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Abstract

The performance of electric and hybrid vehicles relies on an effective battery
management strategy to ensure safety, driving range, and durability. Among
all monitored parameters, the state of charge (SOC) plays an essential role
in optimally implementing the control logic strategies. However, since SOC
cannot be directly measured, its estimation relies on algorithms capable of
guaranteeing a balance between accuracy and computational efficiency.

This thesis proposes the design and implementation of an extended Kalman
filter (EKF) for SOC estimation of a lithium-ion cell - LG INR18650 MJ1 -
within Matlab and Simulink environments. The cell was first modelled adopting
a Dual Polarisation Model (DPM) and characterised through experimental
data, with model parameters optimised via Simulink Design Optimisation
(SDO) toolbox. Subsequently, the EKF was developed, tuned, and validated
under different operating conditions, demonstrating convergence, stability, and
robustness against incorrect SOC initialisation and sensor offsets. Specifically,
for both tests analysed under correct initialisation conditions, the filter achieved
an estimation SOC error profile constrained within ±1% window, while in the
incorrect initialisation scenario, even for the most dynamic and shortest test,
the mean SOC error remained limited to −2.38%.

The study was then further extended to a configuration composed of six
identical cells, denoted as multiple cells EKF Simulink model, enabling simul-
taneous SOC estimation of a battery module. The model was validated across
different scenarios, proving its accuracy and convergence capability. Finally,
the model was converted into C code and validated through software in the
loop (SIL) approach, confirming its suitability for real-time implementation on
production-level embedded hardware.
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Chapter 1

Introduction

In recent years, due to growing environmental concerns about climate change
and air quality, the automotive sector has experienced a significant transfor-
mation, especially at the powertrain system level. In fact, to comply with the
stringent emission reduction targets imposed by the European Union (EU),
OEMs have been forced to replace part of their traditional ICE fleets with
vehicles equipped with a battery pack and one or more electric motors (EM).
According to international authorities such as IEA and ICCT, this ongoing
transition towards electrification is confirmed by the increased market penetra-
tion of BEVs, PHEVs, and HEVs [1, 2].
In this content, one of the most relevant variables is the battery State Of Charge
(SOC), which represents the remaining usable capacity within the battery pack
relative to its maximum available capacity at a given time instant. Being a
non directly measurable quantity, an accurate estimation is fundamental, as it
significantly impacts vehicle performance, safety, and driving range. In addition,
a reliable estimation of the SOC is essential for the proper application of the
optimal energy management control logic, both to improve driving efficiency
and to extend the battery lifespan, considering that, on average, the battery
accounts for 30% to 50% of the total vehicle cost [3].
Considering its central role, several SOC estimation strategies have been devel-
oped over the years, as illustrated in Figure 1.1 [4].
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Battery State Estimation through EKF Introduction

Figure 1.1: SOC estimation strategies

The Coulomb counting method, representing a traditional approach, esti-
mates the SOC by integrating the current applied to the cell over time. Despite
its simplicity, its accuracy strongly depends on the precise knowledge of the
initial SOC, a rigorous current sensor calibration, and the continuous update
of the maximum available cell capacity. Another classical approach is the
Look-Up Table method, which estimates the SOC by exploiting its relationship
with external parameters such as OCV or impedance to estimate SOC. This
strategy requires intensive experimental characterisation tests to establish the
relationship and, being applicable only to static cells, is unsuitable for online
SOC estimation. For these reasons, more advanced approaches have been
introduced and adopted for real-time applications. The model-based methods
estimate the SOC by solving differential equations of the model developed to
reproduce the cell dynamics. Typically, these techniques are combined with
filtering algorithms to improve accuracy, reliability, and mitigate measurement
and modelling errors. Instead, data-driven methods, contrarily to model-based,
do not require any knowledge of the internal system processes, as they exploit
machine learning algorithms trained on large experimental datasets. Although
particularly useful in the case of absence or limited information about cell
internal characteristics or chemical reactions, they are highly dependent on the
quality of the training data. Finally, the hybrid methods, recently introduced,
combine the advantages of model-based techniques with those of data-driven
models, offering improved accuracy and robustness in SOC estimation [4].

Among the various techniques, in this thesis work, a model-based strategy
was adopted. Specifically, an Extended Kalman Filter (EKF) built on a
Dual Polarisation circuit model (DPM) was designed, as it provides the best
compromise between accuracy, data requirements, computational effort, and
real-time applicability.
In order to achieve the thesis objectives, all the data analysed were extracted
from the results of the laboratory tests carried out by third parties on LG
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Battery State Estimation through EKF Introduction
INR18650 MJ1 cell [5]. Although the database includes outcomes at two
different ambient temperatures, specifically 25◦C and 45◦C, only the former
were considered, as they are representative of standard environmental conditions.

1.1 Thesis Aim

This thesis work presents several objectives that can be summarised as follows:

1. Development of a mathematical model able to describe the dynamic
behaviour of the adopted lithium-ion cell under operating conditions
representative of a new generation powertrains (BEV, PHEV or HEV);

2. Implementation and validation of an extended Kalman filter for state of
charge estimation in Simulink environment, based on the developed cell
model;

3. Extension of the developed EKF from a single cell model to a model
describing a battery module composed of six identical cells. This objective
represents the main novelty with respect to the articles presented in the
literature. Indeed, while existing works analyse and consider the EKF
mainly at single cell level, the proposed thesis work aims at implementing
a model capable of simultaneously estimating SOC of multiple cells;

4. Generation and software in the loop (SIL) validation of the C code derived
from the designed model, intended to be deployed on real hardware with
production-level specifications.

Figure 1.2 presents the flow chart adopted to achieve the thesis objectives:

Figure 1.2: Thesis flow chart
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1.2 Thesis Organisation

To facilitate the reading and in order to follow the process path adopted to
achieve the thesis objectives, the work is subdivided as follows:

• Chapter 2: Cell Characterisation provides a detailed description of the
cell under examination and the model adopted for its characterisation;

• Chapter 3: Extended Kalman Filter presents the theoretical principles
supporting the implementation of the Simulink model for single cell SOC
estimation;

• Chapter 4: Simulink Model Extension proposes the extension of the
single-cell EKF Simulink model previously developed to a battery module
composed of six identical cells, and its validation across different operating
scenarios;

• Chapter 5: Code Generation provides a detailed description of the proce-
dure adopted for generating the C code of the implemented model and
presents its validation through the SIL approach;

• Chapter 6: Conclusions closes the thesis work by summarising the relevant
results obtained and offering, to the readers, suggestions for possible future
developments.
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Chapter 2

Cell Characterisation

The current chapter focuses on presenting the analysis and procedures carried
out for the characterisation of the cell employed in this thesis, the LG INR18650
MJ1. This process, summarised below, constitutes an essential step in the
development of the EKF:

1. Overview of cell main characteristics;

2. Description of the adopted cell model;

3. Description of the tests analysed for model parametrisation;

4. Estimation of the model parameters through SDO;

5. Analysis of the results obtained from parameters estimation.

2.1 Cell Specifications

The LG INR18650 MJ1 is an electrochemical device able to transform the
chemical energy contained in its active material into electrical energy adopted
to power the vehicle. In addition, being a secondary cell, the conversion process
is reversible, allowing the cell to store energy during braking manoeuvres
through regenerative braking.
The cylindrical cell, with its main dimensions reported in Table 2.1 and a
3D model shown in Appendix A, operates on lithium-ion technology and is
composed of [6, 7]:

• Positive electrode made of NMC, specifically NMC811;

• Negative electrode consisting of Silicon-Graphite (Si-Gr), with a silicon
content of 3.5% by weight. The addition of silicon is intended to enhance
both volumetric and gravimetric energy. Nevertheless, due to high volume
expansion when reacting with lithium, its content results to be a trade-off
between energy performances and structural stability;

5



Battery State Estimation through EKF Cell Characterisation
• Electrolyte, a non-aqueous organic liquid that enables charge transport

between the two electrodes;

• Separator , a porous membrane that electrically insulates the positive and
negative sides of the cell;

• Current collectors which represent key components as they act as conduc-
tive interfaces with the external circuit and help minimise the internal
resistance.

Description Symbol Value Unit of Measure
Diameter d 18.5 mm

Height h 65.1 mm

Weight w 49.0 g

Table 2.1: Cell dimension and weight

The interaction among all the components described enables the electrochem-
ical processes of LIB cell, governed by reduction-oxidation (redox) reactions,
to take place. Specifically, during discharge, the negative electrode undergoes
oxidation reactions, releasing electrons to the external circuit. The resulting
charge imbalance generated by the oxidation is compensated by the migration
of lithium-ions from the negative towards the positive electrode (reduction).
Similar phenomena occur during charge, where the current supplied from the
external circuit reverses the mechanism.
The components of the cell, as well as its operating principle, previously ex-
plained, are shown in Figure 2.1 [8].

Figure 2.1: LIB operating principle

6
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In conclusion of the cell data analysis, the main electrical characteristics

required for the next steps, such as nominal capacity and voltage limits, are
listed in Table 2.2 [6].

Description Symbol Value Unit of Measure
Nominal Capacity Qnom 3.50 Ah

Nominal Energy Enom 12.72 Wh

Nominal Voltage Vnom 3.64 V

Standard Charge istCh 0.5 · C = 1750 mA

Maximum Voltage Vmax 4.20 V

Standard Discharge istDisch 0.2 · C = 700 mA

Minimum Voltage Vmin 2.50 V

Table 2.2: Cell electrical characteristics

2.2 Dual Polarisation Model - DPM

Modelling a cell or a battery is an extremely challenging task due to the
complexity and non-linearity of the electrochemical processes described in the
previous Section 2.1. Their behaviour depends on several factors such as SOC,
temperature, ageing, and charging/discharging rate. For these reasons, over
the years, different techniques and approaches have been proposed, depending
also on the goals to be achieved [9]. Among these, electrochemical models
describe, through differential equations, the chemical reactions of the cell
faithfully. However, they are extremely difficult to configure as they require
a large amount of input data and, due to their low computational efficiency,
are not appropriate for real-time applications. In contrast, the electrical
equivalent circuit models (ECM) approximate the cell behaviour using basic
circuit elements such as resistors, capacitors, and voltage sources. Although
these models are less accurate, particularly in capturing the non-linearity
of electrochemical processes, their simplicity, standard test instrumentation
requirements, and high computational efficiency make them widely adopted in
BMS [10]. Therefore, this type of model is employed in the development of the
EKF for SOC estimation.
Within the various types of circuit-based models, the simplest results to be the
RINT made up of a voltage source and a series resistance, and is only able to
capture the steady-state behaviour of the cell. To overcome this limitation,
resistor-capacitor groups can be introduced in the model to reproduce the
dynamic behaviour of the electrochemical processes [11]. Specifically, the
chosen configuration, reported in Figure 2.2, was the Dual Polarisation Model
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(DPM), an evolution of the Thevenin model, consisting of a voltage source in
series with a resistance and two resistor-capacitor (RC) networks.

Figure 2.2: Dual polarisation cell model

The main components of the DPM are the following:

• OCV : represents the cell terminal voltage measured under no-load con-
ditions, therefore, when no current is applied to the cell. As will be
demonstrated in the next Sections, it is strongly dependent on SOC,
thereby making the voltage source variable [12];

• R0: also known as equivalent series resistance (ESR), is mounted directly
in series to the voltage source and is intended to describe the instantaneous
voltage drop occurring when a current is applied to the cell. The resistor
models almost all the components involved in the operating process
described in the previous Section, such as the electrolyte, the active
materials in the electrodes and the current collectors. Moreover, it
is important to mention that the resistor causes ohmic power losses
dissipated as heat, reducing the cell efficiency [8, 13];

• RC groups capture the dynamics of the electrochemical processes occurring
inside the cell. The first group describes the activation polarisation,
also denoted as charge-transfer polarisation, which represents the voltage
required to increase the rate of the chemical reaction. The second network,
instead, models the voltage associated with the formation of concentration
gradients of charge carriers in the electrolyte. This process is known
as concentration polarisation, diffusion polarisation, or mass-transport
polarisation. The two mentioned phenomena exhibit different speeds: the
first, being faster, is characterised by a smaller time constant τ1, while
the second, slower, presents a larger time constant τ2 (τi [s] = Ri · Ci)
[13].
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It is worth noting that all these components are influenced not only by

SOC, but also by operating temperature. Furthermore, the equivalent series
resistance is strongly dependent on the SOH, showing an increasing trend
during cell ageing, while the RC networks are affected both by the current
magnitude and direction [13, 14, 15]. Nevertheless, to limit the complexity of
the model, these factors were neglected, maintaining only the dependence of
the parameters on SOC.
The DPM can be formulated in both continuous and discrete time. However,
since the current application involves the implementation in a BMS operating
at fixed time intervals, the discrete-time Equations are reported [16]:


Vcell(k) = OCV (SOC (k)) − VRC1(k) − VRC2(k) − R0 · Icell(k)

VRCi
(k) = exp(−dt

τi

) · VRCi
(k − 1) + Ri · (1 − exp(−dt

τi

)) · Icell(k − 1)
(2.1)

In set of Equations 2.1, the variables not previously defined are:

• Vcell is the measured output voltage at the cell terminals expressed in V ;

• VRCi
is the voltage drop across the i − th RC group expressed in V ;

• Ri is the resistance of the i − th RC group expressed in Ω;

• Icell is the current, expressed in A, applied to the cell considered positive
during discharge and negative in charging mode;

• k is the actual time step;

• dt is the sampling time expressed in s.

2.3 Characterisation Tests

In order to parametrise the components of the proposed DPM, two tests,
performed using standard instrumentation, were required. As highlighted in
Section 1, these tests were not physically conducted but only their results,
reported in the adopted dataset, were analysed [5].

2.3.1 Capacity Test

The first examined test, denoted as Capacity Test, consists of a full charge or
discharge of the cell under constant current (CC) with an extremely low C-rate.
This procedure allowed the extraction of the OCV at the cell’s terminals, as
well as the usable capacity thanks to the minimum influence of ohmic losses
and polarisation effects on the cell model.
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The test provided in the database, shown in Figure 2.3, includes a discharge
phase from maximum to minimum voltage (make reference to Table 2.2),
followed by a rest period and a subsequent charging phase restoring back the
cell to its maximum voltage. Both the active phases are carried out at C/20,
corresponding to 175 mA. As visible from Figure 2.3, during the resting period,
despite the absence of current applied to the system, the terminal voltage
increases from the minimum value. This behaviour, caused by hysteresis
phenomenon, cannot be modelled by the DPM and consequently was excluded
from the extraction of the OCV curve as a function of SOC [8].

Figure 2.3: Capacity Test

To extract the OCV curve, the two active phases were first isolated. For each
of them, the corresponding SOC was evaluated by normalising the extracted cell
capacity (Qcell) with respect to the phase-specific maximum capacity (Qmax),
as reported in Equation 2.2.

SOCDischarge/Charge = Q
Discharge/Charge
cell

Q
Discharge/Charge
max

(2.2)

This approach allowed to cover the entire SOC range (0% − 100%) both
in discharge and charge. Afterwards, the cell terminal voltage was collected
at 5% SOC for both phases and then averaged pointwise. The resulting
curve, illustrated in Figure 2.4 in yellow, was adopted for estimating the DPM
parameters.
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Figure 2.4: OCV curve vs. SOC

2.3.1.1 C-rate Effect

To better understand the influence of operating conditions on cell behaviour
during the test, the effect of current magnitude was inspected. The dataset also
includes entire capacity tests performed at four different C-rate levels. However,
for graphical reasons, only the discharge stages were considered, although
similar considerations could be drawn from the analysis of the charge periods.
As evident in Figure 2.5, an increment in the C-rate leads to a reduction in
the measured cell voltage. This phenomenon, attributed to increased ohmic
losses and polarisation effects, is represented in the DPM by voltage drops, as
described by Equation 2.1. In addition, as shown in the zoomed view of the
final stage of the discharge phase, the maximum usable capacity (QDischarge

max )
decreases as the current magnitude increases. Therefore, although higher C-rate
levels reduced the test duration, the resulting data were not reliable for model
parametrisation.
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Figure 2.5: C-rate effect on discharge OCV curve vs. cell capacity

Table 2.3, reported below, further supports the discussed observations:

C-rate |Icell| (mA) Discharge Time (h) QDischarge
max (Ah)

C/20 175 19.3 3.375
C/3 1167 3.1 3.365
C/2 1750 2.3 3.359
1C 3500 1.4 3.352

Table 2.3: Discharge characteristics at different C-rates

2.3.2 Pulse Test

The second test examined, denoted as Pulse Test, is used to characterise the
resistive and capacitive components of the presented DPM. Typically, to achieve
this goal, the Hybrid Pulse Power Characterization (HPPC) is performed. The
latter consists of a 1C discharge pulse, followed by a short rest period, a
subsequent 1C charge pulse, another rest, and a final 1C discharge pulse
intended to reduce by 10% the cell SOC. The entire process is repeated until
the cell is fully discharged, ensuring the characterisation of the model over the
entire SOC range [14].
However, in this work, the dataset provides a different pulse test as illustrated
in Figure 2.6. Although it differs from the standard test, the outcome results
to be comparable, ensuring a perfect description of the model parameters. In
particular, the procedure consists of a series of 1C charge pulses separated by
relaxation periods to guarantee the chemical stability of the cell. It is important
to point out that, towards the end of the charging phase, the current rate is
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progressively reduced from 1C to 0.7C to prevent damage to the cell caused
by exceeding the upper voltage limit (see Table 2.2). Subsequently, several
discharge pulses at 1C, always separated by rest periods, are conducted until
the cell approaches the lower voltage limit. At this point, the test is concluded
since the application of a further discharge pulse, even if at a lower C-rate,
could bring the cell voltage below the lower threshold.

Figure 2.6: Pulse Test

The extracted cell capacity, reported in the lower plot of Figure 2.6, was
used to determine the SOC profile over the test duration. To perform this
operation, the net capacity was evaluated as the difference between the red
curve and the blue one during charging. Conversely, in the discharge phase,
the opposite difference was considered and subtracted from the SOC reached
at the end of charge phase in order to maintain it positive. Figure 2.7 reports
the resulting profile and, in accordance with what was previously explained
regarding the test stop condition, the SOC does not reach zero at the end of
the discharge stage.
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Figure 2.7: SOC profile during Pulse Test

By combining the Pulse Test current and voltage data with the SOC profile,
it is possible to analyse the dependence of the model parameters on SOC
according to the following mechanism. At each pulse, either discharge or charge,
an instantaneous voltage variation, respectively, a decrement or an increment,
occurs caused by the ESR. By evaluating this voltage difference and knowing
the current applied, it is possible to estimate the value of R0 at that specific
SOC level through Equation 2.3. Subsequently, the two polarisation effects
intervene contributing to a further, but smoother, voltage variation. The rate
of change in this phase is governed by the speed of these two effects, which, as
mentioned, is higher for the activation process (τ1) and lower for the diffusion
one (τ2). This smoother voltage modification allows the characterisation of
the two RC networks of the DPM according to Equations 2.4 and 2.5 [14,
15]. Figure 2.8 illustrates the mechanism for a single discharge pulse, but, as
expected, the same concepts can be applied during charging.

R0 = V1 − V0

Icell

(2.3)

R1 = V2 − V1

Icell

⇒ C1 = τ1

R1
(2.4)

R2 = V3 − V2

Icell

⇒ C2 = τ2

R2
(2.5)

It is important to highlight that the voltage subscripts in the previous Equations
directly correspond to the marker points reported in Figure 2.8.
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Figure 2.8: Mechanism for parameter estimation on Pulse Test

2.4 DPM Parameter Estimation

The last step to conclude the cell characterisation concerned the identification of
the most accurate estimation of the DPM parameter profiles (R0, R1, R2, τ1, τ2)
as a function of SOC. To achieve this goal, the Simulink Design Optimisation
(SDO) was employed.
Initially, a continuous-time Simulink model was created to describe the evolution
of the DPM state. In particular, the state of this model, which will be reused
for the implementation of the EKF, were the State of Charge and the voltages
across the two RC networks, whose dynamic behaviours are described by
Equations 2.6. 

˙SOC = −Icell · dt

Qnom

˙VRCi
= Ri · Icell − VRCi

τi

(2.6)

The inputs of the model were the voltage, current, and SOC profile obtained
during the Pulse Test, while the output was the simulated cell voltage evaluated
through first equation of the DPM formulation (make reference to Eq. 2.1). It is
important to note that, although this equation was defined in the discrete-time
domain, it remained valid in this continuous Simulink model.
For what concerns the cell model parameters to be tuned, and required by
all reported equations, a 1D LUT was implemented for each of them, with
SOC breakpoints discretised every 5%, consistently with the OCV curve (see
Figure 2.4).
Subsequently, it was necessary to define all the options for the proper initial-
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isation of the SDO [17]. The parameter estimation problem was formulated
as a Nonlinear Least Squares (lsqnonlin) optimisation, where the objective
function minimised the sum of the squared difference between the measured
voltage and the voltage simulated by the Simulink model. [18].
At this stage, with the SDO objective and the problem setup clearly defined, it
is necessary to explain the working principle of the optimisation process. The
produced Matlab script initially runs a simulation of the Pulse Test with an
initial guess of the DPM parameters defined by the user. Then, the voltage
error during the test is evaluated and, on the basis of this result, the software
iteratively relaunches the test by adjusting the parameters within a predefined
range. This process continues until no further voltage error reduction can
be achieved by modifying the parameters. Therefore, in order to define the
best estimation, it was possible to control only the initial guess and the range,
for each parameter, in which the optimisation process could search. A total
of thirteen different tunings were attempted, but only the most relevant are
reported, each of them accompanied by the identification code, the description
of the main features, and the simulated voltage profile.

2.4.1 Tuning A

The first tuning, identified by letter A, was the simplest possible SDO trial.
In particular, the OCV curve was taken from the Capacity Test (yellow curve
Figure 2.4), whereas all the resistive elements (R0, R1, R2) were left free to
vary between 0 and 10 Ω. On the other hand, the time constant ranges were
independently defined to better model the polarisation effects. Specifically, the
first τ was allowed to change from 0 to 1000 seconds, while the second ranged
from 1000 up to 1 · 107 seconds. The simulated voltage, obtained after the
optimisation process, is shown in Figure 2.9.

16



Battery State Estimation through EKF Cell Characterisation

Figure 2.9: Pulse Test voltage tuning A

Analysing this voltage profile, several important characteristics can be
observed. The first consideration regards the initial simulated voltage value.
Indeed, since the validation process was initiated from the first available time,
the initial voltage value was imposed equal to the OCV evaluated at zero SOC.
This assumption, valid for all other proposed tunings, was made by considering
the null initial current, thus making OCV a coherent starting condition and
avoiding an unfeasible value.
The second feature concerns the root mean square error (RMSE), evaluated
by Equation 2.7, which is equal to 84.2 mV . This value reflects the strong
deviation of the simulated voltage from the measured one, especially in the
charging phase. This discrepancy arises mainly due to the OCV curve resulting
underestimated with the Capacity Test at low SOC. To overcome this issue,
the second tuning was set.

VRMSE (V ) =

öõõô 1
N

·
NØ

k=1
(V Sim

cell,k − V Meas
cell,k )2 (2.7)

2.4.2 Tuning B

The second tuning, associated with letter B, was defined by imposing the same
ranges for all the resistors and time constants of the previous tuning. The
key difference was in the OCV curve, which was allowed to vary during the
optimisation process. The only constraint to be respected was the compliance
with the lower and upper voltage limits specified in the datasheet (Table 2.2).
Consequently, the OCV was limited between 2.5 V and 4.2 V . The simulated
Pulse Test voltage is reported in Figure 2.10.
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Figure 2.10: Pulse Test voltage tuning B

By observing the proposed voltage profiles, it is clearly evident that, consid-
ering the OCV curve as a tunable parameter, an improvement in the quality of
the DPM is achieved. Indeed, compared to the previous tuning, the simulated
voltage is closer to the measured one, not only during the resting period but
also during the charging and discharging pulses. This improved behaviour is
due to the higher OCV values at low SOC obtained during the tuning process.
However, according to Equation 2.1, this causes a slight deviation at the end
of the discharge phase where the simulated voltage exceeds the measured one
in contrast to Tuning A. Despite this, the second tuning process ensured a
reduction of the voltage RMSE (VRMSE) up to 47.8 mV , corresponding to a
decrease of 43.2% compared to Tuning A.

2.4.3 Tuning C

The third tuning, denoted by letter C, was derived after an analysis of the
influence of each parameter on the simulated voltage. The outcome of this
investigation revealed that, for each resistive parameter and at each SOC level,
specific lower and upper bounds must be defined. The admissible intervals for
the optimisation process, reported in Table 2.4, were established based on the
most frequent values extracted from the conducted sensitivity analysis. Instead,
for what concerns the OCV, it was allowed to be tuned as in the previous case
(Tuning B), while the first time constant spanned from 0 to 500 seconds, and
the second between 500 to 10000 seconds.
As in the previous cases, the resulting voltage profile is illustrated below, in
Figure 2.11.
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Parameter Limit
SOC Level (%)

0 5 10 15 ÷ 85 90 95 100

R0 (mΩ)
Lower 45 40 35 32 35 35 40

Upper 60 55 50 38 40 45 50

R1 (mΩ)
Lower 60 40 35 5 5 5 10

Upper 100 80 60 30 30 30 35

R2 (mΩ)
Lower 100 40 30 30 35 35 60

Upper 300 100 80 60 60 80 100

Table 2.4: Resistance limits for optimisation

Figure 2.11: Pulse Test voltage tuning C

By examining Figure 2.11 and comparing it to the previous ones, it is
immediately apparent that the current tuning produces the most accurate
DPM parameters estimation for describing the cell behaviour. As a matter of
fact, the simulated voltage is almost overlapped during whole test, even in the
highly dynamic voltage variations caused by the current pulses. This effect
translates into a voltage RMSE reduction by 46.7% compared to Tuning B,
obtaining a final value of just 25.5 mV .
Table 2.5 summarises the voltage RMSE obtained from the three proposed
tuning processes considering the entire test duration. Moreover, it underlines
the importance of proper input definition to the Matlab script to effectively
guide the SDO towards the optimal solution.
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Tuning Code VRMSE (mV ) VRMSE reduction (%)

A 84.2 /
B 47.8 43.2
C 25.5 46.7

Table 2.5: Voltage RMSE for different tunings

2.5 DPM Validation

To effectively consider Tuning C as the optimal parameters estimation for
modelling the cell, it was necessary to validate the DPM on a more dynamic
and aggressive test than the one adopted for the characterisation. Specifically,
the test considered, available in the database and reported in Figure 2.12,
is named Dynamic Stress Test. The term Dynamic can be visualised in the
current profile which exhibits frequent alternations of charging and discharging
phases at different C-rates. Consequently, the voltage, related to the current
by Equation 2.1, appears extremely irregular and sawtoothed.

Figure 2.12: Dynamic Stress Test

It is important to highlight that, in order to properly validate the model,
the test data, sampled at variable time steps, were first converted to fixed time
steps. In particular, to capture even the smallest voltage and current variations,
an extremely small time interval (1 ms) was adopted. The result of this con-
version process, performed with the Matlab script 2.1, is depicted in Figure 2.13.

1 disTime = 0:0.001: contTime (end)
2
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3 stringMethods = [" Linear ", " Makima "," Nearest "];
4 selectMethod = stringMethods (1);
5

6 disCurrent = interp1 (contTime , contCurrent ,
disTime , selectMethod ," extrap ");

7 disVoltage = interp1 (contTime , contVoltage ,
disTime , selectMethod ," extrap ");

8 disCapCharge = interp1 (contTime , contChCap ,
disTime , selectMethod ," extrap ");

9 disCapDischarge = interp1 (contTime , contDischCap ,
disTime , selectMethod ," extrap ");

Listing 2.1: DST fixed time conversion

Figure 2.13: DST variable and fixed time interval

As noticeable, for all the electrical quantities shown, the curves representing
the variable sampling time data are not visible, as they are perfectly overlapped
by the fixed ones.

After this preliminary step, the SOC profile during the test was evaluated,
by Equation 2.8, as the difference between the previous SOC (SOCDST (k − 1))
and the ratio of net (Qnet) to nominal (Qnom) capacity. The first element
in the Equation was initially imposed equal to 1, corresponding to 100%, in
accordance with the database experiment setup. In fact, before being subjected
to the Dynamic Stress Test, the cell was completely charged with a CC phase
at 1C until the upper voltage limit was reached. Subsequently, a CV phase was
carried out until the current dropped to zero [6].
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

SOCDST (k) = SOCDST (k − 1) − Qnet (k)
Qnom

Qnet (k) = QDischarge(k) − QCharge(k)
(2.8)

The resulting SOC curve throughout the DST is shown in Figure 2.14. The
profile highlights the dynamic nature of the test with alternations of discharging
and charging phases. For this reason, the DST was suitable for the validation
process because, if the parameters had been accurately estimated, the model
would have been able to replicate the cell behaviour by following the measured
voltage.

Figure 2.14: SOC profile during DST

The evaluation of this variable proved to be crucial as it was adopted to
calculate the resistances and time constants values of the DPM over the entire
test. Precisely, this operation was carried out in Matlab adopting the interp1
function, with the reference values for the interpolation taken from the results
obtained with Tuning C.

1 % SOCbrk = 0:0.05:1 , discretised at 5% SOC
2 % NameParameter_TuningC = outcome profile of the

optimisation process for each parameter (array 1x21)
3 % SOC_DST = value calculated with Equation 2.8
4 % NameParameter_DST = vector of parameters during DST
5

6 R0_DST = interp1 (SOCbrk , R0_TuningC , SOC_DST ) %[ohm]
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7 R1_DST = interp1 (SOCbrk , R1_TuningC , SOC_DST ) %[ohm]
8 R2_DST = interp1 (SOCbrk , R2_TuningC , SOC_DST ) %[ohm]
9 tau1_DST = interp1 (SOCbrk , tau1_TuningC , SOC_DST ) %[s]

10 tau2_DST = interp1 (SOCbrk , tau2_TuningC , SOC_DST ) %[s]

Listing 2.2: DST parameter estimation

These model parameters were inserted into the set of Equations 2.1 to
evaluate the cell voltage, illustrated in Figure 2.15, at any millisecond of the
test. As visible, for the entire test duration, the blue curve, representing the
simulated voltage, accurately tracks the measured one, confirming the high
quality estimation achieved with Tuning C. The only drawback concerns the
reliability of the parameters at low SOC where, as in Figure 2.11, the largest
deviations occur. Nevertheless, the voltage RMSE, calculated with Equation 2.7,
is only 23.8 mV , thus establishing Tuning C as the proper candidate for the
cell characterisation.

Figure 2.15: DPM validation - DST cell voltage

Once the validation stage was completed, the behaviours of the tuned DPM
parameters as a function of SOC were examined. The first element analysed was
the OCV curve, which, even if allowed to be tuned, was required to maintain
an increasing trend consistent with what was extracted from Capacity Test.
Figure 2.16 compares the OCV profile obtained during the optimisation process
(red) with the averaged one from the Capacity Test (yellow). As noticeable,
the optimised OCV curve respects the constraints on shape and trend but,
coherently with what was discussed in Tuning B, it appears higher at low SOC
where the Capacity Test underestimated the values. On the contrary, at high
SOC an overestimation was achieved during the test. Instead, in the usable
cell range (20% ÷ 80% SOC) the two curves perfectly match.
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Figure 2.16: Tuned OCV curve vs. SOC

Afterwards, the attention was shifted to the profiles of the tuned DPM
resistances (R0, R1, R2), which are illustrated in Figure 2.17. As visible, all
three curves exhibit a U -shaped profile with an increase at low and high SOC
and a plateau in the usable cell range. This behaviour is consistent with the
outcomes found in the literature [19, 20, 21, 22].

Figure 2.17: Tuned DPM resistances vs. SOC

Finally, the tuned profiles of the two time constants were examined and
adopted to compute the curves of the two capacitive elements of the DPM. This
calculation was performed, at each SOC level, by dividing each time constant
by its corresponding resistance (Ci = τi/Ri). Figure 2.18 displays the results
for both RC networks, with the first depicted in the upper part and the second
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in the lower one. Both tuned capacitive elements exhibit an increasing trend
at low SOC followed by a more stable region for C1 and a more oscillatory
behaviour for C2. These resulting profiles are consistent, as for the resistances,
with the literature [19, 22].

(a) Time constant and capacitor first RC network vs. SOC

(b) Time constant and capacitor second RC network vs. SOC

Figure 2.18: Tuned DPM time constants and capacitors vs. SOC
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Chapter 3

Extended Kalman Filter

The chapter aims to explain the theory behind the Extended Kalman Filter for
battery or cell state estimation, along with its implementation and validation
in Simulink environment.

3.1 Theoretical Background

The EKF, as discussed in section 1, proves to be the most suitable method
for estimating the SOC in the context of this thesis, as it provides an optimal
balance between accuracy and computational effort [16].

The EKF, an extension of the Linear Kalman Filter (KF), is a recursive
algorithm adopted for non-linear systems to estimate internal state variables,
not directly measurable, such as the cell SOC. The main assumption of the
filter is related to the noises assumed to be described by uncorrelated Gaussian
distributions with zero mean and known covariance matrices. The operating
principle consists of predicting the evolution of the state through a mathe-
matical model describing the system, followed by a correction based on the
measurements acquired by the sensors. This update phase is fundamental as it
balances, through the Kalman Gain, the uncertainties or noises associated with
both the model and the measurements, ensuring the most accurate probabilistic
estimate of the system state. The described process remains the same for both
KF and EKF, the key difference lies in the handled systems. Indeed, while
the KF can be applied only to linear systems represented in state-space with
constant matrices, the EKF is able to manage non-linear systems, such as the
cell model employed in this work, by linearising them at each time step [23, 24].
Before presenting the equations adopted for the development of the EKF, some
important notations must be introduced:

• The superscript “ - ” indicates a predicted quantity based only on past
measurements;
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• The superscript “+” indicates an estimated quantity based on both past

and present measurements;

• The hat “ˆ ” on a variable indicates either a predicted or estimated value
of that variable. For instance x̂− represents the predicted states, while ŷ

the predicted output;

• The tilde “˜ ” on a variable indicates an error evaluated as the difference
between the true value and the predicted or estimated one. For example
x̃− = x − x̂− is the error of the predicted state, while ỹ = y − ŷ is the
output error, denoted as innovation term [23];

• The variable “P ” represents the correlation between the two arguments
in its subscript:

Pxy = E[xyT ] and Pxx = E[xxT ] (3.1)

3.1.1 Six-step Process

The EKF principle operates on six distinct steps, which are presented below with
a brief generic description and a more detailed focus on the current application.
It is important to recall, as described in section 2.4, the state of the DPM
adopted for the cell description [16, 21, 23]:

x =


x1

x2

x3

 =


SOC

VRC1

VRC2



Phase 0: Initialisation

This stage is aimed at setting, for the first time instant, the initial state values
(x̂+

0 ) and the associated covariance matrix (P +
x̃0). This matrix represents the

uncertainty level of this initial estimation and, as will be demonstrated later,
its proper definition is crucial since it affects the behaviour of the filter.

Phase 1: Prediction

This phase constitutes one of the two main steps in the described filter’s working
principle and is structured as follows:

1.a) State Prediction
The filter predicts, through the mathematical model describing the system
dynamics, the state at the current time step (k) based on measurements
and estimated state at the previous time step (k−1). Equation 3.2 defines
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the general formulation of this phase, where f is the non-linear function
describing the state evolution, u is the input applied to the system, and w

is the process noise characterised, as previously explained, by zero mean
(w̄) and covariance Qx:

x̂−
k = f(x̂+

k−1, uk−1, w̄k−1) (3.2)

It is important to highlight that, in this thesis, the function f was
linearised around the previous estimated state every time step, thus the
state evolution in discrete time was described by the first Equation in 2.6
and the second in Equation 2.1. As a consequence, it was possible to
express the predicted state in state-space form with time-varying matrices:

x̂−
k = Âk−1 · x̂+

k−1 + B̂k−1 · uk−1 (3.3)

Âk−1 =



1 0 0

0 exp
A

−dt

τ1

B
0

0 0 exp
A

−dt

τ2

B


(3.4)

B̂k−1 =



− dt

Qnom

R1

A
1 − exp

A
−dt

τ1

BB

R2

A
1 − exp

A
−dt

τ2

BB


(3.5)

In the presented equations, the system input u was represented by the
current applied to the cell, considered positive during discharge and
negative in charge. Instead, all the DPM parameters were SOC dependent
in accordance with the results of Tuning C.

1.b) Error Covariance Prediction
After the system state prediction, the accuracy level is evaluated by
combining the error covariance matrix at previous time step, the transition
matrix Â, and the process noise covariance as follows:

P −
x̃k

= E[(x̃−
k ) · (x̃−

k )T ] = Âk−1 · P +
x̃k−1

· ÂT
k−1 + Qx (3.6)

The proposed formulation, typically adopted in KF, results valid in the
current application since the state evolution was linearised.
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1.c) System Output Prediction

The filter predicts the system output value yk, which represents the
expected measurement, based on the mathematical model describing its
evolution and the predicted state. Equation 3.7 describes the general
formulation of this phase, where h is the non-linear function modelling
the output evolution, u is the system input and v is the measurement
noise characterised by zero mean (v̄) and covariance R:

ŷk = h(x̂−
k , uk, v̄k) (3.7)

In the case under examination, the system output was represented by the
cell voltage and described in discrete time by first Equation in 2.1 with
the introduction of the measurement noise:

ŷk = Vcell(k) = OCV (x̂−
1,k) − x̂−

2,k − x̂−
3,k − R0 · uk + v̄k (3.8)

As clearly evident, due to the dependency exhibited by the OCV on the
SOC, it was not possible to express it in state-space form. In fact, while
the state evolution function f was expressed in state space form, the
output voltage equation g was maintained in explicit form.

Phase 2: Correction or Innovation

This phase represents the second main step in the working principle of the filter
and is subdivided as follows:

2.a) Kalman Gain Evaluation
The Kalman gain, a fundamental component of the filter, represents a
weighting matrix determining the balance between the predicted state,
evaluated through the system model, and the observed measurements. It
is adopted to adjust the predicted state in order to minimise the mean
square estimation error, ensuring the most accurate estimation of the
system state. Equation 3.9 defines the general formulation of the Kalman
gain, where P −

x̃k,ỹk
is the cross-covariance matrix between state error and

measurement error, and Pỹk
is the measurement error covariance matrix:

Kk = P −
x̃k,ỹk

· P −1
ỹk

(3.9)

In order to apply this Equation to the proposed application, several
mathematical steps were necessary to evaluate the individual components.
Starting from the second element, it was possible to express the output
error, in linearised Jacobian matrices, by adopting a truncated Taylor-
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series expansion at first order of yk around the set point qk = {x̂−

k , uk, v̄k}:

ỹk = yk − ŷk ≈ Ĉk · x̂−
k + D̂k · ṽk (3.10)

This allowed to determine the measurement error covariance matrix:

Pỹk
≈ Ĉk · P −

x̃k
· Ĉ−1

k + D̂k · R · D̂T
k (3.11)

Ĉk = ∂h(·)
∂x̂−

k

=
∂OCV

∂SOC

------
x̂1

−
k

−1 −1
 (3.12)

D̂k = ∂h(·)
∂v̂k

=
è
1
é

(3.13)

The derivative of the OCV with respect to the SOC was modelled through
a 1D LUT following the method proposed by Plett. Therefore, the
reference values adopted for the interpolation were evaluated as:

1 % ocvVal = row vector obtained with Tuning C
2 %dSOC = discretised SOC , equal to 5%
3 % dOCVdSOC = reference value for interpolation
4

5 dOCVdSOC = ( ocvVal (3: end) - ocvVal (1: end -2) )
./ ( 2 * dSOC );

6 dOCVdSOC = [ ( ocvVal (2) - ocvVal (1) )/dSOC
dOCVdSOC ( ocvVal (end) - ocvVal (end -1))/dSOC ];

7

Listing 3.1: OCV vs. SOC derivative

Instead, regarding the first term of the Kalman gain, it was derived by
exploiting the assumption of independence between measurement noise
and predicted state, thereby obtaining:

P −
x̃k,ỹk

= P −
x̃k

· ĈT
k (3.14)

Combining Equations 3.14 and 3.11, the Kalman Gain for SOC estimation
was expressed as:

Kk = P −
x̃k

· ĈT
k · [Ĉk · P −

x̃k
· ĈT

k + R]−1 (3.15)

2.b) State Estimation
In this step, the filter updates and corrects the predicted state knowing
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the acquired measurement from the sensors (yk) and the Kalman gain:

x̂+
k = x̂−

k + Kk · ỹk = x̂−
k + Kk · (yk − ŷk) (3.16)

It is important to highlight that, in some cases, as proposed by Plett,
the SOC (x̂+

1 ) is limited to avoid unfeasible values. However, in this
thesis, no constraints were imposed on the estimated SOC since these
filter results will be subsequently adopted for vehicle’s control where the
proper saturations will be implemented.

2.c) Error Covariance Estimation
The last step regards the update of the state covariance error matrix
performed by Equation 3.17:

P +
x̃k

= (I − Kk · Ĉk) · P −
x̃k

(3.17)

As visible, the state correction with the measurement leads to a reduction
in the uncertainty level. Indeed, due to the Kalman gain contribution,
the estimated error covariance matrix is lower than the predicted one.

Figure 3.1 summarises the operating principle of the filter, including the main
steps and equations employed in its implementation:

Figure 3.1: EKF operating principle
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3.2 Simulink Implementation - Single Cell

The EKF for SOC estimation was first implemented in Simulink environment
for a single cell following the theoretical formulation introduced in the previous
section. Specifically, to facilitate future code generation and maintain a clear
structure, a subsystem approach was adopted. Each subsystem was responsible
for a specific part of the filter working principle and embedded in a main EKF
block. This external subsystem receives as inputs the current applied to the
cell (u) and the measured voltage (y) and outputs the estimated SOC (x̂+).
Additionally, a mask was created on this EKF block to easily configure all
the parameters involved in the filter Equations. Table 3.1 reports the mask
parameters while Figure 3.2 shows the subsystems inside the main EKF block:

Parameter Variable Name Dimensions
Initial state initState 3x1

Initial error covariance matrix initP 3x3
Process noise matrix Q 3x3

Measurement noise matrix R 1x1
Initial current initCellCurr 1x1

Cell nominal capacity nomCapAh 1x1
SOC breakpoints SOCbrk 1x21
LUT values R0 R0val 1x21
LUT values R1 R1val 1x21
LUT values R2 R2val 1x21
LUT values τ1 tau1val 1x21
LUT values τ2 tau2val 1x21

LUT values OCV ocvVal 1x21
LUT values OCV derivative dOCVdSOC 1x21

Table 3.1: EKF mask parameters

Figure 3.2: Single cell EKF subsystems overview
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The estimation process starts from the lower block of Figure 3.2, denoted

as Initialisation & Delay, responsible for setting the initial state vector and the
associated error covariance matrix at the first simulation step.

Figure 3.3: Initialisation & Delay subsystem

Afterwards, the initial state vector is passed to the upper left block, labelled
State Transition Matrices, where it is adopted to extrapolate the DPM cell
parameters through 1D LUT with reference values of Tuning C. These parame-
ters are used to extract the two linearised transition matrices Âk−1 and B̂k−1.
Figure 3.4 depicts the implementation of the described process:

(a) DPM parameters at previous SOC
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(b) Matrices creation

Figure 3.4: State Transition Matrices subsystem

Subsequently, the two evaluated matrices, along with the initial state
vector and the error covariance matrix, are inserted into the Prediction phase
subsystem, where steps 1.a, 1.b, and 1.c of the six-step process are executed.
The upper part of Figure 3.5 illustrates the evaluation of the predicted state
and the error covariance matrix associated, while the bottom part shows the
cell voltage prediction and the linearised output matrices.

(a) State and covariance matrix prediction
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(b) Cell voltage prediction and linearised output matrices

Figure 3.5: Prediction phase subsystem

Finally, the estimation phase starts with the computation of the Kalman
gain, as illustrated in Figure 3.6a, followed by the correction of the state and
the error covariance matrix (Figure 3.6b).

(a) Kalman gain

(b) State and covariance matrix estimation

Figure 3.6: Estimation phase subsystem

The entire process is iteratively repeated over the entire test duration,
adopting the previous state, required for the DPM parameter extraction and
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prediction phase, equal to the output of the Initialisation & Delay subsystem.
The latter represents the estimated state delayed of one time step as reported
in Equation 3.3.

It is important to highlight that all the LUTs adopted in the Simulink model
were configured with the clip interpolation method. This setting was applied
in order to saturate the output value to the nearest boundary whenever the
SOC exceeds the upper (100%) and lower (0%) breakpoint limits, preventing
unrealistic outputs.

3.2.1 Data Resampling

To enable future C code deployment of the proposed Simulink implementation
and ensure compatibility with the available experimental instrumentation, the
original database signals were resampled at a fixed time interval of 200 ms. This
procedure was carried out in Matlab environment for both Pulse and Dynamic
Stress test, and was applied to all relevant electrical quantities, including cell
current, voltage, charge, and discharge capacities. It is important to note that
this resampling process differs from the one previously proposed in Code 2.1.
While the latter was conceived to approximate the test behaviour as accurately
as possible, the present method was developed to implement a sample-and-hold
(S&H) mechanism, simulating fixed-time acquisition of real instrumentation.
The Matlab code adopted to perform this resampling was similar to the previous
one (Listing 2.1) with two main differences. First, the time interval was adjusted
from 1 ms to 200 ms, second the interpolation method was changed to previous
in order to obtain the zero S&H mechanism.
Figure 3.7 illustrates the SOC profile during the DST, evaluated by Equation 2.8.
The red dashed line corresponds to the SOC derived from the raw capacities
of the database, whereas the blue line represents the SOC profile obtained
after the resampling process. As visible in the full-scale view on the left, the
two curves appear perfectly overlapped. However, analysing the right plot,
which is a zoomed view, an important difference emerges. The resampled
signal maintains a constant value over the time interval imposed before being
updated, introducing a stair-wise behaviour. Despite this, the resulting profile
still closely traces the original trend, thus representing the overall cell behaviour
throughout the entire test duration.

37



Battery State Estimation through EKF Extended Kalman Filter

Figure 3.7: Resampling process at fixed time interval

The aforementioned considerations, although focused only on the SOC
profile during the DST, equally apply to all other electrical quantities and to
both experimental tests.

3.2.2 Filter Tuning

As previously mentioned, one of the key steps in the filter implementation
was the tuning. Particularly, it was necessary to define four quantities: the
initial state x̂+

0 , the associated error covariance matrix P +
x̃0 , the process noise

covariance matrix Qx, and the measurement noise covariance matrix R.
The first parameter, represented by a column vector, was the easiest to be
defined. For both experimental tests previously described, the initial SOC
as well as the voltage drop across the two RC networks were already known.
Specifically, the voltages VRC1 and VRC2 were always set equal to zero since, in
both tests, the initial current value was zero, while the SOC was imposed equal
to 0% for the Pulse Test and to 100% for the DST.
The second parameter was more complex to be defined as the uncertainty
level associated with the state initialisation was not physically measurable.
In order to solve this tedious task, several approaches were proposed in the
literature over the years, some of them based on analytical formulations and
others on heuristic assumptions [23, 25]. For the case under examination,
the trial-and-error approach, proposed by Plett, was employed to overcome
the lack of robustness exhibited by some analytical methods. Specifically, it
was assumed that the state estimation errors were uncorrelated, resulting in
a diagonal matrix. It is important to note that higher the value assigned to
a state on the diagonal, the greater the associated uncertainty. Therefore,
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the proper initialisation was crucial as it directly affects the filter behaviour,
indeed, if the values are imposed too low, the filter may overly rely on the
model prediction.
The process noise covariance matrix Qx captures the uncertainties in the state
equations that arise from an improper cell parametrisation or imperfections
in the cell model structure. It determines the precision in the state prediction
(step 1.a) obtained relying only on the equations describing the state evolution
of the cell model. In the literature, two main approaches can be found: one
relies on a constant matrix defined by the filter designer, while the other defines
a time-varying matrix computed at each time step from the covariance of the
model parameters [26]. In this thesis, the first approach was adopted to reduce
the computation effort and facilitate subsequent C code implementation.
The last parameter, represented by the measurement noise covariance matrix
R, quantifies the uncertainties associated with the sensor measurements. It
essentially determines how much the filter relies on the measurement during
the state estimation (step 2.b) with respect to the model prediction. In general,
the larger the matrix, the less reliable the measurements and, as a consequence,
the greater the reliance on the model prediction. In the literature, the matrix
R is typically determined based on the square root of the measurement error.
However, due to the absence of this information in the database, the matrix
R, which, in this case, was a scalar value, was determined by a trial-and-error
approach.

On the basis of these theoretical considerations, and after several tuning
attempts, the initial error covariance matrix (P +

x̃0) and the two noise covariance
matrices (Qx, R) were defined in order to obtain an estimated SOC profile
consistent with the one obtained by the Coulomb counting method. The final
tuned parameters are reported below:

P +
x̃0 =


0.09 0 0

0 0.02 0

0 0 0.02



Qx =


1.5 · 10−10 0 0

0 9.7 · 10−4 0

0 0 6.6 · 10−7


R = 0.15
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From the reported matrices, some important considerations can be drawn.

The first concerns the diagonal element of the matrix P +
x̃0 corresponding to

the uncertainty level of the SOC. This value was intentionally imposed higher
compared to those corresponding to the two RC networks in order to mitigate
possible small inaccuracies in the measured capacity adopted to compute the
SOC profile throughout the tests. The second aspect involves the first diagonal
element of the process noise covariance matrix Qx, which was set lower compared
to the other two elements. This choice was made to prevent an oscillatory
behaviour in the estimated SOC profile at the expense of a slight reduction in
responsiveness.

3.3 Simulink Model Validation

In order to proceed with the subsequent C code generation, the EKF Simulink
model was subjected to an aggressive validation phase to verify its robustness,
accuracy, and suitability for real-time application. Specifically, three different
scenarios were considered:

1. Correct initial SOC;

2. Incorrect initial SOC;

3. Current offset injection.

3.3.1 Correct initial SOC

The first scenario considered was the most conservative since the filter was
initialised according to the procedure described in the Filter Tuning section.
In this case, the initial filter SOC was set equal to the value provided by the
database.

Pulse Test

The first experimental test analysed was the Pulse Test with an initial SOC
equal to 0%. Figure 3.8 shows the results of the Simulink EKF model simulation.
The upper graph depicts, in blue, the predicted cell voltage computed through
the blocks reported in Figure 3.5b representing Equation 3.8, and, in red,
the measured cell voltage reported in the database. As clearly visible, apart
from the initial instants, where a small discrepancy appears due to the filter
convergence, the two curves remain perfectly overlapped over the entire test
duration, indicating a proper DPM parametrisation. To further support this
consideration, the voltage RMSE throughout the entire test duration, evaluated
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with Equation 2.7, is only 3.31 mV .
The central graph reports two SOC profiles. The blue represents the estimated
SOC obtained through the EKF Simulink model, while the red curve corresponds
to the SOC computed with Coulomb counting method. Although the latter
closely resembles the profile proposed in Figure 2.7, a difference in the calculation
approach is present. Indeed, while in Figure 2.7, the profile was obtained by
dividing the net capacity by the maximum value of the corresponding phase
(charging or discharging), in the current Figure, the profile was evaluated by
dividing the net capacity by the nominal one (Qnom). As evident, the estimated
SOC profile, despite the initial deviations from the reference curve, rapidly
converges and accurately tracks it, demonstrating the effectiveness of the filter
tuning.
The bottom graph, supporting the aforementioned considerations, illustrates
the difference between the estimated SOC and the reference profile. As can
be observed, the error remains enclosed in a window of ±1% throughout the
entire test duration, with slightly larger deviations occurring at the initial and
final stages. The final deviation is mainly attributed to the limitations of the
DPM in capturing the dynamic behaviour of the cell at low SOC, whereas the
initial one arises from a combination of this model limitation and the filter
convergence dynamics.

Figure 3.8: Pulse Test Single cell EKF validation - Correct initial SOC

Dynamic Stress Test

The second experimental test analysed was the DST with an initial SOC equal
to 100%. Figure 3.9, subdivided in the same way as Figure 3.8, depicts the
outcome of the Simulink EKF model simulation.
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As in the Pulse Test validation, the predicted cell voltage accurately traces the
measured profile during the entire test duration. The main difference lies in
the voltage RMSE, equal to 9.69 mV , resulting slightly higher compared to the
previous case. This increase is attributed to the greater dynamics of the DST,
which makes the cell modelling by the DPM more challenging.
The SOC profile and the corresponding error plots emphasise the proper filter
tuning. Indeed, the estimated SOC curve closely follows the reference profile
during the entire test duration without exhibiting significant drift and deviation.
However, due to the more aggressive dynamic load variations of the DST, the
error appears more jagged compared to the Pulse Test, leading to an average
SOC error of 1.60%.

Figure 3.9: DST Single cell EKF validation - Correct initial SOC

3.3.2 Incorrect initial SOC

The second scenario analysed aimed to verify the filter capability to converge
to the true SOC profile when the initialisation of the cell state (phase 0) was
incorrectly set. It should be noted that, throughout the proposed scenarios,
only the first element, corresponding to the SOC, was allowed to vary, while
the two voltages across the RC networks were maintained equal to zero.

Pulse Test

For the considered test, being characterised by relatively smooth dynamics, the
initial SOC was deliberately set to 20%, a value significantly different from the
actual initial state. As illustrated in Figure 3.10, which presents the results of
this scenario obtained with the EKF Simulink model, the filter demonstrates a
strong capability to rapidly converge to the actual profiles of both measured
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voltage and SOC (red curves). Indeed, despite the evident deviation at the
beginning of the test caused by the significant mismatch between the true and
imposed initial SOC, the voltage RMSE remains only 3.33 mV , and the average
SOC error is limited to 1.18%, with the largest contribution deriving from the
initial stage.
Furthermore, the central graph of Figure 3.10 reveals the main limitation of
the Coulomb counting method. The yellow dashed line, representing the SOC
profile obtained by the integration method with an incorrect initial state, fails
to converge to the true SOC, exhibiting a persistent shift throughout the entire
test duration.

Figure 3.10: Pulse Test Single cell EKF validation - Incorrect initial SOC

Dynamic Stress Test

For the DST, the initial SOC value was intentionally imposed equal to 85%. By
analysing Figure 3.11, similar considerations to those extracted from the Pulse
test validation can be drawn. In this case, however, the higher dynamics and
the shorter duration of the test result in slower filter convergence, as confirmed
by a voltage RMSE of 9.35 mV and an average SOC error of −2.38%. Despite
these phenomena, the filter still manages to achieve convergence of both the
cell voltage and SOC profiles, indicating the effectiveness of the tuning. In
addition, the central plot further highlights the main drawback of the Coulomb
counting method with a SOC profile dropping below the lower cell threshold of
0%.
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Figure 3.11: DST Single cell EKF validation - Incorrect initial SOC

3.3.3 Current offset injection

The last scenario considered was the most aggressive and challenging condition
for the filter. It consisted of injecting a positive current offset of 0.2 A into
the original current profile of the experimental test. This introduction results
in an upward shift of the experimental current profile, thus intensifying the
discharge effect experienced by the cell and, simultaneously, reducing the charge
contribution. To further increase the complexity for the filter, this scenario
was performed on the DST, which, due to its highly dynamic load variations,
increases the risk of exceeding the lower cell threshold of 0%.
Figure 3.12, which illustrates both the current profile reported in the database
(labelled Original) and the modified one, supports the previous considerations.
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Figure 3.12: DST offset current profile

From Figure 3.13, which presents the simulation results for this scenario,
the advantages of the EKF emerge. Indeed, the Coulomb counting offset SOC
profile, represented by the red line and computed according to Equation 3.18
due to the absence of measured capacity for this modified current profile, drops
below the lower cell physical limit. Contrarily, the SOC estimated by the
filter, depicted in blue, remains within the admissible cell range and, thanks
to the innovation step with the measured voltage feedback, closely follows the
CC Original curve despite the modified current profile. Towards the end of
the test, the combined effect of DPM model limitations and highly dynamic
discharge current profile hinders the filter convergence, leading to a greater
deviation of the EKF curve from the reference. Nonetheless, the EKF curve
remains closer to the reference profile throughout the entire test duration with
respect to the CC Offset curve, highlighting the filter robustness compared to
the simple integration method.
A final important consideration concerns the error graph, which, differently
from the previous validation cases where it represented the deviation of the
EKF curve from the reference, in this scenario, illustrates the correction effect
introduced by the filter.

SOCcc (k) = CC Offset = SOCcc (k − 1) − dt · Icell(k)
Qnom

(3.18)
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Figure 3.13: DST Single cell EKF validation - Offset current profile

Table 3.2 summarises the results in terms of voltage RMSE and average
SOC error obtained from the EKF Simulink model validation process under
the three different scenarios analysed.

Validation scenario Test VRMSE (mV ) SOCerror (%)

1: Correct initial SOC
Pulse 3.31 -0.05

DST 9.69 1.60

2: Incorrect initial SOC
Pulse 3.33 1.18

DST 9.35 -2.38

3: Current offset DST 9.75 /

Table 3.2: Validation process for different scenarios
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Chapter 4

Simulink Model Extension

The current chapter is dedicated to describing the procedure followed to extend
the EKF Simulink model, previously described and developed for single-cell
SOC estimation, to a configuration capable of simultaneously estimating SOC
for six cells. Furthermore, a preliminary validation phase is included to verify
the correctness of the model before code generation.

4.1 Model Extension for Multi-Cell Estimation

In order to ensure the deployment of the SOC estimator at battery module
level, the EKF Simulink model, initially designed and validated for a single
cell, as discussed in Sections 3.2 and 3.3, was extended to six cells. Figure 4.1
illustrates the subsystems contained within the main EKF masked block. Each
subsystem, labelled from Cell 1 to Cell 6, reproduces the structure reported
in Figure 3.2, thus receiving as inputs the current and the measured voltage of
the considered cell and providing the estimated SOC profile as output. It is
worth noting that, being the battery module composed of series-connected cells,
the input current is common to all members, whereas the measured voltage
remains specific to each individual cell.

Furthermore, in order to reflect real operating conditions where each cell
may start from a different initial state, the variable initState, defined within
the subsystem Initialisation & Delay, was assigned for each cell and set as a
tunable parameter in the mask. Table 4.1 reports the relevant parameters of
the mask created on the main EKF subsystem:
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Parameter Variable Name Dimensions

Initial state Cell 1 initState1 3x1
Initial state Cell 2 initState2 3x1
Initial state Cell 3 initState3 3x1
Initial state Cell 4 initState4 3x1
Initial state Cell 5 initState5 3x1
Initial state Cell 6 initState6 3x1

Initial error covariance matrix initP 3x3
Process noise matrix Q 3x3

Measurement noise matrix R 1x1
Initial current initCellCurr 1x1

Cell nominal capacity nomCapAh 1x1
SOC breakpoints SOCbrk 1x21
LUT values R0 R0val 1x21
LUT values R1 R1val 1x21
LUT values R2 R2val 1x21
LUT values τ1 tau1val 1x21
LUT values τ2 tau2val 1x21

LUT values OCV ocvVal 1x21
LUT values OCV derivative dOCVdSOC 1x21

Table 4.1: Multiple cells EKF mask parameters

Analysing Table 4.1, it can be observed that all the DPM parameters and
the covariance matrices adopted by the filter logic are unique and defined for a
single cell. This configuration was ensured by the composition of the battery
module under consideration, made up of the same cell type (LG INR18650
MJ1).

4.2 Multiple cells EKF Model Validation

In order to verify the correctness of the multiple cells EKF Simulink model,
a validation phase was conducted based on the previously analysed tests.
Specifically, the multiple cells model, illustrated in Figure 4.1, was subjected
to an extremely rigorous validation process, similar to the one conducted for
the single cell model (see Section 3.3). However, to maintain a focused and
clear thesis structure, the discussion is limited only to the cases reported in
Table 4.2:
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Scenario Description

I DST with correct initial SOC
II Pulse test with common incorrect initial SOC for all cells
III Pulse test with different incorrect initial SOC for each cell
IV DST with different incorrect initial SOC for each cell

Table 4.2: Validation scenarios applied to the multiple cells EKF

4.2.1 Scenario I

Within the proposed validation scenario, the initial SOCs of the six cells (first
element from initState1 to initState6) were imposed equal to the correct
test value, corresponding to SOC0 = 1 = 100%. In addition, the measured
voltage profile of each cell was set equal to the single cell database profile,
shown in the central plot of Figure 2.12.
Consequently, as a result of this configuration, and as shown in Figure 4.2, all
cells, being subjected to the same input conditions, exhibit identical SOC profiles.
Moreover, since these inputs correspond to those imposed in Subsection 3.3.1,
the SOCs reported in Figure 4.2 coincide with the single cell result depicted in
Figure 3.9.

Figure 4.2: Validation scenario I - SOC profiles

4.2.2 Scenario II

For the second scenario considered, the initial SOCs of the six cells (first element
from initState1 to initState6) were all imposed to SOC0 = 0.2 = 20%.
In addition, following the same procedure adopted in the previous validation
scenario, the measured voltage of each cell was set equal to the single cell
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database profile. Consequently, since the input conditions correspond to those
imposed in Subsection 3.3.2, all SOC profiles depicted in Figure 4.3 are identical
to each other and coincide with the one reported in Figure 3.10.

Figure 4.3: Validation scenario II - SOC profiles

Although the proposed discussion focuses only on SOCs, the cell voltages
predicted by the filter were consistent with the profiles depicted in the upper
plot of Figure 3.9 and Figure 3.10, respectively.

4.2.3 Scenario III

This scenario was developed in order to reproduce a more realistic operating
condition, in which cells within the battery pack may have different initial SOC
levels. Specifically, being the test analysed the Pulse, the first elements of the
initial state vector initState (from 1 to 6) were imposed in the neighbourhood
of the actual value of 0%, as reported in Table 4.3. As clearly visible, to increase
the difficulty of filter convergence and to test its adaptability, the initial SOCs0

were randomly assigned, covering a wide deviation from the actual test value.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

SOC0 (%) 10 15 20 5 0 25

Table 4.3: Validation scenario III - Initial SOCs

Figure 4.4 reports the results obtained by simulating the multiple cells
EKF Simulink model under the considered configuration. The upper plot (Fig-
ure 4.4a) illustrates the cell voltage profiles, while the lower one (Figure 4.4b)
depicts the estimated SOC for all six cells.
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Starting from Figure 4.4a, it can be observed that, regardless of the initiali-
sation deviation, the predicted cell voltage by the filter closely overlaps with
the measured throughout the entire test. The only visible discrepancies, at-
tributable to filter convergence, occur in the initial simulation stages, where
an increased initial SOC leads to a higher initial predicted cell voltage. This
behaviour, consistent with the monotonic trend of the OCV curve, implies
a longer convergence time and, thus, a more evident mismatch between the
voltage profiles.
By examining Figure 4.4b, the effectiveness of the filter over the Coulomb count-
ing method is clearly demonstrated. Indeed, thanks to the optimal filter tuning,
the estimated SOC consistently converges towards the reference trajectory (red
curve labelled as CC @0%) across all six cells, regardless of the imposed initial
condition. This behaviour highlights the ability of the filter to compensate for
initialisation errors and to provide an accurate tracking of the SOC evolution.

The voltage and SOC profiles of cells 3 and 5, being subjected to the same
initial conditions applied in Section 3.3, correspond, respectively, to those
reported in Figure 3.10 and Figure 3.8.

(a) Validation scenario III - Cell voltage profiles
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(b) Validation scenario III - SOC profiles

Figure 4.4: Validation scenario III

To conclude the analysis of this scenario, Table 4.4 summarises the results
in terms of voltage RMSE and mean SOC error for each cell. The outcomes
confirm the considerations discussed above. Indeed, the cells initialised around
10% present the largest VRMSE, highlighting the limitations of the DPM in
describing accurately the cell behaviour at low SOC. Concerning SOC, the mean
error, evaluated by averaging the difference between the filter estimated and
Coulomb counting SOCs, inevitably increases with the initialisation deviation.
Nonetheless, it is worth noting that the main contribution arises from the initial
simulation steps, before the filter reaches convergence.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

VRMSE (mV ) 4.17 3.51 3.33 3.64 3.31 3.32

SOCerror (%) -1.41 -0.11 1.18 -0.67 -0.05 1.73

Table 4.4: Validation scenario III - Summary results

4.2.4 Scenario IV

The last scenario considered was intended, similarly to the previous one, to
reproduce a realistic operating condition with different initial SOCs on a
dynamic cycle. Specifically, the EKF Simulink model was tested on the DST by
imposing the first elements of the initial state vector initState (from 1 to 6)
in the neighbourhood of the actual value of 100%, as reported in Table 4.5. This
scenario constitutes an extremely challenging validation case for the EKF, as it
combines the highly dynamic behaviour of the DST with its short duration.
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Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

SOC0 (%) 85 80 90 100 95 75

Table 4.5: Validation scenario IV - Initial SOCs

Figure 4.5 illustrates the simulation outcomes for the considered scenario.
The analysis of Figure 4.5a reveals that the predicted cell voltage profiles,
despite initial errors caused by incorrect SOC initialisations, closely follow the
measured ones throughout the entire test.
As shown in Figure 4.5b, the filter demonstrates convergence capability towards
the reference profiles (red curves labelled as CC @100%) for all six cells, regardless
of the imposed initial value. However, convergence proves to be more challenging
for cells 2 and 5, mainly due to three factors:

• Large discrepancy between actual and imposed initial SOC conditions;

• Relatively short test duration;

• Reduced sensitivity of the DPM parameters in the usable operating region
(20% ÷ 80% SOC). This last aspect plays a crucial role in the filter operat-
ing behaviour. In fact, within this region, the OCV curve, governing the
cell voltage, exhibits a limited slope profile. This phenomenon implies that
even a significant SOC variation is translated into a minimal modification
of the cell voltage. As a consequence, since the voltage profile results
almost overlapped with the measured one, the SOC filter correction effect
with the feedback measurement strongly diminishes, making convergence
slower.

(a) Validation scenario IV - Cell voltage profiles
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(b) Validation scenario IV - SOC profiles

Figure 4.5: Validation scenario IV

Similarly to Scenario III, Table 4.6 shows how cells closer to the upper SOC
limit (100%) exhibit a higher voltage RMSE, thereby highlighting the DPM
limitations. Furthermore, the SOC error increases with the initialisation error,
with the major contribution deriving from the initial simulation steps.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

VRMSE (mV ) 9.35 9.32 9.41 9.69 9.50 9.40

SOCerror (%) -2.38 -5.37 -0.98 1.60 0.26 -6.16

Table 4.6: Validation scenario IV - Summary results

On the basis of the results discussed in the analysed scenarios, the multiple
cells EKF Simulink model can be considered reliable and robust, thus allowing
the subsequent thesis steps.
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Chapter 5

Code Generation

The current chapter is dedicated to describing the procedure adopted for
generating C code of the EKF Simulink model capable of simultaneously
estimating the SOC for six cells.

5.1 Code Setting Parameters

After extending and validating the multiple cells EKF Simulink model, attention
was shifted to properly configure the C code generation process [27]. Specifically,
this section presents the main parameters and options defined within the
Configuration Parameters window to guarantee both the applicability and
correctness of the generated code. To facilitate reading, the configuration
settings are presented in dedicated subsections, following the same structure
adopted in Simulink. It should be noted that only the configuration windows
in which modifications were applied are reported, whereas all others maintain
their default settings.

Solver

Within the solver window, the parameters were imposed equal to those adopted
during the Simulink validation process (Section3.3), thus:

• Simulation Start time: 0 s;
• Simulation Stop time: cycleTime(end);
• Solver type selection: Fixed-time;
• Solver: Discrete (no continuous states);
• Fixed-step size: dt = 200 ms;
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Hardware Implementation

To guarantee consistency with the hardware requirements and suitability for
deployment on a real platform, the settings within this window were configured
to:

• Device vendor: Freescale;
• Device type: 32-bit PowerPC;
• Device details: default values;

Code Generation

For the current window, the parameters were set to:
• System Target File: ert.tlc;
• Description: Embedded Coder;
• Language: C;
• Language Standard: C99 (ISO);
• Generate code only: cleared;
• Toolchain: Automatically locate an installed toolchain, MinGW64;
• Build configuration: Faster Builds.

Optimisation

Within the Optimisation subsection of the code generation settings, the Default
parameter behaviour option was configured to allow user-defined parameters
and to enable their modification during run mode, without requiring code
regeneration. Specifically, all the initial state of the cells and the initial current
value were set as Tunable and defined as ExportedGlobal variables.

After setting up the proposed configuration for the multiple cells EKF
Simulink model shown in Figure 4.1, it was necessary to ensure that all inputs
and outputs could be accessed and called by the functions created during the
generation process. Specifically, to achieve this aim, before generating the
code and within the Embedded Coder environment, all signals were selected
and added to the code mapping interface through the "Add signal to code
mapping" command and configured as ExportedGlobal. Only at the end of
this preliminary setup process, the C code was generated by selecting the
"Build This Subsystem" command from the context menu that appears when
right-clicking on the main EKF masked block.
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5.2 Simulink S-Function

The procedure described in Section 5.1 ensured the generation of C code
designed for deployment on real hardware with production-level specifications
and suitable for experimental validation. However, since these experimental
tests will be conducted by third parties, in the present thesis work, the multiple
cells EKF Simulink model was exported as S-Function and validated through
the SIL approach. Although the generated C code was not directly employed in
this thesis, the procedure description was included, as it was faithfully followed
to provide the code to the final users.

To achieve the S-Function generation, the multiple cells EKF Simulink
model was configured with the solver and optimisation settings previously
defined. Subsequently, by executing the command "Generate S-Function"
directly from the external mask of the model, the S-Function was obtained
[28]. This process allowed the creation of a Simulink model equivalent to the
original one (Figure 4.1) in which the EKF logic was no longer implemented
through blocks, but instead expressed directly in C code. The resulting model,
subdivided into three subsystems as illustrated in Figure 5.1, was equipped
with an external mask containing only the parameters imposed to Tunable, as
reported in Table 5.1. Specifically, the first and third subsystems were involved
in managing inputs and outputs of the system, respectively, while the green
one was the system’s core, implementing the EKF logic for six cells SOCs
estimation. It is important to point out that the outputs of this model were
intentionally named SOC Code (from 1 to 6) to prevent variable overwriting
when running both models simultaneously.

Parameter Variable Name Dimensions

Initial state Cell 1 initState1 3x1
Initial state Cell 2 initState2 3x1
Initial state Cell 3 initState3 3x1
Initial state Cell 4 initState4 3x1
Initial state Cell 5 initState5 3x1
Initial state Cell 6 initState6 3x1

Initial current initCellCurr 1x1

Table 5.1: S-Function mask parameters
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5.3 S-Function validation

Once the S-Function was successfully generated, particular attention was de-
voted to its validation. This step was fundamental to ensure that the generated
code faithfully reproduced the behaviour of the multiple cells EKF Simulink
model (Figure 4.1), thus guaranteeing consistency and correctness.
To achieve this objective, a dedicated Simulink model was developed, as illus-
trated in Figure 5.2a, comprising:

• The multiple cells EKF model implemented through Simulink blocks,
referred to EKF Blocks and depicted in Figure 4.1;

• The corresponding multiple cells EKF model implemented through C
code, denoted as EKF S-Function and previously shown in Figure 5.1;

• An auxiliary subsystem, labelled Input voltages, responsible for defin-
ing the voltage profile associated with each cell. The internal structure is
further detailed in Figure 5.2b.

(a) Block-diagram and S-Function EKF implementation
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(b) Cell voltages definition subsystem

Figure 5.2: Simulink model for S-Function validation

Among the several validation cases that could be executed and performed
through the proposed Simulink model, only two representative scenarios, re-
ported in Table 5.2, were selected, in order to avoid redundancy and maintain
a concise thesis structure.

Scenario Description
1 Pulse test with correct initial SOC and reference cell voltages
2 DST test with correct initial SOC and different cell voltages

Table 5.2: SIL validation scenarios

5.3.1 Scenario 1

The first scenario analysed was the simplest code validation case considered,
specifically designed to verify the proper functionality of the Simulink model
depicted in Figure 5.1 and, thus, of the generated and refined S-Function.
Specifically, the model was subjected to the Pulse Test, with the initial SOC
of each cell set equal to the actual value (SOC0 = 0%) and the measured cell
voltages imposed according to the reference data contained in the database.
The profiles obtained through the simulation are illustrated in Figure 5.3. By
examining Figure 5.3a, it can be observed that the SOC profiles estimated by
the block-based model (depicted in blue) and by the generated S-Function
(red) perfectly overlap for all cells throughout the entire test, confirming the
correctness and reliability of the generated C code. Furthermore, since all six
cells were subjected to identical input conditions, their SOC profiles coincide
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with each other and match the one previously shown in the central plot of
Figure 3.8.
Analysing Figure 5.3b, which displays the difference between the estimated
SOC profiles obtained from the two models for each cell, a minimal discrepancy
can be observed. However, since the deviation is on the order of 10−14%, it
can be reasonably attributed to numerical rounding and solver precision effects,
thereby confirming the consistency and equivalence of the two implementations.

(a) SIL validation scenario 1 - SOC profiles

(b) SIL validation scenario 1 - SOC discrepancy

Figure 5.3: SIL validation scenario 1
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5.3.2 Scenario 2

The second scenario, implemented on the DST with correct initial SOC
(SOC0 = 100%) set for all cells, was designed to replicate realistic operat-
ing conditions of the battery module, in which individual cells may exhibit
slightly different measured voltages. Specifically, to emulate this behaviour,
it was decided to deliberately introduce a random voltage variation to the
measured voltages present in the database.
The implementation of this configuration was enabled by the subsystem shown
in Figure 5.2b, arranged as reported in Table 5.3.

Variable Value

codeValidaCase 4

deltaVoltage

Cell 1 −40 mV

Cell 2 +60 mV

Cell 3 ±0 mV

Cell 4 −80 mV

Cell 5 +50 mV

Cell 6 −25 mV

Table 5.3: Cell voltages offsets

The results obtained from the simulation are illustrated in Figure 5.4,
organised coherently with the previous scenario. The upper plot reports the
SOC evolution estimated by both the block-based model and the generated
S-Function for each cell, whereas the lower plot depicts the corresponding
discrepancy between the two estimations. By examining Figure 5.4a, it can be
observed that the designed EKF, through the measured cell voltage feedback,
is capable of adjusting the SOC evolution profile. In particular, cells 2 and
5, where a positive offset was introduced, exhibit slightly higher SOC profile
compared to cell 3, considered as reference condition (SOC0 = 100% and
Vcell = database). Conversely, cells 1, 4, and 6, subjected to a negative offset,
display a slightly lower evolution. This behaviour is consistent with the expected
cell’s electrochemical response, as described in the DPM analysis (Section 2.2).
Furthermore, the plot clearly shows the perfect overlap between the SOC profiles
obtained from the block-based model and those produced by the generated
S-Function, confirming the equivalence of the two implementations. This
observation is further supported by the negligible discrepancy reported in
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Figure 5.4b, which, as in the previous validation case, can be only attributed
to floating-point and numerical precision effects.

(a) SIL validation scenario 2 - SOC profiles

(b) SIL validation scenario 2 - SOC discrepancy

Figure 5.4: SIL validation scenario 2

The proposed validation case concludes this thesis work, demonstrating the
effectiveness and correct operation of the developed EKF, its proper extension
to battery module application, and the accurate generation of the corresponding
C code.
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Chapter 6

Conclusions

The entire work presented in this thesis focused on the development of an
extended Kalman filter (EKF) designed to estimate the state of charge (SOC)
of lithium-ion cells, with specific application to a battery module composed of
six identical LG INR18650 MJ1.
The process started from the electrochemical characterisation of a single cell,
adopting experimental data retrieved from a public database. To perform this
operation, an equivalent circuit model (ECM) based on a Dual Polarisation
Model (DPM) was implemented and accurately tuned through Simulink Design
Optimisation (SDO) to reproduce the cell voltage dynamics faithfully. Specif-
ically, a voltage RMSE of 25.5 mV was achieved during the Pulse Test and
23.8 mV during the Dynamic Stress Test (DST), highlighting the fidelity of the
developed model. Building upon this model, the EKF algorithm was designed
and tuned in Matlab and Simulink environments at single cell level. The logic
developed was then extended to a multiple cells configuration capable of simul-
taneously estimating the SOC of each element within the battery module. The
filter validation phase, conducted across several test scenarios, demonstrated:

• Under correct initialisation, the estimated SOC profile remained enclosed
within an error window of just ±2% for both the Pulse Test and DST;

• In case of incorrect initialisation, the estimated SOC profile rapidly con-
verged to the reference trajectory during all considered cases. Specifically,
for an initial deviation of 25%, the mean SOC error obtained during the
Pulse Test was 1.73%, and −6.16% in the DST, with the largest contri-
bution occurring in the first instants before complete filter convergence.

Overall, the EKF exhibited, due to the optimal tuning, fast convergence,
robustness, reliability, and high consistency between the estimated and reference
SOC profiles, highlighting the advantages of this estimation technique over the
traditional Coulomb counting method.
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Finally, the multiple cells Simulink model was prepared for embedded

deployment through C-Code generation, and its correctness was verified by
adopting the Software-in-the-loop (SIL) validation approach. The achieved
results confirmed the functional equivalence between the block-based and
S-Function models, thus demonstrating the proper configuration settings
adopted for code generation.
All the discussed considerations validate the robustness, reliability, and real-time
integration within a production-level BMS of the developed project.

6.1 Future Developments

Although all objectives defined in this thesis were successfully achieved, the
proposed work could be further enhanced through the following activities:

• Temperature modelling: incorporate the temperature effect into the
DPM and consequently on the EKF. Specifically, all 1D LUTs should be
replaced by 2D LUTs, introducing both SOC and temperature as variables
to describe the dynamic behaviour of the cell. However, to implement
this extension, it would be necessary either to access a new experimental
database including a wider temperature range or to perform dedicated
laboratory tests. This requirement arises from the limited temperature
data available in the adopted database, which is therefore inadequate to
accurately characterise the thermal effect on the electrochemical behaviour
of the cell;

• State Of Health (SOH) modelling: extend the proposed EKF to a
structure composed of two filters operating simultaneously for each cell,
referred to as dual extended Kalman filter (DEKF). In particular, the
outer filter would be responsible for estimating the slow-varying variables,
such as the ESR (R0) and the nominal capacity (Qnom), while the inner
one would estimate the SOC, following the same logic implemented in this
work. This extension would enable optimal monitoring of cell performance
degradations over time, reflected as a gradual decrease in nominal capacity
and an increase in ESR [14, 16, 21];

• Passive cell balancing modelling: introduce in the EKF resistive
elements to emulate real-world behaviour where all the cells within the
battery module are maintained at a uniform SOC level, preventing per-
formance degradation and extending lifespan;

• Real experimental tests: conduct real laboratory tests to validate both
the EKF and the generated code behaviour under different scenarios.
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Appendix A

Cad Model

As mentioned in section 2.1, to provide a visual representation of the cell’s
shape and dimensions, a 3D cad model is proposed and shown in Figure A.1.
It is worth noting that the latter was not designed and created from scratch,
but rather sourced from 3D Cad Browser [29].

Figure A.1: 3D Cell Cad Model
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Appendix B

Matlab Code EKF

The current chapter is devoted to presenting the Matlab function developed in
parallel to the proposed Simulink model (Figure 3.2) for the implementation of
the single cell EKF SOC estimation, whose inputs and outputs are reported in
the following Table B.1.

Variable Name Description

In
pu

t

states Vector of estimated states

initStates Initial states as column vector

initP Initial covariance matrix

prevP Covariance matrix at previous time step

Qprocess Process noise matrix

Rmeasure Measurement noise matrix

inpCurr Vector of input current (A)

voltage Vector of measured voltage (V)

dati Matlab cell containing all the ECM and cell
parameters

index Actual time step

O
ut

pu
t

predStates Predicted states at current time step

predVoltage Predicted measured voltage (V)

estimatedStates Estimated states at current time step

prevP Covariance matrix at current time step

prevP Updated previous covariance matrix

Table B.1: EKF Matlab function Input & Output
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1 function [predStates , predVoltage , estimatedStates ,
estimatedP , prevP] =
ExtendedKalmanFilterFcn (states ,initState , initP ,
prevP , Qprocess ,Rmeasure , inpCurr , voltage , dati ,
index)

2

3

Solutions to avoid errors:

1. Insert the first prevP as zeros(size(initP));

2. Initialise in the main for loop the first index as prevP =
initP.

4

5 % Data extraction
6 R0Lut = dati {1 ,2};
7 R1Lut = dati {1 ,4};
8 R2Lut = dati {1 ,6};
9 tau1Lut = dati {1 ,8};

10 tau2Lut = dati {1 ,10};
11 Qnom = dati {1 ,12}; %[Ah]
12 brkSoc = dati {1 ,14};
13 ocvLut = dati {1 ,16};
14 ocvSocLut = dati {1 ,18};
15 dt = dati {1 ,20};%[s]
16

17 %Phase 0: Initialisation
18 For the first time instant use the initial values of

states , covariance matrix and current
19 if index ~= 1
20 previousSOC = states (:,index -1);
21 previousCurrent = inpCurr (index -1);
22 else
23 previousSOC = initState ;
24 previousCurrent = inpCurr (1);
25 prevP = initP;
26 end
27

28 %Phase 1: Prediction phase
29 %1.a) State Prediction
30

31 % Definition of the parameters @ previous SOC
32 R1 = extrapolationFcn (brkSoc , R1Lut , previousSOC (1));
33 R2 = extrapolationFcn (brkSoc , R2Lut , previousSOC (1));
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34 tau1 = extrapolationFcn (brkSoc , tau1Lut ,

previousSOC (1));
35 tau2 = extrapolationFcn (brkSoc , tau2Lut ,

previousSOC (1));
36

37 % Definition of the state transition matrices
38 Amatrix = [1 0 0;
39 0 exp(-dt/tau1) 0;
40 0 0 exp(-dt/tau2)];
41

42 Bmatrix = [-dt/( Qnom *3600) ;
43 (1 - exp(-dt/tau1))*R1;
44 (1 - exp(-dt/tau2))*R2];
45

46 predStates = Amatrix * previousSOC +
Bmatrix * previousCurrent ;

47

48 %1.b) Error Covariance Prediction
49 predP = Amatrix *prevP*Amatrix ’ + Qprocess ;
50

51 %1.c) System Output Prediction : variable calculated @
predicted state

52 ocv = extrapolationFcn (brkSoc , ocvLut ,
predStates (1));

53 R0 = extrapolationFcn (brkSoc , R0Lut , predStates (1));
54

55 %Vcell = OCV - VRC1 -VRC2 - RO*I
56 predVoltage = ocv - predStates (2) - predStates (3) -

R0* inpCurr (index);
57

58 %Phase 2: Correction Phase
59 %2.a) Kalman Gain Evaluation
60 derOCV = extrapolationFcn (brkSoc , ocvSocLut ,

predStates (1));
61

62 % Cmatrix
63 Chat = [ derOCV -1 -1];
64

65 Sk = Chat*predP*Chat ’ + Rmeasure ;
66 KalGain = predP*Chat ’/Sk;
67

68 %2.b) State Estimation
69 estimatedStates = predStates +
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KalGain *( voltage (index) - predVoltage );

70

71 %If necessary apply SOC saturation between -5% &
105% as proposed by Plett Vol .2

72 % states (1) = min (1.05 , max( states (1) , -0.05));
73

74 %2.c) Error Covariance Estimation
75 estimatedP = (eye(size(predP ,1)) -

KalGain *Chat)*predP;
76

77 % Update the next covariance matrix
78 prevP = estimatedP ;
79

80 This function replicates the clip operation performed by the
corresponding Simulink block:

81

82 function valueExtrapolated =
extrapolationFcn (LUTbrk , LUTval , queryVal )

83 % LUTbrk = double containing the breakpoints ;
84 % LUTval = values for the extrapolation ;
85 % queryVal = SOC value for the extrapolation . Can

be either predicted or estimated ;
86

87 % Output = valueExtrapolated
88

89 if queryVal < LUTbrk (1) %if SOC < 0 --> use
first value of LUTval

90 valueExtrapolated = LUTval (1);
91

92 elseif queryVal > LUTbrk (end) %if SOC > 1 -->
use last value of LUTval

93 valueExtrapolated = LUTval (end);
94

95 else
96 valueExtrapolated = interp1 (LUTbrk ,LUTval ,

queryVal , ’linear ’, ’extrap ’);
97 end
98 end
99 end

Listing B.1: MATLAB EKF function for SOC estimation
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