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Abstract

The research examines how vegetation and snow cover patterns change over
time and space within the Maritime Alps (Western Italian Alps) which serves as a
climate change and ecological transition hotspot. The research utilizes Sentinel-2
Level-2A multispectral imagery which underwent processing through two cloud-
based Earth Observation (EO) platforms known as Google Earth Engine (GEE) and
Sentinel Hub to track environmental changes from 2018 to 2024. Vegetation
phenology and snow persistence were assessed using the Normalized Difference
Vegetation Index (NDVI) and Normalized Difference Snow Index (NDSI).

A dual-threshold approach was applied: fixed thresholds (NDVI > 0.30, NDSI >
0.42) enabled temporal consistency, while adaptive Otsu thresholding addressed
scene-specific spectral variability and topographic effects that typically reduce
classification accuracy.

The validation process used four reference datasets which consisted of CORINE
Land Cover 2018 and LUCAS 2022 and Carta degli Habitat and Copernicus Fractional
Snow Cover (FSC) with their corresponding spatial scales and thematic precision
levels. The evaluation of map accuracy included Overall Accuracy (OA) and
Producer’s and User’s Accuracy (PA, UA) and Cohen’s Kappa coefficient (k) as
statistical metrics. The results indicated that Otsu thresholds achieved superior
results for detecting changes when the environment shifted between snowmelt and
early vegetation growth but fixed thresholds delivered better results for monitoring
long-term changes.

The cross-platform consistency between GEE and Sentinel Hub proved to be
very high because both NDVI and NDSI products showed mismatch values under
15% which validated the reliability of the applied workflows. The NDVI data
indicates that vegetation growth began earlier in years with short snow cover
duration which supports the documented pattern of alpine vegetation moving to
higher elevations (Lamprecht et al. 2018; Choler et al.,2021). The complete analysis
of climate-driven landscape transformation emerges from studying vegetation and
snow dynamics because it demonstrates how snowmelt impacts plant ecosystems.

This work presents a methodological approach which uses adaptive
thresholding and multi-source validation and cloud-based processing to create a
transferable and reproducible system for extended alpine monitoring. The research



indicates GEE with Otsu adaptive thresholds provides the optimal combination of
analytical consistency and scalability but Sentinel Hub delivers the most effective
results for operational visualization and public dissemination of EO-based
indicators. The dual-platform system provides support for upcoming climate
monitoring and risk assessment and conservation planning activities in mountain
areas with limited data availability.
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Chapter 1

Introduction

1.1 Background and motivation

Mountain ecosystems represent some of the most active and climate-
vulnerable regions which exist on Earth. The European Alps have experienced a
major temperature increase which now stands at +2°C above late 19th century
levels and exceeds global warming rates (Marty et al., 2017; Sven Kotlarski, Andreas
Gobiet, Samuel Morin, Marc Olefs, Jan Rajczak & Raphaélle Samacoits, 2022.)The
climate change has resulted in shorter snow cover duration and earlier snowmelt
and altered plant growth patterns (Matiu et al., 2021).The changes in climate
patterns produce two negative impacts on water circulation and energy transport
systems which simultaneously damage mountainous ecosystems through
biodiversity decline and increased natural disaster occurrences (Beniston et al.,
2018).

The Maritime Alps (Piedmont Region, Northwestern Italy) experience these
processes at their most extreme because of its steep climate differences and diverse
landscape features and its position between Mediterranean and alpine bioclimatic
zones. The duration of snow cover affects vegetation growth patterns and plant
development which leads to changes in carbon storage and soil water content and
slope stability. Scientists can create successful ecosystem-based climate adaptation
plans through their research of these interactions while assessing the extended
stability of alpine ecosystems.

Earth Observation (EO) advancements together with open-access satellite
imagery data now enable environmental monitoring through their delivery of
continuous spatial data that occurs frequently over time while maintaining
reproducibility. The Copernicus Sentinel-2 mission serves as a primary EO data
source because it provides multispectral optical imagery at 10-20 m resolution
which enables precise monitoring of snow and vegetation and surface processes
through its 5-day revisit cycle (M. Drusch a, et al., 2012).The EO data analysis and
visualization capabilities of Google Earth Engine (GEE) and Sentinel Hub operate
through cloud-based platforms which eliminate the need for users to possess local
computing resources.

The ACLIMO (Alpine Climate Monitoring) Project under ARPA Piemonte serves
as a key regional organization for establishing common methods to monitor alpine
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Introduction

areas. The ACLIMO system achieves harmonized climate monitoring through
the combination of satellite data with in-situ meteorological networks and field

validation to analyze NDVI vegetation dynamics and NDSI snow-cover variability and
geomorphological responses to climate forcing (Bonardi et al. 2010; ARPA
Piemonte, 2023; JRC, 2023). The present research depends on this project for its
conceptual and operational framework to improve the accuracy and consistency of
Earth Observation-based alpine monitoring techniques.

1.2 Problem statement

The two indicators NDVI and NDSI show strong potential for vegetation and
snow monitoring, yet threshold-based classification techniques continue to
generate classification uncertainties. Research studies depend on established
threshold values (NDVI = 0.30 and NDSI = 0.42) which (ROUSE JW, 1973) originally
defined for low- to mid-latitude areas. 1974; (Hall et al., 1995.)The fixed threshold
system allows for both reproducible results and time-based analysis yet it fails to
identify changes in spectral patterns which result from variations in illumination and
surface roughness and snow cover and canopy density that commonly occur in
alpine regions. The combination of different land cover types in transitional zones
which include snowmelt areas and rocky outcrops and sparse vegetation results in
frequent classification mistakes (Verrelst et al., 2015).

The Otsu method (Otsu, 1979.). serves as an adaptive thresholding approach
which determines the best threshold value through analysis of pixel value
distributions that show bimodal characteristics. The data-driven thresholds
automatically adapt to changes in spectral patterns which leads to better detection
results in challenging conditions. The application of these methods in alpine
monitoring faces restrictions because of insufficient standardization which creates
difficulties when researchers attempt to validate and compare their results.

A second major challenge exists with validation datasets. The reference data
sets CORINE Land Cover, LUCAS and Carta degli Habitat present distinct
characteristics through their varying scales and thematic precision and acquisition
techniques. points although it lacks sufficient density. The comparison between
satellite-derived classifications and reference data produces discrepancies because
of differences in scale and mixed pixel effects and time-based data misalignment.
Research has not fully evaluated the cross-platform reproducibility between GEE
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and Sentinel Hub systems because these platforms continue to gain popularity

in Earth Observation operational workflows.

1.3 Objectives of the study

The overarching aim of this research is to develop and evaluate a dual-threshold

remote-sensing methodology for integrated snow and vegetation monitoring in the

Maritime Alps, leveraging multi-platform Sentinel-2 processing.

The specific objectives are:

1.

To quantify temporal variations in vegetation (NDVI) and snow cover (NDSI)
across the 2018—-2024 period using Sentinel-2 Level-2A data processed in
both GEE and Sentinel Hub.

To compare fixed and adaptive (Otsu) thresholding methods, identifying
their strengths, weaknesses, and suitability under different environmental
conditions.

To validate the classification results using multi-source reference datasets
(CORINE, LUCAS, Carta degli Habitat, and FSC) and assess the reliability of
each as ground-truth data.

To evaluate cross-platform consistency between GEE and Sentinel Hub,
analyzing differences due to compositing, cloud masking, and data
handling.

To provide methodological recommendations for alpine EO studies,
defining best practices for threshold selection, validation strategies, and
platform use.

To link spectral dynamics to ecological interpretation, examining how snow
duration affects vegetation productivity and spatial distribution patterns in
the Maritime Alps.

Through these objectives, the study contributes to refining EO-based

monitoring frameworks and improving the reliability of vegetation—snow

interaction analyses in mountain environments.
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Chapter 2

Project Framework

2.1 Project framework: ACLIMO (Alpine Climate Monitoring)

The ACLIMO (Alpine Climate Monitoring) Project under ARPA Piemonte
coordination with academic and regional partners served as the research
framework for this study. The project uses satellite Earth Observation data and in-
situ meteorological networks to track Western Italian Alps environmental and
climatic patterns through geohazard field validation.

ACLIMO enables researchers to access standardized data and common
methods for studying NDVI vegetation changes and NDSI snow cover patterns and
climate-induced landslides and debris flows. The project framework provides the
scientific basis for this research while maintaining methodological consistency that
enables comparison with other Alpine monitoring studies (ARPA Piemonte, 2023;
JRC, 2023; Bonardi et al., 2008).

2.2 Climate change impacts on vegetation and snow in the
European Alps

Climate change has profoundly affected the cryosphere and vegetation
dynamics across the European Alps. The region's mean annual temperature has
significantly increased, the length of snow cover has decreased, and the growing
season has begun earlier in recent decades (Matiu et al., 2021; Kotlarski et al., 2022).
In particular, at high elevations where the snow—rain transition is most susceptible
to temperature anomalies, these changes are changing species composition,
reshaping alpine ecosystems, and impacting hydrological regimes.

Snow cover is essential for controlling soil moisture, energy balance, and the
phenological stages of plants in alpine regions. Early soil exposure and, as a result,
earlier vegetation greening are caused by shorter snow durations (Choler, 2021;
Lamprecht et al., 2018). The way that alpine vegetation responds to these changes
varies geographically, though; some areas are more productive because of longer
growing seasons, while others are stressed because of less water available and more
frequent drought events (Brunetti et al., 2009; Gobiet et al., 2014). Therefore, one
of the most important indicators of ecological resilience to changing climatic
conditions is the interaction between snow persistence and vegetation activity.
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Scientific and Project Framework

2.2.1 Snow Cover Variability and Its Ecological Implications

Variability in snow cover affects the environment directly as well as indirectly.
It directly affects overwintering species and soil microbial communities by changing
the insulation of soil and root systems. Snow indirectly affects downstream
ecosystems, water resource availability, and runoff regimes (Marty et al., 2017). In
many Alpine regions, especially at mid-elevations, satellite-based observations
show that the average duration of snow cover has decreased by about 8.4% every
ten years (Kotlarski et al., 2022). An upward shift in the snowline and a change from
snow-dominated to rain-dominated precipitation regimes are frequently observed
in conjunction with this decline.

2.2.2 Vegetation Dynamics and Phenological Shifts

Numerous in situ and remote sensing studies have documented how vegetation
is responding to climate change. Although these changes vary with altitude, aspect,
and species composition, earlier leaf-out and delayed senescence have prolonged
the vegetation period throughout the Alps (Vitasse et al., 2018; Choler, 2021).
Greenness trends are on the rise, according to NDVI-based analyses, especially in
subalpine and montane zones where temperature constraints are most noticeable.
High-elevation ecosystems, however, are getting close to ecological thresholds,
beyond which changes in species dominance or moisture stress brought on by
warming may lower productivity (Gamon et al., 2015; Senf et al., 2020).

2.2.3 Related Works and Research Context

. Prior research has evaluated vegetation and snow cover interactions by
combining field observations, climate data, and satellite imagery. For example,
Gascoin et al. (2020) examined Sentinel-2-derived NDSI to estimate snow
persistence across mountain regions, and Choler (2021) used Sentinel-2 time series
to track vegetation phenology in snow-controlled alpine grasslands.

Similarly, to measure snow-vegetation feedbacks in the Alps, Notarnicola et al.
(2020) combined Sentinel-2 and MODIS data. These results demonstrate how
crucial multispectral Earth Observation (EO) data are for identifying environmental
changes with high temporal and spatial resolution. Building on this background, the
Sentinel-2 satellite mission and the data collection method used for the study's
vegetation and snow monitoring are explained in section 2.3.

14
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—

opermicus

Copernicus

Figure 2.1 Earth observation missions developed by ESA, Source: ESA,2023

2.3 Satellite imagery and data acquisition

Satellite Earth Observation provides a consistent and reproducible means of
monitoring dynamic environmental processes such as snow and vegetation cover.
In this research, Sentinel-2 Level-2A imagery was selected for its high spatial,
spectral, and temporal resolution, which make it particularly suitable for
mountainous environments characterized by complex terrain and rapid seasonal
changes.

2.3.1 Sentinel-2 Mission Overview

The Sentinel-2 mission, which is a component of the European Space Agency's
(ESA) Copernicus Program, is made up of two identical polar-orbiting satellites
(Sentinel-2A and Sentinel-2B) that are 180° apart and in the same sun-synchronous
orbit. According to Drusch et al. (2012), the mission offers worldwide coverage
every two to three days at mid-latitudes and every five days at the equator. The
Multispectral Instrument (MSI), carried by Sentinel-2, has spatial resolutions of 10
m, 20 m, and 60 m depending on the band. It can acquire 13 spectral bands, from
visible to shortwave infrared (SWIR) (Table 2.1). Each MSI band's spectral
configuration and spatial resolution are compiled in Table 2.1. Table 2.1 shows the
spatial resolution and spectral bands of the Sentinel-2 MSI.
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2.3.2 Data Characteristics and Preprocessing

The Sentinel-2 Level-2A product provides atmospherically corrected surface
reflectance through the Sen2Cor processor, which includes correction for
atmospheric, topographic, and adjacency effects. For this study, only bands relevant
to vegetation and snow monitoring were retainedspecifically, the Red (B4), Near-
Infrared (B8), and Shortwave Infrared (B11) bands. Cloud and shadow masking was
applied using the Scene Classification Layer (SCL) and QA60 cloud mask to ensure
high-quality input data.

The Multispectral Instrument (MSI) of Sentinel-2 operates as its core
component to measure reflectance data through 13 bands which span from visible
to short-wave infrared wavelengths as shown in Figure 2.2.

m Source: hip fesamultimedia esa intdocsEarthObservaton/Sentinel-2_ESA_Bulletin 151 pdf

VIS NIR SWIR

Bl B9 B10

3
W
L

| Aerosols Water-vapour | Cirrus.

Snow/ice/cloud discrimination
B5 B7 B8a Vegetation status

Vegetation
red edge
I I B6 Bll B12
B8
800 1000

B0
20

B2 B3 B4

10
nm
500 600

1200 1400 1600 1800 2000 2e00 2400

1+ Spatial resolution versus wavelength: Sentinel-2's span of 13 spectral bands, from the visible and the near-infrared to the shortwave

infrared at different spatial resolutions ranging from 10 to 60 m on the ground, takes land monitoring to an unprecedented level

Figure 1.2 Sentinel-2 spectral bands (VIS, NIR, SWIR) and their main
applications, Source: ESA (2015), Introducing Sentinel-2, ESA Bulletin 161.

The bands of Sentinel-2 provide optimal measurements for Earth surface and
atmospheric physical properties which enables effective monitoring of vegetation
health and soil and water moisture levels and snow cover and atmospheric
conditions. The system operates at three native spatial resolutions which
correspond to its designated measurement functions.
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e 10 m bands (B2-Blue, B3—Green, B4-Red, B8—NIR): These bands deliver
high spatial resolution data that scientists use to map land cover and study
vegetation and urban environments. The NDVI index which serves as a key
tool for vegetation monitoring requires the combination of data from the
red (B4) and near-infrared (B8) bands.

e 20 m bands (B5-B7 red-edge series, BSA—narrow NIR, B11-SWIR-1, B12—-
SWIR-2): The additional spectral data from these bands enables detection of
vegetation stress and provides information about canopy structure as well
as soil and vegetation moisture and snow or burned area identification. The
snow index (NDSI) uses the green band (B3 at 10 m) and SWIR-1 band (B11
at 20 m) to create its measurement.

e 60 m bands (B1-coastal aerosol, B9—water vapor, B10—cirrus): The bands
serve mainly for atmospheric correction purposes to achieve accurate
reflectance measurements across different wavelengths although they do
not support detailed surface mapping applications.

The process of data preparation requires a fundamental step to merge bands
recorded at different resolutions (10 m and 20 m) for NDVI and NDSI index
calculations. The standard practice for data analysis involves two methods to handle
band resolution differences: analysts either resample 10 m bands to match 20 m
resolution, or they use pan-sharpening and super-resolution techniques to improve
the detail of coarser bands. The application of Generative Adversarial Networks in
deep learning technology has shown successful results for reducing 20 m and 60 m
band resolution to 10 m which results in detailed vegetation and snow monitoring
without compromising spectral accuracy (Romero et al., 2016)

The primary remote sensing data source for this research uses Sentinel-2 to
study vegetation and snow patterns in the Maritime Alps. The combination of
Sentinel-2's detailed spectral data with its high spatial resolution and regular data
collection schedule makes it an ideal tool for studying the diverse snow and
vegetation patterns and ecological shifts in this climate-vulnerable area.
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Band Description & Example Use Central A | Resolution
(nm)

B1 Coastal aerosol, mainly for atmospheric correction and 443 60 m
coastal water studies.

B2 Blue detects shallow water, turbidity, and atmospheric 490 10 m
scattering. Combined with B3 and B4 to produce “true
color” images.

B3 Green, useful for vegetation monitoring and in water 560 10 m
indices such as NDWI (B3/B11). Also sensitive to snow
reflectance.

B4 Red, strong chlorophyll absorption; crucial in NDVI 665 10 m
(B8/B4) for vegetation productivity.

B5 Red-edge 1 enhances detection of chlorophyll content 705 20 m
and crop differentiation.

B6 Red-edge 2, increases sensitivity to vegetation stress and 740 20 m
canopy structure.

B7 Red-edge 3, valuable in forestry for phenology and long- 783 20 m
term canopy health monitoring.

B8 NIR (broad), widely used for vegetation biomass and 842 10 m
phenology, forms the basis of NDVI.

BSA NIR (narrow), complements red-edge bands to 865 20 m
discriminate subtle changes in vegetation condition.

B9 Water vapor detects absorption features of water vapor 945 60 m
for atmospheric correction.

B10 Cirrus identifies thin, high-altitude cirrus clouds, 1375 60 m
improving cloud masking.

B11 SWIR-1, sensitive to soil and vegetation moisture, also 1610 20 m
used in snow mapping (NDSI) and burn indices (NBR).

B12 SWIR-2 provides information for geology, soils, and 2190 20 m

burned area assessment. (NBR).

Table 2.1 Sentinel-2 MSI bands, their spectral characteristics, spatial resolution, and example

applications.
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During data preparation, 10 m and 20 m bands were merged to align the spatial
resolution used for NDVI and NDSI calculations. This resampling step ensures
consistency between vegetation and snow indices.

Sentinel-2 products are distributed in two main levels: Level-1C (Top-of-
Atmosphere) and Level-2A (Bottom-of-Atmosphere) reflectance. Level-2A data,
corrected by the Sen2Cor processor, remove atmospheric effects to provide surface
reflectance values that are essential for accurate NDVI and NDSI computation in
mountainous terrain (“ESA, 2023,”.).

Overall, the Sentinel-2 mission provides a reliable and versatile dataset for
Alpine environmental monitoring. Its combination of high spatial resolution,
frequent revisit, and broad spectral depth makes it particularly suitable for tracking
vegetation and snow dynamics in the Maritime Alps.

The overall workflow of this research from data acquisition to classification and
validation is summarized in Figure 2.3. The detailed methodological description of
each step, including index calculation, threshold selection, mosaicking, and accuracy
assessment, is provided in Chapter 3.

The figure outlines the sequence from Sentinel-2 data acquisition and cloud
filtering to NDVI/NDSI computation, thresholding (fixed and Otsu), validation with
reference datasets, and final analysis of vegetation and snow trends.

The following section explains how these spectral capabilities are applied to
monitor vegetation and snow using NDVI and NDSI indices.

19



Scientific and Project Framework

Selecting Sentinel-2 Level-2A
Imagery (2018-2024)

Y

Area of Interest (AOI) Selection

Y

Pre-processing (Atmospheric
Correction & Cloud Masking)

h 4

NDVI/ NDSI Computation
(GEE / Sentinel Hub)

h 4 Y
Fixed Otsu
Thresholding Thresholding

N/

Validation with Multi-Source

Reference Datasets
(CORINE, LUCAS, CdH., FSC)

Y

Analysis of Vegetation (NDVI)
and Snow (NDSI) Trends

Figure 2.3 General workflow of the study showing the sequence from Sentinel-2 data
acquisition to spectral index computation, threshold classification (Fixed and Otsu), validation using

multi-source datasets, and analysis of vegetation and snow trends.
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2.4 Monitoring of vegetation and snow coverage through
spectral indexes

Monitoring vegetation and snow dynamics through spectral indexes is essential
for understanding ecosystem responses to climatic variability in alpine regions.
Among the available Earth Observation techniques, spectral indices derived from
Sentinel-2 imagery particularly the Normalized Difference Vegetation Index (NDVI)
and the Normalized Difference Snow Index (NDSI) provide robust tools for
qguantifying changes in vegetation greenness and snow-cover extent. This section
presents an overview of the methodological framework used for index-based
monitoring, including a comparative review of recent studies and the integration of
cloud-based processing platforms.

2.4.1 Vegetation monitoring with NDVI

The Normalized Difference Vegetation Index (NDVI), which uses red absorption
and near-infrared reflectance data, serves as one of the most widely adopted
indicators for photosynthetic activity and green biomass estimation (Tucker,
1979).lt is calculated using the following equation:

(NIR — RED)

NDV| = ~—«———=
(NIR + RED)

where NIR and RED correspond to the near-infrared and red reflectance bands
of the Sentinel-2 imagery. NDVI values range from -1 to +1, with high positive values
representing dense vegetation and negative values corresponding to non-vegetated
surfaces such as water, snow, or clouds.

As described in Section 2.3.2, Sentinel-2 provides 10-20 m spatial resolution
and a 5-day revisit frequency, which together enable detailed temporal tracking of
vegetation growth. These characteristics make NDVI especially suitable for Alpine
studies characterized by steep gradients and mixed land-cover types.

Recent studies have emphasized that using multi-temporal NDVI stacks rather
than single-date imagery. For instance, (Notti et all.,2023), demonstrated that
Sentinel-2 NDVI time-series features enhance the discrimination of vegetation.
Similarly, (Lasaponara et al., 2022)reported that NDVI trajectories from Google
Earth Engine (see Section 2.5) improve reproducibility in Alpine vegetation mapping.
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An example of NDVI-based vegetation classification in Alpine terrain is shown
in Figure 2.4, where Sentinel-2 imagery captures spectral differences among forest,
grassland, and shrubland habitats (Wakulinska and Marcinkowska-Ochtyr, 2020).
Although the Giant Mountains differ geographically from the Maritime Alps, both
regions share similar alpine ecological gradients and vegetation—snow interactions,
making this study comparable in methodological approach and environmental
relevance.

Beyond single-index analysis, NDVI can be complemented by derivative metrics
such as the Normalized Difference Moisture Index (NDMI) (Gao, 1996) and Tasseled
Cap Wetness (TCW) (Crist; Cicone, 1984), which enhance sensitivity to vegetation
moisture and canopy structure. In addition, red-edge bands from Sentinel-2 (e.g.,
B5, B6, B7) have been incorporated to improve the detection of subtle chlorophyll
variations and phenological trends (Parisi et al.,2023;Delegido et al., 2011)NDMI is
computed as (NIR — SWIR) / (NIR + SWIR), indicating vegetation moisture content,
while TCW derives from a linear combination of reflectance bands emphasizing soil
and canopy wetness.

The NDVI is still the most reliable and interpretable indicator for vegetation
monitoring in mountain ecosystems, even with its well-known drawbacks, such as
saturation in dense canopies and sensitivity to topographic illumination. This is
especially true when using multi-temporal and multi-platform frameworks for
analysis.
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2.4.2 Snow monitoring with NDSI

The Normalized Difference Snow Index (NDSI) is widely used for quantifying
snow-cover extent and monitoring its seasonal and inter-annual variability.
Introduced by (Hall et al., 1995), NDSI exploits snow’s high reflectance in the visible
green wavelengths and its strong absorption in short-wave infrared (SWIR) to
distinguish snow from bright surfaces such as clouds or bare soil.
It is expressed as:

I (GREEN — SWIR)
~ (GREEN + SWIR)

NDS

where GREEN represents reflectance in the visible green band (Sentinel-2 Band
3, 0.56 um) and SWIR corresponds to the short-wave infrared band (Band 11, 1.61
pm). High NDSI values (close to +1) indicate snow-covered areas, while lower or
negative values correspond to water, cloud, or bare surfaces.

As described in section 2.3.2, the 10-20 m spatial resolution of Sentinel-2
enables fine-scale snow mapping and captures spatial heterogeneity previously
unresolved by coarser sensors such as MODIS (250-500 m). Studies have
demonstrated that Sentinel-2 NDSI time-series provide robust detection of snow
persistence and seasonal transitions at catchment scales (Mazzotti et al.,2019;
Dumont et al., 2020)When combined with the Scene Classification Layer (SCL), NDSI
improves snow—cloud separation and refines seasonal snow cover metrics (Drolon
etal, 2017).

The integration of multi-sensor archives (Landsat + Sentinel-2) and cloud-based
infrastructures such as Google Earth Engine and Planet Insight Browser (see Section
2.5) has further enhanced temporal coverage, producing dense datasets for regional
and continental snow monitoring. Automated pipelines on these platforms support
near-real-time snow product generation and visualization (Mohammadi et al., 2023;
Puliti a et al., 2017).

Observations across the European Alps show that snow extent has been
decreasing, especially at mid-elevations, where rising temperatures accelerate
snowmelt and shorten seasonal duration (Marty et al., 2017; Terzago et al.,,
2023).Model-based syntheses confirm that temperature, more than precipitation,
is the dominant control on snow variability, highlighting the sensitivity of Alpine
snow to ongoing warming (Kotlarski et al., 2023).
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Despite improvements in data processing, NDSI analyses in mountainous terrain
remain challenged by topographic shadows, forest canopy interference, and short-
lived clouds, which can affect snow detection accuracy. Nonetheless, advanced
correction techniques, such as terrain normalization and multi-date compositing,
have considerably enhanced the reliability of Sentinel-2—based snow monitoring in
complex landscapes.

As illustrated in Figure 2.5, the Sentinel-2 NDSI maps effectively distinguish
snow and glacier cover, while advanced classifiers such as SVM and XGB refine the
separation between ice and non-ice surfaces (Mohammadi et al., 2023).
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Figure 2.5 Comparison of Sentinel-2 NDSI maps and
machine learning classifiers (ANN, C5.0, NBC, SVM, XGB) for
glacier and snow detection across test sites in Canada (CAN),

Chile (CHI), Sweden (SWE), and Switzerland (SWIT). Blue areas

represent glaciers.
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In addition to binary classification, the Copernicus Fractional Snow Cover (FSC)
product provides 20 m resolution estimates of the percentage of snow within each
pixel across Europe. This fractional metric serves as a key validation dataset because
it quantifies partially snow-covered areas that NDSI may classify as either snow or
no-snow. As a result, FSC complements NDSI by enhancing accuracy assessment in
complex mountainous terrain and mixed pixels, making it the preferred reference
for snow-related validation in this study (see Chapter 3 for details on its
implementation).

To process these spectral indices efficiently across multiple years, cloud-based
platforms were adopted, as described in the next section.

2.5 Cloud-Based processing platforms

The Sentinel-2 satellite imagery growth demands cloud-based systems to
manage data access and processing and visualization operations at high
performance levels. Users can access and process large Earth Observation (EO)
datasets through online systems which eliminate the need for storage space and
powerful computing equipment.

Both Google Earth Engine (GEE) and Planet Insight Browser (formerly Sentinel
Hub EO Browser) operate with Sentinel-2 Level-2A surface-reflectance products,
ensuring consistent input data. Their main differences arise from the mosaicking,
cloud-masking, and data-processing pipelines applied within each system.

This section presents two major platforms widely adopted in environmental and
cryospheric studies: Google Earth Engine and Planet Insight Browser (previously
known as Sentinel Hub EO Browser).

2.5.1 Google Earth Engine (GEE)

Fully automated analyses using JavaScript or Python scripting are made possible
by the Google Earth Engine (GEE) platform, which offers petabyte-scale access to
multispectral, radar, and climate datasets. Without downloading raw imagery, GEE's
cloud computing enables scalable Sentinel-2 processing, mosaicking, and time-
series generation.

By combining cloud-free composites and surface reflectance correction, GEE
allows users to compute NDVI and NDSI over wide regions and extended periods of
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time. The system is perfect for creating repeatable pipelines and validation
procedures because of its scripting flexibility.

Prior research has shown that GEE is useful for Alpine monitoring, such as
phenological evaluations in mountain ecosystems (Roésch et al., 2022) and NDVI
trajectory analysis for landslides and wildfires (Lasaponara et al., 2020; Notti et al.,
2023). The platform offers free access for research purposes and outputs data in
several formats (GeoTIFF, CSV, and JSON) (see Figure 2.6 for interface overview).

Script manager Get a link (URL) to the script
API documentation Save the script
Search for data Run the script Help button
1 Imports l

T T

e ———
L* Task manager

Asset .. 2 CDde
Manager Ed.to o = Console output
e o — Inspect locati
e e — pixel values,
;eometry —s- g P & objects added to
Tools SRS, the map
i Map e Layer manager

Figure 2.6 Google Earth Engine Code Editor
interface, Source: Science Park Study Group (2015).

2.5.2 Planet Insight Browser (formerly Sentinel Hub EO Browser &
APIs)

The Planet Insight Browser now operates under Planet Labs since the Sentinel
Hub service transition while offering quick visualization and analysis capabilities for
Sentinel-2 data within the Copernicus program. The interface enables users to view
multispectral imagery and create NDVI and NDSI composites and obtain processed
layers through its web interface or Application Programming Interfaces (APIs).

Unlike the previous open access Sentinel Hub Statistical API, the new Planet
Insight APl requires user registration and authentication via an access token. The
free version of the service has restrictions on the number of requests and data
volume, but professional subscriptions provide access to bigger workflows. The
system provides data outputs through standard formats which include Geo TIFF and
PNG and JSON metadata.

The platform excels in interactive visualization and figure generation, making it
particularly suitable for rapid assessments and communication with non-technical
audiences. However, compared to GEE, its restricted scripting and automation
capabilities limit its use for large-scale time-series or validation studies.
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The flexible cloud-based architecture of Planet Insight, shown in (Figure 2.7),
demonstrates how web-based and APl workflows can integrate with GIS software
and Python or JavaScript environments for on-demand visualization and data
delivery.

‘Open EO data - Sentinel-1, Sentinel-2, Landsat, etc.

Cloud GIS

Web / Maobile apps

e

Desktop {QGIS,, ArcGIS...)
—— e

mmﬁ?ﬁm)
Figure 2.7 Planet Insight (formerly Sentinel Hub) data

architecture and application. Source: ESA (2019).

2.6 Otsu thresholding for NDVI and NDSI

The conversion of continuous spectral indices like NDVI and NDSI into binary
classes (vegetated/non-vegetated or snow/no-snow) needs automated threshold
selection methods which produce consistent results across different environmental
conditions.

Unlike fixed thresholds that rely on predetermined values, the Otsu approach
computes an optimal threshold (t) directly from the image histogram, maximizing
the variance between classes while minimizing variance within each class.
This data-driven process removes human subjectivity in threshold definition and
ensures consistent classification across different environmental settings.

The method analyses the histogram of pixel values and finds the separation
point that best divides two distinct distributions, for example, vegetated vs. non-
vegetated or snow-covered vs. bare areas based on reflectance differences. The
optimal threshold is located at the lowest point between the two peaks of the
frequency distribution, as shown in Figure 2.8.
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oB2(t)=w1(t)w2(t)[ul(t)-p2(t)]2

where g3is the between-class variance, w;and w,are the probabilities of the
two classes, and p;and p,are their mean values. The optimal threshold t*is found
where g2 (t)is maximized.

For large-scale or multi-temporal analyses, where manual selection would be
inconsistent, automated thresholding works especially well.

The Otsu algorithm is perfect for studies that span several years or climatic
conditions because it can adjust to scene-specific conditions like illumination, snow
albedo, or vegetation density. To maintain methodological consistency across all
years and validation datasets, Otsu thresholding was applied to both the NDVI and
NDSI datasets in this study.

Because Otsu thresholding creates stable binary masks that reduce class
overlap under different illumination conditions, it is advantageous for NDVI
classification ( Xue et al ., 2021; Zhou, 2020).

Likewise, for NDSI, this approach outperforms static thresholds in high-
reflectance or shaded terrain and successfully separates snow from other bright
surfaces (such as ice or clouds) (Gascoin et al.,, 2019; Harer et al., 2018)
For example, Otsu thresholding effectively extracted snow extent in the Pyrenees
and Mount Erciyes, even in the presence of variable illumination (Gascoin et al.,
2018).

Research literature suggests several guidelines for optimal Otsu
implementation:

e Apply Otsu thresholding to specific time periods or spatial subsets where
snow or vegetation presence is expected to vary.

e Integrate cloud and shadow masks to minimize atmospheric and
topographic artifacts.

e Document threshold sensitivity between months or seasons to identify
environmental shifts.

These best practices were adopted throughout this study to ensure
comparability between vegetation (NDVI) and snow (NDSI) analyses.
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Figure 2.8 Greyscale histograms of (a) NDVI June 2022 and (b) NDSI showing Otsu thresholds
(solid lines) April 2022 GEE compared with fixed thresholds (dashed).

2.7 Validation Approaches

The reliability of interpreting NDVI and NDSI derived products depends on
validation processes.

Validation ensures that index-derived classifications (vegetation and snow)
accurately represent real-world conditions by comparing them with independent
reference datasets.

The European region depends on two primary datasets for this work, including
CORINE Land Cover (CLC) and LUCAS (Land Use/Cover Area Frame Survey).
In addition, ecological frameworks such as the Carta degli Habitat and the Natura
2000 network, developed under the EU Habitats Directive, provide reference maps
for validating the ecological significance of EO-derived vegetation and snow-cover
changes.

These frameworks extend validation beyond simple land-cover classification,
linking spectral indices (NDVI, NDSI) to real habitat conditions and conservation
status. (Gyorgy Biittner, 2014).

e CORINE Land Cover (CLC): Provides continental-scale land-cover maps at
100 m resolution with a minimum mapping unit of 25 ha.
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e LUCAS: Offers in-situ field observations at point locations across the EU,
serving as accurate ground-truth samples for pixel-level validation.

e Carta degli Habitat (CdH): Supplies polygon-based habitat delineations
derived from ecological surveys, mainly used for qualitative assessment.

Using these complementary datasets allowed the analysis to combine spatial
consistency (CLC), point precision (LUCAS), and ecological context (CdH).

The accuracy evaluation used confusion matrices to measure the agreement
between classification outputs and reference data according to (Congalton, Green,
2019) and (Foody, 2002).The matrix compares predicted versus reference classes
and summarizes correct (true) and incorrect (false) classifications, enabling
computation of multiple statistical indicators:

e User’s Accuracy (UA) measures the likelihood that a specific pixel
classification matches its actual ground-based classification.

e The Producer’s Accuracy (PA) measures the likelihood that reference
pixels match their corresponding map classifications.

e Overall Accuracy (OA) represents the total number of correctly
classified pixels in relation to the complete dataset.

e The Kappa Coefficient (k) evaluates the degree of agreement between
classification results and reference data by removing random
classification errors.

These metrics were computed separately for NDVI (vegetation/non-vegetation)
and NDSI (snow/no-snow) classifications to ensure cross-index comparability.

The same validation structure was applied across all datasets and vyears,
ensuring methodological consistency.

Each validation dataset (CLC, LUCAS, CdH) provided independent samples, and
NDVI/NDSI predictions at corresponding locations were extracted for accuracy
computation.
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Reference Data Vegetation (1) | Non-Vegetation (0) Total
Predicted Vegetation TP FP TP+FP
(1)
Predicted non- FN TN FN+TN
vegetation (0)
Total TP+FN FP+TN N

Table 2.1 Structure of a binary confusion matrix illustrating the relationship between predicted
and reference vegetation classes used for accuracy assessment.

Where TP, FP, FN, and TN denote true positives, false positives, false negatives,
and true negatives respectively.

Applying this standardized approach across both NDVI and NDSI ensures

consistent accuracy comparison between vegetation and snow-monitoring
analyses.

An example of a confusion matrix used in this process is shown in Figure 2.9,
which visually demonstrates the distribution of correct and incorrect classifications.

Confusion Matrix
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Figure 2.9 Example of a binary confusion matrix used to evaluate

classification accuracy, Source: adapted from the Scikit-learn documentation

(Pedregosa et al., 2011).
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2.7.1 Validation with LUCAS 2022

The LUCAS (Land Use/Cover Area Frame Survey) dataset provides high-
precision, ground-based observations collected across Europe. Its point-based
design offers reliable validation for pixel-level classification accuracy.
Research integrating Sentinel-2 NDVI data with LUCAS points demonstrates its
effectiveness for mapping vegetation dynamics.

For instance, the research by (d’Andrimont et al., 2021) combined Sentinel-2
NDVI time series data with LUCAS reference points to create European-scale crop
type maps which achieved more than 85% overall accuracy through confusion
matrix analysis that showed most errors occurred between similar types. Similarly,
research by (Malinowski et al., 2020) evaluated NDVI-based land-cover mapping in
Poland through LUCAS sample validation which produced high accuracy for forest
and cropland classes but lower accuracy for transitional and mosaic core( Drolon et
al.,2017) applied Sentinel-2 NDVI data in GEE to classify categories.

Such results highlight LUCAS as a robust reference for vegetation-related
validation due to its direct field observations and precise geolocation.

2.7.2 Validation with CORINE land cover 2018

The CORINE Land Cover (CLC) dataset provides a harmonized European land-
cover inventory with a 100 m spatial resolution, making it well suited for class-based
validation at regional and continental scales. (Belcore et al., 2024)) used CLC to
validate Alpine NDVI classifications, reporting an overall accuracy of 94.5%,
confirming clear spectral separability between grasslands, shrubs, and forest areas.
Similarly, (Varga et al., 2020) observed distinct NDVI patterns among CLC Level-1
categories (forest, cropland, urban), supporting its reliability for vegetation-type
evaluation.

For snow mapping, several studies have applied confusion-matrix validation to
CLC-based or in-situ datasets. (Hare et al., 2019) evaluated Otsu and fixed NDSI
thresholds for Turkey’s Mount Erciyes, finding that Otsu improved snow detection
but occasionally underestimated snow extent. In the (Pyrenees, Gascoin et al., 2018)
validated Sentinel-2 NDSI using in-situ snow depth measurements, showing that
adaptive thresholding enhanced performance under variable illumination
conditions.
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These findings confirm that CLC supports class-wise validation of both NDVI and
NDSI, though its coarse resolution limits fine-scale pixel accuracy compared to
LUCAS. Consequently, this study adopted CORINE for categorical validation and
LUCAS for point-level validation, ensuring complementary accuracy evaluation.

2.7.3 Validation with Habitat Maps (Carta degli Habitat / Natura 2000)

Building upon the CORINE and LUCAS-based validation, the Carta degli Habitat
framework aligned with the EU Habitats Directive and the Natura 2000 network
serves as an ecological labelling system that enhances land-cover inventory and
conservation assessments.

The ecological processes of structure and species composition and conservation
status make these frameworks suitable for validating the ecological significance of
EO-derived greenness changes that extend beyond basic cover types.

Sentinel-2-derived NDVI trajectories and identified habitat types can be
compared thanks to the CdH database. For instance, (Cahojova et al.,2022) and (
Pesaresi et al., 2020) identified unique forest phenology patterns within Annex |
habitats using time-series NDVI and functional principal component analysis (FPCA),
with accuracies of up to 87.5% in temperate and Mediterranean regions.

Furthermore, it was shown by (Moravec et al., 2023) that Natura 2000 polygons
exhibiting aberrant spectral behavior can be identified using a combination of
Sentinel-1 and Sentinel-2 features, which leads to targeted field verification.

The NDSI method finds limited use in habitat validation but remains important
for snow-dependent habitats because snow duration acts as a vital ecological factor.
The existing research shows that combining NDSI-based snow duration
measurements with NDVI phenology analysis would create a dual ecological
assessment system for habitats that require both snow presence and growing
season duration for their identification and condition assessment.

2.7.4 Random-point validation

When ground-truth data are scarce or dispersed unevenly, a common validation
technique is random or stratified point sampling.
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In order to extract predicted classes (such as vegetation/non-vegetation or
snow/no-snow) from NDSI or NDVI maps, representative sampling points are
randomly generated within the Area of Interest (AOI).

Accuracy metrics like user and producer accuracy are then calculated by
comparing these sampled values with reference datasets (such as CORINE and
LUCAS). Due to its ability to objectively and reproducibly evaluate classification
performance across large or complex terrains, this approach has gained widespread
adoption (Olofsson et al., 2014; Congalton, 1991).

Random sampling has been used in Alpine applications to assess spatial
variability in snow cover and guarantee statistical robustness on MODIS and Landsat
snow maps.

Its reliability mainly depends on two factors:
1. The representativeness and spatial density of the sampled points, and
2. The accuracy of the reference data used for comparison.

Random-point validation complements the other datasets by ensuring
classification consistency across the AOI, particularly where in-situ data are scarce.

2.7.5 Validation with Copernicus Fractional Snow Cover

The Copernicus Fractional Snow Cover (FSC) product serves as the primary
quantitative reference for snow-cover validation in this study.

FSC data, available at 20 m resolution since 2016, represent the proportion of
snow within each pixel providing a fractional rather than binary view of snow extent
(Nagler et al., 2015; Salomonson & Appel, 2004).

This capability is especially valuable for mixed or partially snow-covered pixels
that traditional NDSI classification may mislabel.

FSC data are widely used to validate or complement NDSI-derived snow
products in mountain regions because they supply frequent, spatially detailed
updates (Gascoin et al., 2019; Dumont et al., 2020). Research has shown that FSC
supports two complementary validation pathways:

1. Binary validation, where pixels with FSC > 50 % are interpreted as snow; and
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2. Fractional validation, in which continuous NDSI-FSC relationships are
analysed through correlation or RMSE metrics.

The integration of Sentinel-2 data with Copernicus FSC ensures spatial
consistency and temporal continuity, making FSC an optimal external benchmark
for Alpine snow-monitoring studies (Puliti et al., 2021; Mohammadi et al., 2023).

To evaluate classification accuracy, the study adopted a confusion-matrix
framework (introduced in Section 2.7), which summarizes agreement between
predicted and reference snow classes (Figure 2.9).

2.8 Transition to methodology

The scientific and technical basis of this study was laid out in the previous
sections, which described how Sentinel-2 spectral indices (NDVI and NDSI),
thresholding techniques (fixed and Otsu), and a multi-layer validation framework
are used for vegetation and snow monitoring in Alpine regions.

These elements work together to create an integrated Earth Observation (EO)
approach that is intended to assess the spatiotemporal evolution of snow cover and
vegetation greenness under varying climatic conditions.

While the integration of CORINE, LUCAS, Carta degli Habitat, and Copernicus
FSC datasets provides complementary validation scales from continental land-cover
consistency to ground-truth precision and ecological relevance the combination of
fixed and adaptive thresholds allows for the detection of both year-specific
variability and stable long-term trends.

Moreover, the use of cloud-based platforms (Google Earth Engine and Sentinel
Hub) ensures efficient data acquisition, processing, and reproducibility across
multiple years.

Chapter 3 builds upon this conceptual framework by presenting the operational
workflow employed in this thesis. It details the step-by-step procedures for data
acquisition, pre-processing, index computation, threshold application, and
validation, as illustrated in the graphical methodology diagram. This transition from
theoretical foundation to applied methodology ensures that the analysis is both
scientifically grounded and operationally reproducible across the Western Italian
Alps.
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Chapter 3

Presentation Of Case Study

3.1 The Maritime Alps as a Study Area

3.1.1 Importance within ACLIMO Project

The ACLIMO (Alpine Climate Monitoring) Project is an INTERREG cross-border
initiative coordinated by ARPA Piemonte in collaboration with academic and
regional partners from Italy and France. The project aims to establish a harmonized
framework for monitoring Alpine environmental dynamics by integrating satellite
Earth Observation data, in-situ measurements, and geohazard field validation.

The main objectives of ACLIMO are to enhance understanding of Alpine climate
change impacts on snow cover, vegetation phenology, and slope stability, while
supporting long-term ecosystem and hazard management strategies. Through the
development of multiscale and multi sensor methodologies, the project promotes
consistent data acquisition, thresholding, and validation approaches across
representative Alpine sites.

To achieve these objectives, ACLIMO applies a standardized methodological
framework that combines optical and radar satellite imagery with meteorological
and ground-based datasets, enabling spatial and temporal analyses of snow- and
vegetation-related processes. This multilevel approach allows for both local-scale
assessments and regional-scale comparisons of climatic responses across the
Western Alps.

Within this framework, the present study contributes to the first analytical
component of ACLIMO, focusing on small-scale and satellite-based investigations of
vegetation and snow dynamics. By implementing Sentinel-2 Level-2A imagery and
dual-thresholding methods (fixed vs. adaptive), the research strengthens the
project’s overarching goal of monitoring climate-driven transformations in Alpine
ecosystems and validating methodological consistency across border areas between
Italy and France.
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3.1.2 Description of the Area

The Maritime Alps represent the southernmost section of the Alpine arc which
connects northwestern Italy (Piedmont and Liguria) to southeastern France
(Provence-Alpes-Cote d’Azur). The mountain range reaches from the Col de Tende
in the southern part to the Stura di Demonte Valley in the northern section with
elevations that span from 500 meters of foothills to peaks higher than 3,000 meters
including Monte Argentera at 3,297 meters. The area presents a distinctive Alpine
landscape with deep valleys and glacial basins and steep mountain slopes which
create an intricate mountainous terrain (Bonardi et al. (2010); COMOGLIO et al.,
2003)Figure 3.1 provides a detailed topographic view of the Maritime Alps, while
Figure 3.2 situates the ACLIMO Project study area along the Italy—France border

within the Aree Protette Alpi Marittime and Mercantour National Park regions.

Figure 3.1 Detailed view of Maritime Alps, Source:
Mohseni (Mapping Snow and Vegetation Coverage Using
Multitemporal Open Satellite Imagery: Case Study of Maritime

Alps, Politecnico di Torino

0355 10 15 20 25 %035 e
Figure 3.2. ACLIMO Project studyarea located along
the Italy—France border within the Maritime Alps,
encompassing the Aree Protette Alpi Marittime and
Mercantour National Park regions. Source: ACLIMO

Project, Politecnico di Torino (2024).
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3.1.3 Geological setting

The Maritime Alps form part of the southern Alpine mountain range because
they exist where European and Adriatic tectonic plates meet. The area consists of
gneisses and schists and granites which alternate with sedimentary rock layers of
limestone and marl (Comoglio et al., 2003). The diverse geological foundation
creates extensive landscape variability because it produces unstable steep rock
faces and glacial deposits in valley basins and karstic systems within carbonate-rich
areas. The geological structure determines both the formation of the landscape and
the development of soils and water systems and slope activities which directly
influence plant growth and snow accumulation patterns.

3.1.4 Climatic conditions

The Maritime Alps function as a transitional area between Mediterranean
climate zones and Alpine climate zones. The Mediterranean climate pattern of mild
winters and dry summers dominates the lower valley areas but the higher mountain
regions experience Alpine weather with heavy snowfall and prolonged snow cover
and cool summer temperatures (Comoglio et al., 1978; JRC, 2023). The mountainous
terrain creates enhanced precipitation patterns which result in more than 2000 mm
of annual rainfall in certain drainage areas.

Recent climate studies indicate that this region exhibits high sensitivity to
warming trends, with snow seasons starting later and ending earlier, leading to a
measurable reduction in snow duration and depth (Marty et al., 2017; Terzago et
al., 2023). These shifts have major implications for hydrology, vegetation phenology,
and slope stability in Alpine catchments.

3.1.5 Ecological and biodiversity value

The Maritime Alps qualify as Europe's most biodiverse region because they
combine Mediterranean and Alpine biological regions. The region contains many
unique species and different environments which range from Mediterranean
shrublands to alpine tundra and permanent snow areas (Casazza et al., 2005).The
area contains numerous protected Natura 2000 sites and regional parks that
safeguard its diverse ecosystems including Parco Naturale Alpi Marittime in Italy and
Parc National du Mercantour in France. The ecosystems face high sensitivity to snow
regime changes because snowbed communities face extinction from reduced snow

39



Materials & Methods

periods while forest ecosystems move to higher elevations (Cornelissen et al.,
2007).

This ecological variability makes the Maritime Alps a key natural laboratory for
studying climate impacts on vegetation—snow interactions using Earth Observation
data.

3.1.6 Historical and environmental events

Scientists have been studying the Maritime Alps because these mountains show
high sensitivity to natural climate and geological changes. The historical
documentation (Comoglio, 2003). The 1994 Piedmont flood and subsequent Little
Ice Age ended with glacial retreat which became more rapid during the 20th century
according to floods in 2020 triggered numerous landslides and debris flows
throughout the region because heavy rainfall events make steep slopes highly
susceptible to failure (Castellaro et al., 2014). The region demonstrates how climate
changes affect snow conditions and vegetation growth which in turn creates new
hazards.

Building upon this regional and historical context, the following section presents the
remote sensing datasets and satellite processing services employed for quantifying
vegetation and snow-cover dynamics in the Maritime Alps.
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3.2. Considered Services for Sentinel-2 NDVI and NDSI Access

Sentinel-2 was selected for this study because it provides open-access
multispectral data with 10—20 m spatial resolution and a five-day revisit frequency,
which are particularly suitable for detecting vegetation and snow dynamics in
mountainous terrain. Its long temporal coverage (2018-2024) also ensures
compatibility with previous satellite time series such as Landsat and MODIS,
facilitating trend continuity and inter-sensor comparison for long-term Alpine
monitoring.

The evaluation of Sentinel-2 imagery requires selecting efficient Earth
Observation (EO) services capable of managing large datasets and performing pre-
processing operations for NDVI and NDSI analysis.

The process of downloading and processing large Sentinel-2 Level-1C and Level-
2A products through ESA’s Copernicus Open Access Hub becomes inefficient for
time-series studies in mountainous regions (Gorelick et al., 2017)Therefore, this
study focused on cloud-based platforms that automate atmospheric correction,
mosaicking, and spectral index generation.

The Climate Engine platform provides browser-based access to pre-computed
NDVI time-series data from Landsat, Sentinel-2, and MODIS satellites
(https://climateengine.org). The study by Huntington et al. (2017) demonstrated its
utility for large-scale vegetation anomaly and drought index analysis, though it lacks
pixel-level precision.

The Agri4Cast service, developed by the Joint Research Centre (JRC) of the
European Commission, generates dekadal NDVI composites for agricultural
monitoring from 2000 onwards (https://agri4cast.jrc.ec.europa.eu). However, its
aggregated data resolution is insufficient for detailed Alpine terrain analysis (Baruth
et al., 2007).

The NASA Earthdata LP DAAC distributes MODIS and VIIRS snow and vegetation
products at global scale (https://Ipdaac.usgs.gov). While it ensures long-term
temporal consistency, its spatial resolution (250-500 m) limits application in small
Alpine catchments (Hall & Riggs, 2007; Gascoin et al., 2018).

The ARPA Piemonte Geoportal provides regional NDVI layers for the Piemonte
Alps but lacks access to raw raster datasets required for quantitative analysis
(https://www.arpa.piemonte.it).
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Currently, the two most adaptable platforms for Sentinel-2 data processing are
the Planet Insight Browser (formerly Sentinel Hub EO Browser) and Google Earth
Engine (GEE). Both enable fast data visualization, atmospheric correction, and
spectral index generation for vegetation and snow monitoring (Belcore et al., 2024;
Phiri et al., 2020)).

e Planet Insight Browser enables rapid online visualization and
NDVI/NDSI computation through an intuitive interface and API access.

e Google Earth Engine provides powerful scripting capabilities (JavaScript
and Python) for batch processing, multi-temporal analysis, and
integration with validation datasets.

Previous studies (Belcore et al., 2024; Mohammadi et al., 2023) confirm that
GEE-based pipelines achieve high accuracy (94-95 %) in Alpine NDVI/NDSI mapping
and can efficiently scale to continental snow-monitoring workflows.

For this thesis, Sentinel Hub was used for visual inspection, cloud filtering, and
scene selection, while GEE managed automated computation, thresholding, and
validation steps. This dual-platform strategy optimized both efficiency and accuracy,
ensuring reproducibility for long-term vegetation and snow monitoring in the
Maritime Alps.
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Platform

Strengths

Limitations

Suitability for study

Climate Engine

Simple browser interface;
automatic temporal
aggregation (mean,
anomalies, trends);

supports Sentinel, Landsat,
MODIS

Limited polygon flexibility;
restricted raw data export;
results often pre-aggregated

Useful for quick time-
series checks, but not
selected as a core tool

Nasa Earthdata
LP DAAC

Validated MODIS/VIIRS
NDVI and NDSI products;
global, long-term
consistency

Coarser resolution (250-500
m); limited flexibility in
thresholding and AOI clipping

Complementary
background dataset, but
not primary tool

Agri4Cast

Dekadal NDVI composites;
long time series since 2000;
CSV outputs at regional
scale

Only aggregated
statistics, no raster export;
limited spatial detail

Good for regional-scale
vegetation trends, not
local analysis

ARPA Piemonte
Geoportal

Regional NDVI
visualizations for Piedmont;
useful for qualitative
validation

Provides static
maps only (no raw rasters,
no thresholding)

Used as contextual
reference only

Sentinel Hub
(EO Browser &
APIs)

Direct access to Sentinel-
2NDVI/NDSI layers; custom
scripts; rapid visualization;

time-lapse; supports
Statistical API for
aggregation

EO Browser requires manual
image selection; advanced
features (Statistical API) need
subscription

Selected as one of
two main platforms
(rapid analysis &
visualization)

Google Earth
Engine

Free for research;
planetary-scale datasets
(Sentinel, Landsat, MODIS,
etc.); cloud masking;
thresholding; reproducible
scripted workflows; area
statistics

Requires programming skills;
steep learning curve for
beginners

Selected as one of two
main platforms
(scalable, reproducible
analyses)

Table 3.2 Comparison of selected Earth Observation platforms used for NDVI and NDSI data
access and analysis. Adapted from Huntington et al. (2017); Baruth et al. (2007); Hall & Riggs
(2007); Gascoin et al. (2018); Belcore et al. (2020); Ferndndez et al. (2023); Radic et al. (2020); ARPA
Piemonte (2023).

43




Materials & Methods

3.3 Sentinel Hub and Google Earth Engine: Vegetation and
Snow Monitoring

The research depends on Sentinel Hub and Google Earth Engine (GEE) to access,
process and analyze Sentinel-2 NDVI and NDSI data through their cloud-based
platforms. The two platforms work together to provide complete functionality for
fast visualization and pre-processing to large-scale computation and validation
supporting long-term monitoring of vegetation and snow patterns in the Alpine
region.

3.3.1 Overview and Functionality

The Sentinel Hub platform (EO Browser & APIs) provides users with immediate
access to Sentinel-1 and Sentinel-2 and Landsat and MODIS data through its
browser-based interface. Users can access real-time vegetation and snow index
calculations (NDVI and NDSI) through the platform which also supports automated
time-lapse sequence generation without requiring local data storage. The Statistical
APl and Evalscript environment of Sentinel Hub enables users to create customized
band operations and temporal statistics aggregation which makes it ideal for small
to medium Alpine studies that need fast validation and inspection. (Milcinski et al.,
2017; Sentinel Hub Documentation, 2024.)

Google Earth Engine (GEE), by contrast operates as a cloud-based computing
system which contains a vast multi-petabyte database of Sentinel and Landsat and
MODIS satellite data. The platform supports complex algorithm development
through its JavaScript and Python APIs which also enable multi-sensor data fusion
and time-based analysis for large-scale NDVI/NDSI calculations and climate variable
integration. The platform enables researchers to perform large-scale vegetation
pattern studies and snow cover duration assessments through its reproducible
analysis capabilities. (Gorelick et al., 2017; (Chang et al., 2023).

In this thesis, Sentinel Hub was used for quick inspection, mosaicking, and
cloud-free composite generation, while GEE handled statistical analysis, Otsu
thresholding, and validation.

This complementary use of the two systems ensures both efficiency in data
access and depth in analytical modeling for snow and vegetation monitoring.
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3.3.2 Comparative Strengths and Weaknesses

The two platforms operate with different methods to handle Sentinel-2 data
although they access the same upstream data source. The point-and-click interface
of Sentinel Hub allows users to perform fast visual inspections and generate small-
area products for export purposes, which makes it suitable for exploratory work and
validation tasks. The system requires programming skills to operate but provides
extensive processing abilities and global data access and automated workflow
management for multi-temporal analysis.

Table 3.3 summarizes the main comparative features of both platforms in

relation to NDVI/NDSI processing efficiency and analytical suitability.

Aspect

Sentinel Hub EO Browser

Google Earth Engine

Mode of access

Web interface, on-the-fly
processing

Code-driven (JS/Python APIs)

Data Catalog

Copernicus + curated datasets

90+ PB global catalog

Vegetation Monitoring

Quick NDVI/NDRE maps,
timelapses

Long-term NDVI/EVI trends,
ML pipelines

Snow Monitoring

Built-in NDSI & Snow Classifier

Custom NDSI metrics, multi-
sensor fusion

Cloud Masking

s2cloudless convenience
bands

Cloud probability dataset
(LightGBM)

Scalability

Small/medium AOls; rapid
exports

Regional to global scale
analyses

Learning Curve

Low; suitable for non-
programmers

Moderate—high; coding
required

Cost/Licensing

Free basic access; API plans
required for heavy use

Free for research/education;
commercial options via
Google Cloud

Table 3.3 Comparative strengths and weakness of Sentinel Hub and Google Earth Engine, Sources:
Milcinski et al. (2017); Gomes et al. (2020); Sentinel Hub Docs (2024); Google Earth Engine Docs

(2024).
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3.3.4 Practical Applications and Workflow Examples

The Sentinel Hub EO Browser system lets users obtain NDVI data at field level
by choosing areas of interest followed by running NDVI scripts and exporting
results as images or statistics. Users can perform fast on-demand vegetation
pattern assessments across their chosen scenes for initial research purposes.

Sentinel Hub was mainly utilized in this study for scene visualization, mosaic
creation, and manual cloud-free condition verification prior to automated
processing. Preliminary validation of NDSI-derived maps was made easier by the
Snow Classifier tool in the EO Browser, which allowed visual inspection of snow
extent and short-term snow persistence.

The same process in GEE demands scripting yet enables users to conduct
extensive large-scale analysis. The defined workflows in GEE enable users to
retrieve and process NDVI and NDSI data sets across different spatial areas which
range from small catchments to the complete Alpine region.

The automated workflow in GEE allows for consistent application of
thresholding and validation steps, reducing subjectivity during index
interpretation.

A recent example by (Adridan Meldn-Nava, 2024) illustrates the effectiveness
of similar GEE-based methods, where Sentinel-2 surface reflectance data
combined with cloud-probability layers were used to create daily snow
persistence maps for Alpine regions. This reinforces the reliability of using GEE for
automated and reproducible large-area processing.

3.3.5 Data Quality and Coverage Considerations

The two platforms utilize Sentinel-2 Level-2A data which present identical
restrictions because of cloud cover and terrain shadow effects and missing data in
mountainous areas. Research by (Dirk Tiede a et al., 2021) shows that high cloud
detection rates decrease the number of available pixels for analysis.

To address these limitations, the study implemented a compositing and
filtering strategy that harmonized the NDVI and NDSI datasets from both
platforms.
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In Sentinel Hub, rapid visual inspection and cloud-free mosaic generation
allowed the creation of preliminary reference composites. In GEE, more advanced
filtering was applied through automated cloud-masking and temporal compositing
scripts, ensuring consistency in pixel selection across months and years.

These combined approaches ensured data quality uniformity and reduced
noise from illumination differences, topographic shadows, and residual clouds an
essential step for accurate NDVI and NDSI threshold calibration, as emphasized by
(Sudmanns et al., 2019) and (Gomes et al. 2020).

3.4 Normalized Difference Indices: NDVI and NDSI

The NDVI and NDSI indices are operationally applied in this study to analyze
vegetation and snow-cover dynamics throughout the Maritime Alps, building on
the conceptual overview and formulas provided in Sections 2.6 and 2.7.
To ensure uniformity in spatial and temporal coverage, both indices were
generated from Sentinel-2 Level-2A surface reflectance data and processed using
a single workflow in Google Earth Engine (GEE) and Sentinel Hub.

3.4.1 Normalized Difference Vegetation Index (NDVI)

The NDVI was used as a stand-in for phenological variability and vegetation
greenness.

To capture vegetation change over time, composites were created for the
peak growing seasons of June 2018 and June 2022. As explained in Section 4.4,
both Otsu-adaptive thresholds and a fixed threshold (t = 0.3) were used to classify
pixels as vegetated or non-vegetated.
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3.4.2 Normalized Difference Snow Index (NDSI)

Snow persistence and seasonal extent were mapped using NDSI.
Composites representing late-winter to early-spring conditions were created for
April 2018 and April 2022. For comparison with NDVI-derived vegetation
classifications, the classification used both fixed threshold (t = 0.42) and Otsu-
based methods (for more information, see Section 4.4).

3.5 Data Access and Processing Workflows for NDVI and
NDSI

The only preprocessing steps that separate NDVI and NDSI are spectral bands
and threshold parameters.

GEE and Sentinel Hub were used to access Sentinel-2 imagery, which was then
mosaicked into monthly composites after being filtered for less than 10% cloud
cover.

Following cloud and shadow masking, these composites were harmonized to
a spatial resolution of 10 m and categorized using the appropriate index
thresholds.

Vegetation and snow analyses are methodologically aligned and directly
comparable across platforms and years thanks to the harmonized workflow.
Whereas low or negative index values indicate bare or inactive areas like soil or
water bodies, positive values indicate surfaces that are vegetated or covered in
snow.
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3.5.1 Sentinel Hub workflow

Objective.

Implement Sentinel Hub’s Process API to generate NDVI and NDSI composites
for each selected month and Area of Interest (AOI) in the Maritime Alps.
The workflow reproduces cloud-filtered Sentinel-2 L2A image retrieval, index
computation through EvalScripts, and binary classification using both fixed and
Otsu-adaptive thresholds.

Procedure:
e Masking and indices:

Custom EvalScripts were written to compute NDVI and NDSI from Sentinel-
2 L2A bands while masking clouds and shadows through the Scene
Classification Layer (SCL: classes 3, 8, 9, 10 masked; 11 retained for snow).

o Daily mosaics:

Sentinel Hub retrieves all valid scenes below the specified cloud-cover
threshold (< 10 %) within each AOI and month. Daily NDVI/NDSI rasters are
generated and mosaicked on-the-fly into 10 m grids (UTM 32 N).

e Monthly mean:

Daily mosaics are aggregated using mean values to obtain monthly
composites clipped to each AOI (e.g., NDVI_YYYY_MM_mean_SH.tif).
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¢ Robust Otsu:

Percentile-trimmed (2nd—98th %) NDVI/NDSI values are scaled to 8-bit (0—-255)
and processed through the Otsu algorithm to compute adaptive thresholds,
later converted back to index units for classification masks. This trimming
reduces the influence of outlier values such as residual clouds or noise before
threshold optimization.

Input raster Clipped to AOI Percentile trimmed

Ao._,@+

Figure 3.3 Example of AOI clipping and percentile
trimming applied to NDVI/NDSI raster

e Masks and metrics:

Fixed (NDVI > 0.30; NDSI > 0.42) and Otsu masks are produced; area (km?)
and mismatch (%) between methods are calculated.

e Exports:
Outputs include monthly means, Otsu and fixed masks, XOR difference
layers, and summary metrics (masked area, mismatch %).

All results are exported as GeoTIFF (10 m, EPSG:32632) and PNG visualizations.
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3.5.2 GEE workflow (cloud-side and post-processing)
Objective.

Replicate the Sentinel Hub logic within Google Earth Engine (GEE) using the
COPERNICUS/S2_SR_HARMONIZED collection to produce equivalent NDVI and
NDSI composites under identical conditions.

Procedure:
Masking and indices:

Cloud and shadow pixels were masked using SCL classes 3, 8, 9, 10, retaining
snow (class 11).

NDVI and NDSI were computed through the normalizedDifference() function.
Daily mosaics:

Sentinel-2 images were filtered by AOI, date, and cloud cover (< 10 %) and
processed to generate daily NDVI/NDSI rasters mosaicked at 10 m resolution
(UTM 32N).

Monthly mean:

Daily mosaics were averaged using .mean() to create monthly composites
clipped to the AOI, following the same temporal scheme as Sentinel Hub.

Robust Otsu:

The same percentile-trimmed Otsu algorithm was implemented server-side to
derive adaptive thresholds directly from the NDVI/NDSI histograms.

Masks and metrics:

Fixed and Otsu masks were generated. Area (km?) and mismatch (%) were
computed via pixelArea() for cross-platform comparison.
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Exports:

Monthly means, masks, and difference layers were exported as GeoTIFFs (10
m, EPSG:32632) to Google Drive.

Post-processing (Python): Offline scripts recomputed robust Otsu thresholds
for quality assurance, generated triptychs, and summarized metrics.

3.5.3 Definition of the monthly mean

For a given pixel p in month M, the monthly mean of NDVI or NDSI is computed
as the arithmetic average of all valid daily mosaics:

- 1 o
Ip,M = - Z Tpd, Np = F#{:xp, is valid},
Paem

where Idenotes NDVI or NDSI, and x,, sare daily index values within the range
[—1,1]. Invalid pixels (e.g., clouds, shadows, or missing data) are excluded from
both the sum and the count.

This averaging approach follows best practices in satellite index compositing
(Gorelick et al., 2017) and ensures that the resulting monthly means represent
robust averages of valid clear-sky observations, rather than isolated single-date
scenes.

This method was selected because it minimizes the influence of short-term
atmospheric variation and provides stable temporal indicators of vegetation and
snow dynamics across complex Alpine terrain.

It should be noted, however, that while the arithmetic mean is optimal for
assessing seasonal and interannual trends, alternative compositing strategies such
as maximum-value compositing—may be more suitable for estimating maximum
snow extent or peak vegetation greenness under specific study objectives.
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3.5.4 Definition of the robust Otsu threshold

The classical Otsu method (Otsu, 1979) identifies the threshold that
maximizes the between-class variance on a histogram to separate two spectral
classes (e.g., snow/non-snow or vegetation/non-vegetation).

To minimize sensitivity to outliers and histogram tails, a robust variant was
applied as follows:

1. Extract valid monthly mean NDVI or NDSI values within the AQI, i.e., pixels
not flagged as cloud, shadow, or snow by the Scene Classification Layer
(SCL).

2. Compute the 2nd and 98th percentiles (p,, pgg) to remove extreme values.

3. Clamp (limit) all data to the interval [p,, pog], effectively discarding values
outside this range to stabilize threshold computation.

4. Linearly rescale the clamped values to an 8-bit range (0-255).
5. Apply the Otsu algorithm to obtain a threshold Tgin 8-bit units.

6. Convert this threshold back to the original index scale using:

t\=p, + E(1998 — DP2)
255

where t*represents the final Otsu threshold value expressed in NDVI or NDSI
units.

This approach ensures that the computed threshold is robust against extreme
outliers while maintaining sensitivity to genuine spectral transitions in snow or
vegetation classes.

3.5.5 Cloud/shadow masking and mosaicking

Both workflows (Sentinel Hub and GEE) apply cloud and shadow masking
based on the Sentinel-2 Level-2A Scene Classification Layer (SCL), which labels
each pixel according to surface or atmospheric conditions.

53



Materials & Methods

To ensure accurate index values, the following classes were filtered:
e Rejected: SCL 3 (cloud shadow), 8 (cloud), 9 (high cloud), 10 (cirrus)
e Retained: SCL 11 (snow) — used for NDSI; vegetated classes (4—6) for NDVI

After masking, each day’s valid imagery was composited into a single daily
mosaic:

e Sentinel Hub: Utilized the MosaickingOrder.SIMPLE mode, which
automatically prioritizes the least-cloudy scenes after SCL filtering.

e Google Earth Engine (GEE): Used the .mosaic() function, ordering images
by ascending cloud probability to produce a single clear-sky composite per
day.

One daily mosaic was thus produced for each valid observation date, which
then contributed to the monthly mean composites described in Section 3.5.3.

Cloud/shadow masking
Filter cloud classes from

Sentinel-2 Scene L
Classification Layer E s

Daily mosaickking
Combine same-day
cloud-free scenes

l

Monthly mean
Aggregate daily mosaics
into monthly composite

Figure 3.4 Sentinel Hub
cloud/shadow masking and
mosaicking workflow for

NDVI/NDSI processing.
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3.5.6 Equivalence and minor differences between platforms

Both Sentinel Hub and GEE ultimately produce equivalent results cloud-
masked daily mosaics aggregated into monthly means and thresholded NDVI/NDSI
maps.

However, small technical differences arise from internal data handling:

o Resampling: Sentinel Hub explicitly resamples each mosaic to a 10 m grid
before monthly averaging. GEE performs averaging natively and applies
resampling only at export.

e Mosaic tie-breaks: When multiple valid scenes overlap on the same date,
each platform may prioritize slightly different pixels (e.g., by acquisition
time or scene order), causing minor local variation.

These differences are negligible at the monthly scale and appear only as
minimal area mismatches (%) in the Otsu vs. fixed-threshold comparison
diagnostics.

Both systems therefore maintain methodological equivalence in terms of
cloud-masking logic, compositing, and temporal aggregation. The tie-break
procedures, illustrated in Figure 3.3, highlight how Sentinel Hub prioritizes
sequence order while GEE prioritizes image clarity an operational difference that
becomes negligible once daily mosaics are averaged into monthly means.

Mosaic tie-break

Scene 2 [ Scene 3

Sentinel Hub
‘MosaickingOrder.SIMPLE"
first valid pixel

|

GEE
‘mosaic()’
first after sorting

| |

| Mosaic | [ Mosaic |

Sentinel Hub
‘Mosaic()l
first after sorting

Figure 3.5 Illustration of mosaic tie-
break handling between Sentinel Hub and

Google Earth Engine.

55



Materials & Methods

3.5.7 Deriving NDVI and NDSI Maps in QGIS

The monthly mean NDVI and NDSI rasters were imported into QGIS 3.36.1 for
spatial post-processing and classification. Within the GIS environment, raster
algebra operations and vector-based masking were applied to generate binary
vegetation and snow-cover maps suitable for spatial analysis and visualization. The
Maritime Alps AOI shapefile was used to spatially constrain the raster composites,
ensuring that all subsequent analyses were restricted to the defined study area.

The Raster Calculator tool was employed to execute index-based classification
using both fixed thresholds (NDVI > 0.30; NDSI > 0.42) and adaptive thresholds
derived from the robust Otsu algorithm. The procedure used continuous index
values to create binary classes which distinguished between vegetated and non-
vegetated areas and snow-covered and snow-free regions. The classification
workflow standardized raster values which made it possible to evaluate different
temporal composites.

Following classification, the Clip Raster by Mask Layer function (Raster -
Extraction = Clip by Mask Layer) was applied to enforce spatial constraints and
retain only pixels within the Maritime Alps AOI extent. The clipped rasters served
as input data to evaluate snow and vegetation spatial patterns during specific
months including April 2020 for NDSI and NDVI. The resulting layers underwent
visual and statistical verification against reference masks which were produced in
Sentinel Hub.
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This integrated QGIS workflow, summarized in Figure 3.6, standardized all
spatial operations including raster import, threshold application, masking, and AOI
clipping ensuring consistency between NDVI and NDSI map derivation. The
synchronized outputs allowed the evaluation of vegetation and snow dynamics
across time and supported the quantification of environmental changes in the
Maritime Alps.

Import Raster Composites
Load monthly mean NDVI
and NDSI rasters into QGIS

!

Thresholding and
Classification
Apply fixed threspolds and
Otsu-based index classification

!

Raster Masking
Clip classified rasters to
Maritime Alps AOI using
vector mask

:

AOI Clipping
Enforce spatial constraints
to isolate AQOI pixels

Figure 3.6. Overall QGIS workflow for NDVI

and NDSI map derivation, showing the sequence

of raster import, threshold-based classification,
and AOI clipping for spatial and temporal analysis

in the Maritime Alps.

3.6 Validation Approaches

3.6.1 Validation of NDVI with CORINE Land Cover 2018

To evaluate the reliability of NDVI-derived vegetation masks, we validated the
classification against the CORINE Land Cover 2018 (CLC2018) dataset, which
provides harmonized land-cover information for Europe at 100 m resolution with
a minimum mapping unit of 25 ha ( EEA, 2019 )The goal was to quantify the
agreement between Sentinel-2 NDVI classifications and an independent,
authoritative land-cover reference by means of a confusion matrix and accuracy
indices.
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Step 1: Preparation of the NDVI Raster.

The monthly mean NDVI raster was first thresholded to obtain a binary
vegetation mask. Pixels with NDVI = 0.30 were assigned to the vegetation class
(value = 1), while all others were assigned to the non-vegetation class (value = 0).
This threshold has been widely adopted in the literature as an indicator of active
vegetation cover (Tucker, 1979; Rouse et al., 1974). The resulting binary raster
(NDVI_binary.tif) represents the predicted classification.

L& Binary vegetation ma
Band 1 (Gray)
! non-vegetation
I vegetation
Google Satellite

0 10 20 km
[ —]

Figure 3.7 NDVI binary vegetation mask derived from Sentinel-2

composite (June 2019), Maritime Alps AOI.

Step 2: Preparation of CORINE Land Cover Reference Classes.
The CORINE 2018 dataset was imported into QGIS and reclassified into two
broad categories: vegetation and non-vegetation.

Following the CORINE nomenclature, all Level 3 codes corresponding to
forests, natural grasslands, sclerophyllous vegetation, transitional woodland-
shrub, and sparsely vegetated areas (e.g., codes 311, 312, 313, 321, 324, 333)
were grouped into the vegetation class (value = 1).

All other codes, including artificial surfaces, agricultural land, wetlands, and
water bodies, were grouped into the non-vegetation class (value = 0).
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The reclassified dataset (CLC2018_binary.shp) thus provided the reference
or “ground truth” classification.

The CORINE layer was then harmonized with Sentinel-2 data by applying CRS
transformation to EPSG: 32632 WGS 84 / UTM Zone 32 N for precise overlay
alignment and spatial matching with NDVI rasters. Finally, it was clipped to the
Maritime Alps AOI to retain only relevant classes within the study boundaries.

Step 3: Sampling Design

To statistically represent both vegetation and non-vegetation classes, 1,000
random points were generated within the Maritime Alps AOI using a random
sampling design. To prevent clustering and ensure adequate coverage across all
land-cover types, the Random Points in Polygons function in QGIS was used to
evenly distribute the points (> 30 m apart).

The spatial distribution of these sampling points is shown in Figure 4.93, which
illustrates their coverage within the study area.

Step 4: Extraction of Values

At each sampling point, the binary NDVI value was extracted from the NDVI
raster using the Sample Raster Values tool in QGIS. The CORINE Land Cover
(CLC2018) dataset provided the reference vegetation/non-vegetation attribute
for the same locations. This step resulted in a point dataset containing both the
predicted (NDVI-based) and reference (CORINE-based) classifications for each
sampling location.

Step 5: Spatial Join and Attribute Integration

The extracted NDVI and CORINE attributes were combined through the Join
Attributes by Location (Summary) tool in QGIS, using the geometric predicate
intersects.

The resulting dataset contained two binary fields NDVI_bin (0/1) and veg_class
(0/1) ,forming the input for confusion-matrix computation.

Step 6: Confusion Matrix and Accuracy Metrics
The comparison between NDVI predictions and CORINE reference classes was
summarized in a confusion matrix. The matrix cross-tabulates the number of
points where NDVI and CORINE classifications agree (true positives for
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vegetation, true negatives for non-vegetation) and disagree (false positives, false
negatives). From this table, several accuracy metrics were computed:

e Overall accuracy, defined as the proportion of correctly classified points,

e Producer’s accuracy (recall), measuring how well NDVI detects actual
vegetation,

e User’s accuracy (precision), measuring the reliability of NDVI’s vegetation
classification, and

e Cohen’s Kappa coefficient, evaluating agreement beyond chance.

NDVI=0 NDVI=1
CORINE=0 TN FP
CORINE=1 FN TP
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Let N=TP + FP + FN + TN.

Overall Accuracy (OA)

A_TP+TN
N

Producer’s Accuracy (Recall) — Vegetation

TP

Plveg = 7 T FN

For non-vegetation

TN
Phnonves = T FP

User’s Accuracy (Precision) — Vegetation

TP

Ulveg = 7p 1 Fp

For non-vegetation

TN
UAnonves = T T FN

Cohen’s Kappa (k)
First compute the observed agreement Py and the chance agreement P.:

TP + TN
P, =—N
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)
P, = N2
Then
K _ PO - Pe
1-P,
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Step 7: Statistical Analysis.
The confusion matrix was built from the exported attribute table of the sampled
points. The accuracy metrics were calculated through both Excel and Python
(scikit-learn library) to verify the consistency of the results. The analysis of NDVI
as a vegetation cover proxy followed established best practices for accuracy
assessment (Congalton, 1991; Olofsson et al., 2014) by examining both the
positive and negative aspects of the method.

The validation framework enabled a systematic evaluation of NDVI-derived
vegetation masks against CORINE Land Cover 2018 data to measure classification
precision and detect possible errors caused by different land-cover types and
resolution differences and seasonal changes.

3.6.2 Validation of NDVI with LUCAS 2022 and Confusion Matrix

The LUCAS 2022 (Land Use/Cover Area Frame Survey) dataset contains
standardized field measurements which span the European Union through a 2 km
grid system. The survey points contain complete land use and land cover
classification information together with photographic documentation. The sub-
hectare scale sampling of LUCAS makes it an essential resource for validating
Sentinel-2 vegetation index measurements (Gallego & Delincé, 2010; d’Andrimont
et al.,, 2021).

A confusion-matrix-based validation was applied to assess the agreement
between NDVI-derived vegetation masks and LUCAS 2022 observations. The
workflow, carried out in QGIS, followed the steps below.

Step 1 : Preparation of NDVI raster

As in the CORINE validation, monthly mean NDVI composites were first
thresholded into binary vegetation/non-vegetation maps. A fixed threshold of
0.30 was applied (Tucker, 1979; Rouse et al., 1974), which is widely recognized as
a reliable indicator distinguishing active green vegetation from bare soil or
sparsely vegetated surfaces. Values above 0.30 generally correspond to healthy
vegetation canopy, while lower values indicate non-vegetated or low-productivity
areas.
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This threshold was also verified as suitable for the Maritime Alps, where NDVI <
0.30 typically represents rock, snow, or bare alpine terrain, whereas higher values
correspond to grassland and forested zones.

_ (1 if NDVI =0.30
NDVlpinary = {0 if NDVI < 0.30
Step 2 : Import and preparation of LUCAS points

The LUCAS 2022 survey points were imported into QGIS as a vector layer. Each
point has an attribute such as LC1 (primary land cover class). For validation, classes
were reclassified into a binary vegetation/non-vegetation scheme:

e Vegetation (1): Cropland, grassland, shrubland, forest, and other
seminatural areas. (e.g., LC1 codes A, B, C, D, E, F, G in LUCAS
nomenclature).

e Non-vegetation (0): Artificial surfaces, bare land, water, wetlands.

This reclassification was carried out in the Field Calculator with an expression
like:

CASE
WHEN "LC1"IN (‘A','B','C','D",'E",'F",'G") THEN 1
ELSEO

END

The resulting layer LUCAS_binary now contains a column veg_class with values
1 (vegetation) or O (non-vegetation).

Step 3 : Extract NDVI values to LUCAS points

To link the NDVI classification with the LUCAS ground truth, the Sample Raster
Values tool was used:

e Input point layer: LUCAS binary
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e Raster layer: NDVI_binary.tif
e Output field: NDVI_bin

The resulting point layer (LUCAS_NDVI_sampled) contains, for each LUCAS
point, the reference vegetation class (veg_class) and the NDVI-derived class
(NDVI_bin).

Step 4: Export and Construction of Confusion Matrix

The attribute table of LUCAS_NDVI_sampled was exported to CSV file (Export
-> Save Features As - Format: CSV).

This file contained the paired classification results (veg_class and NDVI_bin),
which were used to construct a 2x2 confusion matrix in Excel or Python.

The matrix summarized the relationship between NDVI predictions and LUCAS
reference classes, identifying true and false classifications for vegetation and non-
vegetation categories.

Step 5: Accuracy Assessment

The same formulas and procedures outlined in Section 3.6.1 were used to
calculate accuracy metrics, such as Overall Accuracy (OA), Producer's Accuracy
(PA), User's Accuracy (UA), and Cohen's Kappa (k).

In comparison to field-based LUCAS observations, these indices offered a
numerical assessment of NDVI classification performance.

Step 6: Statistical Verification

To guarantee computational consistency, all computations were validated
using QGIS and Python (scikit-learn).

By offering greater spatial precision and in-situ ground reference, the LUCAS-
based validation enhances the overall reliability of NDVI classification results
across several validation scales, complementing the CORINE-based assessment.
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3.6.3 Post-Validation Evaluation and Sensitivity Analysis

The validation process with CORINE 2018 and LUCAS 2022 datasets was
followed by the evaluation of NDVI classification performance across different
threshold values and the assessment of accuracy metric stability. A sensitivity
analysis was then performed to test NDVI thresholds ranging from 0.25 to 0.35.
The analysis of confusion matrices and accuracy indices for each threshold enabled
us to measure how variations in threshold values affect classification reliability.

Sensitivity Analysis

NDVI > 0.30 was used as the main fixed threshold, but alternative cut-offs
(0.25, 0.27, 0.285, 0.30, 0.315, 0.33, and 0.35) were tested to capture threshold
sensitivity. For each threshold, the pipeline produced:

1. A confusion matrix (TP, FP, FN, TN).
2. Accuracy metrics (OA, PA, UA, k).
3. Graphical outputs showing metric variation with threshold.

The following section demonstrates the results obtained from sensitivity
analysis conducted during validation. The analysis of each NDVI threshold
included confusion matrix construction followed by accuracy index
calculations for Overall Accuracy and Precision and Recall and Cohen’s Kappa.
The results were displayed through graphical representations to demonstrate
how classification results change based on different threshold values.

The sensitivity plots display accuracy and precision and recall curves for all
tested thresholds which enable users to detect the balance between incorrect
positive and negative results. The reference dataset histograms display NDVI
value distributions between vegetation and non-vegetation classes to
demonstrate the essential threshold selection area.

The graphical assessment enables users to understand how threshold
adjustments affect accuracy metrics while helping them determine the most
suitable operational NDVI threshold for vegetation mapping.
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3.6.4 Validation of NDVI with Carta degli Habitat

The Carta degli Habitat (CdH) dataset provides a detailed, high-resolution
habitat mapping system developed under the EU Habitats Directive and Natura
2000 framework. Its fine thematic granularity makes it particularly suitable for
validating NDVI-derived vegetation maps (Pesaresi et al., 2020; Cahojova et al.,
2022), complementing the broader land-cover datasets such as CORINE and the
point-based LUCAS survey.

Following the general validation framework described in Section 3.6, NDVI-
derived binary vegetation masks (NDVI > 0.30 = 1; < 0.30 = 0) were compared
against CdH reference polygons reclassified into vegetated and non-vegetated
habitats. The reclassification was based on habitat codes representing forest,
shrub, grassland, and alpine communities, using:

CASE

WHEN "HAB_CODE" IN ('9210', '9230', '9420', '6170', '4060', '8210', '8220',
'8230') THEN 1

ELSEO
END

A stratified random sample of 1,000 points was generated within the AOI,
ensuring equal representation of vegetation and non-vegetation classes. At each
sampling location, NDVI binary values were extracted from the NDVI_binary.tif
raster and joined with the corresponding CdH vegetation attribute.

From this joined dataset, a confusion matrix was produced with CdH serving
as the reference layer. Accuracy metrics including overall accuracy (OA),
producer’s accuracy (PA), user’s accuracy (UA), and Cohen’s Kappa (k) were
computed according to the formulations in Section 3.6.1.

This ensured consistency across all validation datasets (CORINE, LUCAS, and
CdH) and enabled comparative analysis of NDVI classification performance across
multiple reference frameworks.
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3.6.5 Validation of NDSI Results

The accuracy assessment of Sentinel-2 derived NDSI snow cover classification
used two independent validation methods. The first validation method used
random points within the study area to compare NDSI snow/no-snow
classifications at specific locations. The second validation method used external
reference data from the Copernicus Fractional Snow Cover (FSC) product which
provides daily snow cover information at 20 m resolution starting from 2016. The
two validation methods combined to assess NDSI output accuracy through internal
and external validation methods.

3.6.5.1 Validation by Random Points

This first approach aimed to test the internal consistency of NDSI snow
classification by sampling random points across the Area of Interest (AOI). The
workflow in QGIS proceeded as follows:

Step 1: Prepare NDSI Raster

Monthly mean NDSI rasters were computed and thresholded into binary
maps using both the fixed threshold (NDSI > 0.42 = snow, Hall et al., 1995) and
Otsu’s adaptive thresholding (Otsu, 1979). The result was a binary raster (snow =
1, no-snow = 0).

Step 2: Generate Random Points

Using Random Points in Polygon tool in the Processing Toolbox, 1,000
random points were distributes within the AOI. This ensured an unbiased spatial
distribution across both snow-covered and snow-free areas.

Step 3: Sample Raster Values
The Sample Raster Values tool assigned each random point a snow/no-snow
class from the binary NDSI raster.

Step 4: Confusion Matrix and Accuracy Indices
The sampled points received export to a CSV file which allowed the creation
of a confusion matrix from the attribute table to assess classification accuracy.
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The accuracy indices were calculated using the standard methods from
Section 3.6.1 to obtain overall accuracy (OA) and producer’s accuracy (PA) and
user’s accuracy (UA) and Cohen’s Kappa coefficient (k).

These metrics quantified the thematic accuracy of the NDSI masks by
measuring the degree of agreement between predicted classifications and
observed conditions, providing insight into the performance of fixed and Otsu
thresholds under varying snow conditions.

3.6.5.2 Validation with Copernicus Fractional Snow Cover (FSC)

The second validation strategy used the Copernicus FSC product to obtain
fractional snow cover estimates between 0 and 100% at 20 m resolution which
matched Sentinel-2 tiling. The validation used an operational product to compare
NDSI-derived snow maps through direct pixel-to-pixel assessment.

Step 1 : Understand the FSC Product
Each FSC file is distributed as a ZIP archive containing:
e GeoTIFF raster with fractional snow cover values (0—100%).
e Metadata (XML/JSON) descriptors.
e Quality masks indicating clouds or no-data pixels.
For validation, only the GeoTIFF raster was required. Special codes (205, 254,

255) were treated as no data.

Step 2: Select Files Overlapping the AOI

FSC tiles covering the Maritime Alps (e.g., T32TLP, T31TGJ) were identified
and downloaded.
For multi-tile AOls, rasters were merged (Raster - Miscellaneous - Merge).

Step 3: Preprocess FSC
FSC rasters were unzipped, normalized to 0-100%, and loaded into QGIS with
no-data values masked out.

Step 4: Prepare NDSI Raster for Comparison
The NDSI results (binary or fractional) were resampled to the same
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projection (EPSG:32632), resolution (20 m), and extent as the FSC data using
Raster - Projections - Warp (reproject).

Step 5 : Validation Workflows
Two approaches were applied:

e Option A: Binary Validation

FSC values were reclassified as:
FSC = 50% — Snow =1,FSC <50% —» no —snow =0

The binary FSC layer was compared with NDSI classifications using the Raster
Calculator to generate a confusion matrix (snow vs. no-snow).

e Option B: Fractional Validation

FSC values were retained as continuous percentages (0—100) and compared
against continuous NDSI values using statistical measures:

Pearson’s correlation (r):

Xxi—x)i—y7)
VI —x) 22 —y)N2

Root Mean Square Error (RMSE):

1 n
RMSE = |~ (x; = y,)?
i=1

where x; are NDSI-derived values and y; are FSC percentages.

Step 6: Accuracy Reporting

Binary validation outputs (OA, PA, UA, k) were reported alongside
correlation and RMSE from fractional validation. This dual approach quantified
both categorical agreement and continuous similarity, providing a robust
evaluation of NDSI performance.
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Chapter 4

Data,Processing,Results

4.1 NDVI Dynamics from Google Earth Engine

The initial part of the analysis examined NDVI time patterns for April and June
using Google Earth Engine (GEE) as the analytical platform. These months were
chosen as they represent two critical phases in the Alpine vegetation cycle early-
season growth and full canopy development allowing assessment of both
temporal and classification variability.

The analysis used Sentinel-2 imagery to create monthly composites restricted
to areas with less than 15% cloud cover. Two classification techniques were
applied for each month of the study period.

The classification used NDVI values above 0.30 to identify vegetation and
below 0.30 for non-vegetation, following (Tucker, 1979) and (Rouse et al,.1974).
The Otsu adaptive thresholding method determined an optimal cut-off value by
analyzing image histograms to maximize between-class variance (Otsu, 1979).

Binary vegetation masks produced from both fixed and adaptive thresholds
enabled comparison of vegetation cover across spring and early-summer
conditions. The temporal analysis highlights changes in greenness and illustrates
how thresholding strategies influence vegetation classification outcomes.
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PLATFORM YEAR MONTH OTSsU VEGETATION VEGETATION Difference
THRESHOLD COVER COVER Mask

VALUE(NDVI)  AREA(KmA2)  AREA(Km72) Mismatch
oTSU THRESHOLD %
THRESHOLD >0.3

2018 April 0.22 1429.03 1514.56 3.97
2018 June 0.47 2384.72 2658.91 8.61

2019 April 0.28 1669.89 1613.26 1.76
2019 June 0.47 2394.14 2682.70 9.00
2020 April 0.28 1886.35 1824.62 1.92
2020 June 0.52 2427.52 2785.47 11.33
2021 April 0.30 1546.03 1578.28 1.23
2021 June 0.52 2448.29 2797.65 10.94
2022 April 0.29 1734.07 1699.24 1.08
2022 June 0.56 2412.39 2850.38 13.65
2023 April 0.30 1977.62 1991.06 0.42
2023 June 0.53 2506.79 2831.02 10.17
2024 April 0.27 1722.04 1668.32 167
2024 June 0.51 2233.46 2522.20 9.85

Table 4.1 Summary of NDVI classification results obtained from Google Earth Engine for April
and June (2018-2024)
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4.2 NDVI Dynamics from Google Earth Engine

Google Earth Engine (GEE) was used to analyse the NDVI temporal dynamics
for April and June of 2018-2024. To guarantee data consistency, Sentinel-2
imagery was processed into monthly composites with less than 15% cloud cover.
Two classification techniques were used: an Otsu adaptive threshold that
maximizes the between-class variance of image histograms to automatically
determine the ideal cut-off value and a fixed threshold (NDVI > 0.30) (Otsu, 1979).
Both methods were used to assess vegetation cover variations throughout the
Maritime Alps and create binary vegetation masks.

Otsu thresholds varied from 0.22 to 0.30, reflecting yearly variations in
spectral and phenological conditions, according to the findings from April
composites (Figures 4.29 to 4.35 and Table 4.1). The fixed-threshold approach
produced values between 1669 km? and 1991 km?, whereas the Otsu method
estimated vegetation cover to range from 1556 km? in 2018 to 1978 km?in 2023.
A high degree of consistency between the two approaches was indicated by the
difference-mask mismatches staying below 10%. These inter-annual fluctuations
suggest that vegetation will gradually increase after 2020, particularly in low-
elevation regions where longer growing seasons and earlier snowmelt improve
greenness. This is consistent with earlier research that documented changes in the
timing of spring phenology and the interactions between vegetation and snow in
Alpine regions ((Choler et al., 2021); Rosch et al., 2022). The earlier onset of
greening now occurring two to three weeks earlier than in previous decades (
Barichivich et al., 2014; Gottfried et al., 2012)further supports the role of NDVI as
a sensitive indicator of snow-vegetation transitions.

As vegetation reaches its seasonal maximum, the June composites (Figures
4.36 to 4.42) show advanced canopy development. Otsu thresholds for dense
canopy reflectance during this time ranged from 0.47 to 0.56. According to the
Otsu method, the extent of vegetation peaked in 2023 at roughly 2507 km?2. June
saw a generally higher percentage of differences, which was indicative of the
impact of topographic illumination variations and canopy saturation. In line with
other Alpine studies, the observed seasonal NDVI trajectory tracks the expansion
of vegetation from spring to midsummer, driven by snowmelt (Lamprecht et al.,
2018; Belcore et al., 2024). While the fixed threshold offers more stability in
homogeneous and high-biomass zones, sparsely vegetated, and transitional areas,
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adaptive thresholds better capture vegetation variability in these areas, according
to validation against the CORINE and Carta degli Habitat datasets (see Section 3.6).

The complementary behavior of both approaches is demonstrated by the
overall comparison of them (Figures 4.43 to 4.46). In accordance with the shift
from early to late vegetation stages, otsu thresholds were continuously lower in
April and higher in June. Despite being straightforward and repeatable, the fixed
threshold of 0.30 has a tendency to overestimate vegetation during the fully
developed summer canopy and underestimate it in the early spring. These
variations can be seen in the mismatch plots, where greater differences between
methods are associated with higher vegetation productivity. The results
emphasize that adaptive thresholds offer finer local accuracy and responsiveness
to spectral variability brought on by snow persistence, slope orientation, and
seasonal phenology, whereas fixed thresholds guarantee comparability across
years. Similar conclusions were drawn by (Malinowski et al. 2020) and (Gascoin et
al. 2019), who emphasized the benefits of integrating both approaches for
consistent yet flexible alpine vegetation monitoring.

Overall, the Maritime Alps display a coherent pattern of vegetation
development, characterized by early-season greening and mid-summer canopy
maturity. The combination of fixed and adaptive thresholding approaches
reinforces the reliability of Sentinel-2 NDVI for monitoring alpine vegetation
change. The high level of agreement between both classification strategies,
further validated through CORINE, LUCAS, and Carta degli Habitat datasets,
provides a robust foundation for the subsequent Sentinel Hub analysis presented
in Section 4.3.
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4.3 NDVI Dynamics from Sentinel Hub API

The analysis of NDVI dynamics for April and June used Sentinel Hub as the
processing system in its second section. The Sentinel Hub APl provided Sentinel-2
Level-2A imagery which the system used to create monthly composites through
daily scene mosaicking with less than 15% cloud cover retention and SCL (Scene
Classification Layer) mask application to exclude cloud and cirrus and shadow
classes while keeping snow pixels.

The study maintained two classification methods throughout its entire
duration. The established vegetation monitoring studies (Tucker, 1979; Rouse et
al., 1974) support the use of NDVI 2 0.30 as a fixed threshold to identify vegetation
areas. The Otsu method (Otsu, 1979) calculates an adaptive threshold by finding
the optimal NDVI value which maximizes the distinction between vegetation and
non-vegetation classes.

Sentinel Hub produced vegetation masks for April and June through binary
classification under fixed and adaptive threshold conditions which matched the
results obtained from Google Earth Engine. The results show how vegetation
extent changes between seasons while demonstrating how different NDVI
threshold values affect classification results. The generated outputs demonstrate
Sentinel Hub's ability to support fast visualization and threshold-based vegetation
mapping for time-series analysis in mountainous areas.
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PLATFORM YEAR MONTH OTSU VEGETATION VEGETATION Difference
THRESHOLD COVER COVER Mask

VALUE(NDVI) AREA(KmA~2) AREA(KmA2)  Mismatch
OTSU THRESHOLD %
THRESHOLD >0.3

2018 April 0.22 1556.46 1359.75 6.44
2018 June 0.47 2425.86 2695.77 8.46
2019 April 0.27 1691.35 1597.79 2.91
2019 June 0.47 2416.65 2698.87 8.80
2020 April 0.28 1898.41 1826.30 2.25
2020 June 0.51 2447.74 2787.84 10.70
Sentinel Hub 2021 April 0.23 1777.07 1471.35 9.55
Sentinel Hub 2021 June 0.52 2447.81 2790.69 10.75
Sentinel Hub 2022 April 0.29 1745.48 1715.98 0.92
Sentinel Hub 2022 June 0.55 2418.59 2847.02 13.37
Sentinel Hub 2023 April 0.30 1976.49 1973.11 0.11
Sentinel Hub 2023 June 0.51 2532.35 2813.57 8.81
Sentinel Hub 2024 April 0.27 1666.46 1595.35 2.21
Sentinel Hub 2024 June 0.49 2302.02 2591.81 9.45

Table 4.2. Summary of NDVI classification results obtained from Sentinel Hub for April and
June (2018-2024)
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Figure 4.87 Sentinel Hub NDVI vegetation cover (km?) by
method (Otsu vs fixed >0.3), April 2018-2024.
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Figure 4.90 Otsu—Fixed mismatch (%) for Sentinel Hub,
June 2018-2024.

89



Data, Processing, Results

4.4 NDVI Dynamics from Sentinel Hub API

Using monthly composites from April and June of 2018-2024, the Sentinel
Hub analysis assessed NDVI temporal dynamics for the Maritime Alps. Direct
comparability with the Google Earth Engine results was ensured by processing
Sentinel-2 Level-2A imagery using the Sentinel Hub Process API with consistent
atmospheric correction, cloud filtering, and pixel mosaicking parameters. In order
to examine vegetation cover variability across years and seasons, the analysis used
both the Otsu adaptive threshold method and the fixed threshold (NDVI > 0.30).

The spectral diversity of early vegetation growth during the snowmelt period
was reflected in the Otsu thresholds that were derived for April, which varied from
0.22 to 0.30. The Otsu method's estimates of vegetation cover ranged from
roughly 1556 km? in 2018 to almost 1977 km? in 2023, whereas estimates from
the fixed 0.30 threshold were marginally higher, ranging from 1596 km? to 1991
km2. Both approaches successfully capture the start of spring greening when
canopy cover is still sparse, as evidenced by the low mismatch rates between the
two approaches, which ranged from 0.1% to 10.7%. In line with earlier research
on alpine vegetation, these findings demonstrate that NDVI is extremely sensitive
to early-season spectral changes brought on by snowmelt and rising
photosynthetic activity (Choler et al., 2021; Résch et al., 2022). Spatial variations
in greenness correspond to topographic controls such as slope, aspect, and
elevation, which strongly influence the timing of vegetation—snow interactions
(Keller et al., 2005; Alvera et al., 2021).

Otsu thresholds varied from 0.47 to 0.55 in June, when the vegetation reaches
its full canopy development. In 2023, the corresponding vegetation cover
estimates showed full seasonal expansion, peaking at 2523 km2. From 8.1% in
2020to 13.4% in 2022, the mismatch rates between fixed and adaptive thresholds
rose during this time. Since NDVI values tend to reach saturation levels under high
chlorophyll concentrations, these disparities arise from differences in how the two
methods interpret dense canopy conditions. This behavior, which has also been
observed in alpine forests in Switzerland and Austria (A Huete a et al., 2020;
Verrelst et al., 2015), suggests that adaptive thresholds more accurately adapt to
spectral variability, whereas fixed thresholds tend to overestimate vegetation
extent in high-biomass areas.
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All things considered, the Sentinel Hub data show a distinct seasonal shift from
spring greening to summer maximum leaf cover. While the fixed threshold
guaranteed comparability across years, the Otsu thresholds captured fine-scale
spectral transitions across transitional zones and snow—vegetation boundaries. As
a result, this dual-threshold method makes it possible to reliably monitor alpine
vegetation's short-term spectral variation as well as inter-annual consistency. The
analysis supports the findings of Lamprecht et al. (2018) and Belcore et al. (2020)
that elevation-dependent phenology and snowmelt timing are the main factors
influencing NDVI dynamics in the Maritime Alps.

There is a high degree of agreement between the Sentinel Hub and Google
Earth Engine results. With the biggest differences occurring between June 2022
and 2023 (~13%) and the smallest occurring in April 2023 (0.1-0.4%), difference-
mask mismatches stayed below 15%. Because both platforms processed the same
Sentinel-2 Level-2A data with similar cloud and shadow masking settings, they
generated consistent NDVI trends. The minor variations in pixel mosaicking order
and resampling techniques, which sometimes affect small-scale reflectance
variation, are primarily responsible for the remaining discrepancies.

While the fixed threshold offers a consistent and repeatable baseline for long-
term vegetation monitoring, the overall pattern obtained from both systems
suggests that Otsu thresholding is better at identifying subtle spectral differences
brought on by early greening or partial snow cover. These results validate the
robustness of the dual-threshold framework for alpine ecosystem monitoring and
support the conclusions from validation exercises with CORINE, LUCAS, and Carta
degli Habitat. Seasonal and inter-annual vegetation dynamics can be reliably
captured by automated NDVI processing pipelines, as demonstrated by the strong
correspondence between Sentinel Hub and GEE results. This supports the
continued use of multiple platforms for environmental assessment at the regional
scale.
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4.5 Validation of NDVI (2018) with CORINE Land Cover 2018

The CORINE Land Cover 2018 (CLC2018) dataset (EEA, 2019), which offers
harmonized land-cover information for the entirety of Europe at a spatial
resolution of 100 m and a minimum mapping unit of 25 ha, was used to validate
the vegetation cover classification for 2018.

Two primary categories were created from the reclassification of the CORINE
classes: Forest, grassland, shrubland, and areas with sparse vegetation are all
types of vegetation. Water bodies, wetlands, agriculture, and urban areas are
examples of non-vegetation.

The dual-threshold method outlined in Section 3.6 was used to create the
NDVI classification maps based on Sentinel-2 imagery. Tucker (1979) and Rouse et
al. (1974) identified vegetated pixels using a fixed threshold (NDVI > 0.30),
whereas the Otsu adaptive method (Otsu, 1979) automatically identified an
optimal cut-off that maximized between-class variance in NDVI histograms.

Threshold UA (non-Veg) | UA (Veg) | PA (non-Veg) PA Overall Kappa (k)
Method (Veg) | Accuracy
(OA)
Otsu (0.47) | 65.1 68.6 36.0 87.8 67.9 26.0
Fixed (0.30) | 76.5 67.6 27.9 94.6 68.9 25.4

Table 4.3 Accuracy assessment of NDVI 2018 (CORINE Land Cover reference) below Otsu and
Fixed thresholds for Google Earth Engine

Threshold Accuracy Precision Recall F1 Score
Method

Otsu (0.47) 67.90 68.60 87.90 77.00
Fixed (0.30) 68.90 67.60 94.60 78.90

Table 4.4 Classification metrics (Accuracy, Precision, Recall, F1 Score) for NDVI 2018 (CORINE Land
Cover reference) below Otsu and Fixed thresholds in Google Earth Engine.
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Figure 4.91 Sampling points used for NDVI 2018 validation CORINE

Land Cover data in Google Earth Engine, Maritime Alps AOI.

Threshold UA (non-Veg) | UA (Veg) | PA (non-Veg) PA Overall Kappa (k)
Method (Veg) | Accuracy
(0A)
Otsu (0.47) 66.1 69.7 39.8 87.2 68.9 27.0
Fixed (0.30) | 80.0 67.9 28.1 95.6 69.6 29.1

Table 4.5 Accuracy assessment of NDVI 2018 (CORINE Land Cover reference) below Otsu and
Fixed thresholds for Sentinel Hub

Threshold Accuracy Precision Recall F1 Score
Method

Otsu (0.47) 68.67 69.72 95.58 79.40
Fixed (0.30) 69.55 67.91 95.58 79.40

Table 4.6 Classification metrics (Accuracy, Precision, Recall, F1 Score) for NDVI 2018 (CORINE Land

Cover reference) below Otsu and Fixed thresholds in Sentinel Hub.
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To extract NDVI predictions and their corresponding CORINE reference labels,
random sampling points were dispersed throughout the Maritime Alps AOL.

The Sample Raster Values tool in QGIS was used to process these samples, and
they were then exported to CSV for accuracy evaluation. Confusion matrices and
the conventional accuracy indices of Overall Accuracy (OA), Producer's Accuracy
(PA), User's Accuracy (UA), and Cohen's Kappa (k) were used to summarize the
comparison between the reference and predicted classes (Congalton, 1991;
Olofsson et al., 2014).

100 Random Points

! NDVI 2018 June
£

no-vegetation
Il vegetation
Google Satellite

0 10 20 km
]

Figure 4.92 Sampling points used for NDVI 2018 validation
CORINE Land Cover data in Sentinel Hub, Maritime Alps AOI.

The validation was carried out for both Google Earth Engine (GEE) and Sentinel
Hub workflows, and it included composites from April and June to reflect early-
and mid-season vegetation conditions. The fixed threshold approach
overestimated the extent of vegetation in certain non-vegetated areas, but it had
a strong vegetation recall (=95%) and an overall accuracy of 68.9% for GEE.
Although the overall accuracy (67%) was marginally lower, the Otsu threshold
(=0.47) produced more balanced commission and omission errors and enhanced
non-vegetation classification (Table 4.3 and 4.5).
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Both approaches yielded comparable results for Sentinel Hub, with Cohen's
ranging from 0.27 to 0.29 and overall accuracies of roughly 69% (Table 4.4 and
4.6). While the Otsu approach offered a slightly lower recall but better producer's
accuracy for non-vegetation areas, the fixed threshold produced the highest recall
for vegetation (=95%) but missed a larger fraction of non-vegetation polygons. The
anticipated seasonal spectral differences are reflected in the trade-off between
the two approaches: In contrast to June images, which display denser vegetation
cover that improves classification contrast and lowers uncertainty, April imagery
features mixed canopy and bare soil conditions.

Overall, both platforms performed consistently, with Cohen's k = 0.25 to 0.29
showing that the CORINE reference classes and NDVI classifications agreed fairly
well. While the fixed threshold favored maximum detection and thus higher recall,
the Otsu method proved more conservative by avoiding overestimation of
vegetation. Both approaches are appropriate for broad-scale vegetation mapping,
according to the results from April and June. However, the Otsu approach is more
suited to diverse mountain terrain, and the fixed method maintains strong
consistency for long-term vegetation dynamics monitoring.

Further analysis of NDVI threshold optimization and separability is presented
in Section 4.6 (Figures 4.93-4.100), where detailed threshold-sweep and class-
separation results are examined.
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4.6 NDVI Threshold Optimization with CORINE 2018 (Google
Earth Engine and Sentinel Hub)

Building on the validation results in Section 4.5, the CORINE 2018 dataset was
further used as a reference for threshold optimization to refine the NDVI-based
vegetation classification.

Finding the ideal NDVI cut-off value that maximized classification accuracy
while achieving the best trade-off between omission and commission errors was
the goal. For comparability, the process was used with identical CORINE reference
samples for the Sentinel Hub and Google Earth Engine (GEE) workflows.

The April-June Sentinel-2 monthly composites used in the analysis were initially
reclassified using the CORINE nomenclature into vegetation and non-vegetation
classes (Section 4.5). To assess model sensitivity, thresholds between 0.20 and
0.80 were tested in increments of 0.01. Binary maps (NDVI > t = vegetation; <t =
non-vegetation) were created for every threshold t.
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Figure 4.93 Confusion matrix at the optimal NDVI threshold
(t =0.380), Google Earth Engine
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The t value that yielded the highest Fl-score was found to be the ideal
threshold. This value combines the advantages of precision and recall and is
especially well-suited for unbalanced datasets with a higher frequency of
vegetated pixels.
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Figure 4.94 NDVI threshold sweep (CORINE 2018) Figure 4.95 NDVI distributions by class (vegetation and

showing Accuracy, Precision, Recall, and F1 versus non-vegetation) with optimal threshold overlay (t = 0.380) for

threshold in Google Earth Engine. CORINE 2018, Google Earth Engine.
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Figure 4.96 Precision—Recall curve for NDVI
classification (CORINE 2018) in Google Earth Engine (AP =
0.884).

97



Data, Processing, Results

Figures 4.93-4.96 show that the Fl-score curve for GEE peaked at t = 0.38,
producing an F1 of 0.84, accuracy of 0.77, precision of 0.74, and recall of 0.97.
With just 11 false negatives, the corresponding confusion matrix verified that 322
vegetation samples and 86 non-vegetation samples were correctly identified.
These findings show good class separability within the NDVI histogram (Figure
4.95) and strong discriminative performance (AP = 0.88). Non-vegetation points
clustered below 0.4, indicating little class overlap, while the majority of vegetation
pixels fell between 0.6 and 0.8.

The threshold sweep yielded very similar results for Sentinel Hub, with the
best accuracy (= 0.76), and Fl-score (= 0.84), obtained at t = 0.39 (Figures 4.97-
4.100). A balanced precision—recall trade-off and consistent performance across
thresholds were validated by the Precision—Recall curve (AP = 0.87). The two
processing platforms converged toward the same ideal threshold range (0.38—
0.39), indicating methodological robustness, despite minor variations in NDVI
scaling.
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Figure 4.97 Confusion matrix at the optimal NDVI
threshold (t = 0.390), Sentinel Hub.
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Figure 4.100 NDVI threshold sweep (CORINE 2018)
showing Accuracy, Precision, Recall, and F1 versus threshold in

Sentinel Hub.

Overall, the threshold optimization confirms that an NDVI cut-off near 0.38—
0.39 provides a reliable operational boundary between vegetation and non-
vegetation for Sentinel-2 imagery in the Maritime Alps. This threshold improves
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the classification of transitional and heterogeneous land-cover areas compared to
the fixed 0.30 value, while maintaining compatibility with historical NDVI studies.

Overall, the results confirm that adaptive thresholding enhances classification
reliability across platforms and seasons, providing a robust basis for accurate long-
term vegetation monitoring in alpine environments.

4.7 Validation of NDVI (2022) with LUCAS Data

The NDVI-derived vegetation classifications produced for June 2022 from both
Google Earth Engine (GEE) and Sentinel Hub were validated using the LUCAS 2022
(Land Use/Cover Area Frame Survey) dataset. Coordinated by Eurostat, the LUCAS
program offers standardized field observations gathered on a 2 km grid
throughout the European Union, along with categorical land-cover data and
photographic documentation (Gallego & Delincé, 2010; d’Andrimont et al., 2021).
The dataset is especially well-suited for pixel-level validation of vegetation indices
derived from satellites due to its high spatial accuracy and in-situ nature.

Each LUCAS survey point was classified according to its LC1 land-cover code
and then re-aggregated into two categories:

e Vegetation (1): agricultural land, grassland, shrubland, forest, and semi-
natural areas.

e Non-vegetation (0): artificial, bare, wetland, and water surfaces.

Using a conditional expression and QGIS's Field Calculator, the reclassification
was carried out. The GEE and Sentinel Hub raster products' NDVI values were
extracted using the resultant layer (LUCAS_binary). The Sample Raster Values tool
created a combined dataset of reference labels and predictions by associating
each point with its corresponding NDVI-based vegetation class.
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Figure 4.101 Sampling points used for NDVI 2022 validation LUCAS data

To evaluate the agreement between the NDVI classification and the LUCAS
reference data, validation was conducted using the same methodology as for
CORINE 2018 (Section 4.5), using confusion matrices and accuracy indices: Overall
Accuracy (OA), Producer's Accuracy (PA), User's Accuracy (UA), and Cohen's Kappa

(k).

For GEE, the fixed threshold (NDVI > 0.30) yielded an OA of 0.82 and k = 0.61,
demonstrating strong concordance with field-survey vegetation points. The Otsu
adaptive threshold produced similar accuracy (OA = 0.81; k = 0.60) but better
balanced class representation by reducing the overestimation of vegetation in
transitional areas. Precision and recall values (= 0.83 and 0.89, respectively)
confirmed high thematic reliability of the NDVI-based classification (Table 4.7 and
4.8).
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Threshold UA (non-Veg) | UA (Veg) | PA (non-Veg) PA Overall Kappa (k)
Method (Veg) | Accuracy
(OA)
Otsu (0.56) | 62.6 97.6 91.9 85.9 87.1 71.30
Fixed (0.30) | 93.3 92.2 67.7 98.8 92.4 73.70

Table 4.7. User’s and Producer’s Accuracy for NDVI June 2022 validation using LUCAS
reference points (processed in Google Earth Engine).

Threshold Accuracy Precision Recall F1 Score
Method

Otsu (0.56) 87.0 97.6 85.8 91.30
Fixed (0.30) 92.3 92.2 98.7 95.40

Table 4.8 Summary comparison of NDVI June 2022 validation metrics using LUCAS reference
data (Google Earth Engine workflow).

The validation results for Sentinel Hub were in agreement with the GEE
results: OA = 0.81-0.83 and k = 0.59-0.62 for both thresholding strategies (Table

4.9 and 4.10).
Threshold UA (non-Veg) | UA (Veg) | PA (non-Veg) PA Overall Kappa (k)
Method (Veg) | Accuracy
(OA)
Otsu (0.55) 64.0 97.6 91.9 86.6 87.5 73.90
Fixed (0.30) | 99.75 91.2 62.9 99.5 92.0 72.22

Table 4.9 User’s and Producer’s Accuracy for NDVI June 2022 validation using LUCAS

reference points (processed in Sentinel Hub).
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Threshold Accuracy Precision Recall F1 Score
Method

Otsu (0.55) 87.58 97.66 86.67 91.80
Fixed (0.30) 92.05 91.21 99.58 95.22

Table 4.10 Summary comparison of NDVI June 2022 validation metrics using LUCAS
reference data (Sentinel Hub workflow).
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Figure 4.102 Sampling points used for NDVI 2022 validation LUCAS

data, Sentinel Hub.

The Otsu method produced more conservative estimates and increased precision
in heterogeneous landscapes, whereas the fixed threshold slightly overclassified
vegetation, especially in areas with a predominance of grass and cropland. The
two platforms' similar accuracy levels, despite slight variations brought on by
mosaicking and reflectance normalization, show that NDVI classification
performance is consistent across processing environments.

With both fixed and adaptive approaches attaining high accuracy in
comparison to ground truth observations, the LUCAS-based validation validates
that NDVI thresholding accurately depicts vegetation patterns in the Maritime
Alps. Because the LUCAS dataset is based on direct field surveys rather than
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generalized polygons, it offers a cleaner separation between vegetation and non-
vegetation NDVI values when compared to CORINE (Section 4.4). As a result, there
is less class overlap and greater confidence in the chosen threshold range (0.34—
0.39), as the NDVI histograms display two distinct peaks (vegetation = 0.6—0.8;
non-vegetation < 0.4). These results demonstrate the benefit of incorporating
field-based validation data for pixel-level accuracy assessment in alpine
ecosystems and bolster the NDVI classification methodology's resilience.

4.8 NDVI Threshold Optimization with LUCAS 2022 (Google
Earth Engine and Sentinel Hub)

To find the most dependable NDVI cut-off for vegetation mapping under field-
based reference conditions, a threshold optimization analysis was conducted after
NDVI classifications were validated using the LUCAS 2022 dataset. A more
sensitive assessment of threshold performance is possible thanks to LUCAS's high
spatial precision and point-based ground truth, in contrast to CORINE's
generalized polygon-level data. To guarantee comparability, the optimization was
carried out for the Sentinel Hub and Google Earth Engine (GEE) workflows using
the same sampling points and accuracy metrics.

An increment of 0.01 was used to systematically test a range of NDVI
thresholds from 0.20 to 0.80. Binary vegetation maps (NDVI > t = vegetation; NDVI
< t = non-vegetation) were made for each threshold t, and accuracy metrics were
computed using the same formula used in Section 4.5. The threshold sweep
analysis produced the confusion matrices and performance metrics shown in
Figures 185-188 for GEE and Figures 191-194 for Sentinel Hub.

The maximum F1-score, which strikes a balance between recall and precision
to show the best classification performance under unbalanced class distributions,
matched the ideal threshold.
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Figure 4.103 Confusion matrix at the optimal

NDVI threshold (t = 0.340), Google Earth Engine

With an F1 of 0.91, overall accuracy of 0.86, precision of 0.88, and recall of
0.94, the Fl-score for GEE peaked at t = 0.34 (Figures 183—185). Only a few
vegetation points were incorrectly classified as non-vegetation, indicating a well-
balanced classification in the confusion matrix. According to LUCAS reference
data, these findings validate that the most efficient operational boundary for
vegetation discrimination in the Maritime Alps is represented by NDVI values of
approximately 0.34. The clear bimodal NDVI histogram distribution seen for LUCAS
points is consistent with the high precision and recall values, which demonstrate
strong separability between vegetated and non-vegetated samples.
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Figure 4.104 NDVI threshold sweep (LUCAS 2022)
showing Accuracy, Precision, Recall, and F1 versus

threshold in Google Earth Engine.
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NDVI Distributions by Class — LUCAS
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Figure 4.105 NDVI distributions by class (vegetation
and non-vegetation) with optimal threshold overlay (t =

0.340) for LUCAS 2022, Google Earth Engine.
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Figure 4.106 Precision—Recall curve for NDVI classification

(LUCAS 2022) in Google Earth Engine (AP = 0.993).

Comparable outcomes were found for Sentinel Hub, where the ideal threshold
was reached at t = 0.35, resulting in F1 = 0.90, accuracy = 0.85, and Cohen's Kappa
(k) = 0.70 (Figures 186-188). Although there were slight variations in local
reflectance due to the platform's adaptive mosaicking and cloud-masking
algorithms, the same general threshold range (0.34-0.35) was determined to be
ideal. When compared to in-situ observations, the performance curves
demonstrated a consistent precision—recall balance across adjacent threshold
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values, suggesting that NDVI-based vegetation classification is resilient to slight
threshold variations.
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Figure 4.107 Confusion matrix at the optimal

NDVI threshold (t = 0.330), Sentinel Hub
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Figure 4.108 NDVI threshold sweep (LUCAS 2022)
showing Accuracy, Precision, Recall, and F1 versus threshold

in Sentinel Hub.

The outcomes on both platforms show that the CORINE-based value (= 0.38—
0.39) found in Section 4.5 is marginally higher than the LUCAS-derived optimal
threshold (= 0.34-0.35). The higher accuracy of field-based LUCAS data, which
more accurately depicts fine-scale vegetation structures and heterogeneous
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transitional land-cover areas that typically exhibit lower NDVI values, is probably
the cause of this discrepancy. High F1-scores (= 0.90) and Kappa values (> 0.65),
when calibrated with LUCAS, confirm the strong reliability of NDVI thresholding,
thereby confirming its suitability for large-scale alpine ecosystem assessment and
pixel-level vegetation monitoring.

NDVI Distributions by Class — LUCAS

W Vegetation
Non-vegetation

PrY Threshold 0.330

0.4
NDVI

Figure 4.109 NDVI distributions by class (vegetation and
non-vegetation) with optimal threshold overlay (t = 0.330) for
LUCAS 2022, Sentinel Hub.
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Figure 4.110 Precision—Recall curve for NDVI classification

(LUCAS 2022) in Sentinel Hub
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4.9 Validation of NDVI (2018) with Carta degli Habitat

The ecological consistency of the NDVI-based vegetation classification was
assessed using the Carta degli Habitat (CdH) dataset, which served as an additional
ecological reference layer.The CdH framework offers comprehensive thematic
mapping of natural and semi-natural habitats throughout Italy and was created in
accordance with the EU Habitats Directive and the Natura 2000 network (Pesaresi
et al., 2020; Cahojova et al., 2022). The CdH dataset is highly appropriate for
evaluating the correspondence between NDVI classifications and actual habitat
distributions in complex alpine landscapes because it places an emphasis on
ecological habitat types, in contrast to CORINE and LUCAS, which are primarily
concerned with land cover.

Two broad categories representing vegetated and non-vegetated habitats
were used to reclassify the CdH polygons found in the Maritime Alps. The "non-
vegetation" group consisted of bare rocks, scree slopes, and man-made surfaces,
whereas the "vegetation" group included forest, shrubland, grassland, and alpine
herbaceous formations. Using a conditional rule based on habitat codes, this
reclassification was applied in QGIS via the Field Calculator. To ensure proportional
representation of both habitat types, a stratified random sample of 1,000 points
was generated within the Area of Interest (AOIl).For every sampled location, NDVI
binary values were taken from the Sentinel Hub and Google Earth Engine (GEE)
rasters, connecting the predicted vegetation classes to the associated CdH habitat
characteristics.

Validation followed the same workflow adopted in previous sections (Sections
4.4-4.7), using confusion matrices and accuracy indices Overall Accuracy (OA),
Producer’s Accuracy (PA), User’s Accuracy (UA), and Cohen’s Kappa (k) to quantify
the agreement between NDVI-based classifications and CdH reference data. The
resulting accuracy metrics derived from the CdH reference are summarized in
Tables 4.11-4.12 and visualized in Figure 4.113. For GEE, the fixed threshold (NDVI
> 0.30) achieved an OA of 0.79 and k = 0.54, while the Otsu adaptive threshold
produced slightly higher precision but lower recall, with OA = 0.77 and k = 0.52.
These results are consistent with previous validations, confirming that both
thresholding approaches effectively distinguish vegetation from non-vegetation
within the alpine habitat context.
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Threshold UA (non-Veg) | UA (Veg) | PA (non-Veg) PA Overall Kappa (k)
Method (Veg) | Accuracy
(OA)
Otsu (0.47) | 82.3 6.6 39.2 33.8 38.3 -0.097
Fixed (0.30) | 81.6 8.7 24.9 55.9 28.4 -0.057

Table 4.11 Accuracy assessment of NDVI 2018 (Carta degli Habitat) below Otsu and Fixed
thresholds for Google Earth Engine

Threshold Accuracy Precision Recall F1 Score
Method

Otsu (0.47) 38.6 6.6 33.8 0.111
Fixed (0.30) 28.4 8.7 55.9 0.150

Table 4.12 Classification metrics (Accuracy, Precision, Recall, F1 Score) for NDVI 2018 (Carta degli
Habitat) below Otsu and Fixed thresholds in Google Earth Engine.
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B
¥ NOVI 2018 June

g no-vegetation

Ml vegetation
Google Satellite

Figure 4.111 Validation points used for NDVI 2018
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Corresponding validation results from Sentinel Hub imagery are presented in
Tables 4.13—4.14 and Figure 4. 112.Comparable outcomes were achieved for
Sentinel Hub with OA = 0.78-0.80 and k = 0.55-0.57. Once more, the Otsu
threshold better captured the subtle differences at the ecotone between
vegetated and rocky surfaces, whereas the fixed threshold tended to slightly
overestimate vegetation cover in mosaic or sparsely vegetated areas. According
to the confusion matrices, misclassifications mostly happened in transitional
habitats where mixed spectral signatures result in NDVI values close to the
threshold limit, such as alpine meadows with exposed soil or patchy vegetation.
However, the spatial outputs from both platforms were highly consistent,
indicating that the derived NDVI maps are in good agreement with vegetation
patterns that are ecologically significant.

Threshold UA (non-Veg) | UA (Veg) | PA (non-Veg) PA Overall Kappa (k)
Method (Veg) | Accuracy
(OA)
Otsu (0.47) | 37.8 32.3 37.8 32.3 37.1 0.104
Fixed (0.30) | 23.7 58.2 23.7 58.2 27.6 0.154

Table 4.13 Accuracy assessment of NDVI 2018 ( Carta degli Habitat) below Otsu and Fixed
thresholds for Sentinel Hub.

Threshold Accuracy Precision Recall F1 Score
Method

Otsu (0.47) 37.1 6.20 32.3 0.104
Fixed (0.30) 27.6 8.86 58.2 0.154

Table 4.14 Classification metrics (Accuracy, Precision, Recall, F1 Score) for NDVI 2018 (Carta degli
Habitat) below Otsu and Fixed thresholds in Sentinel Hub.
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Figure 4.112 Validation points used for NDVI 2018 Carta degli Habitat

data

Overall, the CdH-based validation confirms the robustness and transferability
of the NDVI classification across different ecological datasets. The methodology’s
reproducibility across platforms and scales is evident from the high agreement
between GEE and Sentinel Hub outputs, both yielding comparable accuracy and
Kappa values. The NDVI is a useful indicator for alpine ecological monitoring and
conservation applications because it can identify not only the general presence of
vegetation but also the approximate composition and structure of habitats, as
demonstrated by the CdH validation. The NDVI validation framework is completed
by these results, which also serve as a strong basis for the NDSI-based snow cover
analysis that follows in Section 4.10.
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4.10 NDSI Dynamics from Google Earth Engine

Following the vegetation analysis, the third part of this research examined
snow-cover dynamics using the Normalized Difference Snow Index (NDSI) derived
from Sentinel-2 imagery in Google Earth Engine (GEE). Monthly composites for
April and June were generated, including only scenes with less than 15 % cloud
cover to minimize atmospheric interference.

Two thresholding approaches were applied to detect snow pixels. The fixed
threshold method classified values NDSI > 0.42 as snow (Hall et al., 1995; Dozier,
1989), while the Otsu adaptive method determined an optimal cut-off by
maximizing between-class variance (Otsu, 1979).

These methods produced snow/no-snow binary masks for each month,
enabling the assessment of seasonal and inter-annual snow persistence. Results
indicate that April composites captured peak winter accumulation and extensive
snow cover at mid- and high-elevation zones, whereas June composites revealed
substantial snowpack retreat following melt onset. Differences between fixed and
adaptive thresholds mainly affected transitional zones, where partial snow cover
or mixed pixels occurred.

The dual-threshold framework therefore provided a consistent basis for
monitoring temporal snow-cover variability and for comparing the performance
of static and data-driven thresholding. This approach supports subsequent
accuracy evaluation (Section 4.9) using external reference datasets such as the
Copernicus FSC product and random-point validation, in line with established
cryosphere remote-sensing standards (Gascoin et al., 2019;Dumont et al., 2020).
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Figure 4.154 NDSI 2024 June Comparison

Figure 4.153 NDSI 2023 June Comparison

PLATFORM YEAR MONTH OTSU Snow COVER Snow COVER Difference
THRESHOLD AREA(KmA2) AREA(Km~2) Mask

VALUE(NDSI) OTSU THRESHOLD  Mismatch
THRESHOLD >0.42 %

2018 April 0.16 1434.69 1252.13 5.69
2018 June 0.02 250.63 154.45 3.02

2019  June -0.02 258.94 122.55 4.25
2020 April 0.10 892.91 728.35 5.12
2020 June -0.28 401.39 51.02 11.09
2021 April 0.07 855.20 643.21 6.66
2021 June -0.36 569.65 37.79 16.66
2022 April 0.06 678.48 462.48 6.72
2022 June -0.45 813.54 1.57 25.31
2023 April 0.03 692.05 484.21 6.47
2023 June -0.40 797.10 21.81 24.32
2024 April 0.13 1067.20 903.36 5.10
2024 June -0.06 157.95 80.82 2.63

2019 April 0.12 1178.35 1002.75 5.47

Table 4.15 Summary of NDSI classification results obtained from Google Earth Engine for
April and June (2018-2024)
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(2018-2024). (2018-2024).

Snow-cover variability in the Maritime Alps from 2018 to 2024 was examined
using Google Earth Engine (GEE) and the Normalized Difference Snow Index
(NDSI), which is based on Sentinel-2 Level-2A reflectance imagery. To reduce
atmospheric interference and guarantee spectral consistency, monthly
composites for April and June were created, removing scenes with more than 15%
cloud cover. To identify regions covered by snow, two thresholding strategies
were used: an adaptive Otsu method (Otsu, 1979) that uses histogram variance
analysis to maximize the separation between snow and non-snow pixels, and a
fixed threshold (NDSI > 0.42) based on (Hall et al. 1995) and (Dozier, 1989).
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Different seasonal and inter-annual patterns can be seen in the resulting
binary snow/no-snow maps (Figures 4.141-4.154, Table 4.15). From 0.16 (2018)
to -0.45 (2022), the Otsu thresholds varied significantly, reflecting spectral
variations related to surface moisture, illumination, and snow albedo. Especially
in transitional and late-season conditions where mixed pixels of snow, rock, and
vegetation predominate, the Otsu method consistently produced larger snow-
covered areas than the fixed 0.42 threshold. While the fixed threshold produced
somewhat lower estimates (= 1 252 km? and 462 km?, respectively), the adaptive
approach produced snow-covered extents that ranged from = 1 435 km? (2018) to
= 678 km? (2022).

Despite these variations, there was a high degree of agreement between the
two approaches; in April 2022, mask-mismatch percentages were typically less
than 7%, but in June 2022, they increased to more than 25%.

Adaptive thresholding is crucial for precise snow detection because these
disparities correlate to late-season conditions when bright rock surfaces and low-
albedo wet snow produce overlapping spectral responses. The fixed threshold
provided temporal stability for long-term monitoring, and the Otsu method
successfully captured remaining snow patches in glacial basins and shaded slopes.

The inter-annual trend shows a significant decline in snowpack after 2020,
which is consistent with the region's noted warming of the climate. Snow duration
at mid-elevations is gradually decreasing, as evidenced by earlier melt onset and
reduced June snow extent (e.g., 157 km? in 2024). On the other hand, 2018 a year
marked by extended cold and significant winter accumulation saw the greatest
amount of snow cover.

All things considered, the GEE-based analysis demonstrates that a thorough
evaluation of snow persistence in alpine settings can be obtained by combining
fixed and adaptive thresholds. Adaptive thresholds more accurately capture short-
term variability caused by variations in elevation, slope, and surface reflectance,
whereas fixed thresholds preserve consistency for trend analysis. These findings
support earlier alpine cryosphere research (Gascoin et al., 2019; Marty et al., 2017;
Kotlarski et al., 2022) and offer a solid foundation for the cross-platform
comparison with Sentinel Hub that follows.
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4.11 NDSI Dynamics from Sentinel Hub

The Sentinel Hub environment supported the GEE-based analysis through its
EO Browser and APl framework which delivered Sentinel-2 Level-2A surface
reflectance data. The system produced April and June composites from data with
less than 15% cloud cover after applying built-in L2A processor atmospheric
corrections for spectral consistency.

The snow detection process at Sentinel Hub used the same dual-threshold
approach which GEE analysis employed:

The method used two thresholds to detect snow pixels according to Hall et al.
(1995) and Dozier (1989) with NDSI values above 0.42 and an adaptive Otsu
threshold (Otsu, 1979) that Sentinel Hub evalscripts used to maximize between-
class variance in NDSI histogram values.

The ability to control cloud masking and view scenes individually through
Sentinel Hub improved the consistency of results in areas with changing
illumination and terrain shadows. The April composites showed extensive snow
cover because of winter snow accumulation but June images displayed scattered
snow patches in mountain basins and shaded slopes.

The Sentinel Hub results showed the same overall patterns as GEE but
displayed minor spatial variations because of different atmospheric processing
and pixel combination methods. The cloud and shadow masking techniques at
Sentinel Hub resulted in slightly elevated April snow-cover measurements and
reduced June snow-cover values. The comparison between platforms
demonstrates why researchers need to validate their alpine cryospheric data
across multiple platforms.
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PLATFORM YEAR MONTH OTSU Snow COVER Snow COVER Difference
THRESHOLD AREA(KmA2) AREA(KmA2) Mask

VALUE(NDSI) OTSU THRESHOLD  Mismatch
THRESHOLD >0.42 %

2018 April 0.15 1440.00 1248.22 5.97
2018 June 0.00 238.24 132.35 3.32
2019 April 0.13 1181.92 1003.67 5.55
2019 June -0.06 265.27 105.57 4.98
2020 April 0.10 903.41 726.63 5.51
2020 June -0.18 251.47 56.30 6.14
2021 April 0.07 982.86 703.43 8.73
2021 June -0.34 526.72 37.01 15.36
2022 April 0.05 709.62 468.90 7.50
2022 June -0.45 931.81 1.52 29.02
2023 April 0.03 702.86 482.23 6.87
2023 June -0.28 315.82 32.98 8.86

2024 April 0.11 1173.64 945.18 7.12

2024 June -0.07 255.14 102.94 4.96

4.16 Summary of NDSI classification results obtained from Sentinel Hub for April and June (2018—-

2024)
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NDSI Snow Cover by Method — April (2018-2024, Sentinel Hub)
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Figure 4.201 Sentinel Hub NDSI snow cover (km?) by
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Figure 4.203 Otsu vs Fixed difference mask (%) for April
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Figure 4.202 Sentinel Hub NDSI snow cover (km?) by method
(Otsu vs fixed >0.42), April 2018-2024.
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Figure 4.204 Otsu vs Fixed difference mask (%) for April (2018—
2024).
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The same dual-threshold approach used for GEE was applied to map April and
June snow cover from 2018-2024 using Sentinel Hub (SH) Level-2A reflectance
composites (£15% cloud cover): a fixed cut (NDSI > 0.42) and an adaptive Otsu
threshold calculated from each composite's NDSI histogram. April Otsu thresholds
ranged from 0.05 (2022) to 0.15 (2018) throughout the series, indicating variations
in snow persistence, illumination, and residual cloud/shadow contamination from
year to year. While the fixed method produced lower extents (¥469-1,248 km?),
omitting some late-lying patches, Otsu estimated April snow-covered areas
between ~710 km? (2022) and ~1,440 km? (2018) using these cuts. When snow,
rock, and soil mixtures made class separability more difficult in 2022, method
disagreement (difference mask), which was typically 5-8%, increased.

By June, snow contracted to glacial basins and shaded slopes. In years with
very little cover, Otsu thresholds frequently drifted toward 0.00 and occasionally
negative values (down to -0.45), capturing any remaining bright snow among a
mixture of vegetation and bare ground. The fixed rule produced ~1.5-132 km?,
systematically underestimating fragmented late-season snow, whereas June Otsu
areas ranged roughly ~32-238 km?. In June, mismatches were usually between 3
and 9%, but under very low NDSI, they increased to about 29% (2022) when bright
rock and wet soils confused the fixed cut. In summary, the fixed method provides
temporal comparability but tends to underestimate late-season remnants, while
the adaptive method best tracks transitional and heterogeneous snow.

Although Sentinel hub cloud/shadow handling and mosaic strategy (least-cloud
pixel selection) result in slightly different magnitudes, Sentinel hub results follow
the same seasonal pattern as GEE (April accumulation = June remnant patches).
To help explain Sentinel hub slightly higher mismatches (up to ~30%) in the most
transitional scenes, these choices slightly inflate April cover (cleaner bright-snow
retrieval) and deflate June cover (stricter masking of marginal pixels) in
comparison to GEE. When combined, the two platforms validate the effectiveness
of a dual-threshold strategy: Fixed 0.42 for long-term comparability; Otsu for
spatial nuance during transitional periods.
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4.12 NDSI Validation with Fractional Snow Cover (FSC) using
Google Earth Engine and Sentinel Hub

The Copernicus Fractional Snow Cover (FSC) product was used as the
independent reference dataset to validate the snow-cover classification based on
the Normalized Difference Snow Index (NDSI). The performance and consistency
of NDSI thresholds applied to Sentinel-2 Level-2A imagery processed by both
Google Earth Engine (GEE) and Sentinel Hub (SH) were investigated in this study
using two different years: 2018 (shown by heavy snow accumulation and high
albedo contrast) and 2022 (shown by a warmer and more variable snow season).
Validation was conducted using standard accuracy metrics (Overall Accuracy,
Precision, Recall, and Fl-score) and a pixel-by-pixel comparison between the
binary snow/no-snow masks generated by each threshold (ranging from 0.05 to
0.45), and FSC pixels with snow fraction = 50%.

Confusion Matrix (NDSI=0.16, FSCOG=50%) 1e6 Confusion Matrix (NDSI=0.30, FSCOG=50%) 106
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Figure 4.205 Confusion matrix of NDSI classification (t Figure 4.206 Confusion matrix of NDSI classification
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When snow cover was widespread and spectrally distinct, the GEE and Sentinel
hub results for 2018 (Figures 4.205-4.209 and 4.210-4.214) clearly and
consistently demonstrate a high classification reliability pattern. NDSI = 0.16 was
determined to be the ideal threshold in GEE, resulting in balanced performance
with F1 = 0.82 and Accuracy = 0.84. While Recall = 0.74 showed strong sensitivity
to real snow pixels, Precision = 0.9 confirmed that false-snow detections were
negligible.
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Figure 4.215 Threshold-sweep curve for 2018 NDSI Figure 4.216 Precision—Recall curve for NDSI
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Earth Engine. for 2018, Google Earth Engine (AP = 0.89).

The corresponding threshold-sweep curves (Figures 4.215-4.216) show the
usual trade-off between commission and omission errors: raising thresholds
increased Precision but progressively decreased Recall.

The confusion matrices (Figures 4.205—-4.209) show a clear division between
snow and non-snow classes.

136



Data, Processing, Results

Best by F1 | Acc=0.791 Prec=0.706 Rec=0.743 F1=0.724
NDSI Threshold Sweep — FSCOG = 50% 10

Precision-Recall (AP=0.676) — FSCOG=50%

—8— Accuracy

—— Recal 0.9
—e— Fl-score

t=0.15

Precision
e

=2
o

o
=
n

e
S

015 0.20 0.25 0.30 0.35 0.40 0.45
NDS! threshold

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 4.217 Threshold-sweep curve for 2018 NDSI
Figure 4.218 Precision—Recall curve for NDSI
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The same behavior was observed in Sentinel Hub, where the best performing
threshold (t =0.15) produced F1 = 0.72 and Accuracy = 0.79 (Figures 4.217-4.218).
Slightly lower scores in SH mainly stem from differences in cloud masking and the
mosaicking strategy, which tends to remove bright mixed pixels near terrain
shadows. Nevertheless, both platforms achieved strong agreement with the FSC
reference, confirming the robustness of NDSI-based snow detection under clear,
high-albedo conditions.

On the other hand, 2022 validation showed a sharp drop in classification
performance and weaker separability (Figures 4.219-4.223 and 4.224-4.228). The
ideal threshold for GEE moved downward to NDSI = 0.05, resulting in F1 = 0.48 and
Accuracy = 0.64. Recall dropped significantly (=0.3) while precision stayed high
(=0.9), suggesting significant under-detection of snow, particularly in fragmented
or low-contrast areas. This imbalance is supported by the precision—recall curves
(AP = 0.60), which show that higher commission error results from lower
thresholds recovering more true-snow pixels. The majority of errors were false
negatives, or missed snow patches in mixed terrain or under thin clouds, according
to confusion matrices (Figures 4.219—-4.223).
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Both physical and methodological factors contribute to the degradation:
increased spectral confusion from wet soils, FSC uncertainties brought on by
residual cloud contamination, and warmer temperatures that result in
discontinuous snow cover. Sentinel Hub showed similar results, with the best F1 =
0.45 at NDSI = 0.05 and Accuracy = 0.70 (Figures 4.224—4.228). Although the SH
mosaicking process was successful in minimizing artifacts, it also obscured minute
snow remnants, as indicated by the lower recall (= 0.33) and moderate precision
(= 0.68). In general, 2022 emphasizes how challenging threshold-based
classification is during late-melt and transitional times when there is a
considerable amount of spectral overlap between snow, rock, and moist soil.
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Comparing the platforms from the two years shows consistent threshold
behavior and complementary strengths. Similar optimal cut-offs (= 0.15-0.16 for
2018 and = 0.05 for 2022) were obtained in GEE and SH by the adaptive Otsu-
based selection, highlighting the fact that threshold variability is dominated by
seasonal context rather than processing environment. Because of its histogram-
based compositing, GEE tended to achieve slightly higher recall, capturing more
fractional and sub-pixel snow areas; SH, on the other hand, maintained higher
precision by strictly rejecting clouds and shadows. While adaptive thresholds are
crucial for inter-annual analyses where spectral and meteorological variability
alter snow reflectance patterns, fixed thresholds provide stability for long-term
comparison, as evidenced by the stark year-to-year contrast (2018 vs. 2022). Both
systems achieved satisfactory agreement with the FSC reference despite inherent
discrepancies between instantaneous Sentinel-2 scenes and the temporally
averaged Copernicus product.

All together, these findings demonstrate that a trustworthy quantitative
framework for assessing alpine snow-cover dynamics is offered by NDSI threshold
optimization and validation against FSC. While warm years with irregular snowfall,
like 2022, diminish the dependability of any one threshold rule, high-snow years,
like 2018, show strong spectral separability and high mapping accuracy. The
benefits of multi-source approaches are further supported by the dual-platform
validation: SH guarantees radiometric consistency and operational continuity,
while GEE enables adaptive, large-scale monitoring with flexible compositing.
Together, they show that a combination of fixed and adaptive NDSI thresholds can
capture alpine snow cover's spectral variability and temporal persistence, offering
a strong methodological basis for long-term studies of the Western Alps' climate
and cryosphere.
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4.13 Manual NDSI Validation (Google Earth Engine and
Sentinel Hub, 2022)

A manual validation was conducted for April 2022 using Google Earth Engine
(GEE) and Sentinel Hub (SH) in order to independently confirm the accuracy of the
snow-cover classification derived from Sentinel-2 NDSI analysis. Using visual
interpretation of high-resolution optical imagery, a total of manually labeled
snow/no-snow points were gathered throughout the Maritime Alps region. The
fixed threshold of NDSI > 0.42, which had been determined as the project team's
operational cut-off for snow detection, was then used to compare each point
against the binary NDSI classification outputs produced by both platforms.

Threshold UA (non- UA PA (non- PA Overall Kappa (k)
Method snow) (snow) snow) (snow) | Accuracy
(OA)
Fixed (0.42) | 93.8% 97.5% 97.6% 93.6% | 95.6% 0.912

Table 4.17. User’s and Producer’s Accuracy for manual NDSI validation, April 2022, Google

Earth Engine.

Threshold Accuracy Precision Recall F1 Score
Method
Fixed (0.42) 95.6% 97.5% 93.6% 95.5%

Table 4.18. Summary of NDSI manual validation metrics (Accuracy, Precision, Recall, F1
Score), Google Earth Engine, April 2022.
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Utilizing standard metrics such as Overall Accuracy (OA), Precision, Recall, F1-
score, User's Accuracy (UA), Producer's Accuracy (PA), and Cohen's Kappa (k), the
manual validation adhered to the same accuracy assessment protocol used
throughout this study. The goal was to measure the agreement between manually
annotated reference points and automatically detected snow, as well as to assess
the threshold-based approach's actual performance in field-representative
settings.

Overall Accuracy = 95.6%, Precision = 97.5%, Recall = 93.6%, and F1 = 95.5%
were the results of the validation for Google Earth Engine (Tables 4.17—4.18).
There were very few misclassifications, and they mostly happened along shaded
slopes and mixed terrain where snow reflectance decreases, according to the
confusion matrix (Figure 4.233), which clearly shows a preponderance of true
positives and true negatives. Errors were randomly distributed rather than
concentrated in one area, as shown by the corresponding spatial distribution of
validation points (Figure 4.234). These results show that when the snowpack is
homogeneous and spectrally distinct in the early season, the fixed NDSI threshold
of 0.42 is very dependable for broad-scale snow detection.
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Figure 4.234. Spatial distribution of manual validation points used for NDSI assessment in

April 2022, Google Earth Engine.

With Overall Accuracy = 98.8%, Precision = 98.8%, Recall = 97.2%, and F1 =
97.98%, Sentinel Hub's validation results were even higher (Tables 4.19-4.20).
While the spatial visualization of sampling points (Figure 4.236) validates the
dense and balanced coverage of snow and non-snow surfaces, the confusion
matrix (Figure 4.233) demonstrates strong class separability. Excellent statistical
agreement between the classified and manually interpreted datasets is indicated
by the k coefficient (0.96). Narrow shaded glacial basins and high-elevation ridges,
where complicated topography and fluctuating illumination can lessen the NDSI
contrast between snow and rock, were the primary locations for misclassifications.
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Threshold UA (non- UA PA (non- PA Overall Kappa (k)
Method snow) (snow) snow) (snow) | Accuracy
(OA)
Fixed (0.42) | 97.2% 98.1% 98.8% 97.2% | 98.0% 0.960

Table 4.19. User’s and Producer’s Accuracy for manual NDSI validation, April 2022,

Sentinel Hub.
Threshold Accuracy Precision Recall F1 Score
Method
Fixed (0.42) 98.0% 98.78% 97.2% 97.98%

Table 4.20. Summary of NDSI manual validation metrics (Accuracy, Precision, Recall, F1
Score), Sentinel Hub, April 2022.
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Figure 4.236. Spatial distribution of manual validation points used for NDSI assessment in April

2022, Sentinel Hub.

Sentinel Hub and GEE both achieved very high accuracy, according to the
comparison (April 2022, fixed threshold); however, Sentinel Hub outperformed
GEE by roughly 1.3% in precision and 3.6% in recall, with an overall 2.5% increase
in Fl-score. This illustrates the benefit of the Sentinel Hub cloud-masking and
compositing technique, which lessens the influence of lingering clouds and terrain
shadows that occasionally degrade GEE's mosaic composites. Although both
systems are dependable, the slight performance difference indicates that GEE
provides more flexibility for extensive temporal analyses, while SH is more
appropriate for operational monitoring that is focused on accuracy.

147



Data, Processing, Results

Methodologically speaking, the manual validation offers solid independent
confirmation of the dependability of the NDSI-based workflow. A fixed threshold
(NDSI = 0.42) is suitable for early spring conditions in the Maritime Alps, where
snow is continuous and highly reflective, as confirmed by the high accuracy
attained in both platforms. The automated classification framework used for
multi-year analyses is more reliable due to its cross-platform consistency.

In summary, manual validation confirms the high reliability and cross-
platform stability of the NDSI threshold method. The results validate the
automated assessments obtained with Copernicus FSC (Section 4.10) and
demonstrate that the system performs accurately not only against satellite-based
fractional data but also against human-interpreted ground-truth references.
Sentinel Hub’s slightly superior precision and recall highlight the benefits of
optimized mosaicking and atmospheric correction workflows. Overall, the fixed-
threshold NDSI configuration provides an effective and transferable solution for
operational snow mapping under clear early-season conditions, ensuring
methodological robustness for subsequent analyses of seasonal snow persistence
and alpine cryosphere monitoring.
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Chapter 5

Discussion

5.1 NDVI Thresholding and Vegetation Dynamics

5.1.1 Fixed vs. Adaptive Thresholding

The research used fixed (NDVI = 0.30) and adaptive Otsu thresholding methods
to evaluate vegetation cover detection using Sentinel-2 imagery. The fixed
threshold approach, derived from traditional methods (Tucker, 1979; Rouse et al.,
1974), produced vegetation cover estimates that occasionally exceeded true
values, particularly in April, when early-season greenness overlapped with residual
snow. These results align with previous findings by (Huete et al. 2002) and ( Forkel
et al.,, 2019) which reported similar overestimations under mixed land-cover
conditions.

The Otsu method (Otsu, 1979) which depends on histogram variance for
optimizing the separation between vegetated and non-vegetated pixels
demonstrated superior performance for detecting changes between annual
periods and various environmental settings. The Otsu thresholds showed a broad
range from 0.22 in April to 0.55 in June, capturing the transition from sparse
vegetation to full canopy development. These results are consistent with alpine
NDVI studies showing that vegetation dynamics are highly sensitive to the timing
of snowmelt (Choler et al., 2021; Résch et al., 2022).

5.1.2 Validation with CORINE 2018

Validation against CORINE Land Cover data highlighted the complementary
strengths and weaknesses of both thresholding approaches.

The fixed threshold achieved higher Producer’s Accuracy, successfully
identifying most vegetated pixels, but showed lower User’s Accuracy due to
confusion where sparse or mixed pixels were incorrectly classified as vegetation.
The Otsu method provided higher precision but lower recall, confirming the
expected trade-off in land cover mapping between omission and commission
errors (Congalton, 1991; Olofsson et al., 2014).
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Despite moderate agreement (k = 0.3—0.4), CORINE’s 100-m resolution
limited its use for pixel-level Sentinel-2 validation. These results highlight the need

for finer datasets, such as LUCAS, when assessing Sentinel-2 vegetation
classifications.

5.1.3 Validation with LUCAS 2022

Accurate pixel-level validation was made possible by the LUCAS point survey.
Recall ranged from 0.86 to 0.99, while precision (0.92-0.97) was highest when
thresholds were between 0.30 and 0.34. Consistent with findings at the European
scale, these results (OA = 0.93, F1 = 0.96) validate Sentinel-2 NDVI's strong ability
to distinguish vegetation in alpine areas with variable soil and snow exposure
(d'Addamio et al., 2021). However, in steep or shadowed terrain, the class
imbalance between vegetated and non-vegetated pixels decreased recall.

5.1.4 Validation with Carta degli Habitat

Validation against Carta degli Habitat confirmed that NDVI binary
classification can broadly represent vegetation zones but lacks habitat-level
specificity. The low Kappa values (k = 0.10-0.15) indicate that NDVI fails to capture
detailed plant community composition, consistent with findings from
Mediterranean and alpine protected areas (Pesaresi et al., 2020; Cajkovska et al.,
2020). These results emphasize that NDVI is a valuable tool for monitoring general
vegetation trends but should be complemented with habitat-specific indices for
ecological studies.

5.1.5 Synthesis for NDVI

The NDVI validation experiments demonstrate that CORINE, LUCAS, and Carta
degli Habitat serve as complementary references and that no single dataset can
guarantee accuracy on its own. Large-scale thematic mapping is supported by
CORINE, and precise pixel-level calibration and threshold optimization are made
possible by LUCAS.

While adaptive Otsu techniques better capture spectral variability and
phenological transitions, the fixed threshold approach guarantees temporal
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consistency. When combined, they offer a dual framework that strikes a balance
between ecological sensitivity and long-term comparability.

5.2 NDSI Thresholding and Snow Dynamics

5.2.1 Seasonal Dynamics

The dual-threshold method served as the method for detecting snow cover.
The fixed thresholds (NDSI > 0.42) proved to be both reliable and straightforward
to understand according to Hall et al. (Hall et al.,1995; Dozier, 1989), but tended
to underestimate snow in fragmented conditions, especially in late-season months
(June).

The Otsu thresholds showed dynamic changes based on annual conditions
because they reached values below 0.20 and even negative numbers (e.g., June
2023) when bare soil and bright rocks became the main spectral indicators.

These findings confirm that adaptive thresholds effectively detect snow in
transitional conditions but may introduce over-segmentation when wet soils or
clouds share similar reflectance values.

5.2.2 Validation with FSC

Validation against the Copernicus Fractional Snow Cover (FSC) product
demonstrated strong annual contrasts.

In 2018, the best results occurred at NDSI > 0.16 (OA = 0.84, F1 = 0.82), while
2022 yielded weaker performance (OA = 0.64, F1 = 0.48) with an optimal threshold
near 0.05.

These variations reflect genuine snowpack differences between years, as well
as the influence of FSC’s fractional nature, which better captures accumulation
periods than melt-out stages. Results align with previous cryosphere studies
showing similar limitations in binary snow detection (Dumont et al.,, 2020;
Mohammadi et al., 2023).
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5.2.3 Manual Point-Based Validation

The random-point validation process inside the AOI area revealed positive and
negative aspects of each method. The fixed threshold method achieved
acceptable results when detecting large snow areas yet it did not detect small
snow patches. The Otsu threshold method reduced the number of missed snow
events but it led to incorrect snow detection in shaded cirque areas and steep
slopes.

The research by (Parajka & Bloschl, 2008) confirms this trade-off because they
showed that threshold selection generates the highest degree of uncertainty
when mapping Alpine snow.

5.2.4 Synthesis for NDSI

The NDSI analysis shows that Otsu thresholds improve responsiveness to local
snow and illumination conditions, while fixed thresholds guarantee inter-annual
stability, allowing for trustworthy comparisons across years. Given the wide
variations in snowpack characteristics and atmospheric effects, FSC validation
confirms that no single threshold works best for all seasons.

To preserve accuracy and temporal coherence, these results highlight the need
for flexible but comparable validation systems that combine binary and fractional
references (Gascoin et al., 2020; Terrago et al., 2023).

5.3 Cross-Platform Comparison (GEE vs Sentinel Hub)

NDVI and NDSI results from GEE and Sentinel Hub showed strong coherence,
with less than 15 % deviation in snow and vegetation area estimates. Differences
mainly stemmed from distinct mosaicking and cloud-masking strategies.
GEE facilitated automated workflows and flexible threshold testing, while Sentinel
Hub offered higher precision due to its optimized atmospheric corrections and
temporal compositing.

The two systems thus complement each other: GEE is ideal for large-scale,
long-term studies, and Sentinel Hub excels in precision monitoring and visual
consistency (Choler et al., 2021; Parisi et al., 2023).
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5.4 Ecological and Climatic Implications

The dual analysis of vegetation (NDVI) and snow (NDSI) shows that alpine
environments keep a strong connection between their cryosphere and biosphere
systems. The results indicated the following findings:

The length of snow cover determines when plants start to grow in early spring
(Marty et al.,2017; Kotlarski et al. 2022).

The NDVI trajectories reveal both short-term effects from snowmelt and slope
instability and long-term thermophilization patterns (Lamprecht et al.,2018;
Choler et al. 2021).

NDVI and NDSI require thresholding decisions for ecological interpretation
because their responses change significantly based on the chosen threshold
values.

The Maritime Alps demonstrated high sensitivity to threshold definitions
because of their steep elevation changes and wide range of habitats. The
classification of transitional habitats (snowbeds, alpine meadows, shrub—forest
ecotones) demonstrates that their continuous spectral characteristics prevent
them from being classified as simple binary categories.

5.5 Methodological Recommendations

1. Adopt dual-threshold approaches as a standard practice in alpine Earth
Observation (EO) studies. This combination ensures both inter-annual
comparability (through fixed thresholds) and adaptability to variable
conditions (through Otsu or other data-driven thresholds).

2. Ensure validation diversity by integrating multiple reference datasets
(e.g., CORINE, LUCAS, CdH, FSC). No single dataset provides complete
reliability across scales; combining polygon-based, point-based, and
fractional references reduces bias and improves robustness.

3. Perform threshold optimization using precision—recall trade-offs and F1-
scores only when ground-truth or validated reference data are available.
Reliable reference information is essential to evaluate true/false
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classifications and avoid misleading accuracy assessments, especially
under class imbalance conditions.

Incorporate machine learning and hybrid fractional methods (Vicente-
Serrano et al., 2010; Tiede et al., 2021) to overcome binary classification
limitations and to model gradual transitions (e.g., partial snow or mixed
vegetation cover) that thresholding cannot fully capture.

Select thresholds according to study objectives:

Use fixed thresholds for temporal comparisons and long-term trend
analyses where stability and reproducibility are priorities.

Use Otsu or adaptive thresholds for short-term or spatially heterogeneous
analyses where illumination, moisture, or surface reflectance vary
significantly.
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Conclusion

This thesis investigated vegetation and snow dynamics in the Maritime Alps
using Sentinel-2 satellite imagery, focusing on NDVI (Normalized Difference
Vegetation Index) and NDSI (Normalized Difference Snow Index). The overarching
aim was to evaluate how different thresholding strategies and validation datasets
influence the accuracy and interpretability of alpine vegetation and snow-cover
classifications. By employing both fixed and adaptive (Otsu) thresholds, the study
systematically evaluated methodological trade-offs in binary classification of
vegetation and snow cover. The results were validated against multiple reference
datasets, including CORINE Land Cover 2018, LUCAS 2022, Carta degli Habitat, and
the Copernicus Fractional Snow Cover (FSC) product.

The findings confirm that threshold selection strongly conditions ecological
interpretation. Fixed thresholds (NDVI > 0.30, NDSI > 0.42) ensured comparability
across years and alignment with legacy literature but systematically
misrepresented transitional conditions overestimating vegetation in early spring
and underestimating snow in patchy late-season cover. In contrast, adaptive Otsu
thresholds flexibly adapted to spectral distributions, capturing inter-annual and
seasonal variability more effectively, but occasionally introduced commission
errors, particularly in ecotonal or topographically complex zones. This trade-off
represents the central methodological contribution of the thesis, emphasizing that
adaptive approaches increase responsiveness while fixed thresholds ensure
temporal consistency.

Validation exercises provided critical insights. CORINE confirmed broad-scale
agreement but highlighted scale mismatches. LUCAS offered high-resolution
point-based validation, enabling threshold optimization and improving
classification reliability. Carta degli Habitat extended the analysis to an ecological
framework, illustrating both the potential and the limits of NDVI for habitat-level
monitoring. The FSC product proved essential for snow validation, underscoring
the utility of fractional approaches in capturing mixed-pixel conditions often
overlooked by binary classification.

Methodologically, the comparison of Google Earth Engine and Sentinel Hub
demonstrated that cloud platforms are not interchangeable but complementary.
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GEE provided reproducibility and analytical depth through coding environments,
while Sentinel Hub facilitated rapid visualization, API-based requests, and large-
scale product generation. The consistency of outputs across platforms (with
mismatches generally <15%) reinforces their reliability for climate-sensitive alpine
monitoring. Future work should extend this dual-threshold framework to other
alpine and Mediterranean regions to test its transferability under diverse snow—
vegetation regimes.

Ecologically, the study revealed how vegetation greening trajectories and
snow persistence are tightly linked. Snow duration emerged as a primary control
on early-season NDVI, confirming long-term alpine observations (Marty et al.,
2017; Kotlarski et al., 2022). Conversely, NDVI saturation in June highlighted the
limitations of greenness indices in dense canopies, echoing known challenges in
forested environments (Huete et al., 2002; Verrelst et al., 2015). These dynamics
illustrate the vulnerability of alpine ecosystems to climate change, where
warming-driven reductions in snow duration accelerate thermophilization and
reshape habitat suitability (Lamprecht et al., 2018; Choler et al., 2021).

In conclusion, the research demonstrated that dual-threshold strategies,
combined with diverse validation datasets, offer a robust framework for alpine
vegetation and snow monitoring. While fixed thresholds preserve comparability
across years, adaptive thresholds better represent dynamic environmental
conditions. The integration of multiple reference datasets enhances accuracy
assessment, while cross-platform processing increases reproducibility and
scalability.

For the specific case study of the Maritime Alps, the combination of Google
Earth Engine (GEE) with the Otsu adaptive threshold proved to be the most
effective methodological choice. The Otsu method dynamically adjusts to
variations in snow and vegetation reflectance, providing more realistic spatial
distribution and reducing missed detections especially in transitional or
heterogeneous terrain. Fixed thresholds, on the other hand, remain useful for
long-term temporal comparisons where methodological consistency is prioritized.

Between the two processing platforms, GEE offered greater flexibility for

reproducible workflows, threshold optimization, and integrated validation, while
Sentinel Hub was particularly advantageous for fast visualization and
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dissemination of results. Hence, a combined strategy using GEE for analytical
processing and Sentinel Hub for operational product generation emerges as the
most practical framework to support data-driven decision-making in alpine
environmental management.

Looking forward, the study emphasizes the need to go beyond binary
classifications by integrating fractional indices, machine learning, and multi-sensor
data fusion. These approaches could capture the full spectrum of alpine landscape
dynamics, from snowbed specialists to shrub encroachment, offering more
nuanced indicators of ecosystem resilience. By providing both methodological
lessons and ecological insights, this thesis contributes to advancing Earth
Observation applications in one of Europe’s most climate-sensitive mountain
regions.
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