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Abstract

Accurate rainfall monitoring is fundamental for hydrological modeling and flood-risk
management, yet the spatial density of official rain gauge networks remains insufficient
to capture short-range variability, especially in urban areas. The growing availability of
crowdsourced Personal Weather Stations (PWSs) provides an opportunity to increase the
density of rainfall observations at minimal cost. This study evaluates the reliability of
citizen-owned PWSs across eleven Italian cities and investigates their integration with
Official Weather Stations (OWSs) to enhance rainfall observation density in Rome and
Turin, validated against radar-derived accumulations.

Rainfall data from Netatmo PWSs (5-minute resolution) and regional OWS networks
were collected and aggregated to hourly totals to ensure temporal consistency between
datasets. After applying a 10% missing-data threshold, PWS—OWS pairs were compared
in terms of annual rainfall totals, zero-rainfall frequencies, and short-duration annual
maxima. The analysis revealed that while PWSs reproduce rainfall occurrence with high
temporal consistency, they tend to underestimate rainfall volumes, particularly during
high-intensity events.

Two flash-flood events—Rome (8 June 2021) and Turin (22 June 2021)—were anal-
ysed to assess whether integrating selected PWSs (within £10% and +20% of the OWS
reference) improves spatial rainfall representation. Interpolation with Inverse Distance
Weighting (IDW) and Ordinary Kriging (OK) was compared against radar-derived accu-
mulations. The integration of raw PWSs led to varying outcomes: in Turin, the denser
network improved the spatial agreement with radar, while in Rome, where OWS coverage
was already high, the added PWSs resulted in a marginal reduction in agreement. These
contrasting results highlight that the effectiveness of PWS integration is case-dependent,
influenced by network density, rainfall characteristics, and local station geometry.

Finally, the open-source quality control algorithm (PWS-pyQC) was applied to the
PWS data, and the same interpolation—validation workflow was repeated. The quality
control effectively removed inconsistent records and enhanced internal data reliability.
Overall, this work demonstrates that crowdsourced PWSs, when properly filtered, can
complement official networks to increase rainfall observation density and support high-
resolution urban rainfall monitoring.
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Chapter 1

Introduction

Precipitation is a key component of the global energy and water cycles and exerts a
strong influence on the Earth’s climate system [1]. Among its forms, rainfall plays a
fundamental role in both terrestrial and aquatic ecosystems, providing essential goods
and services that support human well-being [2].

Rising global temperatures are altering the hydrological cycle [3], with one of the
most pressing concerns being the intensification of extreme precipitation events [4]. These
climatic changes, compounded by population growth, urban expansion into flood-prone
regions, and insufficient progress in flood-control strategies, are expected to intensify
flood risks and their social, environmental, and economic impacts [5]. In this context,
enhancing our ability to understand, model, and predict rainfall, particularly extreme
events, remains a critical priority for both scientific research and policymaking [6].

Rainfall exhibits high spatial and temporal variability, which necessitates dense ob-
servational networks to adequately capture. While rain gauges remain the cornerstone
of precipitation measurement and are widely regarded as the de facto standard for hy-
drometeorological observations, their deployment is often constrained by financial and
logistical limitations, leading to sparse spatial coverage and leaving large regions under-
observed [1,7]. Furthermore, in some countries, data accessibility is further hampered
by decentralization and by the reluctance of certain agencies to make climate records
publicly available [8].

Despite advances in remote sensing, the current accuracy of ground-based weather
radars, the spatial coverage of rain gauges, and the spatiotemporal resolution of satellite
products remain insufficient for critical applications such as short-term weather fore-
casting, flood prediction, and water balance monitoring. To address these limitations, so-
called “opportunistic sensors” have emerged as complementary sources of precipitation in-
formation. These include technologies such as commercial microwave links (CMLs) [9,10]
and crowdsourced personal weather stations (PWSs) [11]. When combined with stan-
dardized metadata in line with WIGOS (WMO Integrated Global Observing System)
guidelines, these novel data sources offer the potential to fill observational gaps and pro-
vide fit-for-purpose information for hydrometeorological applications.
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Introduction

1.1 Established rainfall measurement systems

Rain gauges (from simple accumulation vessels to tipping-bucket, weighing and optical
gauges) give physically direct, ground-truth measurements of precipitation intensity and
depth, and form the basis of most climatological and hydrological records [12]. However,
gauge networks are unevenly distributed: while many land areas host networks, only a
minority of regions reach gauge densities sufficient to capture the strong spatial variability
of rainfall. While improvements in temporal resolution have enhanced the ability of the
rain gauges to capture short-duration rainfall events, gauge networks face significant
challenges. Long-term continuous records are relatively scarce, and sub-daily datasets
are even less common [13].

Ground-based weather radars complement gauges by providing spatially continuous
fields of precipitation reflectivity from which rainfall rates can be derived. Radars excel at
representing the structure and dynamics of precipitation systems and resolving mesoscale
and convective features that gauges miss. Nonetheless, radar retrievals are sensitive to
the drop-size distribution (DSD), beam geometry (beam elevation and “lifting” with
range), attenuation and ground clutter; these factors can create range-dependent biases
and blind zones [14, 15]. Dual-polarization radars improved hydrometeor classification
and reduced some uncertainties, but radar networks remain spatially limited and often
coincide with the same well-observed regions that host dense gauge networks, leaving
many areas under-sampled [12].

Satellites cannot provide continuous sampling of the Earth’s surface, yet compared to
in situ networks their coverage is far more extensive and spatially consistent. At a large
scale, satellite-based precipitation products deliver near-global observations and synoptic
perspectives that are particularly valuable in regions with sparse or absent ground-based
networks [12]. These products rely on a variety of meteorological sensors and retrieval
algorithms, producing datasets that can be tailored to user needs across different spatial
and temporal scales. While satellites help to overcome many of the spatial limitations
of gauges and radars, they are also prone to biases because they measure precipita-
tion processes indirectly from space. Such biases may arise from diurnal sampling gaps,
instrument calibration, retrieval algorithm design, or atypical surface and atmospheric
conditions that the algorithms fail to properly account for. Recent advances in instrumen-
tation and retrieval methodologies have, however, reduced some of these systematic errors,
offering improved accuracy compared to earlier generations of satellite products [16].

1.2 Crowdsourced rainfall observations through personal
weather stations

Crowdsourcing has traditionally been understood as obtaining data by engaging large
groups of people, but recent innovations extend this definition to include information
collected from public sensors connected via the Internet [17]. This evolution means that
citizens are no longer only consumers of information but also active producers, contribut-
ing environmental observations through devices such as smartphone sensors, amateur
weather stations, citizen science initiatives, and even social media platforms [18].
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1.2 — Crowdsourced rainfall observations through personal weather stations

Personal weather stations have recently emerged as a promising crowdsourced solution
to enhance rainfall and meteorological observations, particularly in urban areas. These
are low-cost, citizen-installed sensors, often part of home automation systems, that au-
tomatically upload local weather data in real time to online platforms, creating dense
decentralized networks of observations [19,20]. The affordability and ease of deploy-
ment of PWSs have led to tens of thousands of stations being distributed worldwide,
vastly increasing the spatial density of measurements available at minimal cost [17,20].
In addition, the near-real-time transmission of observations through cloud-based plat-
forms supports timely monitoring of intense rainfall events and enhances their potential
for nowcasting and early-warning systems [21]. Urban and hydrological studies are be-
ginning to capitalize on this high-density coverage. For example, crowdsourced PWS
data have been used to map fine-scale rainfall patterns and fill observational gaps in
cities, improving flood monitoring and modeling in fast-responding catchments [22, 23].
There is also growing integration of PWS observations into operational systems: recent
studies demonstrate that assimilating or merging PWS data with conventional networks,
weather radar, and numerical models can improve high-resolution rainfall estimation and
forecasting [24-26]. The increasing number of case studies reporting successful applica-
tions of PWS data, from real-time urban flood warning to model validation, underscores
the considerable potential of these crowdsourced networks for hydrometeorology and cli-
matology. Indeed, national meteorological services have begun to explore PWS datasets
as a valuable supplement to official observations, given their ability to provide hyperlocal
information in near real-time [7,20].

Despite their promise, PWS networks face a number of technical and observational
limitations that must be addressed before they can fully transition into reliable scientific
data sources. A key challenge is data quality. Unlike official weather stations, PWSs are
installed by amateurs without strict siting guidelines, which often leads to suboptimal
placement (e.g. too close to buildings, on balconies, or under partial shelter) and incon-
sistent maintenance [27]. These issues can introduce biases or errors. For instance, a rain
gauge mounted on an uneven surface or sheltered from wind will record less precipitation
than an optimally placed gauge. Hardware and design limitations of the low-cost sensors
further affect accuracy. Many PWSs use tipping-bucket rain gauges with small collectors,
which tend to underestimate rainfall during intense downpours due to overflow or me-
chanical limits [28,29]. Empirical evaluations have shown that while PWS rainfall totals
agree reasonably well with reference gauges for moderate rains, they markedly underesti-
mate high-intensity events; beyond roughly 30 mm/h rainfall rates, PWS measurements
diverge and fail to capture peak storm accumulations [30,31]. In one study, clusters
of citizen stations under-recorded heavy rainfall by 20-40 % when no corrections were
applied [30]. Moreover, the lack of uniform sensor models, different PWS brands and
designs in the network, leads to heterogeneous performance and bias characteristics from
one station to another [28]. Social and spatial biases in where PWSs are deployed also
present a concern: recent analyses in U.S. and Canadian cities found PWSs tend to be
over-represented in higher-income or flood-prone neighborhoods, meaning crowdsourced
data coverage is not truly uniform across the urban landscape [22,32]. All these factors
contribute to larger uncertainty and potential bias in PWS datasets compared to official
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Introduction

measurements, reinforcing the need for careful data validation before use [20].

Efforts are underway to improve the reliability of crowdsourced PWS data through au-
tomated quality control (QC) methods. These algorithms perform statistical and spatio-
temporal consistency checks. For example, comparing each station’s readings with nearby
stations or with physical plausibility ranges to detect outliers and correct errors [33,34].
More advanced approaches calibrate crowdsourced observations against authoritative
sources (such as rain gauges or radar) to adjust biases and improve accuracy [25, 30].
Comparative studies have found that different QC techniques each have strengths and
weaknesses depending on station density and environmental factors, underscoring the
need for robust, standardized QC procedures and common benchmark datasets to evalu-
ate new methods [35]. In parallel, meteorological agencies have begun integrating vetted
PWS observations into their operations — for instance, assimilating filtered PWS data
(surface pressure, temperature, humidity, rainfall) into high-resolution weather models —
which has shown improved local forecasting after excluding low-quality stations [26,36].
Community initiatives (e.g. promoting proper sensor siting and maintenance) are also
helping to enhance data quality and increase trust in citizen-collected observations [7,28].
Thanks to these advancements, personal weather stations are gradually being recognized
as valuable components of the environmental monitoring infrastructure [20].

In summary, personal weather stations stand at the forefront of the crowdsourced data
revolution, offering a cost-effective, spatially dense, and real-time source of meteorologi-
cal information, while also motivating parallel exploration of new IoT-based observation
systems. With continued improvements in data quality assurance and integration, PWS
networks and their opportunistic counterparts are poised to substantially enrich urban
hydrometeorological monitoring and resilience efforts in the years to come.

1.3 Research objectives

The main objective of this research is to evaluate the reliability and potential of Personal
weather stations for enhancing rainfall monitoring and hydrological applications in urban
areas. By integrating citizen-owned sensors with official weather networks, this study aims
to assess the quality of PWS rainfall data and explore their contribution to increasing
spatial resolution of observations. The research further investigates the effectiveness of
established quality control techniques for filtering PWS data, compares rainfall estimates
obtained from official weather station (OWS) datasets and from the combined OWS-PWS
datasets with radar observations, and examines whether the integration of PWS networks
provides added value in capturing localized precipitation dynamics that are often missed
by conventional monitoring systems.

1.4 Research questions

This thesis seeks to answer the following key questions:

e To what extent do rainfall measurements from personal weather stations differ from
those of nearby official weather stations, and how consistent are these differences
across diverse climatic settings?



1.4 — Research questions

o How effective is the open-source quality control algorithm (PWS-pyQC) in improv-
ing the reliability of PWS rainfall data?

e Can the integration of quality-controlled PWS data with traditional rainfall net-

works enhance the spatial representation of precipitation relative to unadjusted
radar fields?

e Under which network and event conditions can PWS data provide significant added
value for capturing extreme rainfall patterns?



10



Chapter 2

Data and study area

In this chapter, the data sources and study areas considered in this research are described.
Section 2.1 introduces the first source of rainfall data, namely the records obtained from
official weather stations. Section 2.2 presents the second source of data, consisting of
measurements from personal weather stations. Section 2.3 outlines the third source of
data, derived from the national weather radar network operated by the Italian Civil
Protection Department. Finally, Section 2.4 provides an overview of the study areas,
including the climatic context of the selected cities.

2.1 Rain gauges

Rainfall measurements were obtained from rain gauges installed and maintained by the
regional environmental agencies. For each city, data were collected from the official
meteorological station networks by identifying all automatic gauges located within the
municipal boundaries through the respective agency websites. The datasets retrieved
from the sources listed in Table 2.1 were downloaded for the year 2021 and 2022. Not all
stations, however, provided continuous records for the full interval, and temporal coverage
therefore varied depending on operational history and data availability.

In addition, the temporal resolution differed among stations, ranging from one-minute
to hourly accumulations depending on the instrumentation. As these stations belong to
official monitoring networks, the raw datasets were assumed to have already undergone
standard quality-control procedures. Only preliminary checks were carried out, such
as the identification of missing values or evident outliers, while the validated structure
of the data was preserved. Station coordinates were extracted in geographic format
(EPSG:4326) and subsequently transformed into the projected system UTM Zone 33N
(EPSG:32633) for use in spatial analyses, including distance calculations between official
and personal weather stations.
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Table 2.1: Official weather station web portals for the study cities.

City Web Portal

Ancona http://app.protezionecivile.marche.it/sol/indexjs.sol?lang=it

Bologna https://simc.arpae.it/dext3r/

Catania http://www.sias.regione.sicilia.it/frameset_download.htm

Catanzaro https://www.cfd.calabria.it/

Firenze https://www.sir.toscana.it/

Genova https://www.arpal.liguria.it/

Milano https://www.arpalombardia.it/

Padova https://www.arpa.veneto.it/

Potenza https://protezionecivile.regione.basilicata.it/protcivibas/
home. jsp

Roma https://protezionecivile.regione.lazio.it/

Torino https://www.arpa.piemonte.it/

2.2 Personal weather stations

Personal weather station platforms such as Netatmo and Weather Underground (WU)
make high-frequency observations of variables including rainfall, temperature, humidity,
and wind available online, both in real time and as historical records. In practice, several
commercial and volunteer PWS networks are currently in operation.

The Netatmo Weathermap is a global network of smart home weather stations. Each
Netatmo station typically consists of an indoor module measuring temperature, humid-
ity, and pressure, with optional outdoor modules for rainfall and wind. The rain gauge
operates as a tipping-bucket with a 13 cm funnel, capable of measuring precipitation in
increments of 0.101 mm across a range of 0.2 - 150 mm/h. Observations are automati-
cally uploaded to the Netatmo cloud service at approximately five-minute intervals. The
aggregated data are displayed through the Netatmo Weathermap platform, which also
provides an Application Programming Interface (API) for data retrieval.

The Weather Underground Wundermap is one of the largest PWS networks, compris-
ing more than 250,000 active stations worldwide. It integrates observations from multiple
station brands, including rainfall, temperature, humidity, and wind, and provides access
through its own API. AerisWeather’s PWSweather is another commercial platform that
allows users to manage their stations via an online dashboard and to access data through
APIs offered under contributor agreements. In addition, Meteonetwork (Italy) maintains
one of the largest regional PWS networks in Europe. Other examples include commercial
services such as Davis Instruments’ WeatherLink and AmbientWeather, as well as volun-
teer initiatives such as the Citizen Weather Observer Program (CWOP, United States)
and the Met Office Weather Observations Website (WOW, United Kingdom), which allow
privately owned stations to report data into national systems.

In this research, the Netatmo platform was adopted as the primary PWS data source.
Netatmo was selected because of its widespread deployment, its relatively high spatial
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2.3 — Weather radar

density in Europe, and the accessibility of its data through an API. Previous studies have
emphasized that Netatmo is particularly advantageous among PWS platforms because
it combines a high network density with standardized instrumentation and open data
access. The Netatmo API enables programmatic retrieval of station observations together
with metadata, including station coordinates. By leveraging this dense network and
open interface, a large, geo-referenced dataset of rainfall measurements was compiled. In
contrast, some regional PWS platforms lack open APIs, and others provide less extensive
coverage.

2.3 Weather radar

The RADAR-DPC platform is a national-scale weather monitoring system operated by
the Italian Civil Protection Department (Dipartimento della Protezione Civile). It pro-
vides near real-time visualization of current and recent meteorological phenomena by
integrating raw observations from the national radar network, rain-gauge and temper-
ature station networks, meteorological satellites, and lightning detection systems. All
products are distributed as open-access web services.

The system is supported by the WIDE (Weather Ingestion Data Engine), which auto-
mates data ingestion, quality control, and the fusion of multiple sources before publishing
the processed products. This infrastructure also enables time-series queries, allowing past
observations and model outputs to be retrieved for analysis. A suite of radar-derived
products is generated, including Vertical Maximum Intensity (VMI) and Surface Rainfall
Total (SRT). For this thesis, the Surface Rainfall Intensity (SRI) product was used. SRI
is developed through operational chains at the Centro Funzionale Centrale (CFC) by
combining data from the national radar and rain-gauge networks. The product provides
an estimate of ground-level rainfall intensity in millimetres per hour, updated every five
minutes.

The SRI rainfall grids are supplied as georeferenced rasters in the WGS84/UTM Zone
33N projection with a spatial resolution of 1 km x 1 km. Data values are stored as 32-bit
floats, and missing or invalid values are indicated by a nodata flag (-9999), as specified in
the metadata files. The high temporal resolution ensures that rapid changes in convective
rainfall can be effectively monitored.

The RADAR-DPC system can be accessed via an interactive online dashboard, which
provides real-time visualisation and options for downloading data. Through this platform,
a comprehensive and user-friendly set of meteorological products is made available under
open license, enabling researchers, agencies, and practitioners to freely access and use the
information. In this study, the SRI product was specifically employed for the case studies
of Rome and Turin, where it served as a reference for evaluating the interpolated rainfall
fields obtained from the combined PWS and OWS datasets.

2.4 Study areas

For the first part of this research, eleven Italian cities were selected in order to ensure cov-
erage of diverse geographical contexts and climatic regimes. The selection included urban
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areas distributed across the north, center, and south of the country, thus representing a
wide range of rainfall conditions and hydrological settings. In chapter 3 and afterwards,
particular attention will be given to Rome and Turin, which serve as the principal case
studies.

Ancona represents the central Adriatic coast, with a Mediterranean climate of mild
winters, hot summers, and rainfall maxima in autumn and winter. Bologna, in the Po
Valley, exemplifies the continental regime with year-round precipitation and peaks in
spring and autumn. Catania, on the Ionian coast of Sicily, typifies the warm southern
Mediterranean climate, with wet winters and dry summers. Catanzaro, in Calabria at
higher elevation, reflects a sub-Mediterranean highland regime with relatively high winter
rainfall. Florence, in the Arno Valley, has a transitional Mediterranean climate, with
precipitation concentrated in autumn and spring. Genoa, on the Ligurian coast, has a
fully Mediterranean climate with abundant rainfall, particularly in autumn. Milan, in
Lombardy, represents the populous urban climate of the western Po Valley, with hot,
humid summers, cool winters, and frequent fog. Padua, in the Veneto plain, reflects the
eastern Po Valley regime, with rainfall distributed throughout the year. Potenza, in the
Apennines, exemplifies a high-elevation climate with snowy winters and relatively high
annual rainfall.

Rome, the capital of Italy, has a classic Mediterranean climate with hot, dry summers
and mild, wet winters. Turin, located at the foot of the Alps, has a temperate continental
climate with cold winters, warm summers, and rainfall peaks in spring and autumn.
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Chapter 3

Evaluation of raw PWS data

This chapter presents the evaluation of raw rainfall data from personal weather stations
against nearby official weather stations across eleven Italian cities during the period
2021-2022. The objective is to assess the reliability of raw PWS records in reproducing
long-term rainfall totals and extreme events before applying any advanced quality control
procedures.

The chapter is organized into three main sections. Section 3.1 describes the method-
ology adopted, including preliminary control, PWS—OWS pairing, and the statistical in-
dicators used for comparison. Section 3.2 presents the agreement analysis between PWSs
and OWSs through a set of figures and tables, with particular attention to Roma and
Torino as key case studies. Finally, Section 3.3 discusses the main results, highlighting
patterns of agreement and limitations in the raw PWS datasets.

3.1 Methodology

In order to evaluate the reliability of raw PWS data, all available time series for eleven
Italian cities (Ancona, Bologna, Catania, Catanzaro, Florence, Genoa, Milan, Padua,
Potenza, Rome, and Turin) were considered for the period 2021-2022.

A preliminary control was applied to ensure data completeness: stations with more
than 10% missing data in a given year were excluded from further analysis. The remaining
PWSs were then paired with their nearest OWS within the same city. Distances between
stations were computed using the UTM Zone 33N projection (EPSG:32633) to minimize
distortion across Italy.

For each PWS-OWS pair and year, the following statistics were computed:

o Annual precipitation totals (mm).
o Percentage of zero-rainfall records (%).

e Annual maximum rainfall depths (mm) for durations of 1, 3, 6, 12, and 24 hours.
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Evaluation of raw PWS data

3.2 Comparison between PWSs and OWSs

This section presents the agreement analysis between PWSs and OWSs to evaluate the
reliability of raw PWS rainfall data before quality control. The comparison is organised
to progressively examine different aspects of measurement consistency across the Ital-
ian network. First, three national-scale analyses are performed to assess the agreement
between PWSs and OWSs in terms of annual rainfall totals (Table 3.1; Fig. 3.1), the
frequency of zero-rainfall observations (Fig. 3.2), and the dependence of bias on rainfall
intensity using 1-hour annual maxima (Fig. 3.3). These complementary metrics provide
an overall view of how raw PWS data reproduce rainfall magnitude, occurrence, and
extremes across the country. Finally, two case studies (Rome and Turin) are analysed
in greater detail (Figs. 3.4-3.7) to investigate local-scale variability, inter-station consis-
tency, and the capability of PWSs to capture extreme rainfall events. All results refer to
raw PWS datasets prior to any quality-control or bias-correction procedures.

3.2.1 National comparison of annual rainfall totals

This subsection evaluates the overall agreement between PWSs and OWSs in terms of
annual rainfall totals across eleven Italian cities during 2021-2022. The comparison re-
sults, summarised in Table 3.1, report the total number of available PWSs, the subset
retained after applying the 10% missing-data criterion, the mean PWS-OWS distance,
the mean relative bias of annual rainfall totals, and the proportion of pairs falling within
+10% and +20% of the OWS reference.

Across most cities and years, the mean relative bias is negative, indicating a general
underestimation of annual rainfall by raw PWS data. Typical values range between —10
and —30%, with Catania exhibiting the largest deficits (up to —72%) and Padua 2021
being nearly unbiased (—1%). Rome 2022 represents the opposite behaviour, showing
a marked overestimation of +37.0%. The fraction of pairs within +10% of OWS totals
seldom exceeds 30-35%, increasing to roughly 40-50% when the tolerance is relaxed to
+20%. These results demonstrate that unfiltered PWS datasets display significant spatial
variability and systematic biases.

Such heterogeneity is consistent with previous studies indicating that the reliability
of PWS data is strongly affected by installation quality and infrequent maintenance.
Mechanical obstructions (e.g., insects or twigs) and improper levelling of tipping-bucket
gauges can lead to systematic underestimation, while occasional handling or cleaning by
PWS owners may cause false tips and short-term overestimation [29]. Design limitations
and the lack of calibration in consumer-grade gauges can also introduce structural bias,
particularly under high-intensity rainfall [28]. These physical and operational factors help
explain the inter-city variability observed in the present analysis.
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3.2 — Comparison between PWSs and OWSs

Table 3.1: Summary of annual rainfall agreement between PWSs and OWSs across Italian cities (2021-2022). Metrics include
the total number of available PWSs, the number of valid PWS—OWS pairs after applying the 10% missing-data criterion, the
mean PWS-OWS distance, the mean relative bias in annual rainfall totals, and the percentage of pairs within £10% and £20%
of the OWS reference.

City Year Total PWSs Valid Pairs Mean Distance (km) Mean Relative Bias (%) Within +10% (%) Within +20% (%)
Ancona 2021 5 1 2.12 2.0 100.0 100.0
Ancona 2022 5 1 2.12 —5.8 100.0 100.0
Bologna 2021 25 7 3.40 —14.5 42.9 57.1
Bologna 2022 25 9 3.31 —11.8 33.3 55.6
Catania 2021 8 2 7.01 —42.3 0.0 0.0
Catania 2022 8 1 9.91 —72.0 0.0 0.0
Catanzaro 2021 5 1 0.73 —174 0.0 100.0
Catanzaro 2022 5 1 2.35 —36.7 0.0 0.0
Florence 2021 26 9 4.23 —20.8 11.1 33.3
Florence 2022 26 10 2.87 —114 20.0 50.0
Genoa 2021 64 24 1.38 —11.1 33.3 45.8
Genoa, 2022 64 27 1.28 —17.2 25.9 37.0
Milan 2021 91 34 2.58 —14.0 26.5 50.0
Milan 2022 91 40 2.33 —16.8 25.0 40.0
Padua 2021 14 8 2.65 —1.0 37.5 87.5
Padua 2022 14 7 2.81 10.1 28.6 57.1
Potenza 2021 2 0 1.95 - — -
Potenza 2022 2 0 1.95 - — -
Rome 2021 148 60 2.31 —23.1 18.3 41.7
Rome 2022 148 86 3.52 37.0 16.3 38.4
Turin 2021 45 18 2.09 —25.2 16.7 27.8

Turin 2022 45 18 2.25 —27.2 27.8 50.0
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Figure 3.1: Annual rainfall comparison between PWSs and OWSs across all cities
(2021-2022). Marker size indicates PWS—OWS distance; colours represent cities; the
dashed line denotes perfect agreement (1:1).

3.2.2 National comparison of zero-rainfall frequencies

Across all cities and years (2021-2022), the average difference between PWS and OWS
zero frequencies was extremely small, with global means of 40.09 % (2021), and —0.34 %
(2022), and standard deviations of about 1.6-1.8 %. These values demonstrate that PWSs
reproduced the dry—wet occurrence patterns of the official network with high consistency,
with no systematic tendency to over- or under-detect rainfall events. The tight clustering
of points around the 1:1 line further confirms that discrepancies observed in annual or
sub-hourly rainfall totals originate mainly from volume-measurement bias rather than
from event-detection failures.

These results confirm that PWSs closely reproduce the temporal pattern of wet and
dry periods observed by the official network. The near-perfect alignment of most pairs
along the 1:1 line indicates that the sensors are reliable in detecting rainfall occurrence
even when their measured volumes differ. This finding supports the interpretation that
the discrepancies discussed in Section 3.2 originate primarily from measurement bias and
mechanical sensitivity rather than missed or false rainfall events. Consequently, the zero-
rainfall comparison provides additional evidence that unfiltered PWS data are temporally
consistent and suitable for use in subsequent quality-control and interpolation analyses.
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Figure 3.2: Percentage of zero-rainfall records in PWSs versus OWSs across all cities
(2021-2022). Each marker represents a PWS—-OWS pair, coloured by city; the dashed
line denotes perfect agreement (1:1).

3.2.3 National comparison of 1-hour annual maximum rainfall

To investigate whether bias magnitude depends on rainfall intensity, a correlation analysis
was performed between the OWS 1-hour annual maximum rainfall and the corresponding
PWS relative deviation. A negative correlation indicates that underestimation increases
with rainfall magnitude, while a positive correlation suggests growing overestimation
at higher intensities. The resulting statistics were computed for each city and for the
aggregated dataset over the years 2021-2022.

Although correlations were estimated for individual cities, the number of valid OWS—
PWS pairs was often too limited for meaningful statistical interpretation. In most cities,
the number of valid OWS-PWS pairs did not exceed ten to twenty, which is insufficient
for reliable correlation analysis. Statistical studies demonstrate that correlations derived
from small samples are unstable and may deviate markedly from the true population
value. The minimum sample size required for stable correlation estimates depends on
the expected effect size and study context; however, in most research settings, samples
smaller than approximately n = 150 yield unreliable results, and reasonable trade-offs
between accuracy and confidence are achieved only when sample sizes approach about
250 observations [37].

Consequently, this study interprets only the results from the aggregated datasets,
which combine all station pairs from the eleven cities. The 2021 and 2022 datasets,
comprising 160 and 197 valid pairs respectively, meet the minimum requirements for
statistical robustness.

The aggregated results reveal a consistent and statistically significant negative re-
lationship between OWS 1-hour annual maxima and the corresponding PWS relative
deviations. In 2021, the correlation was r = —0.23 (p = 0.003; Spearman p = —0.44,
p < 0.001), indicating that PWS underestimation intensifies with increasing rainfall mag-
nitude. This pattern strengthened in 2022 (r = —0.44, p < 0.001; p = —0.46, p < 0.001),
confirming that bias between PWS and OWS measurements becomes more pronounced
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during high-intensity events. The observed negative correlation between rainfall inten-
sity and PWS bias confirms that low-cost sensors systematically underestimate extreme
precipitation, consistent with the mechanical constraints of tipping-bucket gauges [28,29].
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Figure 3.3: Comparison of 1-hour annual maximum rainfall between PWSs and OWSs
across all cities (2021-2022). Marker size indicates PWS-OWS distance; colours represent
cities; the dashed line denotes perfect agreement (1:1).

3.2.4 Case-study analysis: Rome and Turin

Among the investigated cities, Rome and Turin were selected for detailed evaluation owing
to their contrasting climatic and geographical settings and the availability of continuous
multi-year PWS-OWS datasets. Rome, located in central Italy under a Mediterranean
regime, frequently experiences convective storms and short-duration flash floods, whereas
Turin, situated in the northwestern Po Valley at the base of the Alps, is characterised
by mixed convective and orographic rainfall with marked seasonal variability. Both cities
also have coinciding radar observations for significant flood events (8 June 2021 in Rome
and 22 June 2021 in Turin), which allows, in the following chapters, a comparison be-
tween interpolated rainfall maps derived from (OWS + PWS) and radar-derived fields.
These contrasting meteorological conditions make them ideal test sites to investigate
whether integrating PWSs—particularly those within the +10-+20% bias buffer relative
to OWSs—can enhance the spatial representation of rainfall and improve agreement with
radar estimates.

Figures 3.4 and 3.5 show the PWS-OWS pairwise comparison of annual rainfall totals
for Rome and Turin, with shaded areas corresponding to +10% and +20% deviation from
the OWS reference.
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Figure 3.5: Annual rainfall agreement between PWSs and OWSs in Turin for 2021 and
2022. Shaded bands represent £10% and +20% deviation from the 1:1 line.

In Rome, the mean relative bias shifted from an underestimation of —23.1% in 2021
to an overestimation of +37.0% in 2022, with roughly one fifth of pairs within +10% of
OWS values. In Turin, underestimation persists in both years (—25.2% and —27.2%),
although the share of pairs within +20% increased from 28% to 50%. Given the coexis-
tence of over- and underestimation across stations, a uniform city-level multiplier cannot
meaningfully reduce error without worsening it for a substantial subset of PWSs. Conse-
quently, accuracy improvements depend on a rigorous quality-control and bias-correction
workflow that accounts for station-specific behaviour and event conditions.

To further characterise the performance of the two station networks, the variability of
annual precipitation totals was assessed using boxplots (Fig. 3.6). These plots summarise
the statistical distribution of annual rainfall recorded by PWSs and OWSs in Rome and
Turin, providing a visual comparison of their internal consistency. In both cities, PWS
datasets display substantially wider interquartile ranges and a larger overall spread than
the corresponding OWS records, indicating higher variability among individual sensors.
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Such dispersion reflects the heterogeneous behaviour of citizen-owned gauges, which are
affected by differing installation environments, maintenance practices, and calibration
states. In contrast, the narrower and more uniform distributions observed for OWSs
confirm the reliability expected from professionally maintained instruments.
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Figure 3.6: Boxplots of annual precipitation from OWSs and PWSs for Rome and Turin
(2021-2022).

To evaluate the representativeness of PWSs during intense rainfall, an “extreme-
capture” index was computed for each duration (1-24 h), defined as the percentage of
PWSs recording at least 80% of the maximum rainfall measured by any OWS in the same
city and year (Fig. 3.7). In Rome, capture efficiency increases with duration, reaching
approximately 60-65% at 6-12 h in 2021 and remaining above 55% across all durations
in 2022. This pattern indicates that PWSs better represent multi-hour storm totals than
short-duration peaks, consistent with the mechanical limits of tipping-bucket sensors,
which tend to underestimate during high-intensity bursts. The relatively uniform be-
haviour observed in 2022 suggests improved internal consistency of the PWS network,
likely due to the exclusion of incomplete records and a denser, more stable set of active
stations.

In Turin, performance is substantially lower in 2021, with only 20-25% of PWSs
capturing at least 80% of the OWS maximum. This widespread underestimation points
to reduced catch efficiency caused by intense convective events and installation-related
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3.3 — Discussion and interpretation

issues such as partial sheltering or poor levelling. However, in 2022 the performance
improves markedly, with capture efficiency rising to nearly 80% for 3 h and about 70%
for 6 h events, before gradually declining for longer durations. This trend confirms
that PWSs reproduce multi-hour accumulations more reliably than short, high-intensity
rainfall peaks, while also demonstrating that network consistency and rainfall regime
significantly influence measurement accuracy. The overall behaviour observed for both
cities aligns with previous studies reporting systematic underestimation of short-duration
extremes by uncorrected PWS datasets [30], and a generally better agreement with of-
ficial records at longer aggregation scales [38]. These findings highlight that while raw
PWS data can adequately represent intense rainfall over several hours, short-term peaks
remain prone to mechanical and exposure-induced undercatch, reinforcing the need for
subsequent quality control and bias correction.
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Figure 3.7: Percentage of PWSs capturing at least 80% of the maximum OWS rainfall
for each duration (1-24 h) in Rome and Turin (2021-2022).

3.3 Discussion and interpretation

At the national scale, raw PWS data show a prevailing tendency to underestimate rain-
fall relative to OWS observations, with bias magnitude increasing under high-intensity
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conditions. This systematic undercatch reflects the mechanical limits of low-cost tipping-
bucket gauges, which often lose efficiency during intense rainfall. The pattern, however,
is not uniform across the network: isolated episodes of strong overestimation were identi-
fied, particularly in Rome 2022, where mean PWS totals exceeded OWS values by more
than 50%. Such anomalies are consistent with false-tipping artefacts during cleaning or
maintenance, as reported in the literature, and highlight the heterogeneous behaviour of
citizen-operated instruments. The “consistent underestimation” observed at the national
scale should therefore be interpreted as a dominant trend rather than a universal rule.

As shown in Section 3.2, PWSs nonetheless reproduce rainfall occurrence with remark-
able fidelity. The mean difference in zero-rainfall frequency relative to OWSs remained
below 1% across all cities and years, confirming that discrepancies mainly arise from
volume bias rather than event-detection failures. Because this analysis was performed
at hourly resolution, minor undercatch during very short or light events may still occur,
yet at the temporal scales relevant for hydrological analysis PWSs demonstrate reliable
detection capability.

Spatially, PWS performance depends strongly on climatic and operational context.
Northern and central cities such as Milan, Genoa, and Padua exhibited smaller deviations
from OWS references, while southern locations like Catania and Catanzaro showed pro-
nounced underestimation, likely linked to more convective rainfall and less optimal station
siting. Rome and Turin exemplify these contrasts: Rome alternated between under- and
overestimation depending on rainfall regime, whereas Turin persistently underestimated
but displayed improved internal consistency over time. These results confirm that both
climate and maintenance practices play a decisive role in determining network reliability.

The case studies further highlight how PWS networks behave during intense rainfall
events. As detailed in Section 3.2, Turin initially displayed low extreme-capture efficiency
but improved substantially in 2022, while Rome maintained relatively high values across
both years. These trends indicate that PWSs reproduce multi-hour rainfall accumulations
more effectively than short, high-intensity peaks, and that network consistency and rain-
fall regime exert a strong influence on their performance. The overall behaviour observed
for both cities aligns with previous evaluations of PWS datasets [30, 38|, which reported
notable underestimation for sub-hourly extremes but progressively closer agreement with
official gauges at longer durations.

Although PWSs capture rainfall timing and longer-duration totals reasonably well,
large interquartile ranges in the annual boxplots reveal substantial variability among
individual sensors. This dispersion shows that, while the network is temporally coherent,
it remains spatially heterogeneous and affected by station-specific biases. Because over-
and underestimation coexist within the same city, applying a single correction factor
would not improve overall accuracy. Instead, these findings emphasise the need for a
station-level quality-control procedure capable of identifying and correcting individual
anomalies.

In summary, the analyses in this chapter establish the baseline reliability of raw
PWS datasets and clarify the limits of their direct hydrological applicability. Unfiltered
PWS data provide temporally consistent yet quantitatively biased rainfall information,
with accuracy shaped by both environmental and operational conditions. These findings
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lay the foundation for Chapter 4, which investigates whether integrating selected PWSs
can enhance the spatial representation of rainfall through interpolation techniques and
improve agreement with radar-derived estimates during two flash-flood events.
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Chapter 4

Rainfall interpolation and radar
validation with raw PWS data

This chapter investigates whether the inclusion of uncorrected observations from personal
weather stations enhances the spatial representation of rainfall during short-duration,
high-intensity events. Building upon the reliability assessment of raw PWS data pre-
sented in Chapter 3, the analyses focus on two flash-flood episodes that affected Rome on
8 June 2021 and Turin on 22 June 2021. In Rome, a yellow-level alert was issued by the
Civil Protection the previous day, warning of scattered but locally severe thunderstorms.
The storm produced heavy convective rainfall, particularly in the northern districts such
as Ponte Milvio, where localized flooding occurred within a few hours. In Turin, the
event was triggered by a violent convective cell that delivered up to 95.8 mm of rain in
a day and nearly 70 mm in one hour, causing widespread street flooding and numerous
emergency interventions across northern districts reported by ARPA Piemonte.

4.1 Methodology

Rainfall analyses were carried out using three complementary datasets: official weather
stations, personal weather stations, and radar-derived accumulations from the national
Radar-DPC network.

Radar accumulations were computed from five-minute Surface Rainfall Intensity pro-
vided by the Dipartimento della Protezione Civile. For each event, all available SRI
GeoTIFFs were aggregated over a 24-hour window consistent with the gauge integration
period (00:00-24:00 UTC). A conservative missing-data criterion was applied: if a pixel
contained a NoData value in any time step, the entire pixel was flagged as missing in
the final daily grid. The daily composites were then cropped to the bounding boxes
of Rome and Turin and stored in a common spatial reference system (EPSG:32633 —
UTM 33N). The interpolation grid resolution was fixed at 1 km? to maintain consistency
between radar and gauge-based products. This workflow ensured that radar and station
accumulations were evaluated over identical spatial and temporal domains for both case
studies.
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Spatial rainfall fields derived from OWSs were generated using two interpolation tech-
niques: Inverse Distance Weighting (IDW) and Ordinary Kriging (OK). IDW served as
the deterministic baseline, while OK represented the geostatistical alternative. Three
spherical, exponential and Gaussian variogram models were tested for OK. Model pa-
rameters for both techniques were optimised through leave-one-out cross-validation at
station locations, selecting the configuration that minimised the root-mean-square error
(RMSE) between observed and predicted rainfall values.

The same interpolation procedures were subsequently applied to combined OWS-
PWS datasets. Two PWS subsets were considered: (i) stations whose annual rainfall
totals for 2021 were within £10 % of the corresponding OWS reference, and (ii) those
within £20 %, representing a more inclusive threshold. This selection ensured that only
stations with broadly consistent long-term behaviour contributed to the spatial analysis.

This city-dependent performance is consistent with evidence from other studies, men-
tioned the choice of interpolation technique depends strongly on local topography, data
density, and rainfall variability. In topographically complex or data-sparse regions, geo-
statistical and regression-based methods such as kriging can produce unstable spatial
patterns at daily scales, while simpler deterministic approaches like IDW often yield more
robust and physically realistic results, even if some smoothing occurs [39]. These con-
siderations support the methodological decision to retain, for each city, the interpolator
that achieved the best overall agreement with radar accumulations.

The interpolated rainfall grids were evaluated against radar-derived accumulations
over the common valid-data mask, defined by overlapping non-missing pixels. The com-
parison employed a set of complementary statistical metrics, including the Pearson cor-
relation coefficient () and Spearman correlation coefficient (p), RMSE, mean absolute
error (MAE), bias, Nash—Sutcliffe efficiency (NSE), and the Structural Similarity Index
(SSIM). Visual examination of spatial patterns and difference maps supported the quan-
titative assessment.

Since the RADAR-DPC fields used in this study are not gauge-adjusted, they cannot
be regarded as accurate in terms of absolute rainfall magnitude. Consequently, error-
based indicators (MAE, RMSE, Bias, NSE) are interpreted qualitatively, whereas pattern-
oriented measures—p and SSIM—are considered the most reliable descriptors of spatial
agreement between interpolated and radar-derived rainfall fields.

The Spearman rank metric is particularly useful for this type of comparison, as it cap-
tures whether regions of higher and lower rainfall coincide, regardless of systematic bias.
Previous studies have shown that Spearman correlation often mirrors Pearson correlation
in precipitation datasets, but remains more robust when the distributions are heavy-tailed
or affected by measurement inconsistencies [40]. The SSIM, originally developed for im-
age analysis, quantifies the similarity between two spatial fields by jointly comparing local
luminance, contrast, and structural information. When applied to gridded rainfall maps,
SSIM provides an integrated score (ranging from —1 to 1) that measures how well the spa-
tial organization of precipitation is preserved beyond pointwise error metrics. As noted
by different studies, SSIM can be extended to quantify structural differences between two
geophysical datasets, with a value of 1 representing a perfect structural match. Thus,
higher SSIM values indicate closer alignment of rainfall patterns, providing a meaningful
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measure of spatial fidelity complementary to correlation analysis [41].

The following section presents the outcomes of these interpolations and their com-
parison with radar accumulations for the two flash-flood events, focusing on how the
integration of PWSs influenced the spatial accuracy of rainfall fields in Rome and Turin.

4.2 Spatial comparison with radar data

This section presents the spatial analysis of rainfall fields derived from gauge—based in-
terpolation and their comparison with unadjusted RADAR-DPC accumulations for the
two case studies: Turin (22 June 2021) and Rome (8 June 2021). The objective is
to evaluate whether integrating raw PWSs into the OWSs improves the spatial repre-
sentation of rainfall patterns. The analysis focuses on spatial agreement rather than
absolute accuracy. Pattern—based metrics, namely the Spearman correlation coefficient
and the Structural Similarity Index, are therefore considered the most meaningful indi-
cators, whereas absolute error measures (RMSE, MAE, Bias, NSE) are reported only for
qualitative comparison.

4.2.1 Turin — 22 June 2021

The network configuration for Turin (EPSG:32632) is shown in Figure 4.1. The OWSs
includes only a few gauges, mostly concentrated in the northern and central sectors of the
city, with limited coverage in the southern and western areas. The integration of PWSs
markedly increases the number of available stations, particularly across the central and
southern districts, where few official gauges are present. This denser configuration helps
fill several spatial gaps in the monitoring network, with the +10 % and +20 % thresholds
representing progressively broader PWS subsets.

Several OK configurations were initially tested using spherical, exponential, and Gaus-
sian variogram models optimised through leave-one-out cross-validation. Although OK
reproduced the overall rainfall gradients, it tended to oversmooth local maxima and pro-
duced lower spatial correspondence with the radar field. Consequently, IDW was adopted
as the preferred interpolator for the Turin event. A representative OK output obtained
with the exponential variogram model is included in Appendix to illustrate the over-
smoothing effect.
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(b) OWSs + PWSs (£10 %) (c) OWSs + PWSs (420 %)

Figure 4.1: Location of (a) OWSs, (b) OWSs with PWSs within £10 % (shown in dark
blue), and (¢) OWSs with PWSs within £20 % (shown in light blue) within the Turin
administrative boundary (EPSG:32632).

Figure 4.2 compares radar and interpolated rainfall maps. The OWS-only interpo-
lation reproduces the location of the main rainfall maximum. When integrating PWSs
within +10 %, the field becomes smoother, with small changes in p and SSIM. Further
expansion to the +20 % subset leads to a slightly more homogeneous field and a modest
improvement in correlation and pattern similarity. All panels share identical colour limits
to allow consistent visual comparison.
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Figure 4.2: Comparison between radar—derived and interpolated daily rainfall for Turin
(22 June 2021): (a) Radar vs. OWSs-only, (b) Radar vs. OWSs with PWSs (£10%),
(c) Radar vs. OWSs with PWSs (£20%) (EPSG:32633).
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Table 4.1: Statistical comparison between radar and interpolated rainfall fields for Turin
(22 June 2021).

Configuration p SSIM T MAE [mm] RMSE [mm] Bias mm] NSE
OWS only 0.710 0.616 0.683 11.873 17.195 —3.533 0.325
OWS + PWSs (£10%) 0.706 0.622 0.686 12.673 17.528 —5.696 0.298
OWS + PWSs (£20%) 0.714 0.638 0.701 12.364 16.977 —5.330 0.342

Overall, the inclusion of raw PWS observations produced small but consistent im-
provements in the spatial structure of rainfall fields over Turin. These improvements
were mainly reflected in pattern-based indicators (Spearman’s p and SSIM), which quan-
tify spatial coherence.

4.2.2 Rome — 8 June 2021

The configuration of official and personal weather stations across Rome (EPSG:32633)
is shown in Figure 4.3. The OWS network is fairly dense and evenly distributed across
most of the municipal area, with the highest concentration of gauges in the central and
northern sectors and slightly fewer stations toward the western and coastal zones. Adding
PWSs under the +£10% and £20% bias thresholds increases the total station density,
particularly across the central and southern parts of the city, reducing several of the
remaining gaps in the official network.

For Rome, interpolation was performed using the OK method, applying the same
grid and valid—data mask as for the radar fields. Figure 4.4 illustrates the radar and in-
terpolated rainfall distributions. The radar shows a strongly convective event with local
maxima exceeding 120 mm day !, mainly in the north-western sector. The OWS-only in-
terpolation captures the general orientation of the rainfall core but smooths the gradients.
Integrating PWSs within £10 % leaves the overall pattern largely unchanged, whereas the
+20 % configuration disperses the rainfall core and reduces the spatial agreement with
radar. To prevent visual saturation caused by radar overestimation, interpolation maps
use the same colour limits but interpretations rely on relative rather than absolute values.
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(a) OWSs only

(b) OWSs + PWSs (£10 %) (c) OWSs + PWSs (420 %)

Figure 4.3: Location of (a) OWSs, (b) OWSs with PWSs within £10 % (shown in dark
blue), and (c) OWSs with PWSs within +20 % (shown in light blue) within the Rome
administrative boundary (EPSG:32633).
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(c) Radar vs. OWS + PWSs (£20%)

Figure 4.4: Comparison between radar—derived and interpolated daily rainfall for Rome
(8 June 2021): (a) Radar vs. OWSs—only, (b) Radar vs. OWSs with PWSs (£10%), and
(c) Radar vs. OWSs withPWSs (£20%) (EPSG:32633).

34



4.3 — Discussion and interpretation

Table 4.2: Statistical comparison between radar and interpolated rainfall fields for Rome
(8 June 2021).

Configuration p SSIM T MAE [mm] RMSE [mm] Bias mm] NSE
OWS only 0.743 0.412 0.743 12.171 17.776 —10.007  0.290
OWS + PWSs (£10%) 0.720 0.418 0.740 12.261 17.683 —10.029  0.298
OWS + PWSs (+20%) 0.683 0.379 0.711 13.266 19.295 —11.377 0.164

Overall, the results for Rome indicate that the addition of raw PWS observations did
not enhance the spatial consistency with radar and, at higher inclusion thresholds, slightly
degraded the agreement. This behaviour likely reflects the uneven spatial distribution
and variable reliability of raw PWSs within the urban area.

4.3 Discussion and interpretation

The comparative analysis between Turin and Rome demonstrates that the influence of
integrating raw PWSs into rainfall interpolation is highly case-dependent. The two
metropolitan areas differ both in the structure of their observing networks and in the
interpolation approach that best reproduces radar-derived spatial patterns.

In Turin, the official network comprises only a few stations, mostly concentrated in
the northern part of the city and along the Po Valley, leaving the southern and western
sectors poorly covered. Personal Weather Stations are more numerous in the central
and southern districts, thus effectively filling observational gaps and extending spatial
representativeness in areas without official gauges. Given this sparse and uneven distri-
bution, the deterministic IDW method provided the most robust and physically consistent
rainfall fields, whereas OK tended to oversmooth rainfall pattern (see Appendix). The
inclusion of PWSs led to slight improvements in spatial continuity and structural agree-
ment with radar, as reflected by modest increases in Spearman’s p and SSIM. Although
these changes were not large, they confirm that even raw PWSs can meaningfully enhance
spatial representation when official networks are sparse.

In Rome, the situation is markedly different. The official network consists of about 39
stations, providing substantially denser and more homogeneous coverage across most of
the municipal area. Many PWSs are located within already well-instrumented zones, es-
pecially in the urban core and northern districts, offering limited additional information.
Under these conditions, OK produced slightly better agreement with radar and cross-
validation results than IDW, suggesting that a variogram-based geostatistical weighting
was more effective when a larger number of gauges was available. However, adding raw
PWS data did not improve—and in some cases slightly degraded—the spatial corre-
spondence, as indicated by small decreases in p and SSIM, particularly for the +20%
inclusion threshold, where measurement uncertainty increases as the selection criterion
becomes more permissive. This deterioration likely reflects both the redundancy of PWSs
located near OWSs and the variable reliability of individual PWS measurements.

Overall, these results show that the benefit of incorporating raw PWS data depends
strongly on the relative density and reliability of the existing network. When PWSs
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complement a sparse configuration, as in Turin, they can improve the depiction of spatial
variability even without filtering; when the baseline network is already dense and the
additional sensors are redundant or noisy, as in Rome, the improvement is negligible or
negative. These findings emphasise the need for systematic quality control and station
selection prior to their operational use, an aspect addressed in Chapter 5, where the same
analyses are repeated after applying the PWS-pyQC algorithm.
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Chapter 5

Spatial interpolation and radar

validation with quality-controlled
PWS data

Unlike official weather stations, which are installed and maintained according to stan-
dardized protocols, personal weather stations are highly heterogeneous and often lack
consistent metadata or calibration records. This heterogeneity makes it challenging to
enforce uniform data-quality standards. Traditional quality-control frameworks typically
rely on extensive historical observations and validated reference instruments—resources
that are rarely available for citizen-operated networks [42]. Therefore, to ensure the reli-
ability and usability of rainfall data collected from PWSs, the application of a dedicated
QC procedure is required.

In recent years, several QC approaches have been developed to address these chal-
lenges, each differing in methodology and scope. For instance, some algorithms can oper-
ate solely on PWS datasets without requiring primary reference stations such as official
rain gauges. Others, rely on reliable official gauges, often referred to as primary stations,
to characterize the expected spatial correlation of rainfall and to identify anomalous val-
ues. In addition, certain methods identify entire stations as unreliable when systematic
inconsistencies or poor agreement with neighboring sensors are detected. More advanced
approaches, on the other hand, operate at finer temporal resolutions, flagging only specific
time intervals affected by measurement errors while retaining valid observations [35].

The performance of each method depends strongly on local conditions, data com-
pleteness, and station density. Consequently, no single QC algorithm can be universally
recommended, as their effectiveness is inherently case-dependent and varies with the
availability and characteristics of both PWS and official data [35]. In this work, the
open-source Python package PWS-pyQC [43] was applied, a widely used QC framework
specifically designed for rainfall observations, to the PWS datasets of Turin and Rome.
The quality-controlled stations were then integrated with the official weather stations, and
the same spatial interpolation and radar cross-validation workflow described in Chapter 4
was repeated to assess whether filtering PWS data improves agreement with radar-derived
rainfall fields.
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5.1 Methodology

The PWS-pyQC algorithm was applied to the PWS rainfall datasets as provided by
its developers. The framework combines statistical and geostatistical analyses to iden-
tify unreliable sensors, correct systematic biases, and flag erroneous observations based
on their consistency with a trusted reference network [34,35]. In this study, the official
weather station network served as the reference dataset, providing both the spatial depen-
dence structure and the climatological rainfall distribution required for calibration. The
workflow consists of three sequential modules: indicator-based filtering, bias correction
through quantile mapping, and event-based filtering.

The method assumes that, while PWS magnitudes may be biased, the temporal rank
ordering of rainfall at a given PWS is largely reliable for higher intensities. Formally, for
two time steps t1,t2 at station y;,

Yae(yi, t1) < Yar(yist2) = Zae(yist1) < Zar(yi, t2),

where Y denotes PWS observations and Z the (partly unknown) precipitation [34].

High-intensity indicator-based filtering (IBF)

The IBF identifies secondary stations whose time series show inconsistent rainfall be-
haviour compared to the reference network. Each station’s precipitation record is trans-
formed into a binary indicator series marking exceedances above a selected high-intensity
quantile, typically between the 98th and 99th percentiles for hourly data. For the primary
and secondary networks, the indicator series are defined as follows:

1 Fyat(Uai(z,t) > a,

0 otherwise,

1 Gy, ac(Yar(ysh t) > a,
0 otherwise,

Inatz(x,t) = { Iy (y),t) = {

where Ua(x,t) and Ya¢(y;,t) denote precipitation at time t aggregated over At at ref-
erence and PWS locations, respectively, and F, ay, Gyj7 A¢ are their empirical distribution
functions [34].

For any two locations z; and z; in the primary network, the correlation of their
indicator series, pz o at(%i, ), describes the spatial dependence of high-intensity rainfall.
For a PWS y;, the indicator correlation with its nearest reference station, pzy o at(i,y5),
is compared with the distribution of correlations among primary stations at comparable
distances. If the following condition holds:

Pzy.a,nt(Ti, y;) <min{pz o at(Tr, Tm) 5 ||[(Xk — 2m) — (25 — ;)| < Ad},

the secondary station exhibits a weaker association with the reference network than
expected and is discarded. This filtering is based solely on the co-occurrence of intense
rainfall events and is therefore insensitive to systematic over- or under-estimation biases
[34,35].
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Bias correction by quantile mapping

After the IBF, the remaining PWSs are corrected for local bias in rainfall magnitude
while preserving their temporal rank order. For each secondary station y;, the observed
rainfall percentile is computed as

PAt (y]7 t) = Gyj,At(YAt (y.77 t)) )

and the corresponding precipitation quantiles of the reference network are obtained
from the cumulative distributions of the primary stations:

Qar(xi) = Fy A Pac(y;, 1))

These quantiles are interpolated to the PWS location using ordinary Kriging to yield
the corrected precipitation amount

th(il/ja t) = Z i Qag (i),

i=1

where A; are Kriging weights. This transformation replaces the raw PWS rainfall value
with an adjusted amount consistent with the climatological distribution of the reference
network while maintaining the relative ranking of events [34, 35].

Event-based spatial filtering (EBF)

Even after bias correction, individual PWS readings can deviate substantially from neigh-
bouring observations because of transmission errors or false zeros. To identify such out-
liers, a geostatistical consistency check is performed at each time step. For every corrected
PWS value Z{,(y;,t), the expected rainfall is estimated by ordinary Kriging from all ref-
erence stations (excluding the PWS itself):

Zzt(y]’ t) = OK(ZAt(x’L’ t))v

with associated Kriging standard deviation oa¢(y;,t). An observation is flagged as
inconsistent when the standardized residual exceeds three standard deviations:

ZZt(ij t) - th(yj’ t)

> 3.
UAt(yja t)

Measurements satisfying equation above are removed for that time step, while the
station itself remains in the dataset. This procedure effectively eliminates transmission
spikes or false zero values and retains the overall spatial pattern of reliable measurements.
Only a very small fraction of PWS records—typically about 1 % or less—are rejected by
this geostatistical outlier filtering, indicating that this step fine-tunes data quality by
discarding only the most evident errors [34,35,44].
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Figure 5.1: Workflow of the PWS-pyQC quality-control framework showing its three main
modules: Indicator-Based Filtering, Bias Correction, and Event-Based Filtering. The
diagram illustrates the sequential processing from raw PWS data to the final interpolated
rainfall grid. Adapted from Bardossy et al. (2020).

After the QC pipeline, the filtered and bias-corrected PWS datasets were merged with
the official gauge observations. Spatial interpolation and radar cross-validation were then
repeated using the same configuration and performance metrics adopted in Chapter 4.
This allowed the assessment of whether the quality-controlled PWS data improved the
spatial representation of rainfall and its agreement with radar-derived estimates.

5.2 Spatial comparison with radar data

This section presents the spatial validation of rainfall fields derived from gauge-based
interpolation after applying the PWS-pyQC pipeline. The analysis follows the same
structure and methodology of Chapter 4, focusing on the flash-flood events of 22 June
2021 (Turin) and 8 June 2021 (Rome). For both case studies, the interpolation grid
(1 km?) and the valid-data mask were kept identical to Chapter 4 to enable one-to-one
comparison. The statistical evaluation employs the same metrics—p, SSIM, r, MAE,
RMSE, Bias, and NSE—with emphasis on pattern-based indicators, since the RADAR—
DPC fields are not gauge-adjusted.
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5.2 — Spatial comparison with radar data

5.2.1 Turin — 22 June 2021

Figure 5.2 shows the spatial configuration of OWSs and the PWSs that passed all three
stages of the PWS-pyQC workflow (indicator-based filtering, quantile-mapping bias cor-
rection, and event-based filtering). The retained QC-PWSs complement the sparser of-
ficial network, particularly across the central and southern districts that were under-
sampled with OWSs alone.

BRI vy

(a) OWSs only (b) OWSs + QC-retained PWSs

Figure 5.2: Location of the stations used for interpolation within the Turin administrative
boundary (EPSG:32632): (a) OWSs only and (b) OWSs with QC-retained PWSs (shown
in pink).

Rainfall fields were interpolated using IDW, as in Chapter 4. Figure 5.3 compares the
radar daily accumulation with the IDW interpolations obtained using only OWSs and
using the combined dataset of OWSs and PWSs that passed the quality control. Identical
colour limits (0-100 mm day~!) was applied to ensure a direct visual comparison.
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Figure 5.3: Comparison between radar—derived and interpolated daily rainfall for Turin
(22 June 2021). Radar—derived daily accumulation (left panels) vs. IDW interpolation
(right panels): (a) OWSs-only and (b) OWSs + QC-retained PWSs.

Table 5.1: Turin (22 June 2021): radar vs. interpolated fields (IDW). Metrics computed
on the common valid-data mask.

Configuration p SSIM r MAE [mm] RMSE [mm| Bias [mm] NSE
OWS only 0.710 0.616 0.683 11.873 17.195 —3.533 0.325
OWS + QC-PWS 0.742 0.648 0.711 10.159 15.401 —2.773 0.458

The inclusion of QC-PWSs improved all principal indicators. Pattern agreement
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strengthened (p: 0.710—0.742; SSIM: 0.616—0.648), while error measures decreased
(MAE: 11.9—10.2 mm; RMSE: 17.2—15.4 mm). NSE increased from 0.325 to 0.458,
and the absolute bias reduced in magnitude. These improvements indicate a more con-
sistent correspondence between the interpolated rainfall field and the spatial distribution
observed by radar. Visually (Fig. 5.3), the QC-enhanced interpolation better delineates
the rainfall core over northern Turin and suppresses peripheral artefacts present in the
OWS-only field.

5.2.2 Rome — 8 June 2021

Figure 5.4 presents the distribution of OWSs and QC-retained PWSs within the Rome
boundary. The preserved PWSs are mainly concentrated in the central and southern
sectors, adding observation points to an already dense official network.

(a) OWSs only (b) OWSs + QC-retained PWSs

Figure 5.4: Location of the stations used for interpolation within the Rome administrative
boundary (EPSG:32633): (a) OWSs only and (b) OWSs + QC-retained PWSs (shown
in pink).

Interpolation was performed using OK, consistent with Chapter 4. Figure 5.5 com-
pares the radar accumulation with the OK interpolations from using only OWSs and
using the combined dataset of OWSs and PWSs that passed the quality control.
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Figure 5.5: Comparison between radar—derived and interpolated daily rainfall for Rome
(8 June 2021). Radar—derived daily accumulation (left panels) vs. OK interpolation (right
panels): (a) OWSs-only and (b) OWSs + QC-retained PWSs.

Table 5.2: Rome (8 June 2021): radar vs. interpolated fields (OK). Metrics computed on
the common valid-data mask.

Configuration p SSIM r MAE [mm|] RMSE [mm| Bias [mm] NSE
OWS only 0.743 0.412 0.743 12.171 17.776 —10.007  0.290
OWS + QC-PWS 0.812 0.439 0.787 12.142 17.813 —-10.779  0.287

In Rome, the integration of QC-filtered PWSs produced a moderate improvement in
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pattern-based metrics (increase of p from 0.743 to 0.812 and SSIM from 0.412 to 0.439),
while absolute error metrics and NSE changed minimally. Visual inspection suggests a
slightly sharper representation of the north-western rainfall core after QC, but the overall
spatial structure remains close to the OWSs-only field, reflecting the already high density
and quality of the official network.

5.3 Discussion and interpretation

The results obtained after applying the PWS-pyQC procedure confirm that systematic
filtering and bias correction significantly enhance the spatial usability of crowdsourced
rainfall observations. In Turin, where the official station network is sparse, integrating
QC-retained PWSs led to consistent gains across all metrics. Notably, Spearman’s rank
correlation and the Structural Similarity Index increased, indicating improved spatial
coherence relative to the radar reference. RMSE and bias (interpreted qualitatively)
also decreased, and the NSE improved, suggesting better pattern alignment with the
radar field. The rainfall maxima were more clearly delineated in the interpolated maps,
reflecting the added spatial detail from PWS integration.

In Rome, improvements were more modest and primarily confined to pattern-based
metrics. Given the already dense and evenly distributed OWSs, the additional PWSs
contributed limited new spatial information. Nonetheless, the QC step effectively filtered
out anomalous PWS records, helping to preserve the consistency of the interpolated field.

Relative to the results in Chapter 4, the quality-controlled datasets consistently
yielded higher p and SSIM values in both cities, reinforcing the importance of pre-
processing. These gains demonstrate that PWS integration can enhance spatial rainfall
mapping—particularly in undersampled areas—provided that robust QC procedures are
applied. It is important to note, however, that the radar accumulations used here are
not gauge-adjusted and are subject to their own uncertainties. As such, improvements in
absolute error metrics (e.g., RMSE, bias, NSE) are interpreted cautiously and primarily
reflect increased spatial agreement with the radar pattern, rather than definitive accuracy
gains.

Overall, the PWS-pyQC workflow successfully retained the informative portion of the
PWS network while suppressing inconsistent outliers. This finding supports the broader
conclusion that crowdsourced sensors—when rigorously filtered—can be effectively inte-
grated into operational urban rainfall monitoring, particularly for enhancing the spatial
structure of rainfall estimates during high-impact events.

45



46



Chapter 6

Discussion, conclusions, and
future perspectives

Crowdsourced rainfall data acquired from thousands of personal weather stations have
the potential to fill observational gaps in official rain gauge networks, particularly where
network density has declined over recent decades. When properly quality-controlled,
PWS observations can complement existing networks, improving spatial interpolation
and hydrological model calibration [23,30,33,34,45]. Their high spatial density enables
a detailed representation of rainfall variability, which is especially relevant in complex
urban environments [20]. Maintaining dense professional networks in cities is costly and
logistically challenging, whereas PWSs are low-cost and easily deployed by individuals or
communities, allowing large-scale participation at minimal expense [29].

This thesis evaluated the potential of crowdsourced PWSs to enhance rainfall moni-
toring in urban areas through a multi-stage analysis. Reliability was first assessed across
eleven Italian cities (2021-2022), revealing a consistent underestimation at high rain-
fall intensities—also reported in previous studies [29,31,38]. Extending this assessment
to cities with different climatic regimes confirmed that the underestimation trend is
widespread, though its magnitude varies by context. Two representative case studies,
Turin and Rome, were then analysed to examine how integrating PWS data with offi-
cial networks influences spatial rainfall estimation. Interpolated rainfall maps derived
from raw and quality-controlled datasets were compared with unadjusted RADAR-DPC
accumulations—used here as a spatial benchmark for assessing pattern agreement—by
applying inverse distance weighting and ordinary kriging. The application of the open-
source PWS-pyQC algorithm improved spatial pattern correspondence, particularly in
data-sparse conditions, and restored the consistency of interpolation in Rome, where raw
PWS data had previously degraded agreement with radar. These findings highlight both
the opportunities and the limitations of integrating citizen-collected observations into
hydrological analyses, demonstrating their value for strengthening rainfall monitoring in
data-scarce urban environments.

Together, these analyses address the research questions defined in Chapter 1. The
nationwide comparison quantified the magnitude and consistency of PWS measurement
bias across diverse climatic contexts. Applying the PWS-pyQC algorithm demonstrated
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its effectiveness in improving the reliability of crowdsourced data through rigorous station-
level filtering. The Turin and Rome case studies further showed that integrating quality-
controlled PWSs enhances the spatial representation of rainfall relative to unadjusted
radar fields, with the greatest benefits occurring under sparse official network conditions.

The quality control applied in this study was intentionally conservative, excluding
entire stations that failed spatial-dependence consistency checks rather than flagging in-
dividual erroneous measurements. This approach improved the reliability of retained
data but reduced spatial coverage in some areas, affecting local representativeness. The
performance of any quality-control algorithm also depends on network density and data
availability; future studies could therefore compare alternative open-source frameworks
such as PWSQC or GSDR-QC to evaluate methodological sensitivity [35]. The compari-
son with radar fields relied on unadjusted RADAR-DPC accumulations, so error metrics
were interpreted in terms of spatial correspondence rather than absolute rainfall accu-
racy. Furthermore, only two single-day flash-flood events were analysed, and interpolation
parameters were fixed for each city, without multi-event cross-validation.

Future research should extend similar analyses across a wider range of events and
climatic contexts to assess robustness. Comparative benchmarking of different quality-
control algorithms and coupling quality-controlled PWS data with radar-gauge adjust-
ment or machine-learning-based data fusion could further enhance rainfall field accuracy.
Beyond methodological advances, addressing the social and spatial dimensions of citizen
science remains crucial. Although the growing number of PWSs increases the potential
for fine-scale rainfall monitoring, their distribution often reflects social and geographic
biases—densities tend to be higher in wealthier or flood-prone neighbourhoods [22]. In
addition, network sustainability is not guaranteed: a “peak Netatmo” effect has been
observed, where participation may plateau or decline [46], and key institutional actors,
such as emergency services and local authorities, are still insufficiently involved [47].
Strengthening institutional engagement and integrating PWS networks into public mon-
itoring frameworks will therefore be essential for long-term continuity and reliability.

Overall, the outcomes of this research demonstrate that crowdsourced personal weather
stations, when properly quality-controlled, can meaningfully contribute to improving the
spatial representation of rainfall in urban areas. By combining a systematic evaluation of
PWS reliability across multiple cities with event-based validation against radar data, this
work provides new evidence on both the potential and the constraints of citizen-collected
observations. The findings confirm that the benefit of integrating PWS data depends
strongly on network density and data quality, emphasizing the importance of rigorous
quality control prior to their hydrological use. Ultimately, this study contributes to the
growing field of citizen hydrometeorology by providing a practical framework for assess-
ing, filtering, and integrating PWS rainfall data to support improved rainfall monitoring
and, in future studies, applications such as urban flood-risk assessment.
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Appendix A

Additional figures and sensitivity
tests

A.1 Example of rejected OK interpolation from OWS-only
configuration

1e6 Radar-derived daily rainfall 166 OK interpolation from OWSs
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Figure A.1: Radar-derived daily rainfall (left) and example of ordinary kriging inter-
polation using only official weather stations (right) for the Turin case study. The OK
realisation shown here was discarded due to its weak agreement with the radar pattern
and its artificially smoothed spatial structure.
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