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Abstract 

The global trend towards hydrogen as a key low-carbon energy vector is rapidly increasing 

worldwide, due to its high gravimetric energy density. Following this current, there were 

analysed different ways to produce it, overall, the ones powered by renewable energy sources 

(green H2), which represents a bridge between today and a zero-emission future. All the types 

of H2 could be transported with several strategies and in different forms, for example in trucks 

through liquid or compressed gas state. However, these last two methods need sophisticated 

structures and elevated costs. At the same time, existing natural gas (NG) transmission and 

distribution pipelines represent a vast infrastructure that could carry hydrogen blended natural 

gas (HBNG) over long distances more economically than pure hydrogen pipelines too. Indeed, 

blending hydrogen into NG networks avoids massive costs for new infrastructures, but raises 

questions about mixing behaviour, energy transmission, compressor work and material 

integrity, particularly due to hydrogen embrittlement (HE) of steels under high pressure. 

HE could be the cause of HBNG leaks from a pressurized pipeline or vessel, and the small 

molecular size and low ignition energy of hydrogen can lead rapidly to turbulent jet flames. 

These high-momentum diffusion flames emit heat that can impinge on nearby structures and 

can trigger catastrophic domino events. Their behaviour is studied nowadays, because the 

presence of H2 modifies which could be the classic NG one. Accurate prediction of jet-fire 

flame geometry (length and lift-off) and radiative heat flux is therefore essential for defining 

safe separation distances. PHAST is a simulating software with semi-empirical models 

implemented that could offer optimal prevision of HBNG jet fires, Configurating these type of 

scenarios in simulative software like PHAST could be really useful, for evaluating the jet fire 

mass flowrate, the flame length and the safety distances and to study the influence of parameters 

such as orifice diameter, storage temperature and pressure, meteorological conditions and the 

volumetric concentration of the blended hydrogen. 

In this work, a Neural Network (NN) is developed to estimate the effects of jet fires. Firstly, jet 

fire scenarios of HBNG from transmission pipeline were simulated using PHAST software. A 

database was constructed by configuring accidental jet fire scenarios for obtaining the jet fire 

mass flowrate, the flame length and the safety distances (Alert zone, Intervention zone, Domino 

Effect zone) for different combinations of input parameters such as orifice diameter, storage 
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temperature and pressure, meteorological conditions and volumetric concentration of the 

blended hydrogen. A pseudo-validation was performed to ensure that PHAST could be used 

for the specific ranges of parameters and compared to literature experimental cases. Before 

developing the NN, the database results are analysed and standardized, as pre-processing steps. 

A Multilayer Feedforward Neural Network with Backpropagation was trained and optimized 

on the database constructed and the hyperparameters were tuned to minimize the loss function. 

MAE, MSE and R2 metrics were used to evaluate the performance. In the end the optimized 

version of this NN model could successfully reproduce the original database with MSE errors 

in the millesimal range. 
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Astratto 

La tendenza globale verso l'idrogeno come un vettore energetico chiave a basse emissioni sta 

aumentando rapidamente in tutto il mondo, grazie alla sua elevata densità energetica 

gravimetrica. Seguendo questa tendenza, sono stati analizzati diversi metodi per produrlo, 

soprattutto quelli alimentati da fonti energetiche rinnovabili (H2 verde), che rappresentano un 

ponte tra il presente e un futuro a senza emissioni. I vari tipi di H2 potrebbero essere trasportati 

con diverse strategie e in diverse forme, ad esempio su camion allo stato liquido od in forma di 

gas compresso. Tuttavia, questi ultimi due metodi richiedono strutture sofisticate ed hanno costi 

elevati. Allo stesso tempo, il già esistente sistema di condutture per il trasporto e la distribuzione 

del gas naturale (GN) rappresenta una vasta infrastruttura che potrebbe trasportare gas naturale 

miscelato con idrogeno (HBNG) anche su lunghe distanze, in maniera più economica rispetto 

alla distribuzione di idrogeno puro. Infatti, la miscelazione dell'idrogeno nelle reti di GN evita 

i costi ingenti legati alla costruzione di nuove infrastrutture, ma solleva interrogativi sul 

comportamento della miscela, sulla trasmissione di energia, sul funzionamento dei compressori 

e sull'integrità dei materiali, in particolare a causa dell'infragilimento da idrogeno (HE) degli 

acciai ad alta pressione. 

HE potrebbe essere la causa di perdite di HBNG da una tubazione o da un serbatoio 

pressurizzato, e le piccole dimensioni molecolari, insieme alla bassa energia di accensione 

dell'idrogeno possono portare rapidamente a fiamme turbolenti a getto. Queste fiamme a 

diffusione ad alto momento emettono calore che può incidere sulle strutture vicine e innescare 

catene di eventi catastrofici. Il loro comportamento è oggetto di studio al giorno d'oggi, perché 

la presenza di H2 modifica quello che potrebbe essere il classico comportamento del NG. Una 

previsione accurata della geometria della fiamma a getto (lunghezza e sollevamento) e del 

flusso di calore radiativo sono quindi essenziali per definire le distanze di sicurezza. PHAST è 

un software di simulazione con modelli semi-empirici implementati che potrebbe offrire una 

previsione ottimale delle fiamme composte da HBNG. Configurare questo tipo di scenari in un 

software di simulazione come PHAST potrebbe essere davvero utile per valutare la portata 

massica della fiamma, la sua lunghezza e le distanze sopracitate e per studiare l'influenza di 

parametri quali il diametro dell'orifizio, la temperatura e la pressione di stoccaggio, le 

condizioni meteorologiche e la concentrazione volumetrica dell'idrogeno miscelato. 
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In questo lavoro è stata sviluppata una rete neurale (NN) per stimare gli effetti delle fiamme a 

getto. Innanzitutto, sono stati simulati scenari di lingue di fuoco di HBNG da condotti di 

trasmissione utilizzando il software PHAST. È stato creato un database configurando differenti 

scenari accidentali per ottenere la portata massica del getto, la lunghezza della fiamma e le 

distanze di sicurezza (zona di allerta, zona di intervento, zona di effetto domino) per diverse 

combinazioni di input quali diametro dell'orifizio, temperatura e pressione di stoccaggio, 

condizioni meteorologiche e concentrazione volumetrica dell'idrogeno miscelato. È stata 

eseguita una pseudo-convalida per confermare che PHAST potesse essere utilizzato per 

intervalli specifici di questi parametri ed è stata confrontata con casi sperimentali trovati in 

letteratura. Prima di sviluppare la NN, i risultati del database sono stati analizzati e 

standardizzati, nella fase di antecedente all’elaborazione. Una rete neurale feedforward 

multistrato con retro-propagazione è stata addestrata e ottimizzata sul database costruito e gli 

iper-parametri sono stati regolati per minimizzare la funzione di perdita. Per valutare le 

prestazioni sono state utilizzate le metriche MAE, MSE e R2. Alla fine, la versione ottimizzata 

di questo modello NN è riuscita a riprodurre con successo il database originale con errori MSE 

nell'ordine dei millesimi. 
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Resumen 

La tendencia global hacia el hidrógeno como vector energético clave y bajo en carbono está 

aumentando rápidamente en todo el mundo, en parte debido a su alta densidad energética 

gravimétrica. Siguiendo esta corriente, se han analizado diferentes métodos para su producción, 

especialmente aquellos impulsados por fuentes de energía renovables. El hidrógeno producido, 

posteriormente, se transporta siguiendo diversas estrategias y en distintas formas, como en 

estado líquido o como gas comprimido. Sin embargo, estos dos últimos métodos requieren 

estructuras sofisticadas y costes elevados. Al mismo tiempo, las redes existentes de transporte 

y distribución de gas natural (GN) representan una vasta infraestructura que podría utilizarse 

para transportar gas natural mezclado con hidrógeno (HBNG por sus siglas en inglés) a largas 

distancias de forma más económica que mediante tuberías exclusivas para hidrógeno. De 

hecho, mezclar hidrógeno en las redes de GN evita costes masivos asociados a nuevas 

infraestructuras, pero plantea cuestiones sobre el comportamiento de la mezcla, la transmisión 

de energía, el trabajo de los compresores y la integridad de los materiales, especialmente debido 

al fenómeno de fragilización por hidrógeno de los aceros a alta presión. 

El fenómeno de fragilización por hidrógeno podría ser la causa de fugas de HBNG desde una 

tubería o recipiente presurizado, y el pequeño tamaño molecular y la baja energía de ignición 

del hidrógeno pueden provocar rápidamente la formación de llamas turbulentas de tipo dardo 

de fuego. Estas llamas de difusión de alto momento emiten calor que puede impactar en 

estructuras cercanas y desencadenar eventos catastróficos en cadena. Su comportamiento está 

siendo actualmente estudiado, ya que la presencia de H₂ modifica el que sería el 

comportamiento clásico del GN. Por tanto, la predicción precisa de la geometría de los dardos 

de fuego (longitud y altura de elevación) y del flujo de calor radiactivo es esencial para definir 

las distancias de seguridad. PHAST es un software comercial con modelos semi-empíricos 

implementados que puede ofrecer una predicción óptima de los dardos de fuego de HBNG. 

Configurar este tipo de escenarios en PHAST puede ser muy útil para evaluar el caudal másico 

del dardo, la longitud de la llama y las distancias de seguridad, así como para estudiar la 

influencia de parámetros como el diámetro del orificio, la temperatura y presión de 

almacenamiento, las condiciones meteorológicas y la concentración volumétrica de hidrógeno 

en la mezcla. 
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En este trabajo, se desarrolla una Red Neuronal (NN por sus siglas en inglés) para estimar los 

efectos de los dardos de fuego. En primer lugar, se simularon escenarios de dardos de fuego de 

HBNG provenientes de tuberías de transmisión utilizando el software PHAST. Se construyó 

una base de datos configurando escenarios accidentales para obtener el caudal másico, la 

longitud de la llama y las distancias de seguridad para diferentes combinaciones de parámetros 

de entrada, como el diámetro del orificio, la temperatura y presión de almacenamiento, las 

condiciones meteorológicas y la concentración volumétrica de hidrógeno en la mezcla. Se 

realizó una pseudo-validación para garantizar que PHAST podía utilizarse dentro de los rangos 

específicos de los parámetros y se comparó con casos experimentales presentes en la literatura. 

Antes de desarrollar la red neuronal, los resultados de la base de datos fueron analizados y 

estandarizados como pasos de preprocesamiento. Se entrenó y optimizó una Red Neuronal 

Feedforward Multicapa (MLFFNN) sobre la base de datos construida, ajustando los 

iperparámetros para minimizar la función de pérdida. Se utilizaron las métricas MAE, MSE y 

R² para evaluar su rendimiento. El modelo entrenado fue capaz de reproducir con éxito la base 

de datos original, con errores MSE en el rango de las milésimas. 
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Glossary 

AZ = Alert Zone 
ATR = Autothermal Reforming 
BLEVE = Boiling Liquid Expanding Vapor Explosion 
BP = Backpropagation 
CCS = Carbon Capture and Storage 
CERTEC = Centre for Technological Risk Studies  
CFD = Computational Fluid Dynamics  
DL = Deep learning 
DNV = Det Norske Veritas 
DOT = United States Department of Transportation 
DZ = Domino Zone 
EA = European Commission 
EI = Emission Index 
EIA = US Energy Information Administration 
ENTSOG = European Network of Transmission System Operators for Gas 
EOS = Equation of State 
GHG = Greenhouse Gases 
GWP = Global Warming Potential 
H2 = Hydrogen 
HBNG = Hydrogen Blended Natural Gas 
HE = Hydrogen Embrittlement 
HEE = Hydrogen-Environment Embrittlement 
H2GEU = Hydrogen Grid Entry Unit 
HTHA = High Temperature Hydrogen Attack 
IEA = International Energy Agency 
IZ = Intervention Zone 
LHV = Lower Heating Value 
LNG = Liquified Natural Gas 
LR = Learning rate 
CH4 = Methane 
ML = Machine Learning 
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MLFFNN = Multilayer Feedforward Neural Network 
MMPS = Miller Multi Point Source 
MSE= Mean Square Error 
NG = Natural Gas 
NN = Neural Network 
NTS = Notched Tensile Strength 
PEM = Proton Exchange Membrane 
PHAST = Process Hazard Analysis Software Tool 
PID = Proportional-integral-derivative 
PSA = Pressure Swing Adsorption 
R2  = Coefficient of Determination 
RBF = Radial Based Functions 
ReLU = Rectified Linear Unit 
SDG =Sustainable Development Goals 
SMR = Steam Methane Reforming  
SOEC = Solid Oxide Electrolyte  
SRK = Soave-Redlich-Kwong 
TEA = Techno Economic Analysis 
W = Wobbe Index 
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1 Introduction 

1.1 Hydrogen trends 

1.1.1 Global and European hydrogen demand 

Fossil fuels, which are a primary energy source commonly used nowadays, emit GHG during 

the combustion process necessary for obtaining their thermal energy. They play a significant 

role in worldwide climate change. In particular they emit molecules such as CO2, CH4 and N2O, 

which are capable of absorbing a portion of the infrared radiation emitted by the Earth, 

becoming the main responsible for global temperature rising and posing a significant hazard to 

the ecological environment (Filonchyk et al. 2024). 

For this reason, in the last years, H2 has started to be considered an alternative energy vector 

because it produces zero carbon emissions when it is implemented in combustion and 

electrochemical processes. It must be consider also for its high gravimetric energy density: 

according to the International Energy Agency (IEA), the world consumed approximately 70 

million tons of H2 in 2020, and the demand was expected to steadily increase up to 2050 

reaching about 80·1018 J of energy (18% of the global energy demand) (IEA 2021).  

Following this argument, the European Commission's communication “A Hydrogen Strategy 

for a Climate-Neutral Europe”, published in July 2020, highlights the key role of H2 in 

achieving the EU's 2050 decarbonization targets (European Commission 2020). In the 

mentioned report, H2 is expected to play a significant role in reducing GHG emissions and in 

bridging the current gaps in renewable energy storage. One of the most prominent advantages 

of this gas is that it can be produced via electrolysis powered by electricity from renewables, 

having a prominent role not only in the decarbonization of fuel system (NG in particular) but 

also as a cross-sectorial link. Indeed, as an energy vector, it is crucial the opportunity that H2 

offers to avoid the requirements for instantaneous supply-demand balancing thanks to the many 

possibilities to store it easily at large scale; with promising environmental outcomes if the 

electricity source can be renewable too. 

The growing interest in H2 was anticipated in the “Clean Planet for All” report, published in 

November 2018. In this report it was set out the EU's climate-neutral strategic vision that 

planned to increase the current share of H2 from less than 2% to 14% of Europe's energy mix 
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by 2050. Finally, the use of pure H2 could help the EU achieve its goal of reducing GHG 

emissions by at least 40% by 2030 compared to 1990 levels (Directorate-General for Climate 

Action (European Commission) 2019). 

Globally, H2 is increasingly recognized as a pivotal energy vector beyond the European borders 

(Figure 1). In North America, both the United States and Canada have laid out comprehensive 

roadmaps to scale up clean H2 production and deployment, leveraging federal incentives and 

infrastructure planning (Office Of Energy Efficiency And Renewable Energy 2023). In Asia, 

China’s “2021–2035 Hydrogen Plan” and Japan’s “Basic Hydrogen Strategy” set ambitious 

production and utilization targets, while South Korea plans a huge increase of H2 fuel-cell 

vehicles and the country capacity of electrolyzers by 2040. The trend is followed by Australia, 

Middle East and Asia, and there are also emerging projects in Africa (Remme 2024). 

 

Figure 1. Predicted global H2 demand (Chae et al. 2022). 

 

1.1.2 Hydrogen production 

Hydrogen production can be classified into five categories based on carbon emissions and 

production methods:  

a) Grey hydrogen is generated from fossil fuels such as natural gas and coal using Steam 

Methane Reforming (SMR) or Autothermal Reforming (ATR), both of which emit 

CO2. This is the cheapest and most used method, accounting for 76% of global 
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production and generating 830 Mton of CO2 per year (Rödl, Wulf, and Kaltschmitt 

2018). 

b) Blue hydrogen combines the traditional technologies for the grey H2 with Carbon 

Capture Utilization and Storage (CCUS) methods. The CO2 generated during SMR 

passes through a process of purification, which could be, for example, natural gas (NG) 

sweeting using various alkanolamines (absorption by MEA, DEA, MDEA) or 

membrane separation of syngas. Producing H2 from fossil fuels is likely only 

appropriate when carbon capture and sequestration opportunities are low-cost and 

readily available near the site of H2 production (AlHumaidan et al. 2023). 

c) Green hydrogen is produced through the environmentally friendly process of water 

electrolysis powered by renewable energy sources (mainly wind and Sun). This method 

generates minimal carbon emissions during production. It uses electricity to split water 

into H2 and O2 via an electrochemical reaction. 

d) Purple hydrogen is obtained via electrolysis powered by nuclear energy. 

e) Proton hydrogen production involves membrane-based separation applied to oil 

reservoirs. This technique selectively filters H2 gas from fossil fuel-based gas mixtures 

or vapours but requires expensive catalysts, such as platinum. 

Among all these methods, low carbon-intensity hydrogens, such as green, purple, or proton H2, 

are essential for achieving long-term carbon neutrality in energy consumption (Speirs et al. 

2018). However, while different electrolysis methods exist, including those relying on proton 

exchange membranes (PEM), alkaline water electrolyzers, and solid oxide electrolyzer cells 

(SOEC), their high initial investment costs and significant power consumption renders them 

uneconomical, inefficient and unsuitable for mass adoption (Topolski et al. 2022). The 

technology is expected to become more profitable as it matures.  Estimates suggest that the 

current cost of H2 (ranging from €2.20 to €5.84 per kilogram) could potentially be reduced to 

between €0.62 and €2.30 per kilogram by 2050 (MacGregor 2025). Additionally, the 

production of green or purple H2 requires significantly more water than blue, grey, or proton 

hydrogen. 

Furthermore, the utilization of H2 as an energy source can be performed via various 

technologies, such as fuel cells, combustion and mixing with other fuels. However, H2 suffers 

a disadvantage in its volumetric energy density, which is only 3 Wh/L, leading to difficulties in 
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its storage. In order to store H2 effectively, different H2 storage technologies could be used, 

such as compressed and liquefied form, liquid organic carriers or through ammonia (NH3). In 

particular this last chemical vessel has high H2 density (17.8 %wt), as well as high flexibility in 

its utilization, including mobile and stationary applications. Due to its stability for long-term 

storage and transportation, ammonia can fulfil the demand to store the energy in time (stationary 

energy storage) and in space (energy export and import). NH3 can be utilized by extracting its 

stored H2 via thermal cracking or directly utilized as fuel. Another option is direct use as 

agricultural fertilizer, refrigerant gas and for the manufacture of explosives, pesticides and other 

chemicals (Aziz, Wijayanta, and Nandiyanto 2020). 

 

1.1.3 Hydrogen transportation 

Apart from the production step, the sustainable economic supply of energy for H2 conversion 

is dependent on the availability of local resources and the method of transportation. H2 supply 

and demand chains are classified as either off-site or on-site, based on the supply, demand 

locations and production volume. Off-site facilities produce H2 at a large-scale intermediate H2 

production base, and the produced H2 is transported to fueling stations by trucks or pipelines. 

Instead, on-site facilities produce H2 voluntarily at local factories or fueling stations, which is 

less efficient but has a lower loss rate during transportation. For this motive, off-site production 

methods predominate and only a little H2 is produced at local fueling stations (Rödl, Wulf, and 

Kaltschmitt 2018). 

Nowadays, trucking is one method of transporting H2, in either its compressed gas (GH2) or 

liquid (LH2) form. However, the low density of H2 requires it to be pressurized at high pressure 

to achieve an elevated density energy.  

In particular, GH2 is transported in a tube trailer equipped with a high-pressure storage container 

on a special vehicle to a H2 fueling station. It requires relatively high pressures (180 bar or 

higher) increasing the capital investment associated (Buffi, Prussi, and Scarlat 2022). 

Moreover, the US Department of Transportation (DOT) regulations on H2 tube trailer can serve 

as a comprehensive reference: H2 compression pressure per unit must not exceed 250 bar, and 

each trailer is limited to transporting a maximum of 800 kg per trailer  (Office Of Energy 



Safety distances estimation for hydrogen blended natural gas jet fires using neural network methods  

 

5 
 

Efficiency And Renewable Energy 2023). However, the trucking method may still be efficient 

for distances under 200 km, especially in areas where alternative means of transport do not 

exist. 

The mass limitation could be resolved by LH2, which increases the density by a factor of 800, 

but it requires an energy-intensive liquefaction process and special cryogenic insulated tanks to 

maintain the necessary low temperatures (Chae et al. 2022). 

Among the available options, pipelines are considered the most cost-effective and energy-

efficient method for transporting large volumes of H2 over long distances, with cost estimates 

ranging from €0.044 to €2.64 per ton, depending on the distance (Buffi, Prussi, and Scarlat 

2022). In 2016, more than 4,500 km of H2 pipelines had been installed around the world (Figure 

2). 

The initial capital investment associated with H2 pipeline installation are material costs, labour 

costs, and interconnection costs. However, typical pipeline materials like steel may be 

weakened by H2 due to a phenomenon called embrittlement (see section 1.2.5), which can occur 

when they are exposed to a high concentration and high-pressure H2 over an extended period. 

The risk of H2 embrittlement necessitates the use of expensive materials, and depending on the 

pipeline diameter and operating pressure, material costs can be up to 68% higher compared to 

conventional steel pipelines. Embrittlement also increases the risk of leakage, leading to higher 

maintenance costs due to the need for pipe replacement. In the end, while pure H2 pipelines are 

the most cost-effective option in the long term, they require specialized infrastructure, such as 

dedicated H2 pipelines and compressors, and are time-consuming to implement (Chae et al. 

2022). 
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Figure 2. Capture of global H2 pipelines installed in 2016 (IChemE 2025). 

 

To help contextualizing and providing a practical perspective on the materials and pressures 

currently being used in H2 pipelines, Table 1 summarizes the design specifications of H2 

pipelines currently in operation worldwide. These pipelines are usually made of carbon steels 

with cases where operative pressure reaches 131 bar too. 

Table 1. Operating specifications for H2 pipelines worldwide (Cristello et al. 2023). 

Location Diameter (mm) Operating pressure (bar) Material 
Texas 150 - 305 24 - 131 Steel Pipe 

Westliche 203 - 254 24 - 131 Steel Pipe 
Louisiana 150, 203, 305 24 - 131 Steel Pipe 

Los Angeles 150, 254, 305 24 - 131 Steel Pipe 
Texas 203 24 API 5L Grade B 
Texas 36 51 API 5L X60 

Netherlands 304.8 65 - 100 Seamless Carbon Steel 
Canada 273 38 Gr.290 

UK - 30 Carbon Steel 
Germany - 2 - 5 API 5L L290 
France 100 9.7 API 5L X52 

 

1.1.4 Hydrogen Blended Natural Gas (HBNG) 

One of the promising solutions to the economical and time-consuming problems of transporting 

large volumes of pure H2 over long distances is blending this gas with into the existing NG 
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pipeline networks. Indeed, blending H2 produced from low-carbon sources, such as wind and 

solar energy, into NG could potentially reduce the carbon intensity of difficult-to-decarbonize 

sectors that are currently served by NG, including peak electricity power production, residential 

and commercial heating, and industrial processes. As example, in Ontario (Canada) two cases 

were studied about the economics and emissions of using surplus power to produce electrolytic 

H2 to blend and distribute in NG infrastructure. The first one employed buffer storage for H2 

and the second did not. Their results indicated that delivering HBNG to end-users could reduce 

CO2 emissions by 9,429 tons with H2 storage and 3,504 tons without H2 storage (Mukherjee et 

al. 2015). 

The US Energy Information Administration (EIA) in its 2021 annual Energy Report (U.S. 

Energy Information Administration 2021) predicted that the supply and demand for NG would 

steadily increase until 2050, and that pipelines would be used more actively to supply NG. 

Then, following HBNG alternative strategy and to achieve climate neutrality, several 

international projects have been launched in recent years. In general, they have examined the 

possibility of producing, transporting and distributing H2 in the NG network, as well as H2 

tolerance of currently available gas appliances (see section 3.3). In Europe, for example, to 

facilitate the transition to the H2 economy, the European Commission funded the 

NATURALHY project to study the potential for the existing NG pipeline network to transport 

H2 from manufacturing sites to users (NATURALHY 2010). 

Table 2. List of major projects regarding H2 blended natural gas transportation (Galyas et al. 2023). 

Project Country Objectives Blended H₂ 
(% vol.) 

HyDeploy UK Blending H2 into NG pipelines 20 

NATURALHY Netherlands Preparing for the H2 economy by using the existing NG 
system as a catalyst 22 

Fort Saskatchewan 
Hydrogen Blending 

Project 
Canada Blending H2 into NG pipelines that serve residential 

and commercial buildings 5 

H21 UK Investigation of 100 % H2 usage with existing natural 
gas system 100 

Hyblend US Technical evaluation for blending H2 in NG pipelines – 
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GRHYD France Blending H2 into gas distribution lines 20 

Snam Italy Blending H2 into gas transmission lines 10 

Enbridge and 
Cummins Hydrogen-

Blending Project 
Canada Blending H2 into gas distribution lines in Markham, 

Ontario and performing a routing study < 2 

Hy4Heat UK Comprehensive assessment of using hydrogen as a fuel 
in residential and commercial buildings 100 

Hydrogen injection 
in the gas grid Denmark Blending H2 into gas distribution and safety evaluation 15 

Cleangas Turkey Turkey Injecting renewable H2 into NG and gas mixture 
evaluation 20 

EN-H₂ Portugal Carbon neutralization with the H2 economy 15 

 

To achieve this type of transport there are two main methods: on-site method, where NG is used 

as the feedstock for H2 production and NG is directly transported to a fuelling station where H2 

is produced; off-site method, where H2 is produced at its production base, and it can be blended 

with NG and transported through existing pipelines to H2 fuelling stations. 

H2 and NG are separated and purified at intermediate destinations, and then extracted H2 can 

be distributed to consumers via the local transportation network for use in fuel cell applications 

(Figure 3). Also, the end-user may burn the gas mixture directly within existing gas-fired 

engines, thereby reducing carbon emissions compared to NG (Figure 3). 

The implementation of this blending technology requires careful consideration of the H2 

separation and purification processes (Figure 3), as well as any leakage problems that may arise 

as a result of H2 embrittlement as mixed gas is pumped through the pipelines (Chae et al. 2022). 
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Figure 3. H2 production alternatives and blended H2 pathways (Cristello et al. 2023). 

 

A typical system for blending H2 into NG grids is shown in Figure 4 and it includes an 

electrolyzer, a H2 buffer storage tank, and a blending unit. In this process it is important to 

ensure that HBNG is homogeneous with uniform behaviour along the entire length of the 

pipeline. If the two gases have significantly different densities, they may stratify, leading to 

different flow behaviour and leak characteristics. This, in turn, can result in uneven energy 

distribution and operational challenges with the pipeline (Cristello et al. 2023). 

 

Figure 4. Scheme of a typical system for blending H2  into natural gas grids (Cristello et al. 2023). 

 

Table 3 lists some of the tried blending systems: in Australia's Hydrogen Park SA project 

renewable electricity enters the site directly from the local electricity network to power the 
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electrolyzers. From this one, O2 is vented and the H2 purified up to 99% (purity necessary for a 

fuel cell), by a purification equipment between the electrolyzer and a H2 buffer tank to remove 

impurities. Then, H2 is blended with NG using the gas blending equipment. The blending unit 

is equipped with a H2 analyzer located downstream to measure the thermal conductivity of the 

blended gas, ensuring the H2 content remains within the allowable limit (Australian Gas 

Infrastructure Group 2023). 

Still in Australia, ATCO's CEIH project blends up to 25% vol. of H2 using a flow control system 

with gas chromatography (GC) and a PID controller (ATCO Gas Australia 2019).  

In the HyDeploy project, the physical equipment installed was a 0.5 MW electrolyzer, a buffer 

tank for H2, a grid entry unit (H2GEU) which mixes the H2 with incoming NG and sample point 

around the network to allow monitoring. H2GEU measures the incoming NG Wobbe Index and 

calculates the amount of H2 that can be blended while remaining within the Gas Safety 

Management Regulations. Up to 20 vol% of H2 is mixed with the NG, and the blended gas 

passes through a “volume loop” for a composition check before returning to the main feed line. 

If the blended gas is out of specification, the system automatically reverts to NG and purges the 

gas out of the specification. Similarly, any process upset triggers a return to NG (Isaac 2019). 

All these H2 blending methods are used to produce developed fully mixed gas mixtures before 

they are transported through pipelines to prevent gas stratification. When blended gas is 

transported under turbulent flow conditions, H2 and NG do not stratify in the pipeline, solving 

the problem of homogeneity.  

Table 3. Examples of H2 blending systems (Cristello et al. 2023). 

Project Country Network Electrolyser 
Capacity 

Blended H2 
(% vol.) System 

HyP SA Australia Distribution 1.2 MW 5 
H2 purification equipment between 
the electrolyzer and the H2 buffer 

tank to remove impurities 

ATCO-
CEIH Australia Distribution 0.15 MW 5 - 25 GC and PID Control in a flow 

control system 

HyDeploy UK Distribution 0.5 MW 20 Mixing loop to blend H2 with NG 
before injection into NG grid 
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In order to examine the potential conversion of an NG pipeline to a HBNG pipeline, two types 

of pipelines are considered: transmission line and distribution line. As shown in Figure 5, two 

different lengths are used as reference. In particular, transmission lines generally operate at 

higher pressures and transport larger volumes over long distances, while distribution lines tend 

to operate at lower pressures and cover shorter distances. In transmission pipelines, gas is 

usually transported using centrifugal compressors. The number and location of these 

compressors are selected to ensure hydraulically stability and safe gas delivery throughout the 

system.  

 

Figure 5. Simulated transmission and distribution pipelines (Cristello et al. 2023). 

 

The operating conditions ranges are provided in Table 4; however, specific values may vary by 

region and gas provider. 

Table 4. Pipeline operating conditions (Melaina, Antonia, and Penev 2013). 

Conditions 
Distribution Transmission 

Min Max Min Max 

Pressure (bar) 0.017 21 41 138 

Temperature (°C) -6 60 -6 60 

 

Since the density, calorific value, compressibility, and other physical properties of HBNG differ 

greatly from the originally pure NG (see 1.2.1), this will inevitably affect the economic and 

environmental performance of the pipeline system. From the economic perspective, the 

operating costs of the NG pipelines are mainly due to energy consumption of the NG 

compressor, which is an indispensable active hydraulic component to compensate for the 

pressure losses during gas flow. Typically, the compressor consumes about 3 - 5% of the 

transported gas and accounts for about 50% of the overall operating expenses. The energy 
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consumption of the compressor mainly depends on the compression head, mass flow, and 

operation efficiency. Due to variations in the properties of the mixed gas, compressor operating 

parameters (e.g., compression head, efficiency) and energy consumption will change to some 

extent (B. Zhang et al. 2024). 

In the European Union, the twenty-eight Member States are connected by over 200 cross-border 

pipelines creating a huge and already available long distance transport system. Indeed, Europe’s 

high-pressure gas transmission network, managed by the European Network of Transmission 

System Operators for Gas (ENTSOG), stretches over approximately 500,000 km across the EU 

and neighbouring countries (ENTSOG 2015). 

 

Figure 6. Map of the European NG network (Carvalho et al. 2009). 

 

1.2 Factors to consider with HBNG 

When investigating the blending of H2 in NG networks, most of the researches agree that the 

operating network is suitable for small-scale H2 uptake, but there are several critical issues in 
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the topic due to the properties of H2 (Galyas et al. 2023). For example, the small size of the H2 

molecule, along with its lower volumetric density and viscosity, can pose safety risks for 

pipelines originally designed to transport NG. In addition, the presence of H2 significantly 

changes the transferable energy capacity of the NG network. 

To maintain energy balance and depending on H2 concentration, the blended gas mixture may 

need to be transported at higher flow rates than NG. This may result in higher operating 

pressures and potentially exceed the design limits of compressors and pipelines, which were 

originally designed for NG transmission and distribution. Therefore, it is important to consider 

design changes to ensure the safe transportation of HBNG through existing pipeline systems 

and identify any potential risks and operational issues related to H2 concentration.  

 

1.2.1 H2 vs. CH4 

NG typically consists of more than 95% CH4 by volume, with other gases comprising smaller 

fractions, as shown in Table 5. Therefore, for the further sections and calculations, it was 

assumed acceptable to simplify NG with CH4.  

Table 5. Typical NG composition. 

 

H2 and CH4 have different physical properties (Table 6). H2 has a molecular weight that is 8 
times lower than CH4, which results in significantly lower values for most physical properties 
except viscosity. The viscosity of H2 is approximately 30% lower than that of CH4 at room 
temperature (25 °C).  

Table 6. Comparison between H2 and CH4 in terms of physical properties at T = 0 °C and P =1.0125 bar (Korb, 
Kawauchi, and Wachtmeister 2016; Goldmeer and Catillaz 2021; Kurz, Lubomirsky, and Bainier 2020). 

Properties H2 CH4 Units 

Molecular Weight 2.016 16.043 kg/kmol 

Density (Gas) 0.08 0.65 kg/m³ 

Constituent CH₄ C₂H₆ N CO₂ C₃H₈ n-C₄H₁₀ C₄H₁₀ Others 

Concentration (% vol.) 95.3 2.16 1.86 0.44 0.19 0.02 0.02 0.01 



  MSc. Thesis 

14 
 

Density (Liquid) 71 430–470 kg/m³ 

Specific Gravity 0.0696 0.555 — 

Viscosity (at 25 °C) 0.89 1.11 10⁻⁵ Pa·s 

Diffusion Coefficient in Air 0.61 0.16 cm²/s 

Solubility in Water 0.0016 0.025 kg/m³ 

 

In terms of combustion and energy properties (see Table 7), H2 contains 2.4 times more energy 

per unit mass than CH4. However, the lower heating value (LHV) of H2 per unit volume is three 

times lower than that of CH4 due to its low density at standard conditions. This means that the 

energy content of the blended gas may be reduced with higher concentrations of H2. 

From the safety perspective, higher concentrations of H2 tend to increase the risk of fire and 

explosion. Compared to CH4, pure H2 has a much broader flammability range (5.3 times) and 

detonation-limit range (7.1 times). It also has a significantly lower ignition energy (14.5 times 

lower), which makes it more prone to ignition and increases the risk of fire. The low density of 

H2 also leads to higher diffusivity in mixtures, which can result in more severe flammable and 

detonable events in confined spaces. 

Table 7. Comparison between H2 and CH4 in terms of combustion and energy properties (Kurz et al. 2020). 

Properties H2 CH4 Units 

Energy Density 120 50 MJ/kg 

Lower Heating Value (LHV) 10.2 34 MJ/m³ 

Higher Heating Value (HHV) 12.5 37.8 MJ/m³ 

Flammability Limits (in air) 4–75 5–15 % vol. 

Detonation Limits (in air) 18.3–59 6.3–14 % vol. 

Minimum Spark Ignition Energy 0.02 0.29 MJ 

Autoignition Temperature 858 810 K 

Laminar Flame Velocity 2.1 0.4 m/s 

Specific Heat Capacity 14.86 2.22 J/(g·K) 



Safety distances estimation for hydrogen blended natural gas jet fires using neural network methods  

 

15 
 

Specific Heat Ratio 1.383 1.308 - 

Wobbe Index 38.71 45.26 MJ/m³ 

Adiabatic Flame Temperature 2477.60 2235.93 K 

 

The Wobbe index (W), represents the exchange capacity of different fuel gases and it is used 

to determine how changes in gas quality affect pipeline capacity. A high Wobbe index value 

suggests overheating or the presence of a significant amount of carbon monoxide, while a low 

value suggests a risk of flame instability or backfire. When 10% concentration of H2 is mixed 

with NG results in a Wobbe index decrease of approximately 2% from baseline of pure NG 

(Soltyk 2007). 

 

1.2.2 Characteristic gas flow and compressibility factor 

In the work Galyas et al. (2023), the characteristic gas flow of a mixture between NG and H2 

was studied to predict the change in transferable energy content. The characteristic gas flow 

formula describes the pressure conditions of gas flow in pipelines and is based on the frictional 

Bernoulli energy equation and additional ones for the pressure dependence of the gas density 

and the flowrate (Tong, Qin, and Dong 2023). The Equations (1) and (2) are written for the pure 

CH4 and for the CH4-H2 mixture: 
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∙ 𝑹

∙ 𝝀𝒎𝒊𝒙
̅̅ ̅̅ ̅̅ ∙ 𝑴𝒎𝒊𝒙 ∙ 𝑻𝒎𝒊𝒙

̅̅ ̅̅ ̅̅ ∙ 𝒛𝒎𝒊𝒙̅̅ ̅̅ ̅̅ ∙
𝑳

𝒅𝒊
𝟓

𝒒𝒎𝒊𝒙
𝟐  (2) 

where 𝑝1 and 𝑝2 are relatively the pressure at the starting and ending points, 𝑝𝑠 and 𝑇𝑠 the 

standard pressure and temperature, 𝑅 the universal constant, 𝜆𝐶𝐻4
̅̅ ̅̅ ̅̅  and 𝜆𝑚𝑖𝑥

̅̅ ̅̅ ̅̅  the average friction 

factors, 𝑀𝐶𝐻4 and 𝑀𝑚𝑖𝑥 the molecular weights, 𝑧𝐶𝐻4
̅̅ ̅̅ ̅̅  and 𝑧𝑚𝑖𝑥̅̅ ̅̅ ̅̅  the average compressibility 

factors, 𝑑𝑖 the diameter and 𝑞 the standards flowrate. 
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In the investigated scenarios the pressure conditions were kept identical in the studied horizontal 

pipe segment with constant diameter and without side draw, so the starting point and endpoint 

pressures are kept constant. Therefore, the left-and sides of Equations (1) and (2) are identical, 

and consequently the right-hand sides must also be the same. 

The value of friction factors (𝜆𝐶𝐻4
̅̅ ̅̅ ̅̅  and 𝜆𝑚𝑖𝑥

̅̅ ̅̅ ̅̅ ) in the gas transmission system mainly depend on 

the relative roughness of the inner pipe wall due to the large Reynolds numbers, but the gas 

composition has negligible impact on the friction factor; therefore, the average friction factors 

are set to be identical. 

The effect of gas composition on the temperature distribution is practically insignificant 

(remains below 1.5%) and could be neglected (Kuczyński et al. 2019). Considering these 

simplifications proposed, from Equations (1) and (2), the ratio of flowrates can be expressed: 

𝒒𝒎𝒊𝒙

𝒒𝑪𝑯𝟒

= √
𝑴𝑪𝑯𝟒

𝑴𝒎𝒊𝒙
∙ √

𝒛𝑪𝑯𝟒
̅̅ ̅̅ ̅̅

𝒛𝒎𝒊𝒙̅̅ ̅̅ ̅̅
 (3) 

The relative flow capacity of CH4 -H2 system depends on its specific gravity and 

compressibility factor. 

Thus, the compressibility factor plays significant role in the transmission of H2-NG mixtures, 

since its behaviour is opposite for H2 and for NG with increasing pressure. Therefore, the 

change of the compressibility was determined as a result of numerous runs in Aspen HYSYS® 

simulation software; it has been established that the best fit can be achieved by using the Soave-

Redlich-Kwong (SRK). 

Figure 7 shows the relative flowing capacity of the pipeline as a function of H2 content of the 

gas mixture. In particular, the compressibility factor seems differing slightly from 1, having a 

minimum of 0.968 when pure H2 is transported. 

Instead, the increase in flowrate appears to be more significantly dependent on the square root 

of the ratio of specific gravities, due to the nearly eightfold difference in molecular weights. For 

gas mixtures with 10 mol% and 20 mol% H2 content the standard gas flow rate increase is 

approximately 4% and 9%, respectively. In case of transporting pure H2 by pipeline the standard 

gas volumetric flow rate is increased by 165% compared to pure CH4 when the pressure 

conditions of the investigated gas transmission pipeline are kept constant.  
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Figure 7. Effect of H2 admixture on the flow rate (Galyas et al. 2023). 

Also, the compressibility factor trends were investigated, highlighting differences between CH4 

and H2. While the compressibility factor of CH4 decreases as the pressure increases, the H2’s 

compressibility factor increases. Another significant difference is that the compressibility factor 

of H2 is practically independent of the temperature between 0 and 50 °C. 

 

Figure 8. The compressibility factor curves of CH4 and H2 (Galyas et al. 2023). 
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Getting deeper, Figure 9 shows the compressibility factor curves of 20 mol% H2 in CH4 -H2 

gas mixture. These curves have and overall decreasing tendency with increasing pressures, 

which is more significant at lower temperatures. 

 

Figure 9. Compressibility factor curves for 20 mol% H2 concentration case (Galyas et al. 2023). 

 

1.2.3 Energy transmission 

Energy transmission is a key factor to consider when converting an NG pipeline to a HBNG 

one. The amount of transmitted energy can be calculated by multiplying the standardized 

operating flow rate by the LHV of the gas mixture.  As explained in section 1.2.1, H2 contains 

2.4 times more energy per unit mass than CH4, but the LHV of H2 per unit volume is 3 times 

lower than the one from CH4 due to its low density at standard conditions. Therefore, when 

using pure H2 the energy transmission is approximately 3.3 times lower than when using pure 

CH4. In other words, the lower the concentration of H2 in the gas mixture, the higher the energy 

transmission for the same flow rate and pressure. 

The energy throughput capacity is illustrated in Figure 10 for simulated transmission (a) and 

distribution (b) pipelines (Cristello et al. 2023). For example, the transmission pipeline with 

NG would typically transmit 4.80×10⁸ MJ/day, but this would drop to 1.44×10⁸ MJ/day with 

pure H2 in the pipeline. Thus, if it is desired to maintain the same energy transmission in a 
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pipeline conversion, the flow rate and/or operating pressure must be increased accordingly. 

These changes may not be trivial; increasing the operating pressure may be constrained by the 

pipe material used, or it may be limited by the number of compressors that can be installed 

(Cristello et al. 2023). 

 

Figure 10. Energy transmission by H2  concentration in the gas mixture (Cristello et al. 2023). 

 

1.2.4 Temperature during pressure drops 

Fluid transport through pipelines can result in temperature variations due to two main sources. 

The first is the heat transfer between the inside of the pipeline and its surroundings. The second 

is the Joule-Thompson effect, which is a change in temperature that occurs when gas expands 

due to pressure differences between the inlet and outlet. This effect is described by Equation 

(4): 

𝑱𝒕 = (
𝝏𝑻

𝝏𝑷
)

𝑯
 (4) 

Where: Jt is the Joule-Thompson coefficient (°C/bar), T is the temperature (°C), and P is 

pressure (bar). H denotes that the partial derivative is evaluated at constant enthalpy.  

The Joule Thompson coefficient (𝐽𝑡) is a property of the gas being used as well as the 

temperature and pressure of the gas prior to expansion. Every gas has an inversion point at 

which the Joule-Thompson coefficient changes sign and the gas begins to either warm or cool. 
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Most gases, including CH4, have a high inversion point temperature, meaning that a pressure 

drop has a cooling effect. H2, however, is one of the few gases that has a very low inversion 

point, with an inversion point of -71 °C at atmospheric pressure. As a result, H2 generally 

experiences a warming effect when subjected to a pressure drop. Constant values for CH4 (0.5 

°C/bar) and H2 (0.035 °C/bar), obtained from the literature (Haeseldonckx and Dhaeseleer 

2007), are normally assumed. The highest temperature change occurs at higher concentrations 

of H2 and transmitted energy. 

 

1.2.5 Hydrogen embrittlement 

One major concern when using H2 in pipelines is its ability to permeate through materials. H2 

can easily diffuse into the lattice structure of materials, causing them to become weaker and 

more prone to cracking under stress. This process, known as H2 Embrittlement (HE), can be a 

significant issue for pipelines and lead to unexpected failures. HE can reduce mechanical 

properties, such as tensile strength, ductility, fracture resistance, and fatigue resistance, making 

pipelines more prone to loss of ductility and cracking. 

Gaseous H2 has a significant impact on fatigue and fracture resistance of line pipe steels, and 

questions remain regarding how to account for this when assessing steel pipeline compatibility 

with H2.  

A report from the US Department of Energy indicates that the majority of NG networks are 

made of carbon-steel materials (i.e., 99.7% of transmission and 50.4% of distribution lines) 

(Department of Transportation 2010). As such, when considering the use of existing NG 

networks for H2 transportation, it is crucial to determine whether the existing metallic materials 

are compatible with H2 gas service. Carbon steels, including ASTM A 106 Grade B, ASTM A 

53 Grade B, and API 5L Grades X42 and X52, have been shown to be suitable for use in H2 

pipelines with pressures up to 140 bar, according to ASME B31.12 (Schmura, Klingenberg, 

and Corporation 2005). 

The Hydrogen-Environment Embrittlement (HEE) Index is a metric used to evaluate the 

potential for hydrogen embrittlement in a material. It compares the Notched Tensile Strength 

(NTS) of a specimen when tested in a H2 environment to the NTS when tested in air or helium. 
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The NTS of a material is the value given by performing a standard tensile strength test on a 

notched specimen of the material. 

The HEE Index can be calculated using the equation: 

HEE Index = NTS Ratio = NTS in hydrogen/NTS in air or helium (5) 

The HEE Index is a ratio ranging from 0 to 1, with higher values indicating a lower 

susceptibility to hydrogen embrittlement (Table 8). Materials with an HEE Index close to 1 are 

therefore preferred. 

Table 8. Hydrogen embrittlement (HE) severity and HEE Index ranges (Cristello et al. 2023). 

HE Severity HEE Index (NTS Ratio) 

Negligible 1.00 - 0.97 
Small 0.96 - 0.90 
High 0.89 - 0.70 

Severe 0.69 - 0.50 
Extreme 0.49 - 0.0 

 

Table 9 summarizes HE severity, HEE Index and the compatibility of common industrial 

materials with H2. It also specifies the H2 pressure at which the HEE Index was measured, either 

69 bar or 689 bar. Notably, ferritic steels commonly used in current gas pipelines exhibit HEE 

severity ranging from high to low when exposed to pressures up to 69 bar at room temperature. 

More ductile materials, such as stainless steels (304 and 316) and copper-based alloys, show 

relatively low HEE severity even at high pressures (689 bar) and demonstrate good resistance 

to hydrogen embrittlement in both gaseous and liquid states. 

Table 9. Hydrogen embrittlement (HE) severity and HEE Index for commercialized materials (Cristello et al. 

2023). 

Material 
Lab-scale HE Evaluation Material compatibility H2 

H2 pressure 
(bar) 

HE 
Severity 

HEE Index (NTS 
Ratio**) Gas Liquid 

Ferritic 
Steels 

(carbon 

A106-
Gr. B 69 High - Acceptable Not acceptable 

A516 69 High 0.83 Acceptable Not acceptable 
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steels and 
low alloy 

steels) 

API 5L 
X42 69 High - Acceptable Not acceptable 

API 5L 
X52 69 High 0.86 Acceptable Not acceptable 

API 5L 
X60 69 Small 0.92 Acceptable Not acceptable 

API 5L 
X65 69 Small 0.94 Acceptable Not acceptable 

API 5L 
X70 69 Small 0.90 Acceptable Not acceptable 

Austenitic 
Steels 

304L 689 Small 0.87 Acceptable Acceptable 

316 689 Negligible 1 Acceptable Acceptable 

Copper 
Based 

Copper 
(OFHC*) 689 Negligible 1 Acceptable Acceptable 

70-30 
Brass 689 Negligible - Acceptable Acceptable 

OFHC*: Oxygen free-high thermal conductivity. 
NTS Ratio**: calculated in H2 and helium environments. 

 

The HEE index can also be correlated with the operating pressure through a proportionality 

constant and a material-dependent exponent, as described in Equation (6). This relationship 

reinforces that higher pressures increase the risk of H2 embrittlement. 

𝑯𝑬𝑬 𝑰𝒏𝒅𝒆𝒙 =  𝜶(𝑷)−𝒏 (6) 

Where: 𝛼 is a proportionality constant, 𝑃 is the H2 pressure (bar), 𝑛 is the material-dependent 

decay exponent. 

Temperature is another factor that strongly influences H2 embrittlement behaviour. In general, 

hydrogen embrittlement occurs at temperatures below 95 °C. At high temperatures (> 200 °C), 

H2 embrittlement is usually not a problem for most materials. However, High Temperature 

Hydrogen Attack (HTHA), also known as hydrogen attack, can be a concern. This occurs when 

H2 dissociates into its atomic form and diffuses into steel, reacting with carbon to form CH4. 

This can cause various problems, including fissures and cracks in the pipeline. While each 

material’s resistance to HTHA varies and depends on both temperature and pressure, API 941 

provides a comprehensive list of recommended practices and operational limits for different 

steels (Inspectioneering 2022). 
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1.3 Jet fires  

Jet fires are turbulent diffusion flames following the ignition and combustion of a flammable 

fluid coming out continuously from a pipe or orifice, which burns close to its release point. 

Between the release point and the flame there can be a zone, called lift off zone, where there is 

no combustion because there is a high quantity of fuel, and the velocity is very high (Casal 

2018a). 

Due to the high degree of turbulence, the combustion efficiency is usually higher in jet fires 

than in other flame events, such as pool fires, and therefore they are more dangerous due to the 

heat they can transfer and the potential direct impact of the jet on other equipment. Thus, in the 

evaluation of the hazard posed by jet flames, the accurate determination of the likelihood of 

flame impingement and/or the amount of radiant energy received by objects at a distance from 

the flame is of primary importance. 

If a jet fire accident occurs in a plant in which the density of equipment is high, as happens in a 

process plant or in an oil platform, its flames impingement and thermal flux on an equipment 

and thermal flux can originate another release, fire or explosion, with the consequent escalation 

of the effects and consequences of the whole accident. This is called “domino effect”. The 

domino effect has been defined by Delvosalle (1996)  as “a cascade of events in which the 

consequences of a previous accident are increased both spatially and temporally by the 

following ones, thus leading to a major accident”. 

A good example is the serious accident that occurred in a petrochemical plant in Priolo, Italy, 

in 1985 (Casal 2018b). The failure of an instrument caused the increase of pressure in the 

reboiler of a distillation column and a safety relief valve was activated; the flammable gas 

released was ignited, forming a jet fire. This jet fire impinged on a pipe with a diameter of 600 

mm containing ethylene at 18 bar that, after a relatively short time failed, originating a very 

large jet fire. This impinged on a set of cylindrical storage tanks located at a distance of 60 m; 

one of them underwent an explosion (BLEVE) followed by a fireball; the ejected fragments 

damaged other equipment, originating other fires. The plant had been evacuated, so there were 

no fatalities (one operator wounded), the plant was seriously damaged: a serious accident, 

started by a relatively small jet fire. 
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Figure 11. An example of a domino effect originated from a jet fire (Casal 2018b). 

 

Table 10 provides information on several domino accidents in NG transmission pipeline 

systems involving jet fire impingement, that occurred between 1971 to 2020. These incidents 

serve as stark reminders that regardless of the initial trigger for an accident, be it corrosion, 

excavation activities, or an explosion, the moment a jet of flammable fluid is released and 

subsequently ignites while impinging on a pipeline, there is a substantial possibility of a chain 

reaction occurring. This domino effect can lead to a series of interconnected accidents, 

intensifying the overall impact and magnitude of the incident. 
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Table 10. Several cases of jet fire domino effect in parallel pipelines (Foroughi, Casal, and Pastor 2023). 
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1.3.1 HBNG jet fires 

Pipeline transportation of HBNG is susceptible to leakage or rupture accidents caused by 

pipeline construction, corrosion and, as discussed previously, H2 embrittlement, posing 

significant threats to the environment, human safety and property.  

From a safety perspective, increasing H2 content in NG grid markedly raises the likelihood and 

severity of fire and explosion. As discussed in section 1.2.1, pure hydrogen’s flammability 

range is over five times wider than CH4’s, and its ignition energy is nearly an order of magnitude 

lower, making H2 far easier to ignite. Its low molecular weight also accelerates mixing with air, 

increasing the risk of deflagration or detonation in confined spaces. HBNG leaks release energy 

more abruptly, producing sharp pressure drops and shorter leak durations (El-Ghafour, El-dein, 

and Aref 2010). In practical terms, whereas pure CH4 ignites between 5 % and 15 % vol., H2 

will ignite anywhere from 4.0 % to 74.2 % vol., so even modest blends substantially expand 

the danger zones around a leak and make jet fires more probable (B.J. Lowesmith and 

Hankinson 2013). 

The increase in H2 content leads to shorter flame lengths. This can be attributed to the 

momentum diameter, the initial jet diameter scaled by the square root of the fuel‐to‐air density 

ratio, which is smaller at higher H2 content. This variation is due to the lightness of the 

hydrogen-enriched mixture. At the same time, the high molecular diffusivity of H2 increases 

the air entrainment coefficient, for which the flame length is inversely proportional (A. 

Choudhuri 2000). 

The relatively slower reaction rate of a typical hydrocarbon fuel can be accelerated by admixing 

H2 enhancing the production of radicals/atoms such as H, O and OH. It also results in an 

improved ignitability and flame holding and shrinks the global convective time scale (A. 

Choudhuri 2000). For this phenomena spends less time in the visible flame zone and, therefore, 

travels a shorter distance before completing combustion (Choudhuri and Gollahalli 2003). 

Kong et al. confirmed this trend experimentally, reporting that under constant pressure a 10 % 

vol. H₂ blend produced a 1.28 m flame, while a 50 % vol. H₂ blend measured just 1.13 m (13.7 

% shorter). Differences in radical concentrations were obtained, which influenced flame 

chemistry (Kong et al. 2024). 
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Hydrogen enrichment also reduces the lift off distance of the flame, in opposition to an increase 

of the internal pressure. This is related to the competition between the local flow velocity and 

the combustion velocity at the bottom of the diffusion flame. When the operating pressure rises, 

the local flow velocity at the nozzle also increases. The flame moves away from the nozzle and 

the lift off distance gradually increases. Blending H2 into CH4 also contributes to an increase in 

the local flow velocity of the jet gas. It is noticeable that H2 burns at a significantly faster rate 

compared to CH4. Additionally, the higher molecular diffusivity of H2 increases air entrainment 

and further promotes fuel combustion. As the concentration of H2 in the mixture increases, the 

increase of the combustion speed of the flame is higher than that of the local flow velocity of 

the jet gas. Then the flame reaches a new balance nearer the nozzle, and the lift off distance is 

correspondingly reduced (Kong et al. 2024). 

The convective time scale, which is a representation of the global flame residence time, 

decreases as H2 concentration increases in the mixture too. Faster chemistry and stronger 

entrainment combine to shorten flame lifetime, reinforcing the decrease in both length and lift 

off distance. 

Regarding the emissions (Figure 12), the higher flame temperatures and radical pools enhance 

NO production through Zeldovich mechanism, while lower CH concentrations at higher 

blending rates reduce NO destruction through Fenimore mechanism (A. Choudhuri 2000). As 

combined effect the NO and NOₓ emissions increases. Meanwhile, CO emissions fall: for a 

given Reynolds number, less carbon enters the flame, and the boost in OH radicals accelerates 

CO oxidation, driving the CO emission index downward (EI) (El-Ghafour, El-dein, and Aref 

2010). 
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Figure 12. Variation of NO, NOx, and CO EI with % H2 in the mixture (Choudhuri and Gollahalli 2002). 

An example of a horizontal HBNG jet fire is shown in Figure 13. In horizontal jets, the interplay 

of momentum and buoyancy produces a characteristic curvature. Near the nozzle, the 

transparent, soot-free base burns with a blue hue, rich in CH and C2 radicals; higher up, soot-

laden yellow regions appear. As H2 is added, the blue, soot-free zone expands upward, pushing 

the yellow, luminous tip further along the trajectory. 
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Figure 13. Flame images of mixture of CH4 and H2 with H2 volume fraction from 0% to 30% at P = 400 Pa and. 

Background grid with a cell size of 0.2 m x 0.15 m (Kong et al. 2024). 

 

1.3.2 Jet fires simulation 

Models developed for estimating the received radiated heat flux by objects at a distance from 

jet flames can be broadly divided into three categories: semi-empirical, field, and integral 

models. Of these three types, semi-empirical models are, in comparison with integral or field 

models, mathematically simpler, easier to understand and formulate, quicker to implement in 

computer programs, require significantly shorter computational run times, and predict flame 

properties that are of interest for hazard assessment studies with reasonable accuracy. However, 

semi-empirical models are heavily dependent on experimental data and are limited to the 

specific type of fire studied during experimentation and the range of conditions under which 

model correlations were derived. 



  MSc. Thesis 

30 
 

Semi-empirical models are usually designed to predict quantities such as flame shape and heat 

fluxes to external objects without providing a detailed description of the fire itself. They can be 

further divided into: 

a) Point source: point source models do not attempt any shape prediction and represent 

the source of heat radiation by a point. 

b) Multiple point source: multiple point source models attempt to model the effect of 

flame shape on radiated heat flux by representing the flame with a flame centreline 

trajectory along which several radiating point sources are distributed. 

c) Surface emitter: Surface emitter models represent the flame by a solid object (usually 

a cone or a cylinder) from which heat is being radiated 

Of all semi-empirical models for jet fire simulation that have been correlated over a wide range 

of conditions encompassing typical jet fires, the JFSH model implemented in Process Hazard 

Analysis Software Tool (PHAST), the proprietary consequence analysis tool developed by the 

Norwegian company DNV and used in the research.  This model can estimate the basic features 

of a jet fire (DNV 2025) using two different model: the surface emitter model by Chamberlain, 

which was later extended by Johnson (Johnson, Brightwell, and Carsley 1994) and the Miller 

multipoint source emitter flame model (M-MPS) (Miller 2017). 

The Chamberlain model was originally developed for modelling jet fires resulting from 

vertical/inclined vapour phase releases, and the extension, Johnson et al. (1994), specifically 

simulates jet flames resulting from horizontal/near horizontal vapour phase releases. The 

Chamberlain model, when compared with multiple point source models, gives a better physical 

description of flame behaviour by its representation of a flame with a solid body (conical 

frustrum), emitting radiation through its surface. 
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Figure 14 Jet fire for horizontal jet fire model ((Johnson, Brightwell, and Carsley 1994). 

 

The Miller model was primarily developed for low to high pressure releases of non-

hydrocarbon/low-luminosity gases, pointed downwind in the horizontal, vertical or 45° inclined 

release directions. The jet flame in this case is represented as shown in Figure 15 and it is 

modelled as a distribution of individual point sources along the flame centreline. The model 

predicts maximum surface emissive power and flame characteristics as in the Chamberlain 

model, except frustum base and tip width. Radiation emitted along the flame centreline is 

modelled in terms of a weighting factor representing the proportion of combustion energy 

multiplied by a fixed fraction of heat radiated at different positions along the flame length (DNV 

2023). 

 

Figure 15. Miller model flame representation for horizontal jet fires (DNV 2023). 
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With respect to radiation this is emitted along the flame centreline with an intensity distribution 

that rises and falls in a linear fashion with a maximum at a distance corresponding to 2/3 of the 

overall flame length following Figure 16 scheme. 

 

Figure 16. Miller model radiation intensity distribution (DNV 2023). 

 

1.3.3 Safety distances according to vulnerability 

The area potentially affected by an accident can be divided into different zones according to the 

type of hazard (chemical, mechanical or thermal), the intensity of the effects, and the 

vulnerability of people and property (Casal 2018a): 

a) Intervention Zone (IZ): accidents involve a degree of damage, which warrants the 

immediate application of protective measures. 

b) Alert Zone (AZ): accidents involve effects that, although perceptible by the population, 

do not justify intervention, except to protect critical groups of people. 

c) Domino Effect Zone (DZ): zones in which potential accident propagation must be 

considered. 

Since the harm of thermal radiation in pipeline leakage accidents is considered to be dominant 

according to other authors (Froeling et al. 2021), the official threshold values applied in Spain 

for thermal type accidents are shown in Table 11. 

Table 11. Threshold values (thermal radiation dose or intensity) for IZ, AZ, DZ (Casal 2008). 

Dangerous 
phenomenon 

Accident 
type 

Description of 
planning zones 

Threshold value 

Intervention 
zone (IZ) Alert zone (AZ) Domino 

zone (DZ) 
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Thermal type Jet fire Zones surrounding 
the jet 

250 (kW·m-2)4/3  
5 kW·m-2 for 30 s 

115 (kW·m-2)4/3  
3 kW·m-2 for 30 s 8 kW·m-2 

 

1.4 Neural Networks (NN) 

Various methods can be used to study jet fires behaviour, such as performing experiments or 

CFD simulations. Experimental methods, carried out even on a small scale, generate high costs 

because they require the use of expensive control and measurement equipment. In order to 

maintain a sufficiently high level of safety, large scale jet fire investigations should be carried 

out on training grounds, which requires both a great deal of money and work (scientific, 

technical and organizational). Moreover, the measurement of large jet fires is burdened by 

problems with the accuracy of determining the length and width of the flame.  

Methods based on CFD techniques do not present all these disadvantages. However, numerical 

methods also require a considerable amount of money, associated with the purchase of suitably 

powerful computing servers and CFD simulation software. Additionally, CFD methods use 

mathematical models that are based on simplifications related to the description of the 

combustion process in turbulent flow, for example, which affects the accuracy of their results. 

Also, the CFD simulation of large jet fires (where the flame length exceeds several meters) 

requires a suitably dense numerical grid. Calculations carried out on such grids can take from a 

few days to even a few weeks depending on the performance of the computing server used. 

Experimental methods are most often used to verify the results of CFD calculations or to create 

correlations, using dimensionless numbers, to determine the flame length of a jet fire. It is 

virtually impossible to use CFD methods in tools for determining flame sizes included in risk 

analysis programs. 

In the last years, machine learning has been shown to be one promising tool to develop models. 

Among the different possibilities, neural networks (NN) are used to uncover connections 

between data, if any exist. NNs have the following characteristics: high speed connections, 

nonlinear calculations, communication of output and input datasets, flexibility, response to 

noisy data, high availability, and retraining. 
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The NN approach is inspired by the way the human brain and the nervous system are organized. 

An NN model is a computing model that is able to reproduce structural or functional 

characteristics of a given system. In the 1940s, research on the network approach started when 

data from different subjects were analysed and classified. However, NNs were not extensively 

used until the second half of the 1980s since it was impossible to overcome past theoretical 

barriers. For example, one of them was the representational content: it was not possible to 

construct machines with genuine representative action without understanding what 

representation is (Bickhard 1993). Today these theoretical barriers no longer exist and NNs are 

currently popular. The NN has the advantage of requiring less processing to solve challenging 

tasks (Michał Lewak and Jarosław Tępiński 2023). Over the last two decades, network 

classifiers have become one of the most popular strategies in the machine learning field. 

In the NN approach, all the variables of the network’s model are created, collected in matrixes 

and tuned starting from a dataset. The simplest processing unit that could process data is a 

neuron; its inputs and outputs are both numerical values. The network is made up of synapses, 

where the base units, indeed neurons, link each other from the input to the outputs one. A weight 

(w), which reflects its relative value, is given at each link. Multiple input variables (xi) and 

output interconnections are possible for a single neuron. The output is then created by 

computing this weighted sum via an activation transfer function (f). The bias value (b) can then 

be added to the total of all these values once they have been put together. Then the results 

coming from Equation (7) are fed into a transfer function (f) to get the output signals (y) in 

Equation (8). 

𝒏𝒆𝒕𝒋 = (∑ 𝒘𝒊𝒋𝒙𝒊

𝑵

𝒊=𝟏

) + 𝒃 (7) 

𝒚𝒋 = 𝒇(𝒏𝒆𝒕𝒋) (8) 

The transfer functions are usually ramp, linear, step or sigmoid. In order to create a layer of 

neurons, the neuron cells link with one another. The structure of the network is made up of one 

or more layers of neurons. One type of NN is the feedforward NN (Figure 17), with X1, X2, ... 

and Xn serving as model inputs, n serving as the number of input nodes, 𝑤ij serving as the 

neuron’s weight factor of a neuron j, b serving as the bias value of a neuron j, and yj serving as 

the output of a neuron. 
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Figure 17. Feedforward NN (Mashhadimoslem et al. 2023). 

 

1.4.1 Multilayer feedforward neural network (MLFFNN) 

Algorithms to ascertain the connectivity in the weights of neurons are found via learning in 

NNs, starting from Equation (7) and (8). 

An MLFFNN method typically comprises an input layer, one or more hidden layers, and an 

output layer that gathers, analyses, and transmits the data. In order to reduce the overall mean 

squared error, the network is trained and tuned. Equation (7) shows how the MLFFNN method 

for an NN output is developed: 

𝒚𝒋
𝒌 = 𝒇𝒌 ( ∑ 𝒘𝒊𝒋

𝒌𝒙𝒊
(𝒌−𝟏) + 𝒃𝒋

𝒌

𝑵𝒌−𝟏

𝒊=𝟏

) (9) 

Where 𝑤 is the weighted vector for a value 𝑖 and neuron 𝑗 at layer 𝑘 (the values are not elevated 

for it), multiplied by the value at the precedent layer 𝑘 − 1, summed with the relative bias  𝑏𝑗
𝑘, 

creating the neuron for 𝑘. Then, the nonlinear activation transfer function is applied, called 𝑓𝑘. 

The result will correspond to the output parameters 𝑦𝑗
𝑘. Based on the previous explanations, 

the basic organization of a MLFFNN can be represented as shown in Figure 18. 
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Figure 18. A multilayer feedforward neural network (MLFFNN) approach with backpropagation for NN structure 

(Sun et al. 2020). 

 

1.4.2 Activation transfer functions 

There are numerous alternative ways to think about the activation transfer function, which 

include identical function, binary sigmoid, hyperbolic tangent etc. 

The Sigmoid function is a specific case of logistic function and is bound between 0 and 1. There 

are two disadvantages of the Sigmoid function. First, the gradient of the Sigmoid function is 

almost 0 when the Sigmoid function goes to 0 or 1. Second, the Sigmoid function is not 

symmetric by origin, which will cause issues when updating the weight during backpropagation 

(BP). 

Meanwhile, the tanh function solves the second issue because it is origin-symmetric and is 

bound between −1 and 1. However, the issue of the gradient approaching 0 at the extremes has 

not been solved. A linear function can solve this gradient issue; however, the combination of 

the linear function has bad performance for a highly nonlinear problem (Zhong et al. 2024). 

During the training process of the BP NN model, a common problem encountered is the 

vanishing and exploding gradients. The vanishing gradient issue can lead to a slowdown or 
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almost negligible weight updates, while the exploding gradient occurs when the gradient values 

between network layers exceed 1.0, resulting in an exponential growth of the gradients. This 

makes the gradients extremely large, causing significant updates to the network weights and 

thereby making the network unstable. To address these issues s in the training process 

mentioned above, the ReLU (Rectified Linear Unit) function is usually set as the activation 

transfer function (He et al. 2020). 

 

Figure 19. Illustration of activation transfer functions. (a) Sigmoid activation function; (b) tanh activation function; 

(c) ReLU activation function (Zhong et al. 2024). 

 

Whereas the transfer functions between both the hidden layer and the input layer are nonlinear, 

the one between the output and hidden layers in the MLFFNN’s NN technique is linear. 

Therefore, the output layer data is created by linearly integrating the performance results with 

a linear transfer function (purelin). 
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2 Objectives 

The main objective of this work was to obtain an optimal and optimized model for the 

estimation of safety distances in case of HBNG horizontal jet fires from NG transmission 

pipelines.  This address the need for risk assessments in hydrogen-blending applications, where 

a detailed CFD or semi-empirical consequence analysis (e.g., in PHAST) may be too time-

consuming for real-time or iterative decision-making. 

In order to accomplish this objective three secondary objectives have been defined: 

1. Analyse and review HBNG trends, applications, hazards and relevant changes in NG 

and jet-fires behaviour. 

2. Create a synthetic and extensive database (50,112 cases) of jet fires scenarios from 

transmission pipelines using PHAST’s Grid Consequences tool, after defining a 

suitable configuration. These results are going to be used for the dataset of point 4.  

3. Develop a MLFFNN architecture and its training and validation loop based on these 

simulations and assess its predictive performance to estimate safety distances via an 

evaluation of his performance (MAE, MSE, R2). 

4. Optimize the first version of the NN model through a sensitivity analysis on the 

hyperparameter, analysing the results from the scatter plots and the evaluative metrics. 

5. Propose point of improvement and possible future works, useful to extend the efficiency 

and the operative range of the ML tool created. 
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3 Methodology 

3.1 HBNG jet fires simulation 

3.1.1 PHAST – Process Hazard Analysis Software Tool 

Jet fires are simulated in this work using PHAST (Process Hazard Analysis Software Tool), 

which is a tool that offers capabilities for modelling various loss of containment scenarios, 

including discharge, dispersion, fires, explosions, and toxic effects. PHAST delivers key results 

through intuitive 2D graphs, immersive 3D views and comprehensive reports available in both 

Word and Excel formats (DNV 2025.). 

The software relies on a comprehensive database of substances and enables users to create 

custom mixtures. Utilizing the multi-component modelling method, the software conducts 

rigorous thermodynamic calculations to determine mixture properties accurately. Users can 

specify various types of equipment, including pressure vessels, atmospheric storage tanks, long 

pipelines, and warehouses. For each equipment type users can define initiating events such as 

catastrophic ruptures, leaks, and line ruptures. Upon creating loss of containment scenarios, 

PHAST automatically assesses the type and magnitude of consequence effects. It performs 

calculations for discharge, pool vaporization, and dispersion, considering potential outcomes 

like jet fires, pool fires, flash fires, fireballs, and explosions. The software also supports a range 

of standalone models, which are used when the user has knowledge of the source term. In such 

cases, discharge and dispersion calculations are not performed. One of the main limitations is 

that, when simulating a catastrophic tank rupture, all the energy from the rupture is converted 

into overpressure, without accounting for the kinetic energy of the fragments, leading to an 

overestimation of the overpressure (DNV 2025). 

The software workspace provides predefined parameters and weather conditions, but users have 

the flexibility to customize model parameters according to their requirements. Additionally, 

users can define new weather conditions by specifying atmospheric stability class and wind 

velocity. However, PHAST has constraints on simulating wind velocity. The software issues a 

warning for wind velocities below 1 m/s and does not allow simulations for wind speeds below 

0.1 m/s. 
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3.1.2 Pseudo-validation of PHAST models 

The first issue emerging in the simulation of horizontal HBNG jet fires from a leak in a 

transmission pipeline was how to simulate them using the PHAST software. Indeed, looking in 

the documentations available from DNV and their online tutorials, there is no “step by step” 

guide to follow for the simulation of jet fires of gas mixtures. Thus, it was decided to look in 

the validation documentation of the JFSH and radiation (RADS) models implemented in 

PHAST, and to try simulating experiments included there and from other sources with different 

configurations and checking the results obtained if they were in accordance with those 

presented in the documents (i.e., pseudo-validation).  

In the validation document tests used hydrocarbons and other substances, such as H2 and 

mixtures (e.g., H2/CH4 blends and syngas). Hole sizes covered a wide range and release 

conditions also varied, cover relatively slow jets and supersonic turbulent jets. Release 

orientation included vertical, horizontal and inclined releases (DNV 2023).  

From this set of data and other experiments, DNV compared the predictions of two versions of 

Miller model: the original Miller one, which assumes jet flames to burn very close to the source, 

eliminating the lift off, and an updated version labelled Miller/DNV, which includes the lift off 

as calculated in Lowesmith and Hankinson (2012) equation (42). The conclusion was that 

overall the last version improves a bit the predictions for horizontal jet fires (DNV 2023). 

Another comparison was conducted between Miller/DNV and Cone models (i.e. the Johnson 

model for horizontal jet fire) for non-hydrocarbon gases and mixtures of H2/NG. According to 

Figure 20, significant underpredictions (by a factor of 2) were observed for horizontal releases 

with the Cone model. These are mainly caused by two factors: the under-predictive behaviour 

by the Johnson model of the fraction of radiated heat and the flame shape for H2 releases 

simulated as frustrum cone. Additionally, predictions by the Miller/DNV model for vertical 

releases were also better than those from the Chamberlain model (results not shown here) (DNV 

2023). 
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Figure 20. Comparison of the predictions by the Miller and the Cone model in PHAST for horizontal releases of 

H2 and H2 mixtures (DNV 2023). 

 

According to Figure 21, the Miller/DNV model gives also good predictions for hydrocarbon 

releases, although the distribution of the datapoints is a bit wider than that of the Cone model. 

On the other hand, there are groups of outliers both for the Miller/DNV and the Cone models. 

These are indicated by the labels ‘A’ and ‘B’ in Figure 21. Points ‘A’ correspond to 

measurements taken behind the flame source closely aligned with the flame axis. Probably the 

overprediction is a result of all the radiation from the flame reaching the radiometer used in the 

experiments whereas, in reality, there is significant shielding of the radiation from the furthest 

points of the flame by the flame shape itself. The view factor approach of the frustrum cone 

overcomes this limitation. Group ‘B’ shows significant underprediction by the Cone model 

whilst the Miller/DNV model performs well. DNV concluded that there might be a range for 

hydrocarbon tests where the Miller model is preferable to the Cone model, but there is not 

enough data to define such ranges with confidence (DNV 2023). 
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Figure 21. Comparison of the predictions between the Miller and the Cone models in PHAST for hydrocarbon 

releases (DNV 2023). 

 

Indeed, the experiment from Lowesmith and Hankinson (2012), which was performed using a 

mixture of NG and 24 % vol. of H2, provided comprehensive information about the 

experimental setup, the release pressure and the distance to the pipe target. Details about the 

experimental conditions are shown in Figure 12. 

The results included the flame length, the lift off and the incident radiation (kW/m2), which was 

positive for the comparison of the best configuration in PHAST to simulate jet fires. The 

fraction of emissivity (F), which according to the PHAST documentation corresponds to the 

fraction of the maximum amount of heat that can be radiated from the surface of the flame, was 

also available. 

Table 12. Test conditions and key results from (Lowesmith and Hankinson 2012). 

Gas dor Prelease 
(barg) 

Distance 
to pipe (m) 

dirwind 
(°) 

uwind 

(m/s) 
mor 

(kg/s) 
MNP 
(MW) Lf  (m) B (m) F 

NG 20 59.4 9.45 1±11S 6.3±1.5 2.9 140 19.8±1.6 6.0±0.8 0.137 

NG 35 61.5 15.45 27±5S 6.2±0.5 9.4 462 37.8±2.9 7.5±1.1 0.179 

NG 50 58.8 21.61 3±13N 3.6±0.5 18.4 939 49.9±2.9 8.7±0.9 0.202 

Mix. 20 60.2 9.45 7±10N 2.7 2.7 137 17.6±1.1 5.8±0.4 0.130 
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Mix. 35 60.8 15.45 14±6S 7.2 8.4 366 30.7±1.7 6.8±0.6 0.168 

Mix. 50 59.4 21.61 3±8N 16.9±0.1 16.8 860 45.2±2.5 7.2±0.6 0.168 

 

Prelease is the gauge pressure of the release, MNP is the Mean Net Power; Lf  is the flame length; 

B is the flame lift off; F is emissivity fraction 

The atmospheric temperature (3.4 °C), relative humidity (88%) and storage temperature (4.2 

°C), which were not provided in the experiment used, were taken from a later study done also 

by  Lowesmith and Hankinson (2013), assuming the two tests were performed at the same 

location and during the same period. 

Table 13. Atmospheric parameters of the validation case Lowesmith and Hankinson (2013). 

Lowesmith and Hankinson (2013) ambient conditions 

Air T (°C) Stability class Wind (m/s) Solar radiation (kW/m2) Humidity (%) Ground 
Roughness 

3.4 D 2.1 0.5 88 0.005 

 

Four different configurations based on the type of discharge were tested to try to reproduce the 

results from Lowesmith and Hankinson (2012). These are shown in Table 14, i.e., Pressure 

vessel + Short pipe + Control valve; Pressure vessel + Short pipe + Relief valve; Pressure vessel 

+ Leak; Long pipeline + Location Specific Break. The empty cells in this table correspond to 

possible inputs that were not required in that configuration. 

Table 14. Possible configurations for jet fires in PHAST depending on the discharge type. 

Feature Pressure vessel Long pipeline 

V inventory (m3) 10 10 10 10 10 10 10 10 10 - - - 

Temperature (K) 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 

Pressure (barg) 60 60 60 60 60 60 60 60 60 60 60 60 

Pipe length (m) - - - - - - - - - 10 10 10 
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Pipe dint (mm) - - - - - - - - - 150 150 150 

Discharge type Short Pipe Leak Location specific 
break 

Valve type Control valve Relief valve - - - - - - 

Pipe dint (mm) 20 35 50 150 150 150 - - - - - - 

Pipe length (m) 1 1 1 1 1 1 - - - - - - 

Fixed m (kg/s) 2.7 8.4 16.8 - - - - - - 2.7 8.4 16.8 

Orifice diameter - - - 20 35 50 20 35 50 20 35 50 

 

Pure CH4 was used in the calculations instead of a specific NG composition because this is the 

main constituent of the gas, as assumed in section 1.2.1. To calculate the physical and chemical 

properties of the CH4-H2 mixture the add-on PhastMC from PHAST was used (DNV 2025). 

In PHAST, the default choice for the pressure vessel is a horizontal cylinder. It was decided to 

use 10 m3 as the volume of the gas mixture contained in the vessel in order to choose a single 

value valid for all configurations and to be close to the minimum limit allowed by PHAST, as 

this parameter only affects the release duration of the jet and not the final flame. 

For the short pipe in the case of pressure vessels, the minimum length accepted by PHAST's 

default parameters was 1 m. Different lengths were tested but there were no differences in the 

flow rate and in the jet flame. 

In Pressure Vessel + Leak and Long Pipeline + Location Specific Break configurations there is 

the possibility of fixing the discharge coefficient (CD). In this case a value of 0.9 was chosen as 

indicated in the experimental data. However, in a similar study of jet fires from HBNG, such 

as the one by Pio Gianmaria et al. (2022) (results not shown here), it was observed that a higher 

accuracy was achieved when the calculation was performed automatically by the software. 

However, the values ranged between 0.87 and 0.96 in the simulations executed in this research. 

The position of the Location Specific Break was set at the end of the Long Pipeline, for which 

the minimum length available of 10 m. As for the Short Pipe configuration, the length did not 

affect the discharged gas or the jet fire. 
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The elevation of the release at 3.25 m was the same for all configurations and this value was 

taken directly from Lowesmith and Hankinson (2012) 

Figure 22 shows the results obtained after trying to reproduce the results from Lowesmith and 

Hankinson (2012). The closer the points are to the horizontal black dashed line, the better the 

agreement between the calculated and experimental values. According to this plot, the Miller 

model should be chosen to get better performances for estimating the fraction of emissivity and 

the frustrum lift off. However, the Cone model appears to be slightly better for predicting 

correct flame lengths but this is due to a large lift off when the orifice diameter and pressure are 

bigger. Regarding the four configurations, all of them get comparable results except for the 

configuration Pressure Vessel + Short Pipe + Relief Valve for the flame length and the fraction 

of emissivity. In this case higher values are obtained than those obtained with the other three 

configurations. 

 

Figure 22. Flame length, fraction of emissivity and frustum lift off distance simulated for 20 mm, 35 mm, 50 mm 

orifice diameters with four different configurations: a horizontal pressure vessel with a control valve (orange; 1), 

relief valve (green; 2) or leak (light blue; 3); or a long pipeline with a specific location of the break (purple; 4). The 
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rhomboid points are from Cone model and the squared ones from Miller one. The black dotted line corresponds to 

the experimental values. 

 

About the incident radiation, the experimental values were extracted from the measurements at 

different distances from the flame axis still collected in Lowesmith and Hankinson (2012) work 

(not shown here). The simulated results were collected in two subplots, where the distance to 

the flame axis is shown together with the radiation calculated using the four different 

configurations defined in PHAST. It appears that the pressure vessel with a relief valve is not 

the most suitable configuration for simulating incident radiation for the studied jet fires. Indeed, 

both in Cone and Miller models, it overestimates the values of flame length and fraction of 

emissivity for small diameters. Therefore, this configuration was discarded and focus shifted to 

the others (Figure 23). 
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Figure 23. Incident radiation crosswind with four different configurations in PHAST for Cone and Miller models: 

control valve (pressure vessel), relief valve (pressure vessel), leak (pressure vessel), location specific break (long 

pipeline). The red markers are the experimental values for each orifice diameter: triangles for 20 mm, squares for 

35 mm and circles for 50 mm. 

 

To choose the final configuration from among the last three the predicted values over the 

observed ones were plotted as a function of the incident radiation (Figure 24). Based on this 

last comparison, it was decided to use Pressure Vessel + Leak with Miller/DNV model 

(ANNEX B) as the most reliable configuration. 
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Figure 24. Predicted/observed value for incident radiations for the following configurations in PHAST: leak, 

control valve and location specific break in a long pipeline simulated with Cone and Miller model. 

 

3.2 Workflow for designing a NN model 

The work cycle for an integrated NN model design process includes five main steps, as shown 

in Figure 25. 

 

 

Figure 25. A schematic view of a NN work cycle model design. 

 

The first step involves the Database construction gathering data from the many cases simulated 

by PHAST with the configuration of Pressure Vessel + Leak defined in section 3.1 and the 

parameters setup defined in the following section 3.3. In this way the jet flame data are defined 

and generated: composition of H2 (% vol.), storage temperature (°C), storage pressure (barg), 
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elevation of release (m), jet fire mass rate (kg/s), flame length (m), distance to intervention 

zone (m), distance to alert zone (m), distance to domino effect (m), orifice diameter (m), 

wind (m/s), air temperature (°C), humidity (%), atmospheric stability). 

Obtained the database it must be prepared before used it for training and validate the NN. The 

features (data values) are separated in input data (composition of H2, storage temperature, 

storage pressure, elevation of release, orifice diameter, wind, air temperature, humidity, 

atmospheric stability) and output data (jet mass flow rate, flame length, distance to 

intervention zone, distance to alert zone, distance to domino effect). Before they could be 

used to generate a Dataset (a structured collection of data organized and stored together for 

analysis or processing) in PyTorch language (PyTorch 2025), the data are pre-processed 

(standardization) to prevent problem of overfitting in the NN training. 

In the next stage, the network architecture is defined with the selection of the learning 

algorithms, number of layers and number of neurons for each one of them. The NN model 

training process is applied along with a network training validation on two different group of 

data from the dataset (training and validation batches). It includes network input and output 

adjustments through activation function and optimization algorithm (see section 3.6). At the 

end of the definition of the training model, the results are prediction of the original simulated 

values. 

The performance of the trained model is evaluated using statistical criteria, including the 

coefficient of correlation (R2) and the Mean Square Error (MSE) to compare the model outputs 

with the dataset. If the results are suitable (MSE ≈ 0 and R2 ≥ 0.99), the best NN model for the 

topic case is obtained. Otherwise, the NN architecture could be optimized and the third step 

(definition NN model) repeated. 

In the protracted research, several files and tools were used, starting from the Grid Consequence 

function present in the PHAST software (see section 3.3). From this last one, the obtained excel 

file serves as a basis for the creation of the database in JSON, containing all the simulated cases 

in a single format (see section 3.4). This file is used by a Python script, 

“Jet_fire_NN_original.py” for the definition, training and evaluation of the sketched NN model 

(see section 3.5 and section 3.6). After the Performance evaluation step (see section 3.7), the 

original model is optimized thanks to the script "Jet_fire_NN_all_optimization_for_test.py" 
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(see section 3.8) obtaining in the end the best NN model for horizontal HBNG jet fires from 

leaks in transmission NG pipelines. 

 

Figure 26. Main steps of the workflow for designing a NN model with the Python scripts applied in this research. 

 

3.3 Database construction 

From the simulations used for the further validation done for selecting the appropriate discharge 

configuration and jet fire model available in PHAST, the storage pressure, concentration of 

hydrogen and orifice diameter seemed to be the most impacting input parameter for the outputs. 

To get a predictive model of flame length and safety distances for HBNG horizontal jet fire 

from a transmission pipeline flame length, it was necessary to define the operative ranges of 

these parameter, those were going to be used in the NN.  

To try to get the most suitable and wide range, the inlet pressures were set from 30 barg up to 

150 barg, a bit higher the operating range of typical high-pressure gas transmission systems to 
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amplify the range (see section 1.1.4). Indeed, the pressure level of NG long-distance pipelines 

is usually high to meet the needs of long-distance transportation (Topolski et al. 2022). Cristello 

et al. (2023) summarize that transmission pipelines operate around 34.5 bar, with maximum 

allowable operating pressures (MAOP) often designed up to 100 - 140 bar for X-grade steels. 

Typical transmission line MAOPs for steel pipelines fall in the 30–150 bar range (e.g. API 5L 

X70 lines). Therefore, the set range lets to assess jet fires behaviour across a spectrum that 

covers lower-pressure city-gate releases up to worst-case transmission ruptures. 

For the concentration of hydrogen in the simulated HBNG network, in “U.S.-applicable 

hydrogen blending guidance for a natural gas pipeline network based on network end-users”, 

in general, only minor issues arise when blending less than 5% - 15% hydrogen by volume and 

that these low blend levels should not increase risks associated with end-use devices, public 

safety, or durability and integrity of the gas pipeline network (Melaina, Antonia, and Penev 

2013). Pilot projects and feasibility studies typically target up to ~20% H₂ to avoid material, 

safety, or operational incompatibilities (Chae et al. 2022; Cristello et al. 2023). However, others 

have extended their numeric studies up to 30% of hydrogen to understand the nonlinear increase 

in flame speed, heat flux, and radiation intensity. By covering a composition range of 0% - 30% 

we capture both current industrial practice (≤ 20%) and scenarios where hydrogen infrastructure 

and safety measures may allow higher blending. 

Finally, regarding the orifice diameter, a range from 1 to 50 mm was chosen. This range allows 

to capture both the under-rim cracks and pinhole type leaks (∼1 mm) up to more severe slot or 

gouge scenarios (∼50 mm), ensuring the simulations cover the full envelope of expected release 

rates and resulting flame lengths. These values were already tested in precedent studies, such 

as in a CFD-based jet fire numerical study of HBNG pipelines where nozzle diameters of 5, 8, 

11, 14, 17 and 20 mm were used (Zhang et al. 2025), and they were extended up to 50 mm to 

include also the conditions of experiments Lowesmith and Hankinson (2012) used for 

validating the simulation results. 

The ambient related conditions are stability class, wind speed, ambient air temperature and 

humidity. By definition, stability class according to Pasquill classes (Luna and Church 1972) is 

a function of wind speed and solar radiation. Nineteen possible combinations between stability 

classes and wind speeds were examined to cover different atmospheric turbulence conditions. 

Three values for ambient air temperature were defined and they stem from 2022 Catalan 
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climatology data for minimum, average and maximum registered temperatures (Idescat 2023), 

which are representative for the Mediterranean type of climate. 

A summary of the values used to generate the database are shown in Tables 15 and 16. Variables 

not included in these tables were kept constant. 

Table 15. Database design (release parameters): Cat – categorical; N – Numerical; T – Temperature; P – Pressure; 

MW – Molecular Weight. 

Leak from a pressure vessel with immediate ignition of a premixed HBNG 

Feature Type Value 

Concentration H2 (% vol.) N 0 5 10 20 24 30 

Ideal MW (g/mol) N 16.04 15.36 14.68 13.31 12.78 11.95 

Storage T (K) N 268, 288, 308 

Storage P (barg) N 30, 45, 50, 60, 70, 80, 100, 150 

Elevation of release (m) N 3.25 

Orifice diameter (mm) N 1, 5, 10, 20, 35, 50 

 

Table 16. Database design (atmospheric parameters): Cat – categorical; N – Numerical; T – Temperature; P – 

Pressure; MW – Molecular Weight. 

Ambient related parameters 

Feature Type Value 

Air T (°C) N -5, 15, 35 

Stability class Cat A B C 
D 

(day) 

D 

(night) 
E F 

Wind (m/s) N 1 1 2 3 5 7 8 5 6 8 2, 4, 6, 8 2, 3, 5 2, 3 

Solar radiation 
(kW/m2) N 0.9 0.3 0.9 0.3 0.5 0.9 0.9 0.3 0.5 0.5 0 0 0 

Humidity (%) N 50, 70, 90 

Ground 
roughness (m) N 0.005 
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In total 50,112 combinations were simulated using PHAST software with the chosen 

configuration (leak from a pressure vessel with Miller model) and the input parameters already 

shown. 

The software collects all the data useful for the consequence analysis through the command 

“Grid Consequence”. This one creates an Excel file in which the main input parameters used 

(path, scenario, weather, hole size, material as the mixture of gas, storage temperature, storage 

pressure and the height of interest) and the outputs are displayed (ANNEX C). 

For the studied cases, PHAST was operated three times for each of the atmospheric 

temperatures (-5 °C, 15 °C, 35 °C), because at in the high-pressure transmission pipeline, the 

storage temperature could be maintained at ambient temperature. Therefore, the simulated 

Pressure Vessel had three different storage temperature available. Each batch run in the 

program containing 16,704 cases (a third of the total ones) required 3 hours and 42 minutes 

with parallel calculations. 

 

3.4 Database preparation 

A Python script was created to extract only the columns of interest, perform unit conversions 

and categorical mappings, check data consistency, and finally write out a single JSON file 

containing all simulation cases in a uniform format. 

Indeed, a single JSON file makes information easier to maintain, test and reuse in the following 

scripts, without running or inspecting again the original Excel files. It is a single source for 

all cleaned, unit‐converted, and validated cases, and also any language or tool can read it (R, 

MATLAB or JavaScript). 

In the “grid consequence” excel (ANNEX C) excels were extract the information corresponding 

to this field: “Path”, “Scenario”, “Weather”, "Hole size (mm)", "Material", "Temperature 

(input) (degC)", "Pressure (input) (bar)", "Height of interest (coming from parameters) (m)", 

"Jet fire mass rate (kg/s)", "Flame length (m)", "Distance downwind to intensity level 1 (5 

kW/m2) (m)", "Distance downwind to intensity level 2 (3 kW/m2) (m)", "Distance downwind 

to intensity level 3 (8 kW/m2) (m)" (see ANNEX C). In particular: 
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• The original “Material” column values were mapped to a numeric percentage of H₂ by 

volume. 

• The ideal molecular weights were added and assigned to the corresponding mixture gas 

(0, 5, 10, 20, 24, 30 %vol of H2). 

• A number (1 to 7) for each atmospheric stability class (A, B, C, D, D night, E, F) 

because NN can process only numerical data and not categorical values. 

• The denominations were changed to a more concise and consistent naming scheme. 

 

Figure 27. Particular of the JSON script “all_T.json” created by the merged three excel files obtained by Grid 

consequence command in PHAST. 

 

Then this file, was loaded by the script “Jet_fire_NN.py”, which deal with the next steps: 

Definition NN model and Performance evolution. 

 

3.4.1 Pre-processing 

Before implementing the algorithms, a pre-processing operation was performed to examine the 

various ranges to prevent that any data could not be greater than others. One of the most 
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common pre-processing steps is standardization, called also “z-score scaling”. If 𝑥 is a single 

scalar measurement of one feature, then the standardized value 𝑧 is computed as: 

𝒛 =
𝒙 − 𝝁

𝝈
 (10) 

Where 𝜇 is the sample mean of that feature in the training data: 

𝝁 =
𝟏

𝑵𝒕𝒓𝒂𝒊𝒏
∑ 𝒙𝒊

𝑵𝒕𝒓𝒂𝒊𝒏

𝒊=𝟏

 (11) 

and 𝜎 is the (unbiased) sample standard deviation in the training data: 

𝛔 = √
𝟏

𝐍𝐭𝐫𝐚𝐢𝐧 − 𝟏
∑ (𝐱𝐢 − 𝛍)𝟐

𝐍𝐭𝐫𝐚𝐢𝐧

𝐢=𝟏

 (12) 

Once 𝜇 and 𝜎 for each feature are computed from the training set, the same formula is applied 

to every feature value in training, validation, and test. StandardScaler computes for each column 

of the training values the mean and the standard deviation. Then every original value 𝑥 is 

replaced by 𝑧. By standardizing, every feature contributes roughly equally at the start of 

training. Also, the NN tuners, would converges more quickly when inputs are centred around 

zero with unit variance. 

The outputs are standardized too, to makes the MSE loss more numerically stable and prevents 

one target from dominating the training if its scale is much larger than others. 𝜇𝑦 and 𝜎𝑦 are 

computed on the raw training targets. The network is trained to predict: 

𝒛𝒚 =
𝒚 − 𝝁𝒚

𝝈𝒚
 (13) 

After NN has produced these outputs (normalized), they are converted back to the original 

scale: 

𝒚 = 𝒛𝒚 ∙ 𝝈𝒚 + 𝝁𝒚 (14) 
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3.4.2 Feature selection and Dataset generation 

After importing train_test_split (from sklearn.model_selection) and StandardScaler (from 

sklearn.preprocessing) the relative numerical values (Figure 27) for “Storage T (degC)”, 

Storage P (bar)”, “Elevation of release (m)”, “Orifice diameter (m)”, “Composition H2 (%vol)”, 

“Ideal MW (g/mol)”, “Wind (m/s)”, “Air T (degC)”, “Humidity (%)” and “Atm stability” were 

set as input; instead, “Jet fire mass rate (kg/s)”, “Distance to alert zone (3 kW/m2) (m)”, 

“Distance to intervention zone (5 kW/m2) (m)” and “Distance to domino effect (8 kW/m2) 

(m)” were defined as output. 

“all_T.json” is read in a Pandas DataFrame. This DataFrame has one row for each simulated 

jet‐fire case, with all numeric inputs and outputs. It gets polished eliminating redundant and 

purely textual rows and passed through a check: verify that every column can be cast to a 

numeric dtype (float or int) and if there are missing values; this guarantees that the DataFrame 

is ready for machine learning. 

 

3.5 NN model definition 

Python in Visual Studio Code 

Python is a high-level programming language known for being designed to be easy to read and 

write, oriented features, and dynamic semantics. It offers built in data structures and supports 

dynamic typing and dynamic binding. Python's syntax promotes modularity and code reuse 

through support for modules and packages. Python comes with an extensive standard library 

that are available for free for major platforms. Python served as the backbone for data ingestion, 

preprocessing, model definition, training loops, and result visualization (Python 2010). 

Running Python code in an environment like Visual Studio Code notebooks allows interactive 

exploration of dataframes, rapid debugging, and inline plotting of intermediate results. The ease 

of writing concise scripts enabled quick iteration on preprocessing pipelines and neural network 

architectures. 
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PyTorch 

PyTorch is an open-source machine learning framework that accelerates the path from research 

prototyping to production deployment. Built to offer maximum flexibility and speed, PyTorch 

supports dynamic computation graph. Its Pythonic design and deep integration with native 

Python tools make it an accessible platform for building and training deep learning models at 

scale. Widely adopted across academia and industry, PyTorch has become the framework of 

choice for commercial ML applications. It supports a broad range of use cases, from natural 

language processing and computer vision to reinforcement learning, through a robust ecosystem 

of libraries, tools, and integrations. PyTorch is also optimized for performance across CPUs, 

GPUs, and custom hardware accelerators, including support for distributed training and 

deployment on cloud platforms and mobile devices (PyTorch 2025). In this jet fire regression 

task, PyTorch was employed to define the multi‐layer feedforward neural network, implement 

custom training loops, and leverage automatic differentiation for backpropagation. 

 

3.5.1 Division of the data between training, validation and test 

All these data were extracted as NumPy arrays and divided randomly into three distinguished 

sets, including training, validation, and test. The 80% of the total data points were used to 

determine the weights (the network training); 10% of the total data points were used to validate 

these weights (network validation); and 10% of the total data points were tested with the 

developed network, to provide an independent measure of the network performance during and 

after training. 

 

3.5.2 NN Architecture 

As explained before, MFLNN with consists of input layer, hidden layers and output layer, and 

adopts error-based back propagation algorithm. The learning rule is to use the fastest descent 

method. The weights and biases of the network are constantly adjusted through Backward 

Propagation to minimize the sum of squared errors of the network. 
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Figure 28. Particular of “Jet_fire_NN.py” script to show the first architecture of the MLFFNN. 

 

With PyTorch library is possible to use JetFireModelReg command, a subclass of nn.Module 

implementing a simple feedforward (multi‐layer perceptron) for multi‐output regression. The 

number of the precedent selected features will be constat for the input layer and the output one; 

10 and 5 respectively. As first attempt the number of hidden layers was chosen as two and the 

number of the neurons for each of them was selected trying to simulate a pyramidal structure 

which helps for the regression. Therefore, the first one has 32 neurons and 16 are in the second 

layer. As explained in the section 1.4.2 the ReLu function is used between the input and the first 

hidden layer, and between the hidden ones. Instead, the purelin between the second hidden 

layer and the target (output) layer. 

In the first attempts, the and R2 results were too good (MSE ≈ 0 and R2 ≈ 1), pointing out a 

problem of overfitting. This phenomenon occurs when a model learns to reproduce not only the 

underlying signal but also the noise in the training data, so it performs poorly on unseen data. 

Thus, after each activation function, there’s a “dropout” of 30% of the neurons, which prevent 

the overfitting during training by introducing randomness and forcing the network to be more 

robust.  

Dropout is a regularization technique which randomly zero excludes from the training some 

hidden neuron’s output with probability p (30% in this case) on every training step. 
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Later in the interference (evaluation) time the dropout is turned off and each weight is 

effectively scaled by (1 – p). In PyTorch that scaling is handled automatically so that at test 

time inputs are simply passed through the full network without zeroing anything out. 

 

3.5.3 Setting up the DataLoader 

Generally coding for processing data samples could get messy and hard to maintain, 

therefore PyTorch provides two data tools: torch.utils.data.DataLoader and 

torch.utils.data.Dataset. 

A Dataset stores the samples and their corresponding labels, and DataLoader wraps an 

iterative set of data from the Dataset to enable easy access to the samples from the NN. 

The Dataset recall dataset’s features and labels one sample at a time. While training a model, 

the samples are put in “minibatches” and the data reshuffled at every passage in the training 

section to reduce model overfitting and use Python’s multiprocessing to speed up data 

retrieval. DataLoader performs an iteration where the dataset is loaded and automates 

batching and shuffling. With shuffle=True, after all batches are iterated, the data is shuffled; 

necessary for the training DataLoader, not for the validation and testing ones (PyTorch 

2025). 

 

3.6 Training 

The purpose of the build training loop in the NN is minimizing the Mean Squared Error (MSE) 

between the network’s prediction and the true targets. A fundamental concept in NN training is 

the epoch: it refers to one complete pass of entire training dataset through the learning 

algorithm, and in a MLFFNN each training epoch has two parts: forward pass, and backward 

pass. 

In forward pass, a batch of input vectors from the “test dataset” (80% if the total dataset) is fed 

through the network, layer by layer, to produce an output 𝑦̂. The criterion function, also known 
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as the loss function 𝓛, is calculated for reducing the error between the expected (from the 

experiments or the simulations with PHAST in this case) and the predicted values during 

forward propagation and can be expressed as: 

𝓛(𝒚, 𝒚̂) =
𝟏

𝑵
∑‖𝒚𝒊 − 𝒚̂𝒊‖

𝟐

𝑵

𝒊=𝟏

 (15) 

Where 𝑦̂𝑖 is the true target for the sample 𝑖 and 𝑦𝑖 the one predicted from the NN over that batch 

set by the DataLoader. 

In backpropagation the gradient of the MSE loss is calculated with respect to every weight in 

the network by propagating the error 𝑦̂(𝑖) − 𝑦(𝑖) backward through each layer. These gradients 

tell how each weight contributes to the loss. However, the backpropagation algorithm is slow 

to converge, and an overfitting problem may occur along with it. 

Some regularization techniques (optimizer) have been developed to overcome these issues, 

such as Adam in this study, which constantly updates the weighted values between nodes in 

each layer: 

𝒘𝒊+𝟏 = 𝒘𝒊 − 𝜼
𝝏𝓛

𝝏𝒘
+ 𝜶(𝒘𝒊 − 𝒘𝒊−𝟏) (16) 

Where 𝑤𝑖+1 and 𝑤𝑖 are the weights of the relative iteration, 𝜂 is the learning rate, 𝜕ℒ

𝜕𝑤
 is the 

gradient of the Loss function, 𝛼 is a momentum coefficient. 

In practice, Adam optimizer integrated through Equation (16) with adaptive learning rates and 

momentum terms tend to speed convergence and mitigate oscillations. Its adaptive steps tend 

to help prevent the network from fitting noise in the training set. In this study the baseline model 

is set using an optimizer with a learning rate of 10‐3 and a weight decay option of 10‐4 for further 

regularization. 

After updating the weights, forward and backward passes is repeat on the next batch, 

continually reducing the network’s mean squared error. Because backpropagation could overfit 

the training data an “early stopping action” is employed: monitoring the validation loss at the 

end of each epoch (Figure 29). In particular, with a patience of 10, if the loss does not improve 
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for ten consecutive epochs, the training is halt training, even if the maximum of 100 epochs is 

not reached yet. 

 

Figure 29. Training section of “Jet_fire_NN.py” script. 

 

In the script extract shown in Figure 29 it is shown that the variable best_model_wts stores the 

optimum model weights for the lowest validation MSE seen so far and best_val_loss stores the 
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relative MSE results. In each epoch there is a validation section: model.eval disables dropout 

and other training‐only behaviour, torch.no_grad context avoids computing gradients for 

validation (saving memory and computation), loops through val_loader, computes MSE on the 

model’s predictions, and sum over the entire validation set. 

 

3.7 NN performance evaluation 

To recap the architecture proposed for the Multi-Layer Feedforward Neural Network with 

Backpropagation is one input layer with 10 neurons (inputs), two hidden layers with 

respectively 32 and 16 neurons, and an output layer of 5 features (outputs); 30% as percentage 

of dropout, function loss on MSE; Adam optimizer with learning rate 10-3 and weight decay 10-

4; 100 epoch with early stepping control on MSE of 10-6 and patience 10. 

The Mean Absolute Error, the Mean Square Error and the square of the correlation coefficient 

(R2) were used as evaluation criteria to compare the model outputs with the evaluation dataset. 

MAE, MSE and R2 were calculated as follows: 

𝑴𝑨𝑬 =
𝟏

𝑵
∑|𝒚𝒊 − 𝒚̂𝒊|

𝑵

𝒊=𝟏

 (17) 

𝑴𝑺𝑬 =
𝟏

𝑵
∑(𝒚𝒊 − 𝒚̂𝒊)

𝟐

𝑵

𝒊=𝟏

 (18) 

𝑹𝟐 =
∑ (𝒚𝒊 − 𝒚̂𝒊)

𝟐𝑵
𝒊=𝟏

∑ (𝒚𝒊 − 𝒚̂𝒊)
𝟐𝑵

𝒊=𝟏

 (19) 

With the best_model_wts loaded, the model was valuated before on the saved 10% of the total 

data points; later is used the remaining 10% of the Dataset (test_loader) never used yet.  
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Figure 30. Performance evaluation extract of “Jet_fire_NN.py” script. 

 

3.8 Optimization of the MLFFNN with BP 

A first MLFFNN with BP model was developed and used as a baseline model. The architecture 

and model parameters used were the following ones: 

- One input layer with 10 neurons. 

- Two hidden layers with 32 and 16 neurons, respectively. 

- An output layer with 5 neurons. 

- Activation function: ReLU. 

- Dropout rate: 30%. 

- Batch size in the validation section: 32. 

- Adam optimizer with a learning rate of 10-3 and a weight decay of 10-4. 

- 100 epochs with early stepping control on MSE of 10-6 and a patience value of 10. 
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Afterwards, an optimization on several architecture and model parameters was performed to 

optimize the baseline MLFFNN with BP model using as loss function MSE. The analysis was 

performed considering 3 sections of the NN architecture: 

(1) Model definition: to see how the networking capacity impacts on the validation loss. 

Several parameters were tested: 

• Network geometries: 4 architectures with two hidden layers but with different 

number of neurons for each one, i.e. (16, 8) (32, 16), (64, 32), (128, 64); 1 

architecture with 1 hidden layer with 48 neurons; 1 architecture with three hidden 

layers with 32, 16 and 8 neurons, respectively.  

• Activation functions: ReLU, LeakyReLU, ELU, tanh. 

• Dropout rates: 0, 10, 30, 50%. 

(2) DataLoader creation: to analyse how changing the size of the batches in the validation 

section influence the results, because smaller batches provide noisier gradients, while 

larger batches yield smoother updates but require more memory. 

• Batch sizes tested: 16, 32, 64, 128. 

(3) Training loop: to analyse if a higher learning rate could lead every gradient step to 

overshoot the loss minimum and if is necessary to keep weights smaller to reduce model 

complexity and improve generalization on unseen data; to study the fact that a shorter 

patience may avoid overfitting but could also stop training prematurely.  

• Learning rate (10−2, 10−3, 10−4) and weight decay (0, 10−5, 10−4, 10−3) of the 

optimizer. 

• Early stopping patience: 5, 10, 20. 

The best option among all the ones tested was defined and implemented. 
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4 Results 

4.1 Simulation in PHAST 

To get a comprehensive report of the results obtained for HBNG jet fires Pressure Vessel + 

Leak with Miller/DNV model, here are shown only the grid-consequence results with the 

weather conditions of Table 16.  

The first three column charts (Figure 35, 36, 37), represent the release mass flow rate (kg/s), 

the flame length (m) and the safety distances according to three vulnerability levels based on 

radiation thresholds (m), at a fixed storage pressure of 60 barg, storage temperature of -5 °C, 

and changing the orifice diameter (1, 5, 10, 20, 35, 50 mm) with the volumetric composition of 

blended hydrogen in the natural gas (0, 5, 10, 20, 24, 30 % vol.). A single, fixed colour is used 

to represent each composition.  

According to these results, increasing the presence of H2 in natural gas decreases the release 

mass flow rate, the flame length and the incident radiation in every diameter orifice case. This 

is in agreement with the introductive part (see section 1.3.1). On the contrary, enlarging the leak 

increases the quantities for a given composition.  

For the release mass flow rate (Figure 31), the values go from a minimum value of 0.0067 kg/s 

for a mixture of H2 30% vol. with an orifice diameter of 1 mm to a maximum of 20.65 kg/s 

with only methane gas with an orifice diameter of 50 mm, which decreases to 19.96 kg/s by 

adding 5% vol. of H2. The flame length (Figure 32) for the reasons already explained goes from 

1.39 m with 30% vol. of H2 and 1 mm orifice to 53.46 m with only methane and an orifice of 

50 mm, or  to 52.57 m for a 5% vol. of H2.  Following the same pattern, the minimum and 

maximum for the safety distances (Figure 37) are 2.012 m and 87.26 m (85.94 m for 5% vol. 

of  H2) in the alert zone, 1.79 m and 75.52 m (74.6 m for 5% vol. of  H2) in the intervention zone, 

1.64 m and 67.35 m (66.38 m for 5% vol. of  H2) in the domino effect one. 
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Figure 31. Release mass flow rate (kg/s) results obtained using PHAST for a setup jet fire with storage pressure of 

60 barg and storage temperature of -5 °C considering different orifice diameters (1, 5, 10, 20, 35, 50 mm) and 

different hydrogen compositions (0, 5, 10, 20, 24, 30% vol.) in methane. 

 

Figure 32. Flame length (m) results obtained using PHAST for a setup jet fire with storage pressure of 60 barg and 

storage temperature of -5 °C considering different orifice diameters (1, 5, 10, 20, 35, 50 mm) and different hydrogen 

compositions (0, 5, 10, 20, 35, 50% vol.) in methane. 
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Figure 33. Distance crosswind to intensity level of 3 kW/m2 (alert zone), 5 kW/m2 (intervention zone), 8 kW/m2 

(domino effect zone) obtained using PHAST for a setup jet fire with storage pressure of 60 barg and storage 

temperature of -5 °C considering different orifice diameters (1 ,5, 10, 20, 35, 50 mm) and different hydrogen 

compositions (0, 5, 10, 20, 35, 50% vol.) in methane. 

 

In Figures 34, 35 and 36 the jet fire outputs considered before are shown considering different 

orifice diameters, fixing the volumetric composition of hydrogen (24 % vol.) and the storage 

temperature (-5 °C ) and changing, instead, the storage pressure (30, 45, 50, 60, 70, 80, 100, 

150 barg). As before, the composition of 24% vol. of H2. 

The storage pressure, as the orifice diameter, has a large influence on the results obtained on 

each output variable. In Figure 38, it can be observed that the release mass flow rate goes from 

0.0035 kg/s (30 barg, 1 mm) to 45.76 kg/s (150 barg, 50 mm). These differences in the release 

flow rate have consequences on the flame length, with a minimum value of 1.02 m (30 barg, 1 

mm) to a maximum value of 75.08 m (150 barg, 50 mm) (Figure 39). The same trend is noted 

in Figure 40, where the minimum and maximum for the safety distances are 1.48 m and 126.48 

m in the alert zone, 1.31 m and 109.50 m in the intervention zone, 1.27 m and 97.14 m in the 

domino effect one. 
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Figure 34. Release mass flow rate (kg/s) results obtained using PHAST for a setup jet fire with a hydrogen 

composition of 24% vol. and a storage temperature of -5 °C considering different orifice diameters (1, 5, 10, 20, 

35, 50 mm) and different storage pressures (30, 45, 50, 60, 70, 80, 100, 150 barg). 
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Figure 35. Flame length (m) results obtained using PHAST for a setup jet fire with a hydrogen composition of 

24% vol. and a storage temperature of -5 °C considering different orifice diameters (1, 5, 10, 20, 35, 50 mm) and 

different storage pressures (30, 45, 50, 60, 70, 80, 100, 150 barg). 

 

Figure 36. Distance crosswind to intensity levels of 3 kW/m2 (alert zone), 5 kW/m2 (intervention zone), 8 kW/m2 

(domino effect zone) obtained using PHAST for a setup jet fire with a hydrogen composition of 24% vol. and a 

storage temperature of -5 °C considering different orifice diameters (1, 5, 10, 20, 35, 50 mm) and different storage 

pressures (30, 45, 50, 60, 70, 80, 100, 150 barg). 

 

Regarding the influence of the storage temperature in the Pressure Vessel + Leak configuration 

to simulate HBNG horizontal jet fire, in ANNEX D are collected the results for 15 and 35 °C. 

Increasing this temperature corresponds to a decreasing of the release mass flow rate, the flame 

length and the intensity irradiation both in the cases with fixed storage pressure (60 barg) and 

the ones with fixed concentrations (24 %vol.), following the same behaviour already plotted in 

this section. 

Considering the results from all 50,112 cases simulated, the minimum values correspond to 

Tstorage = 35 °C, Pstorage = 30 barg and 30 % vol. of H2 conditions; and the maximum ones to 
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Tstorage = -5 °C, Pstorage = 150 barg and 0% vol. of H2 conditions. The respective min and max 

values for each condition are: 

• Release mass flow rate: 0.003 kg/s and 55.541 kg/s. 

• Flame length: 0.940 m and 83.960 m. 

• Distance crosswind to intensity level 3 kW/m2 for 30 seconds “Alert zone” (m): 1.374 

m and 138.750 m. 

• Distance crosswind to intensity level 5 kW/m2 for 30 seconds “Intervention zone” (m): 

1.222 m and 119.917 m. 

• Distance crosswind to intensity level 8 kW/m2 for 30 seconds “Domino effect zone” 

(m): 1.198 m and 106.090 m. 

 

4.2 Performance evaluation of the MLFFNN with Backpropagation 

 A preview of the 2-dimensional data structure (i.e., DataFrame) before exporting it into a JSON 

file format is shown in Figure 37. 

 

Figure 37. Extract in Visual Code (Python) of the DataFrame. 

 

Showing the training epoch of the NN (Figure 38), there was an early stop at epoch 22, meaning 

that the function loss (based on the MSE) did not get better results for 10 consecutive epochs 

(i.e., patience was set at 10), so the maximum of 100 epochs was not reached. At the end of 

each training section and validation the target values were transformed back to their original 

physical units to invert the standardisation applied (see section 3.4.1) 
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Figure 38. Extract in Visual Code (Python) of the training calculations for the proposed Neural Network. 

 

Once the training was completed, the NN model was evaluated on the testing dataset, with the 

weights corresponding to the lowest loss function results (related with MSE values) and 

obtained during the valuations. Therefore, the results shown in Table 17 and the scatter‐plots 

on testing dataset (Figures 39 and 40) refer to the best configuration of the original NN using 

the architecture summarized in section 3.7  

Before proceeding with the test evaluation, the predicted outputs are converted back to the 

original scale (see section 3.4.1). Therefore MAE, MSE and R2 have the relative units. 

Table 17. Statistical metrics (MAE, MSE, R2) obtained using the weights corresponding to the lowest loss function 

results in the proposed NN. 

Feature MAE MSE R2 

Release mass flow rate (kg/s) 0.574 kg/s 1.412 kg2/s2 0.985 

Flame length (m) 1.144 m 1.894 m2 0.995 

Distance (m) at intensity level of 8 kW/m2 (domino effect zone) 1.636 m 3.900 m2 0.995 

Distance (m) at intensity level of 5 kW/m2 (intervention zone) 1.898 m 5.436 m2 0.995 

Distance (m) at intensity level of 3 kW/m2 (alert zone) 1.454 m 3.011 m2 0.995 
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a) b) 

  

Figure 39. Scatter plots comparing the true values with the from the first version of NN model with: a) Release 

mass flow rate (kg/s); b) Flame length (m). 

 

a)  b) 

 

 

 

c) 
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Figure 40. Scatter plots comparing the true values with the from the first version of NN model with: a) Distance 

(m) crosswind to an intensity level of 3 kW/m2; b) Distance (m) crosswind to an intensity level of 5 kW/m2; c) 

Distance (m) crosswind to an intensity level of 8 kW/m2  

 

For the release mass flow rate, in Figure 39 (a), points near the middle (mass rates between 10 

and 40 kg/s) lined up well, but at the upper extreme (mass rates 45–50 kg/s) the points laid 

below the ideal line, meaning underprediction. Looking at the right side for the flame lengths, 

Figure 39 (b), up to circa 60 m the points clustered closely around the diagonal Over this value, 

the tendency is a bit different but the point cloud is still around the diagonal. For the distances 

(Figure 40) points are slightly below the diagonal, indicating a tendency to underpredict the 

safety distances of 4 - 5 meters. 

 

4.3 Optimization results of the MLFFNN with BP model 

As explained in section 3.7, the baseline model used in section 4.2 was optimized considering 

the following variables: network geometry, activation functions, dropout rates, batch sizes in 

the validation section, learning rate with weight decay of the optimizer and patience in the early 

stopping. 
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In the sensitivity analysis the results of the valuative loss function were computed for each 

output parameter and used to choose the best available option. In these tables, MSE does not 

have the units, because it is obtained by the standardized features (input and output) used for 

training and validation. 

According to the results shown in Tables 18, 19 and 20, the best configuration was: 

- One input layer with 10 neurons. 

- Two hidden layers with 128 and 64 neurons, respectively. 

- An output layer of 5 neurons. 

- Activation function: LeakyReLU. 

- Dropout rate: 0%. 

- Batch size in the validation section: 128. 

- Adam optimizer with a learning rate 10-3 and a weight decay 0. 

- 100 epochs with early stepping control on MSE of 10-6 and a patience value of 20. 

Table 18. Sensitivity analysis performed on the model definition variables for the MLFNN with BP network used. 

Number of neurons in (1st hidden layer, number 2nd hidden layer, etc.) MSE  

 (16, 8) 0.0218 

 (32, 16) 0.0062 

 (64, 32) 0.0026 

(128, 64) 0.0014 

 (48) 0.0034 

(32, 16, 8) 0.0424 

Activation function MSE 

ReLU 0.0021 

LeakyReLU 0.0017 

ELU 0.0033 

tanh 0.0059 

Dropout rate (%) MSE 

0 0.0001 
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10 0.0017 

30 0.0033 

50 0.0059 

 

Table 19. Sensitivity analysis performed on the DataLoader for the MLFNN with BP network used. 

Batch size MSE 

16 0.0001 

32 0.0001 

64 0.0001 

128 0.0001 

 

Table 20. Sensitivity analysis performed on the training loop for the MLFNN with BP network used. 

Learning rate Weight decay MSE 

10-2 0 0 

10-2 10-5 0.0001 

10-2 10-4 0.0002 

10-2 10-3 0.001 

10-3 0 0 

10-3 10-5 0 

10-3 10-4 0.0001 

10-3 10-3 0.0007 

10-4 0 0 

10-4 10-5 0 

10-4 10-4 0 

10-4 10-3 0.0007 

Early stopping patience MSE 
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5 0 

10 0 

20 0 

 

The graphs in Figures 50 and 51 confirms that the most optimal configuration of MLFFNN 

with BP was obtained, because the majority of the points are on, or quite near, the ideal line. 

 

a) b) 

  

Figure 41. Scatter plots comparing the true values with the predicted ones from the optimized MLFFNN: a) Release 

mass flow rate (kg/s); b) Flame length (m). 
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a)  b) 

 

 

 

c) 

 

Figure 42. Scatter plots comparing the true values with the predicted ones from the optimized MLFFNN: a) 

Distance (m) crosswind to an intensity level of 3 kW/m2; b) Distance (m) crosswind to an intensity level of 5 kW/m2 

c) Distance (m) crosswind to an intensity level of 8 kW/m2. 
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4.4 Further works 

Further work could focus on enhancing both the simulation and validation of HBNG jet fires, 

as well as improving the operability of the developed NN model. 

First, it would be beneficial to explore more validated experiments and simulations of jet fires 

in PHAST not only focusing on horizontal leaks, where the Multi-Point Miller/DNV model 

was found to outperform Johnson’s Cone model but also considering vertical flames with 

varying hydrogen concentrations. Additionally, expanding the storage pressure range to include 

values representative of the natural gas distribution grid would also be of interest. 

A sensitivity analysis would be useful to understand how each input and configuration affects 

the model's results. For instance, it could reveal how individual weather parameters (e.g., wind 

speed, atmospheric stability, humidity, and solar radiation) influence flame behaviour. 

Regarding the NN, other ML tools and architectures could be tested. For example 

Mashhadimoslem et al. (2023) used in their research not only MLFFNN for the evaluation of 

jet fires from the natural gas processing, storage and transport, but also a Radial Basis Function 

(RBF) network with only one hidden layer and several neurons. 

It would also be useful to perform a sensitivity analysis on the neural network's hyperparameters 

not only to achieve a more targeted optimization, but also to better understand how each 

parameter influences the training process. 
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5 Conclusions 

The promising opportunities that hydrogen could offer in terms of high energy density and net-

zero emissions, lead to an exponential growth of studies in the production, transportation, and 

commercialization. Between the already analysed ways of transports, such as liquified and 

compressed gas forms, Hydrogen Blended Natural Gas has prospected as an economical and 

viable strategy. In particular, the H2 produced is blended in the already exiting NG pipeline. 

However, this new mixture is affected by a different behaviour and problems than the normal 

natural gas, such as changing in the compressibility factor, energy transmission and 

temperature. In particular, due to the small dimension of H2 and its high affinity with air, the 

common pipeline could be affected by hydrogen embrittlement phenomena, which is the cause 

of leaks and breaks in the structure. In addition, the small molecular size and low ignition energy 

of the added gas lead rapidly to turbulent jet flames. These high-momentum diffusion flames 

radiate heat impinge on nearby structures, and can trigger catastrophic domino events, and 

therefore HBNG jet fires represent a newest danger and safety issue in industrial risk-

assessment workflows. 

In parallel, new technological tools implementing machine learning offer faster and more 

accurate results than the common CFD software. Between the several algorithm, Neural 

Networks are optimal instruments, easily to modify and to implement. In particular, a MLFNN 

with Backpropagation, could be a simple, but at the same time efficient, structure to be created 

and use for simulating the jet mass flowrate, flame length and safety distances of the flames 

chosen to discuss. 

In this thesis, before developing the indicated NN, were tested different configuration to 

simulate scenarios of horizontal HBNG jet fire from NG transmission pipeline, choosing as the 

most suitable the Pressure Vessel + Leak setup. 

With this configuration a comprehensive database of 50,112 cases was generated in PHAST 

and collected in a Grid Consequence, by varying the volumetric concentration of H2 blended (0 

- 30 vol %), orifice diameter (1 - 50 mm), storage pressure (30 - 150 barg) and temperature (–

5, 15, 35 °C), as well as the meteorological condition (atmospheric stability, wind speed, 

ambient temperature and humidity). 
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These simulations revealed that increasing H₂ content, storage temperature, orifice diameter 

and reducing storage pressure each led, respectively, to lower mass release rates, shorter flame 

lengths and smaller required safety distances (3, 5 and 8 kW/m² contours). 

Building on this database, a MLFFNN was trained using PyTorch, initially with two hidden 

layers (32 and 16 neurons) and ReLU activation function, achieving validation MSE ≈ 10⁻³ and 

R² > 0.98 across all outputs.  

A subsequent optimization, increasing hidden layer sizes to 128 and 64 neurons respectively, 

switching to LeakyReLU, eliminating dropout, enlarging validation batches and tuning Adam’s 

learning rate and weight decay, reduced the validation MSE to near zero and pushed R² to ≥ 

0.99 for jet mass flow, flame length and all three safety distance predictions. 

Merging the full dataset from PHAST and the accuracy of the optimized NN, this one predicts 

mass release rates varying from 0.003 to 55.541 kg/s with an average absolute error below 0.58 

kg/s, flame lengths spanning 0.94 to 83.96 m with mean deviations under 1.15 m, and crosswind 

safety distances for 3 kW/m² (Alert zone), 5 kW/m² (Intervention zone), and 8 kW/m² (Domino 

effect zone) ranging respectively from 1.374 to 138.75 m, 1.222 to 119.917 m, and 1.198 to 

106.09 m with average errors of 1.45 m, 1.90 m, and 1.64 m 

In the end, the developed model provides high accuracy estimates of jet fire consequences 

across the full parameter space, offering a practical, computationally efficient tool for rapid risk 

assessment in HBNG risk issues. 
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ANNEX A: Sustainability report 

A.1 Environmental sustainability 

The environmental impact of this work can be assessed by quantifying the main source of 

emissions, which is the electricity consumed during the research activities. Specifically, these 

emissions can be calculated based on the energy mix of Spain. Figure 43 illustrates the daily 

distribution of electricity production sources, with wind, photovoltaic, and nuclear energy being 

the three primary sources, as indicated by the Electricity Map. This tool also provides data on 

the average mass of equivalent CO2 emissions per kWh consumed during each hour of the day 

Table 21. Carbon dioxide equivalent, as defined from the European Environment Agency, is a 

measure used to compare the emissions from various greenhouse gases based upon their global 

warming potential (GWP). 

To estimate the amount of equivalent CO2 emitted during the development of this master thesis, 

a standard electricity consumption value for a computer was used. On average, most of the 

computers use between 0.8 and 2.5 kWh per hour. The activities primarily took place in the 

morning, from 9 am to 1 pm. Considering five hours per day and 100 days as extent of the thesis 

work, the total amount of equivalent CO2 emitted resulted to be between 3.8 and 11.9 kg CO2eq. 

 

 

Figure 43. Energy mix of Spain (EMBER 2024.) 
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Table 21. Equivalent CO2 emission per kWh during the morning hours. 

Hour Emissions (g CO2eq/kWh) 

From 9 a.m. to 10 a.m. 140 

From 19 a.m. to 11 a.m. 129 

From 11 a.m. to 12 a.m. 109 

From 12 a.m. to 1 p.m. 97 

 

Additional sources of emissions that should be considered include the energy required to power 

and cool the data centre systems that host the servers supporting the software. The use of the 

internet itself, involving the transmission and reception of data, also relies on communication 

networks, which have their own environmental impact. These elements, however, are difficult 

to estimate numerically without precise data from the software providers. 

 

A.2 Economic sustainability 

Quantifying the costs associated with the thesis work involves considering both human and 

material resources. Regarding material resources, the software tool utilized plays a significant 

role. Indeed, PHAST is a commercial software that requires a license, resulting in a financial 

expense.  

In terms of human resources, the costs encompass the personnel involved in the project, 

including the student's own time spent on research, writing and analysis, as well as any expenses 

related to supervision or tutoring provided by academic supervisors. Estimating the number of 

hours contributed by each person involved is crucial for accurate cost assessment. For example, 

the student’s personal involvement in the project averaged four hours per day, resulting in a 

total of 420 hours. 
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Additional material resources include the use of computer hardware, office supplies and other 

equipment necessary for simulations and data analysis. Indirect costs, such as electricity 

consumption for running the software and hardware, internet usage and other utilities, should 

be also considered. 

 

A.3 Ethical implications 

This thesis work responds to the growing need for safe and efficient H2 transportation and 

usage, particularly in the context of the global shift towards sustainable energy solutions. 

Specifically, it addresses the needs of enhancing safety by identifying and calculating in a faster 

way the safety distances in case of an accidental jet fire scenario, improving efficiency of 

industrial processes and contributing to sustainability by advancing clean energy technologies. 

This work adheres to the ethical standards and deontological codes relevant to engineering and 

scientific research. This involves accurately reporting and honestly interpreting all data and 

findings. Additionally, the work is committed to practices that support long-term environmental 

sustainability. Transparency is ensured in the methodologies employed, ensuring that all 

procedures utilized throughout the thesis work are explicitly described and documented, 

allowing others to comprehend and evaluate the work undertaken. 

 

A.4 Relationship with the Sustainable Development Goals 

The Sustainable Development Goals (SDGs), also known as the Global Goals, were adopted 

by the United Nations in 2015. United Nations aim to achieve 17 goals by 2030, addressing the 

global challenges we face, including those related to poverty, inequality, climate change, 

environmental degradation, peace and justice. 

This thesis work contributes in part to the Sustainable Development Goals (SDGs) illustrated 

in Figure 44. Hydrogen, as previously mentioned, is a clean fuel because its combustion does 

not emit GHGs. When produced through sustainable methods (Green H2), it serves as a source 

of clean energy. By analysing potential cases of horizontal HBNG jet fires from transmission 

pipelines and developing a predictive tool (MLFFNN) for assessing their consequences, this 
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research contributes to innovation in industrial processes and improvements in urban safety. 

Notably, it aligns with Goal 11 of the Sustainable Development Goals, which includes the 

objective of providing access to safe and sustainable transport systems. 

 

Figure 44. SDGs related to the thesis work. 
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ANNEX B: PHAST models 

B.1 Source models for pressure vessel leaks 

The DISC model implemented in PHAST - DNV (DNV 2023) is a suite of instantaneous and 

continuous discharge models for hazardous chemicals stored in vessels. Following a leak in a 

vessel or in a pipe attached to a vessel, a discharge will occur to the atmosphere. In particular, 

the Orifice model is a conservative and initial-rate discharge model which predicts the worst-

case initial discharge rate and the duration associated with this discharge rate. The chemical 

stored in the vessel may be vapour, liquid or two-phase. The model is illustrated in Figure 45 

and describes the expansion from pre-release conditions to the orifice. The pre-release or initial 

conditions are determined from the user-specified storage conditions according to the scenario 

and other settings. Expansion from the orifice to atmospheric conditions is managed by the 

Atmospheric Expansion theory (ATEX) model (DNV 2023). 

 

Figure 45. Orifice and atmospheric expansion conditions (DNV 2023). 

 

The following equations are used to determine the orifice conditions. By conservation of 

energy, assuming initially the material is stagnant: 
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𝒉(𝑷𝒔𝒕, 𝑻𝒔𝒕, 𝜼𝒔𝒕) = 𝒉(𝑷𝒐, 𝑻𝒐, 𝜼𝒐) +
𝒖𝒐

𝟐

𝟐
 (20) 

Where: ℎ stands for enthalpy (on the left side it is dependent on storage 𝑃𝑠𝑡, storage temperature 

𝑇𝑠𝑡 and mass liquid fraction 𝜂𝑠𝑡; on the right side it is dependent on orifice 𝑃𝑜, orifice 

temperature 𝑇𝑜 and orifice mass liquid fraction 𝜂𝑜), 𝑢𝑜 is the orifice velocity. 

By conservation of entropy 𝑠: 

𝒔(𝑷𝒔𝒕, 𝑻𝒔𝒕, 𝜼𝒔𝒕) = 𝒔(𝑷𝒐, 𝑻𝒐, 𝜼𝒐) (21) 

Note that during this isentropic expansion to the orifice, materials which are initially pure 

vapour or liquid can be forced to remain so by setting the model input ‘Phase change upstream 

of orifice’. The default setting is ‘Disallow liquid phase change’, also referred to as the 

‘metastable liquid’ approach. The assumption is that there is insufficient time for changes in 

phase before the material reaches the orifice. 

The orifice pressure 𝑃𝑜 equals the ambient pressure in case of unchoked flow, and is determined 

from the choke pressure in case of choked flow: 

𝑷𝒐 = 𝑴𝑨𝑿(𝑷𝒂, 𝑷𝒄) (22) 

Where: 𝑃𝑎 is the atmospheric pressure and 𝑃𝑐 is the choke pressure at the orifice and is defined 

as the pressure at which the mass flux 𝐺𝑜 through the orifice is maximized: 

𝑮𝒐 =
𝒖𝒐

𝒗𝒐
 (23) 

The specific volume 𝑣𝑜 is calculated as: 

𝒗𝒐 =
𝜼𝒐

𝝆𝑳𝒐
+

(𝟏 − 𝜼𝒐)

𝝆𝑽𝒐
 (24) 

The mass release rate 𝑄∗ is then: 

𝑸∗ = 𝑨𝒐𝑮𝒐 (25) 

Where 𝐴𝑜 is the orifice area. 

This represents an idealized flow rate, but the frictional effect of convergent flow at the orifice 

(as represented by the vena contracta in Figure 45 effectively reduces this. The convention is to 
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achieve this by reducing orifice cross-sectional area (𝐴𝑣 < 𝐴𝑜). The ratio of this reduction is the 

discharge coefficient 𝐶𝐷: 

𝑨𝒗 = 𝑪𝑫𝑨𝒐 (26) 

𝑸 = 𝑨𝒗𝑮𝒐 (27) 

The method used to calculate the discharge coefficient 𝐶𝐷 is calculated as the ratio of the actual 

mass flow to that which could be passed through the full area of the orifice, with values in the 

range between 0.6 to 1. Finally, the release duration 𝑡𝑟𝑒𝑙 can be obtained as: 

𝒕𝒓𝒆𝒍 =
𝑴𝒔𝒕

𝑸
 (28) 

For fixed duration runs (i.e. where the user input fixed duration > 0 in PHAST) orifice diameter 

is allowed to vary such that the release rate is sufficient to discharge the inventory in the 

specified time. As orifice state and mass flux are independent of orifice diameter, we may 

calculate 𝐺𝑜 and 𝐶𝐷 as described above, then use Equation (27) to determine release rate 𝑄, and 

Equation (26) to determine vena contracta diameter. 

B.1.1 Method of solution 

The sequence of steps used to determine the orifice conditions is: 

1. For a given 𝑃𝑜, temperature and liquid fraction are determined from the isentropic-

expansion Equation (23). In terms of vapour (𝑠𝑉) and liquid (𝑠𝐿) entropies, the total 

entropy is: 

𝒔 = 𝜼𝑳𝒔𝑳(𝑷, 𝑻) + (𝟏 − 𝜼𝑳)𝒔𝑽(𝑷, 𝑻) (29) 

The leak scenario force vapour or liquid discharges to remain the same phase after 

expansion, in which cases the liquid fraction is set to one or zero. As liquid entropy is 

less than vapour entropy, whether the final state in single-phase can be determined from 

Equation (29): 

𝒔 > 𝒔𝑽(𝑷, 𝑻) (30) 

With 𝜂𝐿 = 0 for vapor case. 

2. Calculate orifice velocity from conservation-of-energy Equation(20). 
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3. Calculate the mass flux from Equation (25). 

4. The orifice pressure is iterated until the mass flux is maximized, and 𝑃𝑜 set according 

to Equation (22). 

5. Calculate 𝐶𝐷 and modified 𝑄 and 𝐴𝑉 from Equation (26). 

6. Calculate release duration from Equation (28). 

 

B.2 Calculation of still air flame length parameters for non-hydrocarbons 

The M-MPS model employs the Kalghatgi’s correlation derived from experiments on the 

vertical flames in still air to determine the still air flame length 𝐿𝐵0 for non-hydrocarbon flames. 

(
𝑫𝒔𝜷

𝑳𝑩𝟎𝑾𝒔𝒕
)

𝟐
𝟑

= 𝟎. 𝟐 + 𝟎. 𝟎𝟐𝟒𝝃(𝑳𝑩𝟎) (31) 

Where: 𝛽 Becker and Liang’s flame constant, 𝑊𝑠𝑡 mass fraction of fuel in a stoichiometric 

mixture with air, 𝐷𝑠 combustion or effective source diameter, 𝜉 Richardson number. 

The mass fraction of fuel in a stoichiometric mixture with air, 𝑊𝑠𝑡 can be calculated as: 

𝑾𝒔𝒕 =
𝑴𝒘𝑪𝒕

𝑴𝒘𝑪𝒕 + (𝟏 − 𝑪𝒕)𝑾𝒂𝒊𝒓
 (32) 

Where: 

𝑪𝒕 =
𝒎𝒐𝒍𝒆 𝒐𝒇 𝒇𝒖𝒆𝒍

𝒎𝒐𝒍𝒆 𝒐𝒇 𝒇𝒖𝒆𝒍 + 𝒎𝒐𝒍𝒆𝒔 𝒐𝒇 𝒂𝒊𝒓
 (33) 

𝑨𝒕 =
𝒎𝒐𝒍𝒆 𝒐𝒇 𝒇𝒖𝒆𝒍 + 𝒎𝒐𝒍𝒆𝒔 𝒐𝒇 𝒂𝒊𝒓

𝒎𝒐𝒍𝒆 𝒐𝒇 𝒄𝒐𝒎𝒃𝒖𝒔𝒕𝒊𝒐𝒏 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒔
 (34) 

For the adiabatic combustion temperature 𝑇1 (K) Miller presented the following correlations 

for estimating adiabatic combustion temperature for mixtures containing flammable and inert 

gases: 

𝑻𝟏 = 𝑻𝟏,𝒇𝒖𝒆𝒍(−𝟎. 𝟕𝟑𝟗𝟓𝑪𝑫𝒆𝒒𝒖𝒊𝒗
𝟐 + 𝟎. 𝟎𝟑𝟔𝟔𝑪𝑫𝒆𝒒𝒖𝒊𝒗 + 𝟎. 𝟗𝟗𝟕𝟐) (35) 
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𝑻𝟏,𝒇𝒖𝒆𝒍 = 𝟑𝟐𝟏. 𝟎𝟖𝑯𝟐 𝒆𝒒𝒖𝒊𝒗
𝟑 − 𝟑𝟏𝟎. 𝟖𝟖𝑯𝟐 𝒆𝒒𝒖𝒊𝒗

𝟐 + 𝟏𝟒𝟒. 𝟎𝟑𝑯𝟐 𝒆𝒒𝒖𝒊𝒗 + 𝟐𝟐𝟐𝟑 (36) 

𝑪𝑫𝒆𝒒𝒖𝒊𝒗 = 𝒙𝑪𝑫 + 𝟎. 𝟖𝟒𝒙𝑾𝑨 + 𝟎. 𝟓𝟗𝒙𝑵𝟐 (37) 

𝑯𝟐 𝒆𝒒𝒖𝒊𝒗 =
𝒙𝑯𝟐𝒆𝒒𝒖𝒊𝒗

𝒙𝑯𝟐𝒆𝒒𝒖𝒊𝒗 + 𝒙𝑪𝟏𝒆𝒒𝒖𝒊𝒗
 (38) 

𝒙𝑯𝟐𝒆𝒒𝒖𝒊𝒗 = 𝒙𝑯𝟐 + 𝒙𝑪𝑴 (39) 

𝒙𝑪𝟏𝒆𝒒𝒖𝒊𝒗 = 𝒙𝑪𝟏 + 𝒙𝑪𝟐 + 𝒙𝑪𝟑 + 𝒙𝑪𝟒 + 𝒙𝑪.. (40) 

Where: 𝑇1,𝑓𝑢𝑒𝑙 adiabatic combustion temperature for combustible materials (K),  𝑥𝐶𝐷, 𝑥𝑊𝐴, 

𝑥𝑁2 mole fractions of carbon dioxide, water vapor and nitrogen in the fuel mixture 

(respectively), 𝑥𝐻2𝑒𝑞𝑢𝑖𝑣 sum of mole fractions of flammable non-hydrocarbons, 𝑥𝐶1𝑒𝑞𝑢𝑖𝑣 sum 

of mole fractions of flammable hydrocarbons, 𝑥𝐻2, 𝑥𝐶𝑀 mole fractions of H2 and carbon 

monoxide (respectively), 𝑥𝐶1, 𝑥𝐶2, 𝑥𝐶3, 𝑥𝐶4, 𝑥𝐶.. mole fractions of hydrocarbons. 

 

B.3 Calculation of flame momentum and lift-off distances 

The “frustum lift off”, 𝐵𝑀, is defined as the distance along the hole axis from the hole to the 

point of intersection of the cone axis. For releases inclined vertically or at 45° to the horizontal, 

the momentum dominated flame length 𝐵𝑀 for horizontal release is calculated from: 

𝑩𝑴

𝑳𝑩𝟎
= 𝑴𝑨𝑿(𝟎, 𝑴𝑰𝑵(𝒆−𝟎.𝟏𝟑𝑵𝑹𝒊𝒄𝒉𝒂𝒓𝒅𝒔𝒐𝒏𝑳𝑩𝟎, 𝟏) (41) 

Originally, the Miller model assumes jet flames to burn very close to the source with zero flame 

lift-off distance (𝐵). This assumption is somewhat tenable for H2, given its high laminar burning 

velocity, wide flammability limits, hence, propensity to burn (high combustion 

reactivity/potential). For less reactive materials, e.g., hydrocarbons, field/experimental 

evidence on jet flames, suggest a finite (flame lift-off) distance exists between the release source 

and onset of visible combustion. 

As such, the M-MPS model has been extended to support the modelling of a finite flame lift-

off distance (𝐵) given by: 
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𝑩 = 𝟎. 𝟐𝑩𝑴 (42) 

 

B.4 Calculation of radiant heat fraction and radiation characteristics 

Miller recommends the following correlation for determining the total heat radiating from the 

flame along the flame centrelines (𝑄𝑟𝑎𝑑): 

𝑸𝒓𝒂𝒅 = 𝑭𝑨𝑷𝒎𝑯𝑪𝑶𝑴𝑩 (43) 

Where 𝐹𝐴𝑃 is the flame radiant heat fraction along the flame centerline: 

𝑭𝑨𝑷 = 𝑴𝑨𝑿{(𝒙𝑪𝟏𝒆𝒒𝒖𝒊𝒗𝑭𝒔 + 𝒙𝑯𝟐𝒆𝒒𝒖𝒊𝒗𝑭𝑯𝟐), 𝟎. 𝟎𝟓} (44) 

𝐹𝑠 and 𝐹𝐻2 are given by: 

𝑭𝒔 = 𝟎. 𝟐𝟏𝒆−𝟎.𝟎𝟎𝟑𝟐𝟑𝒗𝒋 + 𝟎. 𝟏𝟏 (45) 

𝑭𝑯𝟐 =  𝑭𝒄𝒐𝒓𝒓(𝟎. 𝟏𝟔𝟗𝟏 − 𝟎. 𝟎𝟏𝒍𝒏(𝑴𝒇𝒍𝒖𝒙)) (46) 

Where for horizontal jet fire: 

𝑴𝒇𝒍𝒖𝒙 =
𝟒𝒎

𝒑𝒅𝟎
𝟐 (47) 

𝑭𝒄𝒐𝒓𝒓 = 𝟏. 𝟑𝟔 + 𝟎. 𝟎𝟕𝟔𝑴𝑰𝑵{𝟏𝟎, 𝑳𝒇/𝒉𝑹𝑪} (48) 

𝒉𝑹𝑪 = 𝒛𝑬𝒍𝒆𝒗 + 𝑴𝑨𝑿(𝟎, (𝟎. 𝟔𝟔𝑳𝒇 − 𝑩𝑴) 𝐬𝐢𝐧(𝜶𝑨𝑷)) (49) 

The radiated heat is assumed to be generated from point sources evenly distributed along the 

flame centreline 𝐿𝑓. The amount of heat from each point source is linearly weighted with 

minimum values at each end and a maximum at the radiant centre of the flame, 2/3 along 𝐿𝑓. 
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ANNEX C: Grid consequences from PHAST HBNG jet fire 

simulations 

The following table is one of the three “grid consequences” excel create using the simulator 

programme PHAST with input configuration Pressure Vessel + Leak in Miller model, for the 

simulation of a third of the 50,112 cases set by the parameter in Tables 12, 13 and 14. Indeed 

the storage temperature of the jet fire gases was -5 °C here, but were created the relative excel 

for 15 °C and 35 °C. 

An approach to read the table could be the following: 

1. Setting the material (gas mixture): CH4, 5, 10, 20, 24, 30 %vol. 

2. Fixing a pressure storage: 30, 45, 50, 60, 70, 80, 100, 150 barg. 

3. Fixing each orifice diameter: 1, 5, 10, 20, 35, 50 mm. 

4. Trying each one of the different weather conditions: Table 13 and Table 16. 

5. Changing the pressure of storage and repeat point 3 and 4. 

6. Repeat from point 2 to 5 for each composition. 

 

For reasons of space, it was not possible to include all the 16,704 different cases and their results 

in Table 22 so only some of them are tabulated to let understand their disposition. 
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Table 22. Selected values of the Jet fire sheet from the grid consequence of a simulated Pressure Vessel + Leak 

with Miller/DNV model setup for HBNG horizontal jet fire cases with the input parameter in section 3.4.2. 

Path Scenario Weather 
Hole 
size 

(mm) 
Material 

Temper
ature 

(input) 
(degC) 

Pressure 
(input) 
(bar) 

Height 
of 

interest 
(comin
g from 
parame

ters) 
(m) 

Jet fire 
mass 
rate 

(kg/s) 

Fla
me 

lengt
h 

(m) 

Jet 
fire 

radiat
ion 

intens
ity 

level 
1 

Distan
ce 

down
wind 

to 
intensi

ty 
level 1 

(5 
kW/m
2) (m) 

Distan
ce 

down
wind 

to 
intensi

ty 
level 2 

(3 
kW/m
2) (m) 

Distan
ce 

down
wind 

to 
intensi

ty 
level 3 

(8 
kW/m
2) (m) 

Study1\Pressu
re_vessel_ME
THANE_30 

Leak_30
_1 

Lowesmi
th_2012 1 METHAN

E -5 30 3,25 0.0039
8631 

1,09
947 

Param
eter 

value 
1.4171 1.5897

9 
1.3468

9 

Study1\Pressu
re_vessel_ME
THANE_30 

Leak_30
_1 

A-1_-
5_50 1 METHAN

E -5 30 3,25 0.0039
8631 

1,09
624 

Param
eter 

value 

1.4154
5 

1.5905
1 

1.3441
9 

... … … … … … … … … … … … … …. 

Study1\Pressu
re_vessel_ME
THANE_30 

Leak_30
_50 

Lowesmi
th_2012 50 METHAN

E -5 30 3,25 9.9657
8 

38,4
636 

Param
eter 

value 

54.065
5 

62.110
4 

48.250
6 

Study1\Pressu
re_vessel_ME
THANE_30 

Leak_30
_50 

A-1_-
5_50 50 METHAN

E -5 30 3,25 9.9657
8 

38,2
978 

Param
eter 

value 

54.820
7 

63.206
7 

48.773
8 

... … … … … … … … … … … … … …. 

Study1\Pressu
re_vessel_ME
THANE_45 

Leak_45
_1 

Lowesmi
th_2012 1 METHAN

E -5 45 3,25 0.0060
6752 

1,33
731 

Param
eter 

value 

1.7324
3 

1.9450
2 

1.5805
1 

Study1\Pressu
re_vessel_ME
THANE_45 

Leak_45
_1 

A-1_-
5_50 1 METHAN

E -5 45 3,25 0.0060
6752 

1,33
359 

Param
eter 

value 

1.7320
4 

1.9492
4 

1.5782
5 

... … … … … … … … … … … … … …. 

Study1\Pressu
re_vessel_ME
THANE_150 

Leak_15
0_50 

F-3_-
5_70 50 METHAN

E -5 150 3,25 58.975
3 

86,2
619 

Param
eter 

value 

125.54
3 

145.91
4 

110.66
4 

Study1\Pressu
re_vessel_ME
THANE_150 

Leak_15
0_50 

F-3_-
5_90 50 METHAN

E -5 150 3,25 58.975
3 

86,2
732 

Param
eter 

value 

124.98
2 

145.14
9 

110.23
9 

... … … … … … … … … … … … … …. 

Study1\Pressu
re_vessel_5_3

0 

Leak_30
_1 

Lowesmi
th_2012 1 MIXTURE

_5 -5 30 3,25 0.0038
8104 

1,08
339 

Param
eter 

value 

1.3952
9 

1.5649
4 

1.3313
5 

Study1\Pressu
re_vessel_5_3

0 

Leak_30
_1 

A-1_-
5_50 1 MIXTURE

_5 -5 30 3,25 0.0038
8104 

1,08
023 

Param
eter 

value 
1.3936 1.5654

8 
1.3287

7 

... … … … … … … … … … … … … …. 

Study1\Pressu
re_vessel_30_

150 

Leak_15
0_50 

F-3_-
5_70 50 MIXTURE

_30 -5 150 3,25 43.299
6 

73,7
71 

Param
eter 

value 
108.58 125.80

3 96.092 

Study1\Pressu
re_vessel_30_

150 

Leak_15
0_50 

F-3_-
5_90 50 MIXTURE

_30 -5 150 3,25 43.299
6 

73,7
808 

Param
eter 

value 

108.12
7 

125.18
1 

95.753
2 
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ANNEX D: Results of the simulation in PHAST changing the 

storage temperature 

 

 

Figure 46. Jet fire mass rate (kg/s) from the grid consequence results of PHAST simulation of a setup jet fire with 

storage pressure 60 barg and storage temperature 15 °C (a) and 35 °C (b) at different orifice diameter (10, 20, 35, 

50 mm) and different H2 blended compositions (0, 5, 10, 20, 35, 50 %). 

 

 

 

Figure 47. Flame length (m) from the grid consequence results of PHAST simulation of a setup jet fire with storage 

pressure 60 barg and storage temperature 15°C (a) and 35°C (b) at different orifice diameter (10, 20, 35, 50 mm) 

and different H2 blended compositions (0, 5, 10, 20, 35, 50 %). 



  MSc. Thesis 

94 
 

 

Figure 48. Distance crosswind to intensity level 3, 5, 8 kW/m2 from the grid consequence results of PHAST 

simulation of a setup jet fire with storage pressure 60 barg and storage temperature 15°C at different orifice diameter 

(10, 20, 35, 50 mm) and different H2 blended compositions (0, 5, 10, 20, 35, 50 %). 

 

Figure 49. Distance crosswind to intensity level 3, 5, 8 kW/m2 from the grid consequence results of PHAST 

simulation of a setup jet fire with storage pressure 60 barg and storage temperature 35°C at different orifice diameter 

(10, 20, 35, 50 mm) and different H2 blended compositions (0, 5, 10, 20, 35, 50 %). 
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Figure 50. Jet fire mass rate (kg/s) from the grid consequence results of PHAST simulation of a setup jet fire with 

hydrogen blended compositions 24 %vol and storage temperature 15°C (a) and 35°C (b) at different orifice 

diameter (10, 20, 35, 50 mm) and different storage pressure (30, 45, 50, 60, 70, 80, 100, 150 barg). 

 

 

Figure 51. Flame length (m) from the grid consequence results of PHAST simulation of a setup jet fire with H2 

blended compositions 24 %vol and storage temperature 15°C (a) and 35°C (b) at different orifice diameter (10, 20, 

35, 50 mm) and different storage pressure (30, 45, 50, 60, 70, 80, 100, 150 barg). 
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Figure 52. Distance crosswind to intensity level 3, 5, 8 kW/m2 from the grid consequence results of PHAST 

simulation of a setup jet fire with H2 blended compositions 24 %vol and storage temperature 15 °C at different 

orifice diameter (10, 20, 35, 50 mm) and different storage pressure (30, 45, 50, 60, 70, 80, 100, 150 barg). 

 

 

Figure 53. Distance crosswind to intensity level 3, 5, 8 kW/m2 from the grid consequence results of PHAST 

simulation of a setup jet fire with H2 blended compositions 24 %vol and storage temperature 35 °C at different 

orifice diameter (10, 20, 35, 50 mm) and different storage pressure (30, 45, 50, 60, 70, 80, 100, 150 barg). 
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