This method is chosen due to the need to correct the slight
deformations in the images, especially on the outer edges, since the images are not

orthorectified.

[] Thermal Survey Area
GCPs (15/08/25)
s TR_07_3041
4 TR_07_3045
+ TR_07_3049
GCPs (16/08/25)
s« TR_07_1377
4 TR_07_1381
+ TR_07_1385
Orthophoto
R

G

K]

0 100 200 m
| ES—

Figure 7.5 — GCPs used for georeferencing thermal imagery

Table 7.3 - Characteristics of GCPs

Time Total GCPs ID Count
TR 07 3041 67
Day (13:46) 282 TR 07 3045 134
TR 07 3049 81
TR _07_1377 101
Night (04:40) 339 TR 07 1381 172
TR 07 1385 66
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Georeferencing process is performed in the reference system EPSG:32632 (WGS 84 / UTM
Zone 32N). In Figure 7.6, the spatial distribution of the temperatures acquired during the
daytime flight is shown. It is visually possible to distinguish areas with lower surface
temperature from those with higher surface temperature. Specifically, it is visible how trees
and green areas are cooler than roads and buildings. The maximum temperature recorded in
this analysed area is 62.1 °C, while the minimum temperature is 24.7 °C. Further information
and detailed statistical analyses are discussed in the next chapter.

Figure 7.7 shows the spatial distribution of the temperatures acquired during the nighttime
flight. In this case, the scenario is different. Buildings, green areas, and trees show lower
temperatures, while roads show high temperatures. The maximum temperature recorded in
this area is 28.4 °C, while the minimum temperature is 11.1 °C. As previously explained, the
temperatures do not correspond exactly to the ground temperature, but represent the
temperatures as detected by the sensor. However, considering very high surface emissivity
values, the recorded temperature can be approximated to the true surface temperature.
Finally, it is interesting to see how the temperatures recorded at corresponding points change
between nighttime and daytime. This variation mostly depends on the thermal behaviour of
the surfaces, but can also be influenced by the SVF. As already mentioned in previous
chapters, areas with very high SVF values can reach very high temperatures during the day,
and reach very low minimums at night due to heat dissipation. Areas with very low SVF
values tend to have a much smaller temperature variation between day and night, since they
are more shaded during the day and at night heat dissipation is limited by surrounding
obstacles. This behaviour is visible in Figure 7.8, where the temperature variation between
day and night shows a minimum value of 3.2 °C and a maximum value of 41.8 °C. The
largest temperature differences occur over buildings, while lower values occur over roads and

trees. Further statistical investigations confirm what is observed in the figures.
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Figure 7.6 - Daytime temperature

Figure 7.7 - Nighttime temperature
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Figure 7.8 - AT (day-night temperature difference)

An important step involves verifying that the areas classified as shaded through previous
modelling correspond to surfaces with lower temperatures. This can be observed in Figure
7.9, which provides a visual comparison confirming that the shading model aligns with both
the data acquisition time and the actual shape of the shadow. This correspondence validates
the accuracy of the model and supports the continuation of the shading analysis, as lower

surface temperatures are clearly concentrated within the areas identified as shaded.
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Figure 7.9 - Visual validation of the shading model
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8. Statistical Analysis

In this section of the study, it is analysed in detail, through appropriate statistical analyses, the
relationships between temperature, solar irradiance, and Sky View Factor. In particular, all
this is also analysed through the different soil classes in which the points fall, or through the
previously classified SVF and solar irradiance classes. Specifically, for all these analysed
variables, a statistical analysis was performed to calculate descriptive statistics such as mean,
median, standard deviation, minimum and maximum values, quartiles and the interquartile
range. Then, comparisons between the means of the different groups considered were also
carried out, depending on the phenomenon considered, to verify if statistically significant
differences exist between the means. Preliminary analyses showed that temperature, SVF and
solar irradiance data present strong spatial autocorrelation. Therefore, classical and typical
analyses for mean comparison such as ANOVA can not be applied. Moreover, for all classes,
the assumptions of normality and homogeneity of the data are not satisfied. For this reason,
another type of analysis was used to verify the significance of the difference between the
means of the various subgroups or groups, using GLS (Generalised Least Squares), which
takes into account autocorrelation and therefore does not underestimate the obtained p-value,
making it a much more appropriate methodology for this type of data. Statistics were applied
to all points in the analysis, while the calculation of the difference in means between classes
and the application of GLS used a smaller subsample, for computational reasons. The fact
that a reduced sample of 2,000 points per class was used may result in slight differences in
the mean differences observed compared to those generated with the full sample, but in

statistical terms, this does not affect the significance of the difference.

8.1 Day vs Night Temperature Analysis

The first groups analysed were divided into two classes: day and night, in order to observe
the temperature differences in the analysed area between daytime and nighttime thermal data.
The results are visible in Figure 8.1 and Table 8.1 and Table 8.2. It is evident that the
temperatures recorded during the day are much higher than those recorded at night, with an
average of 39.7 °C compared to 22.6 °C recorded at night, and a mean difference of 16.9 °C,

which is statistically significant.
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Table 8.1 - Descriptive statistics of temperature for daytime and nighttime acquisitions

Mean  Median Min 01 03 Max IOR

Class SD
(°C) (°C) O (O O (O (°0
Day 39.7 40.2 6.03 24.7 343 43.9 62.1 9.57
Night 22.6 22.5 1.99 11.1 21.2 243 28.4 3.07

60
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Figure 8.1 - Temperature distribution: Day vs Night

Table 8.2 - Mean temperature difference between day and night

Estimat,
Comparison g ima ¢ SE t-ratio p-value
(°C)
Day - Night 16.9 0.265 63.852 <0.0001 ***
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8.2 Temperature by Land Cover Class

The data were also divided into subsections to observe the temperature differences among
different land use types such as trees, green areas, roads, and buildings, during the day
(Figure 8.2, Table 8.3 and Table 8.4) and during the night (Figure 8.3, Table 8.5 and Table
8.6).

In the first case it is possible to observe that the coolest class on average is that of trees, with
a mean of 33.1 °C, followed by green areas, roads, and buildings. The latter class has the
highest mean temperature of around 45 °C and also the maximum value recorded in the
sample of 62.1 °C. All mean differences between these classes are statistically significant,
showing that the temperatures recorded for each class behave differently depending on the
type of soil.

The behaviour at night is different, as the class with the lowest mean temperature is no longer
that of trees, but green areas, with a mean of around 21.0 °C, followed on average by
buildings, trees and roads. It is possible to see how roads at night represent the class with the
highest mean temperature, with average values around 25 °C. In this case, all differences
between classes are statistically significant except for the mean difference between buildings

and green areas.

Table 8.3 - Daytime temperature statistics for different soil classes

Class Mean Median D Min [0)] 03 Max IOR
°C)  (°0 0O O O (O (0
Trees 33.1 32.5 2.88 24.7 31.5 33.8 52.4 2.29

Green Areas | 37.2 37.7 4.31 26.6 33.7 40.5 55.5 6.70
Roads 40.0 41.4 4.41 27.6 37.7 43.3 51.6 5.62

Buildings 45.0 453 5.35 26.6 41.7 48.7 62.1 6.95
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Figure 8.2 - Daytime temperature distribution by soil class
Table 8.4 - Daytime temperature differences between soil classes
Comparison Estimate (4°C) SE t-ratio p-value
Trees - Green Areas -4.1 0.50 -8.20 <0.0001 ***
Trees - Roads -6.9 0.52 -13.27 <0.0001 ***
Trees - Buildings -11.9 0.46 -25.66 <0.0001 ***
Green Areas - Roads -2.8 0.48 -5.83 <0.0001 ***
Green Areas - Buildings -7.8 0.43 -18.14 <0.0001 ***
Roads - Buildings -5.1 0.42 -12.13 <0.0001 ***
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Table 8.5 - Nighttime temperature statistics for different soil classes
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21.0 20.7 1.40
25.0 25.1 1.03
21.8 21.8 1.51
=
v‘zﬁ:ﬂ
C?"zé?
Figure 8.3 -

Min
(°C)

18.7

18.2

18.5

Soil Class

10).
(°0)

21.6

19.9

24.4

21.0

03
(°C)

22.7

219

25.7

22.8

Nighttime temperature distribution by soil class

Max
(°C)

27.2

27.7

28.4

27.6

IOR
(°C)

1.01

2.07

1.24

1.76

65



Table 8.6 - Nighttime temperature differences between soil classes

Comparison Estimate (41°C) SE t-ratio p-value
Trees - Buildings 0.849 0.122 6.960 <0.0001 ***
Trees - Roads -2.345 0.123 -19.087 <0.0001 ***
Trees - Green Areas 0.557 0.111 5.008 <0.0001 ***
Buildings - Roads -3.193 0.107 -29.826 <0.0001 ***
Buildings - Green Areas -0.292 0.117 -2.490 0.0622
Roads - Green Areas 2.901 0.124 23.380 <0.0001 ***

8.3 Day-Night Temperature Differences by Land Cover

The difference in temperature between daytime and nighttime was then analysed for the
different soil classes to evaluate how temperatures vary within the various types of land cover
depending on their thermal properties (Figure 8.4, Table 8.7 and Table 8.8). As expected, the
smallest thermal differences between day and night were observed within the tree class, with
a mean temperature difference of about 10.9 °C, followed by roads, green areas, and
buildings. Specifically, roads have a mean temperature difference of around 16.2 °C and, also
being the warmest class at night, this means they tend to retain heat longer and dissipate it
more slowly. Buildings, on the other hand, show the highest AT between day and night, with
a mean difference of about 23.2 °C, a very high value. This is influenced by the fact that,
unlike roads which have low SVF values and are built with materials such as asphalt and
concrete that prevent heat dispersion, buildings are located at higher elevations, with much
higher SVF and release heat much more easily when there is no solar irradiance. In this case,
all mean differences are statistically significant except for the difference in mean between

roads and green areas.
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Table 8.7 - Descriptive statistics of AT between soil classes

Mean
Class
(°C)
Trees 10.9

Green Areas 16.2

40

30

20

Roads 15.1

Buildings 23.2

<&

Comparison
Trees - Buildings
Trees - Roads

Trees - Green Areas

Median
C) SD
10.3 2.74
16.9 4.73
16.3 3.94
23.5 5.80
o@g@@
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5.0
3.2

3.7

Soil Class

01
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9.33
12.2
13.0

19.6
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03
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11.5
20.1
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Figure 8.4 - AT Day-Night distribution by soil class

Table 8.8 - Day-night AT between soil classes

Estimate (°C)

-12.273

-4.033

-3.858

SE

0.492

0.511

0.458

t-ratio

-24.946

-7.896

-8.422

Max IOR
°C) (O
30.6 2.17
33.6 7.87
27.1 4.78
41.8 7.37
@\t’ca
p-value
<0.0001 **=*
<0.0001 **=*
<0.0001 ***
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Buildings - Roads 8.240 0.445 18.537 <0.0001 **=*
Buildings - Green Areas 8.415 0.456 18.437 <0.0001 ***

Roads - Green Areas 0.176 0.500 0.351 0.9851

8.4 Effect of Shading on Surface Temperature

It is also calculated how shading during daytime hours influences surface temperature. As
shown in Figure 8.5, Table 8.9 and Table 8.10, it is possible to see that temperatures in
unshaded areas are much higher compared to shaded areas, emphasising the importance of
shadow in influencing temperature. The mean temperature recorded in unshaded areas is
about 40.8 °C, compared to 34.1 °C in shaded areas, with a statistically significant difference.

Furthermore, the influence of shading on the different land cover types was analysed in more
detail, as shown in the various violin plots in Figure 8.6 and in Table 8.11 and Table 8.12. All
mean differences between shaded and unshaded land cover types are statistically significant,
except for the tree class, showing that differences in irradiance on dense vegetation do not

significantly influence their surface temperature.

Table 8.9 - Descriptive statistics of temperatures in shaded versus unshaded areas

Class Mean Median D Min 0l 03 Max IOR

0 O Q0 O O O (0
Non-Shadow | 40.8 412 570 247 366 445 621  7.86

Shadow 34.1 32.8 4.33 24.7 31.0 36.4 56.5 5.39
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Figure 8.5 - Daytime Temperature: Non-Shadow vs Shadow Areas

Table 8.10 - Comparison of temperatures for non-shadow versus shadow areas

Comparison Estimate (°C) SE t-ratio p-value

Non-Shadow - Shadow 6.23 0.453 13.749 <0.0001 ***

Table 8.11 - Descriptive statistics of daytime temperature by soil class and shade

Mean Median Min 0l 03 Max IQOR
Class SD
°C)  (°C) °C)  (°C) (°O) (°CO) (°C)
Trees, Non-Shadow 33.3 32.7 292 247 317 340 524 229
Trees Shadow 32.7 32.0 317 248 308 334 524 253

Green Areas Non-Shadow | 38.1 38.6 387 267 352 4038 55.5 5.60

Green Areas Shadow 32.9 32.0 3.60 266 304 344 525 4.05

Roads Non-Shadow 41.4 42.2 323 279 400 436 516 3.61

Roads Shadow 343 333 4.09 276 31.0 369 48.1 5091
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Buildings Non-Shadow 453 45.5 512 266 421 488 62.1 6.72
Buildings Shadow 38.3 37.7 573 282 335 425 565 9.05
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Figure 8.6 - Daytime temperature distribution by soil class and shadow
Table 8.12 - Differences in temperature shadow vs non-shadow areas between soil classes
Contrast Estimate SE t.ratio p-value
Buildi -Sh - Buildi
uildings Non-Shadow - Buildings 6.08 0.94 6.50 <0.000] *++
Shadow
Buildings Non-Shadow - Green Non- 6.68 0.46 14.63 <0.000] ***
Shadow
Buildings Non-Shadow - Green 1036 0.68 15.34 <0.000] ***
Shadow
Buildings Non-Shadow - Roads Non- 7 0.43 6.8 <0.000] ***

Shadow
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Buildings Non-Shadow - Roads
Shadow

Buildings Non-Shadow - Trees Non-
Shadow

Buildings Non-Shadow - Trees
Shadow

Buildings Shadow - Green Non-
Shadow

Buildings Shadow - Green Shadow

Buildings Shadow - Roads Non-
Shadow

Buildings Shadow - Roads Shadow

Buildings Shadow - Trees Non-
Shadow

Buildings Shadow - Trees Shadow

Green Non-Shadow - Green Shadow

Green Non-Shadow - Roads Non-
Shadow

Green Non-Shadow - Roads Shadow

Green Non-Shadow - Trees Non-
Shadow

Green Non-Shadow - Trees Shadow
Green Shadow - Roads Non-Shadow
Green Shadow - Roads Shadow
Green Shadow - Trees Non-Shadow
Green Shadow - Trees Shadow

Roads Non-Shadow - Roads Shadow

Roads Non-Shadow - Trees Non-
Shadow

Roads Non-Shadow - Trees Shadow

9.60

10.21

10.21

0.60

4.28

-3.36

3.52

4.13

4.13

3.69

-3.96

2.92

3.53

3.54

-7.65

-0.76

-0.16

-0.15

6.89

7.49

7.50

0.64

0.45

0.66

1.01

1.13

1.00

1.09

1.01

1.12

0.67

0.50

0.71

0.45

0.67

0.71

0.86

0.67

0.81

0.64

0.48

0.68

15.01

22.80

15.43

0.59

3.78

-3.37

3.22

4.09

3.68

5.47

-7.86

4.14

7.81

5.30

-10.75

-0.88

-0.23

-0.19

10.71

15.76

11.09

<0.0001 ***

<0.0001 ***

<0.0001 ***

0.9990

0.0041 **

0.0180 *

0.0291 *

0.0012 **

0.0060 **

<0.0001 ***

<0.0001 ***

0.0010 **

<0.0001 ***

<0.0001 ***

<0.0001 ***

0.9877

1.0000

1.0000

<0.0001 ***

<0.0001 ***

<0.0001 ***
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Roads Shadow - Trees Non-Shadow 0.61 0.69 0.88 0.9880
Roads Shadow - Trees Shadow 0.61 0.84 0.73 0.9962

Trees Non-Shadow - Trees Shadow 0.00 0.64 0.01 1.0000

8.5 SVF by Land Cover Class

In the following analyses, the SVF is analysed in more detail. In particular, the graph shown
in Figure 8.7 and the tables below (Table 8.13 and Table 8.14) display the distribution of
SVF values across different land cover classes. On average, the lowest SVF values are
recorded for roads, while the highest are recorded in the buildings class. All differences in

means are statistically significant, except for the difference between roads and green areas.

Table 8.13 - Descriptive statistics of SVF by soil class

Class Mean Median  SD Min 0] 03 Max IOR

Trees 0.672  0.711  0.227 0.0109 0.533  0.855 1 0.322
Green Areas | 0.661  0.711  0.235 0.0109 0.503  0.856 1 0.354
Roads 0.614 0.633 0.168 0.0109 0.501 0.740 0.986 0.239

Buildings 0.827  0.882  0.158 0.0109 0.768 0.934 1 0.166
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Figure 8.7 - SVF distribution by soil class

Table 8.14 - SVF differences between soil classes

t-ratio

-8.121

4.445

6.095

13.864

14.396

1.618

p-value
<0.0001 **=*
0.00017 ***
<0.0001 ***
<0.0001 **=*
<0.0001 ***

0.3691
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8.6 Temperature by SVF Class

Figure 8.8 represent the temperature values based on the SVF class in which the observations
fall, separated into daytime temperature (Table 8.15 and Table 8.18), nighttime temperature
(Table 8.16 and Table 8.19), and day-night AT (Table 8.17 and Table 8.20). It is visible that
during the day, mean temperature values increase with increasing SVF class, with average
values of 34.4 °C in the “Very Low” class and 42.8 °C in the “Very High” class. The same
trend is observed in the day-night AT. A different behaviour is seen in nighttime
temperatures. In this case, the highest average temperatures are observed in the “Low” and
“Moderate” SVF classes, while the lowest are in the “Very High” class. This emphasises that
points with low SVF tend to have smaller average temperature variations between day and
night, as there are obstacles that prevent significant cooling. On the other hand, areas with
very high SVF (more exposed to the sky) show greater temperature differences between day
and night, higher average daytime temperature and lower average nighttime temperatures.
This is also demonstrated by Figure 8.9 and Table 8.21, which highlight the presence of a
linear relationship between temperature and SVF, that is positive during the day, negative at

night, and positive for AT.

Table 8.15 - Descriptive statistics of daytime temperature by SVF class

Cluss Mean Median D Min 01 03 Max IOR

°O  (°0 O O (O (O (0

Very Low 34.4 33.1 4.23 24.8 31.4 37.0 56.5 5.61

Low 36.9 36.2 5.23 24.7 324 41.1 56.9 8.65
Moderate 39.0 39.5 5.32 24.8 343 43.0 61.1 8.68
High 40.9 41.4 5.60 25.1 36.9 443 62.1 7.46

Very High 42.8 429 6.14 25.1 39.1 46.8 60.6 7.77
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Table 8.16 - Descriptive statistics of nighttime temperature by SVF class

Class Mean  Median D Min 0l 03 Max IOR

0 (0 0 O O (O  (°0

VeryLow | 229 227 135 135 220 239 279 190
Low 234 235 163 139 222 247 282 247
Moderate | 234 234 189 140 219 250 283 3.1
High 224 222 203 131 208 242 275 334

Very High 21.3 21.4 1.63 12.6 19.9 22.4 27.7 243

Table 8.17 - Descriptive statistics of AT by SVF class

Class Mean Median D Min 0l 03 Max IOR

O (0 O O (O O (°0

Very Low 11.5 10.5 3.78 3.30 8.98 13.5 36.5 4.49
Low 13.5 12.9 4.68 3.18 9.75 16.9 353 7.13
Moderate 15.6 15.7 4.85 3.27 11.9 18.6 39.8 6.75
High 18.5 18.1 5.65 3.62 14.9 21.9 41.7 6.97

Very High 21.4 21.6 6.49 3.68 17.9 25.5 393 7.58
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Figure 8.8 - Surface temperature distribution by SVF class: (A) Daytime; (B) Nighttime; and (C) AT
Table 8.18 - Daytime temperature differences between SVF classes
Comparison Estimate (°C) SE t-ratio p-value
Very Low - Low -1.50 0.773 -1.935 0.2995
Very Low - Moderate -3.72 0.738 -5.047 <0.0001 ***
Very Low - High -5.39 0.701 -7.691 <0.0001 ***
Very Low - Very High -7.09 0.755 -9.388 <0.0001 **=*
Low - Moderate -2.23 0.583 -3.820 0.0013 ***
Low - High -3.90 0.536 -7.269 <0.0001 ***
Low - Very High -5.59 0.605 -9.247 <0.0001 ***
Moderate - High -1.67 0.483 -3.449 0.0053 **
Moderate - Very High -3.36 0.559 -6.019 <0.0001 **=*
High - Very High -1.69 0.509 -3.331 0.0080 **
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Table 8.19 - Nighttime temperature differences between SVF classes

Comparison Estimate (°C) SE t-ratio p-value

Very Low - Low -0.305 0.249 -1.229 0.7347

Very Low - Moderate -0.463 0.237 -1.951 0.2912

Very Low - High 0.651 0.225 2.888 0.0323 *
Very Low - Very High 1.612 0.243 6.643 <0.0001 ***

Low - Moderate -0.157 0.188 -0.839 0.9183
Low - High 0.956 0.172 5.551 <0.0001 ***
Low - Very High 1.917 0.194 9.866 <0.0001 ***
Moderate - High 1.114 0.155 7.166 <0.0001 ***
Moderate - Very High 2.075 0.180 11.555 <0.0001 **=*
High - Very High 0.961 0.164 5.876 <0.0001 ***

Table 8.20 - AT between SVF classes

Comparison Estimate (°C) SE t-ratio p-value

Very Low - Low -1.19 0.761 -1.564 0.5207
Very Low - Moderate -3.26 0.726 -4.490 0.0001 *x**
Very Low - High -6.04 0.690 -8.757 <0.0001 ***
Very Low - Very High -8.70 0.743 -11.708 <0.0001 **=*

Low - Moderate -2.07 0.574 -3.607 0.0030 **

Low - High -4.85 0.527 -9.199 <0.0001 ***
Low - Very High -7.51 0.595 -12.618 <0.0001 ***
Moderate - High -2.78 0.476 -5.845 <0.0001 ***
Moderate - Very High -5.44 0.550 -9.889 <0.0001 #***
High - Very High -2.66 0.501 -5.303 <0.0001 ***
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Figure 8.9 - Surface temperature distribution by SVF values with linear regression: (4) Daytime; (B) Nighttime; (C) AT

Table 8.21 - Linear regression parameters and t-test for slope of temperature vs SVF

t-val -val
Dataset Intercept Slope (s‘l}sz;)e Z;S}}sz)e R? Pearson r
Day
30.85 13.15 48.93 0 *** 0.193 0.44
Temperature
Night 24.83 -3.19 3500 Ole2d gy -0.331
Temperature ol
AT 6 16.44 63.62 (Q Hk 0.288 0.537
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8.7 Solar Irradiance by Land Cover Class

In this section, the distribution of solar irradiance across soil classes is analysed. The results
are shown in Figure 8.10 through the violin plot and in Table 8.22 and Table 8.23. In this
case, the presence of shaded and unshaded areas results in a non-unimodal distribution, with
two peaks corresponding respectively to very low solar irradiance (in shaded areas) and to
higher irradiance (in sun-exposed areas). In this case, the median better describes the
variable’s behaviour than the mean. Despite this, considering also the mean values,
differences in means between the various subgroups of soil classes were analysed, and
statistically significant differences were found between trees and buildings, between trees and
roads, between trees and green areas and between buildings and green areas. This means that
the differences between buildings and roads, and between roads and green areas, do not show
statistically significant mean differences, due to the similarity in their distribution of solar

irradiance values.

Table 8.22 - Descriptive statistics of total solar irradiance by soil class

Class Mean Median D Min 01 03 Max IOR
(Wim?)  (W/m?) Wim?)  (Wim?) (Wim?) (W/m?) (W/m?)

Trees 435 388 349 49.8 66.8 767 1077 700
Green Areas 695 897 343 50.0 497 913 1076 416
Roads 662 901 365 50.1 106 914 1076 807

Buildings 720 838 307 50.2 607 927 1077 320
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Figure 8.10 - Total solar irradiance distribution by soil class
Table 8.23 - Differences of total solar irradiance between soil classes

Comparison Estimate (W/m?) SE t-ratio p-value
Trees - Buildings -296.08 32.7 -9.063 <0.0001 ***
Trees - Roads -221.41 353 -6.272 <0.0001 ***
Trees - Green Areas -217.63 34.0 -6.393 <0.0001 **=*

Buildings - Roads 74.67 304 2.459 0.0674

Buildings - Green Areas 78.44 29.7 2.640 0.0437 *

Roads - Green Areas 3.77 333 0.113 0.9995
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8.8 Solar Irradiance by SVF Class

Finally, the trend of total solar irradiance across the different SVF classes is analysed.

According to Figure 8.11, Table 8.24 and Table 8.25, it is visible that the class with a very

low SVF shows the lowest irradiance values, with a mean of about 209 W/m?. The highest

values of total solar irradiance are recorded, as expected, in the very high SVF class, with an

average of 783 W/m? All mean differences in total irradiance between the various SVF

subclasses are statistically significant except for the mean difference between the "High" and

"Very High" classes, which show a similar trend and average values.

Table 8.24 - Descriptive statistics of total solar irradiance by SVF class

Class Mean  Median Min 0l 03 Max IOR
(Wim?)  (W/m?) (Wim?)  (W/im?)  (Wim?) (W/m?) (W/m?)

Very Low 209 71.5 287 50.5 58.8 106 1076 47.3

Low 429 161 382 50.6 75.9 889 1076 813

Moderate 658 876 352 50.6 282 913 1076 632

High 782 900 255 50.6 745 916 1077 171

Very High 783 892 248 50.5 718 916 1077 198
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Figure 8.11 - Total solar irradiance distribution by SVF class
Table 8.25 - Differences of total solar irradiance between SVF classes
Comparison Estimate (W/m?) SE t-ratio p-value
Very Low - Low -156.30 46.9 -3.336 0.0078 **

Very Low - Moderate -413.38 45.0 -9.176 <0.0001 #***
Very Low - High -540.40 43.7 -12.353 <0.0001 ***
Very Low - Very High -531.29 46.4 -11.443 <0.0001 ***
Low - Moderate -257.08 30.6 -8.399 <0.0001 ***
Low - High -384.10 28.7 -13.404 <0.0001 ***
Low - Very High -374.99 32.6 -11.500 <0.0001 ***
Moderate - High -127.03 25.6 -4.961 <0.0001 **=*
Moderate - Very High -117.92 30.0 -3.936 0.0008 ***

High - Very High 9.11 28.0 0.326 0.9976
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8.9 Daytime Temperature by Solar Irradiance Class

The graph in Figure 8.12 and the tables in Table 8.26 and Table 8.27 also analyse the trend of
daytime temperature as a function of solar irradiance class. It is possible to observe an
increase in temperature with increasing irradiance class. The lowest average values are
recorded in the “Very Low” irradiance class, with 34.4 °C, while the highest are in the “Very
High” class, with an average temperature of 42.0 °C. Most differences in mean temperatures
between irradiance classes are statistically significant, except for the contrasts Very Low -

Low, Low - Moderate, and Moderate - High.

Table 8.26 - Descriptive statistics of daytime temperature by solar irradiance class

Class Mean Median D Min 0] 03 Max IOR

0 (0 Q0 O O (O  (°0
Very Low | 344 330 466 247 311 368 613 5064

Low 36.8 35.0 5.37 24.8 32.4 40.7 60.0 8.32
Moderate 38.4 37.9 5.82 24.7 33.1 43.2 59.7 10.1
High 40.4 41.0 5.93 25.0 35.0 44.9 62.1 9.86

Very High 42.0 42.0 5.20 25.0 38.8 44.8 62.1 5.96
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Figure 8.12 - Daytime temperature distribution by total solar irradiance class

Table 8.27 - Differences of daytime temperature between solar irradiance classes

Comparison Estimate (°C) SE t-ratio p-value
Very Low - Low -1.92 0.796 -2.412 0.1129
Very Low - Moderate -2.97 0.657 -4.512 0.0001 ***

Very Low - High -4.29 0.520 -8.246 <0.0001 ***
Very Low - Very High -5.78 0.364 -15.904 <0.0001 ***
Low - Moderate -1.05 0.947 -1.104 0.8043

Low - High -2.37 0.852 -2.782 0.0438 *
Low - Very High -3.87 0.765 -5.050 <0.0001 **=*
Moderate - High -1.33 0.727 -1.825 0.3600
Moderate - Very High -2.82 0.622 -4.532 0.0001 ***
High - Very High -1.49 0.469 -3.183 0.0131 *
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A further analysis considers the distribution of irradiance values in relation to the
corresponding surface temperature values as continuous variables, represented through a
scatter plot that clearly illustrates the relationship between the two variables under
investigation (Figure 8.13). The plot uses a sample of 50,000 points to facilitate the
visualisation of the distribution. To further aid interpretation, a different colour was assigned
to each point according to the pixel’s class, distinguishing between shaded and non-shaded
areas. The domain characterised by lower total irradiance values is predominantly composed
of points classified as shaded. In this region, irradiance values are very low, with a distinct
transition occurring around approximately 106 W/m?. The second part of the plot, which
represents points directly exposed to solar radiation, shows as already highlighted previously
a predominant density around 900 W/m? In this section, the temperature range is broader.
The mean values between shaded and non-shaded classes differ, as already observed in

Section 8.4, in a statistically significant way.
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Figure 8.13 - Temperature vs Total Solar Irradiance, classified by shading: shadow and non-shadow areas
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9. Urban Heat Vulnerability Assessment

This section primarily discusses the study of urban heat vulnerability during a heatwave. Due
to the limited extent of the study area and the aim of developing a predominantly
methodological approach, a dynamic study is conducted by defining potential routes (for
example, a hypothetical route from home to work) to be undertaken without the use of a
vehicle, for example, by bicycle or on foot. This approach is based on minimising
temperature along the route, thereby ensuring transit through the coolest possible areas.

For the development of this model, QGIS software was used, along with the r.walk.points
plugin, and subsequently the r.drain plugin from GRASS. The first plugin generates a raster
showing the anisotropic cumulative cost of movement between different geographic
positions, based on an input raster whose cell values represent the cost. In the case of our
study, initially limited to the restricted area where thermal data are available, the raster
considered as the cost is the surface temperature raster. More specifically, the inputs used are
the elevation raster (DSM), the temperature raster containing costs (temperature), the starting
point and the endpoint. The outputs obtained are the cumulative cost and movement
directions. This plugin is highly useful because it accounts for the morphology of the area and
the presence of obstacles (the DSM includes the heights of all surfaces, including boundary
walls, buildings, and vegetation). A factor that could reduce the accuracy of the obtained
routes is the presence of obstacles that are too narrow or small to be accurately represented in
the DSM, which may lead to routes entering areas that are actually inaccessible. These errors
can be partially mitigated by adjusting the slope factor, which determines the energy cost per
unit of elevation and can be configured in the plugin interface.

Once these results are obtained, the second GRASS plugin, r.drain, is applied. Its inputs are
the cumulative cost raster, the movement directions raster obtained previously, and a vector
containing the start and end points. This plugin then generates the path that minimises the
cost factor (in this case, corresponding to temperature).

The results are shown in Figure 9.1. It is evident that the path consistently seeks to minimise
temperature, remaining within raster pixels with lower values, and, by limiting the required
energy, also considers distance, favouring routes that minimise it. Moreover, it effectively

avoids obstacles and follows practically applicable paths.
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Figure 9.1 - Case 1: Temperature-minimising path

This approach, however, only works if, as in this case, a raster containing temperatures is
available. Since this type of data is generally very difficult to obtain at the high geometric
resolution, an additional factor that could be considered as cost is used.

Specifically, shading can be easily modelled in space and time using an accurate DSM model.
Moreover, results obtained in the previous section demonstrate that shaded areas tend to have
statistically significant temperature differences compared to areas exposed to solar radiation.
Therefore, shading is used as a cost factor to obtain paths that, instead of minimising the
temperature, maximise the shaded area. The results obtained by modelling the path using the

shading corresponding to 13:30 on August 15th are shown in Figure 9.2.
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Figure 9.2 - Case 1: Shadow-maximising path

The figure above shows how, in this case, the route preferentially follows shaded areas along
the entire path, minimising sun exposure, which increases the thermal comfort perceived by
the pedestrian.

A comparison between the two models, the first using temperature and the second using
shading as a factor, is provided in Figure 9.3. The two resulting routes are nevertheless very
similar and overlap for most of the path, further demonstrating how shaded areas correspond

with cooler areas.
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Figure 9.3 - Case 1: Comparison between paths

Given this similar behaviour between the two models, it is natural to expand the approach
using a dynamic methodology to observe any changes in routes as the time of day varies,
continuing to use shading as the factor to maximise. The results are calculated from the
shading models obtained in Section 4, which range from 7:00 to 20:00, with an hourly
frequency, and are shown in Figure 9.4 and Figure 9.6. Moreover, Figure 9.5 shows the

percentage of shaded area for each path and the corresponding distance.
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Figure 9.4 - Case 1: Shadow-maximising paths for each hour
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Figure 9.5 - Case 1: Shaded area proportion and corresponding path distances
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By calculating the percentage of shading present on each path for the corresponding time of
day, it can be seen that the paths with the greatest shading are those modelled in the early
morning and late afternoon, while the central hours of the day have greater solar exposure,
given the limited shading of the area due to the position of the sun in the sky, which
necessarily requires brief passage through areas exposed to solar radiation. The shading
percentage, in fact, decreases from 99.83% in the early morning (7:00) to a minimum of
68.41% at 15:00, and then increases again towards the late afternoon, reaching 100% of
shade at 20:00.

It is noticeable that, in the morning or late afternoon, the distances travelled are shorter and
tend to be closer to the minimum possible distance between the starting point and the
destination. During the most exposed hours, the model tries to follow continuous shaded
areas, and the reduced shading leads to a longer distance to minimise solar exposure.

In general, the main variations observed in this specific case concern the change in side of the
road (for example, the left or right side of the road depending on the position of the shade
during the day), but in other cases there are much more significant variations, such as the one
observed at 15:00, which uses an alternative route, lengthening the total journey. Specifically,
the distances range from a minimum of 1.489 km experienced at 20:00 to a maximum of
1.683 km experienced at 15:00, resulting in a maximum difference of 194 m that the
pedestrian must walk to reach the destination while maximising thermal comfort.

Obviously, this methodology, once the DSM and shading models are available, can be
extended to any area for which data is available. For example, two different route start and
end points are now considered, which extend across the original study area. In this case, the
morphological structure between the two reference points is slightly more complex and
features a denser urban fabric and the absence of a single straight road leading from the origin
to the destination. The resulting routes are, in fact, much more variable and complex across
the entire daylight period (Figure 9.7 and Figure 9.9) As expected, the routes are influenced
by the position of the greatest shade continuity to reach the end point from the starting point
and this also depend on the orientation of the buildings, as well as the width of the streets and
the height of the buildings themselves. As in the previous case, the periods with the least
shade correspond to the central part of the day, with a minimum peak of 72.96% at 13:00, and
the distances travelled to reach the destination increase during these times (Figure 9.8). The
maximum distances occur at 12:00 (1.514 km) and 14:00 (1.513 km), resulting in a maximum

difference of 174 m compared to the minimum distance recorded at 20:00 (1.34 km). This
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suggests that these times of day are more susceptible to heat and therefore require

interventions to reduce heat vulnerability along the paths.
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Figure 9.7 - Case 2: Shadow-maximising paths for each hour
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Figure 9.8 - Case 2: Shaded area proportion and corresponding path distances
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Given the complexity of the urban fabric in this study area, it is always advisable to verify
whether a route can be effectively followed without encountering obstacles such as passages
through internal courtyards or private gardens. As mentioned, these errors can be mitigated
by adjusting the model's inputs.

As demonstrated in these applications, this model can be applied effectively, quickly, and
intuitively, helping to counteract vulnerability to UHI during the hottest periods of the year,
sometimes corresponding to increasingly frequent heat waves.

Using this approach, it is suggested to investigate, consider, and analyse the activity system,
which represents the set of individual, social, and economic behaviours that generate travel
demand. The activity system is essentially based on the need to access various urban
functions, such as work, education, shopping, and leisure. These needs generate travel
patterns that are strongly influenced by how urban spaces are organised. So, by studying and
listing the main movements within the area (primarily those that allow for pedestrian
movement in easily accessible areas), it is possible to visualise how, over the course of the
day, the routes that tend to provide greater thermal comfort vary, although this increases the
distance travelled to reach the destination. Through this vulnerability study, it is possible to
identify which areas tend to become more vulnerable, especially during the hottest hours, and
which are not considered suitable for pedestrian traffic, as they are highly exposed to solar
radiation during peak hours. In this way, a pedestrian who needs to travel between different
areas of the city can understand which zones to travel through to achieve greater thermal
comfort and thus limit damage caused by extreme heat, avoiding points classified as heat
hotspots and maximising the route along safe spots between two areas within the urban
fabric.

From another perspective, this assessment makes it possible to identify areas where there is a
greater need for interventions to reduce vulnerability to heat, for example, by planting trees
that reduce temperatures both by providing shade and through evapotranspiration, or by
providing additional shields to protect a given path from sun exposure and contribute to

effective shading.
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10. Conclusions

The current study aims to analyse, using high-resolution data, the urban heat island
phenomenon during a heatwave in August 2025 in Turin, Italy.

To provide robust climatic considerations for the study, a long-term analysis is initially
conducted on a 31-year baseline, from 1995 to 2025, to identify increasing trends in
minimum and maximum temperatures recorded at the Torino Caselle weather station. Using
the maximum and minimum daily temperature data, the days considered as summer HWs and
tropical nights are also identified. These findings show that on 15th August 2025, the day on
which the study focuses for the analysis of the UHI phenomenon, Turin is affected by a HW,
reinforcing the significance of the findings.

The results obtained from the climatic study show a positive growth trend in maximum
temperatures of +0.063 °C/year and in minimum temperatures of +0.060 °C/year. HWs show
a positive growth trend at a rate of +0.37 HWs/year, hot days at a rate of +0.56 days/year, and
tropical nights at a rate of +0.63 nights/year.

The study uses a 3D model of the urban fabric of a section of District 6, located in the
northern part of the city, obtained using data provided by a LiDAR acquisition in 2022,
georeferenced in EPSG:32632. The LiDAR point cloud is processed using the ENVI LiDAR
software, which produces two DEMs with a spatial resolution of 1 m/pixel, corresponding to
the DTM and the DSM. Specifically, the vertical accuracy of the DTM is validated using 142
GCPs obtained through previous topographic surveys, demonstrating high accuracy.

Starting from these models, the extraction of the model representing the CHM is carried out
for the representation and classification of points corresponding only to tree cover, as well as
the extraction of building heights and human-made volumetric units. Specifically, the
extracted tree cover area accounts for approximately 13.71% of the total surface area of the
study area, lower than the 24.57% of building cover, the 13.95% of roads, and the 21.93% of
green areas without trees. The remaining portion of land, in addition to a very low percentage
of water bodies (0.25%), is considered unclassified, as it contains several heterogeneous
classes within it.

Using the DSM obtained from the LiDAR acquisition, the study models the factors that most
contribute to UHI with a GIS-based approach. These factors include shading and irradiance,
which have a greater influence during the daytime hours, and SVF, which determines the

degree of urban canyoning. SVF has a greater impact during the nighttime hours due to lower
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heat dissipation in areas that are more obstructed compared to the surrounding environment.
Using shading simulations on the study area performed with the UMEP-SOLWEIG plugin on
QGIS, it can be seen that the shading peaks occur as expected in the early hours of the day
and in the late afternoon/evening. The peak of minimum shading occurs around 13:30,
corresponding to the position of maximum height of the sun in the sky on the analysed day,
15th August (solar noon at 13:34). Minimum shading is estimated at around 19% in the area.
These results are also consistent with the solar irradiance study performed using the r.sun
module throughout the day and at solar noon, which indicates very high total irradiance, often
exceeding 1000 W/m?, that decreases only in shaded areas. Building roofs and urban parks
are the locations that receive the highest exposure to solar radiation throughout the day, with
peaks of approximately 11 hours of solar radiation received.

Regarding the SVF, in the study area more than half of the surfaces shows moderate to very
high values, close to the maximum value of 1, while less than 8% of the surfaces, mostly road
surfaces, have very low SVF values, indicating a tendency to be more shaded during the day
and to dissipate heat with greater difficulty at night.

High-resolution airborne thermal remote sensing captures extreme surface temperatures
during the August 2025 HW, with one acquisition performed during the day on 15th August
and another at night on 16th August. Daytime temperatures reach a maximum surface
temperature of 62.1°C on buildings, while green areas and trees remain cooler. Nighttime
data show higher temperatures on road surfaces (maximum surface temperature of 28.4°C),
than on green areas and buildings (minimum peaking around 11.1°C). This highlights that
heat retention occurs mostly on road surfaces, which are the hottest at night. Buildings, on the
other hand, exhibit the greatest temperature variations between day and night, with peak
differences of up to 41.8°C, indicating that exposure to the sky and the high SVF values
attributed to this class contribute to cooling at night but also to greater and faster heating
during hours of exposure to sunlight.

Temperature variations are therefore closely related to surface properties and SVF. Areas
with high SVF exhibit the largest temperature variations, while roads with low SVF exhibit
smaller day-night differences due to shading and limited heat dissipation.

During the day, surface temperature is on average 16.9°C higher than at night. Specifically,
during the day, trees are classified as the coolest surfaces (average temperature of 33.1°C),
while buildings, with an average of 45.0°C, are the warmest. At night, roads are the warmest
surfaces, with an average of 25.0°C, while green areas are the coolest, with an average of

21.0°C.
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Moreover, daytime temperatures are strongly influenced by shading. Specifically,
temperatures in shaded areas average 34.1°C, compared to 40.8°C in unshaded areas.
Statistical analyses confirm that the effects of shading and SVF are significant across most
land covers, meaning that integrating green areas and shading structures can significantly
reduce exposure to urban heat.

Finally, a dynamic route simulation is modelled to minimise heat exposure for pedestrians
and cyclists travelling between two points within the study area. Temperature and shade are
used as costs, integrating urban morphology provided by the DSM. The simulations show
that routes modelled in the early morning and late afternoon provide less exposure to solar
radiation and minimise distance. Meanwhile, during the central hours of the day, with less
shade, routes increase the total distance to avoid areas exposed to the sun. The hourly
analysis identifies the timing of the highest risks of heat exposure and the hotspots within the
urban area. Furthermore, the model aims to suggest potential urban planning interventions,
since it highlights the most vulnerable hours, such as shading through tree planting. Since this
is a methodological approach that generates a model that can be easily adapted to different
contexts, further studies can be conducted on the subject, also integrating the mitigation
strategies mentioned and also verifying the effective reduction of vulnerability in the most

vulnerable areas.
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