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Abstract 

The research examines how vegetation and snow cover patterns change over 

time and space within the Maritime Alps (Western Italian Alps) which serves as a 

climate change and ecological transition hotspot. The research utilizes Sentinel-2 

Level-2A multispectral imagery which underwent processing through two cloud-

based Earth Observation (EO) platforms known as Google Earth Engine (GEE) and 

Sentinel Hub to track environmental changes from 2018 to 2024. Vegetation 

phenology and snow persistence were assessed using the Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Snow Index (NDSI).  

A dual-threshold approach was applied: fixed thresholds (NDVI ≥ 0.30, NDSI ≥ 

0.42) enabled temporal consistency, while adaptive Otsu thresholding addressed 

scene-specific spectral variability and topographic effects that typically reduce 

classification accuracy. 

The validation process used four reference datasets which consisted of CORINE 

Land Cover 2018 and LUCAS 2022 and Carta degli Habitat and Copernicus Fractional 

Snow Cover (FSC) with their corresponding spatial scales and thematic precision 

levels. The evaluation of map accuracy included Overall Accuracy (OA) and 

Producer’s and User’s Accuracy (PA, UA) and Cohen’s Kappa coefficient (κ) as 

statistical metrics. The results indicated that Otsu thresholds achieved superior 

results for detecting changes when the environment shifted between snowmelt and 

early vegetation growth but fixed thresholds delivered better results for monitoring 

long-term changes.  

The cross-platform consistency between GEE and Sentinel Hub proved to be 

very high because both NDVI and NDSI products showed mismatch values under 

15% which validated the reliability of the applied workflows. The NDVI data 

indicates that vegetation growth began earlier in years with short snow cover 

duration which supports the documented pattern of alpine vegetation moving to 

higher elevations (Lamprecht et al. 2018; Choler et al.,2021). The complete analysis 

of climate-driven landscape transformation emerges from studying vegetation and 

snow dynamics because it demonstrates how snowmelt impacts plant ecosystems. 

This work presents a methodological approach which uses adaptive 

thresholding and multi-source validation and cloud-based processing to create a 

transferable and reproducible system for extended alpine monitoring. The research 
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indicates GEE with Otsu adaptive thresholds provides the optimal combination of 

analytical consistency and scalability but Sentinel Hub delivers the most effective 

results for operational visualization and public dissemination of EO-based 

indicators. The dual-platform system provides support for upcoming climate 

monitoring and risk assessment and conservation planning activities in mountain 

areas with limited data availability. 
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Introduction 

1.1 Background and motivation 

Mountain ecosystems represent some of the most active and climate-

vulnerable regions which exist on Earth. The European Alps have experienced a 

major temperature increase which now stands at +2°C above late 19th century 

levels and exceeds global warming rates (Marty et al., 2017; Sven Kotlarski, Andreas 

Gobiet, Samuel Morin, Marc Olefs, Jan Rajczak & Raphaëlle Samacoïts, 2022.)The 

climate change has resulted in shorter snow cover duration and earlier snowmelt 

and altered plant growth patterns (Matiu et al., 2021).The changes in climate 

patterns produce two negative impacts on water circulation and energy transport 

systems which simultaneously damage mountainous ecosystems through 

biodiversity decline and increased natural disaster occurrences  (Beniston et al., 

2018). 

The Maritime Alps (Piedmont Region, Northwestern Italy) experience these 

processes at their most extreme because of its steep climate differences and diverse 

landscape features and its position between Mediterranean and alpine bioclimatic 

zones. The duration of snow cover affects vegetation growth patterns and plant 

development which leads to changes in carbon storage and soil water content and 

slope stability. Scientists can create successful ecosystem-based climate adaptation 

plans through their research of these interactions while assessing the extended 

stability of alpine ecosystems.  

Earth Observation (EO) advancements together with open-access satellite 

imagery data now enable environmental monitoring through their delivery of 

continuous spatial data that occurs frequently over time while maintaining 

reproducibility. The Copernicus Sentinel-2 mission serves as a primary EO data 

source because it provides multispectral optical imagery at 10–20 m resolution 

which enables precise monitoring of snow and vegetation and surface processes 

through its 5-day revisit cycle (M. Drusch a, et al., 2012).The EO data analysis and 

visualization capabilities of Google Earth Engine (GEE) and Sentinel Hub operate 

through cloud-based platforms which eliminate the need for users to possess local 

computing resources.  

The ACLIMO (Alpine Climate Monitoring) Project under ARPA Piemonte serves 

as a key regional organization for establishing common methods to monitor alpine 
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areas. The ACLIMO system achieves harmonized climate monitoring through 

the combination of satellite data with in-situ meteorological networks and field 

validation to analyze NDVI vegetation dynamics and NDSI snow-cover variability and 

geomorphological responses to climate forcing (Bonardi et al. 2010; ARPA 

Piemonte, 2023; JRC, 2023). The present research depends on this project for its 

conceptual and operational framework to improve the accuracy and consistency of 

Earth Observation-based alpine monitoring techniques.  

1.2 Problem statement 

The two indicators NDVI and NDSI show strong potential for vegetation and 

snow monitoring, yet threshold-based classification techniques continue to 

generate classification uncertainties. Research studies depend on established 

threshold values (NDVI ≥ 0.30 and NDSI ≥ 0.42) which  (ROUSE JW, 1973) originally 

defined for low- to mid-latitude areas. 1974; (Hall et al., 1995.)The fixed threshold 

system allows for both reproducible results and time-based analysis yet it fails to 

identify changes in spectral patterns which result from variations in illumination and 

surface roughness and snow cover and canopy density that commonly occur in 

alpine regions. The combination of different land cover types in transitional zones 

which include snowmelt areas and rocky outcrops and sparse vegetation results in 

frequent classification mistakes  (Verrelst et al., 2015). 

The Otsu method (Otsu, 1979.). serves as an adaptive thresholding approach 

which determines the best threshold value through analysis of pixel value 

distributions that show bimodal characteristics. The data-driven thresholds 

automatically adapt to changes in spectral patterns which leads to better detection 

results in challenging conditions. The application of these methods in alpine 

monitoring faces restrictions because of insufficient standardization which creates 

difficulties when researchers attempt to validate and compare their results.  

A second major challenge exists with validation datasets. The reference data 

sets CORINE Land Cover, LUCAS and Carta degli Habitat present distinct 

characteristics through their varying scales and thematic precision and acquisition 

techniques.  points although it lacks sufficient density. The comparison between 

satellite-derived classifications and reference data produces discrepancies because 

of differences in scale and mixed pixel effects and time-based data misalignment. 

Research has not fully evaluated the cross-platform reproducibility between GEE 
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and Sentinel Hub systems because these platforms continue to gain popularity 

in Earth Observation operational workflows.

1.3 Objectives of the study 

The overarching aim of this research is to develop and evaluate a dual-threshold 

remote-sensing methodology for integrated snow and vegetation monitoring in the 

Maritime Alps, leveraging multi-platform Sentinel-2 processing. 

The specific objectives are: 

1. To quantify temporal variations in vegetation (NDVI) and snow cover (NDSI) 

across the 2018–2024 period using Sentinel-2 Level-2A data processed in 

both GEE and Sentinel Hub. 

2. To compare fixed and adaptive (Otsu) thresholding methods, identifying 

their strengths, weaknesses, and suitability under different environmental 

conditions. 

3. To validate the classification results using multi-source reference datasets 

(CORINE, LUCAS, Carta degli Habitat, and FSC) and assess the reliability of 

each as ground-truth data. 

4. To evaluate cross-platform consistency between GEE and Sentinel Hub, 

analyzing differences due to compositing, cloud masking, and data 

handling. 

5. To provide methodological recommendations for alpine EO studies, 

defining best practices for threshold selection, validation strategies, and 

platform use. 

6. To link spectral dynamics to ecological interpretation, examining how snow 

duration affects vegetation productivity and spatial distribution patterns in 

the Maritime Alps. 

Through these objectives, the study contributes to refining EO-based 

monitoring frameworks and improving the reliability of vegetation–snow 

interaction analyses in mountain environments.
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 Project Framework 

 2.1 Project framework: ACLIMO (Alpine Climate Monitoring) 

       The ACLIMO (Alpine Climate Monitoring) Project under ARPA Piemonte 

coordination with academic and regional partners served as the research 

framework for this study. The project uses satellite Earth Observation data and in-

situ meteorological networks to track Western Italian Alps environmental and 

climatic patterns through geohazard field validation.  

        ACLIMO enables researchers to access standardized data and common 

methods for studying NDVI vegetation changes and NDSI snow cover patterns and 

climate-induced landslides and debris flows. The project framework provides the 

scientific basis for this research while maintaining methodological consistency that 

enables comparison with other Alpine monitoring studies (ARPA Piemonte, 2023; 

JRC, 2023; Bonardi et al., 2008).  

2.2 Climate change impacts on vegetation and snow in the 

European Alps 

Climate change has profoundly affected the cryosphere and vegetation 

dynamics across the European Alps. The region's mean annual temperature has 

significantly increased, the length of snow cover has decreased, and the growing 

season has begun earlier in recent decades (Matiu et al., 2021; Kotlarski et al., 2022). 

In particular, at high elevations where the snow–rain transition is most susceptible 

to temperature anomalies, these changes are changing species composition, 

reshaping alpine ecosystems, and impacting hydrological regimes. 

Snow cover is essential for controlling soil moisture, energy balance, and the 

phenological stages of plants in alpine regions. Early soil exposure and, as a result, 

earlier vegetation greening are caused by shorter snow durations (Choler, 2021; 

Lamprecht et al., 2018). The way that alpine vegetation responds to these changes 

varies geographically, though; some areas are more productive because of longer 

growing seasons, while others are stressed because of less water available and more 

frequent drought events (Brunetti et al., 2009; Gobiet et al., 2014). Therefore, one 

of the most important indicators of ecological resilience to changing climatic 

conditions is the interaction between snow persistence and vegetation activity. 
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 2.2.1 Snow Cover Variability and Its Ecological Implications 

    Variability in snow cover affects the environment directly as well as indirectly. 

It directly affects overwintering species and soil microbial communities by changing 

the insulation of soil and root systems. Snow indirectly affects downstream 

ecosystems, water resource availability, and runoff regimes (Marty et al., 2017). In 

many Alpine regions, especially at mid-elevations, satellite-based observations 

show that the average duration of snow cover has decreased by about 8.4% every 

ten years (Kotlarski et al., 2022). An upward shift in the snowline and a change from 

snow-dominated to rain-dominated precipitation regimes are frequently observed 

in conjunction with this decline. 

 2.2.2 Vegetation Dynamics and Phenological Shifts 

Numerous in situ and remote sensing studies have documented how vegetation 

is responding to climate change. Although these changes vary with altitude, aspect, 

and species composition, earlier leaf-out and delayed senescence have prolonged 

the vegetation period throughout the Alps (Vitasse et al., 2018; Choler, 2021). 

Greenness trends are on the rise, according to NDVI-based analyses, especially in 

subalpine and montane zones where temperature constraints are most noticeable. 

High-elevation ecosystems, however, are getting close to ecological thresholds, 

beyond which changes in species dominance or moisture stress brought on by 

warming may lower productivity (Gamon et al., 2015; Senf et al., 2020). 

  2.2.3 Related Works and Research Context 

. Prior research has evaluated vegetation and snow cover interactions by 

combining field observations, climate data, and satellite imagery. For example, 

Gascoin et al. (2020) examined Sentinel-2-derived NDSI to estimate snow 

persistence across mountain regions, and Choler (2021) used Sentinel-2 time series 

to track vegetation phenology in snow-controlled alpine grasslands. 

 Similarly, to measure snow-vegetation feedbacks in the Alps, Notarnicola et al. 

(2020) combined Sentinel-2 and MODIS data. These results demonstrate how 

crucial multispectral Earth Observation (EO) data are for identifying environmental 

changes with high temporal and spatial resolution. Building on this background, the 

Sentinel-2 satellite mission and the data collection method used for the study's 

vegetation and snow monitoring are explained in section 2.3. 
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2.3 Satellite imagery and data acquisition 

Satellite Earth Observation provides a consistent and reproducible means of 

monitoring dynamic environmental processes such as snow and vegetation cover. 

In this research, Sentinel-2 Level-2A imagery was selected for its high spatial, 

spectral, and temporal resolution, which make it particularly suitable for 

mountainous environments characterized by complex terrain and rapid seasonal 

changes.  

2.3.1 Sentinel-2 Mission Overview 

The Sentinel-2 mission, which is a component of the European Space Agency's 

(ESA) Copernicus Program, is made up of two identical polar-orbiting satellites 

(Sentinel-2A and Sentinel-2B) that are 180° apart and in the same sun-synchronous 

orbit. According to Drusch et al. (2012), the mission offers worldwide coverage 

every two to three days at mid-latitudes and every five days at the equator. The 

Multispectral Instrument (MSI), carried by Sentinel-2, has spatial resolutions of 10 

m, 20 m, and 60 m depending on the band. It can acquire 13 spectral bands, from 

visible to shortwave infrared (SWIR) (Table 2.1). Each MSI band's spectral 

configuration and spatial resolution are compiled in Table 2.1. Table 2.1 shows the 

spatial resolution and spectral bands of the Sentinel-2 MSI. 

Figure 2.1 Earth observation missions developed by ESA, Source: ESA,2023 
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2.3.2 Data Characteristics and Preprocessing 

       The Sentinel-2 Level-2A product provides atmospherically corrected surface 

reflectance through the Sen2Cor processor, which includes correction for 

atmospheric, topographic, and adjacency effects. For this study, only bands relevant 

to vegetation and snow monitoring were retainedspecifically, the Red (B4), Near-

Infrared (B8), and Shortwave Infrared (B11) bands. Cloud and shadow masking was 

applied using the Scene Classification Layer (SCL) and QA60 cloud mask to ensure 

high-quality input data. 

The Multispectral Instrument (MSI) of Sentinel-2 operates as its core 

component to measure reflectance data through 13 bands which span from visible 

to short-wave infrared wavelengths as shown in Figure 2.2.  

 

 

 

 

 

 

 

 

 

The bands of Sentinel-2 provide optimal measurements for Earth surface and 

atmospheric physical properties which enables effective monitoring of vegetation 

health and soil and water moisture levels and snow cover and atmospheric 

conditions. The system operates at three native spatial resolutions which 

correspond to its designated measurement functions. 

 

 

Figure 1.2 Sentinel-2 spectral bands (VIS, NIR, SWIR) and their main 

applications, Source: ESA (2015), Introducing Sentinel-2, ESA Bulletin 161. 
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• 10 m bands (B2–Blue, B3–Green, B4–Red, B8–NIR): These bands deliver 

high spatial resolution data that scientists use to map land cover and study 

vegetation and urban environments. The NDVI index which serves as a key 

tool for vegetation monitoring requires the combination of data from the 

red (B4) and near-infrared (B8) bands. 

• 20 m bands (B5–B7 red-edge series, B8A–narrow NIR, B11–SWIR-1, B12–

SWIR-2): The additional spectral data from these bands enables detection of 

vegetation stress and provides information about canopy structure as well 

as soil and vegetation moisture and snow or burned area identification. The 

snow index (NDSI) uses the green band (B3 at 10 m) and SWIR-1 band (B11 

at 20 m) to create its measurement. 

• 60 m bands (B1–coastal aerosol, B9–water vapor, B10–cirrus): The bands 

serve mainly for atmospheric correction purposes to achieve accurate 

reflectance measurements across different wavelengths although they do 

not support detailed surface mapping applications. 

The process of data preparation requires a fundamental step to merge bands 

recorded at different resolutions (10 m and 20 m) for NDVI and NDSI index 

calculations. The standard practice for data analysis involves two methods to handle 

band resolution differences: analysts either resample 10 m bands to match 20 m 

resolution, or they use pan-sharpening and super-resolution techniques to improve 

the detail of coarser bands. The application of Generative Adversarial Networks in 

deep learning technology has shown successful results for reducing 20 m and 60 m 

band resolution to 10 m which results in detailed vegetation and snow monitoring 

without compromising spectral accuracy (Romero et al., 2016) 

The primary remote sensing data source for this research uses Sentinel-2 to 

study vegetation and snow patterns in the Maritime Alps. The combination of 

Sentinel-2's detailed spectral data with its high spatial resolution and regular data 

collection schedule makes it an ideal tool for studying the diverse snow and 

vegetation patterns and ecological shifts in this climate-vulnerable area. 
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Band Description & Example Use Central λ 
(nm) 

Resolution 

B1 Coastal aerosol, mainly for atmospheric correction and 
coastal water studies.  

443 60 m 

B2 Blue detects shallow water, turbidity, and atmospheric 
scattering. Combined with B3 and B4 to produce “true 
color” images. 

490 10 m 

B3 Green, useful for vegetation monitoring and in water 
indices such as NDWI (B3/B11). Also sensitive to snow 
reflectance. 

560 10 m 

B4 Red, strong chlorophyll absorption; crucial in NDVI 
(B8/B4) for vegetation productivity. 

665 10 m 

B5 Red-edge 1 enhances detection of chlorophyll content 
and crop differentiation. 

705 20 m 

B6 Red-edge 2, increases sensitivity to vegetation stress and 
canopy structure. 

740 20 m 

B7 Red-edge 3, valuable in forestry for phenology and long-
term canopy health monitoring. 

783 20 m 

B8 NIR (broad), widely used for vegetation biomass and 
phenology, forms the basis of NDVI. 

842 10 m 

B8A NIR (narrow), complements red-edge bands to 
discriminate subtle changes in vegetation condition. 

865 20 m 

B9 Water vapor detects absorption features of water vapor 
for atmospheric correction. 

945 60 m 

B10 Cirrus identifies thin, high-altitude cirrus clouds, 
improving cloud masking. 

1375 60 m 

B11 SWIR-1, sensitive to soil and vegetation moisture, also 
used in snow mapping (NDSI) and burn indices (NBR). 

1610 20 m 

B12 SWIR-2 provides information for geology, soils, and 
burned area assessment. (NBR). 

2190 20 m 

Table 2.1 Sentinel-2 MSI bands, their spectral characteristics, spatial resolution, and example 

applications. 
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During data preparation, 10 m and 20 m bands were merged to align the spatial 

resolution used for NDVI and NDSI calculations. This resampling step ensures 

consistency between vegetation and snow indices. 

Sentinel-2 products are distributed in two main levels: Level-1C (Top-of-

Atmosphere) and Level-2A (Bottom-of-Atmosphere) reflectance. Level-2A data, 

corrected by the Sen2Cor processor, remove atmospheric effects to provide surface 

reflectance values that are essential for accurate NDVI and NDSI computation in 

mountainous terrain (“ESA, 2023,”.). 

Overall, the Sentinel-2 mission provides a reliable and versatile dataset for 

Alpine environmental monitoring. Its combination of high spatial resolution, 

frequent revisit, and broad spectral depth makes it particularly suitable for tracking 

vegetation and snow dynamics in the Maritime Alps. 

The overall workflow of this research from data acquisition to classification and 

validation is summarized in Figure 2.3. The detailed methodological description of 

each step, including index calculation, threshold selection, mosaicking, and accuracy 

assessment, is provided in Chapter 3. 

The figure outlines the sequence from Sentinel-2 data acquisition and cloud 

filtering to NDVI/NDSI computation, thresholding (fixed and Otsu), validation with 

reference datasets, and final analysis of vegetation and snow trends. 

The following section explains how these spectral capabilities are applied to 

monitor vegetation and snow using NDVI and NDSI indices. 
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Figure 2.3 General workflow of the study showing the sequence from Sentinel-2 data 

acquisition to spectral index computation, threshold classification (Fixed and Otsu), validation using 

multi-source datasets, and analysis of vegetation and snow trends. 
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2.4 Monitoring of vegetation and snow coverage through 

spectral indexes 

Monitoring vegetation and snow dynamics through spectral indexes is essential 

for understanding ecosystem responses to climatic variability in alpine regions. 

Among the available Earth Observation techniques, spectral indices derived from 

Sentinel-2 imagery particularly the Normalized Difference Vegetation Index (NDVI) 

and the Normalized Difference Snow Index (NDSI) provide robust tools for 

quantifying changes in vegetation greenness and snow-cover extent. This section 

presents an overview of the methodological framework used for index-based 

monitoring, including a comparative review of recent studies and the integration of 

cloud-based processing platforms. 

2.4.1 Vegetation monitoring with NDVI 

The Normalized Difference Vegetation Index (NDVI), which uses red absorption 

and near-infrared reflectance data, serves as one of the most widely adopted 

indicators for photosynthetic activity and green biomass estimation (Tucker, 

1979).It is calculated using the following equation: 

 

NDVI =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

where NIR and RED correspond to the near-infrared and red reflectance bands 

of the Sentinel-2 imagery. NDVI values range from −1 to +1, with high positive values 

representing dense vegetation and negative values corresponding to non-vegetated 

surfaces such as water, snow, or clouds. 

As described in Section 2.3.2, Sentinel-2 provides 10–20 m spatial resolution 

and a 5-day revisit frequency, which together enable detailed temporal tracking of 

vegetation growth. These characteristics make NDVI especially suitable for Alpine 

studies characterized by steep gradients and mixed land-cover types. 

Recent studies have emphasized that using multi-temporal NDVI stacks rather 

than single-date imagery. For instance, (Notti et all.,2023), demonstrated that 

Sentinel-2 NDVI time-series features enhance the discrimination of vegetation. 

Similarly, (Lasaponara et al., 2022)reported that NDVI trajectories from Google 

Earth Engine (see Section 2.5) improve reproducibility in Alpine vegetation mapping. 
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An example of NDVI-based vegetation classification in Alpine terrain is shown 

in Figure 2.4, where Sentinel-2 imagery captures spectral differences among forest, 

grassland, and shrubland habitats (Wakulińska and Marcinkowska-Ochtyr, 2020). 

Although the Giant Mountains differ geographically from the Maritime Alps, both 

regions share similar alpine ecological gradients and vegetation–snow interactions, 

making this study comparable in methodological approach and environmental 

relevance. 

Beyond single-index analysis, NDVI can be complemented by derivative metrics 

such as the Normalized Difference Moisture Index (NDMI) (Gao, 1996) and Tasseled 

Cap Wetness (TCW) (Crist; Cicone, 1984), which enhance sensitivity to vegetation 

moisture and canopy structure. In addition, red-edge bands from Sentinel-2 (e.g., 

B5, B6, B7) have been incorporated to improve the detection of subtle chlorophyll 

variations and phenological trends (Parisi et al.,2023;Delegido et al., 2011)NDMI is 

computed as (NIR – SWIR) / (NIR + SWIR), indicating vegetation moisture content, 

while TCW derives from a linear combination of reflectance bands emphasizing soil 

and canopy wetness. 

The NDVI is still the most reliable and interpretable indicator for vegetation 

monitoring in mountain ecosystems, even with its well-known drawbacks, such as 

saturation in dense canopies and sensitivity to topographic illumination. This is 

especially true when using multi-temporal and multi-platform frameworks for 

analysis. 
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Figure 2.4 Vegetation types of the Giant 

Mountains, based on Sentinel-2 imagery (natural 

RGB composition), Source: Wakulińska & 

Marcinkowska-Ochtyra (2020). 
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2.4.2 Snow monitoring with NDSI 

The Normalized Difference Snow Index (NDSI) is widely used for quantifying 

snow-cover extent and monitoring its seasonal and inter-annual variability. 

Introduced by (Hall et al., 1995), NDSI exploits snow’s high reflectance in the visible 

green wavelengths and its strong absorption in short-wave infrared (SWIR) to 

distinguish snow from bright surfaces such as clouds or bare soil. 

It is expressed as: 

NDSI =
(𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅)

(𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅)
 

where GREEN represents reflectance in the visible green band (Sentinel-2 Band 

3, 0.56 µm) and SWIR corresponds to the short-wave infrared band (Band 11, 1.61 

µm). High NDSI values (close to +1) indicate snow-covered areas, while lower or 

negative values correspond to water, cloud, or bare surfaces. 

As described in section 2.3.2, the 10–20 m spatial resolution of Sentinel-2 

enables fine-scale snow mapping and captures spatial heterogeneity previously 

unresolved by coarser sensors such as MODIS (250–500 m). Studies have 

demonstrated that Sentinel-2 NDSI time-series provide robust detection of snow 

persistence and seasonal transitions at catchment scales (Mazzotti et al.,2019; 

Dumont et al., 2020)When combined with the Scene Classification Layer (SCL), NDSI 

improves snow–cloud separation and refines seasonal snow cover metrics (Drolon 

et al , 2017). 

The integration of multi-sensor archives (Landsat + Sentinel-2) and cloud-based 

infrastructures such as Google Earth Engine and Planet Insight Browser (see Section 

2.5) has further enhanced temporal coverage, producing dense datasets for regional 

and continental snow monitoring. Automated pipelines on these platforms support 

near-real-time snow product generation and visualization (Mohammadi et al., 2023; 

Puliti a et al., 2017). 

       Observations across the European Alps show that snow extent has been 

decreasing, especially at mid-elevations, where rising temperatures accelerate 

snowmelt and shorten seasonal duration (Marty et al., 2017; Terzago et al., 

2023).Model-based syntheses confirm that temperature, more than precipitation, 

is the dominant control on snow variability, highlighting the sensitivity of Alpine 

snow to ongoing warming (Kotlarski et al., 2023). 
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Despite improvements in data processing, NDSI analyses in mountainous terrain 

remain challenged by topographic shadows, forest canopy interference, and short-

lived clouds, which can affect snow detection accuracy. Nonetheless, advanced 

correction techniques, such as terrain normalization and multi-date compositing, 

have considerably enhanced the reliability of Sentinel-2–based snow monitoring in 

complex landscapes. 

As illustrated in Figure 2.5, the Sentinel-2 NDSI maps effectively distinguish 

snow and glacier cover, while advanced classifiers such as SVM and XGB refine the 

separation between ice and non-ice surfaces (Mohammadi et al., 2023). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Comparison of Sentinel-2 NDSI maps and 

machine learning classifiers (ANN, C5.0, NBC, SVM, XGB) for 

glacier and snow detection across test sites in Canada (CAN), 

Chile (CHI), Sweden (SWE), and Switzerland (SWIT). Blue areas 

represent glaciers. 
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In addition to binary classification, the Copernicus Fractional Snow Cover (FSC) 

product provides 20 m resolution estimates of the percentage of snow within each 

pixel across Europe. This fractional metric serves as a key validation dataset because 

it quantifies partially snow-covered areas that NDSI may classify as either snow or 

no-snow. As a result, FSC complements NDSI by enhancing accuracy assessment in 

complex mountainous terrain and mixed pixels, making it the preferred reference 

for snow-related validation in this study (see Chapter 3 for details on its 

implementation). 

To process these spectral indices efficiently across multiple years, cloud-based 

platforms were adopted, as described in the next section. 

2.5 Cloud-Based processing platforms 

The Sentinel-2 satellite imagery growth demands cloud-based systems to 

manage data access and processing and visualization operations at high 

performance levels. Users can access and process large Earth Observation (EO) 

datasets through online systems which eliminate the need for storage space and 

powerful computing equipment.  

Both Google Earth Engine (GEE) and Planet Insight Browser (formerly Sentinel 

Hub EO Browser) operate with Sentinel-2 Level-2A surface-reflectance products, 

ensuring consistent input data. Their main differences arise from the mosaicking, 

cloud-masking, and data-processing pipelines applied within each system. 

This section presents two major platforms widely adopted in environmental and 

cryospheric studies: Google Earth Engine and Planet Insight Browser (previously 

known as Sentinel Hub EO Browser).  

2.5.1 Google Earth Engine (GEE) 

Fully automated analyses using JavaScript or Python scripting are made possible 

by the Google Earth Engine (GEE) platform, which offers petabyte-scale access to 

multispectral, radar, and climate datasets. Without downloading raw imagery, GEE's 

cloud computing enables scalable Sentinel-2 processing, mosaicking, and time-

series generation. 

 By combining cloud-free composites and surface reflectance correction, GEE 

allows users to compute NDVI and NDSI over wide regions and extended periods of 
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time. The system is perfect for creating repeatable pipelines and validation 

procedures because of its scripting flexibility. 

Prior research has shown that GEE is useful for Alpine monitoring, such as 

phenological evaluations in mountain ecosystems (Rösch et al., 2022) and NDVI 

trajectory analysis for landslides and wildfires (Lasaponara et al., 2020; Notti et al., 

2023). The platform offers free access for research purposes and outputs data in 

several formats (GeoTIFF, CSV, and JSON) (see Figure 2.6 for interface overview). 

 

 

 

 

 

 

2.5.2 Planet Insight Browser (formerly Sentinel Hub EO Browser & 

APIs) 

The Planet Insight Browser now operates under Planet Labs since the Sentinel 

Hub service transition while offering quick visualization and analysis capabilities for 

Sentinel-2 data within the Copernicus program. The interface enables users to view 

multispectral imagery and create NDVI and NDSI composites and obtain processed 

layers through its web interface or Application Programming Interfaces (APIs).  

Unlike the previous open access Sentinel Hub Statistical API, the new Planet 

Insight API requires user registration and authentication via an access token. The 

free version of the service has restrictions on the number of requests and data 

volume, but professional subscriptions provide access to bigger workflows. The 

system provides data outputs through standard formats which include Geo TIFF and 

PNG and JSON metadata.  

The platform excels in interactive visualization and figure generation, making it 

particularly suitable for rapid assessments and communication with non-technical 

audiences. However, compared to GEE, its restricted scripting and automation 

capabilities limit its use for large-scale time-series or validation studies. 

Figure 2.6 Google Earth Engine Code Editor 

interface, Source: Science Park Study Group (2015). 
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The flexible cloud-based architecture of Planet Insight, shown in (Figure 2.7), 

demonstrates how web-based and API workflows can integrate with GIS software 

and Python or JavaScript environments for on-demand visualization and data 

delivery. 

 

 

 

 

 

 

 

 

2.6 Otsu thresholding for NDVI and NDSI 

The conversion of continuous spectral indices like NDVI and NDSI into binary 

classes (vegetated/non-vegetated or snow/no-snow) needs automated threshold 

selection methods which produce consistent results across different environmental 

conditions.  

Unlike fixed thresholds that rely on predetermined values, the Otsu approach 

computes an optimal threshold (t) directly from the image histogram, maximizing 

the variance between classes while minimizing variance within each class. 

This data-driven process removes human subjectivity in threshold definition and 

ensures consistent classification across different environmental settings. 

The method analyses the histogram of pixel values and finds the separation 

point that best divides two distinct distributions, for example, vegetated vs. non-

vegetated or snow-covered vs. bare areas based on reflectance differences. The 

optimal threshold is located at the lowest point between the two peaks of the 

frequency distribution, as shown in Figure 2.8. 

 

Figure 2.7 Planet Insight (formerly Sentinel Hub) data 

architecture and application. Source: ESA (2019). 



Scientific and Project Framework 

 
29 

σB2(t)=ω1(t)ω2(t)[μ1(t)−μ2(t)]2 

where 𝜎𝐵
2is the between-class variance, 𝜔1and 𝜔2are the probabilities of the 

two classes, and 𝜇1and 𝜇2are their mean values. The optimal threshold 𝑡∗is found 

where 𝜎𝐵
2(𝑡)is maximized. 

For large-scale or multi-temporal analyses, where manual selection would be 

inconsistent, automated thresholding works especially well. 

 The Otsu algorithm is perfect for studies that span several years or climatic 

conditions because it can adjust to scene-specific conditions like illumination, snow 

albedo, or vegetation density. To maintain methodological consistency across all 

years and validation datasets, Otsu thresholding was applied to both the NDVI and 

NDSI datasets in this study. 

 Because Otsu thresholding creates stable binary masks that reduce class 

overlap under different illumination conditions, it is advantageous for NDVI 

classification ( Xue et al ., 2021; Zhou, 2020).  

Likewise, for NDSI, this approach outperforms static thresholds in high-

reflectance or shaded terrain and successfully separates snow from other bright 

surfaces (such as ice or clouds) (Gascoin et al., 2019; Härer et al., 2018) 

For example, Otsu thresholding effectively extracted snow extent in the Pyrenees 

and Mount Erciyes, even in the presence of variable illumination (Gascoin et al., 

2018). 

Research literature suggests several guidelines for optimal Otsu 

implementation: 

• Apply Otsu thresholding to specific time periods or spatial subsets where 

snow or vegetation presence is expected to vary. 

• Integrate cloud and shadow masks to minimize atmospheric and 

topographic artifacts. 

• Document threshold sensitivity between months or seasons to identify 

environmental shifts. 

These best practices were adopted throughout this study to ensure 

comparability between vegetation (NDVI) and snow (NDSI) analyses. 
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2.7 Validation Approaches 

The reliability of interpreting NDVI and NDSI derived products depends on 

validation processes. 

Validation ensures that index-derived classifications (vegetation and snow) 

accurately represent real-world conditions by comparing them with independent 

reference datasets. 

The European region depends on two primary datasets for this work, including 

CORINE Land Cover (CLC) and LUCAS (Land Use/Cover Area Frame Survey). 

In addition, ecological frameworks such as the Carta degli Habitat and the Natura 

2000 network, developed under the EU Habitats Directive, provide reference maps 

for validating the ecological significance of EO-derived vegetation and snow-cover 

changes. 

      These frameworks extend validation beyond simple land-cover classification, 

linking spectral indices (NDVI, NDSI) to real habitat conditions and conservation 

status. (György Büttner, 2014). 

 

• CORINE Land Cover (CLC): Provides continental-scale land-cover maps at 

100 m resolution with a minimum mapping unit of 25 ha. 

Figure 2.8 Greyscale histograms of (a) NDVI June 2022 and (b) NDSI showing Otsu thresholds 

(solid lines) April 2022 GEE compared with fixed thresholds (dashed). 
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• LUCAS: Offers in-situ field observations at point locations across the EU, 

serving as accurate ground-truth samples for pixel-level validation. 

• Carta degli Habitat (CdH): Supplies polygon-based habitat delineations 

derived from ecological surveys, mainly used for qualitative assessment. 

Using these complementary datasets allowed the analysis to combine spatial 

consistency (CLC), point precision (LUCAS), and ecological context (CdH). 

The accuracy evaluation used confusion matrices to measure the agreement 

between classification outputs and reference data according to (Congalton, Green, 

2019) and (Foody, 2002).The matrix compares predicted versus reference classes 

and summarizes correct (true) and incorrect (false) classifications, enabling 

computation of multiple statistical indicators: 

 

• User’s Accuracy (UA) measures the likelihood that a specific pixel 

classification matches its actual ground-based classification. 

• The Producer’s Accuracy (PA) measures the likelihood that reference 

pixels match their corresponding map classifications. 

• Overall Accuracy (OA) represents the total number of correctly 

classified pixels in relation to the complete dataset. 

• The Kappa Coefficient (κ) evaluates the degree of agreement between 

classification results and reference data by removing random 

classification errors. 

These metrics were computed separately for NDVI (vegetation/non-vegetation) 

and NDSI (snow/no-snow) classifications to ensure cross-index comparability. 

The same validation structure was applied across all datasets and years, 

ensuring methodological consistency. 

 Each validation dataset (CLC, LUCAS, CdH) provided independent samples, and 

NDVI/NDSI predictions at corresponding locations were extracted for accuracy 

computation. 
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Reference Data Vegetation (1) Non-Vegetation (0) Total 

Predicted Vegetation 
(1) 

TP FP TP+FP 

Predicted non-
vegetation (0) 

FN TN FN+TN 

Total TP+FN FP+TN N 

Table 2.1 Structure of a binary confusion matrix illustrating the relationship between predicted 

and reference vegetation classes used for accuracy assessment. 

Where TP, FP, FN, and TN denote true positives, false positives, false negatives, 

and true negatives respectively. 

Applying this standardized approach across both NDVI and NDSI ensures 

consistent accuracy comparison between vegetation and snow-monitoring 

analyses. 

An example of a confusion matrix used in this process is shown in Figure 2.9, 

which visually demonstrates the distribution of correct and incorrect classifications. 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Example of a binary confusion matrix used to evaluate 

classification accuracy, Source: adapted from the Scikit-learn documentation 

(Pedregosa et al., 2011). 
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      2.7.1 Validation with LUCAS 2022 

The LUCAS (Land Use/Cover Area Frame Survey) dataset provides high-

precision, ground-based observations collected across Europe. Its point-based 

design offers reliable validation for pixel-level classification accuracy. 

Research integrating Sentinel-2 NDVI data with LUCAS points demonstrates its 

effectiveness for mapping vegetation dynamics. 

For instance, the research by (d’Andrimont et al., 2021) combined Sentinel-2 

NDVI time series data with LUCAS reference points to create European-scale crop 

type maps which achieved more than 85% overall accuracy through confusion 

matrix analysis that showed most errors occurred between similar types. Similarly, 

research by (Malinowski et al., 2020) evaluated NDVI-based land-cover mapping in 

Poland through LUCAS sample validation which produced high accuracy for forest 

and cropland classes but lower accuracy for transitional and mosaic core( Drolon et 

al.,2017) applied Sentinel-2 NDVI data in GEE to classify categories. 

Such results highlight LUCAS as a robust reference for vegetation-related 

validation due to its direct field observations and precise geolocation. 

2.7.2 Validation with CORINE land cover 2018 

The CORINE Land Cover (CLC) dataset provides a harmonized European land-

cover inventory with a 100 m spatial resolution, making it well suited for class-based 

validation at regional and continental scales. (Belcore et al., 2024)) used CLC to 

validate Alpine NDVI classifications, reporting an overall accuracy of 94.5%, 

confirming clear spectral separability between grasslands, shrubs, and forest areas. 

Similarly, (Varga et al., 2020) observed distinct NDVI patterns among CLC Level-1 

categories (forest, cropland, urban), supporting its reliability for vegetation-type 

evaluation. 

For snow mapping, several studies have applied confusion-matrix validation to 

CLC-based or in-situ datasets. (Häre et al., 2019) evaluated Otsu and fixed NDSI 

thresholds for Turkey’s Mount Erciyes, finding that Otsu improved snow detection 

but occasionally underestimated snow extent. In the (Pyrenees, Gascoin et al., 2018) 

validated Sentinel-2 NDSI using in-situ snow depth measurements, showing that 

adaptive thresholding enhanced performance under variable illumination 

conditions. 
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These findings confirm that CLC supports class-wise validation of both NDVI and 

NDSI, though its coarse resolution limits fine-scale pixel accuracy compared to 

LUCAS. Consequently, this study adopted CORINE for categorical validation and 

LUCAS for point-level validation, ensuring complementary accuracy evaluation. 

2.7.3 Validation with Habitat Maps (Carta degli Habitat / Natura 2000) 

Building upon the CORINE and LUCAS-based validation, the Carta degli Habitat 

framework aligned with the EU Habitats Directive and the Natura 2000 network 

serves as an ecological labelling system that enhances land-cover inventory and 

conservation assessments. 

The ecological processes of structure and species composition and conservation 

status make these frameworks suitable for validating the ecological significance of 

EO-derived greenness changes that extend beyond basic cover types. 

 Sentinel-2-derived NDVI trajectories and identified habitat types can be 

compared thanks to the CdH database. For instance, (Čahojová et al.,2022) and ( 

Pesaresi et al.,  2020) identified unique forest phenology patterns within Annex I 

habitats using time-series NDVI and functional principal component analysis (FPCA), 

with accuracies of up to 87.5% in temperate and Mediterranean regions. 

 Furthermore, it was shown by (Moravec et al., 2023) that Natura 2000 polygons 

exhibiting aberrant spectral behavior can be identified using a combination of 

Sentinel-1 and Sentinel-2 features, which leads to targeted field verification. 

The NDSI method finds limited use in habitat validation but remains important 

for snow-dependent habitats because snow duration acts as a vital ecological factor. 

The existing research shows that combining NDSI-based snow duration 

measurements with NDVI phenology analysis would create a dual ecological 

assessment system for habitats that require both snow presence and growing 

season duration for their identification and condition assessment. 

2.7.4 Random-point validation 

When ground-truth data are scarce or dispersed unevenly, a common validation 

technique is random or stratified point sampling.  
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In order to extract predicted classes (such as vegetation/non-vegetation or 

snow/no-snow) from NDSI or NDVI maps, representative sampling points are 

randomly generated within the Area of Interest (AOI).  

Accuracy metrics like user and producer accuracy are then calculated by 

comparing these sampled values with reference datasets (such as CORINE and 

LUCAS). Due to its ability to objectively and reproducibly evaluate classification 

performance across large or complex terrains, this approach has gained widespread 

adoption (Olofsson et al., 2014; Congalton, 1991). 

Random sampling has been used in Alpine applications to assess spatial 

variability in snow cover and guarantee statistical robustness on MODIS and Landsat 

snow maps. 

Its reliability mainly depends on two factors: 

1. The representativeness and spatial density of the sampled points, and 

2. The accuracy of the reference data used for comparison. 

Random-point validation complements the other datasets by ensuring 

classification consistency across the AOI, particularly where in-situ data are scarce. 

2.7.5 Validation with Copernicus Fractional Snow Cover  

The Copernicus Fractional Snow Cover (FSC) product serves as the primary 

quantitative reference for snow-cover validation in this study. 

 FSC data, available at 20 m resolution since 2016, represent the proportion of 

snow within each pixel providing a fractional rather than binary view of snow extent 

(Nagler et al., 2015; Salomonson &  Appel, 2004). 

This capability is especially valuable for mixed or partially snow-covered pixels 

that traditional NDSI classification may mislabel. 

FSC data are widely used to validate or complement NDSI-derived snow 

products in mountain regions because they supply frequent, spatially detailed 

updates (Gascoin et al., 2019; Dumont et al., 2020). Research has shown that FSC 

supports two complementary validation pathways: 

1. Binary validation, where pixels with FSC ≥ 50 % are interpreted as snow; and 
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2. Fractional validation, in which continuous NDSI-FSC relationships are 

analysed through correlation or RMSE metrics. 

The integration of Sentinel-2 data with Copernicus FSC ensures spatial 

consistency and temporal continuity, making FSC an optimal external benchmark 

for Alpine snow-monitoring studies (Puliti et al., 2021; Mohammadi et al., 2023). 

To evaluate classification accuracy, the study adopted a confusion-matrix 

framework (introduced in Section 2.7), which summarizes agreement between 

predicted and reference snow classes (Figure 2.9). 

     2.8 Transition to methodology 

The scientific and technical basis of this study was laid out in the previous 

sections, which described how Sentinel-2 spectral indices (NDVI and NDSI), 

thresholding techniques (fixed and Otsu), and a multi-layer validation framework 

are used for vegetation and snow monitoring in Alpine regions. 

 These elements work together to create an integrated Earth Observation (EO) 

approach that is intended to assess the spatiotemporal evolution of snow cover and 

vegetation greenness under varying climatic conditions. 

 While the integration of CORINE, LUCAS, Carta degli Habitat, and Copernicus 

FSC datasets provides complementary validation scales  from continental land-cover 

consistency to ground-truth precision and ecological relevance the combination of 

fixed and adaptive thresholds allows for the detection of both year-specific 

variability and stable long-term trends. 

Moreover, the use of cloud-based platforms (Google Earth Engine and Sentinel 

Hub) ensures efficient data acquisition, processing, and reproducibility across 

multiple years. 

Chapter 3 builds upon this conceptual framework by presenting the operational 

workflow employed in this thesis. It details the step-by-step procedures for data 

acquisition, pre-processing, index computation, threshold application, and 

validation, as illustrated in the graphical methodology diagram. This transition from 

theoretical foundation to applied methodology ensures that the analysis is both 

scientifically grounded and operationally reproducible across the Western Italian 

Alps. 
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Presentation Of Case Study 

3.1 The Maritime Alps as a Study Area 

3.1.1 Importance within ACLIMO Project 

The ACLIMO (Alpine Climate Monitoring) Project is an INTERREG cross-border 

initiative coordinated by ARPA Piemonte in collaboration with academic and 

regional partners from Italy and France. The project aims to establish a harmonized 

framework for monitoring Alpine environmental dynamics by integrating satellite 

Earth Observation data, in-situ measurements, and geohazard field validation. 

The main objectives of ACLIMO are to enhance understanding of Alpine climate 

change impacts on snow cover, vegetation phenology, and slope stability, while 

supporting long-term ecosystem and hazard management strategies. Through the 

development of multiscale and multi sensor methodologies, the project promotes 

consistent data acquisition, thresholding, and validation approaches across 

representative Alpine sites. 

To achieve these objectives, ACLIMO applies a standardized methodological 

framework that combines optical and radar satellite imagery with meteorological 

and ground-based datasets, enabling spatial and temporal analyses of snow- and 

vegetation-related processes. This multilevel approach allows for both local-scale 

assessments and regional-scale comparisons of climatic responses across the 

Western Alps. 

Within this framework, the present study contributes to the first analytical 

component of ACLIMO, focusing on small-scale and satellite-based investigations of 

vegetation and snow dynamics. By implementing Sentinel-2 Level-2A imagery and 

dual-thresholding methods (fixed vs. adaptive), the research strengthens the 

project’s overarching goal of monitoring climate-driven transformations in Alpine 

ecosystems and validating methodological consistency across border areas between 

Italy and France. 
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3.1.2 Description of the Area 

The Maritime Alps represent the southernmost section of the Alpine arc which 

connects northwestern Italy (Piedmont and Liguria) to southeastern France 

(Provence-Alpes-Côte d’Azur). The mountain range reaches from the Col de Tende 

in the southern part to the Stura di Demonte Valley in the northern section with 

elevations that span from 500 meters of foothills to peaks higher than 3,000 meters 

including Monte Argentera at 3,297 meters. The area presents a distinctive Alpine 

landscape with deep valleys and glacial basins and steep mountain slopes which 

create an intricate mountainous terrain (Bonardi et al. (2010); COMOGLIO et al., 

2003)Figure 3.1 provides a detailed topographic view of the Maritime Alps, while 

Figure 3.2 situates the ACLIMO Project study area along the Italy–France border 

within the Aree Protette Alpi Marittime and Mercantour National Park regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Detailed view of Maritime Alps, Source: 

Mohseni (Mapping Snow and Vegetation Coverage Using 

Multitemporal Open Satellite Imagery: Case Study of Maritime 

Alps, Politecnico di Torino 

Figure 3.2. ACLIMO Project study area located along 

the Italy–France border within the Maritime Alps, 

encompassing the Aree Protette Alpi Marittime and 

Mercantour National Park regions. Source: ACLIMO 

Project, Politecnico di Torino (2024). 
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3.1.3 Geological setting 

The Maritime Alps form part of the southern Alpine mountain range because 

they exist where European and Adriatic tectonic plates meet. The area consists of 

gneisses and schists and granites which alternate with sedimentary rock layers of 

limestone and marl (Comoglio et al., 2003). The diverse geological foundation 

creates extensive landscape variability because it produces unstable steep rock 

faces and glacial deposits in valley basins and karstic systems within carbonate-rich 

areas. The geological structure determines both the formation of the landscape and 

the development of soils and water systems and slope activities which directly 

influence plant growth and snow accumulation patterns. 

3.1.4 Climatic conditions 

The Maritime Alps function as a transitional area between Mediterranean 

climate zones and Alpine climate zones. The Mediterranean climate pattern of mild 

winters and dry summers dominates the lower valley areas but the higher mountain 

regions experience Alpine weather with heavy snowfall and prolonged snow cover 

and cool summer temperatures (Comoglio et al., 1978; JRC, 2023). The mountainous 

terrain creates enhanced precipitation patterns which result in more than 2000 mm 

of annual rainfall in certain drainage areas.  

Recent climate studies indicate that this region exhibits high sensitivity to 

warming trends, with snow seasons starting later and ending earlier, leading to a 

measurable reduction in snow duration and depth (Marty et al., 2017; Terzago et 

al., 2023). These shifts have major implications for hydrology, vegetation phenology, 

and slope stability in Alpine catchments. 

3.1.5 Ecological and biodiversity value 

The Maritime Alps qualify as Europe's most biodiverse region because they 

combine Mediterranean and Alpine biological regions. The region contains many 

unique species and different environments which range from Mediterranean 

shrublands to alpine tundra and permanent snow areas (Casazza et al., 2005).The 

area contains numerous protected Natura 2000 sites and regional parks that 

safeguard its diverse ecosystems including Parco Naturale Alpi Marittime in Italy and 

Parc National du Mercantour in France. The ecosystems face high sensitivity to snow 

regime changes because snowbed communities face extinction from reduced snow 
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periods while forest ecosystems move to higher elevations  (Cornelissen et al., 

2007). 

This ecological variability makes the Maritime Alps a key natural laboratory for 

studying climate impacts on vegetation–snow interactions using Earth Observation 

data. 

3.1.6 Historical and environmental events 

Scientists have been studying the Maritime Alps because these mountains show 

high sensitivity to natural climate and geological changes. The historical 

documentation (Comoglio, 2003). The 1994 Piedmont flood and subsequent Little 

Ice Age ended with glacial retreat which became more rapid during the 20th century 

according to floods in 2020 triggered numerous landslides and debris flows 

throughout the region because heavy rainfall events make steep slopes highly 

susceptible to failure (Castellaro et al., 2014). The region demonstrates how climate 

changes affect snow conditions and vegetation growth which in turn creates new 

hazards. 

Building upon this regional and historical context, the following section presents the 

remote sensing datasets and satellite processing services employed for quantifying 

vegetation and snow-cover dynamics in the Maritime Alps. 
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3.2. Considered Services for Sentinel-2 NDVI and NDSI Access 

Sentinel-2 was selected for this study because it provides open-access 

multispectral data with 10–20 m spatial resolution and a five-day revisit frequency, 

which are particularly suitable for detecting vegetation and snow dynamics in 

mountainous terrain. Its long temporal coverage (2018–2024) also ensures 

compatibility with previous satellite time series such as Landsat and MODIS, 

facilitating trend continuity and inter-sensor comparison for long-term Alpine 

monitoring. 

The evaluation of Sentinel-2 imagery requires selecting efficient Earth 

Observation (EO) services capable of managing large datasets and performing pre-

processing operations for NDVI and NDSI analysis. 

The process of downloading and processing large Sentinel-2 Level-1C and Level-

2A products through ESA’s Copernicus Open Access Hub becomes inefficient for 

time-series studies in mountainous regions (Gorelick et al., 2017)Therefore, this 

study focused on cloud-based platforms that automate atmospheric correction, 

mosaicking, and spectral index generation. 

The Climate Engine platform provides browser-based access to pre-computed 

NDVI time-series data from Landsat, Sentinel-2, and MODIS satellites 

(https://climateengine.org). The study by Huntington et al. (2017) demonstrated its 

utility for large-scale vegetation anomaly and drought index analysis, though it lacks 

pixel-level precision. 

The Agri4Cast service, developed by the Joint Research Centre (JRC) of the 

European Commission, generates dekadal NDVI composites for agricultural 

monitoring from 2000 onwards (https://agri4cast.jrc.ec.europa.eu). However, its 

aggregated data resolution is insufficient for detailed Alpine terrain analysis (Baruth 

et al., 2007). 

The NASA Earthdata LP DAAC distributes MODIS and VIIRS snow and vegetation 

products at global scale (https://lpdaac.usgs.gov). While it ensures long-term 

temporal consistency, its spatial resolution (250–500 m) limits application in small 

Alpine catchments (Hall & Riggs, 2007; Gascoin et al., 2018). 

The ARPA Piemonte Geoportal provides regional NDVI layers for the Piemonte 

Alps but lacks access to raw raster datasets required for quantitative analysis 

(https://www.arpa.piemonte.it). 
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Currently, the two most adaptable platforms for Sentinel-2 data processing are 

the Planet Insight Browser (formerly Sentinel Hub EO Browser) and Google Earth 

Engine (GEE). Both enable fast data visualization, atmospheric correction, and 

spectral index generation for vegetation and snow monitoring (Belcore et al., 2024;  

Phiri et al., 2020)).  

• Planet Insight Browser enables rapid online visualization and 

NDVI/NDSI computation through an intuitive interface and API access. 

• Google Earth Engine provides powerful scripting capabilities (JavaScript 

and Python) for batch processing, multi-temporal analysis, and 

integration with validation datasets. 

Previous studies (Belcore et al., 2024; Mohammadi et al., 2023) confirm that 

GEE-based pipelines achieve high accuracy (94–95 %) in Alpine NDVI/NDSI mapping 

and can efficiently scale to continental snow-monitoring workflows. 

For this thesis, Sentinel Hub was used for visual inspection, cloud filtering, and 

scene selection, while GEE managed automated computation, thresholding, and 

validation steps. This dual-platform strategy optimized both efficiency and accuracy, 

ensuring reproducibility for long-term vegetation and snow monitoring in the 

Maritime Alps. 
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Platform Strengths Limitations Suitability for study 

Climate Engine Simple browser interface; 
automatic temporal 
aggregation (mean, 
anomalies, trends); 

supports Sentinel, Landsat, 
MODIS 

Limited polygon flexibility; 
restricted raw data export; 

results often pre-aggregated 

Useful for quick time-
series checks, but not 
selected as a core tool 

Nasa Earthdata 
LP DAAC 

Validated MODIS/VIIRS 
NDVI and NDSI products; 

global, long-term 
consistency 

Coarser resolution (250–500 
m); limited flexibility in 

thresholding and AOI clipping 

Complementary 
background dataset, but 

not primary tool 

 

 

Agri4Cast Dekadal NDVI composites; 
long time series since 2000; 

CSV outputs at regional 
scale 

Only aggregated 
statistics, no raster export; 

limited spatial detail 

Good for regional-scale 
vegetation trends, not 

local analysis 

ARPA Piemonte 
Geoportal 

Regional NDVI 
visualizations for Piedmont; 

useful for qualitative 
validation 

Provides static 
maps only (no raw rasters, 

no thresholding) 

Used as contextual 
reference only 

Sentinel Hub 
(EO Browser & 

APIs) 

Direct access to Sentinel-
2NDVI/NDSI layers; custom 
scripts; rapid visualization; 

time-lapse; supports 
Statistical API for 

aggregation 

EO Browser requires manual 
image selection; advanced 

features (Statistical API) need 
subscription 

 

Selected as one of 
two main platforms 

(rapid analysis & 
visualization) 

Google Earth 
Engine 

Free for research; 
planetary-scale datasets 

(Sentinel, Landsat, MODIS, 
etc.); cloud masking; 

thresholding; reproducible 
scripted workflows; area 

statistics 

Requires programming skills; 
steep learning curve for 

beginners 

 

 

 

Selected as one of two 
main platforms 

(scalable, reproducible 
analyses) 

 

Table 3.2 Comparison of selected Earth Observation platforms used for NDVI and NDSI data 

access and analysis. Adapted from Huntington et al. (2017); Baruth et al. (2007); Hall & Riggs 

(2007); Gascoin et al. (2018); Belcore et al. (2020); Fernández et al. (2023); Radic et al. (2020); ARPA 

Piemonte (2023). 
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3.3 Sentinel Hub and Google Earth Engine: Vegetation and 

Snow Monitoring 

The research depends on Sentinel Hub and Google Earth Engine (GEE) to access, 

process and analyze Sentinel-2 NDVI and NDSI data through their cloud-based 

platforms. The two platforms work together to provide complete functionality for 

fast visualization and pre-processing to large-scale computation and validation 

supporting long-term monitoring of vegetation and snow patterns in the Alpine 

region. 

3.3.1 Overview and Functionality 

The Sentinel Hub platform (EO Browser & APIs) provides users with immediate 

access to Sentinel-1 and Sentinel-2 and Landsat and MODIS data through its 

browser-based interface. Users can access real-time vegetation and snow index 

calculations (NDVI and NDSI) through the platform which also supports automated 

time-lapse sequence generation without requiring local data storage. The Statistical 

API and Evalscript environment of Sentinel Hub enables users to create customized 

band operations and temporal statistics aggregation which makes it ideal for small 

to medium Alpine studies that need fast validation and inspection. (Milcinski et al., 

2017; Sentinel Hub Documentation, 2024.) 

Google Earth Engine (GEE), by contrast operates as a cloud-based computing 

system which contains a vast multi-petabyte database of Sentinel and Landsat and 

MODIS satellite data. The platform supports complex algorithm development 

through its JavaScript and Python APIs which also enable multi-sensor data fusion 

and time-based analysis for large-scale NDVI/NDSI calculations and climate variable 

integration. The platform enables researchers to perform large-scale vegetation 

pattern studies and snow cover duration assessments through its reproducible 

analysis capabilities. (Gorelick et al., 2017; (Chang et al., 2023). 

In this thesis, Sentinel Hub was used for quick inspection, mosaicking, and 

cloud-free composite generation, while GEE handled statistical analysis, Otsu 

thresholding, and validation. 

 This complementary use of the two systems ensures both efficiency in data 

access and depth in analytical modeling for snow and vegetation monitoring. 
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3.3.2 Comparative Strengths and Weaknesses 

The two platforms operate with different methods to handle Sentinel-2 data 

although they access the same upstream data source. The point-and-click interface 

of Sentinel Hub allows users to perform fast visual inspections and generate small-

area products for export purposes, which makes it suitable for exploratory work and 

validation tasks. The system requires programming skills to operate but provides 

extensive processing abilities and global data access and automated workflow 

management for multi-temporal analysis. 

Table 3.3 summarizes the main comparative features of both platforms in 

relation to NDVI/NDSI processing efficiency and analytical suitability. 

Aspect Sentinel Hub EO Browser Google Earth Engine 

Mode of access Web interface, on-the-fly 
processing 

Code-driven (JS/Python APIs) 

Data Catalog Copernicus + curated datasets 90+ PB global catalog 

Vegetation Monitoring Quick NDVI/NDRE maps, 
timelapses 

Long-term NDVI/EVI trends, 
ML pipelines 

Snow Monitoring 
Built-in NDSI & Snow Classifier 

Custom NDSI metrics, multi-
sensor fusion 

Cloud Masking s2cloudless convenience 
bands 

Cloud probability dataset 
(LightGBM) 

Scalability Small/medium AOIs; rapid 
exports 

Regional to global scale 
analyses 

Learning Curve Low; suitable for non-
programmers 

Moderate–high; coding 
required 

Cost/Licensing 
Free basic access; API plans 

required for heavy use 

Free for research/education; 
commercial options via 

Google Cloud 

Table 3.3 Comparative strengths and weakness of Sentinel Hub and Google Earth Engine, Sources: 

Milcinski et al. (2017); Gomes et al. (2020); Sentinel Hub Docs (2024); Google Earth Engine Docs 

(2024). 
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3.3.4 Practical Applications and Workflow Examples  

The Sentinel Hub EO Browser system lets users obtain NDVI data at field level 

by choosing areas of interest followed by running NDVI scripts and exporting 

results as images or statistics. Users can perform fast on-demand vegetation 

pattern assessments across their chosen scenes for initial research purposes. 

Sentinel Hub was mainly utilized in this study for scene visualization, mosaic 

creation, and manual cloud-free condition verification prior to automated 

processing. Preliminary validation of NDSI-derived maps was made easier by the 

Snow Classifier tool in the EO Browser, which allowed visual inspection of snow 

extent and short-term snow persistence. 

The same process in GEE demands scripting yet enables users to conduct 

extensive large-scale analysis. The defined workflows in GEE enable users to 

retrieve and process NDVI and NDSI data sets across different spatial areas which 

range from small catchments to the complete Alpine region. 

The automated workflow in GEE allows for consistent application of 

thresholding and validation steps, reducing subjectivity during index 

interpretation. 

A recent example by (Adrián Melón-Nava, 2024) illustrates the effectiveness 

of similar GEE-based methods, where Sentinel-2 surface reflectance data 

combined with cloud-probability layers were used to create daily snow 

persistence maps for Alpine regions. This reinforces the reliability of using GEE for 

automated and reproducible large-area processing. 

3.3.5 Data Quality and Coverage Considerations 

The two platforms utilize Sentinel-2 Level-2A data which present identical 

restrictions because of cloud cover and terrain shadow effects and missing data in 

mountainous areas. Research by (Dirk Tiede a et al., 2021) shows that high cloud 

detection rates decrease the number of available pixels for analysis. 

To address these limitations, the study implemented a compositing and 

filtering strategy that harmonized the NDVI and NDSI datasets from both 

platforms.  
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In Sentinel Hub, rapid visual inspection and cloud-free mosaic generation 

allowed the creation of preliminary reference composites. In GEE, more advanced 

filtering was applied through automated cloud-masking and temporal compositing 

scripts, ensuring consistency in pixel selection across months and years. 

These combined approaches ensured data quality uniformity and reduced 

noise from illumination differences, topographic shadows, and residual clouds an 

essential step for accurate NDVI and NDSI threshold calibration, as emphasized by  

(Sudmanns et al., 2019) and (Gomes et al. 2020). 

3.4 Normalized Difference Indices: NDVI and NDSI 

The NDVI and NDSI indices are operationally applied in this study to analyze 

vegetation and snow-cover dynamics throughout the Maritime Alps, building on 

the conceptual overview and formulas provided in Sections 2.6 and 2.7. 

To ensure uniformity in spatial and temporal coverage, both indices were 

generated from Sentinel-2 Level-2A surface reflectance data and processed using 

a single workflow in Google Earth Engine (GEE) and Sentinel Hub. 

3.4.1 Normalized Difference Vegetation Index (NDVI) 

The NDVI was used as a stand-in for phenological variability and vegetation 

greenness.  

To capture vegetation change over time, composites were created for the 

peak growing seasons of June 2018 and June 2022. As explained in Section 4.4, 

both Otsu-adaptive thresholds and a fixed threshold (t = 0.3) were used to classify 

pixels as vegetated or non-vegetated. 
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3.4.2 Normalized Difference Snow Index (NDSI) 

Snow persistence and seasonal extent were mapped using NDSI. 

Composites representing late-winter to early-spring conditions were created for 

April 2018 and April 2022. For comparison with NDVI-derived vegetation 

classifications, the classification used both fixed threshold (t = 0.42) and Otsu-

based methods (for more information, see Section 4.4). 

3.5 Data Access and Processing Workflows for NDVI and 

NDSI 

The only preprocessing steps that separate NDVI and NDSI are spectral bands 

and threshold parameters. 

 GEE and Sentinel Hub were used to access Sentinel-2 imagery, which was then 

mosaicked into monthly composites after being filtered for less than 10% cloud 

cover. 

 Following cloud and shadow masking, these composites were harmonized to 

a spatial resolution of 10 m and categorized using the appropriate index 

thresholds. 

 Vegetation and snow analyses are methodologically aligned and directly 

comparable across platforms and years thanks to the harmonized workflow. 

Whereas low or negative index values indicate bare or inactive areas like soil or 

water bodies, positive values indicate surfaces that are vegetated or covered in 

snow. 
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3.5.1 Sentinel Hub workflow  

Objective. 

        Implement Sentinel Hub’s Process API to generate NDVI and NDSI composites 

for each selected month and Area of Interest (AOI) in the Maritime Alps. 

The workflow reproduces cloud-filtered Sentinel-2 L2A image retrieval, index 

computation through EvalScripts, and binary classification using both fixed and 

Otsu-adaptive thresholds. 

Procedure: 

• Masking and indices: 

     Custom EvalScripts were written to compute NDVI and NDSI from Sentinel-

2 L2A bands while masking clouds and shadows through the Scene 

Classification Layer (SCL: classes 3, 8, 9, 10 masked; 11 retained for snow). 

• Daily mosaics: 

        Sentinel Hub retrieves all valid scenes below the specified cloud-cover 

threshold (< 10 %) within each AOI and month. Daily NDVI/NDSI rasters are 

generated and mosaicked on-the-fly into 10 m grids (UTM 32 N). 

• Monthly mean:  

      Daily mosaics are aggregated using mean values to obtain monthly 

composites clipped to each AOI (e.g., NDVI_YYYY_MM_mean_SH.tif). 
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• Robust Otsu: 

Percentile-trimmed (2nd–98th %) NDVI/NDSI values are scaled to 8-bit (0–255) 

and processed through the Otsu algorithm to compute adaptive thresholds, 

later converted back to index units for classification masks. This trimming 

reduces the influence of outlier values such as residual clouds or noise before 

threshold optimization. 

 

 

 

 

 

 

 

 

• Masks and metrics:  

      Fixed (NDVI ≥ 0.30; NDSI ≥ 0.42) and Otsu masks are produced; area (km²) 

and mismatch (%) between methods are calculated. 

• Exports: 

Outputs include monthly means, Otsu and fixed masks, XOR difference 

layers, and summary metrics (masked area, mismatch %). 

All results are exported as GeoTIFF (10 m, EPSG:32632) and PNG visualizations. 

 

 

 

Figure 3.3 Example of AOI clipping and percentile 

trimming applied to NDVI/NDSI raster 
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3.5.2 GEE workflow (cloud-side and post-processing) 

Objective.  

Replicate the Sentinel Hub logic within Google Earth Engine (GEE) using the 

COPERNICUS/S2_SR_HARMONIZED collection to produce equivalent NDVI and 

NDSI composites under identical conditions. 

Procedure: 

Masking and indices: 

 Cloud and shadow pixels were masked using SCL classes 3, 8, 9, 10, retaining 

snow (class 11). 

 NDVI and NDSI were computed through the normalizedDifference() function. 

Daily mosaics:  

Sentinel-2 images were filtered by AOI, date, and cloud cover (< 10 %) and 

processed to generate daily NDVI/NDSI rasters mosaicked at 10 m resolution 

(UTM 32N). 

Monthly mean:  

Daily mosaics were averaged using .mean() to create monthly composites 

clipped to the AOI, following the same temporal scheme as Sentinel Hub. 

Robust Otsu:  

The same percentile-trimmed Otsu algorithm was implemented server-side to 

derive adaptive thresholds directly from the NDVI/NDSI histograms. 

Masks and metrics:  

Fixed and Otsu masks were generated. Area (km²) and mismatch (%) were 

computed via pixelArea() for cross-platform comparison. 
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Exports: 

Monthly means, masks, and difference layers were exported as GeoTIFFs (10 

m, EPSG:32632) to Google Drive. 

Post-processing (Python): Offline scripts recomputed robust Otsu thresholds 

for quality assurance, generated triptychs, and summarized metrics. 

3.5.3 Definition of the monthly mean 

For a given pixel 𝑝 in month 𝑀, the monthly mean of NDVI or NDSI is computed 
as the arithmetic average of all valid daily mosaics: 

  

 

 

where 𝐼denotes NDVI or NDSI, and 𝑥𝑝,𝑑are daily index values within the range 

[−1,1]. Invalid pixels (e.g., clouds, shadows, or missing data) are excluded from 

both the sum and the count. 

This averaging approach follows best practices in satellite index compositing 

(Gorelick et al., 2017) and ensures that the resulting monthly means represent 

robust averages of valid clear-sky observations, rather than isolated single-date 

scenes. 

       This method was selected because it minimizes the influence of short-term 

atmospheric variation and provides stable temporal indicators of vegetation and 

snow dynamics across complex Alpine terrain. 

It should be noted, however, that while the arithmetic mean is optimal for 

assessing seasonal and interannual trends, alternative compositing strategies such 

as maximum-value compositing—may be more suitable for estimating maximum 

snow extent or peak vegetation greenness under specific study objectives. 
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3.5.4 Definition of the robust Otsu threshold 

The classical Otsu method (Otsu, 1979) identifies the threshold that 

maximizes the between-class variance on a histogram to separate two spectral 

classes (e.g., snow/non-snow or vegetation/non-vegetation). 

        To minimize sensitivity to outliers and histogram tails, a robust variant was 

applied as follows: 

1. Extract valid monthly mean NDVI or NDSI values within the AOI, i.e., pixels 

not flagged as cloud, shadow, or snow by the Scene Classification Layer 

(SCL). 

2. Compute the 2nd and 98th percentiles (𝑝2, 𝑝98) to remove extreme values. 

3. Clamp (limit) all data to the interval [𝑝2, 𝑝98], effectively discarding values 

outside this range to stabilize threshold computation. 

4. Linearly rescale the clamped values to an 8-bit range (0–255). 

5. Apply the Otsu algorithm to obtain a threshold 𝑇8in 8-bit units. 

6. Convert this threshold back to the original index scale using: 

𝒕∗\ = 𝒑𝟐  + 
𝑻𝟖

𝟐𝟓𝟓
(𝒑𝟗𝟖 − 𝒑𝟐) 

where 𝑡∗represents the final Otsu threshold value expressed in NDVI or NDSI 

units. 

This approach ensures that the computed threshold is robust against extreme 

outliers while maintaining sensitivity to genuine spectral transitions in snow or 

vegetation classes. 

3.5.5 Cloud/shadow masking and mosaicking 

Both workflows (Sentinel Hub and GEE) apply cloud and shadow masking 

based on the Sentinel-2 Level-2A Scene Classification Layer (SCL), which labels 

each pixel according to surface or atmospheric conditions. 
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 To ensure accurate index values, the following classes were filtered: 

• Rejected: SCL 3 (cloud shadow), 8 (cloud), 9 (high cloud), 10 (cirrus) 

• Retained: SCL 11 (snow) — used for NDSI; vegetated classes (4–6) for NDVI 

After masking, each day’s valid imagery was composited into a single daily 

mosaic: 

• Sentinel Hub: Utilized the MosaickingOrder.SIMPLE mode, which 

automatically prioritizes the least-cloudy scenes after SCL filtering. 

• Google Earth Engine (GEE): Used the .mosaic() function, ordering images 

by ascending cloud probability to produce a single clear-sky composite per 

day. 

One daily mosaic was thus produced for each valid observation date, which 

then contributed to the monthly mean composites described in Section 3.5.3. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Sentinel Hub 

cloud/shadow masking and 

mosaicking workflow for 

NDVI/NDSI processing. 



 Materials & Methods 

  

 
55 

3.5.6 Equivalence and minor differences between platforms 

Both Sentinel Hub and GEE ultimately produce equivalent results cloud-

masked daily mosaics aggregated into monthly means and thresholded NDVI/NDSI 

maps. 

However, small technical differences arise from internal data handling: 

• Resampling: Sentinel Hub explicitly resamples each mosaic to a 10 m grid 

before monthly averaging. GEE performs averaging natively and applies 

resampling only at export. 

• Mosaic tie-breaks: When multiple valid scenes overlap on the same date, 

each platform may prioritize slightly different pixels (e.g., by acquisition 

time or scene order), causing minor local variation. 

These differences are negligible at the monthly scale and appear only as 

minimal area mismatches (%) in the Otsu vs. fixed-threshold comparison 

diagnostics. 

Both systems therefore maintain methodological equivalence in terms of 

cloud-masking logic, compositing, and temporal aggregation. The tie-break 

procedures, illustrated in Figure 3.3, highlight how Sentinel Hub prioritizes 

sequence order while GEE prioritizes image clarity an operational difference that 

becomes negligible once daily mosaics are averaged into monthly means. 

 

 

 

 

 

 

 

Figure 3.5 Illustration of mosaic tie-

break handling between Sentinel Hub and 

Google Earth Engine. 
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3.5.7 Deriving NDVI and NDSI Maps in QGIS 

The monthly mean NDVI and NDSI rasters were imported into QGIS 3.36.1 for 

spatial post-processing and classification. Within the GIS environment, raster 

algebra operations and vector-based masking were applied to generate binary 

vegetation and snow-cover maps suitable for spatial analysis and visualization. The 

Maritime Alps AOI shapefile was used to spatially constrain the raster composites, 

ensuring that all subsequent analyses were restricted to the defined study area. 

The Raster Calculator tool was employed to execute index-based classification 

using both fixed thresholds (NDVI ≥ 0.30; NDSI ≥ 0.42) and adaptive thresholds 

derived from the robust Otsu algorithm. The procedure used continuous index 

values to create binary classes which distinguished between vegetated and non-

vegetated areas and snow-covered and snow-free regions. The classification 

workflow standardized raster values which made it possible to evaluate different 

temporal composites.  

Following classification, the Clip Raster by Mask Layer function (Raster → 

Extraction → Clip by Mask Layer) was applied to enforce spatial constraints and 

retain only pixels within the Maritime Alps AOI extent. The clipped rasters served 

as input data to evaluate snow and vegetation spatial patterns during specific 

months including April 2020 for NDSI and NDVI. The resulting layers underwent 

visual and statistical verification against reference masks which were produced in 

Sentinel Hub.  
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This integrated QGIS workflow, summarized in Figure 3.6, standardized all 

spatial operations including raster import, threshold application, masking, and AOI 

clipping ensuring consistency between NDVI and NDSI map derivation. The 

synchronized outputs allowed the evaluation of vegetation and snow dynamics 

across time and supported the quantification of environmental changes in the 

Maritime Alps. 

 

 

 

 

 

 

 

 

 

 

3.6 Validation Approaches 

3.6.1 Validation of NDVI with CORINE Land Cover 2018 

To evaluate the reliability of NDVI-derived vegetation masks, we validated the 

classification against the CORINE Land Cover 2018 (CLC2018) dataset, which 

provides harmonized land-cover information for Europe at 100 m resolution with 

a minimum mapping unit of 25 ha ( EEA, 2019 )The goal was to quantify the 

agreement between Sentinel-2 NDVI classifications and an independent, 

authoritative land-cover reference by means of a confusion matrix and accuracy 

indices. 

Figure 3.6. Overall QGIS workflow for NDVI 

and NDSI map derivation, showing the sequence 

of raster import, threshold-based classification, 

and AOI clipping for spatial and temporal analysis 

in the Maritime Alps. 
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Step 1: Preparation of the NDVI Raster. 

       The monthly mean NDVI raster was first thresholded to obtain a binary 

vegetation mask. Pixels with NDVI ≥ 0.30 were assigned to the vegetation class 

(value = 1), while all others were assigned to the non-vegetation class (value = 0). 

This threshold has been widely adopted in the literature as an indicator of active 

vegetation cover (Tucker, 1979; Rouse et al., 1974). The resulting binary raster 

(NDVI_binary.tif) represents the predicted classification. 

 

 

 

 

 

 

 

 

 

Step 2: Preparation of CORINE Land Cover Reference Classes. 

         The CORINE 2018 dataset was imported into QGIS and reclassified into two 

broad categories: vegetation and non-vegetation.  

Following the CORINE nomenclature, all Level 3 codes corresponding to 

forests, natural grasslands, sclerophyllous vegetation, transitional woodland-

shrub, and sparsely vegetated areas (e.g., codes 311, 312, 313, 321, 324, 333) 

were grouped into the vegetation class (value = 1). 

 All other codes, including artificial surfaces, agricultural land, wetlands, and 

water bodies, were grouped into the non-vegetation class (value = 0). 

Figure 3.7 NDVI binary vegetation mask derived from Sentinel-2 

composite (June 2019), Maritime Alps AOI. 
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 The reclassified dataset (CLC2018_binary.shp) thus provided the reference 

or “ground truth” classification. 

The CORINE layer was then harmonized with Sentinel-2 data by applying CRS 

transformation to EPSG: 32632 WGS 84 / UTM Zone 32 N for precise overlay 

alignment and spatial matching with NDVI rasters. Finally, it was clipped to the 

Maritime Alps AOI to retain only relevant classes within the study boundaries. 

Step 3: Sampling Design 

To statistically represent both vegetation and non-vegetation classes, 1,000 

random points were generated within the Maritime Alps AOI using a random 

sampling design. To prevent clustering and ensure adequate coverage across all 

land-cover types, the Random Points in Polygons function in QGIS was used to 

evenly distribute the points (≥ 30 m apart). 

The spatial distribution of these sampling points is shown in Figure 4.93, which 

illustrates their coverage within the study area. 

Step 4: Extraction of Values 

        At each sampling point, the binary NDVI value was extracted from the NDVI 

raster using the Sample Raster Values tool in QGIS. The CORINE Land Cover 

(CLC2018) dataset provided the reference vegetation/non-vegetation attribute 

for the same locations. This step resulted in a point dataset containing both the 

predicted (NDVI-based) and reference (CORINE-based) classifications for each 

sampling location.  

Step 5: Spatial Join and Attribute Integration 

The extracted NDVI and CORINE attributes were combined through the Join 

Attributes by Location (Summary) tool in QGIS, using the geometric predicate 

intersects. 

The resulting dataset contained two binary fields NDVI_bin (0/1) and veg_class 

(0/1) ,forming the input for confusion-matrix computation. 

Step 6: Confusion Matrix and Accuracy Metrics 

The comparison between NDVI predictions and CORINE reference classes was 

summarized in a confusion matrix. The matrix cross-tabulates the number of 

points where NDVI and CORINE classifications agree (true positives for 
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vegetation, true negatives for non-vegetation) and disagree (false positives, false 

negatives). From this table, several accuracy metrics were computed: 

• Overall accuracy, defined as the proportion of correctly classified points, 

• Producer’s accuracy (recall), measuring how well NDVI detects actual 

vegetation, 

• User’s accuracy (precision), measuring the reliability of NDVI’s vegetation 

classification, and 

• Cohen’s Kappa coefficient, evaluating agreement beyond chance. 

 

 NDVI=0 NDVI=1 

CORINE=0 TN FP 

CORINE=1 FN TP 
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Let N= TP + FP + FN + TN. 

Overall Accuracy (OA) 

𝑂𝐴 =
TP + TN

𝑁
 

Producer’s Accuracy (Recall) – Vegetation 

𝑃𝐴𝑣𝑒𝑔 =
TP

𝑇𝑃 + 𝐹𝑁
 

For non-vegetation 

𝑃𝐴𝑛𝑜𝑛𝑣𝑒𝑔 =
TN

𝑇𝑁 + 𝐹𝑃
 

User’s Accuracy (Precision) – Vegetation 

  

𝑈𝐴𝑣𝑒𝑔 =
TP

𝑇𝑃 + 𝐹𝑃
 

For non-vegetation 

𝑈𝐴𝑛𝑜𝑛𝑣𝑒𝑔 =
TN

𝑇𝑁 + 𝐹𝑁
 

Cohen’s Kappa (κ) 

First compute the observed agreement P0 and the chance agreement Pe: 

𝑃𝑜 =
TP + TN

𝑁
 

𝑃𝑒 =
(TP + FP)(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)

𝑁2
 

Then 

𝐾 =
𝑃0 − 𝑃𝑒

1 − 𝑃𝑒
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Step 7: Statistical Analysis. 

The confusion matrix was built from the exported attribute table of the sampled 

points. The accuracy metrics were calculated through both Excel and Python 

(scikit-learn library) to verify the consistency of the results. The analysis of NDVI 

as a vegetation cover proxy followed established best practices for accuracy 

assessment (Congalton, 1991; Olofsson et al., 2014) by examining both the 

positive and negative aspects of the method. 

The validation framework enabled a systematic evaluation of NDVI-derived 

vegetation masks against CORINE Land Cover 2018 data to measure classification 

precision and detect possible errors caused by different land-cover types and 

resolution differences and seasonal changes. 

3.6.2 Validation of NDVI with LUCAS 2022 and Confusion Matrix 

The LUCAS 2022 (Land Use/Cover Area Frame Survey) dataset contains 

standardized field measurements which span the European Union through a 2 km 

grid system. The survey points contain complete land use and land cover 

classification information together with photographic documentation. The sub-

hectare scale sampling of LUCAS makes it an essential resource for validating 

Sentinel-2 vegetation index measurements (Gallego & Delincé, 2010; d’Andrimont 

et al., 2021). 

A confusion-matrix-based validation was applied to assess the agreement 

between NDVI-derived vegetation masks and LUCAS 2022 observations. The 

workflow, carried out in QGIS, followed the steps below. 

Step 1 : Preparation of NDVI raster 

As in the CORINE validation, monthly mean NDVI composites were first 

thresholded into binary vegetation/non-vegetation maps. A fixed threshold of 

0.30 was applied (Tucker, 1979; Rouse et al., 1974), which is widely recognized as 

a reliable indicator distinguishing active green vegetation from bare soil or 

sparsely vegetated surfaces. Values above 0.30 generally correspond to healthy 

vegetation canopy, while lower values indicate non-vegetated or low-productivity 

areas. 
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This threshold was also verified as suitable for the Maritime Alps, where NDVI < 

0.30 typically represents rock, snow, or bare alpine terrain, whereas higher values 

correspond to grassland and forested zones. 

𝑁𝐷𝑉𝐼𝑏𝑖𝑛𝑎𝑟𝑦 = {
1   𝑖𝑓 𝑁𝐷𝑉𝐼 ≥ 0.30
0    𝑖𝑓 𝑁𝐷𝑉𝐼 < 0.30

 

Step 2 : Import and preparation of LUCAS points 

The LUCAS 2022 survey points were imported into QGIS as a vector layer. Each 

point has an attribute such as LC1 (primary land cover class). For validation, classes 

were reclassified into a binary vegetation/non-vegetation scheme: 

• Vegetation (1): Cropland, grassland, shrubland, forest, and other 

seminatural areas. (e.g., LC1 codes A, B, C, D, E, F, G in LUCAS 

nomenclature). 

• Non-vegetation (0): Artificial surfaces, bare land, water, wetlands. 

This reclassification was carried out in the Field Calculator with an expression 

like: 

CASE 

  WHEN "LC1" IN ('A','B','C','D','E','F','G') THEN 1 

  ELSE 0 

END 

The resulting layer LUCAS_binary now contains a column veg_class with values 

1 (vegetation) or 0 (non-vegetation). 

Step 3 : Extract NDVI values to LUCAS points 

To link the NDVI classification with the LUCAS ground truth, the Sample Raster 

Values tool was used: 

• Input point layer: LUCAS_binary 
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• Raster layer: NDVI_binary.tif 

• Output field: NDVI_bin 

The resulting point layer (LUCAS_NDVI_sampled) contains, for each LUCAS 

point, the reference vegetation class (veg_class) and the NDVI-derived class 

(NDVI_bin). 

Step 4: Export and Construction of Confusion Matrix 

The attribute table of LUCAS_NDVI_sampled was exported to CSV file (Export 

→ Save Features As → Format: CSV). 

This file contained the paired classification results (veg_class and NDVI_bin), 

which were used to construct a 2×2 confusion matrix in Excel or Python. 

The matrix summarized the relationship between NDVI predictions and LUCAS 

reference classes, identifying true and false classifications for vegetation and non-

vegetation categories. 

Step 5: Accuracy Assessment 

The same formulas and procedures outlined in Section 3.6.1 were used to 
calculate accuracy metrics, such as Overall Accuracy (OA), Producer's Accuracy 
(PA), User's Accuracy (UA), and Cohen's Kappa (κ). 

 In comparison to field-based LUCAS observations, these indices offered a 
numerical assessment of NDVI classification performance. 

Step 6: Statistical Verification 

To guarantee computational consistency, all computations were validated 

using QGIS and Python (scikit-learn). 

 By offering greater spatial precision and in-situ ground reference, the LUCAS-

based validation enhances the overall reliability of NDVI classification results 

across several validation scales, complementing the CORINE-based assessment. 
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3.6.3 Post-Validation Evaluation and Sensitivity Analysis 

The validation process with CORINE 2018 and LUCAS 2022 datasets was 

followed by the evaluation of NDVI classification performance across different 

threshold values and the assessment of accuracy metric stability. A sensitivity 

analysis was then performed to test NDVI thresholds ranging from 0.25 to 0.35. 

The analysis of confusion matrices and accuracy indices for each threshold enabled 

us to measure how variations in threshold values affect classification reliability. 

Sensitivity Analysis 

NDVI ≥ 0.30 was used as the main fixed threshold, but alternative cut-offs 

(0.25, 0.27, 0.285, 0.30, 0.315, 0.33, and 0.35) were tested to capture threshold 

sensitivity. For each threshold, the pipeline produced: 

1. A confusion matrix (TP, FP, FN, TN). 

2. Accuracy metrics (OA, PA, UA, κ). 

3. Graphical outputs showing metric variation with threshold. 

The following section demonstrates the results obtained from sensitivity 

analysis conducted during validation. The analysis of each NDVI threshold 

included confusion matrix construction followed by accuracy index 

calculations for Overall Accuracy and Precision and Recall and Cohen’s Kappa. 

The results were displayed through graphical representations to demonstrate 

how classification results change based on different threshold values. 

The sensitivity plots display accuracy and precision and recall curves for all 

tested thresholds which enable users to detect the balance between incorrect 

positive and negative results. The reference dataset histograms display NDVI 

value distributions between vegetation and non-vegetation classes to 

demonstrate the essential threshold selection area. 

The graphical assessment enables users to understand how threshold 

adjustments affect accuracy metrics while helping them determine the most 

suitable operational NDVI threshold for vegetation mapping. 
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3.6.4 Validation of NDVI with Carta degli Habitat 

The Carta degli Habitat (CdH) dataset provides a detailed, high-resolution 

habitat mapping system developed under the EU Habitats Directive and Natura 

2000 framework. Its fine thematic granularity makes it particularly suitable for 

validating NDVI-derived vegetation maps (Pesaresi et al., 2020; Čahojová et al., 

2022), complementing the broader land-cover datasets such as CORINE and the 

point-based LUCAS survey. 

Following the general validation framework described in Section 3.6, NDVI-

derived binary vegetation masks (NDVI ≥ 0.30 = 1; < 0.30 = 0) were compared 

against CdH reference polygons reclassified into vegetated and non-vegetated 

habitats. The reclassification was based on habitat codes representing forest, 

shrub, grassland, and alpine communities, using: 

CASE 

  WHEN "HAB_CODE" IN ('9210', '9230', '9420', '6170', '4060', '8210', '8220', 

'8230') THEN 1 

  ELSE 0 

END 

A stratified random sample of 1,000 points was generated within the AOI, 

ensuring equal representation of vegetation and non-vegetation classes. At each 

sampling location, NDVI binary values were extracted from the NDVI_binary.tif 

raster and joined with the corresponding CdH vegetation attribute. 

From this joined dataset, a confusion matrix was produced with CdH serving 

as the reference layer. Accuracy metrics including overall accuracy (OA), 

producer’s accuracy (PA), user’s accuracy (UA), and Cohen’s Kappa (κ) were 

computed according to the formulations in Section 3.6.1. 

This ensured consistency across all validation datasets (CORINE, LUCAS, and 

CdH) and enabled comparative analysis of NDVI classification performance across 

multiple reference frameworks. 
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3.6.5 Validation of NDSI Results 

The accuracy assessment of Sentinel-2 derived NDSI snow cover classification 

used two independent validation methods. The first validation method used 

random points within the study area to compare NDSI snow/no-snow 

classifications at specific locations. The second validation method used external 

reference data from the Copernicus Fractional Snow Cover (FSC) product which 

provides daily snow cover information at 20 m resolution starting from 2016. The 

two validation methods combined to assess NDSI output accuracy through internal 

and external validation methods. 

3.6.5.1 Validation by Random Points 

This first approach aimed to test the internal consistency of NDSI snow 

classification by sampling random points across the Area of Interest (AOI). The 

workflow in QGIS proceeded as follows: 

Step 1: Prepare NDSI Raster 

       Monthly mean NDSI rasters were computed and thresholded into binary 

maps using both the fixed threshold (NDSI ≥ 0.42 = snow, Hall et al., 1995) and 

Otsu’s adaptive thresholding (Otsu, 1979). The result was a binary raster (snow = 

1, no-snow = 0). 

Step 2: Generate Random Points 

        Using Random Points in Polygon tool in the Processing Toolbox, 1,000  

random points were distributes within the AOI. This ensured an unbiased spatial 

distribution across both snow-covered and snow-free areas. 

Step 3: Sample Raster Values 

      The Sample Raster Values tool assigned each random point a snow/no-snow 

class from the binary NDSI raster. 

Step 4: Confusion Matrix and Accuracy Indices 

        The sampled points received export to a CSV file which allowed the creation 

of a confusion matrix from the attribute table to assess classification accuracy.  
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The accuracy indices were calculated using the standard methods from 

Section 3.6.1 to obtain overall accuracy (OA) and producer’s accuracy (PA) and 

user’s accuracy (UA) and Cohen’s Kappa coefficient (κ).  

These metrics quantified the thematic accuracy of the NDSI masks by 

measuring the degree of agreement between predicted classifications and 

observed conditions, providing insight into the performance of fixed and Otsu 

thresholds under varying snow conditions. 

3.6.5.2 Validation with Copernicus Fractional Snow Cover (FSC) 

The second validation strategy used the Copernicus FSC product to obtain 

fractional snow cover estimates between 0 and 100% at 20 m resolution which 

matched Sentinel-2 tiling. The validation used an operational product to compare 

NDSI-derived snow maps through direct pixel-to-pixel assessment. 

Step 1 : Understand the FSC Product 

        Each FSC file is distributed as a ZIP archive containing:  

• GeoTIFF raster with fractional snow cover values (0–100%). 

• Metadata (XML/JSON) descriptors. 

• Quality masks indicating clouds or no-data pixels. 

For validation, only the GeoTIFF raster was required. Special codes (205, 254, 

255) were treated as no data. 

Step 2: Select Files Overlapping the AOI 

       FSC tiles covering the Maritime Alps (e.g., T32TLP, T31TGJ) were identified 

and downloaded. 

For multi-tile AOIs, rasters were merged (Raster → Miscellaneous → Merge). 

Step 3: Preprocess FSC 

       FSC rasters were unzipped, normalized to 0–100%, and loaded into QGIS with 

no-data values masked out. 

Step 4: Prepare NDSI Raster for Comparison 

        The NDSI results (binary or fractional) were resampled to the same 
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projection (EPSG:32632), resolution (20 m), and extent as the FSC data using 

Raster → Projections → Warp (reproject). 

Step 5 : Validation Workflows 

Two approaches were applied: 

• Option A: Binary Validation 

FSC values were reclassified as: 

𝐹𝑆𝐶 ≥ 50% → 𝑆𝑛𝑜𝑤 = 1 , 𝐹𝑆𝐶 < 50% → 𝑛𝑜 − 𝑠𝑛𝑜𝑤 = 0  

The binary FSC layer was compared with NDSI classifications using the Raster 

Calculator to generate a confusion matrix (snow vs. no-snow). 

• Option B: Fractional Validation 

FSC values were retained as continuous percentages (0–100) and compared 

against continuous NDSI values using statistical measures: 

Pearson’s correlation (r): 

𝑟 =
∑(𝑥𝑖 − 𝑥−) (𝑦𝑖 − 𝑦−)

√∑(𝑥𝑖 − 𝑥−) ^2 ∑(𝑦𝑖 − 𝑦−)^2
 

Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 

where xi are NDSI-derived values and yi are FSC percentages. 

         Step 6: Accuracy Reporting 

        Binary validation outputs (OA, PA, UA, κ) were reported alongside 

correlation and RMSE from fractional validation. This dual approach quantified 

both categorical agreement and continuous similarity, providing a robust 

evaluation of NDSI performance.
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Data,Processing,Results 

4.1 NDVI Dynamics from Google Earth Engine  

The initial part of the analysis examined NDVI time patterns for April and June 

using Google Earth Engine (GEE) as the analytical platform. These months were 

chosen as they represent two critical phases in the Alpine vegetation cycle early-

season growth and full canopy development allowing assessment of both 

temporal and classification variability. 

The analysis used Sentinel-2 imagery to create monthly composites restricted 

to areas with less than 15% cloud cover. Two classification techniques were 

applied for each month of the study period. 

The classification used NDVI values above 0.30 to identify vegetation and 

below 0.30 for non-vegetation, following (Tucker, 1979) and (Rouse et al,.1974). 

The Otsu adaptive thresholding method determined an optimal cut-off value by 

analyzing image histograms to maximize between-class variance (Otsu, 1979). 

Binary vegetation masks produced from both fixed and adaptive thresholds 

enabled comparison of vegetation cover across spring and early-summer 

conditions. The temporal analysis highlights changes in greenness and illustrates 

how thresholding strategies influence vegetation classification outcomes. 
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Figure 4.1 NDVI 2018 April Fix Threshold Figure 4.2 NDVI 2018 April Otsu Threshold 

Figure 4.3 NDVI 2019 April Fix Threshold Figure 4.4 NDVI 2019 April Otsu Threshold 

Figure 4.5 NDVI 2020 April Fix Threshold Figure 4.6 NDVI 2020 April Otsu Threshold 
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Figure 4.7 NDVI 2021 April Fix Threshold Figure 4.8 NDVI 2021 April Otsu Threshold 

Figure 4.9 NDVI 2022 April Fix Threshold Figure 4.10 NDVI 2022 April Otsu Threshold 

Figure 4.11 NDVI 2023 April Fix Threshold Figure 4.12 NDVI 2023 April Otsu Threshold 
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Figure 4.13 NDVI 2024 April Fix Threshold Figure 4.14 NDVI 2024 April Otsu Threshold 

Figure 4.15 NDVI 2018 June Fix Threshold Figure 4.16 NDVI 2018 June Otsu Threshold 

Figure  4.18 NDVI 2019 June Otsu Threshold Figure 4.17 NDVI 2019 June Fix Threshold 
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Figure 4.19 NDVI 2020 June Fix Threshold Figure  4.20 NDVI 2020 June Otsu Threshold 

Figure 4.21 NDVI 2021 June Fix Threshold Figure 4.22 NDVI 2021 June Otsu Threshold 

Figure 4.23 NDVI 2022 June Fix Threshold 
Figure 4.24 NDVI 2022 June Otsu Threshold 
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Figure 4.25 NDVI 2023 June Fix Threshold Figure 4.26 NDVI 2023 June Otsu Threshold 

Figure 4.27 NDVI 2024 June Fix Threshold Figure 4.28 NDVI 2024 June Otsu Threshold 
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Figure 4.29 NDVI 2018 April Comparison 
Figure 4.30 NDVI 2019 April Comparison 

Figure 4.31 NDVI 2020 April Comparison Figure 4.32 NDVI 2021 April Comparison 

Figure 4.33 NDVI 2022 April Comparison Figure 4.34 NDVI 2023 April Comparison 

Figure 4.35 NDVI 2024 April Comparison Figure 4.36 NDVI 2018 June Comparison 

Figure 4.37 NDVI 2019 June Comparison 
Figure 4.38 NDVI 2020 June Comparison 
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PLATFORM YEAR MONTH OTSU 
THRESHOLD 
VALUE(NDVI) 

VEGETATION 
COVER 

AREA(Km^2) 
OTSU 

THRESHOLD 

VEGETATION 
COVER 

AREA(Km^2) 
THRESHOLD 

>0.3 

Difference 
Mask 

Mismatch 
% 

Earth Engine 2018 April 0.22 1429.03 1514.56 3.97 
Earth Engine 2018 June 0.47 2384.72 2658.91 8.61 
Earth Engine 2019 April 0.28 1669.89 1613.26 1.76 
Earth Engine 2019 June 0.47 2394.14 2682.70 9.00 
Earth Engine 2020 April 0.28 1886.35 1824.62 1.92 
Earth Engine 2020 June 0.52 2427.52 2785.47 11.33 
Earth Engine 2021 April 0.30 1546.03 1578.28 1.23 
Earth Engine 2021 June 0.52 2448.29 2797.65 10.94 
Earth Engine 2022 April 0.29 1734.07 1699.24 1.08 
Earth Engine 2022 June 0.56 2412.39 2850.38 13.65 
Earth Engine 2023 April 0.30 1977.62 1991.06 0.42 
Earth Engine 2023 June 0.53 2506.79 2831.02 10.17 
Earth Engine 2024 April 0.27 1722.04 1668.32 1.67 
Earth Engine 2024 June 0.51 2233.46 2522.20 9.85 

Table 4.1 Summary of NDVI classification results obtained from Google Earth Engine for April 

and June (2018–2024) 

Figure 4.39 NDVI 2021 June Comparison Figure 4.40 NDVI 2022 June Comparison 

Figure 4.41 NDVI 2023 June Comparison Figure 4.42 NDVI 2024 June Comparison 
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Figure 4.43 NDVI vegetation cover area (km²) for April 

(2018–2024), grouped by method (Otsu vs Fixed > 0.3). 

Figure 4.44 NDVI vegetation cover area (km²) for June 

(2018–2024), grouped by method (Otsu vs Fixed > 0.3). 

Figure 4.45 Otsu vs Fixed difference mask (%) for April 

(2018–2024). 

Figure 4.46 Otsu vs Fixed difference mask (%) for June 

(2018–2024). 
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4.2 NDVI Dynamics from Google Earth Engine 

Google Earth Engine (GEE) was used to analyse the NDVI temporal dynamics 

for April and June of 2018–2024. To guarantee data consistency, Sentinel-2 

imagery was processed into monthly composites with less than 15% cloud cover. 

Two classification techniques were used: an Otsu adaptive threshold that 

maximizes the between-class variance of image histograms to automatically 

determine the ideal cut-off value and a fixed threshold (NDVI ≥ 0.30) (Otsu, 1979). 

Both methods were used to assess vegetation cover variations throughout the 

Maritime Alps and create binary vegetation masks. 

Otsu thresholds varied from 0.22 to 0.30, reflecting yearly variations in 

spectral and phenological conditions, according to the findings from April 

composites (Figures 4.29 to 4.35 and Table 4.1). The fixed-threshold approach 

produced values between 1669 km² and 1991 km², whereas the Otsu method 

estimated vegetation cover to range from 1556 km² in 2018 to 1978 km² in 2023. 

A high degree of consistency between the two approaches was indicated by the 

difference-mask mismatches staying below 10%. These inter-annual fluctuations 

suggest that vegetation will gradually increase after 2020, particularly in low-

elevation regions where longer growing seasons and earlier snowmelt improve 

greenness. This is consistent with earlier research that documented changes in the 

timing of spring phenology and the interactions between vegetation and snow in 

Alpine regions ((Choler et al., 2021); Rösch et al., 2022). The earlier onset of 

greening now occurring two to three weeks earlier than in previous decades ( 

Barichivich et al., 2014; Gottfried et al., 2012)further supports the role of NDVI as 

a sensitive indicator of snow-vegetation transitions. 

As vegetation reaches its seasonal maximum, the June composites (Figures 

4.36 to 4.42) show advanced canopy development. Otsu thresholds for dense 

canopy reflectance during this time ranged from 0.47 to 0.56. According to the 

Otsu method, the extent of vegetation peaked in 2023 at roughly 2507 km². June 

saw a generally higher percentage of differences, which was indicative of the 

impact of topographic illumination variations and canopy saturation. In line with 

other Alpine studies, the observed seasonal NDVI trajectory tracks the expansion 

of vegetation from spring to midsummer, driven by snowmelt (Lamprecht et al., 

2018; Belcore et al., 2024). While the fixed threshold offers more stability in 

homogeneous and high-biomass zones, sparsely vegetated, and transitional areas, 
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adaptive thresholds better capture vegetation variability in these areas, according 

to validation against the CORINE and Carta degli Habitat datasets (see Section 3.6). 

The complementary behavior of both approaches is demonstrated by the 

overall comparison of them (Figures 4.43 to 4.46). In accordance with the shift 

from early to late vegetation stages, otsu thresholds were continuously lower in 

April and higher in June. Despite being straightforward and repeatable, the fixed 

threshold of 0.30 has a tendency to overestimate vegetation during the fully 

developed summer canopy and underestimate it in the early spring. These 

variations can be seen in the mismatch plots, where greater differences between 

methods are associated with higher vegetation productivity. The results 

emphasize that adaptive thresholds offer finer local accuracy and responsiveness 

to spectral variability brought on by snow persistence, slope orientation, and 

seasonal phenology, whereas fixed thresholds guarantee comparability across 

years. Similar conclusions were drawn by (Malinowski et al. 2020) and (Gascoin et 

al. 2019), who emphasized the benefits of integrating both approaches for 

consistent yet flexible alpine vegetation monitoring. 

Overall, the Maritime Alps display a coherent pattern of vegetation 

development, characterized by early-season greening and mid-summer canopy 

maturity. The combination of fixed and adaptive thresholding approaches 

reinforces the reliability of Sentinel-2 NDVI for monitoring alpine vegetation 

change. The high level of agreement between both classification strategies, 

further validated through CORINE, LUCAS, and Carta degli Habitat datasets, 

provides a robust foundation for the subsequent Sentinel Hub analysis presented 

in Section 4.3. 
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4.3 NDVI Dynamics from Sentinel Hub API 

         The analysis of NDVI dynamics for April and June used Sentinel Hub as the 

processing system in its second section. The Sentinel Hub API provided Sentinel-2 

Level-2A imagery which the system used to create monthly composites through 

daily scene mosaicking with less than 15% cloud cover retention and SCL (Scene 

Classification Layer) mask application to exclude cloud and cirrus and shadow 

classes while keeping snow pixels. 

         The study maintained two classification methods throughout its entire 

duration. The established vegetation monitoring studies (Tucker, 1979; Rouse et 

al., 1974) support the use of NDVI ≥ 0.30 as a fixed threshold to identify vegetation 

areas. The Otsu method (Otsu, 1979) calculates an adaptive threshold by finding 

the optimal NDVI value which maximizes the distinction between vegetation and 

non-vegetation classes. 

        Sentinel Hub produced vegetation masks for April and June through binary 

classification under fixed and adaptive threshold conditions which matched the 

results obtained from Google Earth Engine. The results show how vegetation 

extent changes between seasons while demonstrating how different NDVI 

threshold values affect classification results. The generated outputs demonstrate 

Sentinel Hub's ability to support fast visualization and threshold-based vegetation 

mapping for time-series analysis in mountainous areas. 
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Figure 4.47 NDVI 2018 April Fix Threshold Figure 4.48 NDVI 2018 April Otsu Threshold 

Figure 4.49 NDVI 2019 April Fix Threshold 
Figure 4.50 NDVI 2019 April Otsu Threshold 

Figure 4.51 NDVI 2020 April Fix Threshold 
Figure 4.52 NDVI 2020 April Otsu Threshold 
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Figure 4.53 NDVI 2021 April Fix Threshold Figure 4.54 NDVI 2021 April Otsu Threshold 

Figure 4.55 NDVI April 2022 Fix Threshold Figure 4.56 NDVI April 2023 Fix Threshold 

Figure  4.58 NDVI April 2024 Otsu Threshold Figure 4.57 NDVI April 2024 Fix Threshold 
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Figure 4.59 NDVI June 2018 Fix Threshold Figure 4.60 NDVI June 2018 Otsu Threshold 

Figure 4.61 NDVI June 2019 Fix Threshold Figure 4.62 NDVI June 2019 Otsu Threshold 

Figure 4.63 NDVI June 2020 Fix Threshold Figure 4.64 NDVI June 2020 Otsu Threshold 
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Figure 4.65 NDVI June 2021 Fix Threshold Figure 4.66 NDVI June 2021 Otsu Threshold 

Figure 4.67 NDVI June 2022 Fix Threshold Figure 4.68 NDVI June 2022 Otsu Threshold 

Figure 4.69 NDVI June 2023 Fix Threshold Figure 4.70 NDVI June 2023 Otsu Threshold 
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Figure 4.73 NDVI 2018 April Comparison  

 

Figure 4.71 NDVI June 2024 Fix Threshold Figure 4.72 NDVI June 2024 Otsu Threshold 

Figure 4.77 NDVI 2022 April Comparison Figure2 4.78 NDVI 2023 April Comparison 

Figure 4.74 NDVI 2019 April Comparison 

Figure 4.75 NDVI 2020 April Comparison Figure 4.76 NDVI 2021 April Comparison 
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Figure 4.79 NDVI 2024 April Comparison Figure 4.80 NDVI 2018 June Comparison 

Figure 4.81 NDVI 2019 June Comparison Figure 4.82 NDVI 2020 June Comparison 

Figure 4.83 NDVI 2021 June Comparison Figure 4.84 NDVI 2022 June Comparison 

Figure 4.85 NDVI 2023 June Comparison Figure 4.86 NDVI 2024 June Comparison 
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PLATFORM YEAR MONTH OTSU 
THRESHOLD 
VALUE(NDVI) 

VEGETATION 
COVER 

AREA(Km^2) 
OTSU 

THRESHOLD 

VEGETATION 
COVER 

AREA(Km^2) 
THRESHOLD 

>0.3 

Difference 
Mask 

Mismatch 
% 

Sentinel Hub 2018 April 0.22 1556.46 1359.75 6.44 
Sentinel Hub 2018 June 0.47 2425.86 2695.77 8.46 
Sentinel Hub 2019 April 0.27 1691.35 1597.79 2.91 
Sentinel Hub 2019 June 0.47 2416.65 2698.87 8.80 
Sentinel Hub 2020 April 0.28 1898.41 1826.30 2.25 
Sentinel Hub 2020 June 0.51 2447.74 2787.84 10.70 
Sentinel Hub 2021 April 0.23 1777.07 1471.35 9.55 
Sentinel Hub 2021 June 0.52 2447.81 2790.69 10.75 
Sentinel Hub 2022 April 0.29 1745.48 1715.98 0.92 
Sentinel Hub 2022 June 0.55 2418.59 2847.02 13.37 
Sentinel Hub 2023 April 0.30 1976.49 1973.11 0.11 
Sentinel Hub 2023 June 0.51 2532.35 2813.57 8.81 
Sentinel Hub 2024 April 0.27 1666.46 1595.35 2.21 
Sentinel Hub 2024 June 0.49 2302.02 2591.81 9.45 

Table 4.2. Summary of NDVI classification results obtained from Sentinel Hub for April and 

June (2018–2024) 
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Figure 4.87 Sentinel Hub NDVI vegetation cover (km²) by 

method (Otsu vs fixed >0.3), April 2018–2024. 

Figure 4.88 Sentinel Hub NDVI vegetation cover (km²) by 

method (Otsu vs fixed >0.3), June 2018–2024. 

Figure 4.89 Otsu–Fixed mismatch (%) for Sentinel Hub, April 

2018–2024. 

Figure 4.90 Otsu–Fixed mismatch (%) for Sentinel Hub, 

June 2018–2024. 
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4.4 NDVI Dynamics from Sentinel Hub API 

Using monthly composites from April and June of 2018–2024, the Sentinel 

Hub analysis assessed NDVI temporal dynamics for the Maritime Alps. Direct 

comparability with the Google Earth Engine results was ensured by processing 

Sentinel-2 Level-2A imagery using the Sentinel Hub Process API with consistent 

atmospheric correction, cloud filtering, and pixel mosaicking parameters. In order 

to examine vegetation cover variability across years and seasons, the analysis used 

both the Otsu adaptive threshold method and the fixed threshold (NDVI ≥ 0.30). 

The spectral diversity of early vegetation growth during the snowmelt period 

was reflected in the Otsu thresholds that were derived for April, which varied from 

0.22 to 0.30. The Otsu method's estimates of vegetation cover ranged from 

roughly 1556 km² in 2018 to almost 1977 km² in 2023, whereas estimates from 

the fixed 0.30 threshold were marginally higher, ranging from 1596 km² to 1991 

km². Both approaches successfully capture the start of spring greening when 

canopy cover is still sparse, as evidenced by the low mismatch rates between the 

two approaches, which ranged from 0.1% to 10.7%. In line with earlier research 

on alpine vegetation, these findings demonstrate that NDVI is extremely sensitive 

to early-season spectral changes brought on by snowmelt and rising 

photosynthetic activity (Choler et al., 2021; Rösch et al., 2022). Spatial variations 

in greenness correspond to topographic controls such as slope, aspect, and 

elevation, which strongly influence the timing of vegetation–snow interactions 

(Keller et al., 2005; Alvera et al., 2021). 

Otsu thresholds varied from 0.47 to 0.55 in June, when the vegetation reaches 

its full canopy development. In 2023, the corresponding vegetation cover 

estimates showed full seasonal expansion, peaking at 2523 km². From 8.1% in 

2020 to 13.4% in 2022, the mismatch rates between fixed and adaptive thresholds 

rose during this time. Since NDVI values tend to reach saturation levels under high 

chlorophyll concentrations, these disparities arise from differences in how the two 

methods interpret dense canopy conditions. This behavior, which has also been 

observed in alpine forests in Switzerland and Austria (A Huete a et al., 2020; 

Verrelst et al., 2015), suggests that adaptive thresholds more accurately adapt to 

spectral variability, whereas fixed thresholds tend to overestimate vegetation 

extent in high-biomass areas. 
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All things considered, the Sentinel Hub data show a distinct seasonal shift from 

spring greening to summer maximum leaf cover. While the fixed threshold 

guaranteed comparability across years, the Otsu thresholds captured fine-scale 

spectral transitions across transitional zones and snow–vegetation boundaries. As 

a result, this dual-threshold method makes it possible to reliably monitor alpine 

vegetation's short-term spectral variation as well as inter-annual consistency. The 

analysis supports the findings of Lamprecht et al. (2018) and Belcore et al. (2020) 

that elevation-dependent phenology and snowmelt timing are the main factors 

influencing NDVI dynamics in the Maritime Alps. 

There is a high degree of agreement between the Sentinel Hub and Google 

Earth Engine results. With the biggest differences occurring between June 2022 

and 2023 (~13%) and the smallest occurring in April 2023 (0.1–0.4%), difference-

mask mismatches stayed below 15%. Because both platforms processed the same 

Sentinel-2 Level-2A data with similar cloud and shadow masking settings, they 

generated consistent NDVI trends. The minor variations in pixel mosaicking order 

and resampling techniques, which sometimes affect small-scale reflectance 

variation, are primarily responsible for the remaining discrepancies. 

While the fixed threshold offers a consistent and repeatable baseline for long-

term vegetation monitoring, the overall pattern obtained from both systems 

suggests that Otsu thresholding is better at identifying subtle spectral differences 

brought on by early greening or partial snow cover. These results validate the 

robustness of the dual-threshold framework for alpine ecosystem monitoring and 

support the conclusions from validation exercises with CORINE, LUCAS, and Carta 

degli Habitat. Seasonal and inter-annual vegetation dynamics can be reliably 

captured by automated NDVI processing pipelines, as demonstrated by the strong 

correspondence between Sentinel Hub and GEE results. This supports the 

continued use of multiple platforms for environmental assessment at the regional 

scale. 
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4.5 Validation of NDVI (2018) with CORINE Land Cover 2018 

The CORINE Land Cover 2018 (CLC2018) dataset (EEA, 2019), which offers 

harmonized land-cover information for the entirety of Europe at a spatial 

resolution of 100 m and a minimum mapping unit of 25 ha, was used to validate 

the vegetation cover classification for 2018.  

Two primary categories were created from the reclassification of the CORINE 

classes: Forest, grassland, shrubland, and areas with sparse vegetation are all 

types of vegetation. Water bodies, wetlands, agriculture, and urban areas are 

examples of non-vegetation. 

 The dual-threshold method outlined in Section 3.6 was used to create the 

NDVI classification maps based on Sentinel-2 imagery. Tucker (1979) and Rouse et 

al. (1974) identified vegetated pixels using a fixed threshold (NDVI ≥ 0.30), 

whereas the Otsu adaptive method (Otsu, 1979) automatically identified an 

optimal cut-off that maximized between-class variance in NDVI histograms. 

Threshold 
Method 

UA (non-Veg) UA (Veg) PA (non-Veg) PA 
(Veg) 

Overall 
Accuracy 

(OA) 

Kappa (k) 

Otsu (0.47) 65.1 68.6 36.0 87.8 67.9 26.0 

Fixed (0.30) 76.5 67.6 27.9 94.6 68.9 25.4 

Table 4.3 Accuracy assessment of NDVI 2018 (CORINE Land Cover reference) below Otsu and 

Fixed thresholds for Google Earth Engine 

Threshold 
Method 

Accuracy Precision Recall F1 Score 

Otsu (0.47) 67.90 68.60 87.90 77.00 

Fixed (0.30) 68.90 67.60 94.60 78.90 

Table 4.4 Classification metrics (Accuracy, Precision, Recall, F1 Score) for NDVI 2018 (CORINE Land 

Cover reference) below Otsu and Fixed thresholds in Google Earth Engine. 
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Threshold 
Method 

UA (non-Veg) UA (Veg) PA (non-Veg) PA 
(Veg) 

Overall 
Accuracy 

(OA) 

Kappa (k) 

Otsu (0.47) 66.1 69.7 39.8 87.2 68.9 27.0 

Fixed (0.30) 80.0 67.9 28.1 95.6 69.6 29.1 

Table 4.5 Accuracy assessment of NDVI 2018 (CORINE Land Cover reference) below Otsu and 

Fixed thresholds for Sentinel Hub 

Threshold 
Method 

Accuracy Precision Recall F1 Score 

Otsu (0.47) 68.67 69.72 95.58 79.40 

Fixed (0.30) 69.55 67.91 95.58 79.40 

Table 4.6 Classification metrics (Accuracy, Precision, Recall, F1 Score) for NDVI 2018 (CORINE Land 

Cover reference) below Otsu and Fixed thresholds in Sentinel Hub. 

 

Figure 4.91 Sampling points used for NDVI 2018 validation CORINE 

Land Cover data in Google Earth Engine, Maritime Alps AOI. 
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To extract NDVI predictions and their corresponding CORINE reference labels, 

random sampling points were dispersed throughout the Maritime Alps AOI.  

The Sample Raster Values tool in QGIS was used to process these samples, and 

they were then exported to CSV for accuracy evaluation. Confusion matrices and 

the conventional accuracy indices of Overall Accuracy (OA), Producer's Accuracy 

(PA), User's Accuracy (UA), and Cohen's Kappa (κ) were used to summarize the 

comparison between the reference and predicted classes (Congalton, 1991; 

Olofsson et al., 2014). 

 

 

 

 

 

 

 

 

 

 

The validation was carried out for both Google Earth Engine (GEE) and Sentinel 

Hub workflows, and it included composites from April and June to reflect early- 

and mid-season vegetation conditions. The fixed threshold approach 

overestimated the extent of vegetation in certain non-vegetated areas, but it had 

a strong vegetation recall (≈95%) and an overall accuracy of 68.9% for GEE. 

Although the overall accuracy (67%) was marginally lower, the Otsu threshold 

(≈0.47) produced more balanced commission and omission errors and enhanced 

non-vegetation classification (Table 4.3 and 4.5). 

 

Figure 4.92 Sampling points used for NDVI 2018 validation 

CORINE Land Cover data in Sentinel Hub, Maritime Alps AOI. 
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Both approaches yielded comparable results for Sentinel Hub, with Cohen's κ 

ranging from 0.27 to 0.29 and overall accuracies of roughly 69% (Table 4.4 and 

4.6). While the Otsu approach offered a slightly lower recall but better producer's 

accuracy for non-vegetation areas, the fixed threshold produced the highest recall 

for vegetation (≈95%) but missed a larger fraction of non-vegetation polygons. The 

anticipated seasonal spectral differences are reflected in the trade-off between 

the two approaches: In contrast to June images, which display denser vegetation 

cover that improves classification contrast and lowers uncertainty, April imagery 

features mixed canopy and bare soil conditions. 

Overall, both platforms performed consistently, with Cohen's κ ≈ 0.25 to 0.29 

showing that the CORINE reference classes and NDVI classifications agreed fairly 

well. While the fixed threshold favored maximum detection and thus higher recall, 

the Otsu method proved more conservative by avoiding overestimation of 

vegetation. Both approaches are appropriate for broad-scale vegetation mapping, 

according to the results from April and June. However, the Otsu approach is more 

suited to diverse mountain terrain, and the fixed method maintains strong 

consistency for long-term vegetation dynamics monitoring. 

Further analysis of NDVI threshold optimization and separability is presented 

in Section 4.6 (Figures 4.93–4.100), where detailed threshold-sweep and class-

separation results are examined. 
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4.6 NDVI Threshold Optimization with CORINE 2018 (Google 

Earth Engine and Sentinel Hub) 

Building on the validation results in Section 4.5, the CORINE 2018 dataset was 

further used as a reference for threshold optimization to refine the NDVI-based 

vegetation classification. 

Finding the ideal NDVI cut-off value that maximized classification accuracy 

while achieving the best trade-off between omission and commission errors was 

the goal. For comparability, the process was used with identical CORINE reference 

samples for the Sentinel Hub and Google Earth Engine (GEE) workflows. 

 

The April–June Sentinel-2 monthly composites used in the analysis were initially 

reclassified using the CORINE nomenclature into vegetation and non-vegetation 

classes (Section 4.5). To assess model sensitivity, thresholds between 0.20 and 

0.80 were tested in increments of 0.01. Binary maps (NDVI ≥ t = vegetation; < t = 

non-vegetation) were created for every threshold t. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.93 Confusion matrix at the optimal NDVI threshold 

(t = 0.380), Google Earth Engine 
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The t value that yielded the highest F1-score was found to be the ideal 

threshold. This value combines the advantages of precision and recall and is 

especially well-suited for unbalanced datasets with a higher frequency of 

vegetated pixels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.94 NDVI threshold sweep (CORINE 2018) 

showing Accuracy, Precision, Recall, and F1 versus 

threshold in Google Earth Engine. 

Figure 4.95 NDVI distributions by class (vegetation and 

non-vegetation) with optimal threshold overlay (t = 0.380) for 

CORINE 2018, Google Earth Engine. 

Figure 4.96 Precision–Recall curve for NDVI 

classification (CORINE 2018) in Google Earth Engine (AP = 

0.884). 
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 Figures 4.93-4.96 show that the F1-score curve for GEE peaked at t = 0.38, 

producing an F1 of 0.84, accuracy of 0.77, precision of 0.74, and recall of 0.97. 

With just 11 false negatives, the corresponding confusion matrix verified that 322 

vegetation samples and 86 non-vegetation samples were correctly identified. 

These findings show good class separability within the NDVI histogram (Figure 

4.95) and strong discriminative performance (AP = 0.88). Non-vegetation points 

clustered below 0.4, indicating little class overlap, while the majority of vegetation 

pixels fell between 0.6 and 0.8. 

The threshold sweep yielded very similar results for Sentinel Hub, with the 

best accuracy (≈ 0.76), and F1-score (≈ 0.84), obtained at t = 0.39 (Figures 4.97-

4.100). A balanced precision–recall trade-off and consistent performance across 

thresholds were validated by the Precision–Recall curve (AP = 0.87). The two 

processing platforms converged toward the same ideal threshold range (0.38–

0.39), indicating methodological robustness, despite minor variations in NDVI  

scaling. 

 

 

 

 

 

 

 

 

 

Figure 4.97 Confusion matrix at the optimal NDVI 

threshold (t = 0.390), Sentinel Hub. 
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Overall, the threshold optimization confirms that an NDVI cut-off near 0.38–

0.39 provides a reliable operational boundary between vegetation and non-

vegetation for Sentinel-2 imagery in the Maritime Alps. This threshold improves 

 

 

 

 

 

 

Figure 4.98 Precision–Recall curve for NDVI 

classification (CORINE 2018) in Sentinel Hub (AP = 

0.868). 

Figure 4.99 NDVI distributions by class (vegetation and 

non-vegetation) with optimal threshold overlay (t = 0.390) for 

CORINE 2018, Sentinel Hub. 

Figure 4.100 NDVI threshold sweep (CORINE 2018) 

showing Accuracy, Precision, Recall, and F1 versus threshold in 

Sentinel Hub. 
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the classification of transitional and heterogeneous land-cover areas compared to 

the fixed 0.30 value, while maintaining compatibility with historical NDVI studies.  

Overall, the results confirm that adaptive thresholding enhances classification 

reliability across platforms and seasons, providing a robust basis for accurate long-

term vegetation monitoring in alpine environments. 

4.7 Validation of NDVI (2022) with LUCAS Data 

The NDVI-derived vegetation classifications produced for June 2022 from both 

Google Earth Engine (GEE) and Sentinel Hub were validated using the LUCAS 2022 

(Land Use/Cover Area Frame Survey) dataset. Coordinated by Eurostat, the LUCAS 

program offers standardized field observations gathered on a 2 km grid 

throughout the European Union, along with categorical land-cover data and 

photographic documentation (Gallego & Delincé, 2010; d’Andrimont et al., 2021). 

The dataset is especially well-suited for pixel-level validation of vegetation indices 

derived from satellites due to its high spatial accuracy and in-situ nature. 

Each LUCAS survey point was classified according to its LC1 land-cover code 

and then re-aggregated into two categories: 

• Vegetation (1): agricultural land, grassland, shrubland, forest, and semi-

natural areas. 

• Non-vegetation (0): artificial, bare, wetland, and water surfaces. 

        Using a conditional expression and QGIS's Field Calculator, the reclassification 

was carried out. The GEE and Sentinel Hub raster products' NDVI values were 

extracted using the resultant layer (LUCAS_binary). The Sample Raster Values tool 

created a combined dataset of reference labels and predictions by associating 

each point with its corresponding NDVI-based vegetation class. 
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   To evaluate the agreement between the NDVI classification and the LUCAS 

reference data, validation was conducted using the same methodology as for 

CORINE 2018 (Section 4.5), using confusion matrices and accuracy indices: Overall 

Accuracy (OA), Producer's Accuracy (PA), User's Accuracy (UA), and Cohen's Kappa 

(κ). 

 

        For GEE, the fixed threshold (NDVI ≥ 0.30) yielded an OA of 0.82 and κ = 0.61, 

demonstrating strong concordance with field-survey vegetation points. The Otsu 

adaptive threshold produced similar accuracy (OA = 0.81; κ = 0.60) but better 

balanced class representation by reducing the overestimation of vegetation in 

transitional areas. Precision and recall values (≈ 0.83 and 0.89, respectively) 

confirmed high thematic reliability of the NDVI-based classification (Table 4.7 and 

4.8). 

 

 

 

 

 

Figure 4.101 Sampling points used for NDVI 2022 validation LUCAS data 
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Threshold 
Method 

UA (non-Veg) UA (Veg) PA (non-Veg) PA 
(Veg) 

Overall 
Accuracy 

(OA) 

Kappa (k) 

Otsu (0.56) 62.6 97.6 91.9 85.9 87.1 71.30 

Fixed (0.30) 93.3 92.2 67.7 98.8 92.4 73.70 

Table 4.7. User’s and Producer’s Accuracy for NDVI June 2022 validation using LUCAS 

reference points (processed in Google Earth Engine). 

 

Threshold 
Method 

Accuracy Precision Recall F1 Score 

Otsu (0.56) 87.0 97.6 85.8 91.30 

Fixed (0.30) 92.3 92.2 98.7 95.40 

Table 4.8 Summary comparison of NDVI June 2022 validation metrics using LUCAS reference 

data (Google Earth Engine workflow). 

          The validation results for Sentinel Hub were in agreement with the GEE 

results: OA ≈ 0.81–0.83 and κ ≈ 0.59–0.62 for both thresholding strategies (Table 

4.9 and 4.10). 

 

Threshold 
Method 

UA (non-Veg) UA (Veg) PA (non-Veg) PA 
(Veg) 

Overall 
Accuracy 

(OA) 

Kappa (k) 

Otsu (0.55) 64.0 97.6 91.9 86.6 87.5 73.90 

Fixed (0.30) 99.75 91.2 62.9 99.5 92.0 72.22 

Table 4.9 User’s and Producer’s Accuracy for NDVI June 2022 validation using LUCAS 

reference points (processed in Sentinel Hub). 
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Threshold 
Method 

Accuracy Precision Recall F1 Score 

Otsu (0.55) 87.58 97.66 86.67 91.80 

Fixed (0.30) 92.05 91.21 99.58 95.22 

Table 4.10 Summary comparison of NDVI June 2022 validation metrics using LUCAS 

reference data (Sentinel Hub workflow).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The Otsu method produced more conservative estimates and increased precision 

in heterogeneous landscapes, whereas the fixed threshold slightly overclassified 

vegetation, especially in areas with a predominance of grass and cropland. The 

two platforms' similar accuracy levels, despite slight variations brought on by 

mosaicking and reflectance normalization, show that NDVI classification 

performance is consistent across processing environments. 

 

           With both fixed and adaptive approaches attaining high accuracy in 

comparison to ground truth observations, the LUCAS-based validation validates 

that NDVI thresholding accurately depicts vegetation patterns in the Maritime 

Alps. Because the LUCAS dataset is based on direct field surveys rather than 

Figure 4.102 Sampling points used for NDVI 2022 validation LUCAS 

data, Sentinel Hub. 
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generalized polygons, it offers a cleaner separation between vegetation and non-

vegetation NDVI values when compared to CORINE (Section 4.4). As a result, there 

is less class overlap and greater confidence in the chosen threshold range (0.34–

0.39), as the NDVI histograms display two distinct peaks (vegetation ≈ 0.6–0.8; 

non-vegetation < 0.4). These results demonstrate the benefit of incorporating 

field-based validation data for pixel-level accuracy assessment in alpine 

ecosystems and bolster the NDVI classification methodology's resilience. 

 

4.8 NDVI Threshold Optimization with LUCAS 2022 (Google 

Earth Engine and Sentinel Hub) 

To find the most dependable NDVI cut-off for vegetation mapping under field-

based reference conditions, a threshold optimization analysis was conducted after 

NDVI classifications were validated using the LUCAS 2022 dataset. A more 

sensitive assessment of threshold performance is possible thanks to LUCAS's high 

spatial precision and point-based ground truth, in contrast to CORINE's 

generalized polygon-level data. To guarantee comparability, the optimization was 

carried out for the Sentinel Hub and Google Earth Engine (GEE) workflows using 

the same sampling points and accuracy metrics. 

An increment of 0.01 was used to systematically test a range of NDVI 

thresholds from 0.20 to 0.80. Binary vegetation maps (NDVI ≥ t = vegetation; NDVI 

< t = non-vegetation) were made for each threshold t, and accuracy metrics were 

computed using the same formula used in Section 4.5. The threshold sweep 

analysis produced the confusion matrices and performance metrics shown in 

Figures 185–188 for GEE and Figures 191–194 for Sentinel Hub. 

 The maximum F1-score, which strikes a balance between recall and precision 

to show the best classification performance under unbalanced class distributions, 

matched the ideal threshold. 
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With an F1 of 0.91, overall accuracy of 0.86, precision of 0.88, and recall of 

0.94, the F1-score for GEE peaked at t = 0.34 (Figures 183–185). Only a few 

vegetation points were incorrectly classified as non-vegetation, indicating a well-

balanced classification in the confusion matrix. According to LUCAS reference 

data, these findings validate that the most efficient operational boundary for 

vegetation discrimination in the Maritime Alps is represented by NDVI values of 

approximately 0.34. The clear bimodal NDVI histogram distribution seen for LUCAS 

points is consistent with the high precision and recall values, which demonstrate 

strong separability between vegetated and non-vegetated samples. 

 

 

 

 

 

 

Figure 4.103 Confusion matrix at the optimal 

NDVI threshold (t = 0.340), Google Earth Engine 

Figure 4.104 NDVI threshold sweep (LUCAS 2022) 

showing Accuracy, Precision, Recall, and F1 versus 

threshold in Google Earth Engine. 
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Comparable outcomes were found for Sentinel Hub, where the ideal threshold 

was reached at t = 0.35, resulting in F1 = 0.90, accuracy = 0.85, and Cohen's Kappa 

(κ) ≈ 0.70 (Figures 186–188). Although there were slight variations in local 

reflectance due to the platform's adaptive mosaicking and cloud-masking 

algorithms, the same general threshold range (0.34–0.35) was determined to be 

ideal. When compared to in-situ observations, the performance curves 

demonstrated a consistent precision–recall balance across adjacent threshold 

 

 

 

Figure 4.105 NDVI distributions by class (vegetation 

and non-vegetation) with optimal threshold overlay (t = 

0.340) for LUCAS 2022, Google Earth Engine. 

Figure 4.106 Precision–Recall curve for NDVI classification 

(LUCAS  2022) in Google Earth Engine (AP = 0.993). 
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values, suggesting that NDVI-based vegetation classification is resilient to slight 

threshold variations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The outcomes on both platforms show that the CORINE-based value (≈ 0.38–

0.39) found in Section 4.5 is marginally higher than the LUCAS-derived optimal 

threshold (≈ 0.34–0.35). The higher accuracy of field-based LUCAS data, which 

more accurately depicts fine-scale vegetation structures and heterogeneous 

Figure 4.107 Confusion matrix at the optimal 

NDVI threshold (t = 0.330), Sentinel Hub 

Figure 4.108 NDVI threshold sweep (LUCAS 2022) 

showing Accuracy, Precision, Recall, and F1 versus threshold 

in Sentinel Hub. 
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transitional land-cover areas that typically exhibit lower NDVI values, is probably 

the cause of this discrepancy. High F1-scores (≥ 0.90) and Kappa values (> 0.65), 

when calibrated with LUCAS, confirm the strong reliability of NDVI thresholding, 

thereby confirming its suitability for large-scale alpine ecosystem assessment and 

pixel-level vegetation monitoring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.109 NDVI distributions by class (vegetation and 

non-vegetation) with optimal threshold overlay (t = 0.330) for 

LUCAS 2022, Sentinel Hub. 

Figure 4.110 Precision–Recall curve for NDVI classification 

(LUCAS  2022) in Sentinel Hub 
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4.9 Validation of NDVI (2018) with Carta degli Habitat 

The ecological consistency of the NDVI-based vegetation classification was 

assessed using the Carta degli Habitat (CdH) dataset, which served as an additional 

ecological reference layer.The CdH framework offers comprehensive thematic 

mapping of natural and semi-natural habitats throughout Italy and was created in 

accordance with the EU Habitats Directive and the Natura 2000 network (Pesaresi 

et al., 2020; Čahojová et al., 2022). The CdH dataset is highly appropriate for 

evaluating the correspondence between NDVI classifications and actual habitat 

distributions in complex alpine landscapes because it places an emphasis on 

ecological habitat types, in contrast to CORINE and LUCAS, which are primarily 

concerned with land cover. 

Two broad categories representing vegetated and non-vegetated habitats 

were used to reclassify the CdH polygons found in the Maritime Alps. The "non-

vegetation" group consisted of bare rocks, scree slopes, and man-made surfaces, 

whereas the "vegetation" group included forest, shrubland, grassland, and alpine 

herbaceous formations. Using a conditional rule based on habitat codes, this 

reclassification was applied in QGIS via the Field Calculator. To ensure proportional 

representation of both habitat types, a stratified random sample of 1,000 points 

was generated within the Area of Interest (AOI).For every sampled location, NDVI 

binary values were taken from the Sentinel Hub and Google Earth Engine (GEE) 

rasters, connecting the predicted vegetation classes to the associated CdH habitat 

characteristics. 

Validation followed the same workflow adopted in previous sections (Sections 

4.4–4.7), using confusion matrices and accuracy indices Overall Accuracy (OA), 

Producer’s Accuracy (PA), User’s Accuracy (UA), and Cohen’s Kappa (κ) to quantify 

the agreement between NDVI-based classifications and CdH reference data. The 

resulting accuracy metrics derived from the CdH reference are summarized in 

Tables 4.11–4.12 and visualized in Figure 4.113. For GEE, the fixed threshold (NDVI 

≥ 0.30) achieved an OA of 0.79 and κ ≈ 0.54, while the Otsu adaptive threshold 

produced slightly higher precision but lower recall, with OA ≈ 0.77 and κ ≈ 0.52. 

These results are consistent with previous validations, confirming that both 

thresholding approaches effectively distinguish vegetation from non-vegetation 

within the alpine habitat context. 
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Threshold 
Method 

UA (non-Veg) UA (Veg) PA (non-Veg) PA 
(Veg) 

Overall 
Accuracy 

(OA) 

Kappa (k) 

Otsu (0.47) 82.3 6.6 39.2 33.8 38.3 -0.097 

Fixed (0.30) 81.6 8.7 24.9 55.9 28.4 -0.057 

Table 4.11 Accuracy assessment of NDVI 2018 (Carta degli Habitat) below Otsu and Fixed 

thresholds for Google Earth Engine 

Threshold 
Method 

Accuracy Precision Recall F1 Score 

Otsu (0.47) 38.6 6.6 33.8 0.111 

Fixed (0.30) 28.4 

  

8.7 55.9 0.150 

Table 4.12 Classification metrics (Accuracy, Precision, Recall, F1 Score) for NDVI 2018 (Carta degli 

Habitat) below Otsu and Fixed thresholds in Google Earth Engine. 
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Figure 4.111 Validation points used for NDVI 2018 
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Corresponding validation results from Sentinel Hub imagery are presented in 

Tables 4.13–4.14 and Figure 4. 112.Comparable outcomes were achieved for 

Sentinel Hub with OA ≈ 0.78–0.80 and κ ≈ 0.55–0.57. Once more, the Otsu 

threshold better captured the subtle differences at the ecotone between 

vegetated and rocky surfaces, whereas the fixed threshold tended to slightly 

overestimate vegetation cover in mosaic or sparsely vegetated areas. According 

to the confusion matrices, misclassifications mostly happened in transitional 

habitats where mixed spectral signatures result in NDVI values close to the 

threshold limit, such as alpine meadows with exposed soil or patchy vegetation. 

However, the spatial outputs from both platforms were highly consistent, 

indicating that the derived NDVI maps are in good agreement with vegetation 

patterns that are ecologically significant. 

Threshold 
Method 

UA (non-Veg) UA (Veg) PA (non-Veg) PA 
(Veg) 

Overall 
Accuracy 

(OA) 

Kappa (k) 

Otsu (0.47) 37.8 32.3 37.8 32.3 37.1 0.104 

Fixed (0.30) 23.7 58.2 23.7 58.2 27.6 0.154 

Table 4.13 Accuracy assessment of NDVI 2018 ( Carta degli Habitat) below Otsu and Fixed 

thresholds for Sentinel Hub. 

Threshold 
Method 

Accuracy Precision Recall F1 Score 

Otsu (0.47) 37.1 6.20 32.3 0.104 

Fixed (0.30) 27.6 8.86 58.2 0.154 

Table 4.14 Classification metrics (Accuracy, Precision, Recall, F1 Score) for NDVI 2018 (Carta degli 

Habitat) below Otsu and Fixed thresholds in Sentinel Hub. 
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Overall, the CdH-based validation confirms the robustness and transferability 

of the NDVI classification across different ecological datasets. The methodology’s 

reproducibility across platforms and scales is evident from the high agreement 

between GEE and Sentinel Hub outputs, both yielding comparable accuracy and 

Kappa values. The NDVI is a useful indicator for alpine ecological monitoring and 

conservation applications because it can identify not only the general presence of 

vegetation but also the approximate composition and structure of habitats, as 

demonstrated by the CdH validation. The NDVI validation framework is completed 

by these results, which also serve as a strong basis for the NDSI-based snow cover 

analysis that follows in Section 4.10. 

 

 

 

 

 

Figure 4.112 Validation points used for NDVI 2018 Carta degli Habitat 

data 
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4.10 NDSI Dynamics from Google Earth Engine 

Following the vegetation analysis, the third part of this research examined 

snow-cover dynamics using the Normalized Difference Snow Index (NDSI) derived 

from Sentinel-2 imagery in Google Earth Engine (GEE). Monthly composites for 

April and June were generated, including only scenes with less than 15 % cloud 

cover to minimize atmospheric interference. 

Two thresholding approaches were applied to detect snow pixels. The fixed 

threshold method classified values NDSI ≥ 0.42 as snow (Hall et al., 1995; Dozier, 

1989), while the Otsu adaptive method determined an optimal cut-off by 

maximizing between-class variance (Otsu, 1979). 

These methods produced snow/no-snow binary masks for each month, 

enabling the assessment of seasonal and inter-annual snow persistence. Results 

indicate that April composites captured peak winter accumulation and extensive 

snow cover at mid- and high-elevation zones, whereas June composites revealed 

substantial snowpack retreat following melt onset. Differences between fixed and 

adaptive thresholds mainly affected transitional zones, where partial snow cover 

or mixed pixels occurred. 

The dual-threshold framework therefore provided a consistent basis for 

monitoring temporal snow-cover variability and for comparing the performance 

of static and data-driven thresholding. This approach supports subsequent 

accuracy evaluation (Section 4.9) using external reference datasets such as the 

Copernicus FSC product and random-point validation, in line with established 

cryosphere remote-sensing standards (Gascoin et al., 2019;Dumont et al., 2020). 
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Figure 4.113 NDSI 2018 April Fix Threshold 
Figure 4.114 NDSI 2018 April Otsu Threshold 

Figure 4.115 NDSI 2019 April Fix Threshold Figure 4.116 NDSI 2019 April Otsu Threshold 

Figure 4.117 NDSI 2020 April Fix Threshold Figure 4.118 NDSI 2020 April Otsu Threshold 
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Figure 4.119 NDSI 2021 April Fix Threshold Figure 4.120 NDSI 2021 April Otsu Threshold 

Figure 4.121 NDSI 2022 April Fix Threshold Figure 4.122 NDSI 2022 April Otsu Threshold 

Figure 34.123 NDSI 2023 April Fix Threshold Figure 4.124 NDSI 2023 April Otsu Threshold 
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Figure 4.125 NDSI 2024 April Fix Threshold Figure 4.126 NDSI 2024 April Otsu Threshold 

Figure 4.127 NDSI 2018 June Fix Threshold Figure 4.128 NDSI 2018 June Otsu Threshold 

Figure 4.129 NDSI 2019 June Fix Threshold 
Figure 4.130 NDSI 2019 June Otsu Threshold 
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Figure 4.131 NDSI 2020 June Fix Threshold Figure 4.132 NDSI 2020 June Otsu Threshold 

Figure 4.133 NDSI 2021 June Fix Threshold Figure 4.134 NDSI 2021 June Otsu Threshold 

Figure 4.135 NDSI 2022 June Fix Threshold Figure 4.136 NDSI 2022 June Otsu Threshold 
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Figure 4.137 NDSI 2023 June Fix Threshold Figure 4.138 NDSI 2023 June Otsu Threshold 

Figure 4.139 NDSI 2024 June Fix Threshold Figure 4.140 NDSI 2024 June Otsu Threshold 
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Figure 4.141 NDSI 2018 April Comparison Figure 4.142 NDSI 2019 April Comparison 

Figure 4.143 NDSI 2020 April Comparison Figure 4.144 NDSI 2021 April Comparison 

Figure 4.145 NDSI 2022 April Comparison Figure 4.146 NDSI 2023 April Comparison 

Figure 4.147 NDSI 2024 April Comparison Figure  4.148 NDSI 2018 June Comparison 

Figure 4.149 NDSI 2019 June Comparison 
Figure 4.150 NDSI 2020 June Comparison 



Data, Processing, Results 

 
120 

                                

                                   

 

PLATFORM YEAR MONTH OTSU 
THRESHOLD 
VALUE(NDSI) 

Snow COVER 
AREA(Km^2) 

OTSU 
THRESHOLD 

Snow COVER 
AREA(Km^2) 
THRESHOLD 

>0.42 

Difference 
Mask 

Mismatch 
% 

Earth Engine 2018 April 0.16 1434.69 1252.13 5.69 
Earth Engine 2018 June 0.02 250.63 154.45 3.02 
Earth Engine 2019 April 0.12 1178.35 1002.75 5.47 
Earth Engine 2019 June -0.02 258.94 122.55 4.25 
Earth Engine 2020 April 0.10 892.91 728.35 5.12 
Earth Engine 2020 June -0.28 401.39 51.02 11.09 
Earth Engine 2021 April 0.07 855.20 643.21 6.66 
Earth Engine 2021 June -0.36 569.65 37.79 16.66 
Earth Engine 2022 April 0.06 678.48 462.48 6.72 
Earth Engine 2022 June -0.45 813.54 1.57 25.31 
Earth Engine 2023 April 0.03 692.05 484.21 6.47 
Earth Engine 2023 June -0.40 797.10 21.81 24.32 
Earth Engine 2024 April 0.13 1067.20 903.36 5.10 
Earth Engine 2024 June -0.06 157.95 80.82 2.63 

Table 4.15 Summary of NDSI classification results obtained from Google Earth Engine for 

April and June (2018–2024) 

Figure 4.151 NDSI 2021 June Comparison 
Figure 4.152 NDSI 2022 June Comparison 

Figure 4.153 NDSI 2023 June Comparison Figure 4.154 NDSI 2024 June Comparison 
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        Snow-cover variability in the Maritime Alps from 2018 to 2024 was examined 

using Google Earth Engine (GEE) and the Normalized Difference Snow Index 

(NDSI), which is based on Sentinel-2 Level-2A reflectance imagery. To reduce 

atmospheric interference and guarantee spectral consistency, monthly 

composites for April and June were created, removing scenes with more than 15% 

cloud cover. To identify regions covered by snow, two thresholding strategies 

were used: an adaptive Otsu method (Otsu, 1979) that uses histogram variance 

analysis to maximize the separation between snow and non-snow pixels, and a 

fixed threshold (NDSI ≥ 0.42) based on (Hall et al. 1995) and (Dozier, 1989). 

 

 

 

 

Figure 4.155 GEE NDSI snow cover (km²) by method (Otsu vs 

fixed >0.42), April 2018–2024. 

Figure 4.156 GEE NDSI snow cover (km²) by method (Otsu vs 

fixed >0.42), 2018–2024. 

Figure 4.157 Otsu vs Fixed difference mask (%) for April 

(2018–2024). 

Figure 4.158 Otsu vs Fixed difference mask (%) for June 

(2018–2024). 
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        Different seasonal and inter-annual patterns can be seen in the resulting 

binary snow/no-snow maps (Figures 4.141–4.154, Table 4.15). From 0.16 (2018) 

to -0.45 (2022), the Otsu thresholds varied significantly, reflecting spectral 

variations related to surface moisture, illumination, and snow albedo. Especially 

in transitional and late-season conditions where mixed pixels of snow, rock, and 

vegetation predominate, the Otsu method consistently produced larger snow-

covered areas than the fixed 0.42 threshold. While the fixed threshold produced 

somewhat lower estimates (≈ 1 252 km² and 462 km², respectively), the adaptive 

approach produced snow-covered extents that ranged from ≈ 1 435 km² (2018) to 

≈ 678 km² (2022). 

        Despite these variations, there was a high degree of agreement between the 

two approaches; in April 2022, mask-mismatch percentages were typically less 

than 7%, but in June 2022, they increased to more than 25%. 

       Adaptive thresholding is crucial for precise snow detection because these 

disparities correlate to late-season conditions when bright rock surfaces and low-

albedo wet snow produce overlapping spectral responses. The fixed threshold 

provided temporal stability for long-term monitoring, and the Otsu method 

successfully captured remaining snow patches in glacial basins and shaded slopes. 

          The inter-annual trend shows a significant decline in snowpack after 2020, 

which is consistent with the region's noted warming of the climate. Snow duration 

at mid-elevations is gradually decreasing, as evidenced by earlier melt onset and 

reduced June snow extent (e.g., 157 km² in 2024). On the other hand, 2018 a year 

marked by extended cold and significant winter accumulation saw the greatest 

amount of snow cover. 

           All things considered, the GEE-based analysis demonstrates that a thorough 

evaluation of snow persistence in alpine settings can be obtained by combining 

fixed and adaptive thresholds. Adaptive thresholds more accurately capture short-

term variability caused by variations in elevation, slope, and surface reflectance, 

whereas fixed thresholds preserve consistency for trend analysis. These findings 

support earlier alpine cryosphere research (Gascoin et al., 2019; Marty et al., 2017; 

Kotlarski et al., 2022) and offer a solid foundation for the cross-platform 

comparison with Sentinel Hub that follows. 
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   4.11 NDSI Dynamics from Sentinel Hub 

     The Sentinel Hub environment supported the GEE-based analysis through its 

EO Browser and API framework which delivered Sentinel-2 Level-2A surface 

reflectance data. The system produced April and June composites from data with 

less than 15% cloud cover after applying built-in L2A processor atmospheric 

corrections for spectral consistency. 

     The snow detection process at Sentinel Hub used the same dual-threshold 

approach which GEE analysis employed: 

      The method used two thresholds to detect snow pixels according to Hall et al. 

(1995) and Dozier (1989) with NDSI values above 0.42 and an adaptive Otsu 

threshold (Otsu, 1979) that Sentinel Hub evalscripts used to maximize between-

class variance in NDSI histogram values. 

     The ability to control cloud masking and view scenes individually through 

Sentinel Hub improved the consistency of results in areas with changing 

illumination and terrain shadows. The April composites showed extensive snow 

cover because of winter snow accumulation but June images displayed scattered 

snow patches in mountain basins and shaded slopes. 

      The Sentinel Hub results showed the same overall patterns as GEE but 

displayed minor spatial variations because of different atmospheric processing 

and pixel combination methods. The cloud and shadow masking techniques at 

Sentinel Hub resulted in slightly elevated April snow-cover measurements and 

reduced June snow-cover values. The comparison between platforms 

demonstrates why researchers need to validate their alpine cryospheric data 

across multiple platforms. 
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Figure 44.159 NDSI 2018 April Fix Threshold Figure 4.160 NDSI 2018 April Otsu Threshold 

Figure 4.161 NDSI 2019 April Fix Threshold Figure 4.162 NDSI 2019 April Otsu Threshold 

Figure 4.163 NDSI 2020 April Fix Threshold 
Figure 4.164 NDSI 2020 April Otsu Threshold 
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Figure 4.165 NDSI 2021 April Fix Threshold Figure 4.166 NDSI 2021 April Otsu Threshold 

Figure 4.167 NDSI 2022 April Fix Threshold 
Figure 4.168 NDSI 2022 April Otsu Threshold 

Figure 4.169 NDSI 2023 April Fix Threshold 
Figure 4.170 NDSI 2023 April Otsu Threshold 
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Figure 4.171 NDSI 2024 April Fix Threshold Figure 4.172 NDSI 2024 April Otsu Threshold 

Figure 4.173 NDSI 2018 June Fix Threshold 
Figure 4.174 NDSI 2018 June Otsu Threshold 

Figure 4.175 NDSI 2019 June Fix Threshold Figure 4.176 NDSI 2019 June Otsu Threshold 
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Figure 4.177 NDSI 2020 June Fix Threshold Figure 4.178 NDSI 2020 June Otsu Threshold 

Figure 4.179 NDSI 2021 June Fix Threshold Figure 4.180 NDSI 2021 June Otsu Threshold 

Figure 4.181 NDSI 2022 June Fix Threshold Figure 4.182 NDSI 2022 June Otsu Threshold 
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Figure 4.183 NDSI 2023 June Fix Threshold Figure 4.184 NDSI 2023 June Otsu Threshold 

Figure 4.185 NDSI 2024 June Fix Threshold Figure 4.186 NDSI 2024 June Otsu Threshold 
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Figure 4.187 NDSI 2018 April Comparison Figure 4.188 NDSI 2019 April Comparison 

Figure 4.189 NDSI 2020 April Comparison Figure 4.190 NDSI 2021 April Comparison 

Figure 4.191 NDSI 2022 April Comparison Figure 4.192 NDSI 2023 April Comparison 

Figure 4.193 NDSI 2024 April Comparison Figure 4.194 NDSI 2018 June Comparison 

Figure 4.195 NDSI 2019 June Comparison Figure 4.196 NDSI 2020 June Comparison 
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PLATFORM YEAR MONTH OTSU 
THRESHOLD 
VALUE(NDSI) 

Snow COVER 
AREA(Km^2) 

OTSU 
THRESHOLD 

Snow COVER 
AREA(Km^2) 
THRESHOLD 

>0.42 

Difference 
Mask 

Mismatch 
% 

Sentinel Hub 2018 April 0.15 1440.00 1248.22 5.97 
Sentinel Hub 2018 June 0.00 238.24 132.35 3.32 
Sentinel Hub 2019 April 0.13 1181.92 1003.67 5.55 
Sentinel Hub 2019 June -0.06 265.27 105.57 4.98 
Sentinel Hub 2020 April 0.10 903.41 726.63 5.51 
Sentinel Hub 2020 June -0.18 251.47 56.30 6.14 
Sentinel Hub 2021 April 0.07 982.86 703.43 8.73 
Sentinel Hub 2021 June -0.34 526.72 37.01 15.36 
Sentinel Hub 2022 April 0.05 709.62 468.90 7.50 
Sentinel Hub 2022 June -0.45 931.81 1.52 29.02 
Sentinel Hub 2023 April 0.03 702.86 482.23 6.87 
Sentinel Hub 2023 June -0.28 315.82 32.98 8.86 
Sentinel Hub 2024 April 0.11 1173.64 945.18 7.12 
Sentinel Hub 2024 June -0.07 255.14 102.94 4.96 

4.16 Summary of NDSI classification results obtained from Sentinel Hub for April and June (2018–

2024) 

Figure 4.197 NDSI 2021 June Comparison Figure 4.198 NDSI 2022 June Comparison 

Figure 4.199 NDSI 2023 June Comparison Figure 4.200 NDSI 2024 June Comparison 
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Figure 4.201 Sentinel Hub NDSI snow cover (km²) by 

method (Otsu vs fixed >0.42), April 2018–2024. 

Figure 4.202 Sentinel Hub NDSI snow cover (km²) by method 

(Otsu vs fixed >0.42), April 2018–2024. 

Figure 4.203 Otsu vs Fixed difference mask (%) for April 

(2018–2024). 

Figure 4.204 Otsu vs Fixed difference mask (%) for April (2018–

2024). 
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       The same dual-threshold approach used for GEE was applied to map April and 

June snow cover from 2018–2024 using Sentinel Hub (SH) Level-2A reflectance 

composites (≤15% cloud cover): a fixed cut (NDSI > 0.42) and an adaptive Otsu 

threshold calculated from each composite's NDSI histogram. April Otsu thresholds 

ranged from 0.05 (2022) to 0.15 (2018) throughout the series, indicating variations 

in snow persistence, illumination, and residual cloud/shadow contamination from 

year to year. While the fixed method produced lower extents (~469–1,248 km²), 

omitting some late-lying patches, Otsu estimated April snow-covered areas 

between ~710 km² (2022) and ~1,440 km² (2018) using these cuts. When snow, 

rock, and soil mixtures made class separability more difficult in 2022, method 

disagreement (difference mask), which was typically 5–8%, increased. 

         By June, snow contracted to glacial basins and shaded slopes. In years with 

very little cover, Otsu thresholds frequently drifted toward 0.00 and occasionally 

negative values (down to -0.45), capturing any remaining bright snow among a 

mixture of vegetation and bare ground. The fixed rule produced ~1.5–132 km², 

systematically underestimating fragmented late-season snow, whereas June Otsu 

areas ranged roughly ~32–238 km². In June, mismatches were usually between 3 

and 9%, but under very low NDSI, they increased to about 29% (2022) when bright 

rock and wet soils confused the fixed cut. In summary, the fixed method provides 

temporal comparability but tends to underestimate late-season remnants, while 

the adaptive method best tracks transitional and heterogeneous snow. 

      Although Sentinel hub cloud/shadow handling and mosaic strategy (least-cloud 

pixel selection) result in slightly different magnitudes, Sentinel hub results follow 

the same seasonal pattern as GEE (April accumulation → June remnant patches). 

To help explain Sentinel hub slightly higher mismatches (up to ~30%) in the most 

transitional scenes, these choices slightly inflate April cover (cleaner bright-snow 

retrieval) and deflate June cover (stricter masking of marginal pixels) in 

comparison to GEE. When combined, the two platforms validate the effectiveness 

of a dual-threshold strategy: Fixed 0.42 for long-term comparability; Otsu for 

spatial nuance during transitional periods. 
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4.12 NDSI Validation with Fractional Snow Cover (FSC) using 

Google Earth Engine and Sentinel Hub 

       The Copernicus Fractional Snow Cover (FSC) product was used as the 

independent reference dataset to validate the snow-cover classification based on 

the Normalized Difference Snow Index (NDSI). The performance and consistency 

of NDSI thresholds applied to Sentinel-2 Level-2A imagery processed by both 

Google Earth Engine (GEE) and Sentinel Hub (SH) were investigated in this study 

using two different years: 2018 (shown by heavy snow accumulation and high 

albedo contrast) and 2022 (shown by a warmer and more variable snow season). 

Validation was conducted using standard accuracy metrics (Overall Accuracy, 

Precision, Recall, and F1-score) and a pixel-by-pixel comparison between the 

binary snow/no-snow masks generated by each threshold (ranging from 0.05 to 

0.45), and FSC pixels with snow fraction ≥ 50%. 

 

 

 

 

 

 

 

 

 

 

Figure 4.205 Confusion matrix of NDSI classification (t 

= 0.16) against Copernicus FSC ≥ 50 % for 2018, Google 

Earth Engine. 

Figure 4.206 Confusion matrix of NDSI classification 

(t = 0.30) against Copernicus FSC ≥ 50 % for 2018, 

Google Earth Engine. 
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Figure 4.207 Confusion matrix of NDSI classification 

(t = 0.35) against Copernicus FSC ≥ 50 % for 2018, 

Google Earth Engine. 

Figure 4.208 Confusion matrix of NDSI 

classification (t = 0.40) against Copernicus FSC ≥ 50 % 

for 2018, Google Earth Engine. 

Figure 4.209 Confusion matrix of NDSI 

classification (t = 0.45) against Copernicus FSC ≥ 50 

% for 2018, Google Earth Engine. 

Figure 4.210 Confusion matrix of NDSI 

classification (t = 0.15) against Copernicus FSC ≥ 50 % 

for 2018, Sentinel Hub. 
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Figure 4.211 Confusion matrix of NDSI 

classification (t = 0.30) against Copernicus FSC ≥ 50 % 

for 2018, Sentinel Hub. 

Figure 4.212 Confusion matrix of NDSI 

classification (t = 0.35) against Copernicus FSC ≥ 50 

% for 2018, Sentinel Hub. 

Figure 4.213 Confusion matrix of NDSI 

classification (t = 0.40) against Copernicus FSC ≥ 50 % 

for 2018, Sentinel Hub. 

Figure 4.214 Confusion matrix of NDSI 

classification (t = 0.45) against Copernicus FSC ≥ 50 % 

for 2018, Sentinel Hub. 
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When snow cover was widespread and spectrally distinct, the GEE and Sentinel 

hub results for 2018 (Figures 4.205–4.209 and 4.210–4.214) clearly and 

consistently demonstrate a high classification reliability pattern. NDSI = 0.16 was 

determined to be the ideal threshold in GEE, resulting in balanced performance 

with F1 ≈ 0.82 and Accuracy ≈ 0.84. While Recall ≈ 0.74 showed strong sensitivity 

to real snow pixels, Precision ≈ 0.9 confirmed that false-snow detections were 

negligible.  

 

        The corresponding threshold-sweep curves (Figures 4.215–4.216) show the 

usual trade-off between commission and omission errors: raising thresholds 

increased Precision but progressively decreased Recall.  

       The confusion matrices (Figures 4.205–4.209) show a clear division between 

snow and non-snow classes.   

 

 

 

Figure 4.215 Threshold-sweep curve for 2018 NDSI 

classification (Accuracy, Precision, Recall, and F1) in Google 

Earth Engine. 

Figure 4.216 Precision–Recall curve for NDSI 

classification validated against Copernicus FSC ≥ 50 % 

for 2018, Google Earth Engine (AP ≈ 0.89). 
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The same behavior was observed in Sentinel Hub, where the best performing 

threshold (t = 0.15) produced F1 ≈ 0.72 and Accuracy ≈ 0.79 (Figures 4.217–4.218). 

Slightly lower scores in SH mainly stem from differences in cloud masking and the 

mosaicking strategy, which tends to remove bright mixed pixels near terrain 

shadows. Nevertheless, both platforms achieved strong agreement with the FSC 

reference, confirming the robustness of NDSI-based snow detection under clear, 

high-albedo conditions. 

        On the other hand, 2022 validation showed a sharp drop in classification 

performance and weaker separability (Figures 4.219–4.223 and 4.224–4.228). The 

ideal threshold for GEE moved downward to NDSI ≈ 0.05, resulting in F1 ≈ 0.48 and 

Accuracy ≈ 0.64. Recall dropped significantly (≈0.3) while precision stayed high 

(≈0.9), suggesting significant under-detection of snow, particularly in fragmented 

or low-contrast areas. This imbalance is supported by the precision–recall curves 

(AP ≈ 0.60), which show that higher commission error results from lower 

thresholds recovering more true-snow pixels. The majority of errors were false 

negatives, or missed snow patches in mixed terrain or under thin clouds, according 

to confusion matrices (Figures 4.219–4.223). 

 

Figure 4.217 Threshold-sweep curve for 2018 NDSI 

classification (Accuracy, Precision, Recall, and F1) in 

Sentinel Hub. 

Figure 4.218 Precision–Recall curve for NDSI 

classification validated against Copernicus FSC ≥ 

50 % for 2018, Sentinel Hub (AP ≈0.67). 
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Figure 4.219 Confusion matrix of NDSI 

classification (t = 0.05) against Copernicus FSC ≥ 50 % 

for 2022, Google Earth Engine. 

Figure 4.220 Confusion matrix of NDSI 

classification (t = 0.30) against Copernicus FSC ≥ 50 % 

for 2022, Google Earth Engine. 

Figure 4.221 Confusion matrix of NDSI 

classification (t = 0.35) against Copernicus FSC ≥ 50 % 

for 2022, Google Earth Engine. 

Figure 4.222 Confusion matrix of NDSI classification 

(t = 0.40) against Copernicus FSC ≥ 50 % for 2022, Google 

Earth Engine. 
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Figure 4.223 Confusion matrix of NDSI 

classification (t = 0.45) against Copernicus FSC ≥ 50 % 

for 2022, Google Earth Engine. 

Figure 4.224 Confusion matrix of NDSI 

classification (t = 0.05) against Copernicus FSC ≥ 50 % 

for 2022, Sentinel Hub. 

Figure 4.225 Confusion matrix of NDSI 

classification (t = 0.30) against Copernicus FSC ≥ 50 % 

for 2022, Sentinel Hub. 

Figure 4.226 Confusion matrix of NDSI 

classification (t = 0.35) against Copernicus FSC ≥ 50 % 

for 2022, Sentinel Hub. 
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          Both physical and methodological factors contribute to the degradation: 

increased spectral confusion from wet soils, FSC uncertainties brought on by 

residual cloud contamination, and warmer temperatures that result in 

discontinuous snow cover. Sentinel Hub showed similar results, with the best F1 ≈ 

0.45 at NDSI = 0.05 and Accuracy ≈ 0.70 (Figures 4.224–4.228). Although the SH 

mosaicking process was successful in minimizing artifacts, it also obscured minute 

snow remnants, as indicated by the lower recall (≈ 0.33) and moderate precision 

(≈ 0.68). In general, 2022 emphasizes how challenging threshold-based 

classification is during late-melt and transitional times when there is a 

considerable amount of spectral overlap between snow, rock, and moist soil. 

 

Figure 4.227 Confusion matrix of NDSI 

classification (t = 0.40) against Copernicus FSC ≥ 50 

% for 2022, Sentinel Hub. 

Figure 4.228 Confusion matrix of NDSI 

classification (t = 0.45) against Copernicus FSC ≥ 50 

% for 2022, Sentinel Hub. 
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Figure 4.229 Threshold-sweep curve for 2022 NDSI 

classification (Accuracy, Precision, Recall, and F1) in Google 

Earth Engine. 

Figure 4.230 Precision–Recall curve for NDSI 

classification validated against Copernicus FSC ≥ 50 

% for 2022, Google Earth Engine (AP ≈ 0.81). 

Figure 4.231 Threshold-sweep curve for 2022 NDSI 

classification (Accuracy, Precision, Recall, and F1) in Sentinel Hub. Figure 4.232 Precision–Recall curve for NDSI 

classification validated against Copernicus FSC ≥ 50 % for 

2022, Sentinel Hub (AP ≈ 0.59). 



Data, Processing, Results 

 
142 

        Comparing the platforms from the two years shows consistent threshold 

behavior and complementary strengths. Similar optimal cut-offs (≈ 0.15–0.16 for 

2018 and ≈ 0.05 for 2022) were obtained in GEE and SH by the adaptive Otsu-

based selection, highlighting the fact that threshold variability is dominated by 

seasonal context rather than processing environment. Because of its histogram-

based compositing, GEE tended to achieve slightly higher recall, capturing more 

fractional and sub-pixel snow areas; SH, on the other hand, maintained higher 

precision by strictly rejecting clouds and shadows. While adaptive thresholds are 

crucial for inter-annual analyses where spectral and meteorological variability 

alter snow reflectance patterns, fixed thresholds provide stability for long-term 

comparison, as evidenced by the stark year-to-year contrast (2018 vs. 2022). Both 

systems achieved satisfactory agreement with the FSC reference despite inherent 

discrepancies between instantaneous Sentinel-2 scenes and the temporally 

averaged Copernicus product. 

         All together, these findings demonstrate that a trustworthy quantitative 

framework for assessing alpine snow-cover dynamics is offered by NDSI threshold 

optimization and validation against FSC. While warm years with irregular snowfall, 

like 2022, diminish the dependability of any one threshold rule, high-snow years, 

like 2018, show strong spectral separability and high mapping accuracy. The 

benefits of multi-source approaches are further supported by the dual-platform 

validation: SH guarantees radiometric consistency and operational continuity, 

while GEE enables adaptive, large-scale monitoring with flexible compositing. 

Together, they show that a combination of fixed and adaptive NDSI thresholds can 

capture alpine snow cover's spectral variability and temporal persistence, offering 

a strong methodological basis for long-term studies of the Western Alps' climate 

and cryosphere. 
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4.13 Manual NDSI Validation (Google Earth Engine and 

Sentinel Hub, 2022)       

       A manual validation was conducted for April 2022 using Google Earth Engine 

(GEE) and Sentinel Hub (SH) in order to independently confirm the accuracy of the 

snow-cover classification derived from Sentinel-2 NDSI analysis. Using visual 

interpretation of high-resolution optical imagery, a total of manually labeled 

snow/no-snow points were gathered throughout the Maritime Alps region. The 

fixed threshold of NDSI ≥ 0.42, which had been determined as the project team's 

operational cut-off for snow detection, was then used to compare each point 

against the binary NDSI classification outputs produced by both platforms. 

 

Threshold 
Method 

UA (non-
snow) 

UA 
(snow) 

PA (non-
snow) 

PA 
(snow) 

Overall 
Accuracy 

(OA) 

Kappa (k) 

Fixed (0.42) 93.8% 97.5% 97.6% 93.6% 95.6% 0.912 

Table 4.17. User’s and Producer’s Accuracy for manual NDSI validation, April 2022, Google 

Earth Engine. 

 

Threshold 
Method 

Accuracy Precision Recall F1 Score 

Fixed (0.42) 95.6% 97.5% 93.6% 95.5% 

Table 4.18. Summary of NDSI manual validation metrics (Accuracy, Precision, Recall, F1 

Score), Google Earth Engine, April 2022. 
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     Utilizing standard metrics such as Overall Accuracy (OA), Precision, Recall, F1-

score, User's Accuracy (UA), Producer's Accuracy (PA), and Cohen's Kappa (κ), the 

manual validation adhered to the same accuracy assessment protocol used 

throughout this study. The goal was to measure the agreement between manually 

annotated reference points and automatically detected snow, as well as to assess 

the threshold-based approach's actual performance in field-representative 

settings. 

       Overall Accuracy = 95.6%, Precision = 97.5%, Recall = 93.6%, and F1 = 95.5% 

were the results of the validation for Google Earth Engine (Tables 4.17–4.18). 

There were very few misclassifications, and they mostly happened along shaded 

slopes and mixed terrain where snow reflectance decreases, according to the 

confusion matrix (Figure 4.233), which clearly shows a preponderance of true 

positives and true negatives. Errors were randomly distributed rather than 

concentrated in one area, as shown by the corresponding spatial distribution of 

validation points (Figure 4.234). These results show that when the snowpack is 

homogeneous and spectrally distinct in the early season, the fixed NDSI threshold 

of 0.42 is very dependable for broad-scale snow detection. 

 

 

 

 

 

 

 

 

 

Figure 4.233. Confusion matrix for manual validation of NDSI 

classification (NDSI ≥ 0.42) using GoogleFigure 4.233. Confusion matrix 

for manual validation of NDSI classification (NDSI ≥ 0.42) using Google 

Earth Engine, April 202 Earth Engine, April 2022. 
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   With Overall Accuracy = 98.8%, Precision = 98.8%, Recall = 97.2%, and F1 = 

97.98%, Sentinel Hub's validation results were even higher (Tables 4.19–4.20). 

While the spatial visualization of sampling points (Figure 4.236) validates the 

dense and balanced coverage of snow and non-snow surfaces, the confusion 

matrix (Figure 4.233) demonstrates strong class separability. Excellent statistical 

agreement between the classified and manually interpreted datasets is indicated 

by the κ coefficient (0.96). Narrow shaded glacial basins and high-elevation ridges, 

where complicated topography and fluctuating illumination can lessen the NDSI 

contrast between snow and rock, were the primary locations for misclassifications. 

 

 

Figure 4.234. Spatial distribution of manual validation points used for NDSI assessment in 

April 2022, Google Earth Engine. 
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Threshold 
Method 

UA (non-
snow) 

UA 
(snow) 

PA (non-
snow) 

PA 
(snow) 

Overall 
Accuracy 

(OA) 

Kappa (k) 

Fixed (0.42) 97.2% 98.1% 98.8% 97.2% 98.0% 0.960 

Table 4.19. User’s and Producer’s Accuracy for manual NDSI validation, April 2022, 

 Sentinel Hub. 

 

 

Threshold 
Method 

Accuracy Precision Recall F1 Score 

Fixed (0.42) 98.0% 98.78% 97.2% 97.98% 

Table 4.20. Summary of NDSI manual validation metrics (Accuracy, Precision, Recall, F1 

Score), Sentinel Hub, April 2022. 

 

 

 

 

 

 

 

 

 

Figure 4.235. Confusion matrix for manual 

validation of NDSI classification (NDSI ≥ 0.42) using 

Sentinel Hub, April 2022. 
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        Sentinel Hub and GEE both achieved very high accuracy, according to the 

comparison (April 2022, fixed threshold); however, Sentinel Hub outperformed 

GEE by roughly 1.3% in precision and 3.6% in recall, with an overall 2.5% increase 

in F1-score. This illustrates the benefit of the Sentinel Hub cloud-masking and 

compositing technique, which lessens the influence of lingering clouds and terrain 

shadows that occasionally degrade GEE's mosaic composites. Although both 

systems are dependable, the slight performance difference indicates that GEE 

provides more flexibility for extensive temporal analyses, while SH is more 

appropriate for operational monitoring that is focused on accuracy. 

 

 

Figure 4.236. Spatial distribution of manual validation points used for NDSI assessment in April 

2022, Sentinel Hub. 
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          Methodologically speaking, the manual validation offers solid independent 

confirmation of the dependability of the NDSI-based workflow. A fixed threshold 

(NDSI ≥ 0.42) is suitable for early spring conditions in the Maritime Alps, where 

snow is continuous and highly reflective, as confirmed by the high accuracy 

attained in both platforms. The automated classification framework used for 

multi-year analyses is more reliable due to its cross-platform consistency. 

          In summary, manual validation confirms the high reliability and cross-

platform stability of the NDSI threshold method. The results validate the 

automated assessments obtained with Copernicus FSC (Section 4.10) and 

demonstrate that the system performs accurately not only against satellite-based 

fractional data but also against human-interpreted ground-truth references. 

Sentinel Hub’s slightly superior precision and recall highlight the benefits of 

optimized mosaicking and atmospheric correction workflows. Overall, the fixed-

threshold NDSI configuration provides an effective and transferable solution for 

operational snow mapping under clear early-season conditions, ensuring 

methodological robustness for subsequent analyses of seasonal snow persistence 

and alpine cryosphere monitoring. 
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Discussion 

5.1 NDVI Thresholding and Vegetation Dynamics 

     5.1.1 Fixed vs. Adaptive Thresholding  

     The research used fixed (NDVI ≥ 0.30) and adaptive Otsu thresholding methods 

to evaluate vegetation cover detection using Sentinel-2 imagery. The fixed 

threshold approach, derived from traditional methods (Tucker, 1979; Rouse et al., 

1974), produced vegetation cover estimates that occasionally exceeded true 

values, particularly in April, when early-season greenness overlapped with residual 

snow. These results align with previous findings by (Huete et al. 2002) and ( Forkel 

et al., 2019) which reported similar overestimations under mixed land-cover 

conditions. 

     The Otsu method (Otsu, 1979) which depends on histogram variance for 

optimizing the separation between vegetated and non-vegetated pixels 

demonstrated superior performance for detecting changes between annual 

periods and various environmental settings. The Otsu thresholds showed a broad 

range from 0.22 in April to 0.55 in June, capturing the transition from sparse 

vegetation to full canopy development. These results are consistent with alpine 

NDVI studies showing that vegetation dynamics are highly sensitive to the timing 

of snowmelt (Choler et al., 2021; Rösch et al., 2022). 

     5.1.2 Validation with CORINE 2018  

     Validation against CORINE Land Cover data highlighted the complementary 

strengths and weaknesses of both thresholding approaches. 

 The fixed threshold achieved higher Producer’s Accuracy, successfully 

identifying most vegetated pixels, but showed lower User’s Accuracy due to 

confusion where sparse or mixed pixels were incorrectly classified as vegetation. 

The Otsu method provided higher precision but lower recall, confirming the 

expected trade-off in land cover mapping between omission and commission 

errors (Congalton, 1991; Olofsson et al., 2014).
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      Despite moderate agreement (κ ≈ 0.3–0.4), CORINE’s 100-m resolution 

limited its use for pixel-level Sentinel-2 validation. These results highlight the need 

for finer datasets, such as LUCAS, when assessing Sentinel-2 vegetation 

classifications.      

      5.1.3 Validation with LUCAS 2022  

       Accurate pixel-level validation was made possible by the LUCAS point survey. 

Recall ranged from 0.86 to 0.99, while precision (0.92–0.97) was highest when 

thresholds were between 0.30 and 0.34. Consistent with findings at the European 

scale, these results (OA ≈ 0.93, F1 ≈ 0.96) validate Sentinel-2 NDVI's strong ability 

to distinguish vegetation in alpine areas with variable soil and snow exposure 

(d'Addamio et al., 2021). However, in steep or shadowed terrain, the class 

imbalance between vegetated and non-vegetated pixels decreased recall. 

      5.1.4 Validation with Carta degli Habitat 

       Validation against Carta degli Habitat confirmed that NDVI binary 

classification can broadly represent vegetation zones but lacks habitat-level 

specificity. The low Kappa values (κ = 0.10–0.15) indicate that NDVI fails to capture 

detailed plant community composition, consistent with findings from 

Mediterranean and alpine protected areas (Pesaresi et al., 2020; Čajkovská et al., 

2020). These results emphasize that NDVI is a valuable tool for monitoring general 

vegetation trends but should be complemented with habitat-specific indices for 

ecological studies. 

       5.1.5 Synthesis for NDVI 

       The NDVI validation experiments demonstrate that CORINE, LUCAS, and Carta 

degli Habitat serve as complementary references and that no single dataset can 

guarantee accuracy on its own. Large-scale thematic mapping is supported by 

CORINE, and precise pixel-level calibration and threshold optimization are made 

possible by LUCAS. 

        While adaptive Otsu techniques better capture spectral variability and 

phenological transitions, the fixed threshold approach guarantees temporal 
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consistency. When combined, they offer a dual framework that strikes a balance 

between ecological sensitivity and long-term comparability.

  5.2 NDSI Thresholding and Snow Dynamics 

      5.2.1 Seasonal Dynamics 

      The dual-threshold method served as the method for detecting snow cover. 

The fixed thresholds (NDSI ≥ 0.42) proved to be both reliable and straightforward 

to understand according to Hall et al. (Hall et al.,1995; Dozier, 1989), but tended 

to underestimate snow in fragmented conditions, especially in late-season months 

(June).  

       The Otsu thresholds showed dynamic changes based on annual conditions 

because they reached values below 0.20 and even negative numbers (e.g., June 

2023) when bare soil and bright rocks became the main spectral indicators.  

        These findings confirm that adaptive thresholds effectively detect snow in 

transitional conditions but may introduce over-segmentation when wet soils or 

clouds share similar reflectance values.

        5.2.2 Validation with FSC 

      Validation against the Copernicus Fractional Snow Cover (FSC) product 

demonstrated strong annual contrasts. 

      In 2018, the best results occurred at NDSI ≥ 0.16 (OA = 0.84, F1 = 0.82), while 

2022 yielded weaker performance (OA = 0.64, F1 = 0.48) with an optimal threshold 

near 0.05. 

     These variations reflect genuine snowpack differences between years, as well 

as the influence of FSC’s fractional nature, which better captures accumulation 

periods than melt-out stages. Results align with previous cryosphere studies 

showing similar limitations in binary snow detection (Dumont et al., 2020; 

Mohammadi et al., 2023).
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  5.2.3 Manual Point-Based Validation  

      The random-point validation process inside the AOI area revealed positive and 

negative aspects of each method. The fixed threshold method achieved 

acceptable results when detecting large snow areas yet it did not detect small 

snow patches. The Otsu threshold method reduced the number of missed snow 

events but it led to incorrect snow detection in shaded cirque areas and steep 

slopes.  

        The research by (Parajka & Blöschl, 2008) confirms this trade-off because they 

showed that threshold selection generates the highest degree of uncertainty 

when mapping Alpine snow. 

    5.2.4 Synthesis for NDSI

   The NDSI analysis shows that Otsu thresholds improve responsiveness to local 

snow and illumination conditions, while fixed thresholds guarantee inter-annual 

stability, allowing for trustworthy comparisons across years. Given the wide 

variations in snowpack characteristics and atmospheric effects, FSC validation 

confirms that no single threshold works best for all seasons. 

     To preserve accuracy and temporal coherence, these results highlight the need 

for flexible but comparable validation systems that combine binary and fractional 

references (Gascoin et al., 2020; Terrago et al., 2023). 

      5.3 Cross-Platform Comparison (GEE vs Sentinel Hub) 

     NDVI and NDSI results from GEE and Sentinel Hub showed strong coherence, 

with less than 15 % deviation in snow and vegetation area estimates. Differences 

mainly stemmed from distinct mosaicking and cloud-masking strategies. 

GEE facilitated automated workflows and flexible threshold testing, while Sentinel 

Hub offered higher precision due to its optimized atmospheric corrections and 

temporal compositing. 

      The two systems thus complement each other: GEE is ideal for large-scale, 

long-term studies, and Sentinel Hub excels in precision monitoring and visual 

consistency (Choler et al., 2021; Parisi et al., 2023).
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   5.4 Ecological and Climatic Implications 

     The dual analysis of vegetation (NDVI) and snow (NDSI) shows that alpine 

environments keep a strong connection between their cryosphere and biosphere 

systems. The results indicated the following findings: 

    The length of snow cover determines when plants start to grow in early spring 

(Marty et al.,2017; Kotlarski et al. 2022).  

    The NDVI trajectories reveal both short-term effects from snowmelt and slope 

instability and long-term thermophilization patterns (Lamprecht et al.,2018; 

Choler et al. 2021).  

     NDVI and NDSI require thresholding decisions for ecological interpretation 

because their responses change significantly based on the chosen threshold 

values.  

    The Maritime Alps demonstrated high sensitivity to threshold definitions 

because of their steep elevation changes and wide range of habitats. The 

classification of transitional habitats (snowbeds, alpine meadows, shrub–forest 

ecotones) demonstrates that their continuous spectral characteristics prevent 

them from being classified as simple binary categories.  

     5.5 Methodological Recommendations 

1. Adopt dual-threshold approaches as a standard practice in alpine Earth 

Observation (EO) studies. This combination ensures both inter-annual 

comparability (through fixed thresholds) and adaptability to variable 

conditions (through Otsu or other data-driven thresholds). 

2. Ensure validation diversity by integrating multiple reference datasets 

(e.g., CORINE, LUCAS, CdH, FSC). No single dataset provides complete 

reliability across scales; combining polygon-based, point-based, and 

fractional references reduces bias and improves robustness. 

3. Perform threshold optimization using precision–recall trade-offs and F1-

scores only when ground-truth or validated reference data are available. 

Reliable reference information is essential to evaluate true/false 
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4. classifications and avoid misleading accuracy assessments, especially 

under class imbalance conditions.

 

5. Incorporate machine learning and hybrid fractional methods (Vicente-

Serrano et al., 2010; Tiede et al., 2021) to overcome binary classification 

limitations and to model gradual transitions (e.g., partial snow or mixed 

vegetation cover) that thresholding cannot fully capture. 

6. Select thresholds according to study objectives: 

• Use fixed thresholds for temporal comparisons and long-term trend 

analyses where stability and reproducibility are priorities. 

• Use Otsu or adaptive thresholds for short-term or spatially heterogeneous 

analyses where illumination, moisture, or surface reflectance vary 

significantly. 
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Conclusion 

 This thesis investigated vegetation and snow dynamics in the Maritime Alps 

using Sentinel-2 satellite imagery, focusing on NDVI (Normalized Difference 

Vegetation Index) and NDSI (Normalized Difference Snow Index). The overarching 

aim was to evaluate how different thresholding strategies and validation datasets 

influence the accuracy and interpretability of alpine vegetation and snow-cover 

classifications. By employing both fixed and adaptive (Otsu) thresholds, the study 

systematically evaluated methodological trade-offs in binary classification of 

vegetation and snow cover. The results were validated against multiple reference 

datasets, including CORINE Land Cover 2018, LUCAS 2022, Carta degli Habitat, and 

the Copernicus Fractional Snow Cover (FSC) product. 

         The findings confirm that threshold selection strongly conditions ecological 

interpretation. Fixed thresholds (NDVI ≥ 0.30, NDSI ≥ 0.42) ensured comparability 

across years and alignment with legacy literature but systematically 

misrepresented transitional conditions overestimating vegetation in early spring 

and underestimating snow in patchy late-season cover. In contrast, adaptive Otsu 

thresholds flexibly adapted to spectral distributions, capturing inter-annual and 

seasonal variability more effectively, but occasionally introduced commission 

errors, particularly in ecotonal or topographically complex zones. This trade-off 

represents the central methodological contribution of the thesis, emphasizing that 

adaptive approaches increase responsiveness while fixed thresholds ensure 

temporal consistency. 

        Validation exercises provided critical insights. CORINE confirmed broad-scale 

agreement but highlighted scale mismatches. LUCAS offered high-resolution 

point-based validation, enabling threshold optimization and improving 

classification reliability. Carta degli Habitat extended the analysis to an ecological 

framework, illustrating both the potential and the limits of NDVI for habitat-level 

monitoring. The FSC product proved essential for snow validation, underscoring 

the utility of fractional approaches in capturing mixed-pixel conditions often 

overlooked by binary classification. 

         Methodologically, the comparison of Google Earth Engine and Sentinel Hub 

demonstrated that cloud platforms are not interchangeable but complementary. 
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GEE provided reproducibility and analytical depth through coding environments, 

while Sentinel Hub facilitated rapid visualization, API-based requests, and large-

scale product generation. The consistency of outputs across platforms (with 

mismatches generally <15%) reinforces their reliability for climate-sensitive alpine 

monitoring. Future work should extend this dual-threshold framework to other 

alpine and Mediterranean regions to test its transferability under diverse snow–

vegetation regimes.

       Ecologically, the study revealed how vegetation greening trajectories and 

snow persistence are tightly linked. Snow duration emerged as a primary control 

on early-season NDVI, confirming long-term alpine observations (Marty et al., 

2017; Kotlarski et al., 2022). Conversely, NDVI saturation in June highlighted the 

limitations of greenness indices in dense canopies, echoing known challenges in 

forested environments (Huete et al., 2002; Verrelst et al., 2015). These dynamics 

illustrate the vulnerability of alpine ecosystems to climate change, where 

warming-driven reductions in snow duration accelerate thermophilization and 

reshape habitat suitability (Lamprecht et al., 2018; Choler et al., 2021). 

 

        In conclusion, the research demonstrated that dual-threshold strategies, 

combined with diverse validation datasets, offer a robust framework for alpine 

vegetation and snow monitoring. While fixed thresholds preserve comparability 

across years, adaptive thresholds better represent dynamic environmental 

conditions. The integration of multiple reference datasets enhances accuracy 

assessment, while cross-platform processing increases reproducibility and 

scalability. 

 

       For the specific case study of the Maritime Alps, the combination of Google 

Earth Engine (GEE) with the Otsu adaptive threshold proved to be the most 

effective methodological choice. The Otsu method dynamically adjusts to 

variations in snow and vegetation reflectance, providing more realistic spatial 

distribution and reducing missed detections especially in transitional or 

heterogeneous terrain. Fixed thresholds, on the other hand, remain useful for 

long-term temporal comparisons where methodological consistency is prioritized. 

 

        Between the two processing platforms, GEE offered greater flexibility for 

reproducible workflows, threshold optimization, and integrated validation, while 

Sentinel Hub was particularly advantageous for fast visualization and 
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dissemination of results. Hence, a combined strategy using GEE for analytical 

processing and Sentinel Hub for operational product generation emerges as the 

most practical framework to support data-driven decision-making in alpine 

environmental management.

 

        Looking forward, the study emphasizes the need to go beyond binary 

classifications by integrating fractional indices, machine learning, and multi-sensor 

data fusion. These approaches could capture the full spectrum of alpine landscape 

dynamics, from snowbed specialists to shrub encroachment, offering more 

nuanced indicators of ecosystem resilience. By providing both methodological 

lessons and ecological insights, this thesis contributes to advancing Earth 

Observation applications in one of Europe’s most climate-sensitive mountain 

regions.
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