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Abstract 

 

More frequent and intense heatwaves are just one of the consequences of anthropogenic 

climate change. Cities are among the areas most exposed and vulnerable to heat, generating 

what is known as the Urban Heat Island (UHI) effect. This phenomenon has been largely 

studied in recent years, especially using thermal sensors on satellites, but few studies 

investigate the phenomenon at the microscale, providing more accurate data. 

The present study aims to investigate the urban microclimate of a section of District 6 in the 

city of Turin on a day classified as a heatwave in August 2025, using airborne LiDAR and 

thermal infrared data at 1 m resolution. Among the primary objectives are to study the 

thermal response of different soil types during daytime and nighttime hours. Simultaneously, 

the study models, using a GIS-based approach, the variation in shading and solar irradiance 

received at ground level throughout the day, as well as estimates other geometric factors such 

as the Sky View Factor, which describes urban canyoning. These models derive from Digital 

Elevation Models (DEMs) obtained from LiDAR surveys. 

The statistical analyses that are conducted on the same study area provide results consistent 

with those found in the literature and highlight the important role of shading and vegetation 

in decreasing surface temperatures during daytime hours. 

Using a dynamic shade optimisation approach, the study aims to provide various pedestrian 

routes to reach different areas of the study area, minimising sun exposure throughout the day. 

This can help increase thermal comfort and highlight the most vulnerable zones, known as 

hot spots, as well as the safe spots. Moreover, the study provides an easily replicable 

methodological approach to identify heat-vulnerable areas where mitigation measures can be 

adopted to reduce vulnerability.  
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1. Introduction 

 

1.1  Purpose and Scope of the Study 

  

Understanding the dynamics of urban thermal behaviour is becoming increasingly important 

due to the continuous rise of global temperatures and because of the more frequent and severe 

heatwaves due to climate change. Urban areas are very vulnerable to the Urban Heat Island 

(UHI) phenomenon, which occurs when temperatures within the urban fabric are much 

higher with respect to temperatures experienced in rural areas. The primary goal of this 

research is to investigate the phenomenon of UHI within a strongly anthropized environment, 

with a focus on identifying microclimatic variations at a very detailed scale. This is done 

through high-resolution remote sensing data. The UHI phenomenon is investigated using low 

altitude aerial surveys, instead of the lower resolution satellite imagery that is often affected 

by atmospheric noise. The use of LiDAR (Light Detection and Ranging) technology is an 

essential component of the methodology, and by using the resulting 3D point clouds, very 

detailed 3D models of the urban fabric are created. These models allow to identify and 

classify urban features, such as streets, trees and buildings, and also to better understand the 

spatial distribution of heat. In addition, the study analyses the GIS-based tools estimating 

solar radiation and shading patterns. Moreover, the Sky View Factor (SVF) provides 

additional information about urban geometry. 

The research aims to:  

1. Identify the areas where the UHI effect is most pronounced by integrating thermal 

imaging obtained in the thermal infrared spectra during aerial surveys conducted in 

the daytime and at night, with solar irradiance and shading models; 

2. Understand how urban materials behave in terms of heat storage and dissipation; 

3. Determine potential cool spots, such as places that are better shaded by vegetation or 

constructions and that are less exposed to direct sunlight. 

Results aim to help create more resilient cities and safer areas for people that are more 

vulnerable by suggesting urban development methods that are focused on climate change 

mitigation and adaptation strategies. 

The study is structured into several sections, each focusing on different topics that are all 

essential for the understanding of the UHI phenomenon and the development of a 
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vulnerability assessment. The first step involves conducting a climatic analysis using data 

from a meteorological station near the study area, to provide robust climatological basis for 

the analysis of UHI. Furthermore, this section is crucial, as the analysis of maximum and 

minimum temperature trends over that period enables the identification of days classified as 

heatwaves and nights defined as tropical nights. Then, another section is dedicated to the 

extraction of digital elevation models, obtained through the processing of data acquired using 

LiDAR technology. From these data, the land cover class related to tree canopy is extracted, 

which is then used as a soil type in the land use map. An important section is the GIS 

analysis, which uses the previously obtained elevation models to identify and model shaded 

areas, the SVF, and solar irradiance over the study area. All this information, together with 

the section dedicated to the acquisition and analysis of thermal images, is integrated into the 

statistical analysis, which represents the core of the work. This phase provides fundamental 

information on the behaviour of the urban fabric during a heatwave. Finally, the last section 

focuses on the assessment of urban heat vulnerability during heatwaves using a dynamic 

route optimisation approach. The model considers temperature and shading to identify routes 

with higher thermal comfort and areas most exposed to heat, providing useful suggestions for 

urban planning. The entire methodology is summarised in the diagram below (Figure 1.1). 

 

 

Figure 1.1 - Methodological framework  
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1.2  Study Area 

 

The study corresponds to a part of District 6, which is in the northeastern part of the city of 

Turin, in Italy. With a total surface of about 2.000 km2, the area lies between the 

neighbourhoods of Regio Parco and Barriera di Milano, which exhibit significant socio-

cultural complexity and human landscape alteration. The study area is shown in Figure 1.2. 

The existence of earlier studies and data that can be examined and integrated with the 

information collected during this investigation supports the choice of this area.  

 

 

Figure 1.2 - Study area: a section of District 6 in Turin 

 

The study area is characterised by strong landscape heterogeneity. It mostly includes 

impermeable urban elements such as asphalt and concrete, as well as residential areas and 

industrial buildings with roofs that facilitate heat retention and contribute to overheating of 

the area, especially during the summer season. Moreover, in the area it is possible to notice 

the limited presence of green spaces with adequate vegetation capable of providing shelter 

from direct sunlight during the hottest days. This may have a negative impact on the ability of 

these green areas to mitigate the effects of climate change and to reduce the effects of the 



   

 

   

 

4 

UHI. Furthermore, the social characteristics of the area make it even more vulnerable to the 

potential risks resulting from heatwaves and heat stress. For this reason, it is essential to 

study and investigate the vulnerability of these regions in order to encourage the development 

of new strategies to counteract the impact of UHIs. 
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2. Heatwaves and Urban Heat Islands  

 

2.1  Overview of Climate Change, Heatwaves, and Urban Heat 

Islands 

 

Climate change is one of the most pressing global challenges of the 21st century (Feulner, 

2015). According to WMO, it refers to a long-term change in the state of the climate that can 

be identified by changes in the mean and/or the variability of its properties. The current 

changes in climate are primarily caused by increased concentrations of greenhouse gases 

(GHGs) in the atmosphere since the Industrial Revolution due to human activities (IPCC, 

2013) such as the combustion of fossil fuels (coal, oil and gas), deforestation, land use 

change, increasing livestock farming, agricultural activities, etc. (IPCC, 2018). These gases 

trap heat from the sun, leading to a rise in average global temperatures (United Nations, n.d.). 

The consequences of climate change are very serious and can be seen in natural, social and 

business threats (European Commission & Directorate-General for Climate Action, n.d.), 

impacting ecosystems, weather patterns, sea levels, and human societies (EEA, 2025). The 

Sixth Assessment Report of the IPCC (2023) states that hot extremes, including heatwaves, 

have become more frequent and intense since the 1950s across most regions of the world, due 

to human-caused climate change. Heatwaves are defined as “prolonged period of much-

warmer-than-average weather” (Copernicus, 2024). Although there is no universally accepted 

definition of a heatwave, several criteria and thresholds have been proposed and tested in the 

scientific literature. These extreme heat events have become more common globally and they 

pose risks to ecosystems and human health (WMO, 2023). Temperatures in Europe are 

warming twice as fast as the global average, with 2024 recorded as the hottest year (World 

Meteorological Organization & European Union, 2025). Moreover, the warmest 10 years 

experienced by the region have been since 2007, in particular the last 3 years have been the 

warmest on record. In fact, 19 of the 23 most severe European heatwaves since 1950 have 

occurred since 2000 (WHO, 2025). Heatwave’s risks are particularly pronounced in urban 

environments, where the combination of climate change and city characteristics creates what 

is known as the Urban Heat Island (UHI) effect. Moreover, urban population exposure to 

extreme heat has strongly increased in recent decades due to both climate change and rapid 

urbanisation (Tuholske et al., 2021). WMO defines urban climate as local climate that is 

modified by interactions between the built-up area and regional climate. The UHI effect 
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results from interactions between the urban environment and atmospheric processes, leading 

to elevated temperatures in cities compared to surrounding rural areas (Collier, 2006; 

Santamouris, 2015). Oke (1982) provided an analysis of the energetic mechanisms driving 

this phenomenon. This analysis shows how changes in surface properties and energy fluxes 

contribute to urban warming. This effect arises in urban environments due to factors such as 

vegetation cover, season, extent of built-up areas, time of day, population density, the 

presence of water bodies, and other variables (Deilami et al., 2018). Urban surfaces absorb 

and retain more heat than surrounding rural surfaces. Materials commonly used in cities, such 

as asphalt, concrete, bricks, and roofing tiles, have low albedo and high thermal mass, 

meaning they absorb solar radiation during the day and release it slowly at night, keeping 

urban areas warmer (Vujovic et al., 2021). This temperature difference worsens the health 

risks associated with heatwaves, especially for vulnerable populations including the elderly, 

young children, people with pre-existing medical conditions, and those living in low-income 

neighbourhoods with limited access to cooling infrastructure (Harlan et al., 2006), by 

increasing the incidence of heat exhaustion, heat stroke, cardiovascular diseases, and 

respiratory illnesses (van Daalen et al., 2024). HWs combined with UHIs have been linked to 

spikes in mortality rates during hot seasons in many cities worldwide. Numerous 

epidemiological studies have demonstrated the adverse effects of high temperatures on 

human health. For instance, Baccini et al. (2008) and Oudin Åström et al. (2015) conducted 

comprehensive analysis across different European cities and found that elevated heat levels 

were associated with an increase in mortality rates. Heatwave-related mortality in the 

European Region is estimated to have increased by over 30% in the past 20 years, with more 

than 61,000 heat-related deaths recorded in 2022. That year, Italy was the most affected 

country, accounting for almost 18,000 of these deaths (Ballester et al., 2023). In 2023, the 

number of heat-related deaths was 47,000 (WHO, 2025). A particularly concerning aspect of 

urban heat stress is the occurrence of hot nights, where minimum temperatures remain high. 

Normally, nighttime temperatures provide relief from daytime heat. However, in urban areas 

affected by the UHI effect, the retention of heat prevents this natural cooling, prolonging heat 

exposure (Possega et al., 2022). As a result, urbanisation contributes to the increase in 

nighttime temperature extremes (Schatz & Kucharik, 2015; Sun et al., 2019). This heat stress 

can impact sleep and cognitive function, and increase the risk of heat-related illnesses. This 

means that hot nights significantly worsen the health impact of heatwaves (Buguet et al., 

2023). 
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2.2  Climate Analysis   

 

For a comprehensive understanding of temperature dynamics, and thus of the impact of 

heatwaves, it is essential to establish the foundations of a climatic study that describes the 

long-term behaviour of temperatures in the area. In particular, to ensure statistical robustness, 

it is required a temporal baseline of at least 30 years of continuous temperature observations.  

The meteorological data used in this study are obtained from the National Centers for 

Environmental Information (NCEI) of NOAA. Among the four available weather stations 

surrounding the Turin area (Torino Caselle, Torino Venaria, Torino Bric Croce, and Aeritalia 

Torino) the Torino Caselle station was selected. This station is managed by ENAV and is 

located within the Turin-Caselle airport area at 287 meters above sea level (45°11′30.65″N, 

7°39′02.39″E), and it is approximately 11 km far from the study area (Figure 2.1). This 

choice is motivated by the station’s dataset, which allows for the reconstruction of a 30-year 

baseline with consistent daily records. 

 

Figure 2.1 - Location of Torino Caselle weather station  
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2.2.1 Long-term Temperature Analysis   

    

The first phase of the climatic analysis focuses on detecting the existence of a trend in the 

daily maximum and minimum temperatures recorded at the station between January 1995 and 

December 2024. After an initial cleaning phase, gaps in the data are identified. These gaps 

are filled to maintain temporal continuity using the long-term daily mean, corresponding to 

the 30-year average of maximum or minimum daily temperatures. Once the gaps are filled, 

the seasonality is removed in order to extract a clear temperature trend. To remove this 

seasonality, a spectral analysis is performed by applying a Fast Fourier Transform (FFT), 

which converts the series from the time domain into the frequency domain. The FFT 

produces both amplitude and phase spectra, from which the three main harmonic components 

can be identified: 

- First harmonic: reflects the annual oscillation; 

- Second harmonic: reflects the seasonal cycle; 

- Third harmonic: adjusts the shape. 

By combining the first three harmonic components with their corresponding amplitudes and 

phases, the Periodic Component (PC) is reconstructed. The Periodic Component can be 

expressed as: 

𝑃𝐶 = 𝐴1 cos(2𝜋𝑓1 + 𝜙1) + 𝐴2 cos(2𝜋𝑓2 + 𝜙2) + 𝐴3cos⁡(2𝜋𝑓3 + 𝜙3) (Eq. 2.1) 

Where: 

- 𝐴1, 𝐴2, 𝐴3 are the amplitudes of the first, second, and third harmonic components; 

- 𝜙1, 𝜙2, 𝜙3 are the phase shifts of the first, second, and third harmonics; 

- 𝑓1, 𝑓2, 𝑓3  are the frequencies of the first, second, and third harmonics: 

o 𝑓1 =
1

366
 cycles/day 

o 𝑓2 =
2

366
 cycles/day 

o 𝑓3 =
3

366
 cycles/day 

The value 366 is used instead of 365.25 because in the dataset all years include 

February 29th. In non-leap years this day is recorded as “no data.”  
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Harmonic components are typically centred around zero, but in this study they are adjusted 

using the mean of the observed temperatures to centre the harmonics relative to the actual 

temperature trend. Then, residuals are obtained by subtracting this periodic model from the 

gap-filled series. Finally, a linear regression is applied to the residuals to verify the existence 

of a temperature trend. The trends for maximum and minimum daily temperatures are shown 

in Figure 2.2. 

 

Figure 2.2 - Maximum and minimum temperatures from 1st January 1995 to 31st December 2024: (A) Maximum 

temperatures; (B) Residuals of maximum temperatures; (C) Minimum temperatures; (D) Residuals of minimum temperatures 

 

Results of the linear regression on the residuals are presented in Table 2.1 and show a 

warming trend in both cases. Maximum daily temperatures show an increase of 

+0.063 °C/year, while minimum daily temperatures show an increase of +0.060 °C/year. The 

p-values confirm that these trends are highly statistically significant. 

 

Table 2.1 - Regression results on residuals of daily maximum and minimum temperatures 

Temperature Intercept Slope Daily Slope Annual p-value 

Tmax -0.939 0.000171 0.0626 6.522e-56 *** 

Tmin -0.893 0.000163 0.0595 2.238e-77 *** 

 

  

A B 

C D 
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2.2.2 Heatwaves Analysis   

 

In this section, the presence and characteristics of HWs in Turin are analysed using 

temperature data from the Torino Caselle station from 1st January 1995, to 24th August 2025. 

HW days were identified using the Heat Wave Magnitude Index (HWMI), which quantifies 

the maximum magnitude of HWs within a given year. In this case, a HW is defined as a 

period of at least three consecutive days during which daily maximum temperatures exceed 

the threshold determined for the reference period (1995-2025). The threshold corresponds to 

the 90th percentile of daily maximum temperatures, calculated within a centred 31-day 

moving window (Russo et al., 2014): 

𝐴𝑑 = ⋃ ⁡⁡⁡ ⋃ 𝑇𝑦,𝑖

𝑑𝑎𝑦+15

𝑖=𝑑𝑎𝑦−15

2025

𝑦=⁡1995

 (Eq. 2.2) 

Where: 

− ⁡⁡⁡𝐴𝑑 is the threshold; 

− ⁡⁡⁡∪⁡is the union of datasets; 

− ⁡⁡⁡𝑇𝑦 is the daily 𝑇𝑚𝑎𝑥 of the year 𝑦 and the day 𝑖. 

 

The same criterion is applied in previous UHI studies, such as Todeschi et al. (2022). Days 

that exceed the 90th percentile but do not occur in a sequence of at least three consecutive 

days are classified as “hot days.” For each year, the duration and frequency of HWs, the 

number of HWs during the summer months (June to September) and the total number of hot 

days are found. For 2025, data are analysed only up to 24th August. Data from 25th August 

to 30th September are treated as “no data”. So, the number of hot days and HWs during the 

reference period may be underestimated, as potential events occurring in late August and 

September are not included. The results are presented in Figure 2.3. 

Results in Figure 2.4 show how the total number of hot days and HW days increased 

significantly from 1995 to 2025. It is interesting that starting from 2014, every subsequent 

year experienced at least one HW.  
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Figure 2.3 - Daily classification: heatwaves, hot days, and no data  

 

 
Figure 2.4 - Annual frequency of hot days and HWS with trend lines  

 

The linear regression applied to the period 1995-2024 shows a statistically significant 

positive trend (Table 2.2). The trend shows that HW days are increasing by +0.37 days per 

year, while total hot days are increasing by +0.56 days per year.  
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Table 2.2 - Linear regression results of HW and hot days  

Variable Intercept 
Slope 

(days/year) 
R² p-value 

HW Days -743.220 0.373 0.191 0.0159 * 

Total Hot Days -1121.136 0.563 0.295 0.00192 ** 

 

 

2.2.3 Tropical Nights Analysis  

 

Minimum temperatures have proved to be very important in determining the presence of 

tropical nights in Turin. The definition of a tropical night varies depending on the 

geographical area that is considered. In European countries, a night is defined as tropical 

when the minimum recorded temperatures do not fall below 20 °C (Copernicus, 2025).  

By setting a threshold of 20 °C, the series of minimum temperatures from 1995 to 2025 was 

analysed, considering the months from June to September. The results are shown in Figure 

2.5. 

Through the linear regression of the data shown in Figure 2.6, it is possible to see the positive 

trend present in the series. The results are shown in Table 2.3. Specifically, the trend of 

increase in the number of tropical nights is highly statistically significant, with an average 

increase of about +0.63 tropical nights per year. The results are consistent with the trend of 

minimum temperatures in the same region. 
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Figure 2.5 - Daily distribution of tropical nights 

 

 

Figure 2.6 - Annual frequency of tropical nights with trend line  

 

Table 2.3 - Linear regression results of tropical nights 

Intercept 
Slope  

(nights/year) 
R2 p-value 

-1256.658 0.633 0.338 0.000752 *** 
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3. LiDAR Technology 

 

3.1 Overview of LiDAR  

 

Understanding and mitigating the effects of the UHI effect requires a complete knowledge of 

the city’s physical configuration, including building geometry, vegetation cover and the types 

of materials of surfaces. One of the most effective technologies for obtaining this level of 

detailed spatial information is LiDAR (Light Detection and Ranging). LiDAR is an active 

remote sensing method which uses laser pulses to measure distances from a sensor to surfaces 

on the Earth. These pulses are emitted from a transmitter and bounce back from surfaces, to 

be captured by a receiver that then translates them into electrical signals (Wasser, 2024). This 

process allows for the creation of high-resolution 3D point clouds, which enable the 

generation of digital elevation models (DEMs). 

LiDAR systems are implemented across different platforms, each specialised to specific 

applications and environments (Mehendale & Neoge, 2020): 

 

- Airborne LiDAR: installed on aircraft or helicopter, used in topographic mapping, 

forestry, and environmental monitoring due to its efficiency in capturing broad-scale 

information. It has two subtypes: 

o Topographic LiDAR: used in forestry, urban planning, environmental 

monitoring, etc. 

o Bathymetric LiDAR: used to map underwater areas near coastlines, shores, 

and banks. 

- Terrestrial LiDAR: used to survey highways and railways, urban mapping, manage 

facilities, create 3D models for spaces, etc. It has two subtypes: 

o Mobile LiDAR: mounted on moving platforms such as cars, boats, or trains. It 

is used to analyse road infrastructure, locate incoming road signs, light poles, 

etc. 

o Static LiDAR: used in engineering, archaeology, mining, and surveying. 

 

Regardless of the platform, all LiDAR systems rely on some core components (Lohani & 

Ghosh, 2017):  
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- LiDAR sensors: the laser scanner is used to generate short-width laser pulses, transmit 

them toward the ground, scan the ground below while transmitting pulses, and the 

photodetector receives the return signal. By measuring the time it takes for each pulse 

to return, the system calculates the distance to the surface; 

- GNSS receiver: the GNSS unit mounted on the aircraft works in tandem with a 

ground-based GNSS base station receiver and observes the 3D position of the aircraft 

at each epoch of GNSS observation; 

- IMU sensor: the Inertial Measurement Unit (IMU) records the accelerations and 

orientations of the aircraft using accelerometers and gyroscopes. 

- Onboard computer: timestamps the different data produced by the above sensors 

using the GNSS time and archives raw data; 

- Digital camera: it is common to also have a medium format digital camera along with 

the LiDAR sensor, as it provides colour information of the terrain, offering additional 

useful information. 

The fundamental principle behind a LiDAR system is the time-of-flight method obtained 

through light reflection. The emitted pulse travels at a very high speed, corresponding to the 

speed of light. Since this speed is known, it is possible to compute the following formula to 

retrieve the distance (Mehendale & Neoge, 2020): 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑐∆𝑡

2
 (Eq. 3.1) 

Where: 

- 𝑐⁡is the speed of light; 

- ∆𝑡 is the time the laser pulse took to go and come back to the sensor. 

By repeating this process hundreds of thousands of times per second, it is possible to obtain a 

very detailed point cloud representing points acquired on the surface, each one corresponding 

to a precise position in space. These points also contain additional metadata, such as GPS 

timestamp, intensity, scan angle, return angle, and type of classification. These data are 

usually stored using a standardised file structure, the LAS file format. Figure 3.1 illustrates 

the airborne LiDAR survey system. 
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Figure 3.1 - Schematic of the airborne survey system 

 

3.1.1 Laser Properties  

 

The laser properties of the LiDAR system are fundamental. The beam divergence refers to 

how much the laser beam spreads as it travels, influencing the laser footprint size on the 

ground and the system's spatial resolution, with a smaller footprint providing higher-

resolution data. The relationship between flight height (h), beam divergence (γ), and footprint 

diameter (𝐴𝐿) is given by Baltsavias (1999): 

 

𝐴𝐿 = ℎ𝛾 (Eq. 3.2) 

Another critical property is intensity, defined as the ratio of strength of reflected light to that 

of emitted light. Intensity is not a function of the laser itself. It depends on the reflectance of 

the target surface. Surfaces with higher reflectance or perpendicular angles of incidence 

return more energy, which improves the detectability of features in the data. Intensities are in 

fact useful information for classifying land cover in LiDAR data (Song et al., 2002). The 

intensity usually produces a grey scale pseudo-ortho from just the LiDAR data itself. 

Finally, the pulse rate, the scan rate and the platform’s speed determine the density of the 

point cloud. 

Moreover, two other factors that strongly influence and determine data reliability are 

accuracy and resolution. The study by Passalacqua et al. (2015) provides typical values for 

airborne LiDAR systems, as reported in Table 3.1. Resolution refers to the number of points 
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acquired per square meter, and higher densities correspond to more detailed representations 

of terrain features. Vertical and horizontal accuracy refer to terrain elevation and planimetric 

position, respectively (ASPRS, 2004). 

 

Table 3.1 - Typical specifications of airborne LiDAR systems 

Spatial 

extent (km²) 

Typical point 

density (pts/m²) 

Best georeferenced or 

measurement accuracy (vert/horiz) 

(m) 

Smallest 

footprint (m) 

10 - 100s 1 - 100 0.05 / 0.2 - 0.2 / 0.6 0.1 - 1 

 

 

3.2  LiDAR Data Processing and Products 

 

Before being used, the raw data recorded by LiDAR acquisitions undergo a series of 

processes. 

The first step is pre-processing, where the raw data are georeferenced using the values 

recorded by the onboard GNSS and IMU systems. In this step, the data are also calibrated to 

improve accuracy and correct for any errors and cleaned of external noises.  

Once the pre-processing and data cleaning phase is done, the classification phase begins, 

where each data point is assigned a specific category.  

Once classified, the LiDAR data can be used to generate different results. Among the most 

important results is the Digital Elevation Model (DEM), a 3D model representing the Earth's 

surface, including the Digital Terrain Model (DTM) and the Digital Surface Model (DSM) 

(Manune, 2007). The DTM represents the terrain surface, excluding points characterizing 

features such as buildings and vegetation (Figure 3.2A). The DSM represents the Earth's 

external surface, including elements such as buildings and vegetation (Figure 3.2B). Another 

variant is the Non-Vegetated Surface (NVS), that represents a DSM that includes only human 

structures and buildings (Figure 3.2C) (Guth et al., 2021).  

These models lay the foundation for the creation of secondary models, derived to extract 

more detailed information and features (Guth et al., 2021). For example, the normalised DSM 

(nDSM) is calculated by subtracting the DTM from the DSM, and the result provides a model 

representing the heights of objects above ground level. The Canopy Height Model (CHM) 
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represents the vegetation height by subtracting the NVS from the DSM, offering a model for 

studying urban greenery or forest areas (Croneborg et al., 2020).  

As documented in recent publications, these acquisitions are very useful for monitoring 

infrastructure and vegetation as well as analysing urban morphology (Takhtkeshha et al., 

2024). In the context of urban HWs, LiDAR data enables the extraction of 3D models of the 

urban fabric, capturing elements such as building heights and shapes, urban canyons, and 

other factors that influence heat distribution. It is also useful for mapping green spaces and 

urban parks, which are increasingly essential for contrasting the effects heatwaves through 

shade and evapotranspiration (Hofierka et al., 2017; Pyszny et al., 2020). Moreover, when 

combined with thermal imagery, LiDAR data also enables the visualisation of heat 

distribution on the urban fabric, helping to identify hotspot and cool spot areas and serving as 

a basis for determining mitigation strategies (Mandanici et al., 2016). 

 

 

Figure 3.2 - (A) Digital Surface Model (DSM); (B) Digital Terrain Model (DTM); (C) Non-Vegetated Surface (NVS) 

 

A 

B 

C 
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3.2.1 LiDAR Data Processing and Validation 

 

To implement the general workflow described in Section 3.2, it was used LiDAR data 

acquired by the Politecnico di Torino in 2022. The files containing the point clouds are in 

LAS file format. There are 15 files, each covering an area of 0.25 km², for a total investigated 

surface of 3.75 km² and a total of 106,401,261 acquired points. The LAS point cloud is 

georeferenced using the EPSG:32632 (WGS 84 / UTM Zone 32N) coordinate reference 

system, as specified in the file metadata.  The characteristics of each used file are shown in 

Table 3.2. The acquisitions used a nadir-oriented sensor, directing laser pulses vertically 

downward. By processing these data in a GIS environment, specifically using ENVI LiDAR 

6.1 software, it is possible to obtain useful outputs, including DTM, DSM, and orthophoto of 

the area. The resulting rasters are then clipped to the study area initially described, covering 

approximately 54% of the surface analysed by the LiDAR survey. Figure 3.3 highlights 

complementary attributes of the point cloud in a portion of the study area. Specifically, 

Figure 3.3A shows the dataset in RGB (true colour), providing a representation of buildings, 

roads, and vegetation. Figure 3.3B shows the elevation of points. Figure 3.3C shows 

automatic point classification. Only ground points have been classified, which are 

fundamental for generating the Digital Terrain Model (DTM), while the remaining 

unclassified points (mainly buildings and vegetation) provide the basis for generating the 

Digital Surface Model (DSM). Finally, Figure 3.3D displays LiDAR intensity in grayscale. 

The resulting DSM and DTM (Figure 3.4 and Figure 3.5) are generated at a high spatial 

resolution of 1 m/pixel and serve as input for subsequent analysis steps. 
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Figure 3.3 - Complementary attributes of the LiDAR point cloud in a portion of the study area. (A) True colour RGB; (B) 

Point elevation; (C) Automatic point classification; (D) LiDAR intensity 

 

  

A B 

C D 
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Figure 3.4 - Digital Terrain Model (DTM) of the study area 

 
Figure 3.5 - Digital Surface Model (DSM) of the study area 
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Table 3.2 - Summary of LiDAR point cloud files used in the study 

 32_399500_

4994500.las 

32_397500_

4993500.las 

32_397500_

4994000.las 

32_397500_

4994500.las 

32_398000_

4993500.las 

Xmin 399500 397500 397500 397500 398000 

Xmax 400000 398000 398000 398000 398500 

Ymin 4994500 4993500 4994000 4994500 4993500 

Ymax 4995000 4994000 4994500 4995000 4994000 

Zmin [m.s.l] 207.797 220.285 221.363 222.896 217.156 

Zmax [m.s.l] 248.162 268.916 278.512 281.22 267.243 

DX [m] 499.998 499.998 499.999 499.999 499.998 

DY [m] 499.997 499.998 499.999 499.999 499.998 

DZ [m] 40.365 48.631 57.149 58.324 50.087 

N° Points 7456073 7760433 7413074 7900047 7228035 

 32_398000_

4994000.las 

32_398000_

4994500.las 

32_398500_

4993500.las 

32_398500_

4994000.las 

32_398500_

4994500.las 

Xmin 398000 398000 398500 398500 398500 

Xmax 398500 398500 399000 399000 399000 

Ymin 4994000 4994500 4993500 4994000 4994500 

Ymax 4994500 4995000 4994000 4994500 4995000 

Zmin [m.s.l] 218.008 214.567 209.81 212.75 209.84 

Zmax [m.s.l] 269.177 269.814 258.906 266.239 254.479 

DX [m] 499.998 499.999 499.998 499.998 499.998 

DY [m] 499.999 499.999 499.999 499.999 499.999 

DZ [m] 51.169 55.247 49.096 53.489 44.639 

N° Points 7611386 7211955 7611650 7715762 7264767 

 32_399000_

4993500.las 

32_399000_

4994000.las 

32_399000_

4994500.las 

32_399500_

4993500.las 

32_399500_

4994000.las 

Xmin 399000 399000 399000 399500 399500 

Xmax 399500 399500 399500 400000 400000 

Ymin 4993500 4994000 4994500 4993500 4994000 

Ymax 4994000 4994500 4995000 4994000 4994500 

Zmin [m.s.l] 209.023 209.22 209.1 208 206.923 

Zmax [m.s.l] 279.896 250.441 257.915 252.765 249.643 

DX [m] 499.998 499.998 499.998 499.999 499.998 

DY [m] 499.999 499.998 499.998 499.999 499.998 

DZ [m] 70.873 41.221 48.815 44.765 42.72 

N° Points 6207252 6747651 6388841 8831150 3053185 
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3.2.2 Validation with Ground Control Points 

 

Before the model is used, it is essential to perform a data validation process to ensure the 

dataset’s accuracy and reliability. This step is critical because even small positional or 

elevation errors in LiDAR-derived models can propagate through subsequent analyses, 

leading to inaccurate results. The validation process in this study compares the LiDAR-

derived model with a set of reliable ground control points (GCPs). These GCPs are obtained 

from the Geoportal of the Piedmont Region (Geoportale Regione Piemonte) and correspond 

to geodetic benchmarks whose positions and elevations are determined through precise 

geomatic surveys. Each benchmark includes an elevation value expressed in meters above sea 

level. These points help identifying and quantifying any error present in the model. Within 

the defined study area, a total of 233 points is initially identified after filtering out those with 

incomplete or invalid elevation data. An additional filtering step removes GCPs located on 

building roofs and under vegetation, as these elevated surfaces can distort ground elevation 

measurements. Polygons representing volumetric building units are obtained from the 

Geoportal of the Piedmont Region and used as spatial masks to exclude all GCPs on building 

surfaces. For vegetation, a manual visual approach is used to remove points. In total, 91 

points are removed after applying both building roof and vegetation filters, leaving 142 

ground-level points suitable for validation (Figure 3.6). The elevation values from these 

points are then compared with the corresponding cell values in the LiDAR-derived DTM. 

Statistical measures are calculated to assess the DTM’s vertical accuracy, as shown in Table 

3.3 and in Figure 3.7. 

The analysis shows a negative bias of -0.047 m, indicating a very small underestimation of 

ground elevation on average. The RMSE is 0.215 m, with a median absolute residual of 0.074 

m, suggesting overall good accuracy. These results confirm the DTM’s reliability for further 

analysis. 
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Figure 3.6 - Ground Control Points (GCPs)  

 

Table 3.3 - DTM vertical accuracy, 

Metric Value 

Total points 233 

Excluded points 91 

Valid points 142 

Min residual (m) -1.031 

Max residual (m) 1.656 

Bias (mean error) (m) -0.047 

RMSE (m) 0.215 

MAE (m) 0.119 

Std dev σ (m) 0.21 

5th percentile |resid| (m) 0.013 

Median |resid| (m) 0.074 

95th percentile |resid| (m) 0.286 
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Figure 3.7 - (A) Residuals distribution; (B) Absolute error distribution 

 

3.3  Feature Extraction from LiDAR Data 

 

A fundamental step in determining the actual surface area covered by tree vegetation within 

the study area is the calculation of the Canopy Height Model (CHM). This model provides 

information on the extent of vegetation, which is essential for a more detailed analysis of how 

green areas influence temperature. Initially, the normalised Digital Surface Model (nDSM) is 

derived by subtracting the DTM from the DSM using the raster calculator in QGIS. This 

model includes elements such as trees, but also buildings, vehicles, and low vegetation, while 

assigning a value of 0 to all pixels corresponding to ground level. To ensure that only features 

capable of producing significant shading are considered, a filtering process is applied with a 

threshold of 3 meters. Elements below 3 m in height are set to 0. Moreover, to isolate 

vegetation exclusively, a mask is applied to exclude buildings and other volumetric 

structures, based on data provided by the Piedmont Region Geoportal. Finally, the data are 

vectorised to obtain a vector format representation of tree-covered green areas, which will be 

used for subsequent spatial analyses. 

The same nDSM was used to derive models characterising only the buildings. In this case, 

vegetated areas were excluded, allowing for the extraction of the relative height of each 

building. The resulting raster contains only built structures and allows visualisation of 

building heights. A combined visualisation of canopy and building heights is presented in 

Figure 3.8. 

A B 
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Figure 3.8 - Combined visualisation of building (red) and vegetation canopy (green) heights in the study area 

 

3.3.1 Land-Use and Land-Cover Classification 

 

The analysis to determine the main soil categories within the area of interest is performed 

using various input data from the Piedmont Region Geoportal and the LiDAR-derived tree 

cover. Specifically, the files are pre-processed in an initial phase of cleaning and correcting 

the geometry. During this process, care is taken to avoid data redundancy, ensuring that each 

part of the study area is assigned to a single thematic class and that multiple classes do not 

describe the same area. After these corrections, each input data is mapped to a final thematic 

class, as shown in Figure 3.9. Buildings and volumetric units are classified as Built-up, 

vehicular circulation areas as Roads, green spaces and agricultural land as Green areas, trees 

as Trees, water bodies as Water bodies, and all remaining classes are grouped under Other. 

Finally, the area of each individual class is calculated and compared with the entire study area 

as a percentage to determine its share of the study. The final distribution of classes is 

summarised in Table 3.4. 
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Figure 3.9 - Classification of land-use and land-cover 

 

The results of the analysis of the main components of land cover and use in the area show 

that the most prevalent component is buildings, which account for 24.57%. These values are 

typical of urbanised areas. It is important to note that this category includes the roof surfaces 

of residential and commercial buildings as well as those of industrial areas. The materials 

used for these roofs can significantly vary (tiles, concrete, metal, plastic roofing, etc.) so their 

thermal behaviour and response to solar exposure could also differ. Green areas, including 

green spaces, urban parks, and agricultural land, also represent a high percentage, 

corresponding to 21.93%. In particular, the largest green areas are located in Parco 

dell'Arrivore and Parco della Confluenza di Piazza Sofia. Considering tree-covered areas, 

which account for 13.71% of the total, the combination of these two classes, both mostly 

permeable and subject to evapotranspiration, brings the overall percentage to 35.64%. These 

areas are the most important for UHI mitigation strategies, as their increased presence leads 

to reduce surface temperatures. Vehicular circulation areas represent a relatively high 

percentage at 13.71%. These surfaces, made of impermeable materials with low albedo 

values such as concrete and asphalt, heat up rapidly on the hottest days, exacerbating the UHI 

phenomenon. Water bodies are very limited, since the boundaries of the study area stop at the 
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banks of the Po River and do not include the river itself, and correspond only to the pond in 

Parco dell’Arrivore. Finally, the "Other" category corresponds to various classes which are 

not sufficiently specific and fall within areas with different material types and permeability 

values. To avoid potential classification errors, these were grouped into a single category and 

excluded from subsequent analyses. 

 

Table 3.4 - Summary of land-use and land-cover classes  

Input Description Output Percentage 

Circ_6_020102_EDIFICIO 

Buildings 

(main 

structures) 
Built-

up 
24.57% 

Circ_6_020101_UNITA_VOLUMETRICA 
Volumetric 

units 

    

Circ_6_010101_AREA_DI_CIRCOLAZIONE_ 

VEICOLARE 

Vehicular 

circulation 

areas 

Roads 13.95% 

    

Circ_6_060401_AREA VERDE 
Green spaces, 

urban parks Green 

areas 
21.93% 

Circ_6_060106_COLTURA_AGRICOLA 
Agricultural 

land 

    

Trees 

Tree canopy 

from LiDAR 

extraction 

Trees 13.71% 

    

Circ_6_040102_SPECCHIO_D'ACQUA 

Natural or 

artificial water 

bodies 

Water 

bodies 
0.25% 

    

(all other classes) 

All remaining 

land-use/land-

cover classes 

Other 25.59% 
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4. Shadow Analysis 

 

Shadows occur when objects totally or partially occlude direct light from a source of 

illumination. When considering the shadow cast by a typical high-rise building, there are two 

shadows present: the cast shadow and the self-shadow. A cast shadow is projected by the 

object in the direction of the light source (the one cast on the ground) and the self-shadow is 

the part of the object which is not illuminated by direct light (i.e., the facade of the building). 

The part of a cast shadow where direct light is completely blocked by an object is called the 

umbra, while the part where direct light is partially blocked is called the penumbra (Arévalo 

et al., 2008; Dare, 2005). In nadiral remote sensing, almost all shadows are cast shadows 

because the sensor looks straight down. 

Shadow analysis examines how buildings, trees, and other structures influence the amount of 

sunlight reaching different areas throughout the day, as they can reduce local temperatures by 

limiting direct solar exposure (Huang & Wang, 2019). A study by Martinelli et al. (2015) 

revealed that shaded areas provide improved thermal conditions and greater outdoor comfort. 

In fact, temperatures in shaded areas are cooler than in unshaded areas.  

Shadow analysis often relies on urban models derived from LiDAR data, which provide 

detailed DSMs. Researchers often use these models to assess how buildings influence 

shading in public areas, making them essential in urban planning decisions that focus on 

thermal comfort (Konarska et al., 2014; Zwoliński & Jarzemski, 2015). 

Simulation software such as UMEP-SOLWEIG (Lindberg et al., 2018) allow shadow studies. 

In particular, this model simulates shadows using the “shadow volume” approach described 

by Ratti & Richens (1999). In this method, the raster DSM is shifted according to the Sun's 

azimuth angle and lowered at each iteration based on the Sun’s elevation angle to calculate 

shadow volumes. A portion of the shadow volume is determined at each iteration, and the 

entire shadow volume is generated by taking the maximum value for each iteration. This is 

stored in a new DSM. The shadow volume image is then subtracted from the original DSM to 

generate the map of shadows. The result is a Boolean image, in which pixels with values 

lower than zero are in sunshine (assigned value = 1) and those with values greater than zero 

are in shade (assigned value = 0). The final output visualises shadow distribution at specific 

times or over extended periods, and the dynamics of shadows depend on factors such as 

urban geometry and orientation, greenery, time and location.  
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Using the same software in QGIS, it is possible to analyse the daily shading pattern for a 

specific date. For this study, the date considered is August 15th, corresponding to the 

acquisition of remotely sensed aerial thermal data over Turin. The shading distribution within 

the study area, simulated from sunrise to sunset with hourly variability, is shown in Figure 

4.2. Furthermore, Figure 4.1 shows the complete daily shading pattern, providing an 

overview of areas that are most shaded or exposed to sunlight throughout the specific day. 

Specifically, observing the trend percentage of solar radiation exposed and the shaded area 

throughout the day (Figure 4.3), shaded areas are abundant in the morning, reaching about 

90% at 7:00, and then declining to a minimum of about 19% around 13:30 (solar noon at 

13:34) when sunlight exposure is highest, before rising again in the evening. It is important to 

note that this pattern is derived from a nadir-based DSM, which does not capture the three-

dimensional structure of tree canopies. Consequently, the shade under trees when the sun is 

high is not represented, so the percentage of ground shading is slightly underestimated during 

these periods. Finally, for the purposes of this study, the shaded and unshaded areas at solar 

noon are vectorised in order to be used as the basis for subsequent statistical analyses, which 

will be discussed in Section 8. These areas are shown in Figure 4.4. 

 

Figure 4.1 - Cumulative daily shading map 
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Figure 4.2 - Shading simulation 
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Figure 4.3 - Percentage of solar radiation exposure and shaded area  

 

Figure 4.4 - Solar noon shading simulation 
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5. Urban Canyons and Sky View Factor   

 

Urban geometry plays a critical role influencing the UHI effect. In particular, the thermal and 

radiative balance of cities is greatly affected by so-called urban canyons. Oke was the first to 

create a theory of urban canyons (Nunez & Oke, 1977; Oke, 1976). According to this theory, 

an urban canyon is a three-dimensional space between buildings which has a bottom (the 

road) and two boards (building walls). A key parameter that governs the radiative exchanges 

in these areas is the Sky View Factor (SVF), which quantifies how open or enclosed a 

location is relative to surrounding urban features through a dimensionless measure between 

zero and one, representing totally obstructed and free spaces, respectively (Oke, 1981). 

Mathematically, the SVF at a given point is defined as the ratio of the radiation received (or 

emitted) by a planar surface to the radiation emitted (or received) by the entire hemispheric 

environment (Watson & Johnson, 1987). When obstructions such as buildings or vegetation 

are present, the visible sky is reduced, lowering the SVF (Figure 5.1).  

 

Figure 5.1 - Concept of Sky View Factor (SVF): open sky (SVF = 1) vs obstructed locations (0 < SVF < 1) 

 

Usually SVF are calculated by image-based and computational methods. A typical example 

of this method is a fisheye photograph (Figure 5.2) combined with image processing 

techniques which help to distinguish sky from obstacles (Honjo et al., 2019). When 

photographic data is unavailable, the assessment of the SVF may be carried out using GIS-

based methods. Moreover, as indicated by Hämmerle et al. (2011), the use of advanced 3D-

modeling techniques could also be considered. 

 



   

 

   

 

34 

 

Figure 5.2 - Illustration of SVF derivation: Google Street View fisheye images (top), horizon detection (bottom), and 

resulting SVF (bold) for four worldwide locations (Middel et al., 2018) 

 

In this study, the UMEP (Urban Multi-scale Environmental Predictor) plug-in on QGIS is 

used to calculate the SVF. The output is a continuous raster with values between 0 and 1 

(Figure 5.3), which is then classified into five categories to simplify spatial analysis and 

visualisation (Figure 5.4). In the SVF analysis, both buildings and vegetation are assumed to 

affect sky visibility. The High class covers 29.7% of the area, the Moderate class 24.1%, and 

the Very High class 20.3%. This indicates that the area is characterised by a strong presence 

of open spaces that are directly exposed to solar radiation, and potentially most at risk during 

the daytime of the hottest sunny days. The areas with Very Low SVF values  constitute the 

7.9% of the area. 
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Figure 5.3 - Sky View Factor (SVF)  

 

 

Figure 5.4 - Classified SVF  



   

 

   

 

36 

SVF plays a double role in regulating the temperature of a city. In the daylight, high SVF 

values result in direct solar irradiance on the exposed surfaces. These surfaces have a higher 

heat yield (Jiao et al., 2019). In contrast, at night, high SVF values help in the release of 

longwave radiation from urban canyons to the surrounding environment, leading to cooling. 

If an urban area has low SVF, the night heat release is limited. Consequently, these surfaces 

exhibit higher minimum temperatures and are also subjected to longer periods of heat stress, 

especially during HWs (Palusci & Cecere, 2022; Syrios & Hunt, 2007). 

Another factor influenced by urban morphology is airflow. The low SVF value areas are 

usually less ventilated due to the physical obstacles present. This results in a situation of a 

stagnant microclimate which aggravates the UHI because of limited heat dispersion (Nunez 

& Oke, 1977). 

Open urban spaces such as squares, very wide streets, and parking areas are quite different 

because even though they have high SVF, they mostly lack vegetation and shading. These 

spaces get direct solar radiation for the entire day, and if these areas are not well covered by 

trees or other shields, they are very likely to become hot and increase health risks during 

HWs. As a result, both narrow streets with low SVF and open spaces with high SVF can 

create thermally stressful conditions. 
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6. Solar Irradiance and Radiative Exchange in Urban 

Area 

 

6.1  Fundamentals of Solar Irradiance 

 

A key factor contributing to the UHI effect is solar irradiance. The Earth's climate and energy 

systems are powered by the Sun (IPCC, 2013; Lindsey, 2009). Radiation heat transfer is the 

process by which energy is exchanged between bodies in the form of electromagnetic waves. 

This is the only form of energy transfer that can take place in a vacuum such as the region 

between the Sun and the Earth. The energy flux due to radiation on a surface, referred to as 

irradiance 𝐸, is measured in watts per square meter (W/m²) in the SI system and is defined as 

the radiant flux received by a surface per unit area. It is related to the incident radiant flux Φ 

by: 

𝐸 =
𝑑Φ

𝑑𝐴
 

(Eq. 6.1) 

Irradiance varies with factors such as time of day, latitude, season, atmospheric conditions, 

and the Earth's orbit. As shown in Figure 6.1, the total irradiance 𝐸 incident on a surface can 

be expressed as the sum of three distinct components (Matius et al., 2021): 

𝐸 = 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐸𝑑𝑖𝑓𝑓𝑢𝑠𝑒 + 𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 (Eq. 6.2) 

Where: 

- Direct irradiance (𝐸𝑑𝑖𝑟𝑒𝑐𝑡) is the part of the solar irradiance that directly reaches a 

surface without being scattered or reflected by the atmosphere. It is a function of the 

solar incidence angle 𝜃 and the direct normal irradiance 𝐸𝐷𝑁 (the solar radiation 

received on a surface perpendicular to the Sun’s rays): 

𝐸𝑑𝑖𝑟𝑒𝑐𝑡 = 𝐸𝐷𝑁 cos 𝜃 (Eq. 6.3) 

- 𝐸𝐷𝑁 depends on factors such as the day of the year, atmospheric conditions, and solar 

altitude; 

- Diffuse irradiance (𝐸𝑑𝑖𝑓𝑓𝑢𝑠𝑒) is the part of the solar irradiance that is scattered by 

molecules and particles in the atmosphere and arrives at the surface from all 

directions. It depends on atmospheric conditions and the tilt angle of the surface; 
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- Reflected irradiance (𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑) represents the part of the solar irradiance that has 

bounced off surrounding surfaces, such as the ground or nearby buildings, and 

subsequently arrives at the point of interest. The amount depends on the reflectance 

(albedo) of the surrounding surfaces, as well as surface geometry. 

 

 

Figure 6.1 - Direct, diffuse, and reflected irradiance 

 

6.2  Radiative Properties and Energy Balance in Urban 

Environments 

 

Urban surfaces interact with solar irradiance according to fundamental optical properties that 

satisfy the conservation relation: 

𝛼 + 𝜏 + 𝜌 = 1 (Eq. 6.4) 

Where: 

- 𝛼 is the fraction of incident solar irradiance absorbed by the material (absorptivity); 

- 𝜏 is the fraction transmitted through the material (transmissivity); 

- 𝜌 is the fraction reflected by the material (reflectivity). 

For most surfaces characterising urban environments, transmission is negligible (𝜏 = 0), 

reducing the relation to: 
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𝛼 + 𝜌 = 1 (Eq. 6.5) 

This suggests that the surface absorbs any solar radiation that is not reflected (Kehagia et al., 

2019). It is essential to formulate the concept of energy balance in order to more accurately 

describe energy dynamics in urban areas. The general energy balance equation is derived 

from the first rule of thermodynamics: 

𝐸𝑛𝑒𝑟𝑔𝑦⁡𝑔𝑎𝑖𝑛𝑠 = 𝐸𝑛𝑒𝑟𝑔𝑦⁡𝑙𝑜𝑠𝑠𝑒𝑠 + 𝐸𝑛𝑒𝑟𝑔𝑦⁡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (Eq. 6.6) 

In an urban system, energy inputs, primarily from solar radiation and anthropogenic heat 

sources, are distributed through various pathways, including (Lin et al., 2017): 

- Convection; 

- Evaporation and transpiration; 

- Storage in urban materials; 

- Horizontal advection. 

This can be expressed as: 

𝑞𝑟 + 𝑞𝑇 = 𝑞𝐸 + 𝑞𝐿 + 𝑞𝑆 + 𝑞𝐴 (Eq. 6.7) 

Where: 

- 𝑞𝑟⁡is the net radiative heat flux; 

- 𝑞𝑇 is the anthropogenic heat input; 

- 𝑞𝐸 is the sensible heat flux; 

- 𝑞𝐿 is the latent heat flux; 

- 𝑞𝑆 is the heat stored in urban materials; 

- 𝑞𝐴 is the net horizontal heat advection. 

 

The main component of energy input in urban environments is solar irradiance absorbed by 

surfaces, which directly influences the energy balance of the system. The way a surface 

interacts with incoming radiation is governed by its radiative properties, including 

absorptivity (α), reflectivity or albedo (ρ) and emissivity (ε). Urban materials are commonly 

characterised by high absorptivity for solar irradiance and low albedo, resulting in a wide 

fraction of the incoming solar irradiance absorbed by surfaces. This absorbed energy 

increases the energy of urban surfaces, raising their temperature. Absorbed energy is then 

conducted deeper, emitted as radiation, or transferred to air near the surface by convection 
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(Kaloush et al., 2008). The instantaneous absorbed solar irradiance on an urban surface can 

be expressed as described by Incropera & DeWitt (1996): 

𝑞𝑠𝑜𝑙𝑎𝑟 = 𝛼⁡(𝐸𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐸𝑑𝑖𝑓𝑓𝑢𝑠𝑒 + 𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑) (Eq. 6.8) 

The albedo represents the fraction sunlight that is diffusively reflected by a surface, and it can 

be defined as:  

𝜌 = 1 − 𝛼 (Eq. 6.9) 

The values of albedo assumed by urban surfaces varies depending on the construction 

materials used, with values ranging from 0 to 1, corresponding to total absorption or 

refraction, respectively (Sangiorgio et al., 2020). Some common absorptivity and albedo 

values for different surfaces are provided in Table 6.1 (Nichols Consulting Engineers, 2012). 

Table 6.1 - Representative absorptivity and albedo values for various surfaces 

Surface Type Absorptivity 𝛼 Albedo 𝜌 

Fresh Asphalt 0.95 0.05 

Fresh Grey Portland Cement 0.65 0.35 

Black Soil 0.87 0.13 

Desert Sand 0.60 0.40 

Bare Soil (land) 0.83 0.17 

Cool Pavement Coatings 0.50 0.50 

Aged Asphalt 0.80 0.20 

Arctic Region 0.23 0.77 

Green Grass 0.75 0.25 

White Portland Cement 0.20 0.80 

Aged Portland Cement 0.71 0.29 

White Roof Coatings 0.12 0.88 
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From a climate perspective, albedo acts as a defence against solar heating, and it is 

considered one of the most efficient factors in mitigating the UHI effect (Hayes et al., 2022; 

Morini et al., 2016; Sangiorgio et al., 2020). For example, in the case of Salento’s white 

cities, the high albedo of limestone surfaces contributed to a rare reverse UHI effect during 

HWs (De Razza et al., 2024). Moreover, materials and surfaces characterised by a 

combination of low albedo and emissivity values tend to absorb and retain heat during the 

day and release it very slowly at night, intensifying the UHI effect. 

Emissivity values are essential for understanding how closely a surface behaves to an ideal 

black body, and are dependent on the type of material and the surface texture, as shown in the 

following table (Table 6.2): 

 

Table 6.2 - Representative emissivity values for various surface materials 

Material Emissivity 𝜀 

Asphalt 0.88 

Brick 0.90 

Concrete, rough 0.91 

Glass, smooth (uncoated) 0.95 

Limestone 0.92 

Marble (polished) 0.89 to 0.92 

Paint (including white) 0.90 

Paper, roofing or white 0.86 to 0.88 

Plaster, rough 0.89 

 

The emitted long-wave thermal radiation from these surfaces follows the Stefan-Boltzmann 

law: 

𝑞𝑒𝑚𝑖𝑡 = 𝜀𝜎𝑇4 (Eq. 14) 

Where: 

- 𝜀 is the surface emissivity; 
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- 𝜎 = ⁡5.67 × 10−8⁡W·m−2·K−4  is the Stefan-Boltzmann constant; 

- 𝑇 is the surface temperature in K. 

However, surfaces also receive longwave radiation from the atmosphere and surrounding 

objects. The net longwave radiative flux is given by: 

𝑞𝑟,𝑙𝑜𝑛𝑔𝑤𝑎𝑣𝑒 = 𝜀(𝑅𝐿↓ − 𝜎𝑇4) (Eq. 6.10) 

Where 𝑅𝐿↓ is the incoming longwave radiation. The net radiative heat flux (𝑞𝑟) exchanged 

between an urban surface and the environment can be obtained from the balance of incoming 

and outgoing shortwave and longwave radiation. Mathematically, it can be expressed as 

described by Bretheron (2023): 

𝑞𝑟 = 𝛼𝐸 + 𝜀(𝑅𝐿↓ − 𝜎𝑇4) (Eq. 6.11) 

This net radiative balance determines how much energy is retained or released by the surface. 

 

6.3  Solar Radiation Models 

 

Solar radiation models are useful for estimating quantities such as solar irradiance in areas 

where measurement stations are unavailable or limited. Numerous models developed in a GIS 

environment have been proposed in the literature. Among them, one of the most used is the 

r.sun module, described by (Hofierka & Šúri, 2002). The r.sun module is a comprehensive 

model for estimating solar radiation and is fully integrated into the open-source GRASS GIS 

environment. Irradiance prediction is implemented through the r.sun.incidout sub-model, 

which calculates the solar incidence angle and the three components of instantaneous solar 

irradiance (direct, diffuse, and reflected) (W/m²). The results can be generated either without 

terrain shadowing (default) or with shadowing effects enabled, under both clear-sky and 

overcast conditions.  

This calculation requires only a few input, such as elevation, slope and aspect which can be 

derived from LiDAR data, together with the day number and local solar time. Other optional 

parameters can be adjusted to adapt the simulation to specific conditions. The outputs 

generated by the r.sun.incidout model are summarised in Table 6.3. 
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Table 6.3 - Outputs produced by the r.sun.incidout model 

Parameter Units 

Solar incidence angle Decimal degrees 

Direct irradiance W/m² 

Diffuse irradiance W/m² 

Reflected irradiance W/m² 

Total Irradiance W/m² 

 

With this algorithm, using the data of the study area, it is possible to obtain a solar irradiation 

model characterising the area on 15th August 2025, focusing on the peak solar hour, when 

the sun is at noon (at 13:34 local time). In Figure 6.2, it is possible to see the three 

components that determine the irradiance received at ground level. The main component is 

certainly direct irradiance. The total irradiance is shown in Figure 6.3. Since the model refers 

to a summer day, calculated at the time of maximum solar elevation and without accounting 

for atmospheric interference, the resulting irradiance values are very high across most of the 

study area. For a better understanding of the distribution of solar irradiance over the area, a 

classification is performed based on the level of total irradiance. Specifically, 5 classes were 

used ranging from “Very Low” to “Very High”. The thresholds are 200, 400, 600, and 800 

W/m². The Very High class covers about 52% of the area, while the High (11%), Moderate 

(5%), and Low (4%) classes together represent about 20%. The Very Low class accounts for 

28% of the area. The spatial distribution of these classes can be seen in Figure 6.4 
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Figure 6.2 - Modelled solar irradiance: (A) Direct irradiance; (B) Diffuse irradiance; (C) Reflected irradiance 

 

 

 

Figure 6.3 - Total solar irradiance  

A B C 
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Figure 6.4 - Classified solar irradiance  

 

Additional results from the solar radiation analysis show the duration of solar exposure across 

the study area. Using the r.sunhours model it can be seen that the most exposed areas are the 

rooftops of tall buildings and urban parks, which reach peak exposure times of approximately 

11 hours of total solar radiation during the day (Figure 6.5). The corresponding total daily 

radiant exposure (Figure 6.6), instead, ranges from a minimum of approximately 405 

Wh/m²·day to a maximum of approximately 7,348 Wh/m²·day, and it is obtained using 

r.sun.insoltime model. 
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Figure 6.5 - Total insolation time  

 
Figure 6.6 - Total daily solar irradiance  
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7. Thermal Remote Sensing 

 

7.1  Principles of Thermal Remote Sensing 

 

Thermal remote sensing is a type of passive remote sensing that refers to the measurement of 

energy emitted by the Earth's surface. This energy does not include the energy reflected by 

the surface. Thermal remote sensing is based on the infrared (IR) portion of the 

electromagnetic spectrum, more specifically the longwave infrared region. The IR spectrum 

is divided into several sub bands based on wavelength and source, specifically whether the 

radiation is reflected or emitted. The Near-Infrared (NIR) ranges from 0.7 to 1.3 μm, the 

Short-Wave Infrared (SWIR) from 1.3 to 3 μm, the Mid-Wave Infrared (MIR) from 3 to 

5 μm, the Long-Wave or Thermal Infrared (TIR/LWIR) from 8 to 14 μm, and finally the Very 

Long-Wave Infrared (VLWIR) from 14 to about 1000 μm. Most thermal sensing is performed 

in the 8-14 μm region because it contains the peak energy emissions of most of the Earth's 

surface features. Reflected infrared (NIR and SWIR) originates from sunlight bouncing off 

the Earth's surface, while emitted infrared (MIR, TIR, and VLWIR) comes from the heat of 

the objects themselves. These characteristics are resumed in Table 7.1. Every object with a 

temperature above absolute zero (-273.15°C or 0 K) emits energy in the form of 

electromagnetic radiation (Prakash, 2000). This fundamental principle of physics can be 

described by Planck’s radiation law (Planck, 1914), a mathematical relationship formulated 

in 1900 by German physicist Max Planck, which quantifies the spectral-energy distribution 

of radiation emitted by a blackbody according to the formula: 

 

𝐸𝜆(𝜆, 𝑇) =
2𝜋ℎ𝑐2

𝜆5 [exp (
ℎ𝑐

𝑘𝐵𝜆𝑇
) − 1]

 (Eq. 7.1) 

Where:  

- ℎ = 6.626 × 10−34 J⋅s is Planck’s constant; 

- 𝑐 = 2.998 × 108 m/s is the speed of light; 

- 𝑘𝐵 = 1.381 × 10−23 J/K is the Boltzmann constant; 

- λ is the wavelength in μm; 

- 𝑇 is the absolute temperature of the object in K. 

https://www.britannica.com/science/radiation
https://www.britannica.com/science/blackbody
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Most of the radiation released by a black body at temperatures of several hundred degrees 

Kelvin is infrared. Higher temperatures cause emissions at shorter wavelengths which occur 

within the visible spectrum (Nguyen et al., 2021). 

 

Table 7.1 - Summary of infrared spectral regions 

IR Band 
Wavelength Range 

(µm) 
Radiation Type Source 

NIR 0.7 - 1.3 Reflected Solar 

SWIR 1.3 - 3.0 Reflected Solar 

MIR 3.0 - 5.0 Reflected + Emitted Solar + Thermal 

TIR / LWIR 8.0 - 14.0 Emitted Thermal 

VLWIR 14.0 - ~1000 Emitted Thermal 

 

Thermal remote sensing estimates the object's radiant temperature 𝑇𝑅, also known as 

“brightness temperature”. Specifically, it is the temperature a black body would need to 

match the observed radiative intensity of a grey body object. 

This temperature is not directly measured by the thermal camera. The acquisition process 

initially measures the infrared radiation emitted by the object at the surface and converts it 

into an electrical signal proportional to the intensity of energy received by the sensor. This 

signal is then processed using algorithms based on the Planck and Stefan-Boltzmann laws to 

obtain the associated radiant temperature and generate the thermal image. It is important to 

note that the radiant temperature does not always coincide with the kinetic temperature 𝑇𝐾 of 

an object. The latter, also known as “true temperature”, represents the temperature generated 

by the vibration of molecules within objects and is measured by thermometers using 

conventional temperature scales (°F, °C, K). However, the two temperatures are related to 

each other via emissivity (ε) (Sabins & Ellis, 2020), as shown in the following formula: 

𝑇𝑅 = √𝜀
4 ⁡𝑇𝐾 
 

(Eq. 7.2) 

This means that the two temperatures coincide only when the investigated object is a 

blackbody, with an emissivity of 1. In reality, no body behaves perfectly like a blackbody, 
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and therefore will have emissivity values lower than 1. Therefore, the true temperature of an 

object will always be higher than its radiant temperature. However, in cases of surfaces with 

high emissivity and absence of reflections the radiant temperature is a good approximation of 

the kinetic temperature of the same object, while in many practical applications these 

temperatures differ, especially when the surface of the investigated object has very low 

emissivity values and high reflection. In these cases, to obtain a more accurate estimate of the 

object's true temperature, the measurement should be corrected and compensated using the 

object's emissivity (Dash et al., 2002).  

The two main categories of factors influencing the kinetic temperature are the thermal 

characteristics of the materials and the heat energy budget. Heat energy budget includes 

factors such as solar heating, longwave upwelling and downwelling radiations, heat transfer 

at the earth-atmosphere interface and active thermal sources. A material's thermal 

conductivity, specific heat, density, heat capacity, thermal diffusivity, and thermal inertia are 

examples of its thermal properties (Prakash, 2000). In addition to the material of emitting 

objects, other factors that should be considered include the temperature, humidity, reflective 

surfaces, wind and convection airflow of the intended operational environments. Cloud, rain 

and dust are likely to affect thermal cameras as they reduce visibility through scattering 

caused by particles present in the atmosphere. However, since infrared radiation has a longer 

wavelength than visible light, it is less attenuated by denser media. 

An other important law in remote sensing is Wien's displacement law, published in 1893. It 

allows calculating, for any temperature 𝑇𝑅, the wavelength 𝜆𝑚𝑎𝑥  at which the emitted power 

of a blackbody is maximal (Payra et al., 2023; Wien, 1893). This law is expressed by the 

following equation: 

𝜆𝑚𝑎𝑥 =⁡
𝑘

𝑇𝑅
 

 

(Eq. 7.3) 

Where k is a constant equal to 2898 μm·K and 𝑇𝑅 is the radiant temperature expressed in K. 

In Figure 7.1, the emissive power spectrum obtained using the Planck’s equation is shown, 

along with the locus of Wien's equation. 
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Figure 7.1 – Spectral emissive power vs wavelength  

 

 It can be observed that as the emitted power increases, 𝜆𝑚𝑎𝑥 shifts toward shorter 

wavelengths and the temperature increases. The dominant wavelength 𝜆𝑚𝑎𝑥 helps determine 

the most appropriate wavelength for the detection instruments used in remote sensing, 

according to the temperature of the observed object. For example, considering the Sun’s 

surface as a blackbody, it emits at a temperature of about 5800 K, with a peak around 0.5 μm, 

corresponding to the visible yellow/green band. In contrast, objects with lower temperatures 

exhibit peak emission at longer wavelengths. In fact, the Earth's surface, with an average 

temperature of about 288 K, emits mostly around 10 μm, in the TIR range. 

 

7.2  Resolution of Thermal Images 

 

The quality of thermal images obtained through remote thermal surveys depends heavily on 

their spatial and radiometric resolution. These two resolutions are closely linked. Specifically, 

they have an inverse relationship, meaning that improving one necessarily reduces the other. 

A crucial factor in influencing resolutions is the Instantaneous Field of View (IFOV), which 

represents the smallest target size detectable by an imaging system and represents one pixel 
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of the sensor array, determining the smallest resolvable object size. The IFOV can be 

calculated using the following formula (Massimo Micieli, 2019): 

𝐼𝐹𝑂𝑉 =
𝑝

𝑓
 

 

 

(Eq. 7.4) 

Where 𝑝 is the side dimension of the pixel element (expressed in mm) and 𝑓 is the focal 

length of the sensor (expressed in mm). The generated IFOV is typically measured in radians 

or milliradians, representing the solid angle through which the individual pixel "looks" at the 

scene. When considering resolution, it is important to consider the ground area covered by 

each pixel, also known as Ground Sample Distance (GSD), which is a function of the 

distance from the sensor (h) and the IFOV, through the relationship (Massimo Micieli, 2019): 

𝐺𝑆𝐷 = ℎ ∙ 𝐼𝐹𝑂𝑉 
 

 

(Eq. 7.5) 

GSD is typically expressed in m/pixel. It is observed that at a constant distance from the 

object, the wider the IFOV, the larger the GSD. This leads to a decrease in spatial resolution 

and an increase in radiometric resolution, as the sensor receives a more intense and detailed 

thermal signal, as the pixel contains the radiation emitted by a larger surface, and increases 

the signal-to-noise ratio (SNR). Conversely, smaller IFOVs result in smaller ground areas 

(lower GSDs) and increase visible detail, generating a better spatial resolution. In this case, 

the SNR captured on a smaller surface increases, and it shows a negative impact on the 

radiometric resolution (ODonohue, 2023).  

 

7.3  Acquisition and Processing of High-Resolution Thermal and 

Multispectral Data 

 

Thermal remote sensing, as previously mentioned, is one of the most suitable techniques for 

studying medium to large scale thermal phenomena. It allows for a better understanding of 

energy balances, providing useful information regarding the behaviour of different soil types, 

whether man-made or natural, permeable or impermeable, and different materials that 

respond according to their characteristics. These acquisitions are essential for a 

comprehensive understanding of UHIs, as they can detect surface temperatures effectively 

and accurately. 
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In this study, the thermal and multispectral data useful for studying the thermal behaviour of 

the Turin area were acquired on August 15th and 16th, during one of the most significant 

HWs in the region in 2025, during day and night conditions, respectively. Furthermore, the 

night of August 16th has already been classified as a tropical night by the analyses carried out 

in Section 2.2.3. The presence of data acquired during both night and day hours allows to 

better understand the behaviour of these systems during the hottest periods of the year. The 

acquisition campaigns were conducted using a CESSNA 4004 aircraft (Figure 7.2), operated 

by ATV Airborne Sensing Italia Srl, which is specialised in high-precision and high-

resolution aerial surveys. The aircraft was equipped with a Dual Digi-THERM (IGI) thermal 

system (Figure 7.3) consisting of: 

 

- Two Infratec VarioCam HD thermal cameras, sensitive in the 7.5-14 µm range; 

- A PhaseOne iXM150 multispectral sensor, for high-resolution RGB imaging. 

The survey was designed to capture both thermal and multispectral data over the 

Municipality of Turin, enabling the analysis of UHI distribution and the detailed mapping of 

the territory. Specifically, thermal cameras acquired the radiant temperature of surfaces, 

while the multispectral sensor provided high-resolution RGB images. 

 

 

Figure 7.2 - Aerial survey aircraft (CESSNA 4004)  
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Figure 7.3 - Dual Digi-THERM (IGI) thermal system  

 

Table 7.2 summarises the main characteristics of the flight plan, including both the technical 

aspects and the operational parameters adopted during the acquisitions. 

The coverage provided by the 12 flight lines is continuous, and the overlap values allow for 

the reconstruction of detailed maps of the city. Figure 7.4 shows the 12 flight paths flown by 

the aircraft during the day and at night, respectively. Thermal images acquired at a flight 

altitude of approximately 6,300 ft (~ 1,920 m) have a GSD of approximately 100 cm. Each 

pixel corresponds to about 1 meter on the ground. This resolution allows for the identification 

of features such as building roofs, roads, or industrial buildings, making it suitable for the 

purposes of this study. Multispectral images have a lower GSD of approximately 16 cm, 

corresponding to a higher spatial resolution, with much more detailed pixels that allow for the 

identification of smaller features. Finally, the quality of satellite positioning was guaranteed 

using the permanent GNSS TORI and TOGR stations, equipped with LEICA GR30 receivers 

and precision antennas.  

 

 

Figure 7.4 - Flight paths for the study: (A) Daytime flight; (B) Nighttime flight 

A B 
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Table 7.2 - Main technical and operational parameters of the flight plan  

Parameter Specification 

Project area Municipality of Turin 

Aircraft CESSNA 404 

Flight altitude ~ 6,300 ft 

Number of flight lines 12 

Thermal imaging system 

Dual Digi-THERM 

(2 × Infratec VarioCam HD, 

7.5-14.0 µm, 30 mm, 1024 × 768 px) 

Multispectral sensor 
PhaseOne iXM150 (RGB, CMOS, 

150 mm, 14,204 × 10,652 px) 

Stabilization platform Somag GSM 

Navigation system GPS/INS AeroControl + CCNS-5 

Thermal imagery GSD ~ 100 cm 

Thermal image overlap 77% forward / 40% side 

Multispectral imagery GSD ~ 16 cm 

Multispectral image overlap 90% forward / 50% side 

Daytime survey 
15 August 2025 - 12:45 to 14:45 

(local time) 

Nighttime survey 
16 August 2025 - 03:45 to 05:50 

(local time) 

GNSS reference stations 

TORI (Turin) and TOGR 

(Turin MAN INT), equipped with 

LEICA GR30 receivers 

 

Once the images captured by the airborne system are obtained, a portion of the study area is 

selected to carry out the thermal analysis. This approach is chosen because, for the 

subsequent analyses to be conducted, only the portion of the images that depict the 

underlying terrain in a way very close to an orthophoto is used. This is due to the insufficient 

overlap between lateral shots, which prevents the creation of a sufficiently accurate 

orthophoto of the entire study area for metric or centimeter-level analysis. In general, the 

construction of an orthophoto is possible, but in this study, due to the required level of 
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accuracy, it is preferred to select an area that is visually compatible with an orthophoto, 

where geometric distortions are less significant. This is done by cropping the originally 

acquired images, keeping only 35% of the original width, starting from the side 

corresponding to the camera acquisition, which can be either right or left. 

In the specific case of this study, the following thermal images falling within the study area 

are selected: 

 

- TR_07_3041, Flight strip 7, image N. 20, camera right (daytime acquisition 15/08); 

- TR_07_3045, Flight strip 7, image N. 24, camera right (daytime acquisition 15/08); 

- TR_07_3049, Flight strip 7, image N. 28, camera right (daytime acquisition 15/08); 

- TR_07_1377, Flight strip 7, image N. 21, camera right (nighttime acquisition 16/08); 

- TR_07_1381, Flight strip 7, image N. 25, camera right (nighttime acquisition 16/08); 

- TR_07_1385, Flight strip 7, image N. 29, camera right (nighttime acquisition 16/08). 

 

Daytime thermal images on the selected area are acquired at 13:46 local time, while 

nighttime thermal images are taken at 04:40 local time. The fact that the daytime acquisition 

time is very close to the solar noon on that specific day (occurring at 13:34) allows for a 

minor approximation of about ten minutes, enabling the thermal data to be considered as 

captured during the daily solar peak. This supports the use of the previously calculated 

shading and irradiation models.  

The choice of this area is also influenced by the availability of corresponding images 

acquired at different times. This enables a focused study of the differences in thermal 

behaviour throughout the day. A further crop is applied to the thermal images to select only 

the area corresponding to both the daytime and nighttime acquisitions, resulting in a final 

examined area of 0.43 km2, corresponding to approximately 20% of the original study area. 

This surface portion includes various land cover classes, distributed in a sufficiently 

homogeneous way to consider the area a good sample for analysing the characteristics of 

different urban zones.  

The thermal images are georeferenced using QGIS. To georeferenced the images acquired on 

August 15th, a total of 282 ground control points are used, while for the nighttime acquisition 

on August 16th, 339 ground control points are used. The used GCPs can be visualised in 

Figure 7.5 and a more detailed description is available in Table 7.3. 
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The selection of ground control points is done visually using the available orthophoto, with 

recognizable buildings, roads, and other surfaces as references. The georeferencing method 

used is a third-degree polynomial transformation, which visually produces the best results 

among the available options, but requires many ground control points distributed across the 

entire area to be georeferenced. This method is chosen due to the need to correct the slight 

deformations in the images, especially on the outer edges, since the images are not 

orthorectified. 

 

Figure 7.5 – GCPs used for georeferencing thermal imagery  

 
Table 7.3 - Characteristics of GCPs 

Time Total GCPs ID Count 

  TR_07_3041 67 

Day (13:46) 282 TR_07_3045 134 

  TR_07_3049 81 

    

  TR_07_1377 101 

Night (04:40) 339 TR_07_1381 172 

  TR_07_1385 66 
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Georeferencing process is performed in the reference system EPSG:32632 (WGS 84 / UTM 

Zone 32N). In Figure 7.6, the spatial distribution of the temperatures acquired during the 

daytime flight is shown. It is visually possible to distinguish areas with lower surface 

temperature from those with higher surface temperature. Specifically, it is visible how trees 

and green areas are cooler than roads and buildings. The maximum temperature recorded in 

this analysed area is 62.1 °C, while the minimum temperature is 24.7 °C. Further information 

and detailed statistical analyses are discussed in the next chapter.  

Figure 7.7 shows the spatial distribution of the temperatures acquired during the nighttime 

flight. In this case, the scenario is different. Buildings, green areas, and trees show lower 

temperatures, while roads show high temperatures. The maximum temperature recorded in 

this area is 28.4 °C, while the minimum temperature is 11.1 °C. As previously explained, the 

temperatures do not correspond exactly to the ground temperature, but represent the 

temperatures as detected by the sensor. However, considering very high surface emissivity 

values, the recorded temperature can be approximated to the true surface temperature. 

Finally, it is interesting to see how the temperatures recorded at corresponding points change 

between nighttime and daytime. This variation mostly depends on the thermal behaviour of 

the surfaces, but can also be influenced by the SVF. As already mentioned in previous 

chapters, areas with very high SVF values can reach very high temperatures during the day, 

and reach very low minimums at night due to heat dissipation. Areas with very low SVF 

values tend to have a much smaller temperature variation between day and night, since they 

are more shaded during the day and at night heat dissipation is limited by surrounding 

obstacles. This behaviour is visible in Figure 7.8, where the temperature variation between 

day and night shows a minimum value of 3.2 °C and a maximum value of 41.8 °C. The 

largest temperature differences occur over buildings, while lower values occur over roads and 

trees. Further statistical investigations confirm what is observed in the figures.  
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Figure 7.6 - Daytime temperature  

 
Figure 7.7 - Nighttime temperature 



   

 

   

 

59 

 

 
Figure 7.8 - ΔT (day-night temperature difference)  

 

An important step involves verifying that the areas classified as shaded through previous 

modelling correspond to surfaces with lower temperatures. This can be observed in Figure 

7.9, which provides a visual comparison confirming that the shading model aligns with both 

the data acquisition time and the actual shape of the shadow. This correspondence validates 

the accuracy of the model and supports the continuation of the shading analysis, as lower 

surface temperatures are clearly concentrated within the areas identified as shaded. 
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Figure 7.9 - Visual validation of the shading model 
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8. Statistical Analysis  

 

In this section of the study, it is analysed in detail, through appropriate statistical analyses, the 

relationships between temperature, solar irradiance, and Sky View Factor. In particular, all 

this is also analysed through the different soil classes in which the points fall, or through the 

previously classified SVF and solar irradiance classes. Specifically, for all these analysed 

variables, a statistical analysis was performed to calculate descriptive statistics such as mean, 

median, standard deviation, minimum and maximum values, quartiles and the interquartile 

range. Then, comparisons between the means of the different groups considered were also 

carried out, depending on the phenomenon considered, to verify if statistically significant 

differences exist between the means. Preliminary analyses showed that temperature, SVF and 

solar irradiance data present strong spatial autocorrelation. Therefore, classical and typical 

analyses for mean comparison such as ANOVA can not be applied. Moreover, for all classes, 

the assumptions of normality and homogeneity of the data are not satisfied. For this reason, 

another type of analysis was used to verify the significance of the difference between the 

means of the various subgroups or groups, using GLS (Generalised Least Squares), which 

takes into account autocorrelation and therefore does not underestimate the obtained p-value, 

making it a much more appropriate methodology for this type of data. Statistics were applied 

to all points in the analysis, while the calculation of the difference in means between classes 

and the application of GLS used a smaller subsample, for computational reasons. The fact 

that a reduced sample of 2,000 points per class was used may result in slight differences in 

the mean differences observed compared to those generated with the full sample, but in 

statistical terms, this does not affect the significance of the difference. 

 

8.1  Day vs Night Temperature Analysis 

 

The first groups analysed were divided into two classes: day and night, in order to observe 

the temperature differences in the analysed area between daytime and nighttime thermal data. 

The results are visible in Figure 8.1 and Table 8.1 and Table 8.2. It is evident that the 

temperatures recorded during the day are much higher than those recorded at night, with an 

average of 39.7 °C compared to 22.6 °C recorded at night, and a mean difference of 16.9 °C, 

which is statistically significant. 
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Table 8.1 - Descriptive statistics of temperature for daytime and nighttime acquisitions 

Class 
Mean 

(°C) 

Median 

(°C) 
SD 

Min 

(°C) 

Q1 

(°C) 

Q3 

(°C) 

Max 

(°C) 

IQR 

(°C) 

Day 39.7 40.2 6.03 24.7 34.3 43.9 62.1 9.57 

Night 22.6 22.5 1.99 11.1 21.2 24.3 28.4 3.07 

 

 

Figure 8.1 - Temperature distribution: Day vs Night 

 

Table 8.2 - Mean temperature difference between day and night 

Comparison 
Estimate 

(°C) 
SE t-ratio p-value 

Day - Night 16.9 0.265 63.852 <0.0001 *** 
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8.2  Temperature by Land Cover Class 

 

The data were also divided into subsections to observe the temperature differences among 

different land use types such as trees, green areas, roads, and buildings, during the day 

(Figure 8.2, Table 8.3 and Table 8.4) and during the night (Figure 8.3, Table 8.5 and Table 

8.6). 

In the first case it is possible to observe that the coolest class on average is that of trees, with 

a mean of 33.1 °C, followed by green areas, roads, and buildings. The latter class has the 

highest mean temperature of around 45 °C and also the maximum value recorded in the 

sample of 62.1 °C. All mean differences between these classes are statistically significant, 

showing that the temperatures recorded for each class behave differently depending on the 

type of soil.  

The behaviour at night is different, as the class with the lowest mean temperature is no longer 

that of trees, but green areas, with a mean of around 21.0 °C, followed on average by 

buildings, trees and roads. It is possible to see how roads at night represent the class with the 

highest mean temperature, with average values around 25 °C. In this case, all differences 

between classes are statistically significant except for the mean difference between buildings 

and green areas. 

 

Table 8.3 - Daytime temperature statistics for different soil classes 

Class 
Mean 

(°C) 

Median 

(°C) 
SD 

Min 

(°C) 

Q1 

(°C) 

Q3 

(°C) 

Max 

(°C) 

IQR 

(°C) 

Trees 33.1 32.5 2.88 24.7 31.5 33.8 52.4 2.29 

Green Areas 37.2 37.7 4.31 26.6 33.7 40.5 55.5 6.70 

Roads 40.0 41.4 4.41 27.6 37.7 43.3 51.6 5.62 

Buildings 45.0 45.3 5.35 26.6 41.7 48.7 62.1 6.95 
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Figure 8.2 - Daytime temperature distribution by soil class 

 

Table 8.4 - Daytime temperature differences between soil classes 

Comparison Estimate (Δ°C) SE t-ratio p-value 

Trees - Green Areas -4.1 0.50 -8.20 <0.0001 *** 

Trees - Roads -6.9 0.52 -13.27 <0.0001 *** 

Trees - Buildings -11.9 0.46 -25.66 <0.0001 *** 

Green Areas - Roads -2.8 0.48 -5.83 <0.0001 *** 

Green Areas - Buildings -7.8 0.43 -18.14 <0.0001 *** 

Roads - Buildings -5.1 0.42 -12.13 <0.0001 *** 
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Table 8.5 - Nighttime temperature statistics for different soil classes 

Class 
Mean 

(°C) 

Median 

(°C) 
SD 

Min 

(°C) 

Q1 

(°C) 

Q3 

(°C) 

Max 

(°C) 

IQR 

(°C) 

Trees 22.2 22.2 0.97 18.7 21.6 22.7 27.2 1.01 

Green Areas 21.0 20.7 1.40 18.2 19.9 21.9 27.7 2.07 

Roads 25.0 25.1 1.03 18.5 24.4 25.7 28.4 1.24 

Buildings 21.8 21.8 1.51 11.1 21.0 22.8 27.6 1.76 

 

 

 

Figure 8.3 - Nighttime temperature distribution by soil class 
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Table 8.6 - Nighttime temperature differences between soil classes 

Comparison Estimate (Δ°C) SE t-ratio p-value 

Trees - Buildings 0.849 0.122 6.960 <0.0001 *** 

Trees - Roads -2.345 0.123 -19.087 <0.0001 *** 

Trees - Green Areas 0.557 0.111 5.008 <0.0001 *** 

Buildings - Roads -3.193 0.107 -29.826 <0.0001 *** 

Buildings - Green Areas -0.292 0.117 -2.490 0.0622 

Roads - Green Areas 2.901 0.124 23.380 <0.0001 *** 

 

 

8.3  Day-Night Temperature Differences by Land Cover 

 

The difference in temperature between daytime and nighttime was then analysed for the 

different soil classes to evaluate how temperatures vary within the various types of land cover 

depending on their thermal properties (Figure 8.4, Table 8.7 and Table 8.8). As expected, the 

smallest thermal differences between day and night were observed within the tree class, with 

a mean temperature difference of about 10.9 °C, followed by roads, green areas, and 

buildings. Specifically, roads have a mean temperature difference of around 16.2 °C and, also 

being the warmest class at night, this means they tend to retain heat longer and dissipate it 

more slowly. Buildings, on the other hand, show the highest ΔT between day and night, with 

a mean difference of about 23.2 °C, a very high value. This is influenced by the fact that, 

unlike roads which have low SVF values and are built with materials such as asphalt and 

concrete that prevent heat dispersion, buildings are located at higher elevations, with much 

higher SVF and release heat much more easily when there is no solar irradiance. In this case, 

all mean differences are statistically significant except for the difference in mean between 

roads and green areas. 
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Table 8.7 - Descriptive statistics of ΔT between soil classes 

Class 
Mean 

(°C) 

Median 

(°C) 
SD 

Min 

(°C) 

Q1 

(°C) 

Q3 

(°C) 

Max 

(°C) 

IQR 

(°C) 

Trees 10.9 10.3 2.74 3.3 9.33 11.5 30.6 2.17 

Green Areas 16.2 16.9 4.73 5.0 12.2 20.1 33.6 7.87 

Roads 15.1 16.3 3.94 3.2 13.0 17.8 27.1 4.78 

Buildings 23.2 23.5 5.80 3.7 19.6 27.0 41.8 7.37 

 

 

Figure 8.4 - ΔT Day-Night distribution by soil class 

 

Table 8.8 - Day-night ΔT between soil classes 

Comparison Estimate (°C) SE t-ratio p-value 

Trees - Buildings -12.273 0.492 -24.946 <0.0001 *** 

Trees - Roads -4.033 0.511 -7.896 <0.0001 *** 

Trees - Green Areas -3.858 0.458 -8.422 <0.0001 *** 
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Buildings - Roads 8.240 0.445 18.537 <0.0001 *** 

Buildings - Green Areas 8.415 0.456 18.437 <0.0001 *** 

Roads - Green Areas 0.176 0.500 0.351 0.9851 

 

 

8.4  Effect of Shading on Surface Temperature 

 

It is also calculated how shading during daytime hours influences surface temperature. As 

shown in Figure 8.5, Table 8.9 and Table 8.10, it is possible to see that temperatures in 

unshaded areas are much higher compared to shaded areas, emphasising the importance of 

shadow in influencing temperature. The mean temperature recorded in unshaded areas is 

about 40.8 °C, compared to 34.1 °C in shaded areas, with a statistically significant difference. 

Furthermore, the influence of shading on the different land cover types was analysed in more 

detail, as shown in the various violin plots in Figure 8.6 and in Table 8.11 and Table 8.12. All 

mean differences between shaded and unshaded land cover types are statistically significant, 

except for the tree class, showing that differences in irradiance on dense vegetation do not 

significantly influence their surface temperature. 

 

 

Table 8.9 - Descriptive statistics of temperatures in shaded versus unshaded areas 

Class 
Mean 

(°C) 

Median 

(°C) 
SD 

Min 

(°C) 

Q1 

(°C) 

Q3 

(°C) 

Max 

(°C) 

IQR 

(°C) 

Non-Shadow 40.8 41.2 5.70 24.7 36.6 44.5 62.1 7.86 

Shadow 34.1 32.8 4.33 24.7 31.0 36.4 56.5 5.39 
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Figure 8.5 - Daytime Temperature: Non-Shadow vs Shadow Areas 

 

Table 8.10 - Comparison of temperatures for non-shadow versus shadow areas 

Comparison Estimate (°C) SE t-ratio p-value 

Non-Shadow - Shadow 6.23 0.453 13.749 <0.0001 *** 

 

Table 8.11 - Descriptive statistics of daytime temperature by soil class and shade 

Class 
Mean 

(°C) 

Median 

(°C) 
SD 

Min 

(°C) 

Q1 

(°C) 

Q3 

(°C) 

Max 

(°C) 

IQR 

(°C) 

Trees,Non-Shadow 33.3 32.7 2.92 24.7 31.7 34.0 52.4 2.29 

Trees Shadow 32.7 32.0 3.17 24.8 30.8 33.4 52.4 2.53 

Green Areas Non-Shadow 38.1 38.6 3.87 26.7 35.2 40.8 55.5 5.60 

Green Areas Shadow 32.9 32.0 3.60 26.6 30.4 34.4 52.5 4.05 

Roads Non-Shadow 41.4 42.2 3.23 27.9 40.0 43.6 51.6 3.61 

Roads Shadow 34.3 33.3 4.09 27.6 31.0 36.9 48.1 5.91 
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Buildings Non-Shadow 45.3 45.5 5.12 26.6 42.1 48.8 62.1 6.72 

Buildings Shadow 38.3 37.7 5.73 28.2 33.5 42.5 56.5 9.05 

 

 

Figure 8.6 - Daytime temperature distribution by soil class and shadow 

 

Table 8.12 - Differences in temperature shadow vs non-shadow areas between soil classes 

Contrast Estimate SE t.ratio p.value 

Buildings Non-Shadow - Buildings 

Shadow 
6.08 0.94 6.50 <0.0001 *** 

Buildings Non-Shadow - Green Non-

Shadow 
6.68 0.46 14.63 <0.0001 *** 

Buildings Non-Shadow - Green 

Shadow 
10.36 0.68 15.34 <0.0001 *** 

Buildings Non-Shadow - Roads Non-

Shadow 
2.72 0.43 6.28 <0.0001 *** 
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Buildings Non-Shadow - Roads 

Shadow 
9.60 0.64 15.01 <0.0001 *** 

Buildings Non-Shadow - Trees Non-

Shadow 
10.21 0.45 22.80 <0.0001 *** 

Buildings Non-Shadow - Trees 

Shadow 
10.21 0.66 15.43 <0.0001 *** 

Buildings Shadow - Green Non-

Shadow 
0.60 1.01 0.59 0.9990 

Buildings Shadow - Green Shadow 4.28 1.13 3.78 0.0041 ** 

Buildings Shadow - Roads Non-

Shadow 
-3.36 1.00 -3.37 0.0180 * 

Buildings Shadow - Roads Shadow 3.52 1.09 3.22 0.0291 * 

Buildings Shadow - Trees Non-

Shadow 
4.13 1.01 4.09 0.0012 ** 

Buildings Shadow - Trees Shadow 4.13 1.12 3.68 0.0060 ** 

Green Non-Shadow - Green Shadow 3.69 0.67 5.47 <0.0001 *** 

Green Non-Shadow - Roads Non-

Shadow 
-3.96 0.50 -7.86 <0.0001 *** 

Green Non-Shadow - Roads Shadow 2.92 0.71 4.14 0.0010 ** 

Green Non-Shadow - Trees Non-

Shadow 
3.53 0.45 7.81 <0.0001 *** 

Green Non-Shadow - Trees Shadow 3.54 0.67 5.30 <0.0001 *** 

Green Shadow - Roads Non-Shadow -7.65 0.71 -10.75 <0.0001 *** 

Green Shadow - Roads Shadow -0.76 0.86 -0.88 0.9877 

Green Shadow - Trees Non-Shadow -0.16 0.67 -0.23 1.0000 

Green Shadow - Trees Shadow -0.15 0.81 -0.19 1.0000 

Roads Non-Shadow - Roads Shadow 6.89 0.64 10.71 <0.0001 *** 

Roads Non-Shadow - Trees Non-

Shadow 
7.49 0.48 15.76 <0.0001 *** 

Roads Non-Shadow - Trees Shadow 7.50 0.68 11.09 <0.0001 *** 
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Roads Shadow - Trees Non-Shadow 0.61 0.69 0.88 0.9880 

Roads Shadow - Trees Shadow 0.61 0.84 0.73 0.9962 

Trees Non-Shadow - Trees Shadow 0.00 0.64 0.01 1.0000 

 

 

8.5  SVF by Land Cover Class 

 

In the following analyses, the SVF is analysed in more detail. In particular, the graph shown 

in Figure 8.7 and the tables below (Table 8.13 and Table 8.14) display the distribution of 

SVF values across different land cover classes. On average, the lowest SVF values are 

recorded for roads, while the highest are recorded in the buildings class. All differences in 

means are statistically significant, except for the difference between roads and green areas. 

 

Table 8.13 - Descriptive statistics of SVF by soil class 

Class Mean Median SD Min Q1 Q3 Max IQR 

Trees 0.672 0.711 0.227 0.0109 0.533 0.855 1 0.322 

Green Areas 0.661 0.711 0.235 0.0109 0.503 0.856 1 0.354 

Roads 0.614 0.633 0.168 0.0109 0.501 0.740 0.986 0.239 

Buildings 0.827 0.882 0.158 0.0109 0.768 0.934 1 0.166 
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Figure 8.7 - SVF distribution by soil class  

 

Table 8.14 - SVF differences between soil classes 

Comparison Estimate SE t-ratio p-value 

Trees - Buildings -0.1645 0.0203 -8.121 <0.0001 *** 

Trees - Roads 0.0915 0.0206 4.445 0.0001 *** 

Trees - Green Areas 0.1264 0.0207 6.095 <0.0001 *** 

Buildings - Roads 0.2560 0.0185 13.864 <0.0001 *** 

Buildings - Green Areas 0.2910 0.0202 14.396 <0.0001 *** 

Roads - Green Areas 0.0349 0.0216 1.618 0.3691 
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8.6  Temperature by SVF Class 

 

Figure 8.8 represent the temperature values based on the SVF class in which the observations 

fall, separated into daytime temperature (Table 8.15 and Table 8.18), nighttime temperature 

(Table 8.16 and Table 8.19), and day-night ΔT (Table 8.17 and Table 8.20). It is visible that 

during the day, mean temperature values increase with increasing SVF class, with average 

values of 34.4 °C in the “Very Low” class and 42.8 °C in the “Very High” class. The same 

trend is observed in the day-night ΔT. A different behaviour is seen in nighttime 

temperatures. In this case, the highest average temperatures are observed in the “Low” and 

“Moderate” SVF classes, while the lowest are in the “Very High” class. This emphasises that 

points with low SVF tend to have smaller average temperature variations between day and 

night, as there are obstacles that prevent significant cooling. On the other hand, areas with 

very high SVF (more exposed to the sky) show greater temperature differences between day 

and night, higher average daytime temperature and lower average nighttime temperatures. 

This is also demonstrated by Figure 8.9 and Table 8.21, which highlight the presence of a 

linear relationship between temperature and SVF, that is positive during the day, negative at 

night, and positive for ΔT. 

 

Table 8.15 - Descriptive statistics of daytime temperature by SVF class 

Class 
Mean 

(°C) 

Median 

(°C) 
SD 

Min 

(°C) 

Q1 

(°C) 

Q3 

(°C) 

Max 

(°C) 

IQR 

(°C) 

Very Low 34.4 33.1 4.23 24.8 31.4 37.0 56.5 5.61 

Low 36.9 36.2 5.23 24.7 32.4 41.1 56.9 8.65 

Moderate 39.0 39.5 5.32 24.8 34.3 43.0 61.1 8.68 

High 40.9 41.4 5.60 25.1 36.9 44.3 62.1 7.46 

Very High 42.8 42.9 6.14 25.1 39.1 46.8 60.6 7.77 
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Table 8.16 - Descriptive statistics of nighttime temperature by SVF class 

Class 
Mean 

(°C) 

Median 

(°C) 
SD 

Min 

(°C) 

Q1 

(°C) 

Q3 

(°C) 

Max 

(°C) 

IQR 

(°C) 

Very Low 22.9 22.7 1.35 13.5 22.0 23.9 27.9 1.90 

Low 23.4 23.5 1.63 13.9 22.2 24.7 28.2 2.47 

Moderate 23.4 23.4 1.89 14.0 21.9 25.0 28.3 3.11 

High 22.4 22.2 2.03 13.1 20.8 24.2 27.5 3.34 

Very High 21.3 21.4 1.63 12.6 19.9 22.4 27.7 2.43 

 

 

Table 8.17 - Descriptive statistics of ΔT by SVF class 

Class 
Mean 

(°C) 

Median 

(°C) 
SD 

Min 

(°C) 

Q1 

(°C) 

Q3 

(°C) 

Max 

(°C) 

IQR 

(°C) 

Very Low 11.5 10.5 3.78 3.30 8.98 13.5 36.5 4.49 

Low 13.5 12.9 4.68 3.18 9.75 16.9 35.3 7.13 

Moderate 15.6 15.7 4.85 3.27 11.9 18.6 39.8 6.75 

High 18.5 18.1 5.65 3.62 14.9 21.9 41.7 6.97 

Very High 21.4 21.6 6.49 3.68 17.9 25.5 39.3 7.58 
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Figure 8.8 - Surface temperature distribution by SVF class: (A) Daytime; (B) Nighttime; and (C) ΔT  

 

Table 8.18 - Daytime temperature differences between SVF classes 

Comparison Estimate (°C) SE t-ratio p-value 

Very Low - Low -1.50 0.773 -1.935 0.2995 

Very Low - Moderate -3.72 0.738 -5.047 <0.0001 *** 

Very Low - High -5.39 0.701 -7.691 <0.0001 *** 

Very Low - Very High -7.09 0.755 -9.388 <0.0001 *** 

Low - Moderate -2.23 0.583 -3.820 0.0013 *** 

Low - High -3.90 0.536 -7.269 <0.0001 *** 

Low - Very High -5.59 0.605 -9.247 <0.0001 *** 

Moderate - High -1.67 0.483 -3.449 0.0053 ** 

Moderate - Very High -3.36 0.559 -6.019 <0.0001 *** 

High - Very High -1.69 0.509 -3.331 0.0080 ** 

A 

B 

C 
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Table 8.19 - Nighttime temperature differences between SVF classes 

Comparison Estimate (°C) SE t-ratio p-value 

Very Low - Low -0.305 0.249 -1.229 0.7347 

Very Low - Moderate -0.463 0.237 -1.951 0.2912 

Very Low - High 0.651 0.225 2.888 0.0323 * 

Very Low - Very High 1.612 0.243 6.643 <0.0001 *** 

Low - Moderate -0.157 0.188 -0.839 0.9183 

Low - High 0.956 0.172 5.551 <0.0001 *** 

Low - Very High 1.917 0.194 9.866 <0.0001 *** 

Moderate - High 1.114 0.155 7.166 <0.0001 *** 

Moderate - Very High 2.075 0.180 11.555 <0.0001 *** 

High - Very High 0.961 0.164 5.876 <0.0001 *** 

 

Table 8.20 - ΔT between SVF classes 

Comparison Estimate (°C) SE t-ratio p-value 

Very Low - Low -1.19 0.761 -1.564 0.5207 

Very Low - Moderate -3.26 0.726 -4.490 0.0001 *** 

Very Low - High -6.04 0.690 -8.757 <0.0001 *** 

Very Low - Very High -8.70 0.743 -11.708 <0.0001 *** 

Low - Moderate -2.07 0.574 -3.607 0.0030 ** 

Low - High -4.85 0.527 -9.199 <0.0001 *** 

Low - Very High -7.51 0.595 -12.618 <0.0001 *** 

Moderate - High -2.78 0.476 -5.845 <0.0001 *** 

Moderate - Very High -5.44 0.550 -9.889 <0.0001 *** 

High - Very High -2.66 0.501 -5.303 <0.0001 *** 
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Figure 8.9 - Surface temperature distribution by SVF values with linear regression: (A) Daytime; (B) Nighttime; (C) ΔT  

 

 

Table 8.21 - Linear regression parameters and t-test for slope of temperature vs SVF 

Dataset Intercept Slope 
t-value 

(slope) 

p-value 

(slope) 
R² Pearson r 

Day 

Temperature 
30.85 13.15 48.93 0 *** 0.193 0.44 

Night 

Temperature 
24.83 -3.19 -35.09 

1.61e-254 

*** 
0.11 -0.331 

ΔT 6 16.44 63.62 0 *** 0.288 0.537 

 

 

 

A 

B 

C 
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8.7  Solar Irradiance by Land Cover Class 

 

In this section, the distribution of solar irradiance across soil classes is analysed. The results 

are shown in Figure 8.10 through the violin plot and in Table 8.22 and Table 8.23. In this 

case, the presence of shaded and unshaded areas results in a non-unimodal distribution, with 

two peaks corresponding respectively to very low solar irradiance (in shaded areas) and to 

higher irradiance (in sun-exposed areas). In this case, the median better describes the 

variable’s behaviour than the mean. Despite this, considering also the mean values, 

differences in means between the various subgroups of soil classes were analysed, and 

statistically significant differences were found between trees and buildings, between trees and 

roads, between trees and green areas and between buildings and green areas. This means that 

the differences between buildings and roads, and between roads and green areas, do not show 

statistically significant mean differences, due to the similarity in their distribution of solar 

irradiance values. 

Table 8.22 - Descriptive statistics of total solar irradiance by soil class 

Class 
Mean 

(W/m2) 

Median 

(W/m2) 
SD 

Min 

(W/m2) 

Q1 

(W/m2) 

Q3 

(W/m2) 

Max 

(W/m2) 

IQR 

(W/m2) 

Trees 435 388 349 49.8 66.8 767 1077 700 

Green Areas 695 897 343 50.0 497 913 1076 416 

Roads 662 901 365 50.1 106 914 1076 807 

Buildings 720 838 307 50.2 607 927 1077 320 
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Figure 8.10 - Total solar irradiance distribution by soil class 

 

Table 8.23 - Differences of total solar irradiance between soil classes 

Comparison Estimate (W/m2) SE t-ratio p-value 

Trees - Buildings -296.08 32.7 -9.063 <0.0001 *** 

Trees - Roads -221.41 35.3 -6.272 <0.0001 *** 

Trees - Green Areas -217.63 34.0 -6.393 <0.0001 *** 

Buildings - Roads 74.67 30.4 2.459 0.0674 

Buildings - Green Areas 78.44 29.7 2.640 0.0437 * 

Roads - Green Areas 3.77 33.3 0.113 0.9995 
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8.8  Solar Irradiance by SVF Class 

 

Finally, the trend of total solar irradiance across the different SVF classes is analysed. 

According to Figure 8.11, Table 8.24 and Table 8.25, it is visible that the class with a very 

low SVF shows the lowest irradiance values, with a mean of about 209 W/m². The highest 

values of total solar irradiance are recorded, as expected, in the very high SVF class, with an 

average of 783 W/m². All mean differences in total irradiance between the various SVF 

subclasses are statistically significant except for the mean difference between the "High" and 

"Very High" classes, which show a similar trend and average values. 

 

Table 8.24 - Descriptive statistics of total solar irradiance by SVF class 

Class 
Mean 

(W/m2) 

Median 

(W/m2) 
SD 

Min 

(W/m2) 

Q1 

(W/m2) 

Q3 

(W/m2) 

Max 

(W/m2) 

IQR 

(W/m2) 

Very Low 209 71.5 287 50.5 58.8 106 1076 47.3 

Low 429 161 382 50.6 75.9 889 1076 813 

Moderate 658 876 352 50.6 282 913 1076 632 

High 782 900 255 50.6 745 916 1077 171 

Very High 783 892 248 50.5 718 916 1077 198 
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Figure 8.11 - Total solar irradiance distribution by SVF class 

 

Table 8.25 - Differences of total solar irradiance between SVF classes 

Comparison Estimate (W/m2) SE t-ratio p-value 

Very Low - Low -156.30 46.9 -3.336 0.0078 ** 

Very Low - Moderate -413.38 45.0 -9.176 <0.0001 *** 

Very Low - High -540.40 43.7 -12.353 <0.0001 *** 

Very Low - Very High -531.29 46.4 -11.443 <0.0001 *** 

Low - Moderate -257.08 30.6 -8.399 <0.0001 *** 

Low - High -384.10 28.7 -13.404 <0.0001 *** 

Low - Very High -374.99 32.6 -11.500 <0.0001 *** 

Moderate - High -127.03 25.6 -4.961 <0.0001 *** 

Moderate - Very High -117.92 30.0 -3.936 0.0008 *** 

High - Very High 9.11 28.0 0.326 0.9976 
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8.9  Daytime Temperature by Solar Irradiance Class 

 

The graph in Figure 8.12 and the tables in Table 8.26 and Table 8.27 also analyse the trend of 

daytime temperature as a function of solar irradiance class. It is possible to observe an 

increase in temperature with increasing irradiance class. The lowest average values are 

recorded in the “Very Low” irradiance class, with 34.4 °C, while the highest are in the “Very 

High” class, with an average temperature of 42.0 °C. Most differences in mean temperatures 

between irradiance classes are statistically significant, except for the contrasts Very Low - 

Low, Low - Moderate, and Moderate - High. 

 
Table 8.26 - Descriptive statistics of daytime temperature by solar irradiance class 

Class 
Mean 

(°C) 

Median 

(°C) 
SD 

Min 

(°C) 

Q1 

(°C) 

Q3 

(°C) 

Max 

(°C) 

IQR 

(°C) 

Very Low 34.4 33.0 4.66 24.7 31.1 36.8 61.3 5.64 

Low 36.8 35.0 5.37 24.8 32.4 40.7 60.0 8.32 

Moderate 38.4 37.9 5.82 24.7 33.1 43.2 59.7 10.1 

High 40.4 41.0 5.93 25.0 35.0 44.9 62.1 9.86 

Very High 42.0 42.0 5.20 25.0 38.8 44.8 62.1 5.96 
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Figure 8.12 - Daytime temperature distribution by total solar irradiance class 

 

Table 8.27 - Differences of daytime temperature between solar irradiance classes 

Comparison Estimate (°C) SE t-ratio p-value 

Very Low - Low -1.92 0.796 -2.412 0.1129 

Very Low - Moderate -2.97 0.657 -4.512 0.0001 *** 

Very Low - High -4.29 0.520 -8.246 <0.0001 *** 

Very Low - Very High -5.78 0.364 -15.904 <0.0001 *** 

Low - Moderate -1.05 0.947 -1.104 0.8043 

Low - High -2.37 0.852 -2.782 0.0438 * 

Low - Very High -3.87 0.765 -5.050 <0.0001 *** 

Moderate - High -1.33 0.727 -1.825 0.3600 

Moderate - Very High -2.82 0.622 -4.532 0.0001 *** 

High - Very High -1.49 0.469 -3.183 0.0131 * 
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A further analysis considers the distribution of irradiance values in relation to the 

corresponding surface temperature values as continuous variables, represented through a 

scatter plot that clearly illustrates the relationship between the two variables under 

investigation (Figure 8.13). The plot uses a sample of 50,000 points to facilitate the 

visualisation of the distribution. To further aid interpretation, a different colour was assigned 

to each point according to the pixel’s class, distinguishing between shaded and non-shaded 

areas. The domain characterised by lower total irradiance values is predominantly composed 

of points classified as shaded. In this region, irradiance values are very low, with a distinct 

transition occurring around approximately 106 W/m². The second part of the plot, which 

represents points directly exposed to solar radiation, shows as already highlighted previously 

a predominant density around 900 W/m². In this section, the temperature range is broader. 

The mean values between shaded and non-shaded classes differ, as already observed in 

Section 8.4, in a statistically significant way. 

 

Figure 8.13 - Temperature vs Total Solar Irradiance, classified by shading: shadow and non-shadow areas 
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9. Urban Heat Vulnerability Assessment 

 

This section primarily discusses the study of urban heat vulnerability during a heatwave. Due 

to the limited extent of the study area and the aim of developing a predominantly 

methodological approach, a dynamic study is conducted by defining potential routes (for 

example, a hypothetical route from home to work) to be undertaken without the use of a 

vehicle, for example, by bicycle or on foot. This approach is based on minimising 

temperature along the route, thereby ensuring transit through the coolest possible areas. 

For the development of this model, QGIS software was used, along with the r.walk.points 

plugin, and subsequently the r.drain plugin from GRASS. The first plugin generates a raster 

showing the anisotropic cumulative cost of movement between different geographic 

positions, based on an input raster whose cell values represent the cost. In the case of our 

study, initially limited to the restricted area where thermal data are available, the raster 

considered as the cost is the surface temperature raster. More specifically, the inputs used are 

the elevation raster (DSM), the temperature raster containing costs (temperature), the starting 

point and the endpoint. The outputs obtained are the cumulative cost and movement 

directions. This plugin is highly useful because it accounts for the morphology of the area and 

the presence of obstacles (the DSM includes the heights of all surfaces, including boundary 

walls, buildings, and vegetation). A factor that could reduce the accuracy of the obtained 

routes is the presence of obstacles that are too narrow or small to be accurately represented in 

the DSM, which may lead to routes entering areas that are actually inaccessible. These errors 

can be partially mitigated by adjusting the slope factor, which determines the energy cost per 

unit of elevation and can be configured in the plugin interface. 

Once these results are obtained, the second GRASS plugin, r.drain, is applied. Its inputs are 

the cumulative cost raster, the movement directions raster obtained previously, and a vector 

containing the start and end points. This plugin then generates the path that minimises the 

cost factor (in this case, corresponding to temperature). 

The results are shown in Figure 9.1. It is evident that the path consistently seeks to minimise 

temperature, remaining within raster pixels with lower values, and, by limiting the required 

energy, also considers distance, favouring routes that minimise it. Moreover, it effectively 

avoids obstacles and follows practically applicable paths. 
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Figure 9.1 - Case 1: Temperature-minimising path  

    

This approach, however, only works if, as in this case, a raster containing temperatures is 

available. Since this type of data is generally very difficult to obtain at the high geometric 

resolution, an additional factor that could be considered as cost is used. 

Specifically, shading can be easily modelled in space and time using an accurate DSM model. 

Moreover, results obtained in the previous section demonstrate that shaded areas tend to have 

statistically significant temperature differences compared to areas exposed to solar radiation. 

Therefore, shading is used as a cost factor to obtain paths that, instead of minimising the 

temperature, maximise the shaded area. The results obtained by modelling the path using the 

shading corresponding to 13:30 on August 15th are shown in Figure 9.2. 
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Figure 9.2 - Case 1: Shadow-maximising path  

 

The figure above shows how, in this case, the route preferentially follows shaded areas along 

the entire path, minimising sun exposure, which increases the thermal comfort perceived by 

the pedestrian. 

A comparison between the two models, the first using temperature and the second using 

shading as a factor, is provided in Figure 9.3. The two resulting routes are nevertheless very 

similar and overlap for most of the path, further demonstrating how shaded areas correspond 

with cooler areas. 
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Figure 9.3 - Case 1: Comparison between paths 

 

Given this similar behaviour between the two models, it is natural to expand the approach 

using a dynamic methodology to observe any changes in routes as the time of day varies, 

continuing to use shading as the factor to maximise. The results are calculated from the 

shading models obtained in Section 4, which range from 7:00 to 20:00, with an hourly 

frequency, and are shown in Figure 9.4 and Figure 9.6. Moreover, Figure 9.5 shows the 

percentage of shaded area for each path and the corresponding distance. 
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Figure 9.4 - Case 1: Shadow-maximising paths for each hour 

 

 

 
Figure 9.5 - Case 1: Shaded area proportion and corresponding path distances 
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Figure 9.6 - Case 1: Series of hourly shadow-maximising paths  
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By calculating the percentage of shading present on each path for the corresponding time of 

day, it can be seen that the paths with the greatest shading are those modelled in the early 

morning and late afternoon, while the central hours of the day have greater solar exposure, 

given the limited shading of the area due to the position of the sun in the sky, which 

necessarily requires brief passage through areas exposed to solar radiation. The shading 

percentage, in fact, decreases from 99.83% in the early morning (7:00) to a minimum of 

68.41% at 15:00, and then increases again towards the late afternoon, reaching 100% of 

shade at 20:00. 

It is noticeable that, in the morning or late afternoon, the distances travelled are shorter and 

tend to be closer to the minimum possible distance between the starting point and the 

destination. During the most exposed hours, the model tries to follow continuous shaded 

areas, and the reduced shading leads to a longer distance to minimise solar exposure.  

In general, the main variations observed in this specific case concern the change in side of the 

road (for example, the left or right side of the road depending on the position of the shade 

during the day), but in other cases there are much more significant variations, such as the one 

observed at 15:00, which uses an alternative route, lengthening the total journey. Specifically, 

the distances range from a minimum of 1.489 km experienced at 20:00 to a maximum of 

1.683 km experienced at 15:00, resulting in a maximum difference of 194 m that the 

pedestrian must walk to reach the destination while maximising thermal comfort.  

Obviously, this methodology, once the DSM and shading models are available, can be 

extended to any area for which data is available. For example, two different route start and 

end points are now considered, which extend across the original study area. In this case, the 

morphological structure between the two reference points is slightly more complex and 

features a denser urban fabric and the absence of a single straight road leading from the origin 

to the destination. The resulting routes are, in fact, much more variable and complex across 

the entire daylight period (Figure 9.7 and Figure 9.9) As expected, the routes are influenced 

by the position of the greatest shade continuity to reach the end point from the starting point 

and this also depend on the orientation of the buildings, as well as the width of the streets and 

the height of the buildings themselves. As in the previous case, the periods with the least 

shade correspond to the central part of the day, with a minimum peak of 72.96% at 13:00, and 

the distances travelled to reach the destination increase during these times (Figure 9.8). The 

maximum distances occur at 12:00 (1.514 km) and 14:00 (1.513 km), resulting in a maximum 

difference of 174 m compared to the minimum distance recorded at 20:00 (1.34 km). This 
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suggests that these times of day are more susceptible to heat and therefore require 

interventions to reduce heat vulnerability along the paths. 

 

 
Figure 9.7 - Case 2: Shadow-maximising paths for each hour  

 

 

 
Figure 9.8 - Case 2: Shaded area proportion and corresponding path distances 
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Figure 9.9 - Case 2: Series of hourly shadow-maximising paths  
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Given the complexity of the urban fabric in this study area, it is always advisable to verify 

whether a route can be effectively followed without encountering obstacles such as passages 

through internal courtyards or private gardens. As mentioned, these errors can be mitigated 

by adjusting the model's inputs. 

As demonstrated in these applications, this model can be applied effectively, quickly, and 

intuitively, helping to counteract vulnerability to UHI during the hottest periods of the year, 

sometimes corresponding to increasingly frequent heat waves.  

Using this approach, it is suggested to investigate, consider, and analyse the activity system, 

which represents the set of individual, social, and economic behaviours that generate travel 

demand. The activity system is essentially based on the need to access various urban 

functions, such as work, education, shopping, and leisure. These needs generate travel 

patterns that are strongly influenced by how urban spaces are organised. So, by studying and 

listing the main movements within the area (primarily those that allow for pedestrian 

movement in easily accessible areas), it is possible to visualise how, over the course of the 

day, the routes that tend to provide greater thermal comfort vary, although this increases the 

distance travelled to reach the destination. Through this vulnerability study, it is possible to 

identify which areas tend to become more vulnerable, especially during the hottest hours, and 

which are not considered suitable for pedestrian traffic, as they are highly exposed to solar 

radiation during peak hours. In this way, a pedestrian who needs to travel between different 

areas of the city can understand which zones to travel through to achieve greater thermal 

comfort and thus limit damage caused by extreme heat, avoiding points classified as heat 

hotspots and maximising the route along safe spots between two areas within the urban 

fabric.  

From another perspective, this assessment makes it possible to identify areas where there is a 

greater need for interventions to reduce vulnerability to heat, for example, by planting trees 

that reduce temperatures both by providing shade and through evapotranspiration, or by 

providing additional shields to protect a given path from sun exposure and contribute to 

effective shading. 
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10. Conclusions 

 

The current study aims to analyse, using high-resolution data, the urban heat island 

phenomenon during a heatwave in August 2025 in Turin, Italy. 

To provide robust climatic considerations for the study, a long-term analysis is initially 

conducted on a 31-year baseline, from 1995 to 2025, to identify increasing trends in 

minimum and maximum temperatures recorded at the Torino Caselle weather station. Using 

the maximum and minimum daily temperature data, the days considered as summer HWs and 

tropical nights are also identified. These findings show that on 15th August 2025, the day on 

which the study focuses for the analysis of the UHI phenomenon, Turin is affected by a HW, 

reinforcing the significance of the findings. 

The results obtained from the climatic study show a positive growth trend in maximum 

temperatures of +0.063 °C/year and in minimum temperatures of +0.060 °C/year. HWs show 

a positive growth trend at a rate of +0.37 HWs/year, hot days at a rate of +0.56 days/year, and 

tropical nights at a rate of +0.63 nights/year. 

The study uses a 3D model of the urban fabric of a section of District 6, located in the 

northern part of the city, obtained using data provided by a LiDAR acquisition in 2022, 

georeferenced in EPSG:32632. The LiDAR point cloud is processed using the ENVI LiDAR 

software, which produces two DEMs with a spatial resolution of 1 m/pixel, corresponding to 

the DTM and the DSM. Specifically, the vertical accuracy of the DTM is validated using 142 

GCPs obtained through previous topographic surveys, demonstrating high accuracy. 

Starting from these models, the extraction of the model representing the CHM is carried out 

for the representation and classification of points corresponding only to tree cover, as well as 

the extraction of building heights and human-made volumetric units. Specifically, the 

extracted tree cover area accounts for approximately 13.71% of the total surface area of the 

study area, lower than the 24.57% of building cover, the 13.95% of roads, and the 21.93% of 

green areas without trees. The remaining portion of land, in addition to a very low percentage 

of water bodies (0.25%), is considered unclassified, as it contains several heterogeneous 

classes within it. 

Using the DSM obtained from the LiDAR acquisition, the study models the factors that most 

contribute to UHI with a GIS-based approach. These factors include shading and irradiance, 

which have a greater influence during the daytime hours, and SVF, which determines the 

degree of urban canyoning. SVF has a greater impact during the nighttime hours due to lower 
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heat dissipation in areas that are more obstructed compared to the surrounding environment. 

Using shading simulations on the study area performed with the UMEP-SOLWEIG plugin on 

QGIS, it can be seen that the shading peaks occur as expected in the early hours of the day 

and in the late afternoon/evening. The peak of minimum shading occurs around 13:30, 

corresponding to the position of maximum height of the sun in the sky on the analysed day, 

15th August (solar noon at 13:34). Minimum shading is estimated at around 19% in the area.  

These results are also consistent with the solar irradiance study performed using the r.sun 

module throughout the day and at solar noon, which indicates very high total irradiance, often 

exceeding 1000 W/m², that decreases only in shaded areas. Building roofs and urban parks 

are the locations that receive the highest exposure to solar radiation throughout the day, with 

peaks of approximately 11 hours of solar radiation received. 

Regarding the SVF, in the study area more than half of the surfaces shows moderate to very 

high values, close to the maximum value of 1, while less than 8% of the surfaces, mostly road 

surfaces, have very low SVF values, indicating a tendency to be more shaded during the day 

and to dissipate heat with greater difficulty at night. 

High-resolution airborne thermal remote sensing captures extreme surface temperatures 

during the August 2025 HW, with one acquisition performed during the day on 15th August 

and another at night on 16th August. Daytime temperatures reach a maximum surface 

temperature of 62.1°C on buildings, while green areas and trees remain cooler. Nighttime 

data show higher temperatures on road surfaces (maximum surface temperature of 28.4°C), 

than on green areas and buildings (minimum peaking around 11.1°C). This highlights that 

heat retention occurs mostly on road surfaces, which are the hottest at night. Buildings, on the 

other hand, exhibit the greatest temperature variations between day and night, with peak 

differences of up to 41.8°C, indicating that exposure to the sky and the high SVF values 

attributed to this class contribute to cooling at night but also to greater and faster heating 

during hours of exposure to sunlight.  

Temperature variations are therefore closely related to surface properties and SVF. Areas 

with high SVF exhibit the largest temperature variations, while roads with low SVF exhibit 

smaller day-night differences due to shading and limited heat dissipation. 

During the day, surface temperature is on average 16.9°C higher than at night. Specifically, 

during the day, trees are classified as the coolest surfaces (average temperature of 33.1°C), 

while buildings, with an average of 45.0°C, are the warmest. At night, roads are the warmest 

surfaces, with an average of 25.0°C, while green areas are the coolest, with an average of 

21.0°C. 
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Moreover, daytime temperatures are strongly influenced by shading. Specifically, 

temperatures in shaded areas average 34.1°C, compared to 40.8°C in unshaded areas. 

Statistical analyses confirm that the effects of shading and SVF are significant across most 

land covers, meaning that integrating green areas and shading structures can significantly 

reduce exposure to urban heat. 

Finally, a dynamic route simulation is modelled to minimise heat exposure for pedestrians 

and cyclists travelling between two points within the study area. Temperature and shade are 

used as costs, integrating urban morphology provided by the DSM. The simulations show 

that routes modelled in the early morning and late afternoon provide less exposure to solar 

radiation and minimise distance. Meanwhile, during the central hours of the day, with less 

shade, routes increase the total distance to avoid areas exposed to the sun. The hourly 

analysis identifies the timing of the highest risks of heat exposure and the hotspots within the 

urban area. Furthermore, the model aims to suggest potential urban planning interventions, 

since it highlights the most vulnerable hours, such as shading through tree planting. Since this 

is a methodological approach that generates a model that can be easily adapted to different 

contexts, further studies can be conducted on the subject, also integrating the mitigation 

strategies mentioned and also verifying the effective reduction of vulnerability in the most 

vulnerable areas. 
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