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Abstract

This thesis develops a complete workflow for the modeling, validation, and optimal design of DC

electromagnets intended for magnetic levitation in high-speed Hyperloop vehicles. An analytical

model was first established for stationary conditions and validated against finite element method

(FEM) simulations, enabling the development of an optimization environment to maximize levita-

tion force under physical and geometrical constraints. The study was then extended to dynamic

conditions, evaluating both the reduction in levitation force and the generation of drag force. Two

FEM approaches, the Lorentz Term and the Moving Mesh, were compared, and the analytical model

was validated against their results, confirming its reliability for rapid design iterations. Finally, the

workflow was applied to a real-world Hyperloop prototype at EPFL, where electromagnets were

benchmarked against mechanical wheels. The study demonstrated that electromagnets can provide

competitive results, with the additional advantage of enabling full vehicle levitation. The contribu-

tions of this work include an optimization framework for electromagnet design under stationary

conditions, an extended analytical model for dynamic conditions, a comparative analysis of FEM

approaches, and an application to a practical Hyperloop case study. The proposed methodology

provides tools of both methodological and practical value, extendable beyond Hyperloop to a wide

range of electromagnetic devices.
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Chapter 1

Introduction

1.1 Context

The transportation sector is one of the largest contributors to global CO2 emissions, accounting for

approximately 20% of total global emissions [1]. Road transport is responsible for approximately

three-quarters of this, while aviation and rail contribute about 12% and 1%, respectively, corre-

sponding to a combined 3% of global CO2 emissions. Reducing transportation-related emissions

requires the development and implementation of several solutions, depending on the travel range.

For urban transportation, there is a pressing need to transition toward more sustainable options

[2]. For short to medium range travel, rail transport is generally the most environmentally friendly

option, as it produces the lowest emissions per passenger-kilometer [3].

Figure 1.1 presents the Life Cycle Assessment (LCA) and Well-to-Wheel (WTW) emission factors,

expressed in grams of CO2 per passenger-kilometer, for different means of transportation.

Figure 1.1: LCA and WTW emission factors for different means of transportation
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However, for long-distance travel, rail is often considered too slow, leading to a preference for

airplanes, which are significantly more polluting.

In this context, a new transportation concept, the Hyperloop, has appeared as a potential mode to

mitigate the high emissions associated with air travel, while maintaining its cruising speed. The

Hyperloop is a magnetic levitation (MagLev) train operating inside a depressurized tube, reducing

aerodynamic drag. This configuration enables low energy losses and drag, allowing speeds compa-

rable to those of an airplane with significantly lower emissions (approximately 10 g CO2/pkm [4]).

The idea of a train traveling through a depressurized tube was first proposed by Robert Goddard in

the early 20th century. Feasibility studies were later conducted in the 1970s under the Swissmetro

project. However, despite promising results, the technology available at the time was insufficient to

reduce costs and losses to levels competitive with already established transport systems.

Today, advances in battery technology, power electronics, and efficiency in electrical components

have revived interest in making the Hyperloop a viable transportation solution.

Various levitation systems have been proposed [5], including:

• Air bearings, where levitation is achieved via pressurized air;

• Electrodynamic suspension (EDS), which uses permanent magnets (often in Halbach array

configurations) to generate lift through relative motion over a conductive rail;

• Electromagnetic suspension (EMS), where electromagnets interact with a ferromagnetic rail to

produce an attractive force. Placing the magnets underneath the rail allows for this attraction

to result in levitation. Alternatively, there is the possibility of placing the magnets above the

train to achieve the same result.

A visual comparison of the EMS and EDS systems is shown in Fig. 1.2.

Figure 1.2: Representation of the EMS system (left) and the EDS system (right) [6]

Hyperloop propulsion can be provided by a linear electric motor, a linear induction motor (LIM),

or a homopolar linear synchronous motor (H-LSM) [7].
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1.2 Motivation of the research

The purpose of this thesis is to develop a systematic workflow for the design and performance

assessment of electromagnets used in magnetic levitation systems, dealing with both stationary and

dynamic operating conditions. A particular focus is placed on the phenomenon of electromagnetic

drag, which is still not sufficiently characterized in the current literature. This work aims to investi-

gate drag generation in detail, combining analytical modeling with FEM simulations.

The thesis is structured as follows:

1. Development of an analytical model in stationary conditions, used for design optimization to

maximize the levitation force under given geometrical and physical constraints.

2. Validation of the analytical model through comparison with high-fidelity FEM simulations to

assess its accuracy and limitations.

3. Definition of an optimization environment tailored to electromagnet design.

4. Extension of the analytical framework to dynamic conditions, allowing the evaluation of both

the reduction in levitation force and the generation of drag force during motion.

5. Validation of the dynamic analytical model through numerical simulations in COMSOL [8].

The contribution of this thesis to the scientific literature is threefold:

• the development of a general optimization workflow applicable to the design of electromag-

nets and, more generally, to electric machines;

• the formulation of an analytical model capable of predicting both the decrease in levitation

force and the emergence of drag force under dynamic conditions;

• the implementation of a coherent simulation environment in COMSOL, useful as a benchmark

for the validation of analytical results.

Beyond academic contributions, the results of this thesis have practical relevance for the devel-

opment of advanced transportation systems, such as magnetic levitation trains and Hyperloop

technologies, where efficiency and reliability are critical. By providing accurate tools to predict

and optimize both levitation and drag forces, the proposed workflow supports the design of more

energy-efficient and cost-effective electromagnets. Furthermore, the methodologies developed

here can be readily extended to a broader class of electric machines, thereby contributing to the

improvement of sustainable and high-performance electromagnetic technologies.
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1.2.1 Real-world case study

This study is part of a research project conducted by the Distributed Energy Systems Laboratory

(DESL) at EPFL.

The main objective of the project is to design and develop a scaled prototype of a Hyperloop system

to evaluate the feasibility of implementing this technology in large-scale infrastructures.

The pod, whose initial prototype is shown in Fig. 1.3, is conceived as an energy-autonomous

vehicle. The batteries mounted on the chassis supply the energy required to propel the pod using

energy-optimized linear induction motors (LIMs). One of the major challenges with this solution

lies in the low energy density of batteries, typically a few hundred Wh/kg, which results in limited

autonomy. Consequently, every component of the pod must be carefully optimized for maximum

energy efficiency.

Since it is not feasible to construct an infinitely long test track, the pod was tested on a circular track.

This decision introduced additional challenges, in particular, the need to counteract the centrifugal

force generated during motion. To address this, mechanical wheels were employed, which oppose a

force of approximately 1000N and generate around 250W of frictional losses.

In this context, the use of electromagnets rather than wheels for the guidance system, specifically,

the components responsible for counterbalancing the centrifugal force during turns, was

investigated. The ultimate goal was to develop a fully levitating vehicle while minimizing the energy

consumption of the electromagnets, even at high velocities. From the space available in the pod,

two electromagnets were selected to improve the controllability of the system. Their maximum

dimensions were constrained to l ×h ×b = 350×50×50mm.

The research presented in this thesis directly addresses this challenge by proposing analytical

models and simulation tools capable of predicting and optimizing the performance of such

electromagnets under both stationary and dynamic operating conditions.

Figure 1.3: EPFLoop pod
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Chapter 2

Analytical model in stationary conditions

2.1 Motivation and model definition

The analytical model in stationary conditions is fundamental for guiding the design of a stationary

electromagnet to maximize the generated levitation force while respecting given geometrical and

physical constraints. In this context, the analytical model will serve as the basis for an optimization

problem, in which the optimal parameter values will be determined in a deterministic manner.

Several modeling approaches can be applied to electromagnetic actuators, such as the levitation

device studied in this work. Some approaches rely directly on the solution of Maxwell’s equations, for

example, by calculating the electromagnetic field in the air gap through coordinate transformations.

Other approaches simplify the general field equations by representing, under certain assumptions,

the device as a magnetic equivalent circuit.

The latter approach, although generally considered less accurate due to the simplifications involved,

offers significant advantages: it is computationally lighter, easier to implement analytically, and,

if properly parametrized, can produce results comparable to those obtained by solving the full

Maxwell’s equations.

On the basis of these considerations, the magnetic equivalent circuit method was selected for the

initial stage of this study.

To improve the accuracy of the model, the Schwarz-Christoffel conformal mapping technique [9] is

later applied to account for the effects of the fringing flux and to better approximate the distribution

of magnetic flux density in the air gap.

Finally, the results obtained from the analytical model are compared with finite element simulation

data to evaluate its accuracy and to assess its suitability for design optimization.

14



2.1.1 Maxwell’s equations

For completeness, Maxwell’s equations in their general form are recalled below:

∇⃗ · D⃗ = q (Gauss’s law for the electric field) (2.1)

∇⃗ · B⃗ = 0 (Gauss’s law for magnetism) (2.2)

∇⃗× E⃗ =−∂B⃗

∂t
(Faraday’s law) (2.3)

∇⃗× H⃗ = J⃗ + ∂D⃗

∂t
(Ampère–Maxwell law) (2.4)

The constitutive relations are:

B⃗ =µH⃗ , E⃗ = ρD⃗ , D⃗ = ϵE⃗

where µ is the magnetic permeability, ρ the electric resistivity, and ϵ the electric permittivity of the

medium.

A direct consequence of these equations is that changes in the electromagnetic fields propagate

at a finite speed, determined by the properties of the medium, which causes a delay between the

variation of the sources and the resulting fields.

However, when the characteristic dimensions of the device are much smaller than the wavelength

associated with the time variation of the fields, and variations are slow, the quasi-static approxima-

tion can be applied. In this approximation, the system is treated as if it were in steady state at each

instant, greatly simplifying the analysis.

Under these conditions, the equations reduce to:

∇⃗ · D⃗ = q (2.5)

∇⃗ · B⃗ = 0 (2.6)

∇⃗× E⃗ =−∂B⃗

∂t
(2.7)

∇⃗× H⃗ = J⃗ (2.8)

Here, Eq.(2.6) enforces magnetic flux conservation (absence of magnetic monopoles), and Eq.(2.8)

relates the magnetic field circulation to the total current, forming the basis for the magnetic circuit

approach used in this work.
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2.1.2 Model hypotheses

Under the following assumptions, Eqs. (2.6) and (2.8) can be applied in their integral form to develop

the magnetic circuit model:

1. Linear, homogeneous, and isotropic materials.

2. Iron with high magnetic permeability: µ f e →∞.

3. Negligible magnetic flux fringing.

4. Iron with zero electrical conductivity and a hysteresis cycle of zero area.

The first assumption ensures that the electromagnetic fields are uniformly distributed in the cross-

section of the yoke and remain orthogonal to that section.

The second assumption implies that the magnetic field is almost entirely confined within the yoke,

allowing leakage flux in the surrounding air to be neglected.

The third assumption completes the second, ensuring that the flux remains confined and orthogonal

to the cross-section also in the air gap region.

Finally, the fourth assumption means that iron losses, due to eddy currents or hysteresis, can be

neglected.

These idealizations make the model analytically tractable, while still providing accurate estimates

for preliminary design calculations. More refined models can later relax some of these assumptions

if higher accuracy is required.

2.1.3 Hopkinson’s laws

Hopkinson’s laws are the primary tools used to analyze magnetic devices; for clarity, they can be

considered as the magnetic equivalent of Kirchhoff’s laws for electrical circuits.

First Hopkinson’s law.

It can be derived directly from Gauss’s law for magnetism (Eq. 2.6) in its integral form:∮
sup

B⃗ d s⃗ = 0 (2.9)

Consider a closed surface intersecting two or more branches of the yoke (as illustrated in Fig. 2.1).

Under the first and second modeling hypotheses, the magnetic flux is orthogonal to the cross-section

and entirely confined in the yoke. The integral can therefore be discretized into a summation of
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fluxes:
n∑

k=1
±φk = 0 (2.10)

This expression is the analog of Kirchhoff’s first law (current law), with magnetic flux φ playing the

role of electric current.

Figure 2.1: Application of Gauss’s law for magnetism to the yoke [10]

Second Hopkinson’s law.

This law follows from the Ampère–Maxwell equation (Eq. 2.8) in its integral form:∮
l⃗

H⃗ d l⃗ =
∫

sup
J⃗ d s⃗ (2.11)

In the geometry shown in Fig. 2.2, and under the first hypothesis, the magnetic field H⃗ is always

parallel to the path element dl⃗ . The left-hand side of Eq.(2.11) can thus be expressed as a sum of

scalar terms, while the right-hand side corresponds to the total current linkage N · I .

For a system satisfying the earlier hypotheses, Eq. (2.11) becomes:

n∑
k=1

±Hk lk =
m∑

h=1
±Nh Ih (2.12)

where Nh Ih is the magnetomotive force (MMF) produced by the h-th coil.

Using B =µ0µr H and φ= B ·S, the above equation can be rewritten as:

n∑
k=1

±Rkφk =
m∑

h=1
±Nh Ih (2.13)
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with the reluctance of the k-th branch given by:

Rk = lk

µ0µr Sk
(2.14)

Here, µ0 is the permeability of free space, µr is the relative permeability of the material, and Sk is

the cross-sectional area of branch k.

Figure 2.2: Application of Ampère–Maxwell’s law to the yoke [10]

In analogy with electric circuits:

• Reluctance R plays the role of resistance R.

• Magnetic flux φ corresponds to electric current I .

• Magnetomotive force (MMF) corresponds to voltage V .

This analogy enables the use of well-established circuit-analysis techniques for magnetic systems.

2.1.4 Force evaluation

The magnetic circuit model determines the magnetic flux in each branch of the electromagnet for

a given excitation current. However, the design objective here is not only the computation of the

flux distribution in the yoke, but also the evaluation of the attraction force generated between the

electromagnet and the rail.

Several methods exist for evaluating electromagnetic forces, including:

• Maxwell’s stress tensor,

• the principle of virtual work,
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• and the energy (or coenergy) method.

In this work, the energy method is chosen because it is straightforward to apply in a lumped-

parameter model and directly relates inductance variations to force production.

The general expression for the force based on magnetic coenergy is [11]:

F = ∂W ′

∂x

∣∣∣∣
i

(2.15)

where W ′ is the magnetic coenergy, x is the position variable, and the derivative is taken at constant

current i .

For linear magnetic materials, the coenergy is:

W ′ = 1

2
L(x)I 2 (2.16)

where L(x) is the total inductance, which depends on the geometry (and thus on x).

Substituting into the force formula yields:

F = 1

2
I 2 dL(x)

d x
(2.17)

The inductance can be expressed in terms of the number of turns and total reluctance:

L = Φ
I
= Nφ

I
= N 2

RTot
(2.18)

where RTot is the total reluctance of the magnetic circuit.

In the present case, this is the sum of the reluctances of the yoke, the rail, and the two air gaps.

In more complex topologies, RTot must be computed by combining series and parallel reluctances

according to the magnetic circuit layout.

Since the only mechanical degree of freedom in the system is the variation of the air gap width, L(x)

changes exclusively as a function of the gap size. This dependence allows a direct link between

geometry and generated force, which is critical for optimization in the later design stages.

2.1.5 Specific force

The force equations derived above can be applied to a practical case study, following the notation in

Fig.2.3.

To simplify calculations, the iron is first assumed to have infinite magnetic permeability (µ f e →∞).

Under this assumption:

• the reluctance of the iron parts is negligible,
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• the magnetic circuit consists only of the two air gap reluctances,

• the magnetomotive force is entirely produced by the coil.

From the simplified magnetic circuit, the total flux is:

φ= N I

Rtot
= N I

µ0l w

2δ
= N A

µ0l w

2δ
J (2.19)

where l is the electromagnet length, w the tooth width, δ the air gap width, J the current density,

and A the conductor cross-sectional area.

The magnetic flux density in the air gap is:

B = φ

S
= φ

l w
= µ0N I

2δ
= µ0N AJ

2δ
(2.20)

From this, the force is:

F = B 2S

µ0
=µ0

N 2I 2

4δ2 l w =µ0
N 2 A2 J 2

4δ2 l w (2.21)

The equation above shows that F increases with the total conductor cross-section N · A, the current

density J , and the transverse section l ·w , and decreases with the square of the air gap width δ.

Figure 2.3: Electromagnet’s geometry and dimensions
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A more useful metric for lightweight design is the specific force, i.e. the ratio between generated

force and total device mass:

f = F

m
= µ0N 2 A2 J 2

4δ2

l w

ρ f e [l w(2h +b −2w)]+ρcu [N A ·2(l +w +π(h −w)/2)]
(2.22)

where ρ f e and ρcu are the densities of iron and copper, respectively. The mass expression follows

from straightforward volume × density calculations for the yoke and coils.

Maximizing f is essential for levitation pods, as weight reduction directly improves the performance.

If the coil slots are fully packed with conductors, N · A can be replaced by the available slot area

(b −2w)(h −w), giving:

F =µ0
(b −2w)2(h −w)2 J 2

4δ2 l w (2.23)

f = µ0 J 2

4δ2

l w(b −2w)2(h −w)2

ρ f e [l w(2h +b −2w)]+ρcu [(b −2w)(h −w) ·2(l +h)]
(2.24)

These compact expressions directly link geometry and current density to both the total force and

the specific force, making them particularly useful for a preliminary optimization study.

2.1.6 Losses

If the iron core is assumed to be non-conductive and the analysis is magnetostatic, the only gener-

ated losses are thermal losses in the windings caused by the Joule effect.

In reality, iron has finite electrical conductivity. If the magnetic flux varies with time (e.g., due to

relative motion between the electromagnet and rail), eddy currents are induced in the rail, generat-

ing additional Joule losses. These are neglected in the present stationary model but are relevant in

dynamic operation.

For the electromagnet geometry in Fig. 2.3, the winding resistance is:

R =
ρN ·2

(
l +w + π(h−w)

2

)
A

(2.25)

where ρ is the electrical resistivity of the conductor, N the number of turns, A the conductor cross-

sectional area, l , w,h were previously defined. The Joule losses are:

P J = RI 2 (2.26)

To assess design efficiency, a losses-to–force factor is defined:

ξ= P J

F
(2.27)
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which represents the power dissipated per unit of generated force. Substituting the expressions for

R and F yields:

ξ= ρN ·2(l +w +hc )

A
I 2 · 4δ2

µ0N 2I 2 · l w
= 8ρδ2 (l +w +hc )

µ0 AN l w
(2.28)

where hc is the coil height.

A smaller ξ indicates a more efficient design, making this factor useful in early-stage optimization

when there is the need to balance force generation and thermal constraints.

2.2 Absence of fringing flux hypothesis compensation

The limitation of the previous model lies in the assumption that the magnetic flux density is always

orthogonal to the air gap between the electromagnet and the rail. In reality, this is not the case,

especially near the edges of the tooth, where some magnetic flux lines diverge and spread out. This

phenomenon is known as fringing, and it is illustrated in Fig. 2.4. To improve the accuracy of

the previously introduced simple model, it is essential to account for the effects of fringing fluxes.

Fringing causes the effective cross-sectional area of the air gap to increase, reducing the overall

magnetic reluctance.

To incorporate this effect into the model, the air gap area is adjusted by applying a fringing factor,

which can be determined either empirically or through analytical expressions.

Following this statement, the new reluctance writes:

R = δ

µ0 ·Σ ·S
(2.29)

Where Σ is the fringing factor.

Figure 2.4: 2D section of the electromagnet and the rail, in red the fringing fluxes
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2.2.1 Empirical fringing factors

A straightforward approach to computing the air gap reluctance, while accounting for fringing flux,

is to apply empirical correction factors. Although these factors can perform well under certain con-

ditions, they remain empirical in nature and may introduce errors into the reluctance formulation.

Therefore, they will be presented here for the reader’s interest, but they will not be implemented

in the analytical model, which instead relies on a formulation based on the Schwarz–Christoffel

conformal mapping to account for the effects of fringing flux.

Several empirical formulations have been proposed in the literature. Some of the most commonly

used are presented below.

All of them rely on the assumption that the air gap width is much smaller than any of the other

dimensions of the electromagnet.

The first correction presented is the McLyman factor [12]:

Σ= 1+ δp
S

ln
2 · lwi ndow

δ
(2.30)

Where δ is the air gap width, S is the cross-sectional area of the yoke, and lwi ndow is the internal

length of the window.

An alternative method, proposed by Kazimierczuk [13], adjusts the effective area based on air gap

geometry:

Σ= 1+ δ · (l +w +2δ)

l ·w
(2.31)

Where w and l are the lengths of the two sides of the iron yoke.

A further approximation by Hurley and Wölfe [14] writes:

Σ= (w +δ)(l +δ)

l ·w
(2.32)

The fringing factors must then be substituted in Eq. (2.29) to provide a more accurate estimation of

the air gap reluctance.

However, a limitation of these empirical formulas lies in their nature: they are approximations

derived from simplified assumptions and experimental observations. As such, they do not fully

account for the specific geometry of the actual electromagnet, which may lead to discrepancies be-

tween the analytical model and the real electromagnetic force. However, employing these empirical

corrections provides a better approximation than relying only on the basic reluctance model, which

entirely neglects the influence of fringing.

For the scope of this study, the empirical fringing factors will not be employed, as a model with an

analytical derivation, which considers the geometry of the electromagnet, will be preferred.

For this reason, the Schwarz-Christoffel conformal mapping was used to derive a value of the air

gap reluctance that takes into account the presence of the fringing fluxes.
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2.3 Schwarz-Christoffel conformal mapping

The Schwarz-Christoffel conformal mapping, as introduced previously, is a mathematical tool used

to transform complex geometries into simpler ones. By applying this technique, fringing flux lines

are mapped into straight lines, allowing for a straightforward evaluation of the magnetic reluctance.

Unlike empirical fringing factors, this method can be used regardless of the geometry and provides

accurate results when compared to the simulations (Chapter 3).

In practice, as shown in Fig. 2.6, the derivation proceeds in two steps. First, the geometry of the

tooth is simplified by mapping it onto the upper half-plane, with each vertex corresponding to a

specific point on the boundary. Then, a second conformal transformation maps this half-plane

onto a strip, bounded by two parallel lines. In this transformed domain, the magnetic flux lines

become orthogonal to the yoke’s cross-section, allowing the reluctance to be computed using the

basic expression given in Eq.(2.14).

The following derivation is based on [9], [15] and [16].

Figure 2.5: General geometry for Schwarz-Christoffel mapping

24



In complex analysis, a conformal map is a transformation between two subsets Rn , which

preserves angles but not necessarily lengths.

To give a formal mathematical definition, a function of the type

w = q(t ) = u(x, y)+ j v(x, y) (2.33)

That defines a complex variable w = u+ j v as a function of the variable t = x+ j y is called conformal

if it preserves angles. In particular, as already explained, the Schwarz-Christoffel mapping is a useful

tool for simplifying the geometry of a closed or semi-closed polygon. It consists of a conformal map

of the upper half-plane onto the interior of a polygon. Its existence is indeed guaranteed by the

Riemann mapping theorem.

Considering the polygon depicted in Fig. 2.5, the Schwarz-Christoffel transformation from the real

axis of the t-plane to the interior boundaries of the polygon in the z-plane is given by the solution of

the following differential equation:

d z

d t
= K

(t −a)1−(α/π)(t −b)1−(β/π)(t − c)1−(γ/π)(t −d)1−(ϕ/π)(t −e)1−(θ/π)
(2.34)

Where K is a constant, a,b,c,d ,e are the points on the real axis of the t-plane, corresponding to the

vertices of the polygon in the z-plane, and α,β,γ,ϕ,θ are the interior angles of the vertices of the

polygon in the z-plane.

2.3.1 Derivation of the air gap reluctance

Solving the Schwarz-Christoffel differential equation and considering the boundary conditions

leads to the transformation equation.

In the following computations, a first Schwarz-Christoffel mapping will be applied to simplify the

geometry of the air-gap region. Subsequently, a second mapping will be used to reconstruct a new

geometry that facilitates the computation of the air-gap reluctance.

From the t-plane to the z-plane

The first transformation is performed to map the geometry of the teeth from the t-plane to the

z-plane. Considering Fig. 2.6, the Schwarz-Christoffel differential equation takes the following form:

d z

d t
= K

t (t −1)−
1
2

= K

p
t −1

t
(2.35)

Where, in the t-plane, point 1 lies in the origin (a = 0) and has a zero angle (α= 0). While point 2,

instead, lies in b = 1 and has an angle of β= 3π
2 .

25



The solution to the previous differential equation is the following:

z(t ) =− j K1(2ln(1+p
1− t )− ln(t )−2

p
1− t )+C1 (2.36)

Where K1 and C1 are respectively the Schwarz-Christoffel and the integration constants that need to

be determined by imposing the boundary conditions.

Figure 2.6: Schwarz-Christoffel mapping on the tooth geometry, in red a fringing flux line

The condition z(1) = 0 leads to C = 0. The second condition assumed is z(t → 0) = ∞. To

evaluate this limit, Eq. (2.35) must be integrated by using a change of variables. Specifically, the

substitution t = ϵe jθ is applied, where ϵ is an arbitrarily small positive number, and θ represents

26



the angle of the flux lines near the origin, with θ ∈ [0,π]. Under this substitution, the differential

becomes d t = jϵe jπdθ.

Thus, for t → 0, Eq.(2.35) becomes:

d z = K
j

t
d t = j K1

jϵe jθdθ

ϵe jθ
=−K1dθ (2.37)

Near t = 0, z varies from x − j l to x, while θ varies from π to 0. The integral of the previous Eq. (2.37)

yields: ∫x

x− j l
d z =

∫0

π
−K1dθ (2.38)

Therefore,

j l = K1π (2.39)

And

K1 = j
l

π
(2.40)

Substituting the values of C1 and K1 in Eq.2.36 leads to the following transformation equation:

z(t ) = l

π
(2ln(1+p

1− t )− ln(t )−2
p

1− t ) (2.41)

From the t-plane to the v-plane

To easily compute the 2D reluctance, a new mapping must be performed. The new mapping that

transforms the t-plane into the v-plane must be implemented following Eq.(2.34) and the geometry

depicted in Fig. 2.6, following the same analytical steps of the previous transformation.

The Schwarz-Christoffel differential equation applied in this case is the following:

d v

d t
= K2

t
(2.42)

Integrating both sides yields:

v(t ) = K2 ln t +C2 (2.43)

The two constants K2 and C2 must be derived considering the boundary conditions v(1) = 0 and

v(−1) = jV . The first condition gives C2 = 0. The second, instead, leads to the following equality:

jV = K2 ln−1 = K2 jπ (2.44)

Therefore,

K2 = V

π
(2.45)
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The transformation equation yields to

v(t ) = V

π
ln t (2.46)

2.3.2 Reluctance calculation

Once the two transformation equations that map the geometry from the v-plane to the t-plane and

from the t-plane to the z-plane are derived, it is possible to define the reluctance in the v-plane and

then transform back its expression onto the z-plane.

From the geometry depicted in Fig. 2.6, the 2D reluctance can be easily computed as follows.

R = V

µ0(hv − ( w
2 )v )

(2.47)

Where hv and ( w
2 )v represent, respectively, the height of the slot and half of the tooth width expressed

in the v-plane.

Their values must therefore be determined using the previously derived transformations, starting

from the z-plane.

Expression of hv

To compute hv , Eq. (2.41) must be considered. Under the assumption of t →∞, which physically

corresponds to the air gap width being negligible compared to the height of the tooth, the equation

simplifies as follows:

z(t ) = 0+ j y = l

π
(2ln(1+p

1− t )− ln(t )−2
p

1− t ) (2.48)

= l

π

(
ln(−1)+2 j

p
t
)

(2.49)

= j
l

π

(
π+2

p
t
)

(2.50)

For t →∞, the factor (π+2
p

t ) ≈ 2
p

t and the previous expression can be rewritten as

p
t = πy

2l
(2.51)

Therefore,

t =
(πy

2l

)2
(2.52)

Considering now the second transformation, i.e., Eq. 2.46, and imposing y = h, the value of hv can

be derived.

hv = V

π
ln t = 2V

π
ln
πh

2l
(2.53)
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Expression of
( w

2

)
v

The second variable to be determined is
( w

2

)
v . In this case, t ≈ 0 and Eq. 2.36 becomes:

z(t ) = x + j 0 = l

π
(2ln(1+p

1− t )− ln(t )−2
p

1− t ) (2.54)

= l

π
(2ln2− ln t −2) (2.55)

Therefore,

ln t =−πx

l
+2(ln2−1) (2.56)

Considering x = w
2 and substituting in Eq.2.46 leads to

( w

2

)
v
= V

π
ln t = V

π

(
−πw

2l
+2(ln2−1)

)
(2.57)

Expression of the reluctance

Finally, substituting the two values of hv and
( w

2

)
v in the 2D reluctance of Eq. 2.47 leads to the

following expression:

R = V

µ0

[
2V
π ln πh

2l + V
π

(
πw
2l +2(1− ln2)

)] (2.58)

= 1

µ0

[
w
2l + 2

π

(
1+ ln πh

4l

)] (2.59)

2.3.3 Application of the Schwarz-Christoffel transformation to the electromagnet

To account for the decrease in reluctance due to fringing fluxes in a more complex geometry com-

pared to that in Fig. 2.6, the new geometry must be decomposed so that the basic one can be used

as a building block.

The 2D reluctance of the basic geometry is the one reported below:

R′
basi c =

1

µ0

[
w
2l + 2

π

(
1+ ln πh

4l

)] (2.60)

Where w is the tooth width, l is the air gap length, and h is the slot height.

It has the dimensions of a per-unit-of-length permeance [m/H]. Taking into account the geometry

of Fig.2.6 as a building block, the air gap geometry can be modeled as shown in Fig. 2.7.

In particular, for the air gap geometry of interest in this study, the real geometry can be modeled as

a parallel of two of the basic geometry used in the Schwarz-Christoffel reluctance derivation.
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Figure 2.7: Construction of the total air gap reluctance

The final expression for the total 2D air gap reluctance is the following:

R′ = R′
basi c

2
(2.61)

The derivation of the correction factor for a 3D model is more challenging because it requires

accounting for fringing fluxes in both the x and y directions.

For this reason, two fringing factors must be computed following the notation of Fig.2.8. Taking into

consideration firstly the fringing fluxes in the y direction and normalizing the Schwarz-Christoffel

reluctance with the 2D basic reluctance leads to the following fringing factor.

σz =
R′

z y

δ
µ0w

(2.62)

Similarly, the fringing factor in the x direction writes:

σx =
R′

x y

δ
µ0l

(2.63)

Finally, the total 3D reluctance that considers the presence of both fringing fluxes in the x and y

directions is the following.

R3D =σxσz
δ

µ0 ·w · l
(2.64)
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Figure 2.8: Geometry used to compute the fringing factors

The fringing factors in the x and y directions reduce the total reluctance of the air gap. Their

inverses can also be interpreted as an effective increase in the cross-sectional area of the air gap,

accounting for the presence of fringing fluxes.

The new air gap reluctance can be substituted in the expression of the inductance for the evaluation

of the force, as explained in Section 2.1.4.

2.4 Infinite magnetic permeability hypothesis compensation

To correctly close the magnetic circuit, the reluctances of the ferromagnetic core must be added to

those of the air gaps.

The reluctances related to the ferromagnetic core can be simply modeled using the definition

provided in Eq. (2.14).

In formulas:

R = l

µ0µr S
(2.65)

Where l is the length of the magnetic branch, S its cross-sectional area, and µr the relative magnetic

permeability of the iron. Given that the relative permeability of iron is much higher than that

of air, the magnetic flux can be assumed to remain entirely confined within the core material.

Consequently, flux leakage can be neglected, and there is no need to refine the model, such as by

introducing fringing corrections, as was done previously for the air gaps.

Moreover, due to the high magnetic permeability of the iron, the reluctances of the ferromagnetic

core are considerably smaller than those of the air gaps. Therefore, any modeling inaccuracies in

this part of the circuit have only a minor influence on the overall results.
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2.5 Concluding remarks

In this chapter, a complete analytical model for the levitation electromagnet under stationary

conditions has been derived.

The approach combines:

• The magnetic circuit method, relying on Hopkinson’s laws, to capture the main flux paths and

relate design parameters to the levitation force.

• The energy-based method for force computation, which links inductance variation to me-

chanical output.

• A Schwarz–Christoffel conformal mapping correction to accurately model fringing fluxes in

the air gap, overcoming the limitations of empirical fringing factors.

The resulting model provides:

• Explicit expressions for the force and the specific force in terms of geometry and current

density.

• An estimation of Joule losses and a loss–force ratio for early-stage optimization.

• A 3D reluctance formulation accounting for fringing in both transverse directions.

In the next chapter, this analytical formulation will be benchmarked against finite-element simula-

tions to assess its predictive accuracy and to determine its applicability for design optimization.
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Chapter 3

2D and 3D simulations in static conditions

In this chapter, the analytical models developed in the previous sections are validated through both

2D and 3D finite element simulations performed in COMSOL. The aim is to assess their predictive

accuracy and determine which model, either the basic reluctance model or the one enhanced with

the Schwarz–Christoffel correction for fringing fluxes, provides the closest match to numerical

results.

The FEM simulations are based on the electromagnet geometry shown in Fig. 2.3, with the slot

assumed to be completely filled with windings. This design choice maximizes the use of available

space and increases the achievable energy density.

For comparison, a parametric approach was adopted in which one parameter was varied at a time

while all others were kept fixed to the nominal values listed in Table 3.1. This method isolates the

effect of each parameter and facilitates a direct evaluation of how analytical models respond to

changes in geometry or operating conditions.

Parameters Values

l 0.1 [m]

δ 1 [mm]

w 12 [mm]

b 50 [mm]

h 30 [mm]

a 10 [mm]

J 2 [A/mm2]

N 20

Table 3.1: Electromagnet parameters for model comparison
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3.1 COMSOL models

3.1.1 Definition of the problem

The COMSOL models were developed using the parameters listed in Table 3.1 from the previous

section.

For both the 2D and 3D stationary models, the Magnetic Fields physics interface was employed. In

each domain, the Ampère’s Law in Solid condition was applied, ensuring that the following set of

equations is satisfied:
∇⃗× H⃗ = J⃗ (Ampère’s law)

∇⃗× A⃗ = B⃗ (Definition of magnetic vector potential)

J⃗ =σE⃗ (Ohm’s law for conductors)

(3.1)

These equations form the basis of magnetostatic modeling in COMSOL. The Ampère’s Law in Solid

domain also permits modification of the constitutive relations for magnetic and electric fields.

Since the aim here is to validate the analytical models under their original assumptions, linear

constitutive laws were adopted, matching the analytical framework:B⃗ =µ0µr H⃗ (Magnetic constitutive relation)

D⃗ = ϵ0ϵr E⃗ (Electric constitutive relation)
(3.2)

The coil was modeled using the Coil domain feature, where the current and number of turns were

explicitly defined. This yields a uniform current density distribution in the winding region, consis-

tent with the analytical model.

The Force calculation feature was applied either to the yoke or to the rail. According to Newton’s

third law, the magnitudes of these forces must be equal, with opposite directions.

For both the 2D and 3D cases, a direct solver was used by default, which inverts the system matrix

through LU decomposition, an efficient and robust choice for well-conditioned problems. Alterna-

tively, COMSOL offers an iterative solver (conjugate gradient method), which progressively refines

the solution. This method is computationally cheaper for large systems and also provides useful

feedback on convergence behavior:

• Monotonic convergence generally indicates a well-conditioned model.

• Oscillatory convergence may suggest poor model definition or insufficient constraints in the

geometry or physics setup.
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3.1.2 2D COMSOL model

The 2D COMSOL model serves as a valuable tool for preliminary analysis, providing a good approxi-

mation of the magnetic behavior while avoiding the computational complexity associated with a

full 3D simulation. This efficiency is achieved by using elements with simpler shape functions and a

reduced number of nodes, which significantly decreases simulation time.

However, the 2D approach has inherent limitations. In particular, it cannot capture:

• Edge effects occurring along the longitudinal (out-of-plane) direction.

• The presence and influence of the coil heads, which contribute to the total mass and can alter

the magnetic field distribution near the coil ends.

The model geometry and the corresponding magnetic flux density distribution are shown in Fig.

3.1 and Fig. 3.2, respectively. In the flux density plot, blue regions correspond to lower ∥B⃗∥ values,

whereas red areas indicate higher flux density, especially concentrated near the coils.

Figure 3.1: Geometry of the
2D COMSOL model

Figure 3.2: Magnetic flux density distribution ∥B⃗∥
in the 2D COMSOL simulation
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3.1.3 3D COMSOL model

The 3D COMSOL model was developed using the 3D Magnetic Fields physics interface. Compared

to the 2D approach, it provides a more accurate representation of the electromagnetic problem, as

it naturally accounts for three-dimensional effects such as:

• Edge effects along all directions.

• The influence of coil heads on the overall magnetic circuit and total mass.

• Non-uniform field distributions along the longitudinal axis.

This improved accuracy comes at the expense of significantly higher computational demands, as

shown in Table 3.2, which compares simulation times for the analytical model, the 2D FEM model,

and the 3D FEM model.

Figures 3.3 and 3.4 show the 3D model geometry and the corresponding simulated magnetic flux

density distribution ∥B⃗∥, respectively.

Analytical 2D FEM 3D FEM

Simulation time ∼ 1 s ∼ 20 s ∼ 10 min

Table 3.2: Comparison of simulation times for the analytical model, 2D FEM, and 3D FEM simula-
tions

Figure 3.3: Geometry of the
3D COMSOL model

Figure 3.4: Magnetic flux density distribution ∥B⃗∥
in the 3D COMSOL simulation
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3.1.4 Materials

In COMSOL simulations, the choice of materials directly affects the computed electromagnetic

behaviour, since their physical properties determine both magnetic performance and electrical

losses. For instance, modifying the coil material changes its electrical resistivity, directly influencing

Joule losses P J . Or instead, changing the yoke or rail material alters the magnetic circuit’s reluctance

and its saturation characteristics.

For the present study, the following materials from the COMSOL library were assigned:

• Soft Iron (linear), with relative magnetic permeability µr = 4000, for both the rail and the yoke.

This value ensures a high magnetic conductivity while avoiding saturation in the considered

operating range.

• Copper for the coil windings, due to its low electrical resistivity, thus minimizing Joule losses

for a given current density.

• Air for the remaining regions.

The assumption of linear µr was made deliberately, to ensure full consistency between the FEM

simulations and the analytical models developed earlier, which also neglect nonlinear saturation

effects. This allows a direct and fair comparison between the two approaches.

3.1.5 Mesh convergence study

To ensure the reliability of the FEM results, a mesh convergence study is essential. An overly coarse

mesh may contain elements too large to accurately resolve spatial variations of the electromagnetic

field, leading to significant numerical error. Conversely, an excessively fine mesh increases compu-

tational time without proportionate gains in accuracy.

The objective of this study is therefore to find an optimal trade-off between result accuracy and

computational cost.

For the 2D model, the simulation time remains low even when using a fine mesh (see Table 3.2).

Therefore, a mesh convergence analysis is not strictly necessary in this case, as the computational

penalty of refining the mesh is negligible.

For the 3D simulations, the situation is different: computation times are already substantial, even

with a relatively coarse mesh. A progressive mesh refinement was performed, from "Extremely

coarse" to "Extremely fine", and the computed levitation force was monitored as the convergence

metric.

The optimal mesh is identified at the so-called "knee" of the convergence curve in Fig.3.5, i.e., the

point beyond which further refinement produces only marginal improvements in accuracy while

significantly increasing computation time.
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The mesh parameters for each refinement level are summarized in Table 3.3. Based on the results,

the "Fine" mesh offers an excellent compromise between computational effort and accuracy: finer

meshes produce negligible improvements in the force, while coarser meshes lead to measurable

deviations from the converged value.

Both the 2D and 3D models employed the Free Tetrahedra mesh. For the purposes of this stationary

validation study, this element type provided acceptable accuracy. However, in the dynamic analyses

presented in Chapter 6, a more refined and targeted mesh is required to ensure solver convergence

and numerical stability.
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Figure 3.5: Mesh convergence study: levitation force Flev as a function of element size

Extremely coarse Coarser Coarse Normal Fine Finer Extremely fine

Max. element size [mm] 325 124 97.5 65 52 35.8 13

Min. element size [mm] 45.5 26 18.2 11.7 6.5 2.6 0.13

Max. element growth rate 2.0 1.7 1.6 1.5 1.45 1.4 1.3

Curvature factor 1.0 0.8 0.7 0.6 0.5 0.4 0.2

Resolution of narrow regions 0.1 0.3 0.4 0.5 0.6 0.7 1.0

Table 3.3: Mesh parameters for different refinement levels
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3.2 Simulation results

Once the COMSOL geometries for both the 2D and 3D cases were defined, a series of simulations was

carried out to compare the results with those obtained from the analytical models. The comparison

was performed by varying one parameter at a time, while keeping all others fixed, using the Sweep

functionality in COMSOL.

3.2.1 Error metric

To quantify the accuracy of the analytical predictions, the Relative Error (RE) over all sweep points

was computed as:

e = |FC − F̂ |
FC

, (3.3)

where FC is the force computed from the COMSOL simulation and F̂ the force predicted by the

analytical model.

A low value of e indicates a close agreement between analytical and FEM results.

3.2.2 Comparison between the 2D analytical and COMSOL models

The first set of tests involved varying the air gap width δ of the electromagnet.

Simple reluctance model

For the basic reluctance model (no fringing correction), the results are shown in Fig.3.6. As ex-

pected from Eq.(2.23), the force decreases approximately quadratically with increasing air gap width.

However, the relative error grows with δ due to the conservative assumption that the magnetic flux

remains strictly orthogonal to the yoke cross-section.

In this case, the error increases from ≈ 5% at δ= 1 mm to over 25% at δ= 5 mm.

Schwarz-Christoffel correction

Applying the Schwarz-Christoffel conformal mapping correction significantly improves the match

with FEM results (Fig. 3.7). Here, the error remains nearly constant for small air gaps and increases

only moderately for larger ones, reaching values roughly half of those of the simple model. This

improvement stems from the conformal mappings ability to account for fringing fluxes more accu-

rately.
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Figure 3.6: Force changing the air gap width: simple reluctance model vs. 2D FEM
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Figure 3.7: Force changing the air gap width: Schwarz-Christoffel correction vs. 2D FEM
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3.2.3 Comparison between the 3D analytical and COMSOL models

The same analysis was repeated for the 3D case, with mesh parameters validated in the previous

section. As in the 2D case, the Schwarz-Christoffel correction consistently outperformed the simple

reluctance model, achieving a mean relative error of approximately 5% across the tested range of δ

(Fig.3.8).

Small oscillations in the error curve can be attributed to meshing effects: slight changes in δ modify

the number and distribution of elements in the Free Tetrahedra mesh, introducing small numerical

variations in FC.

Overall, including fringing fluxes in the analytical formulation significantly improves predictive

accuracy, fully justifying the use of the Schwarz-Christoffel mapping.
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Figure 3.8: Comparison between the force generated by the analytical models and the 3D simulations

In Fig. 3.8, the error between the simple reluctance model and the simulations is double that of

the 2D case. This is caused by the presence of the fringing fluxes in the longitudinal direction, which

are instead considered in the Schwarz-Christoffel formulation.

The validated analytical model can therefore be confidently applied in optimization studies, ensuring

that, even for varying δ, the error relative to FEM results remains below ≈ 5%.
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3.3 Comparison varying other dimensions

To further validate the analytical model, additional comparisons were carried out by varying each

geometrical or physical parameter of the electromagnet individually. The following performance

metrics were used:

• The specific force , defined in Eq. (2.22), which measures the generated force per unit weight.

• The losses-to-force ratio, defined in Eq.(2.28), which quantifies Joule losses per unit of gener-

ated force.

This dual metric approach reflects the main design objective: maximizing the specific force while

minimizing the energy cost per unit of force. Unless otherwise stated, the analytical predictions

are obtained using the 3D model corrected with the Schwarz–Christoffel mapping. Error values

are not explicitly tabulated here, as they remain within the ≈ 5% range established in the air gap

comparison.

3.3.1 Variation in length l

In the first study, the length l of the electromagnet was varied while keeping all other parameters

fixed.

In the 2D simulations, both the total force and the total weight scale linearly with l , making the

specific force independent of length, as expected from Eq.(2.22).

The 3D simulations display an increasing specific force with l , approaching the 2D value asymp-

totically. This difference arises from the coil heads: their weight contribution becomes relatively

smaller as l increases, improving the force-to-weight ratio.

For both 2D and 3D cases, the loss-to-force ratio remains essentially constant, as increasing l

proportionally increases both winding resistance and generated force (Eq.(2.28)).
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Figure 3.9: Effect of length l on specific force and losses-to-force ratio
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3.3.2 Variation in tooth width w

In this case, the tooth width w was varied while keeping the total width b constant.

An optimal ratio ϵ= w/b exists that maximizes the specific force. From Eq.(2.22), setting
∂ fspec

∂w = 0

yields this optimum analytically. For the parameters in Table 3.1, ϵopt ≈ 0.13.

The 2D model consistently predicts higher specific forces than the 3D model and analytical pre-

diction, due to the absence of coil heads in 2D (lower total mass for the same active length). The

optimum ϵ may shift if nonlinear magnetic effects (e.g., saturation) are included.
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Figure 3.10: Effect of tooth width w on specific force and losses-to-force ratio

3.3.3 Variation in current density J

Finally, the effect of varying the current density J in the windings was analyzed.

Both quantities scale approximately as J 2, consistent with the Lorentz force dependence on current.

The losses-to-force ratio remains constant with J , since both Joule losses P J and generated force

scale quadratically with current density.
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Figure 3.11: Effect of current density J on specific force and losses-to-force ratio
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3.4 Conclusion remarks and practical implications

The validation study confirms that the analytical model, when corrected using the Schwarz-

Christoffel conformal mapping, provides highly accurate predictions of the levitation force for

the electromagnet in stationary conditions. Across all tested geometries and operating points, the

mean relative error remained below approximately 5%, which is well within the acceptable range

for preliminary design and optimization work.

3.4.1 Key observations

• The largest deviations between the basic reluctance model and the FEM results occur when

varying the air gap, due to the increase of fringing fluxes.

• The Schwarz–Christoffel correction substantially reduces these deviations by correctly model-

ing the field distribution in the gap region.

• Table 3.4 highlights the improvement in prediction accuracy achieved by including the correc-

tion term.

Parameter varied Range tested Mean error – simple model Mean error – S.C. corrected

Air gap 1–5[mm] 10–39% ≈ 5%

Table 3.4: Summary of validation results for air gap variation

3.4.2 Computational efficiency

A key advantage of the analytical approach is its extremely low computational cost compared to

FEM simulations. Table 3.5 reports typical simulation times for the analytical model, the 2D FEM

model, and the 3D FEM model.

Model Simulation time Speed-up vs. 3D FEM

Analytical ∼ 1s ∼ 600×
2D FEM ∼ 20s ∼ 30×
3D FEM ∼ 10min Reference

Table 3.5: Comparison of computational costs
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This efficiency enables rapid parameter sweeps and geometry optimization without the need for

high-performance computing resources, while still maintaining an accuracy of around 5% relative

to 3D FEM results.

3.4.3 Recommended modeling workflow

Based on the results of this chapter, the following tiered approach is recommended for future design

studies:

1. Preliminary optimization: Use the analytical model with the Schwarz-Christoffel correction

for rapid evaluation of multiple design candidates.

2. Intermediate verification: Validate promising configurations using 2D FEM simulations,

which balance computational time and accuracy.

3. Final validation: Perform full 3D FEM simulations to capture edge effects, coil head contribu-

tions, and any three-dimensional field non-uniformities.

This workflow ensures a good compromise between design speed and result reliability, while

limiting reliance on computationally expensive simulations.
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Chapter 4

Geometry optimization

4.1 Generalities

In this chapter, an alternative approach to that presented in [17] is introduced, aimed at identifying

the optimal parameters for the design of the electromagnet. The analytical model has been validated

through comparison with COMSOL simulations and can therefore be employed to investigate the

optimal geometry for the electromagnet, i.e., the configuration that yields the highest levitation

force under a given constraint on power losses. This investigation can be carried out either through

analytical reasoning based on the force equation or by formulating a design optimization problem,

in which an objective function is minimized subject to both geometric and physical constraints. The

latter approach is more formal and flexible, as the optimization formulation can be easily modified

to accommodate new requirements or constraints.

A general optimization problem can be defined as follows:

min
x̄

f (x̄)

s.t. G(x̄) ≤ 0,

H(x̄) = 0

Here, x̄ denotes the vector of decision variables, f (x̄) is the objective function to be minimized,

subject to inequality constraints G(x̄) ≤ 0 and equality constraints H(x̄) = 0. In the case of the

electromagnet, the optimization problem includes non-convex and non-linear objective functions

and constraints. As a result, the global optimum cannot be guaranteed from any arbitrary starting

point due to the non-convex nature of the problem. A practical approach is to explore the solution

space by initializing the gradient descent method from multiple starting points and selecting the

best local minimum, i.e., the one yielding the lowest value of the objective function.

Furthermore, since the design requires maximizing the electromagnetic force while minimizing
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Joule losses, the problem must be formulated as a multi-objective optimization. A common strategy

is to use the weighted sum method, in which a Pareto-optimal solution can be obtained for each

value of the weight parameter α in the objective function Ob j = −(F −α · P J ). An alternative

approach is the ε-constraint method, where the force is maximized while treating Joule losses as a

constraint. For each value of ε, the optimization problem is solved to find the maximum achievable

force. Each solution then corresponds to a point on the Pareto front, representing a specific

trade-off between force and losses. Although the two formulations are theoretically equivalent and

lead in theory to the same set of Pareto-optimal solutions, the ε-constraint method often proves

to be computationally more efficient and numerically more stable. The Pareto optimality is not

straightforward and deserves a clearer explanation. In general, in multi-objective optimization, the

Pareto optimal solution is the one that outperforms all the other options, i.e., it is impossible to

improve one variable without harming other variables.

The conceptual algorithm used to initialize the random search in the solution space and to extract

the Pareto front is outlined below.

Algorithm 1
Conceptual Algorithm to Solve the Optimization Problem

1: input: f (x̄), G(x̄), H(x̄)

2: output: minx̄ f (x̄)

3: for ε j ∈ [εmi n ,εmax ] do

4: for i=1:200 do

5: initialize x̄0 = x̄lb + r and(0,1) · (x̄ub − x̄lb)

6: add constraint G(x̄)+P J ≤ ε j

7: solveΩ= f mi ncon( f (x̄), x̄0, [ ], [ ], [ ], [ ], x̄l b , x̄ub , [G(x̄) H(x̄)])

8: ifΩi+1 ≤Ωi then

9: fopt =Ωi+1

10: end if

11: end for

12: return Fopt (ε j ) = fopt

13: end for

Where G(x̄) and H (x̄) are respectively the inequality and equality constraints of the optimization

problem, as shown before. The two vectors x̄ub and x̄l b represent, respectively, the upper and lower

bounds for the decision variables. Therefore, the initial guesses for the gradient descent method

are selected randomly from the feasible space. This approach is required due to the non-convexity

and non-linearity of the problem. Initializing the gradient descent from only one feasible point can

lead to a local minimum, and therefore, to a local optimal solution. Performing a random search in

the entire solution space can better approximate the global optimum. The best objective value is

selected iteratively by comparing the solution for every initialization step with the previous best
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solution. Then the inner loop is repeated for every value of ε to find the Pareto optimal solutions.

4.2 Design optimization

The optimization problem for the design of the electromagnet is shown below, where the objective of

the problem is the maximization of the levitation force (or the minimization of the force changed of

sign). The constraints represent both the geometrical and physical limitations that the optimization

problem must respect. In this sense, a good analytical model is fundamental to have the right ap-

proximation of the real levitation force generated. If the mathematical model gives results that aren’t

comparable with the real (or simulated) ones, the solution of the optimization will be inherently

wrong. The optimization problem has been formulated as follows:

min
l ,h,b, J , w,hcoi l ,ε

−F

s.t. 0 ≤ l ≤ lmax ,

0 ≤ b ≤ bmax ,

0 ≤ hcoi l ,

0 ≤ w,

0 ≤ h,

h +hcoi l ≤ hmax ,

w +hcoi l ≤ h,

0 ≤ J ≤ 7
A

mm2 ,

0 ≤ B ≤ Bmax ,

I = J ·hcoi l (b −2w) ·F f

N
,

B = µ0N I

2δ
,

F = 1

2
I 2 dL(x)

d x
,

R = ρN 2 ·2(l +w +πhcoi l /2)

hcoi l (b −2w)F f
,

P J = RI 2,

P J ≤ ε

(4.1)

Where F f is the filling factor, δ is the air gap width, and N is the number of turns. The inductance

L(x) is computed as explained in Section 2.1.4.
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The constraints can be divided into different categories based on their utility:

1. The first seven inequalities represent the geometrical constraints and must be respected to

make sure that the electromagnet can fit in the given chassis.

2. The constraint on the current density is used to ensure that the coils do not overheat; the

maximum value for the current density is chosen to be J = 7 A
mm2 , which is high for an air-

cooled machine. However, it will be shown that the maximum value of current density is

limited by the value of the losses constraint.

3. The constraint on the magnetic field is useful to ensure that the iron does not reach the

saturation point. If that is the case, the constraint must be changed to consider also the

non-linearities generated by the saturation.

4. All the equality constraints represent the physical equations that the problem must respect

5. Finally, the last inequality constraint is the implementation of the ε-constrained method.

Varying ε and solving each time the optimization problem leads to the Pareto curve shown in

the next section

The decision variables of the problem include both the geometry and the excitation parameters

of the electromagnet. The final variable, denoted by ε, is specifically associated with the multi-

objective optimization. Table 4.1 lists all the decision variables along with their corresponding

physical meanings.

\ Length Height Width Current density Tooth width Coil height Epsilon constraint

Variable l [m] h [m] b [m] J [A/mm2] w [m] hcoi l [m] ε [W ]

Table 4.1: Decision variables
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4.3 Optimal design

For the MATLAB implementation of the optimization problem, the Schwarz–Christoffel conformal

mapping was used to define the mathematical model. As previously discussed, achieving

an accurate approximation of the levitation force is essential to ensure the reliability of the

optimization results. Among all the analytical approaches presented, the Schwarz–Christoffel

method demonstrated the highest accuracy when compared to the COMSOL simulation results.

Therefore, it was selected as the most suitable model to be used in the optimization process.

The explicit expression for the force computed with the correction is not reported here, but it can

be derived from the magnetic coenergy (or energy, in the case of linear materials) by taking the

derivative with respect to the air gap. This leads to an expression where the simple reluctance is

replaced by the one obtained through the conformal mapping defined in Eq.2.64.

The following values were computed for the physical constraints related to the real-world application

and listed in the introduction. In particular, lmax = 0.35 m, bmax = 0.05 m and hmax = 0.05 m.

By varying the constraint on the allowable power losses, ϵ, from 100J to 600J and solving the

optimization problem for each value, the Pareto front shown in Fig.4.1 is obtained.
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Figure 4.1: Pareto front
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The optimal decision variables associated with the Pareto front are illustrated in Fig.4.2.

As shown in the figure, increasing the current density leads to a wider tooth and consequently

reduces the space available for the coils. This behavior is dictated by the constraint on the maximum

magnetic flux density: as the current increases, so does the magnetic flux density in the yoke,

which may approach the saturation limit of the ferromagnetic material. To prevent this, the

optimization process prefers an increase in tooth width, which helps to reduce the local flux

density. However, this design adaptation comes at the cost of reducing the available volume for the

coils, thereby decreasing the achievable magnetomotive force. This trade-off reflects the balance

enforced by the optimization between maximizing performance and respecting physical constraints.
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4.3.1 Real-world application

To select the design to be tested using COMSOL simulations, it is necessary to account for the

limitations in losses. As outlined in the introduction, one of the key design criteria for the

electromagnet is that, at the nominal speed of 16m/s, the total losses must not exceed those

associated with mechanical wheels. Under this constraint, the total power losses, defined as the

sum of Joule losses and electromagnetic drag losses, must remain below a threshold of 250W per

electromagnet.

Given this constraint, and considering that the required levitation force per electromagnet is

approximately 500N , the selected design is the one reported in Table 4.2. This configuration satisfies

both criteria based on analytical predictions, while taking a safety margin on the total levitation

force.

In fact, the final validation must be performed through dynamic simulations, which will determine

the levitation force and drag force at the nominal operating speed. If the results deviate from the

requirements, the design can be iteratively refined to better satisfy them.

The COMSOL simulation confirms the analytical predictions: the total losses match exactly the ones

computed analytically, while the FEM simulated levitation force F = 680N is slightly lower than the

value computed using the Schwarz–Christoffel correction. However, the deviation remains within

5%, as expected from the comparisons performed in the previous chapter.

Parameters Values

δ 3 [mm]

Length 0.35 [m]

Tooth width 9 [mm]

Total width 50 [mm]

Yoke height 30 [mm]

Coil height 20 [mm]

J 4.1 [A/mm2]

Force 720 [N ]

Losses 117 [W ]

Table 4.2: Optimal electromagnet’s parameters

52



4.4 Flexibility of the Optimization Problem

The optimization framework described in this chapter is inherently flexible and can be readily

adapted to address alternative design objectives. For instance, if the goal shifts toward maximizing

the specific force, this can be achieved by introducing an equality constraint on the total mass of the

electromagnet and redefining the objective function to minimize the ratio between the generated

force and the system’s mass.

More generally, the problem formulation can be extended by incorporating additional constraints

or by refining the analytical model used for force evaluation. One example would be to account for

the effects of dynamic displacement of the electromagnet, as will be addressed in the subsequent

chapters through the development of an enhanced dynamic model.

The core algorithm itself remains unchanged, as it is general enough to handle non-linear and

non-convex problems. However, this generality comes at the cost of higher computational effort,

particularly for problems with many local minima, since the solver must be initialized from multiple

starting points. In simpler cases, such as convex and linear problems, this multi-start approach is

unnecessary because every initial point converges to the same (and global) optimum. Nevertheless,

the method outlined here ensures robustness across a broad spectrum of optimization problems,

provided that the solver is initialized an appropriate number of times to adequately explore the

solution space.

4.4.1 Concluding remarks

The optimization study presented in this chapter demonstrates the value of using a validated

analytical model to rapidly explore the electromagnet design space. By adopting the ε-constraint

multi-objective formulation, a Pareto front mapping the trade-off between levitation force and Joule

losses is obtained.

From this analysis:

• The optimization revealed key design trade-offs, such as the balance between tooth width,

coil space, and saturation limits.

• The selected real-world design satisfied both force and loss constraints, providing F = 680N

with P J = 117W in COMSOL simulations.

This optimized configuration will serve as the baseline for the dynamic analysis in the following

chapter, where the impact of speed-dependent effects on levitation and drag forces will be investi-

gated.
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Chapter 5

Analytical model in dynamic conditions

5.1 Introduction

In this chapter, an analytical model is developed to account for the displacement of the electromag-

net. The objective is to support design optimizations that also consider the reduction in levitation

force and the generation of drag force under dynamic operating conditions.

When the electromagnet moves and the rail is not laminated, high eddy currents are induced in the

rail even at lower speeds. These currents produce their own magnetic field in the air gap, which

interacts with the field generated by the excitation coil. The resulting superposition distorts the

overall magnetic field distribution, leading to a reduction in levitation force and the appearance of a

drag force opposing the motion.

The eddy currents restrict the penetration of the magnetic flux in the rail to a depth approximately

equal to three times the skin depth, which depends on the electromagnet’s displacement speed.

Laminating the rail reduces this phenomenon but increases infrastructure costs.

The analytical model presented here builds on the early work of Yamamura (1970s) [18], but it is

reinterpreted and updated. An improved drag-force formulation is also proposed, validated by

comparison with FEM simulations.

This model is intended primarily as a preliminary design tool, to be subsequently verified and

refined through numerical simulations.
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5.2 Analytical model’s derivation

5.2.1 Model’ hypotheses and starting equations

To begin the derivation of the analytical model for the levitation loss and the drag force generation,

several simplifying assumptions are introduced to reduce the complexity of the governing physics

and equations:

• Uniform flux density across the air-gap width

∂B(x, y, z)

∂y
= ∂2B(x, y, z)

∂y2 = 0 (5.1)

• Constant electromagnet speed

• Constant DC excitation

• Linear and isotropic ferromagnetic properties

The first assumption enables a dimensional reduction of the problem, allowing the geometry to

be simplified as illustrated in Fig. 5.1, where the field varies only in the x and z directions and is

constant along y in the air gap.

The second and third assumptions allow transient effects to be neglected, focusing solely on steady-

state conditions.

Finally, the assumption of linear ferromagnetic behaviour greatly simplifies the mathematical

treatment, enabling the use of analytical tools that would be otherwise inapplicable under nonlinear

conditions.

Figure 5.1: Geometry transformation to simplify the analytical derivation
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Once the model assumptions have been established, the governing equations can be selected

accordingly. The development of the analytical formulation begins with three fundamental relations:

the generalized Ohm’s law including the additional term accounting for currents induced by motion

(Eq. 5.2); the Faraday–Lenz law for time-invariant sources (Eq. 5.3) and the quasistatic form of

Ampère’s law (Eq. 5.4). These equations form the basis for describing the electromagnetic behaviour

of the system under the defined assumptions and will be adapted in the subsequent derivation to

model both the reduction in levitation force and the generation of drag force.

The equations are the following:

J̄ =σ(Ē + v̄ × B̄) (5.2)

∇̄× Ē = 0 (5.3)

J̄ = ∇̄× B̄

µ
(5.4)

Eq. 5.3 is applicable to this problem because the induced currents are generated by the motion of

the conductor in a static magnetic field, rather than by time-varying sources.

Assuming that the magnetic flux density has only the y component and neglecting the fringing

fluxes in the z direction, the problem can be treated as 2D in the xz plane.

Accordingly, the magnetic flux density will be denoted as By (x, z). For simplicity, the vector notation

will be omitted, and this component will be referred to simply as B , with the understanding that it

always points in the y direction. Ampère’s law must be integrated to find the relations between the

magnetic flux density and the currents. By doing so, two integration paths can be defined: the first

one on the x y plane and the second one on the z y plane. Both of them are shown in Fig. 5.2. By

integrating Ampère’s law along these paths and assuming that the iron has infinite relative magnetic

permeability, the following expressions are obtained:

∂B

∂x
= µ0b

2δ
Jz (5.5)

∂B

∂z
=−µ0b

2δ
Jx (5.6)

Figure 5.2: Integration paths for Ampère’s law. Left: x y-plane. Right: z y-plane
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5.2.2 Derivation of the total air gap flux density

Convection-diffusion partial differential equation

By combining the generalized Ohm’s law (5.2), Faraday’s law (5.3), and Ampère’s law (5.4), the

governing equation for the magnetic flux density distribution in the air gap can be derived.

Applying the curl operator to both sides of Eq.(5.2) and substituting Eq. (5.3) gives:

∇̄× J̄ =σ∇̄× (v̄ × B̄) (5.7)

Here, the right-hand side represents the curl of the motional current term.

Under the uniformity assumption ∂B
∂y = 0, the y-component of Eq.(5.7) becomes:(
−∂Jz

∂x
+ ∂Jx

∂z

)
êy =

(
σv

∂B

∂x

)
êy (5.8)

This relates the spatial variation of current density to the magnetic field gradient along x.

Substituting the relations from Ampère’s law (5.5) and (5.6) into Eq.(5.8) yields:

∂2B

∂x2 + ∂2B

∂z2 −k
∂B

∂x
= 0 (5.9)

where:

k = µ0σbv

2δ

with µ0 the permeability of free space, σ the rail’s conductivity, b the pole shoe width, v the electro-

magnet velocity, and δ the air-gap length.

Equation (5.9) is a steady-state convection–diffusion PDE:

The first two terms represent magnetic field diffusion in x and z, while the third term models the

convective transport of the field caused by motion.

Principle of superposition

Under the assumption of linear material behavior, the principle of superposition applies.

The total magnetic flux density B in the air gap can be expressed as the sum of:

• Be : the flux density produced directly by the excitation current in the electromagnet’s coil,

• Bi : the flux density generated by eddy currents induced in the rail.

This gives:

B = Be +Bi (5.10)
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Here, Bi represents the perturbation of the original excitation field due to motion-induced currents.

Substituting Eq.(5.10) into Eq.(5.9) and separating the two contributions gives:

∂2Bi

∂x2 + ∂2Bi

∂z2 −k
∂Bi

∂x
=−∂

2Be

∂x2 − ∂2Be

∂z2 +k
∂Be

∂x
(5.11)

The left-hand side describes the intrinsic behavior of the induced field Bi .

The right-hand side acts as a forcing term coming from the excitation field Be .

For tractability, we assume Be is constant within the air gap and not influenced by fringing.

It can therefore be modeled as the product of step functions:

Be = B0 [u(x)−u(x − l )]
[

u
(
z + w

2

)
−u

(
z − w

2

)]
(5.12)

where:

• B0 is the uniform magnitude of the excitation field,

• u(·) is the Heaviside step function,

• l is the electromagnet length,

• w is the tooth width.

This representation treats the excitation field as uniform inside the pole area and zero outside.

It greatly simplifies subsequent analytical manipulation, while still preserving the essential spatial

localization of Be .

Separation of variables

To solve the homogeneous form of Eq.(5.11), we neglect the forcing term and focus on Bi alone:

∂2Bi

∂x2 + ∂2Bi

∂z2 −k
∂Bi

∂x
= 0 (5.13)

Here, Bi is the field perturbation due solely to eddy currents in the rail.

The method of separation of variables is applicable because the PDE contains derivatives in x and z

that can be decoupled.

We seek a solution of the form:

B(x, z) = X (x)Z (z) (5.14)

where X (x) captures the variation along the motion direction, and Z (z) describes the variation

along the pole width.
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Substituting Eq.(5.14) into Eq.(5.13) yields:

Z (z)
∂2X (x)

∂x2 +X (x)
∂2Z (z)

∂z2 −k Z (z)
∂X (x)

∂x
= 0 (5.15)

1

X (x)

∂2X (x)

∂x2 + 1

Z (z)

∂2Z (z)

∂z2 − k

X (x)

∂X (x)

∂x
= 0 (5.16)

Since the first term depends only on x and the second only on z, each must equal a separation

constant.

We denote it λ2
n , leading to:

−λ2
n = 1

Z (z)

∂2Z (z)

∂z2 (5.17)

λ2
n = 1

X (x)

∂2X (x)

∂x2 − k

X (x)

∂X (x)

∂x
(5.18)

Equation (5.17) is a standard harmonic equation in z, with general solution:

Z (z) = cos(λn z +φ) (5.19)

Applying the boundary conditions Bi
(
z =±w

2

)= 0 yields:

φ= 0 (5.20)

λn = (2n −1)
π

w
(5.21)

Thus, the induced field takes the form:

Bi (x, z) = Xn(x)cos(λn z) (5.22)

where each harmonic n corresponds to a spatial mode of the eddy-current-induced perturbation.

The z-dependence is fully determined by the geometry, while the unknown Xn(x) must be found

from the x-direction PDE, incorporating the forcing term from the excitation field in Eq.(5.11).

Fourier series

The right-hand side of Eq.(5.11) involves the spatial variation of the excitation field Be .

To handle this mathematically, we expand the z-dependence of Be in a cosine Fourier series, which

naturally matches the boundary conditions along the pole width.

Since the electromagnet moves along the x-direction, we can neglect the second derivative with

respect to z in the forcing term:
∂2Be

∂z2 ≈ 0 (5.23)
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This simplification follows from the fact that the motion does not alter the spatial profile along z.

From Eq.(5.12), the z-profile of Be is given by:

u
(
z + w

2

)
−u

(
z − w

2

)
This rectangular function (equal to 1 inside the pole width, 0 outside) can be expressed as a cosine

Fourier series:

u
(
z + w

2

)
−u

(
z − w

2

)
=

∞∑
n=1

Cn cos(λn z) (5.24)

where λn is given by Eq.(5.21), and the Fourier coefficients Cn are:

Cn = 4

w

∫ w
2

0
1 ·cos

(
(2n −1)

π

w
z
)

d z (5.25)

= 4

w
· w

(2n −1)π
sin

(
(2n −1)π

2

)
(5.26)

= 4

(2n −1)π
sin

(
(2n −1)π

2

)
(5.27)

Physically, these coefficients represent the amplitude of each spatial harmonic in the z-direction.

Taking the derivatives of Be with respect to x and substituting into the forcing term on the right-hand

side of Eq.(5.11) gives:

f (x, z) = B0

[
− ∂

∂x
(δ(x)−δ(x − l ))+k (δ(x)−δ(x − l ))

]
·
∞∑

n=1
Cn cos(λn z) (5.28)

Here, δ(x) is the Dirac delta function, arising from the derivative of the step function. Physically,

these δ-terms represent the abrupt spatial discontinuity of the excitation field at the pole edges.

Using the orthogonality property of cosine functions in z, we can isolate each harmonic n and

obtain:

∂2Xn(x)

∂x2 −λ2
n Xn(x)−k

∂Xn(x)

∂x
=CnB0

[
− ∂

∂x
(δ(x)−δ(x − l ))+k (δ(x)−δ(x − l ))

]
(5.29)

This is now a 1D non-homogeneous ODE for Xn(x), where:

• The left-hand side describes the spatial decay and convection of each harmonic due to eddy

currents.

• The right-hand side represents sharp source terms located at the pole’s leading and trailing

edges.
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Fourier transform

Equation (5.29) is a non-homogeneous ODE in x for each spatial harmonic n.

A natural way to solve it is to move to the frequency domain using the Fourier transform, which

converts derivatives into algebraic terms and makes the delta functions particularly easy to handle.

We recall the definitions:

F { f (x)} = f̂ (ω) =
∫∞

−∞
f (x)e− j 2πωx d x (5.30)

f (x) = 1

2π

∫∞

−∞
f̂ (ω)e jωx dω (5.31)

Here, ω is the spatial frequency in the x-direction.

Key Fourier transform properties needed:

d f (x)

d x
−→ jω f̂ (ω) (5.32)

δ(x − l ) −→ e jωl (5.33)

These results show that derivatives become multiplication by jω, while delta functions become pure

exponentials. Applying the Fourier transform to Eq.(5.29) gives:

−ω2X̂n(ω)− jωk X̂n(ω)−λ2
n X̂n(ω) =CnB0

[
(k − jω)

(
1−e− jωl

)]
(5.34)

The left-hand side is now a quadratic polynomial in ω, multiplied by X̂n(ω).

The right-hand side is entirely algebraic in ω, with the factor (1− e− jωl ) encoding the finite pole

length.

Rearranging:

X̂n(ω) =CnB0
( jω−k)

(
1−e− jωl

)
ω2 + jωk +λ2

n
(5.35)

Physically:

• The numerator contains ( jω−k), representing the combined effect of spatial variation and

convective transport.

• The denominator ω2 + jωk +λ2
n behaves like a damped spatial resonance, where λn is set by

the electromagnet’s width.

To return to the spatial domain, we apply the inverse transform:

Xn(x) = CnB0

2π

∫∞

−∞
( jω−k)

(
e jωx −e jω(x−l )

)
ω2 + jωk +λ2

n
dω (5.36)

The two exponentials correspond to the leading edge (x = 0) and trailing edge (x = l ) contributions

of the electromagnet to the induced field.
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Residue theorem

To evaluate the integral in Eq.(5.36), we use the residue theorem from complex analysis.

This approach is effective because the integrand is a rational function ofωmultiplied by exponentials,

and its poles are simple to identify.

Residue theorem

Let U be a simply connected open subset of the complex plane containing a finite set of isolated

singularities {a1, ..., an}. If f is holomorphic in U except at these points, and γ is a positively oriented

closed contour in U that does not pass through any ak , then:∮
γ

f (ω)dω= 2π j
n∑

k=1
I (γ, ak )Res( f , ak ) (5.37)

Here I (γ, ak ) is the winding number of γ around ak , and Res( f , ak ) is the residue of f at ak . For a

pole of order p at ω= c:

Res( f ,c) = 1

(p −1)!
lim
ω→c

d p−1

dωp−1

[
(ω− c)p f (ω)

]
(5.38)

Poles of the integrand

The denominator of Eq.(5.36) gives:

ω2 + jωk +λ2
n = 0 (5.39)

Solving:

ω=
− j k ±

√
−k2 −4λ2

n

2
= j

2

(
−k ±

√
k2 +4λ2

n

)
(5.40)

This yields two purely imaginary poles:

αn = j

2

(
−k +

√
k2 +4λ2

n

)
(Imαn > 0) (5.41)

βn = j

2

(
−k −

√
k2 +4λ2

n

)
(Imβn < 0) (5.42)

Physically, these poles represent spatial decay rates of the induced field upstream and downstream

of the electromagnet’s geometrical edges.
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Choice of integration contour

To apply the residue theorem, we must close the contour in the upper or lower half-plane so that the

exponential terms in Eq.(5.36) vanish on the semicircular arc.

For ω= Re jθ:

e jωx = e−Rx sinθ ·e j Rx cosθ (5.43)

Thus:

|e jωx | = e−Rx sinθ

and similarly:

|e jω(x−l )| = e−R(x−l )sinθ

The sign of x or (x − l ) determines whether we should close the contour in the upper (sinθ > 0) or

lower (sinθ < 0) half-plane, following the integration paths depicted in Fig. 5.3.

From this decay condition, the correct contour choice is:

1. x < 0: both exponentials decay in the lower half-plane (path II).

2. 0 < x < l : e jωx decays in the upper half-plane (path I), e jω(x−l ) decays in the lower half-plane

(path II).

3. x > l : both exponentials decay in the upper half-plane (path I).

Figure 5.3: Residue theorem integration paths
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Applying the residue theorem

For each x-region, we pick up the residues of the poles enclosed by the chosen contour.

The results are:

1. For x < 0 (only βn inside the contour, note the minus sign from path II orientation):

Xn(x) =−(2π j )Res

[
CnB0( jω−k)(e jωx −e jω(x−l ))

(ω− jαn)(ω− jβn)
, ω= jβn

]
(5.44)

=CnB0
αn

αn −βn

[
e−βn x −e−βn (x−l )

]
(5.45)

2. For 0 < x < l (pick αn from the first term, βn from the second term):

Xn(x) =CnB0
1

αn −βn

[
βne−αn x −αne−βn (x−l )

]
(5.46)

3. For x > l (only αn inside the contour):

Xn(x) =CnB0
βn

αn −βn

[
e−αn x −e−αn (x−l )

]
(5.47)

Each expression reflects the exponential decay of the induced field away from the electromagnet

edges, with different decay constants upstream and downstream.

Magnetic flux density

The total magnetic flux density in the air gap is the sum of the field produced by the excitation

current Be and that induced by eddy currents Bi (Eq.(5.10)):

B(x, z) = Be (x, z)+Bi (x, z)

From the previous derivation, the induced component is expressed as:

Bi (x, z) = Xn(x)cos(λn z)

while the excitation field, under the uniform-field and sharp-edge approximation, is:

Be (x, z) = B0 [u(x)−u(x − l )]
[

u
(
z + w

2

)
−u

(
z − w

2

)]
where B0 is the nominal flux density in the gap, u is the Heaviside step function, l is the pole length,

and w is the tooth width.
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Substituting Xn(x) from the results of Section 5.2.6 into the above gives:

1. Inside the electromagnet (0 < x < l ):

B(x, z) = B0 +
∞∑

n=1
Xn(x)cos(λn z) (5.48)

The constant term B0 represents the undisturbed uniform field, while the summation captures

spatial harmonics due to eddy-current distortion.

2. Outside the electromagnet (x < 0 or x > l ):

B(x, z) =
∞∑

n=1
Xn(x)cos(λn z) (5.49)

Here, only the induced field remains, decaying exponentially away from the electromagnet

edges according to αn and βn .

Within the pole, Be dominates, with Bi acting as a perturbation that reduces the net levitation force.

Outside the pole, the induced field alone persists, representing the leakage of magnetic energy into

the rail due to motion. The harmonic terms cos(λn z) arise from the finite electromagnet’s width,

with higher n corresponding to finer spatial variations in z.

5.2.3 Levitation force calculation

The levitation force is obtained from Maxwell’s stress tensor, which expresses the mechanical force

on a surface in terms of the magnetic field. Under the assumption that the magnetic flux density has

only a y-component (By ) in the gap, the relevant stress component simplifies to:

σxx =
B 2

y

µ0

where µ0 is the permeability of free space.

Integrating σxx over the gap surface gives the net upward force:

F = 1

µ0

∫∞

−∞

∫ w
2

− w
2

[B(x, z)]2 d z d x (5.50)

Substitution of B(x, z)

Replacing B(x, z) with the expressions derived previously, and performing the z-integration first,

the orthogonality of the cosine terms ensures that only terms of equal harmonic order contribute to
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the result. This significantly simplifies the double integral.

After carrying out the algebra and normalizing by the static (zero-speed) force:

F0 =
wlB 2

0

µ0
(5.51)

we obtain the dynamic levitation force:

Fl = F0

∞∑
n=1

C 2
n

2l

[
l + β̂n

αn
(2+ β̂n)(1−e−αn l )+ α̂n

βn
(2− α̂n)(1−eβn l )+ 2α̂nβ̂n

αn +βn
(e−αn l −eβn l )

]
(5.52)

where:

α̂n = αn

αn −βn
, β̂n = βn

αn −βn

and αn , βn are the spatial attenuation constants for harmonic n.

Physical interpretation

• The ratio Fl /F0 quantifies the loss of lift due to motion.

• The exponential factors e−αn l and eβn l describe how the field decays from the leading and

trailing edges of the pole, respectively.

• Higher-order harmonics (n > 1) typically contribute less because Cn decreases with n, but

they become more significant if the tooth width w is small compared to the gap.

5.2.4 Drag force calculation

The drag force is derived from the Lorentz force density, which represents the electromagnetic force

per unit volume acting on charges and currents:

f⃗ = qE⃗ + J⃗ × B⃗

where Ē is the electric field, B̄ the magnetic flux density, J̄ the current density, and q the charge

density.

Neglecting the electric term

Under the model assumptions, the contribution from the electric field is negligible compared to the

magnetic term. Thus:

f⃗ ≈ J⃗ × B⃗
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From Eq.(5.5), the z-component of the current density can be written as:

Jz = 2δ

µ0b

∂B

∂x

and using Eq. (5.10) (B = Be +Bi ), the x-component of the Lorentz force density becomes:

fx = Jz By = 2δ

µ0b
(Be +Bi )

∂Bi

∂x
(5.53)

Volume integration

The total drag force is obtained by integrating fx over the entire rail volume interacting with the

field:

Fb = 2δ

µ0b

∫∞

−∞
d x

∫b

0
d y

∫ w
2

− w
2

(Be +Bi )
∂Bi

∂x
d z (5.54)

The y-integration simply yields a factor b, canceling the 1/b in front, so that:

Fb = 2δ

µ0

∫l

0
d x

∫ w
2

− w
2

(B0 +Bi )
∂Bi

∂x
d z (5.55)

Integration by parts

Using the identity: ∫
(B0 +Bi )

∂Bi

∂x
d x = B0Bi |x=l

x=0 +
1

2
B 2

i |x=l
x=0

and performing the z-integration, we obtain:

Fb = F0
δ

l

∞∑
n=1

{
C 2

n

[
α̂n

(
eβn l −1

)
+ β̂n

(
e−αn l −1

)
+ 1

2

(
β̂ne−αn l − α̂n

)2 − 1

2

(
β̂n − α̂ne−βn l

)2
]}

(5.56)

where F0 is the static lift force defined in Eq. (5.51).

Physical interpretation

• The drag force Fb increases with velocity because k (in αn and βn) is proportional to v .

• The first two terms inside the brackets account for interaction effects between the excitation

and induced fields.

• The quadratic terms correspond to contributions from the leading and trailing edges of the

pole.
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5.3 Concluding remarks

In this chapter, an analytical model was formulated to predict two key phenomena in an electro-

magnet operating under dynamic conditions: the reduction in levitation force due to eddy current

shielding in the rail and the generation of a drag force opposing motion, arising from the interaction

between induced and excitation fields.

The derivation began with fundamental electromagnetic relations: Ohm’s law with motional in-

duction, Faraday’s law for time-invariant sources, and the quasistatic Ampère’s law. Progressively

incorporated simplifying hypotheses allow for a tractable analytical formulation. Using the prin-

ciple of superposition, Fourier series expansion, and Fourier transform methods combined with

the residue theorem, closed-form expressions for the levitation and drag forces were obtained

[Eqs.(5.52) and (5.56)].

The key outcomes of the model are:

• The model explicitly links force behavior to the geometrical parameters (l , w , δ) and

rail/electromagnet material properties (σ, µr ), as well as to the operating velocity v .

• Higher velocities reduce the effective penetration of the magnetic field into the rail (skin

effect), decreasing lift and increasing drag.

• The analytical solution separates the contributions of individual spatial harmonics, making it

suitable for parametric studies.

This analytical formulation, however, is not intended to replace finite element simulations in the

final design stages. Instead, its main strengths lie in:

1. Rapid preliminary evaluation of design trade-offs without the computational cost of FEM.

2. Use as a core model within optimization loops or control algorithms, where repeated evalua-

tions are required.

3. Providing physical insight into the interplay between geometry, velocity, and force perfor-

mance.

The limitations lie in the model’s applicability, bounded by its simplifying assumptions: notably

linear material behavior, uniform flux distribution across the gap width, and neglect of fringing

effects in z. These must be kept in mind when interpreting results.

In the following chapters, the accuracy of this analytical model will be systematically assessed

through comparison with high-fidelity FEM simulations. Both qualitative curve-shape agreement

and quantitative error metrics will be used. Upon successful validation, the model can be confidently

integrated into the design workflow for electromagnetic levitation systems.
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Chapter 6

2D and 3D simulations in dynamic
conditions

Dynamic simulations are essential for validating both the levitation and the electromagnetic drag

forces under realistic operating conditions. As discussed previously, the relative motion of the

electromagnet with respect to the rail induces eddy currents in the latter. These currents generate a

secondary magnetic field that tends to reduce the levitation force and increase the drag force, thus

leading to higher losses compared to the static case.

Two different modeling approaches were investigated in COMSOL:

1. The Lorentz Term domain, which applies the Lorentz force equation directly to the rail.

This approach internally accounts for the relative motion and is able to compute only the

steady-state solution.

2. The Moving Mesh feature, in which the displacement is externally prescribed by imposing

a motion on the rail (equivalent to moving the electromagnet instead). In contrast to the

Lorentz Term, this approach can capture both transient and steady-state behavior.

The steady-state results obtained from both modeling approaches were compared to verify consis-

tency. It is important to note that, because motion is relative, applying a displacement to the rail is

equivalent to applying it to the electromagnet.

Two orientations of the electromagnet relative to the direction of motion were considered: parallel

and perpendicular, as illustrated in Fig. 6.1. While both orientations yield the same levitation force

under static conditions (for identical yoke cross-section, current density, and length), their behavior

under dynamic conditions differs significantly.

The perpendicular orientation has been widely studied in the Hyperloop linear motor literature

(see Cho et al. [19], Jaewon et al. [20]). However, this configuration produces stronger induced
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currents because the magnetic field alternates continuously between north and south poles along

the direction of motion. According to Faraday’s law, this variation induces significant eddy currents,

which reduce levitation and increase drag.

In contrast, the parallel orientation introduces smaller variations in the magnetic field along the

displacement direction, thereby reducing induced currents. Consequently, it offers lower drag forces

and higher effective levitation. This orientation has been successfully adopted in recent works (e.g.,

Wang et al. [21], Ding et al. [22]).

Figure 6.1: Electromagnet orientations with respect to the direction of motion:
parallel and perpendicular

Another practical advantage of the parallel orientation lies in its scalability: the levitation force

can be increased simply by extending the electromagnet length, without altering slot width or mag-

netic field distribution. In contrast, enhancing the levitation force in the perpendicular orientation

requires either:

1. Increasing the number of adjacent coils, or

2. Increasing the tooth and slot width.

Both strategies introduce drawbacks. The first increases eddy currents and drag due to pole alterna-

tion, while the second increases leakage flux, reducing the levitation force.

For these reasons, only the parallel configuration was tested in 3D simulations. This choice is also

motivated by a limitation of the 2D solver: in the parallel configuration, the direction of motion is

orthogonal to the yoke’s cross-section, preventing an accurate 2D representation of the physical

behavior. Hence, 3D simulations are required to capture the correct spatial distribution of magnetic

fields and induced currents.
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6.1 Definition of the problem

The simulation environments must be configured differently depending on the chosen approach:

one based on the Lorentz Term domain and the other on the Moving Mesh feature. While these two

formulations share some common physical definitions, their implementations diverge due to the

nature of the solvers.

For the Lorentz Term approach, the Magnetic and Electric Fields physics interface is employed. In

contrast, the Moving Mesh implementation requires the Rotating Machinery, Magnetic interface.

In the latter case, it is essential to define an Assembly in the Geometry module. This separates

the electromagnet and the rail into distinct domains, enabling their relative motion—an essential

condition for applying the Moving Mesh.

The domains common to both models are summarized below, while the specific features of each

implementation will be detailed in the following subsections:

• Ampère’s Law domain. Applied to all regions except the rail (i.e., air, coils, and yoke). Since

the yoke does not experience time-varying magnetic flux, no eddy currents are induced.

Furthermore, the optimization process ensured that the magnetic flux density remained

below the saturation value.

• Rail definition. As the rail is subject to eddy currents, both magnetic saturation and the skin

effect must be considered. In the Magnetic and Electric Fields interface, this requires selecting

Ampère’s Law and Current Conservation in Solids, along with a B–H curve as the magnetization

model. In the Rotating Machinery, Magnetic interface, the standard Ampère’s Law with a B–H

curve is sufficient to capture saturation effects.

• Coils. The Coil feature is used in both models to represent the windings.

• Force evaluation. The Force Calculation feature is applied to the rail to compute electromag-

netic forces as derived quantities.

6.1.1 Lorentz Term

Since the Lorentz Term formulation uses the Magnetic and Electric Fields interface, its setup differs

from that of the Moving Mesh. Notably, it does not require an assembly geometry because no relative

displacement between domains is explicitly introduced. This simplifies the problem and avoids the

need for identity boundary pairs.

In addition to the common physics definitions outlined earlier, three extra domains and boundary

conditions must be specified:

• Velocity (Lorentz Term). Applied to the rail, this domain defines the current density according
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to the Lorentz equation:

J⃗ =σ(
E⃗ + v⃗ × B⃗

)
(6.1)

where σ is the electrical conductivity, E⃗ the electric field, v⃗ the velocity vector of the rail

(relative to the electromagnet), and B⃗ the magnetic flux density. This term accounts for the

induced eddy currents within the rail. These currents produce a secondary magnetic field

in the air gap, which interacts with the coil-generated field. The result is a reduction of the

levitation force and the appearance of a drag force.

• Gauge Fixing for the Vector Potential A⃗. To ensure a unique solution, the Coulomb gauge

condition is imposed:

∇· A⃗ = 0 (6.2)

which introduces a Lagrange multiplier ψ into Ampère’s law:

∇×
(

1

µ
∇× A⃗

)
= J⃗ +∇ψ (6.3)

The condition ∇ · A⃗ = 0 is then enforced through ψ, ensuring uniqueness of the solution.

Although this increases the computational cost by approximately 30–60%, it avoids ambiguity

in the vector potential. The resulting stiffness matrix contains zeros on its diagonal, but this

does not cause issues with the direct solver used in this study.

• Magnetic Potential boundary condition. Applied to one side of the rail, this boundary con-

dition improves convergence and sets a reference for the scalar potential ψ, ensuring it is

uniquely defined.

6.1.2 Moving Mesh

In the Moving Mesh formulation, relative displacement between the rail and the electromagnet

must be explicitly modeled. To achieve this, the geometry is defined as an assembly, enabling the

creation of a boundary pair between the two components. This boundary allows for their relative

motion.

The Moving Mesh workflow involves two sequential studies:

1. A stationary study, used to initialize the magnetic field distribution.

2. A subsequent time-dependent study, which applies the prescribed displacement and captures

the transient and steady-state responses.

In addition to the common physics definitions, the Moving Mesh approach requires the following

domains and boundary conditions:
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• Continuity boundary pair. Applied at the rail–electromagnet interface, this condition ensures

that both the scalar and vector magnetic potentials remain continuous across the moving

boundary.

• Magnetic Flux Conservation. Applied to the two domains adjacent to the continuity boundary,

this condition enforces conservation of magnetic flux between the sliding regions. It improves

convergence by maintaining consistency in the magnetic field.

• Gauge Fixing for the Vector Potential A⃗. As in the Lorentz Term simulations, the Coulomb

gauge condition is applied to ensure uniqueness of the solution. However, here it is im-

posed only during the stationary study, since including it in the time-dependent study would

significantly increase the computational cost.

• Zero Magnetic Scalar Potential. Applied to a vertex in a region unaffected by the moving

mesh, this condition fixes the reference for the magnetic scalar potential, ensuring numerical

stability.

6.1.3 Materials

As in the stationary simulations, material properties play a crucial role, since they strongly affect the

electromagnetic behavior and the resulting forces.

• Yoke. The Soft Iron material from the COMSOL library was used, with electrical conductivity

set to zero. This reflects the laminated structure of the yoke, which suppresses eddy currents.

Given that the optimization ensured magnetic flux densities below the saturation limit, the

yoke operates far from saturation and can be treated as linear.

• Coils. Copper was assigned as the winding material, due to its high electrical conductivity and

correspondingly reduced Joule losses compared to aluminum.

• Rail. Since the rail is not laminated and is subject to significant variations of magnetic flux,

the Soft Iron with Losses material was used, with an electrical conductivity of

σ= 3×106 S/m.

This value reflects the properties of the actual rail material employed in the test track, ensuring

a realistic representation of induced current and loss mechanisms.

• Air domains. Standard Air from COMSOL was used for all surrounding regions.
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6.1.4 Exploitation of symmetries

To reduce computational effort, the geometric symmetries of the electromagnet were exploited.

The magnetic flux density distribution is symmetric with respect to the longitudinal axis of the

electromagnet. Therefore, only half of the geometry was simulated by taking a longitudinal cross-

section and applying appropriate boundary conditions.

This approach reduces the number of mesh elements and simulation time significantly, while still

yielding results equivalent to those of the full geometry. The validity of this method has been

confirmed in the work of Pierrejean [7]. The computed forces from the half-geometry must be

multiplied by two to recover the values corresponding to the complete electromagnet.

The boundary condition that ensures symmetry is the Perfect Magnetic Conductor (PMC), which

enforces

n⃗ × H⃗ = 0, (6.4)

constraining the magnetic field to be tangential at the boundary. This preserves the correct symmetry

of the solution in the reduced domain.

Figure 6.2: Half of the electromagnet geometry used in the simulations. The PMC boundary
condition enforces the correct symmetry
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6.1.5 Selection of the mesh

As in the case of steady-state simulations, mesh optimization is critical to obtain accurate results

at a reasonable computational cost. However, achieving an optimal balance is more challenging

in dynamic simulations because the rail experiences both magnetic saturation and the skin effect,

the latter being velocity-dependent. These effects require a mesh capable of resolving sharp spatial

gradients in magnetic fields and induced currents.

To address this, a dedicated mesh convergence study was performed. The refinement process

focused particularly on the rail, where eddy currents concentrate near the surface. A common

guideline suggests using at least three elements across the skin depth [23]. Here, a more conservative

choice of ten elements was adopted to ensure higher fidelity in capturing current distributions.

The adequacy of the mesh was validated by verifying the stability of simulation results across suc-

cessive refinements and by examining the spatial distribution of the relative magnetic permeability,

shown in Fig. 6.3.

The final meshes used are presented in Fig. 6.4 for the Lorentz Term simulations and Fig. 6.5 for the

Moving Mesh simulations. The Lorentz Term model requires a finer mesh, as it solves both magnetic

and electric field equations, whereas the Moving Mesh model only solves magnetic fields but is

computationally heavier due to time-dependent motion.

Figure 6.3: Relative magnetic permeability distribution in the rail, used to validate mesh adequacy

Figure 6.4: Detail of the mesh used for
Lorentz Term simulations

Figure 6.5: Detail of the mesh used for
Moving Mesh simulations
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6.2 3D simulations

As previously explained, 3D simulations are the only viable approach to model the electromagnet in

the parallel orientation, since motion is orthogonal to the yoke’s cross-section. In this section, the

two modeling approaches, Lorentz Term and Moving Mesh, are implemented in 3D and compared

with the aim of validating their consistency at steady state.

If both methods yield the same results, confidence in the simulation tools is significantly reinforced.

To limit computational cost for this comparison, a reduced-size electromagnet (shorter than the

optimized design) was used. Its main geometrical and electrical parameters are reported in Table

6.1.

Parameter Value

δ 3 [mm]

Length 0.1 [m]

Tooth width 9 [mm]

Total width 50 [mm]

Yoke height 30 [mm]

Coil height 20 [mm]

J 4.1 [A/mm2]

Table 6.1: Electromagnet parameters used for feature comparison

Both simulation setups employed a direct solver. This approach computes the inverse of the

stiffness matrix explicitly, thereby avoiding the dependence on initial conditions typical of iterative

solvers. For well-conditioned problems, direct solvers guarantee convergence to the correct solution.

However, their computational cost grows rapidly with problem size. In this case, iterative solvers

were tested but failed to converge for both configurations, which justified the use of the direct

method despite its higher cost. The comparison was carried out by evaluating:

• the levitation and drag forces, which directly quantify performance, and

• the magnetic flux density distribution in the air gap, which provides physical insight into field

behavior.
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6.2.1 Lorentz Term

The Lorentz Term simulation was set up as described in Section 6. The stationary solver directly

applies the Lorentz force formulation to model the effect of relative motion, without requiring

moving geometry. Figure 6.6 shows the distribution of the magnetic flux density in a longitudinal

plane cutting through the center of the electromagnet. The magnetic flux density is higher in

the yoke (that has the red rectangular cross-section in Fig. 6.6) and in the rail, where the field

distribution shows the presence of the edge effects generated by the presence of induced currents.

This interaction reduces the levitation force and simultaneously generates the drag force.

Figure 6.6: Magnetic flux density in a plane intersecting the middle of the electromagnet for the
Lorentz Term simulation

6.2.2 Moving Mesh

The Moving Mesh simulation was performed according to the setup described earlier. In this

formulation, relative displacement is imposed through the mesh deformation, requiring both a

stationary pre-study (to initialize the field distribution) and a subsequent time-dependent study.

Figure 6.7 shows the magnetic flux density at steady state in a longitudinal plane intersecting the

center of the electromagnet. The distribution closely matches that obtained with the Lorentz Term

approach. This confirms that both methods reproduce the same steady-state physical behavior,

although the Moving Mesh is capable of also resolving transient effects.

Figure 6.7: Magnetic flux density in a plane intersecting the middle of the electromagnet for the
Moving Mesh simulation at steady state
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6.2.3 Comparison between the Lorentz Term and Moving Mesh simulations

This subsection presents a quantitative comparison between the two methods. The levitation and

drag forces were selected as the main figures of merit, since they capture the key performance

aspects of the electromagnet under dynamic operation.

The simulations were carried out at a velocity of v = 16m/s, corresponding to the maximum

operational speed of the pod. Figures 6.8 show the evolution of the forces over time.

As expected, the Lorentz Term yields only steady-state values, which remain constant in time. In

contrast, the Moving Mesh captures the full transient behavior, starting from rest and progressively

converging towards the same steady-state forces. This demonstrates that both methods are

consistent, while the Moving Mesh provides additional insight into transients.
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Figure 6.8: Levitation force and drag force computed with the Moving Mesh and Lorentz Term
features at a velocity of 16 m/s

Both approaches converge to identical steady-state force values, confirming their equivalence.

The main difference lies in computational efficiency:

• The Lorentz Term uses a stationary solver, which computes the solution until convergence is

reached.

• The Moving Mesh requires a time-dependent solver, discretizing motion and updating the

fields at each step, which is much more computationally demanding.

Another interesting comparison can be conducted considering the magnetic flux densities in

the air gap. In fact, from Fig. 6.9, it is clear that the two features generate the same field dis-

tribution in the air gap at steady-state. Ultimately, giving the same value of levitation and drag forces.
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Figure 6.9: Comparison between the magnitudes of the air gap magnetic flux densities
with the Moving Mesh and the Lorentz Term

As already explained, the moving mesh feature requires a time-dependent study that solves the

problem at every time step. This generates higher computation times than the Lorentz Term simula-

tions, as summarized in Table 6.2. While the Moving Mesh provides more detailed information, its

cost is prohibitive when only steady-state values are required.

Lorentz Term Moving Mesh

Simulation time ∼ 10 h ∼ 1 week

Table 6.2: Computation times for the Lorentz Term and Moving Mesh simulations at v = 16m/s

Given these results, and since the focus of this study is limited to steady-state forces, the Lorentz

Term method was adopted for all subsequent analyses.
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6.3 Analytical model and simulations

To assess the usefulness of the analytical model as a tool for preliminary design, its predictions

were compared with the simulation results. The key advantage of the analytical formulation lies

in its negligible computational cost: forces can be evaluated within seconds, whereas COMSOL

simulations typically require several hours or even days.

For this comparison, the Lorentz Term approach was selected, as it provides reliable steady-state

results with far lower computational effort than the Moving Mesh (see Table 6.2).

Using the optimized electromagnet geometry introduced in Chapter 4, multiple dynamic simula-

tions were performed by sweeping the velocity within the Lorentz Term domain. The levitation and

drag forces obtained were normalized with respect to the stationary levitation force from COMSOL,

ensuring a consistent reference point. These results were then compared with the analytical predic-

tions given by Equations 5.52 and 5.56.

Figure 6.10 shows the outcomes of this comparison. The analytical model provides a close match

to the simulated values across the tested velocity range. At the maximum velocity of v = 16m/s,

the maximum error is approximately 5% for the levitation force and 15% for the drag force. Such

accuracy is sufficient for preliminary design considerations, where fast evaluations are essential.

2 4 6 8 10 12 14 16

0.6

0.8

1

Velocity [m/s]

F
l/

F
0

Analytical model
Simulations

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
·10−2

Velocity [m/s]

F
d

/F
0

Analytical model
Simulations

Figure 6.10: Comparison of levitation forces (left plot) and drag forces (right plot) computed with
the Lorentz Term and the analytical model

In conclusion, the analytical model proves to be a powerful and reliable tool for rapid force

estimation under dynamic conditions. Although full FEM simulations remain necessary for detailed

validation and design refinement, the analytical approach enables efficient exploration of design

options, serving as a valuable first step before more computationally intensive studies.
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6.4 Real-world case study

The results of the electromagnet simulations under dynamic conditions are compared with those of

the wheels at a cruising speed of 16 m/s to assess whether the electromagnets can represent an

energy-efficient alternative to mechanical wheels.

The comparison focuses on the main requirements of the application: the ability to counteract the

centrifugal force, the associated losses, the generated drag, and the overall weight.

For the electromagnet case, two units were considered. The total losses include both Joule losses

and drag-induced losses. The forces were computed using the optimal design parameters reported

in Table 4.2 and evaluated under dynamic operating conditions.

The values for the wheels were provided by the EPFLoop project group and are intended as

approximate references.

Table 6.3 summarizes the comparison.

Parameter Electromagnets Wheels

Force 2×593 N 1000 N

Losses 2×169 W 250 W

Drag 2×3.25 N 10 N

Mass 2×6 kg 3 kg

Table 6.3: Comparison between electromagnets and wheels for pod levitation at 16m/s

From Table 6.3, it can be observed that both solutions present comparable performances for

levitation. The wheels achieve the required force with slightly lower mass and reduced losses, but

at the expense of higher drag. Conversely, the electromagnets exhibit lower drag and generate a

comparable levitation force, though with higher overall mass and losses.

This trade-off highlights that electromagnets represent a viable alternative to mechanical wheels,

especially in scenarios where reducing drag is a priority for energy efficiency at high velocities.

Furthermore, the use of electromagnets enables the possibility of achieving a fully levitating vehicle,

which may be a key requirement for certain applications where mechanical contact and associated

frictional losses must be eliminated. However, their higher weight and electrical losses must still be

carefully considered in the overall energy balance of the system.
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6.5 Concluding remarks

This chapter provided a comprehensive study of the electromagnet under dynamic conditions, with

a focus on both finite element simulations and analytical validation. Two FEM approaches, the

Lorentz Term and the Moving Mesh, were implemented and compared. Although both methods

converged to the same steady-state results, the Lorentz Term method proved to be significantly more

efficient, making it the preferred choice for steady-state analyses. Conversely, the Moving Mesh

approach demonstrated its strength in capturing transient phenomena, but with a considerably

higher computational cost.

The analytical model was then benchmarked against the FEM results. Despite its simplicity, it

reproduced the key trends of levitation and drag forces with good accuracy (errors below 15%). Its

negligible computational burden makes it particularly suited for preliminary design and parameter

sweeps, where rapid insight is needed.

Overall, this chapter demonstrated the complementarity of analytical and FEM approaches: the

former offers speed and intuition, while the latter ensures precision and detailed validation. This

dual strategy provides a robust framework for the design and analysis of levitation electromagnets

under dynamic conditions.
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Chapter 7

Conclusion

The research presented in this thesis developed a complete workflow for the design, optimization,

and validation of electromagnets intended for magnetic levitation applications, with a particular

emphasis on the dynamic generation of electromagnetic drag and reduction in levitation force.

The first part of the work established an analytical model in stationary conditions, which was

subsequently validated against FEM simulations to corroborate its accuracy. This enabled the

formulation of an optimization environment, where the electromagnet geometry was tuned to

maximize levitation force under given constraints.

The second part of the work extended the analysis to dynamic conditions, where both the reduction

in levitation force and the generation of a drag force were evaluated. Two complementary FEM

approaches, the Lorentz Term and the Moving Mesh, were compared, and the analytical model was

validated against their results. The agreement between analytical predictions and FEM simulations

confirmed the reliability of the simplified model, especially as a tool for rapid design iterations.

Finally, the proposed workflow was applied to a realistic case study within the EPFL Hyperloop

project, where electromagnets were compared with mechanical wheels as levitation devices. The

results indicated that electromagnets can be considered a competitive alternative, with comparable

forces and losses, and the potential advantage of enabling a fully levitating vehicle.

Main contributions:

• Development of an optimization framework for electromagnet design under stationary condi-

tions.

• Extension and validation of an analytical model for dynamic conditions, capturing both

levitation force reduction and drag force generation.

• Comparative analysis of Lorentz Term and Moving Mesh FEM approaches, highlighting their

respective advantages.

• Application of the workflow to a realistic Hyperloop prototype, demonstrating the practical

83



feasibility of the approach.

Future work may extend this methodology in several directions. In particular, coupling the dynamic

model with control strategies could enable active regulation of levitation forces. Additionally, the

analytical model in dynamic conditions can be tested with other geometries and velocities to further

assess its validity.

In conclusion, this thesis contributes both methodological and practical advances to the field of

magnetic levitation, providing tools that are applicable to a wide range of electromagnetic devices

beyond the Hyperloop context.
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