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Abstract

The global trend towards hydrogen as a key low-carbon energy vector is rapidly increasing
worldwide, due to its high gravimetric energy density. Following this current, there were
analysed different ways to produce it, overall, the ones powered by renewable energy sources
(green Hz), which represents a bridge between today and a zero-emission future. All the types
of H» could be transported with several strategies and in different forms, for example in trucks
through liquid or compressed gas state. However, these last two methods need sophisticated
structures and elevated costs. At the same time, existing natural gas (NG) transmission and
distribution pipelines represent a vast infrastructure that could carry hydrogen blended natural
gas (HBNG) over long distances more economically than pure hydrogen pipelines too. Indeed,
blending hydrogen into NG networks avoids massive costs for new infrastructures, but raises
questions about mixing behaviour, energy transmission, compressor work and material

integrity, particularly due to hydrogen embrittlement (HE) of steels under high pressure.

HE could be the cause of HBNG leaks from a pressurized pipeline or vessel, and the small
molecular size and low ignition energy of hydrogen can lead rapidly to turbulent jet flames.
These high-momentum diffusion flames emit heat that can impinge on nearby structures and
can trigger catastrophic domino events. Their behaviour is studied nowadays, because the
presence of H> modifies which could be the classic NG one. Accurate prediction of jet-fire
flame geometry (length and lift-off) and radiative heat flux is therefore essential for defining
safe separation distances. PHAST is a simulating software with semi-empirical models
implemented that could offer optimal prevision of HBNG jet fires, Configurating these type of
scenarios in simulative software like PHAST could be really useful, for evaluating the jet fire
mass flowrate, the flame length and the safety distances and to study the influence of parameters
such as orifice diameter, storage temperature and pressure, meteorological conditions and the

volumetric concentration of the blended hydrogen.

In this work, a Neural Network (NN) is developed to estimate the effects of jet fires. Firstly, jet
fire scenarios of HBNG from transmission pipeline were simulated using PHAST software. A
database was constructed by configuring accidental jet fire scenarios for obtaining the jet fire
mass flowrate, the flame length and the safety distances (Alert zone, Intervention zone, Domino

Effect zone) for different combinations of input parameters such as orifice diameter, storage
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temperature and pressure, meteorological conditions and volumetric concentration of the
blended hydrogen. A pseudo-validation was performed to ensure that PHAST could be used
for the specific ranges of parameters and compared to literature experimental cases. Before
developing the NN, the database results are analysed and standardized, as pre-processing steps.
A Multilayer Feedforward Neural Network with Backpropagation was trained and optimized
on the database constructed and the hyperparameters were tuned to minimize the loss function.
MAE, MSE and R? metrics were used to evaluate the performance. In the end the optimized
version of this NN model could successfully reproduce the original database with MSE errors

in the millesimal range.
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Astratto

La tendenza globale verso l'idrogeno come un vettore energetico chiave a basse emissioni sta
aumentando rapidamente in tutto il mondo, grazie alla sua elevata densita energetica
gravimetrica. Seguendo questa tendenza, sono stati analizzati diversi metodi per produrlo,
soprattutto quelli alimentati da fonti energetiche rinnovabili (Hz verde), che rappresentano un
ponte tra il presente e un futuro a senza emissioni. I vari tipi di H> potrebbero essere trasportati
con diverse strategie e in diverse forme, ad esempio su camion allo stato liquido od in forma di
gas compresso. Tuttavia, questi ultimi due metodi richiedono strutture sofisticate ed hanno costi
elevati. Allo stesso tempo, il gia esistente sistema di condutture per il trasporto e la distribuzione
del gas naturale (GN) rappresenta una vasta infrastruttura che potrebbe trasportare gas naturale
miscelato con idrogeno (HBNG) anche su lunghe distanze, in maniera piu economica rispetto
alla distribuzione di idrogeno puro. Infatti, la miscelazione dell'idrogeno nelle reti di GN evita
1 costi ingenti legati alla costruzione di nuove infrastrutture, ma solleva interrogativi sul
comportamento della miscela, sulla trasmissione di energia, sul funzionamento dei compressori
e sull'integrita dei materiali, in particolare a causa dell'infragilimento da idrogeno (HE) degli

acciai ad alta pressione.

HE potrebbe essere la causa di perdite di HBNG da una tubazione o da un serbatoio
pressurizzato, e le piccole dimensioni molecolari, insieme alla bassa energia di accensione
dell'idrogeno possono portare rapidamente a fiamme turbolenti a getto. Queste fiamme a
diffusione ad alto momento emettono calore che puo incidere sulle strutture vicine e innescare
catene di eventi catastrofici. Il loro comportamento ¢ oggetto di studio al giorno d'oggi, perché
la presenza di H> modifica quello che potrebbe essere il classico comportamento del NG. Una
previsione accurata della geometria della fiamma a getto (lunghezza e sollevamento) e del
flusso di calore radiativo sono quindi essenziali per definire le distanze di sicurezza. PHAST ¢
un software di simulazione con modelli semi-empirici implementati che potrebbe offrire una
previsione ottimale delle fiamme composte da HBNG. Configurare questo tipo di scenari in un
software di simulazione come PHAST potrebbe essere davvero utile per valutare la portata
massica della fiamma, la sua lunghezza e le distanze sopracitate e per studiare l'influenza di
parametri quali il diametro dell'orifizio, la temperatura e la pressione di stoccaggio, le

condizioni meteorologiche e la concentrazione volumetrica dell'idrogeno miscelato.
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In questo lavoro ¢ stata sviluppata una rete neurale (NN) per stimare gli effetti delle flamme a
getto. Innanzitutto, sono stati simulati scenari di lingue di fuoco di HBNG da condotti di
trasmissione utilizzando il software PHAST. E stato creato un database configurando differenti
scenari accidentali per ottenere la portata massica del getto, la lunghezza della fiamma e le
distanze di sicurezza (zona di allerta, zona di intervento, zona di effetto domino) per diverse
combinazioni di input quali diametro dell'orifizio, temperatura e pressione di stoccaggio,
condizioni meteorologiche e concentrazione volumetrica dell'idrogeno miscelato. E stata
eseguita una pseudo-convalida per confermare che PHAST potesse essere utilizzato per
intervalli specifici di questi parametri ed ¢ stata confrontata con casi sperimentali trovati in
letteratura. Prima di sviluppare la NN, i risultati del database sono stati analizzati e
standardizzati, nella fase di antecedente all’elaborazione. Una rete neurale feedforward
multistrato con retro-propagazione ¢ stata addestrata e ottimizzata sul database costruito e gli
iper-parametri sono stati regolati per minimizzare la funzione di perdita. Per valutare le
prestazioni sono state utilizzate le metriche MAE, MSE e R». Alla fine, la versione ottimizzata
di questo modello NN ¢ riuscita a riprodurre con successo il database originale con errori MSE

nell'ordine dei millesimi.
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Resumen

La tendencia global hacia el hidrogeno como vector energético clave y bajo en carbono esta
aumentando rapidamente en todo el mundo, en parte debido a su alta densidad energética
gravimétrica. Siguiendo esta corriente, se han analizado diferentes métodos para su produccion,
especialmente aquellos impulsados por fuentes de energia renovables. El hidrégeno producido,
posteriormente, se transporta siguiendo diversas estrategias y en distintas formas, como en
estado liquido o como gas comprimido. Sin embargo, estos dos ultimos métodos requieren
estructuras sofisticadas y costes elevados. Al mismo tiempo, las redes existentes de transporte
y distribucion de gas natural (GN) representan una vasta infraestructura que podria utilizarse
para transportar gas natural mezclado con hidrogeno (HBNG por sus siglas en inglés) a largas
distancias de forma mdas econdémica que mediante tuberias exclusivas para hidrogeno. De
hecho, mezclar hidrogeno en las redes de GN evita costes masivos asociados a nuevas
infraestructuras, pero plantea cuestiones sobre el comportamiento de la mezcla, la transmision
de energia, el trabajo de los compresores y la integridad de los materiales, especialmente debido

al fendmeno de fragilizacion por hidrogeno de los aceros a alta presion.

El fenémeno de fragilizacion por hidrogeno podria ser la causa de fugas de HBNG desde una
tuberia o recipiente presurizado, y el pequeio tamafio molecular y la baja energia de ignicion
del hidrégeno pueden provocar rapidamente la formacion de llamas turbulentas de tipo dardo
de fuego. Estas llamas de difusion de alto momento emiten calor que puede impactar en
estructuras cercanas y desencadenar eventos catastroficos en cadena. Su comportamiento esta
siendo actualmente estudiado, ya que la presencia de H: modifica el que seria el
comportamiento clasico del GN. Por tanto, la prediccion precisa de la geometria de los dardos
de fuego (longitud y altura de elevacion) y del flujo de calor radiactivo es esencial para definir
las distancias de seguridad. PHAST es un software comercial con modelos semi-empiricos
implementados que puede ofrecer una prediccion optima de los dardos de fuego de HBNG.
Configurar este tipo de escenarios en PHAST puede ser muy 1til para evaluar el caudal masico
del dardo, la longitud de la llama y las distancias de seguridad, asi como para estudiar la
influencia de parametros como el diametro del orificio, la temperatura y presion de
almacenamiento, las condiciones meteorologicas y la concentracion volumétrica de hidrogeno

en la mezcla.
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En este trabajo, se desarrolla una Red Neuronal (NN por sus siglas en inglés) para estimar los
efectos de los dardos de fuego. En primer lugar, se simularon escenarios de dardos de fuego de
HBNG provenientes de tuberias de transmision utilizando el software PHAST. Se construy6
una base de datos configurando escenarios accidentales para obtener el caudal masico, la
longitud de la llama y las distancias de seguridad para diferentes combinaciones de pardmetros
de entrada, como el diametro del orificio, la temperatura y presion de almacenamiento, las
condiciones meteoroldgicas y la concentracion volumétrica de hidrogeno en la mezcla. Se
realiz6 una pseudo-validacion para garantizar que PHAST podia utilizarse dentro de los rangos
especificos de los parametros y se compar6 con casos experimentales presentes en la literatura.
Antes de desarrollar la red neuronal, los resultados de la base de datos fueron analizados y
estandarizados como pasos de preprocesamiento. Se entrend y optimizé una Red Neuronal
Feedforward Multicapa (MLFFNN) sobre la base de datos construida, ajustando los
iperparametros para minimizar la funcion de pérdida. Se utilizaron las métricas MAE, MSE y
R? para evaluar su rendimiento. El modelo entrenado fue capaz de reproducir con éxito la base

de datos original, con errores MSE en el rango de las milésimas.
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Glossary

AZ = Alert Zone

ATR = Autothermal Reforming

BLEVE = Boiling Liquid Expanding Vapor Explosion
BP = Backpropagation

CCS = Carbon Capture and Storage

CERTEC = Centre for Technological Risk Studies
CFD = Computational Fluid Dynamics

DL = Deep learning

DNV = Det Norske Veritas

DOT = United States Department of Transportation
DZ = Domino Zone

EA = European Commission

EI = Emission Index

EIA = US Energy Information Administration
ENTSOG = European Network of Transmission System Operators for Gas
EOS = Equation of State

GHG = Greenhouse Gases

GWP = Global Warming Potential

H2 = Hydrogen

HBNG = Hydrogen Blended Natural Gas

HE = Hydrogen Embrittlement

HEE = Hydrogen-Environment Embrittlement
H2GEU = Hydrogen Grid Entry Unit

HTHA = High Temperature Hydrogen Attack
IEA = International Energy Agency

IZ = Intervention Zone

LHYV = Lower Heating Value

LNG = Liquified Natural Gas

LR = Learning rate

CH4 = Methane

ML = Machine Learning

vi



Safety distances estimation for hydrogen blended natural gas jet fires using neural network methods

MLFFNN = Multilayer Feedforward Neural Network

MMPS = Miller Multi Point Source
MSE= Mean Square Error

NG = Natural Gas

NN = Neural Network

NTS = Notched Tensile Strength
PEM = Proton Exchange Membrane
PHAST = Process Hazard Analysis Software Tool
PID = Proportional-integral-derivative
PSA = Pressure Swing Adsorption

R? = Coefficient of Determination
RBF = Radial Based Functions

ReL U = Rectified Linear Unit

SDG =Sustainable Development Goals
SMR = Steam Methane Reforming
SOEC = Solid Oxide Electrolyte

SRK = Soave-Redlich-Kwong

TEA = Techno Economic Analysis

W = Wobbe Index
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1 Introduction

1.1 Hydrogen trends

1.1.1 Global and European hydrogen demand

Fossil fuels, which are a primary energy source commonly used nowadays, emit GHG during
the combustion process necessary for obtaining their thermal energy. They play a significant
role in worldwide climate change. In particular they emit molecules such as CO», CH4 and N2O,
which are capable of absorbing a portion of the infrared radiation emitted by the Earth,
becoming the main responsible for global temperature rising and posing a significant hazard to

the ecological environment (Filonchyk et al. 2024).

For this reason, in the last years, H> has started to be considered an alternative energy vector
because it produces zero carbon emissions when it is implemented in combustion and
electrochemical processes. It must be consider also for its high gravimetric energy density:
according to the International Energy Agency (IEA), the world consumed approximately 70
million tons of H» in 2020, and the demand was expected to steadily increase up to 2050

reaching about 80-10'® J of energy (18% of the global energy demand) (IEA 2021).

Following this argument, the European Commission's communication “A Hydrogen Strategy
for a Climate-Neutral Europe”, published in July 2020, highlights the key role of H> in
achieving the EU's 2050 decarbonization targets (European Commission 2020). In the
mentioned report, H> is expected to play a significant role in reducing GHG emissions and in
bridging the current gaps in renewable energy storage. One of the most prominent advantages
of this gas is that it can be produced via electrolysis powered by electricity from renewables,
having a prominent role not only in the decarbonization of fuel system (NG in particular) but
also as a cross-sectorial link. Indeed, as an energy vector, it is crucial the opportunity that H»
offers to avoid the requirements for instantaneous supply-demand balancing thanks to the many
possibilities to store it easily at large scale; with promising environmental outcomes if the

electricity source can be renewable too.

The growing interest in H, was anticipated in the “Clean Planet for All” report, published in
November 2018. In this report it was set out the EU's climate-neutral strategic vision that

planned to increase the current share of H from less than 2% to 14% of Europe's energy mix
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by 2050. Finally, the use of pure H> could help the EU achieve its goal of reducing GHG
emissions by at least 40% by 2030 compared to 1990 levels (Directorate-General for Climate

Action (European Commission) 2019).

Globally, Hy is increasingly recognized as a pivotal energy vector beyond the European borders
(Figure 1). In North America, both the United States and Canada have laid out comprehensive
roadmaps to scale up clean H> production and deployment, leveraging federal incentives and
infrastructure planning (Office Of Energy Efficiency And Renewable Energy 2023). In Asia,
China’s “2021-2035 Hydrogen Plan” and Japan’s “Basic Hydrogen Strategy” set ambitious
production and utilization targets, while South Korea plans a huge increase of H» fuel-cell
vehicles and the country capacity of electrolyzers by 2040. The trend is followed by Australia,
Middle East and Asia, and there are also emerging projects in Africa (Remme 2024).

MtH2 per year
600
500
400
300
200
100 .
, 1 N
2019 2030 2040 2050 2060 2070

Figure 1. Predicted global H, demand (Chae et al. 2022).

1.1.2 Hydrogen production

Hydrogen production can be classified into five categories based on carbon emissions and

production methods:

a) Grey hydrogen is generated from fossil fuels such as natural gas and coal using Steam
Methane Reforming (SMR) or Autothermal Reforming (ATR), both of which emit
COs. This is the cheapest and most used method, accounting for 76% of global
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production and generating 830 Mton of CO, per year (R6dl, Wulf, and Kaltschmitt
2018).

b) Blue hydrogen combines the traditional technologies for the grey Ho with Carbon
Capture Utilization and Storage (CCUS) methods. The CO» generated during SMR
passes through a process of purification, which could be, for example, natural gas (NG)
sweeting using various alkanolamines (absorption by MEA, DEA, MDEA) or
membrane separation of syngas. Producing H» from fossil fuels is likely only
appropriate when carbon capture and sequestration opportunities are low-cost and
readily available near the site of H, production (AlHumaidan et al. 2023).

¢) Green hydrogen is produced through the environmentally friendly process of water
electrolysis powered by renewable energy sources (mainly wind and Sun). This method
generates minimal carbon emissions during production. It uses electricity to split water
into Hz and O via an electrochemical reaction.

d) Purple hydrogen is obtained via electrolysis powered by nuclear energy.

e) Proton hydrogen production involves membrane-based separation applied to oil
reservoirs. This technique selectively filters H, gas from fossil fuel-based gas mixtures

or vapours but requires expensive catalysts, such as platinum.

Among all these methods, low carbon-intensity hydrogens, such as green, purple, or proton Ho,
are essential for achieving long-term carbon neutrality in energy consumption (Speirs et al.
2018). However, while different electrolysis methods exist, including those relying on proton
exchange membranes (PEM), alkaline water electrolyzers, and solid oxide electrolyzer cells
(SOEC), their high initial investment costs and significant power consumption renders them
uneconomical, inefficient and unsuitable for mass adoption (Topolski et al. 2022). The
technology is expected to become more profitable as it matures. Estimates suggest that the
current cost of Hz (ranging from €2.20 to €5.84 per kilogram) could potentially be reduced to
between €0.62 and €2.30 per kilogram by 2050 (MacGregor 2025). Additionally, the
production of green or purple H» requires significantly more water than blue, grey, or proton

hydrogen.

Furthermore, the utilization of H» as an energy source can be performed via various
technologies, such as fuel cells, combustion and mixing with other fuels. However, H» suffers

a disadvantage in its volumetric energy density, which is only 3 Wh/L, leading to difficulties in
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its storage. In order to store H» effectively, different H> storage technologies could be used,
such as compressed and liquefied form, liquid organic carriers or through ammonia (NH3). In
particular this last chemical vessel has high H> density (17.8 %wt), as well as high flexibility in
its utilization, including mobile and stationary applications. Due to its stability for long-term
storage and transportation, ammonia can fulfil the demand to store the energy in time (stationary
energy storage) and in space (energy export and import). NH3 can be utilized by extracting its
stored H» via thermal cracking or directly utilized as fuel. Another option is direct use as
agricultural fertilizer, refrigerant gas and for the manufacture of explosives, pesticides and other

chemicals (Aziz, Wijayanta, and Nandiyanto 2020).

1.1.3 Hydrogen transportation

Apart from the production step, the sustainable economic supply of energy for H> conversion
is dependent on the availability of local resources and the method of transportation. H> supply
and demand chains are classified as either off-site or on-site, based on the supply, demand
locations and production volume. Off-site facilities produce H> at a large-scale intermediate H
production base, and the produced H> is transported to fueling stations by trucks or pipelines.
Instead, on-site facilities produce H» voluntarily at local factories or fueling stations, which is
less efficient but has a lower loss rate during transportation. For this motive, oft-site production
methods predominate and only a little H» is produced at local fueling stations (Rodl, Wulf, and
Kaltschmitt 2018).

Nowadays, trucking is one method of transporting Ha, in either its compressed gas (GH>) or
liquid (LH») form. However, the low density of H» requires it to be pressurized at high pressure

to achieve an elevated density energy.

In particular, GH: is transported in a tube trailer equipped with a high-pressure storage container
on a special vehicle to a H» fueling station. It requires relatively high pressures (180 bar or
higher) increasing the capital investment associated (Buffi, Prussi, and Scarlat 2022).
Moreover, the US Department of Transportation (DOT) regulations on H» tube trailer can serve
as a comprehensive reference: H> compression pressure per unit must not exceed 250 bar, and

each trailer is limited to transporting a maximum of 800 kg per trailer (Office Of Energy
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Efficiency And Renewable Energy 2023). However, the trucking method may still be efficient
for distances under 200 km, especially in areas where alternative means of transport do not

exist.

The mass limitation could be resolved by LH», which increases the density by a factor of 800,
but it requires an energy-intensive liquefaction process and special cryogenic insulated tanks to

maintain the necessary low temperatures (Chae et al. 2022).

Among the available options, pipelines are considered the most cost-effective and energy-
efficient method for transporting large volumes of Hz over long distances, with cost estimates
ranging from €0.044 to €2.64 per ton, depending on the distance (Buffi, Prussi, and Scarlat
2022). In 2016, more than 4,500 km of H» pipelines had been installed around the world (Figure
2).

The initial capital investment associated with H» pipeline installation are material costs, labour
costs, and interconnection costs. However, typical pipeline materials like steel may be
weakened by H» due to a phenomenon called embrittlement (see section 1.2.5), which can occur
when they are exposed to a high concentration and high-pressure H> over an extended period.
The risk of H> embrittlement necessitates the use of expensive materials, and depending on the
pipeline diameter and operating pressure, material costs can be up to 68% higher compared to
conventional steel pipelines. Embrittlement also increases the risk of leakage, leading to higher
maintenance costs due to the need for pipe replacement. In the end, while pure H> pipelines are
the most cost-effective option in the long term, they require specialized infrastructure, such as
dedicated Ha pipelines and compressors, and are time-consuming to implement (Chae et al.

2022).
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® Hydrogen pipeline installation length
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Figure 2. Capture of global H» pipelines installed in 2016 (IChemE 2025).

To help contextualizing and providing a practical perspective on the materials and pressures

currently being used in H» pipelines, Table 1 summarizes the design specifications of H»

pipelines currently in operation worldwide. These pipelines are usually made of carbon steels

with cases where operative pressure reaches 131 bar too.

Table 1. Operating specifications for H, pipelines worldwide (Cristello et al. 2023).

Location Diameter (mm) Operating pressure (bar) Material
Texas 150 - 305 24 - 131 Steel Pipe
Westliche 203 - 254 24 - 131 Steel Pipe
Louisiana 150, 203, 305 24 - 131 Steel Pipe
Los Angeles 150, 254, 305 24 -131 Steel Pipe
Texas 203 24 API 5L Grade B
Texas 36 51 API 5L X60
Netherlands 304.8 65-100 Seamless Carbon Steel
Canada 273 38 Gr.290
UK - 30 Carbon Steel
Germany - 2-5 API 5L 1290
France 100 9.7 API 5L X52

1.1.4 Hydrogen Blended Natural Gas (HBNG)

One of the promising solutions to the economical and time-consuming problems of transporting

large volumes of pure H> over long distances is blending this gas with into the existing NG
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pipeline networks. Indeed, blending H> produced from low-carbon sources, such as wind and
solar energy, into NG could potentially reduce the carbon intensity of difficult-to-decarbonize
sectors that are currently served by NG, including peak electricity power production, residential
and commercial heating, and industrial processes. As example, in Ontario (Canada) two cases
were studied about the economics and emissions of using surplus power to produce electrolytic
H: to blend and distribute in NG infrastructure. The first one employed buffer storage for H>
and the second did not. Their results indicated that delivering HBNG to end-users could reduce
CO; emissions by 9,429 tons with H, storage and 3,504 tons without H; storage (Mukherjee et
al. 2015).

The US Energy Information Administration (EIA) in its 2021 annual Energy Report (U.S.
Energy Information Administration 2021) predicted that the supply and demand for NG would
steadily increase until 2050, and that pipelines would be used more actively to supply NG.
Then, following HBNG alternative strategy and to achieve climate neutrality, several
international projects have been launched in recent years. In general, they have examined the
possibility of producing, transporting and distributing H» in the NG network, as well as H
tolerance of currently available gas appliances (see section 3.3). In Europe, for example, to
facilitate the transition to the H» economy, the European Commission funded the
NATURALHY project to study the potential for the existing NG pipeline network to transport
H; from manufacturing sites to users (NATURALHY 2010).

Table 2. List of major projects regarding H» blended natural gas transportation (Galyas et al. 2023).

] Yo Blended H:
Project Country Objectives (% vol.)
HyDeploy UK Blending H> into NG pipelines 20
NATURALHY Netherlands Preparing for the H, economy by using the existing NG »
system as a catalyst
Fort Saskatchewan . . L . .
Hydrogen Blending Canada Blending H> into NG plpelllnes t.hat. serve residential 5
Proi and commercial buildings
roject
_ 0 . o
1 UK Investigation of 100 % H» usage with existing natural 100
gas system
Hyblend US Technical evaluation for blending H» in NG pipelines —
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GRHYD France Blending Ho into gas distribution lines 20
Snam Italy Blending Ho into gas transmission lines 10
Enl?ndge and Blending Hb into gas distribution lines in Markham,
Cummins Hydrogen- Canada Ontario and performi tine stud <2
Blending Project ntario and performing a routing study
Hy4Heat UK Comprehenswe agsessment of using hyd'rog'en as a fuel 100
in residential and commercial buildings
Hydrogen imjection Denmark | Blending H into gas distribution and safety evaluation 15
in the gas grid
Cleangas Turkey Turkey Injecting renewable H» 1nt9 NG and gas mixture 20
evaluation
EN-H- Portugal Carbon neutralization with the H, economy 15

To achieve this type of transport there are two main methods: on-site method, where NG is used

as the feedstock for H» production and NG is directly transported to a fuelling station where H»

is produced; off-site method, where H is produced at its production base, and it can be blended

with NG and transported through existing pipelines to H> fuelling stations.

H> and NG are separated and purified at intermediate destinations, and then extracted H> can

be distributed to consumers via the local transportation network for use in fuel cell applications

(Figure 3). Also, the end-user may burn the gas mixture directly within existing gas-fired

engines, thereby reducing carbon emissions compared to NG (Figure 3).

The implementation of this blending technology requires careful consideration of the H:

separation and purification processes (Figure 3), as well as any leakage problems that may arise

as a result of Hy embrittlement as mixed gas is pumped through the pipelines (Chae et al. 2022).
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Figure 3. H production alternatives and blended H, pathways (Cristello et al. 2023).

A typical system for blending H> into NG grids is shown in Figure 4 and it includes an
electrolyzer, a H» buffer storage tank, and a blending unit. In this process it is important to
ensure that HBNG is homogeneous with uniform behaviour along the entire length of the
pipeline. If the two gases have significantly different densities, they may stratify, leading to
different flow behaviour and leak characteristics. This, in turn, can result in uneven energy

distribution and operational challenges with the pipeline (Cristello et al. 2023).

H, li

Power Electrolyser ——» H, Storage ——® Blending Unit

-

Figure 4. Scheme of a typical system for blending H, into natural gas grids (Cristello et al. 2023).

Water

Natural Gas Grid

Table 3 lists some of the tried blending systems: in Australia's Hydrogen Park SA project

renewable electricity enters the site directly from the local electricity network to power the
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electrolyzers. From this one, O; is vented and the H» purified up to 99% (purity necessary for a
fuel cell), by a purification equipment between the electrolyzer and a H, buffer tank to remove
impurities. Then, H» is blended with NG using the gas blending equipment. The blending unit
is equipped with a H» analyzer located downstream to measure the thermal conductivity of the
blended gas, ensuring the H> content remains within the allowable limit (Australian Gas

Infrastructure Group 2023).

Still in Australia, ATCO's CEIH project blends up to 25% vol. of H> using a flow control system
with gas chromatography (GC) and a PID controller (ATCO Gas Australia 2019).

In the HyDeploy project, the physical equipment installed was a 0.5 MW electrolyzer, a buffer
tank for Ho, a grid entry unit (H2GEU) which mixes the H> with incoming NG and sample point
around the network to allow monitoring. H2GEU measures the incoming NG Wobbe Index and
calculates the amount of H, that can be blended while remaining within the Gas Safety
Management Regulations. Up to 20 vol% of Ha is mixed with the NG, and the blended gas
passes through a “volume loop” for a composition check before returning to the main feed line.
If the blended gas is out of specification, the system automatically reverts to NG and purges the

gas out of the specification. Similarly, any process upset triggers a return to NG (Isaac 2019).

All these H» blending methods are used to produce developed fully mixed gas mixtures before
they are transported through pipelines to prevent gas stratification. When blended gas is
transported under turbulent flow conditions, H> and NG do not stratify in the pipeline, solving

the problem of homogeneity.

Table 3. Examples of H, blending systems (Cristello et al. 2023).

Electrolyser | Blended H:

SR Ll I e ——— (% vol.)

System

H, purification equipment between
HyP SA | Australia | Distribution 1.2 MW 5 the electrolyzer and the Hy buffer
tank to remove impurities

ATCO- | Australia | Distribution | 0.15 MW 5-25 GCand PID Control in a flow
CEIH control system

Mixing loop to blend H, with NG

HyDeploy UK Distribution 0.5 MW 20 before injection into NG grid

10
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In order to examine the potential conversion of an NG pipeline to a HBNG pipeline, two types
of pipelines are considered: transmission line and distribution line. As shown in Figure 5, two
different lengths are used as reference. In particular, transmission lines generally operate at
higher pressures and transport larger volumes over long distances, while distribution lines tend
to operate at lower pressures and cover shorter distances. In transmission pipelines, gas is
usually transported using centrifugal compressors. The number and location of these

compressors are selected to ensure hydraulically stability and safe gas delivery throughout the

system.
N B Transmission Line By Distribution Line S
=T ¥ 4 il g ¢ % ] k
P NI ; j - k ST _ ;j | — 3 g 4 g
N Y | Seap®
)/ < > / < >
322 10 km
Compressor Station km Pressure Reduction Station

Figure 5. Simulated transmission and distribution pipelines (Cristello et al. 2023).

The operating conditions ranges are provided in Table 4; however, specific values may vary by

region and gas provider.

Table 4. Pipeline operating conditions (Melaina, Antonia, and Penev 2013).

Distribution Transmission
Conditions
Min Max Min Max
Pressure (bar) 0.017 21 41 138
Temperature (°C) -6 60 -6 60

Since the density, calorific value, compressibility, and other physical properties of HBNG differ
greatly from the originally pure NG (see 1.2.1), this will inevitably affect the economic and
environmental performance of the pipeline system. From the economic perspective, the
operating costs of the NG pipelines are mainly due to energy consumption of the NG
compressor, which is an indispensable active hydraulic component to compensate for the
pressure losses during gas flow. Typically, the compressor consumes about 3 - 5% of the

transported gas and accounts for about 50% of the overall operating expenses. The energy

11
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consumption of the compressor mainly depends on the compression head, mass flow, and
operation efficiency. Due to variations in the properties of the mixed gas, compressor operating
parameters (e.g., compression head, efficiency) and energy consumption will change to some

extent (B. Zhang et al. 2024).

In the European Union, the twenty-eight Member States are connected by over 200 cross-border
pipelines creating a huge and already available long distance transport system. Indeed, Europe’s
high-pressure gas transmission network, managed by the European Network of Transmission
System Operators for Gas (ENTSOGQG), stretches over approximately 500,000 km across the EU
and neighbouring countries (ENTSOG 2015).

Pipeline diameter (inch)
Transmission network
— 15-30

— 31 45

— 4 - G0

o 1 - 75

—— TG - 80

Distrinution natwork

Figure 6. Map of the European NG network (Carvalho et al. 2009).

1.2 Factors to consider with HBNG

When investigating the blending of H> in NG networks, most of the researches agree that the

operating network is suitable for small-scale H» uptake, but there are several critical issues in

12
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the topic due to the properties of H> (Galyas et al. 2023). For example, the small size of the H»
molecule, along with its lower volumetric density and viscosity, can pose safety risks for
pipelines originally designed to transport NG. In addition, the presence of H» significantly
changes the transferable energy capacity of the NG network.

To maintain energy balance and depending on H» concentration, the blended gas mixture may
need to be transported at higher flow rates than NG. This may result in higher operating
pressures and potentially exceed the design limits of compressors and pipelines, which were
originally designed for NG transmission and distribution. Therefore, it is important to consider
design changes to ensure the safe transportation of HBNG through existing pipeline systems

and identify any potential risks and operational issues related to H> concentration.

1.2.1 H2vs.CHy4

NG typically consists of more than 95% CHs by volume, with other gases comprising smaller
fractions, as shown in Table 5. Therefore, for the further sections and calculations, it was

assumed acceptable to simplify NG with CHa.

Table 5. Typical NG composition.

Constituent CH. C:Hs N CO: C:Hs n-CsHio CsHio Others

Concentration (% vol.) 953 2.16 1.86 | 0.44 0.19 0.02 0.02 0.01

H> and CH4 have different physical properties (Table 6). Hz has a molecular weight that is 8
times lower than CH4, which results in significantly lower values for most physical properties
except viscosity. The viscosity of H» is approximately 30% lower than that of CH4 at room
temperature (25 °C).

Table 6. Comparison between H, and CHj in terms of physical properties at T = 0 °C and P =1.0125 bar (Korb,
Kawauchi, and Wachtmeister 2016; Goldmeer and Catillaz 2021; Kurz, Lubomirsky, and Bainier 2020).

Properties H; CH, Units

Molecular Weight 2.016 16.043 kg/kmol

Density (Gas) 0.08 0.65 kg/m?
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Density (Liquid) 71 430470 kg/m?
Specific Gravity 0.0696 0.555 —
Viscosity (at 25 °C) 0.89 1.11 10 Pa's
Diffusion Coefficient in Air 0.61 0.16 cm?/s
Solubility in Water 0.0016 0.025 kg/m?

In terms of combustion and energy properties (see Table 7), H> contains 2.4 times more energy
per unit mass than CHs. However, the lower heating value (LHV) of Ha per unit volume is three
times lower than that of CH4 due to its low density at standard conditions. This means that the

energy content of the blended gas may be reduced with higher concentrations of Ho.

From the safety perspective, higher concentrations of H> tend to increase the risk of fire and
explosion. Compared to CHa, pure H> has a much broader flammability range (5.3 times) and
detonation-limit range (7.1 times). It also has a significantly lower ignition energy (14.5 times
lower), which makes it more prone to ignition and increases the risk of fire. The low density of
H: also leads to higher diffusivity in mixtures, which can result in more severe flammable and

detonable events in confined spaces.

Table 7. Comparison between H, and CH4 in terms of combustion and energy properties (Kurz et al. 2020).

Properties H; CH,4 Units
Energy Density 120 50 MJ/kg
Lower Heating Value (LHV) 10.2 34 MJ/m?
Higher Heating Value (HHV) 12.5 37.8 MJ/m?
Flammability Limits (in air) 4-75 5-15 % vol.
Detonation Limits (in air) 18.3-59 6.3-14 % vol.
Minimum Spark Ignition Energy 0.02 0.29 MJ
Autoignition Temperature 858 810 K
Laminar Flame Velocity 2.1 0.4 m/s
Specific Heat Capacity 14.86 222 J(g'K)
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Specific Heat Ratio 1.383 1.308 -
Wobbe Index 38.71 45.26 MJ/m?
Adiabatic Flame Temperature 2477.60 223593 K

The Wobbe index (W), represents the exchange capacity of different fuel gases and it is used
to determine how changes in gas quality affect pipeline capacity. A high Wobbe index value
suggests overheating or the presence of a significant amount of carbon monoxide, while a low
value suggests a risk of flame instability or backfire. When 10% concentration of H> is mixed
with NG results in a Wobbe index decrease of approximately 2% from baseline of pure NG

(Soltyk 2007).

1.2.2 Characteristic gas flow and compressibility factor

In the work Galyas et al. (2023), the characteristic gas flow of a mixture between NG and H»
was studied to predict the change in transferable energy content. The characteristic gas flow
formula describes the pressure conditions of gas flow in pipelines and is based on the frictional
Bernoulli energy equation and additional ones for the pressure dependence of the gas density
and the flowrate (Tong, Qin, and Dong 2023). The Equations (1) and (2) are written for the pure
CHj and for the CH4-H> mixture:

2 2 Ds 2 1 L 2
Pi—P2= (T_) ———Acu, Mcu, Tcn, " Zcn, " —549cH, )
s (E) ‘R d;
4
Ps\2 1 L
p% - p% = (T_S) T— 2 Mnux’ Mnix " Toux * Znux _5qrznix )
e

where p; and p, are relatively the pressure at the starting and ending points, pg and T the

standard pressure and temperature, R the universal constant, A¢y, and A, the average friction
factors, My, and My, the molecular weights, Z¢y, and Z,,, the average compressibility

factors, d; the diameter and q the standards flowrate.
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In the investigated scenarios the pressure conditions were kept identical in the studied horizontal
pipe segment with constant diameter and without side draw, so the starting point and endpoint
pressures are kept constant. Therefore, the left-and sides of Equations (1) and (2) are identical,

and consequently the right-hand sides must also be the same.

The value of friction factors (A¢y, and Ay, ) in the gas transmission system mainly depend on

the relative roughness of the inner pipe wall due to the large Reynolds numbers, but the gas
composition has negligible impact on the friction factor; therefore, the average friction factors

are set to be identical.

The effect of gas composition on the temperature distribution is practically insignificant
(remains below 1.5%) and could be neglected (Kuczynski et al. 2019). Considering these

simplifications proposed, from Equations (1) and (2), the ratio of flowrates can be expressed:

Amix _ Mcu, |Zcn, 3)
qCH4 Mmix Zyux

The relative flow capacity of CHs -H> system depends on its specific gravity and

compressibility factor.

Thus, the compressibility factor plays significant role in the transmission of H>-NG mixtures,
since its behaviour is opposite for H> and for NG with increasing pressure. Therefore, the
change of the compressibility was determined as a result of numerous runs in Aspen HYSYS®
simulation software; it has been established that the best fit can be achieved by using the Soave-

Redlich-Kwong (SRK).

Figure 7 shows the relative flowing capacity of the pipeline as a function of H> content of the
gas mixture. In particular, the compressibility factor seems differing slightly from 1, having a

minimum of 0.968 when pure H; is transported.

Instead, the increase in flowrate appears to be more significantly dependent on the square root
of the ratio of specific gravities, due to the nearly eightfold difference in molecular weights. For
gas mixtures with 10 mol% and 20 mol% H> content the standard gas flow rate increase is
approximately 4% and 9%, respectively. In case of transporting pure H> by pipeline the standard
gas volumetric flow rate is increased by 165% compared to pure CHs when the pressure

conditions of the investigated gas transmission pipeline are kept constant.
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Figure 7. Effect of H, admixture on the flow rate (Galyas et al. 2023).

Also, the compressibility factor trends were investigated, highlighting differences between CHy4
and H,. While the compressibility factor of CH4 decreases as the pressure increases, the Hz’s
compressibility factor increases. Another significant difference is that the compressibility factor

of Hy is practically independent of the temperature between 0 and 50 °C.
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Figure 8. The compressibility factor curves of CHs and H» (Galyas et al. 2023).
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Getting deeper, Figure 9 shows the compressibility factor curves of 20 mol% H> in CHs -H»
gas mixture. These curves have and overall decreasing tendency with increasing pressures,

which is more significant at lower temperatures.
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Figure 9. Compressibility factor curves for 20 mol% H, concentration case (Galyas et al. 2023).

1.2.3 Energy transmission

Energy transmission is a key factor to consider when converting an NG pipeline to a HBNG
one. The amount of transmitted energy can be calculated by multiplying the standardized
operating flow rate by the LHV of the gas mixture. As explained in section 1.2.1, H> contains
2.4 times more energy per unit mass than CHa, but the LHV of H> per unit volume is 3 times
lower than the one from CH4 due to its low density at standard conditions. Therefore, when
using pure H» the energy transmission is approximately 3.3 times lower than when using pure
CHa. In other words, the lower the concentration of H: in the gas mixture, the higher the energy

transmission for the same flow rate and pressure.

The energy throughput capacity is illustrated in Figure 10 for simulated transmission (a) and
distribution (b) pipelines (Cristello et al. 2023). For example, the transmission pipeline with
NG would typically transmit 4.80x10% MJ/day, but this would drop to 1.44x10® MJ/day with

pure H> in the pipeline. Thus, if it is desired to maintain the same energy transmission in a
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pipeline conversion, the flow rate and/or operating pressure must be increased accordingly.
These changes may not be trivial; increasing the operating pressure may be constrained by the
pipe material used, or it may be limited by the number of compressors that can be installed

(Cristello et al. 2023).
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Figure 10. Energy transmission by H, concentration in the gas mixture (Cristello et al. 2023).

1.2.4 Temperature during pressure drops

Fluid transport through pipelines can result in temperature variations due to two main sources.
The first is the heat transfer between the inside of the pipeline and its surroundings. The second
is the Joule-Thompson effect, which is a change in temperature that occurs when gas expands

due to pressure differences between the inlet and outlet. This effect is described by Equation

(4):

Je= (Z_IT’)H @

Where: J; is the Joule-Thompson coefficient (°C/bar), T is the temperature (°C), and P is

pressure (bar). H denotes that the partial derivative is evaluated at constant enthalpy.

The Joule Thompson coefficient (J;) is a property of the gas being used as well as the
temperature and pressure of the gas prior to expansion. Every gas has an inversion point at

which the Joule-Thompson coefficient changes sign and the gas begins to either warm or cool.
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Most gases, including CHa, have a high inversion point temperature, meaning that a pressure
drop has a cooling effect. H,, however, is one of the few gases that has a very low inversion
point, with an inversion point of -71 °C at atmospheric pressure. As a result, H> generally
experiences a warming effect when subjected to a pressure drop. Constant values for CHs (0.5
°C/bar) and H> (0.035 °C/bar), obtained from the literature (Haeseldonckx and Dhaeseleer
2007), are normally assumed. The highest temperature change occurs at higher concentrations

of H> and transmitted energy.

1.2.5 Hydrogen embrittlement

One major concern when using Hy in pipelines is its ability to permeate through materials. Hz
can easily diffuse into the lattice structure of materials, causing them to become weaker and
more prone to cracking under stress. This process, known as H» Embrittlement (HE), can be a
significant issue for pipelines and lead to unexpected failures. HE can reduce mechanical
properties, such as tensile strength, ductility, fracture resistance, and fatigue resistance, making

pipelines more prone to loss of ductility and cracking.

Gaseous Hb» has a significant impact on fatigue and fracture resistance of line pipe steels, and
questions remain regarding how to account for this when assessing steel pipeline compatibility

with Ho.

A report from the US Department of Energy indicates that the majority of NG networks are
made of carbon-steel materials (i.e., 99.7% of transmission and 50.4% of distribution lines)
(Department of Transportation 2010). As such, when considering the use of existing NG
networks for Ha transportation, it is crucial to determine whether the existing metallic materials
are compatible with H» gas service. Carbon steels, including ASTM A 106 Grade B, ASTM A
53 Grade B, and API 5L Grades X42 and X52, have been shown to be suitable for use in H»
pipelines with pressures up to 140 bar, according to ASME B31.12 (Schmura, Klingenberg,
and Corporation 2005).

The Hydrogen-Environment Embrittlement (HEE) Index is a metric used to evaluate the
potential for hydrogen embrittlement in a material. It compares the Notched Tensile Strength

(NTS) of a specimen when tested in a H, environment to the NTS when tested in air or helium.
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The NTS of a material is the value given by performing a standard tensile strength test on a

notched specimen of the material.

The HEE Index can be calculated using the equation:

HEE Index = NTS Ratio = NTS in hydrogen/NTS in air or helium 5)

The HEE Index is a ratio ranging from O to 1, with higher values indicating a lower
susceptibility to hydrogen embrittlement (Table 8). Materials with an HEE Index close to 1 are

therefore preferred.

Table 8. Hydrogen embrittlement (HE) severity and HEE Index ranges (Cristello et al. 2023).

HE Severity HEE Index (NTS Ratio)
Negligible 1.00 - 0.97
Small 0.96 - 0.90
High 0.89-0.70
Severe 0.69 - 0.50
Extreme 0.49-0.0

Table 9 summarizes HE severity, HEE Index and the compatibility of common industrial
materials with H». It also specifies the Hz pressure at which the HEE Index was measured, either
69 bar or 689 bar. Notably, ferritic steels commonly used in current gas pipelines exhibit HEE
severity ranging from high to low when exposed to pressures up to 69 bar at room temperature.
More ductile materials, such as stainless steels (304 and 316) and copper-based alloys, show
relatively low HEE severity even at high pressures (689 bar) and demonstrate good resistance

to hydrogen embrittlement in both gaseous and liquid states.

Table 9. Hydrogen embrittlement (HE) severity and HEE Index for commercialized materials (Cristello et al.

2023).

Lab-scale HE Evaluation Material compatibility H,
Material
H; pressure HE HEE Index (NTS ..
(bar) Severity Ratio**) Gas Liquid
Ferritic 121 O6B_ 69 High - Acceptable | Not acceptable
Steels L.
(carbon A516 69 High 0.83 Acceptable | Not acceptable
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steels and API 5L .
low alloy <12 69 High - Acceptable | Not acceptable
steels) A;z 15 ;L 69 High 0.86 Acceptable | Not acceptable
A)I; 163L 69 Small 0.92 Acceptable | Not acceptable
A)I;I6 g L 69 Small 0.94 Acceptable | Not acceptable
A)I; I7(S)L 69 Small 0.90 Acceptable | Not acceptable
Austenitic 304L 689 Small 0.87 Acceptable Acceptable
Steels 316 689 Negligible 1 Acceptable Acceptable
Copper .
Copper (OFHC¥) 689 Negligible 1 Acceptable Acceptable
Based Qi;(s) 689 Negligible - Acceptable Acceptable

OFHC*: Oxygen free-high thermal conductivity.
NTS Ratio**: calculated in H, and helium environments.

The HEE index can also be correlated with the operating pressure through a proportionality
constant and a material-dependent exponent, as described in Equation (6). This relationship

reinforces that higher pressures increase the risk of H, embrittlement.

HEE Index = a(P)™ ©6)

Where: a is a proportionality constant, P is the Ha pressure (bar), n is the material-dependent

decay exponent.

Temperature is another factor that strongly influences H, embrittlement behaviour. In general,
hydrogen embrittlement occurs at temperatures below 95 °C. At high temperatures (> 200 °C),
H> embrittlement is usually not a problem for most materials. However, High Temperature
Hydrogen Attack (HTHA), also known as hydrogen attack, can be a concern. This occurs when
H; dissociates into its atomic form and diffuses into steel, reacting with carbon to form CHa.
This can cause various problems, including fissures and cracks in the pipeline. While each
material’s resistance to HTHA varies and depends on both temperature and pressure, API 941
provides a comprehensive list of recommended practices and operational limits for different

steels (Inspectioneering 2022).
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1.3 Jet fires

Jet fires are turbulent diffusion flames following the ignition and combustion of a flammable
fluid coming out continuously from a pipe or orifice, which burns close to its release point.
Between the release point and the flame there can be a zone, called lift off zone, where there is
no combustion because there is a high quantity of fuel, and the velocity is very high (Casal

2018a).

Due to the high degree of turbulence, the combustion efficiency is usually higher in jet fires
than in other flame events, such as pool fires, and therefore they are more dangerous due to the
heat they can transfer and the potential direct impact of the jet on other equipment. Thus, in the
evaluation of the hazard posed by jet flames, the accurate determination of the likelihood of
flame impingement and/or the amount of radiant energy received by objects at a distance from

the flame is of primary importance.

If a jet fire accident occurs in a plant in which the density of equipment is high, as happens in a
process plant or in an oil platform, its flames impingement and thermal flux on an equipment
and thermal flux can originate another release, fire or explosion, with the consequent escalation
of the effects and consequences of the whole accident. This is called “domino effect”. The
domino effect has been defined by Delvosalle (1996) as “a cascade of events in which the
consequences of a previous accident are increased both spatially and temporally by the

following ones, thus leading to a major accident”.

A good example is the serious accident that occurred in a petrochemical plant in Priolo, Italy,
in 1985 (Casal 2018b). The failure of an instrument caused the increase of pressure in the
reboiler of a distillation column and a safety relief valve was activated; the flammable gas
released was ignited, forming a jet fire. This jet fire impinged on a pipe with a diameter of 600
mm containing ethylene at 18 bar that, after a relatively short time failed, originating a very
large jet fire. This impinged on a set of cylindrical storage tanks located at a distance of 60 m;
one of them underwent an explosion (BLEVE) followed by a fireball; the ejected fragments
damaged other equipment, originating other fires. The plant had been evacuated, so there were
no fatalities (one operator wounded), the plant was seriously damaged: a serious accident,

started by a relatively small jet fire.
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Figure 11. An example of a domino effect originated from a jet fire (Casal 2018b).

Table 10 provides information on several domino accidents in NG transmission pipeline
systems involving jet fire impingement, that occurred between 1971 to 2020. These incidents
serve as stark reminders that regardless of the initial trigger for an accident, be it corrosion,
excavation activities, or an explosion, the moment a jet of flammable fluid is released and
subsequently ignites while impinging on a pipeline, there is a substantial possibility of a chain
reaction occurring. This domino effect can lead to a series of interconnected accidents,

intensifying the overall impact and magnitude of the incident.
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Table 10. Several cases of jet fire domino effect in parallel pipelines (Foroughi, Casal, and Pastor 2023).
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1.3.1 HBNG jet fires

Pipeline transportation of HBNG is susceptible to leakage or rupture accidents caused by
pipeline construction, corrosion and, as discussed previously, H» embrittlement, posing

significant threats to the environment, human safety and property.

From a safety perspective, increasing H> content in NG grid markedly raises the likelihood and
severity of fire and explosion. As discussed in section 1.2.1, pure hydrogen’s flammability
range is over five times wider than CHa4’s, and its ignition energy is nearly an order of magnitude
lower, making H; far easier to ignite. Its low molecular weight also accelerates mixing with air,
increasing the risk of deflagration or detonation in confined spaces. HBNG leaks release energy
more abruptly, producing sharp pressure drops and shorter leak durations (El-Ghafour, El-dein,
and Aref 2010). In practical terms, whereas pure CHy ignites between 5 % and 15 % vol., H»
will ignite anywhere from 4.0 % to 74.2 % vol., so even modest blends substantially expand
the danger zones around a leak and make jet fires more probable (B.J. Lowesmith and

Hankinson 2013).

The increase in H> content leads to shorter flame lengths. This can be attributed to the
momentum diameter, the initial jet diameter scaled by the square root of the fuel-to-air density
ratio, which is smaller at higher H> content. This variation is due to the lightness of the
hydrogen-enriched mixture. At the same time, the high molecular diffusivity of H> increases
the air entrainment coefficient, for which the flame length is inversely proportional (A.

Choudhuri 2000).

The relatively slower reaction rate of a typical hydrocarbon fuel can be accelerated by admixing
H> enhancing the production of radicals/atoms such as H, O and OH. It also results in an
improved ignitability and flame holding and shrinks the global convective time scale (A.
Choudhuri 2000). For this phenomena spends less time in the visible flame zone and, therefore,
travels a shorter distance before completing combustion (Choudhuri and Gollahalli 2003).
Kong et al. confirmed this trend experimentally, reporting that under constant pressure a 10 %
vol. Hz blend produced a 1.28 m flame, while a 50 % vol. Hz blend measured just 1.13 m (13.7
% shorter). Differences in radical concentrations were obtained, which influenced flame

chemistry (Kong et al. 2024).
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Hydrogen enrichment also reduces the lift off distance of the flame, in opposition to an increase
of the internal pressure. This is related to the competition between the local flow velocity and
the combustion velocity at the bottom of the diffusion flame. When the operating pressure rises,
the local flow velocity at the nozzle also increases. The flame moves away from the nozzle and
the lift off distance gradually increases. Blending H> into CH4 also contributes to an increase in
the local flow velocity of the jet gas. It is noticeable that H> burns at a significantly faster rate
compared to CHs. Additionally, the higher molecular diffusivity of H; increases air entrainment
and further promotes fuel combustion. As the concentration of H» in the mixture increases, the
increase of the combustion speed of the flame is higher than that of the local flow velocity of
the jet gas. Then the flame reaches a new balance nearer the nozzle, and the lift off distance is

correspondingly reduced (Kong et al. 2024).

The convective time scale, which is a representation of the global flame residence time,
decreases as H» concentration increases in the mixture too. Faster chemistry and stronger
entrainment combine to shorten flame lifetime, reinforcing the decrease in both length and lift

off distance.

Regarding the emissions (Figure 12), the higher flame temperatures and radical pools enhance
NO production through Zeldovich mechanism, while lower CH concentrations at higher
blending rates reduce NO destruction through Fenimore mechanism (A. Choudhuri 2000). As
combined effect the NO and NOy emissions increases. Meanwhile, CO emissions fall: for a
given Reynolds number, less carbon enters the flame, and the boost in OH radicals accelerates
CO oxidation, driving the CO emission index downward (EI) (El-Ghafour, El-dein, and Aref
2010).
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Figure 12. Variation of NO, NOx, and CO EI with % H; in the mixture (Choudhuri and Gollahalli 2002).

An example of a horizontal HBNG jet fire is shown in Figure 13. In horizontal jets, the interplay
of momentum and buoyancy produces a characteristic curvature. Near the nozzle, the
transparent, soot-free base burns with a blue hue, rich in CH and C, radicals; higher up, soot-

laden yellow regions appear. As H» is added, the blue, soot-free zone expands upward, pushing

the yellow, luminous tip further along the trajectory.
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(a) CH4+0% H2

(c) CH4+30% H2
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Figure 13. Flame images of mixture of CH4 and H, with H, volume fraction from 0% to 30% at P =400 Pa and.
Background grid with a cell size of 0.2 m x 0.15 m (Kong et al. 2024).

1.3.2 Jet fires simulation

Models developed for estimating the received radiated heat flux by objects at a distance from
jet flames can be broadly divided into three categories: semi-empirical, field, and integral
models. Of these three types, semi-empirical models are, in comparison with integral or field
models, mathematically simpler, easier to understand and formulate, quicker to implement in
computer programs, require significantly shorter computational run times, and predict flame
properties that are of interest for hazard assessment studies with reasonable accuracy. However,
semi-empirical models are heavily dependent on experimental data and are limited to the
specific type of fire studied during experimentation and the range of conditions under which

model correlations were derived.
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Semi-empirical models are usually designed to predict quantities such as flame shape and heat

fluxes to external objects without providing a detailed description of the fire itself. They can be

further divided into:

a) Point source: point source models do not attempt any shape prediction and represent
the source of heat radiation by a point.

b) Multiple point source: multiple point source models attempt to model the effect of
flame shape on radiated heat flux by representing the flame with a flame centreline
trajectory along which several radiating point sources are distributed.

c) Surface emitter: Surface emitter models represent the flame by a solid object (usually

a cone or a cylinder) from which heat is being radiated

Of all semi-empirical models for jet fire simulation that have been correlated over a wide range
of conditions encompassing typical jet fires, the JFSH model implemented in Process Hazard
Analysis Software Tool (PHAST), the proprietary consequence analysis tool developed by the
Norwegian company DNV and used in the research. This model can estimate the basic features
of a jet fire (DNV 2025) using two different model: the surface emitter model by Chamberlain,
which was later extended by Johnson (Johnson, Brightwell, and Carsley 1994) and the Miller
multipoint source emitter flame model (M-MPS) (Miller 2017).

The Chamberlain model was originally developed for modelling jet fires resulting from
vertical/inclined vapour phase releases, and the extension, Johnson et al. (1994), specifically
simulates jet flames resulting from horizontal/near horizontal vapour phase releases. The
Chamberlain model, when compared with multiple point source models, gives a better physical
description of flame behaviour by its representation of a flame with a solid body (conical

frustrum), emitting radiation through its surface.
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Figure 14 Jet fire for horizontal jet fire model ((Johnson, Brightwell, and Carsley 1994).

The Miller model was primarily developed for low to high pressure releases of non-
hydrocarbon/low-luminosity gases, pointed downwind in the horizontal, vertical or 45° inclined
release directions. The jet flame in this case is represented as shown in Figure 15 and it is
modelled as a distribution of individual point sources along the flame centreline. The model
predicts maximum surface emissive power and flame characteristics as in the Chamberlain
model, except frustum base and tip width. Radiation emitted along the flame centreline is

modelled in terms of a weighting factor representing the proportion of combustion energy

multiplied by a fixed fraction of heat radiated at different positions along the flame length (DNV

| Buoyancy/wind length

2023).

Momentum lengt

o -

Flame lift angle

Figure 15. Miller model flame representation for horizontal jet fires (DNV 2023).
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With respect to radiation this is emitted along the flame centreline with an intensity distribution
that rises and falls in a linear fashion with a maximum at a distance corresponding to 2/3 of the

overall flame length following Figure 16 scheme.

Heat radiation

g

Distance along flame

Figure 16. Miller model radiation intensity distribution (DNV 2023).

1.3.3 Safety distances according to vulnerability

The area potentially affected by an accident can be divided into different zones according to the
type of hazard (chemical, mechanical or thermal), the intensity of the effects, and the

vulnerability of people and property (Casal 2018a):

a) Intervention Zone (IZ): accidents involve a degree of damage, which warrants the
immediate application of protective measures.

b) Alert Zone (AZ): accidents involve effects that, although perceptible by the population,
do not justify intervention, except to protect critical groups of people.

¢) Domino Effect Zone (DZ): zones in which potential accident propagation must be

considered.

Since the harm of thermal radiation in pipeline leakage accidents is considered to be dominant
according to other authors (Froeling et al. 2021), the official threshold values applied in Spain

for thermal type accidents are shown in Table 11.

Table 11. Threshold values (thermal radiation dose or intensity) for IZ, AZ, DZ (Casal 2008).

Threshold value

Dangerous Accident Description of

phenomenon type planning zones Intervention Domino
zone (1Z) ) zone (DZ)
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1.4 Neural Networks (NN)

Various methods can be used to study jet fires behaviour, such as performing experiments or
CFD simulations. Experimental methods, carried out even on a small scale, generate high costs
because they require the use of expensive control and measurement equipment. In order to
maintain a sufficiently high level of safety, large scale jet fire investigations should be carried
out on training grounds, which requires both a great deal of money and work (scientific,
technical and organizational). Moreover, the measurement of large jet fires is burdened by

problems with the accuracy of determining the length and width of the flame.

Methods based on CFD techniques do not present all these disadvantages. However, numerical
methods also require a considerable amount of money, associated with the purchase of suitably
powerful computing servers and CFD simulation software. Additionally, CFD methods use
mathematical models that are based on simplifications related to the description of the
combustion process in turbulent flow, for example, which affects the accuracy of their results.
Also, the CFD simulation of large jet fires (where the flame length exceeds several meters)
requires a suitably dense numerical grid. Calculations carried out on such grids can take from a
few days to even a few weeks depending on the performance of the computing server used.
Experimental methods are most often used to verify the results of CFD calculations or to create
correlations, using dimensionless numbers, to determine the flame length of a jet fire. It is
virtually impossible to use CFD methods in tools for determining flame sizes included in risk

analysis programs.

In the last years, machine learning has been shown to be one promising tool to develop models.
Among the different possibilities, neural networks (NN) are used to uncover connections
between data, if any exist. NNs have the following characteristics: high speed connections,
nonlinear calculations, communication of output and input datasets, flexibility, response to

noisy data, high availability, and retraining.
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The NN approach is inspired by the way the human brain and the nervous system are organized.
An NN model is a computing model that is able to reproduce structural or functional
characteristics of a given system. In the 1940s, research on the network approach started when
data from different subjects were analysed and classified. However, NNs were not extensively
used until the second half of the 1980s since it was impossible to overcome past theoretical
barriers. For example, one of them was the representational content: it was not possible to
construct machines with genuine representative action without understanding what
representation is (Bickhard 1993). Today these theoretical barriers no longer exist and NNs are
currently popular. The NN has the advantage of requiring less processing to solve challenging
tasks (Michat Lewak and Jarostaw Tepinski 2023). Over the last two decades, network

classifiers have become one of the most popular strategies in the machine learning field.

In the NN approach, all the variables of the network’s model are created, collected in matrixes
and tuned starting from a dataset. The simplest processing unit that could process data is a
neuron; its inputs and outputs are both numerical values. The network is made up of synapses,
where the base units, indeed neurons, link each other from the input to the outputs one. A weight
(w), which reflects its relative value, is given at each link. Multiple input variables (x;) and
output interconnections are possible for a single neuron. The output is then created by
computing this weighted sum via an activation transfer function (f). The bias value (b) can then
be added to the total of all these values once they have been put together. Then the results
coming from Equation (7) are fed into a transfer function (f) to get the output signals (y) in

Equation (8).

N
netj = (Z wl-]-xl-> +b (7)
i=1

yj = f(net;) ®

The transfer functions are usually ramp, linear, step or sigmoid. In order to create a layer of
neurons, the neuron cells link with one another. The structure of the network is made up of one
or more layers of neurons. One type of NN is the feedforward NN (Figure 17), with X7, X>, ...
and X, serving as model inputs, n serving as the number of input nodes, w; serving as the
neuron’s weight factor of a neuron j, b serving as the bias value of a neuron j, and y; serving as

the output of a neuron.
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Figure 17. Feedforward NN (Mashhadimoslem et al. 2023).

1.4.1 Multilayer feedforward neural network (MLFFNN)

Algorithms to ascertain the connectivity in the weights of neurons are found via learning in

NN, starting from Equation (7) and (8).

An MLFFNN method typically comprises an input layer, one or more hidden layers, and an
output layer that gathers, analyses, and transmits the data. In order to reduce the overall mean
squared error, the network is trained and tuned. Equation (7) shows how the MLFFNN method
for an NN output is developed:

- k
yi* = fi Z wiikx, D + b; ©)
i=1

Where w is the weighted vector for a value i and neuron j at layer k (the values are not elevated
for it), multiplied by the value at the precedent layer k — 1, summed with the relative bias bjk,
creating the neuron for k. Then, the nonlinear activation transfer function is applied, called f}.
The result will correspond to the output parameters y]-k. Based on the previous explanations,

the basic organization of a MLFFNN can be represented as shown in Figure 18.
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Figure 18. A multilayer feedforward neural network (MLFFNN) approach with backpropagation for NN structure
(Sun et al. 2020).

1.4.2 Activation transfer functions

There are numerous alternative ways to think about the activation transfer function, which

include identical function, binary sigmoid, hyperbolic tangent etc.

The Sigmoid function is a specific case of logistic function and is bound between 0 and 1. There
are two disadvantages of the Sigmoid function. First, the gradient of the Sigmoid function is
almost 0 when the Sigmoid function goes to 0 or 1. Second, the Sigmoid function is not
symmetric by origin, which will cause issues when updating the weight during backpropagation

(BP).

Meanwhile, the fanh function solves the second issue because it is origin-symmetric and is
bound between —1 and 1. However, the issue of the gradient approaching 0 at the extremes has
not been solved. A linear function can solve this gradient issue; however, the combination of

the linear function has bad performance for a highly nonlinear problem (Zhong et al. 2024).

During the training process of the BP NN model, a common problem encountered is the

vanishing and exploding gradients. The vanishing gradient issue can lead to a slowdown or
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almost negligible weight updates, while the exploding gradient occurs when the gradient values
between network layers exceed 1.0, resulting in an exponential growth of the gradients. This
makes the gradients extremely large, causing significant updates to the network weights and
thereby making the network unstable. To address these issues s in the training process
mentioned above, the ReLU (Rectified Linear Unit) function is usually set as the activation

transfer function (He et al. 2020).

Sigmoid tanh RelLU
1.0

tanh

—— Sigmoid

tanh(x)

E
0.0 1 &
&

Sigmoid(x)

=

-1.0 1 0

I
=}

(a) (b) (c)

Figure 19. Illustration of activation transfer functions. (a) Sigmoid activation function; (b) fanh activation function;

(¢) ReLU activation function (Zhong et al. 2024).

Whereas the transfer functions between both the hidden layer and the input layer are nonlinear,
the one between the output and hidden layers in the MLFFNN’s NN technique is linear.
Therefore, the output layer data is created by linearly integrating the performance results with

a linear transfer function (purelin).
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2 Objectives

The main objective of this work was to obtain an optimal and optimized model for the

estimation of safety distances in case of HBNG horizontal jet fires from NG transmission

pipelines. This address the need for risk assessments in hydrogen-blending applications, where

a detailed CFD or semi-empirical consequence analysis (e.g., in PHAST) may be too time-

consuming for real-time or iterative decision-making.

In order to accomplish this objective three secondary objectives have been defined:

1.

38

Analyse and review HBNG trends, applications, hazards and relevant changes in NG
and jet-fires behaviour.

Create a synthetic and extensive database (50,112 cases) of jet fires scenarios from
transmission pipelines using PHAST’s Grid Consequences tool, after defining a
suitable configuration. These results are going to be used for the dataset of point 4.
Develop a MLFFNN architecture and its training and validation loop based on these
simulations and assess its predictive performance to estimate safety distances via an
evaluation of his performance (MAE, MSE, R?).

Optimize the first version of the NN model through a sensitivity analysis on the
hyperparameter, analysing the results from the scatter plots and the evaluative metrics.
Propose point of improvement and possible future works, useful to extend the efficiency

and the operative range of the ML tool created.
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3 Methodology

3.1 HBNG jet fires simulation

3.1.1 PHAST - Process Hazard Analysis Software Tool

Jet fires are simulated in this work using PHAST (Process Hazard Analysis Software Tool),
which is a tool that offers capabilities for modelling various loss of containment scenarios,
including discharge, dispersion, fires, explosions, and toxic effects. PHAST delivers key results
through intuitive 2D graphs, immersive 3D views and comprehensive reports available in both

Word and Excel formats (DNV 2025.).

The software relies on a comprehensive database of substances and enables users to create
custom mixtures. Utilizing the multi-component modelling method, the software conducts
rigorous thermodynamic calculations to determine mixture properties accurately. Users can
specify various types of equipment, including pressure vessels, atmospheric storage tanks, long
pipelines, and warehouses. For each equipment type users can define initiating events such as
catastrophic ruptures, leaks, and line ruptures. Upon creating loss of containment scenarios,
PHAST automatically assesses the type and magnitude of consequence effects. It performs
calculations for discharge, pool vaporization, and dispersion, considering potential outcomes
like jet fires, pool fires, flash fires, fireballs, and explosions. The software also supports a range
of standalone models, which are used when the user has knowledge of the source term. In such
cases, discharge and dispersion calculations are not performed. One of the main limitations is
that, when simulating a catastrophic tank rupture, all the energy from the rupture is converted
into overpressure, without accounting for the kinetic energy of the fragments, leading to an

overestimation of the overpressure (DNV 2025).

The software workspace provides predefined parameters and weather conditions, but users have
the flexibility to customize model parameters according to their requirements. Additionally,
users can define new weather conditions by specifying atmospheric stability class and wind
velocity. However, PHAST has constraints on simulating wind velocity. The software issues a

warning for wind velocities below 1 m/s and does not allow simulations for wind speeds below
0.1 m/s.
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3.1.2 Pseudo-validation of PHAST models

The first issue emerging in the simulation of horizontal HBNG jet fires from a leak in a
transmission pipeline was how to simulate them using the PHAST software. Indeed, looking in
the documentations available from DNV and their online tutorials, there is no “step by step”
guide to follow for the simulation of jet fires of gas mixtures. Thus, it was decided to look in
the validation documentation of the JFSH and radiation (RADS) models implemented in
PHAST, and to try simulating experiments included there and from other sources with different
configurations and checking the results obtained if they were in accordance with those

presented in the documents (i.e., pseudo-validation).

In the validation document tests used hydrocarbons and other substances, such as H> and
mixtures (e.g., Hy/CHs blends and syngas). Hole sizes covered a wide range and release
conditions also varied, cover relatively slow jets and supersonic turbulent jets. Release

orientation included vertical, horizontal and inclined releases (DNV 2023).

From this set of data and other experiments, DNV compared the predictions of two versions of
Miller model: the original Miller one, which assumes jet flames to burn very close to the source,
eliminating the lift off, and an updated version labelled Miller/DNV, which includes the lift off
as calculated in Lowesmith and Hankinson (2012) equation (42). The conclusion was that

overall the last version improves a bit the predictions for horizontal jet fires (DNV 2023).

Another comparison was conducted between Miller/DNV and Cone models (i.e. the Johnson
model for horizontal jet fire) for non-hydrocarbon gases and mixtures of Ho/NG. According to
Figure 20, significant underpredictions (by a factor of 2) were observed for horizontal releases
with the Cone model. These are mainly caused by two factors: the under-predictive behaviour
by the Johnson model of the fraction of radiated heat and the flame shape for H» releases
simulated as frustrum cone. Additionally, predictions by the Miller/DNV model for vertical
releases were also better than those from the Chamberlain model (results not shown here) (DNV

2023).
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Figure 20. Comparison of the predictions by the Miller and the Cone model in PHAST for horizontal releases of
H; and H, mixtures (DNV 2023).

According to Figure 21, the Miller/DNV model gives also good predictions for hydrocarbon
releases, although the distribution of the datapoints is a bit wider than that of the Cone model.
On the other hand, there are groups of outliers both for the Miller/DNV and the Cone models.
These are indicated by the labels ‘A’ and ‘B’ in Figure 21. Points ‘A’ correspond to
measurements taken behind the flame source closely aligned with the flame axis. Probably the
overprediction is a result of all the radiation from the flame reaching the radiometer used in the
experiments whereas, in reality, there is significant shielding of the radiation from the furthest
points of the flame by the flame shape itself. The view factor approach of the frustrum cone
overcomes this limitation. Group ‘B’ shows significant underprediction by the Cone model
whilst the Miller/DNV model performs well. DNV concluded that there might be a range for
hydrocarbon tests where the Miller model is preferable to the Cone model, but there is not

enough data to define such ranges with confidence (DNV 2023).
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Figure 21. Comparison of the predictions between the Miller and the Cone models in PHAST for hydrocarbon
releases (DNV 2023).

Indeed, the experiment from Lowesmith and Hankinson (2012), which was performed using a
mixture of NG and 24 % vol. of H,, provided comprehensive information about the
experimental setup, the release pressure and the distance to the pipe target. Details about the

experimental conditions are shown in Figure 12.

The results included the flame length, the lift off and the incident radiation (kW/m?), which was
positive for the comparison of the best configuration in PHAST to simulate jet fires. The
fraction of emissivity (F), which according to the PHAST documentation corresponds to the
fraction of the maximum amount of heat that can be radiated from the surface of the flame, was

also available.

Table 12. Test conditions and key results from (Lowesmith and Hankinson 2012).

Prelease Distance dirwind Uwind Mor MNP
Gas dor . L (m B (m F
(barg) | topipem) | @) | ) | (kg | awy | @ | B@
NG 20 594 9.45 1£11S 6.3£1.5 2.9 140 19.8+1.6 | 6.0+:0.8 | 0.137
NG 35 61.5 15.45 27458 6.2+0.5 94 462 37.8429 | 7.5+1.1 | 0.179

NG | 50 58.8 21.61 3+13N | 3.6+0.5 18.4 939 |49.9+£29 | 8.7+0.9 | 0.202

Mix. | 20 60.2 9.45 7+10N 2.7 2.7 137 | 17.6£1.1 | 5.840.4 | 0.130
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Mix. | 35 60.8 15.45 14+6S 7.2 8.4 366 | 30.71.7 | 6.8+0.6 | 0.168

Mix. | 50 59.4 21.61 348N | 16.940.1 16.8 860 | 45.2+2.5 | 7.2£0.6 | 0.168

Prelease 18 the gauge pressure of the release, MNP is the Mean Net Power; Lt is the flame length;

B is the flame lift off; F is emissivity fraction

The atmospheric temperature (3.4 °C), relative humidity (88%) and storage temperature (4.2
°C), which were not provided in the experiment used, were taken from a later study done also
by Lowesmith and Hankinson (2013), assuming the two tests were performed at the same

location and during the same period.

Table 13. Atmospheric parameters of the validation case Lowesmith and Hankinson (2013).

Lowesmith and Hankinson (2013) ambient conditions

Ground

. o - . . . 2 e o

Air T (°C) | Stability class | Wind (m/s) | Solar radiation (kW/m*) | Humidity (%) Roughness
3.4 D 2.1 0.5 88 0.005

Four different configurations based on the type of discharge were tested to try to reproduce the
results from Lowesmith and Hankinson (2012). These are shown in Table 14, i.e., Pressure
vessel + Short pipe + Control valve; Pressure vessel + Short pipe + Relief valve; Pressure vessel
+ Leak; Long pipeline + Location Specific Break. The empty cells in this table correspond to

possible inputs that were not required in that configuration.

Table 14. Possible configurations for jet fires in PHAST depending on the discharge type.

Feature Pressure vessel Long pipeline

V inventory (m*) | 10 10 10 10 10 10 | 10 | 10 | 10 - - -

Temperature (K) | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 4.2 4.2

Pressure (barg) 60 60 60 60 60 60 60 | 60 | 60 60 60 60

Pipe length (m) - - - - - - - - - 10 10 10
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Pipe dine (mm) - - - - - - - - - 150 150 150
Discharge type Short Pipe Leak Location specific
break
Valve type Control valve Relief valve - - - - - -
Pipe dint (mm) 20 35 50 | 150 | 150 | 150 - - - - - -
Pipe length (m) 1 1 1 1 1 1 - - - - - -
Fixedm (kg/s) | 2.7 | 84 | 16.8 - - - - - - 2.7 8.4 16.8
Orifice diameter - - - 20 35 50 20 | 35 | 50 20 35 50

Pure CH4 was used in the calculations instead of a specific NG composition because this is the
main constituent of the gas, as assumed in section 1.2.1. To calculate the physical and chemical

properties of the CH4-H> mixture the add-on PhastMC from PHAST was used (DNV 2025).

In PHAST, the default choice for the pressure vessel is a horizontal cylinder. It was decided to
use 10 m® as the volume of the gas mixture contained in the vessel in order to choose a single
value valid for all configurations and to be close to the minimum limit allowed by PHAST, as

this parameter only affects the release duration of the jet and not the final flame.

For the short pipe in the case of pressure vessels, the minimum length accepted by PHAST's
default parameters was 1 m. Different lengths were tested but there were no differences in the

flow rate and in the jet flame.

In Pressure Vessel + Leak and Long Pipeline + Location Specific Break configurations there is
the possibility of fixing the discharge coefficient (Cp). In this case a value of 0.9 was chosen as
indicated in the experimental data. However, in a similar study of jet fires from HBNG, such
as the one by Pio Gianmaria et al. (2022) (results not shown here), it was observed that a higher
accuracy was achieved when the calculation was performed automatically by the software.

However, the values ranged between 0.87 and 0.96 in the simulations executed in this research.

The position of the Location Specific Break was set at the end of the Long Pipeline, for which
the minimum length available of 10 m. As for the Short Pipe configuration, the length did not
affect the discharged gas or the jet fire.
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The elevation of the release at 3.25 m was the same for all configurations and this value was

taken directly from Lowesmith and Hankinson (2012)

Figure 22 shows the results obtained after trying to reproduce the results from Lowesmith and

Hankinson (2012). The closer the points are to the horizontal black dashed line, the better the

agreement between the calculated and experimental values. According to this plot, the Miller

model should be chosen to get better performances for estimating the fraction of emissivity and

the frustrum lift off. However, the Cone model appears to be slightly better for predicting

correct flame lengths but this is due to a large lift off when the orifice diameter and pressure are

bigger. Regarding the four configurations, all of them get comparable results except for the

configuration Pressure Vessel + Short Pipe + Relief Valve for the flame length and the fraction

of emissivity. In this case higher values are obtained than those obtained with the other three

configurations.
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Figure 22. Flame length, fraction of emissivity and frustum lift off distance simulated for 20 mm, 35 mm, 50 mm

orifice diameters with four different configurations: a horizontal pressure vessel with a control valve (orange; 1),

relief valve (green; 2) or leak (light blue; 3); or a long pipeline with a specific location of the break (purple; 4). The
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rhomboid points are from Cone model and the squared ones from Miller one. The black dotted line corresponds to

the experimental values.

About the incident radiation, the experimental values were extracted from the measurements at
different distances from the flame axis still collected in Lowesmith and Hankinson (2012) work
(not shown here). The simulated results were collected in two subplots, where the distance to
the flame axis is shown together with the radiation calculated using the four different
configurations defined in PHAST. It appears that the pressure vessel with a relief valve is not
the most suitable configuration for simulating incident radiation for the studied jet fires. Indeed,
both in Cone and Miller models, it overestimates the values of flame length and fraction of
emissivity for small diameters. Therefore, this configuration was discarded and focus shifted to

the others (Figure 23).
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Figure 23. Incident radiation crosswind with four different configurations in PHAST for Cone and Miller models:
control valve (pressure vessel), relief valve (pressure vessel), leak (pressure vessel), location specific break (long

pipeline). The red markers are the experimental values for each orifice diameter: triangles for 20 mm, squares for

35 mm and circles for 50 mm.

To choose the final configuration from among the last three the predicted values over the
observed ones were plotted as a function of the incident radiation (Figure 24). Based on this

last comparison, it was decided to use Pressure Vessel + Leak with Millet/DNV model

(ANNEX B) as the most reliable configuration.
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Figure 24. Predicted/observed value for incident radiations for the following configurations in PHAST: leak,

control valve and location specific break in a long pipeline simulated with Cone and Miller model.

3.2 Workflow for designing a NN model

The work cycle for an integrated NN model design process includes five main steps, as shown

in Figure 25.
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Figure 25. A schematic view of a NN work cycle model design.

The first step involves the Database construction gathering data from the many cases simulated
by PHAST with the configuration of Pressure Vessel + Leak defined in section 3.1 and the
parameters setup defined in the following section 3.3. In this way the jet flame data are defined
and generated: composition of H» (% vol.), storage temperature (°C), storage pressure (barg),
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elevation of release (m), jet fire mass rate (kg/s), flame length (m), distance to intervention
zone (m), distance to alert zone (m), distance to domino effect (m), orifice diameter (m),

wind (m/s), air temperature (°C), humidity (%), atmospheric stability).

Obtained the database it must be prepared before used it for training and validate the NN. The
features (data values) are separated in input data (composition of H», storage temperature,
storage pressure, elevation of release, orifice diameter, wind, air temperature, humidity,
atmospheric stability) and output data (jet mass flow rate, flame length, distance to
intervention zone, distance to alert zone, distance to domino effect). Before they could be
used to generate a Dataset (a structured collection of data organized and stored together for
analysis or processing) in PyTorch language (PyTorch 2025), the data are pre-processed

(standardization) to prevent problem of overfitting in the NN training.

In the next stage, the network architecture is defined with the selection of the learning
algorithms, number of layers and number of neurons for each one of them. The NN model
training process is applied along with a network training validation on two different group of
data from the dataset (training and validation batches). It includes network input and output
adjustments through activation function and optimization algorithm (see section 3.6). At the
end of the definition of the training model, the results are prediction of the original simulated

values.

The performance of the trained model is evaluated using statistical criteria, including the
coefficient of correlation (R?) and the Mean Square Error (MSE) to compare the model outputs
with the dataset. If the results are suitable (MSE = 0 and R* > 0.99), the best NN model for the
topic case is obtained. Otherwise, the NN architecture could be optimized and the third step
(definition NN model) repeated.

In the protracted research, several files and tools were used, starting from the Grid Consequence
function present in the PHAST software (see section 3.3). From this last one, the obtained excel
file serves as a basis for the creation of the database in JSON, containing all the simulated cases
in a single format (see section 3.4). This file is used by a Python script,
“Jet_fire_NN_original.py” for the definition, training and evaluation of the sketched NN model
(see section 3.5 and section 3.6). After the Performance evaluation step (see section 3.7), the

original model is optimized thanks to the script "Jet_fire_ NN_all_optimization_for_test.py"
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(see section 3.8) obtaining in the end the best NN model for horizontal HBNG jet fires from

leaks in transmission NG pipelines.

PHAST Grid

Database
construction

Consequence

.
L

A4

Database
preparation

All T database.py

»
P

h 4

JSON Dataset

Y

Definition NN model

™
«
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Jet_fire NN _all optimiza

tion for test.py

»
L

Y

Best NN
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Figure 26. Main steps of the workflow for designing a NN model with the Python scripts applied in this research.

3.3 Database construction

From the simulations used for the further validation done for selecting the appropriate discharge

configuration and jet fire model available in PHAST, the storage pressure, concentration of

hydrogen and orifice diameter seemed to be the most impacting input parameter for the outputs.

To get a predictive model of flame length and safety distances for HBNG horizontal jet fire

from a transmission pipeline flame length, it was necessary to define the operative ranges of

these parameter, those were going to be used in the NN.

To try to get the most suitable and wide range, the inlet pressures were set from 30 barg up to

150 barg, a bit higher the operating range of typical high-pressure gas transmission systems to
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amplify the range (see section 1.1.4). Indeed, the pressure level of NG long-distance pipelines
is usually high to meet the needs of long-distance transportation (Topolski et al. 2022). Cristello
et al. (2023) summarize that transmission pipelines operate around 34.5 bar, with maximum
allowable operating pressures (MAOP) often designed up to 100 - 140 bar for X-grade steels.
Typical transmission line MAOPs for steel pipelines fall in the 30—150 bar range (e.g. API 5L
X70 lines). Therefore, the set range lets to assess jet fires behaviour across a spectrum that

covers lower-pressure city-gate releases up to worst-case transmission ruptures.

For the concentration of hydrogen in the simulated HBNG network, in “U.S.-applicable
hydrogen blending guidance for a natural gas pipeline network based on network end-users”,
in general, only minor issues arise when blending less than 5% - 15% hydrogen by volume and
that these low blend levels should not increase risks associated with end-use devices, public
safety, or durability and integrity of the gas pipeline network (Melaina, Antonia, and Penev
2013). Pilot projects and feasibility studies typically target up to ~20% H- to avoid material,
safety, or operational incompatibilities (Chae et al. 2022; Cristello et al. 2023). However, others
have extended their numeric studies up to 30% of hydrogen to understand the nonlinear increase
in flame speed, heat flux, and radiation intensity. By covering a composition range of 0% - 30%
we capture both current industrial practice (<20%) and scenarios where hydrogen infrastructure

and safety measures may allow higher blending.

Finally, regarding the orifice diameter, a range from 1 to 50 mm was chosen. This range allows
to capture both the under-rim cracks and pinhole type leaks (~1 mm) up to more severe slot or
gouge scenarios (~50 mm), ensuring the simulations cover the full envelope of expected release
rates and resulting flame lengths. These values were already tested in precedent studies, such
as in a CFD-based jet fire numerical study of HBNG pipelines where nozzle diameters of 5, 8,
11, 14, 17 and 20 mm were used (Zhang et al. 2025), and they were extended up to 50 mm to
include also the conditions of experiments Lowesmith and Hankinson (2012) used for

validating the simulation results.

The ambient related conditions are stability class, wind speed, ambient air temperature and
humidity. By definition, stability class according to Pasquill classes (Luna and Church 1972) is
a function of wind speed and solar radiation. Nineteen possible combinations between stability
classes and wind speeds were examined to cover different atmospheric turbulence conditions.

Three values for ambient air temperature were defined and they stem from 2022 Catalan

51



MSc. Thesis

climatology data for minimum, average and maximum registered temperatures (Idescat 2023),

which are representative for the Mediterranean type of climate.

A summary of the values used to generate the database are shown in Tables 15 and 16. Variables

not included in these tables were kept constant.

Table 15. Database design (release parameters): Cat — categorical; N — Numerical; T — Temperature; P — Pressure;

MW — Molecular Weight.

Leak from a pressure vessel with immediate ignition of a premixed HBNG

Elevation of release (m) 3.25

Feature Type Value
Concentration H» (% vol.) N 0 5 10 20 24 30
Ideal MW (g/mol) N 16.04 15.36 14.68 13.31 12.78 11.95
Storage T (K) N 268, 288, 308
Storage P (barg) N 30, 45, 50, 60, 70, 80, 100, 150
N
N

1,5, 10, 20, 35, 50

Orifice diameter (mm)

Table 16. Database design (atmospheric parameters): Cat — categorical; N — Numerical; T — Temperature; P —
Pressure; MW — Molecular Weight.

Ambient related parameters
Feature Type Value

Air T (°C) N -5,15,35

Stability class Cat A B C P P E F
(day) (night)

Wind (m/s) N 1 1|23 |5|7|8]|5]|6]/|8(2468]23,5]|23
Sotag\f\?/ﬁ";;ion N | 09 [03]09|03]05]09|09]03]05]0s 0 0 0
Humidity (%) N 50, 70, 90
rougG}fr?zsnsd(m) N 0.005
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In total 50,112 combinations were simulated using PHAST software with the chosen
configuration (leak from a pressure vessel with Miller model) and the input parameters already

shown.

The software collects all the data useful for the consequence analysis through the command
“Grid Consequence”. This one creates an Excel file in which the main input parameters used
(path, scenario, weather, hole size, material as the mixture of gas, storage temperature, storage

pressure and the height of interest) and the outputs are displayed (ANNEX C).

For the studied cases, PHAST was operated three times for each of the atmospheric
temperatures (-5 °C, 15 °C, 35 °C), because at in the high-pressure transmission pipeline, the
storage temperature could be maintained at ambient temperature. Therefore, the simulated
Pressure Vessel had three different storage temperature available. Each batch run in the
program containing 16,704 cases (a third of the total ones) required 3 hours and 42 minutes

with parallel calculations.

3.4 Database preparation

A Python script was created to extract only the columns of interest, perform unit conversions
and categorical mappings, check data consistency, and finally write out a single JSON file

containing all simulation cases in a uniform format.

Indeed, a single JSON file makes information easier to maintain, test and reuse in the following
scripts, without running or inspecting again the original Excel files. It is a single source for
all cleaned, unit-converted, and validated cases, and also any language or tool can read it (R,

MATLAB or JavaScript).

In the “grid consequence” excel (ANNEX C) excels were extract the information corresponding
to this field: “Path”, “Scenario”, “Weather”, "Hole size (mm)", "Material", "Temperature
(input) (degC)", "Pressure (input) (bar)", "Height of interest (coming from parameters) (m)",
"Jet fire mass rate (kg/s)", "Flame length (m)", "Distance downwind to intensity level 1 (5
kW/m2) (m)", "Distance downwind to intensity level 2 (3 kW/m2) (m)", "Distance downwind
to intensity level 3 (8 kW/m2) (m)" (see ANNEX C). In particular:
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e The original “Material” column values were mapped to a numeric percentage of Hz by
volume.

e The ideal molecular weights were added and assigned to the corresponding mixture gas
0, 5, 10, 20, 24, 30 %vol of Hy).

e A number (1 to 7) for each atmospheric stability class (A, B, C, D, D night, E, F)
because NN can process only numerical data and not categorical values.

e The denominations were changed to a more concise and consistent naming scheme.

T

™ O

"Scenario”: "Leak 286 mm",
"Weather™: "Lowesmith case”,
"Composition H2 (Xvol)": 38,
661388 "Storage T (degC)": 15,
] "Storage P (bar)": 58,
"Elevation of release (m)": 3.25,
"Jet fire mass rate (kg/s)": 2.1378,
"Flame length (m)": 19.1359,
"Distance to intervention zone (5 kW/m2) (m)": 26.893,
"Distance to alert zone (3 kW/m2) (m)": 38.7623,
"Distance to domino effect (8 kW/m2) (m)": 24.1381,
"Pressure wvessel": "3@% vol 58 bar 15 degC”,
"Orifice diameter (m)": 8.82,
"Ideal MW (g/mol)}": 11.95,
"Stability class": "D",
"Wind (m/s)": 2.1,
561393 "Air T (degC)": 3.4,
56 "Humidity (%)": 8.88,
"Atm stability”: 4.8

™ O

v

o
Hooh Oh O O

O

T O

T O Oh O

o O

T Gh Oh R Oh R Oh Oh

L

Figure 27. Particular of the JSON script “all_T.json” created by the merged three excel files obtained by Grid

consequence command in PHAST.

Then this file, was loaded by the script “Jet fire NN.py”, which deal with the next steps:

Definition NN model and Performance evolution.

3.4.1 Pre-processing

Before implementing the algorithms, a pre-processing operation was performed to examine the

various ranges to prevent that any data could not be greater than others. One of the most
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common pre-processing steps is standardization, called also “z-score scaling”. If x is a single

scalar measurement of one feature, then the standardized value z is computed as:

zZ= 10
o
Where u is the sample mean of that feature in the training data:
1 Ntrain
n= Xi an
N train 44—
i=1
and o is the (unbiased) sample standard deviation in the training data:
Ntrain
1
0= |T—— Z (x; — w)? (12)
Ntrain -1 =

Once u and o for each feature are computed from the training set, the same formula is applied
to every feature value in training, validation, and test. StandardScaler computes for each column
of the training values the mean and the standard deviation. Then every original value x is
replaced by z. By standardizing, every feature contributes roughly equally at the start of
training. Also, the NN tuners, would converges more quickly when inputs are centred around

zero with unit variance.

The outputs are standardized too, to makes the MSE loss more numerically stable and prevents

one target from dominating the training if its scale is much larger than others. u,, and g, are

computed on the raw training targets. The network is trained to predict:

Zy = 13)

After NN has produced these outputs (normalized), they are converted back to the original

scale:

Yy=2zy 0y+p, (14)
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3.4.2 Feature selection and Dataset generation

After importing train test split (from sklearn.model selection) and StandardScaler (from
sklearn.preprocessing) the relative numerical values (Figure 27) for “Storage T (degC)”,
Storage P (bar)”, “Elevation of release (m)”, “Orifice diameter (m)”, “Composition H2 (%vol)”,
“Ideal MW (g/mol)”, “Wind (m/s)”, “Air T (degC)”, “Humidity (%) and “Atm stability” were
set as input; instead, “Jet fire mass rate (kg/s)”, “Distance to alert zone (3 kW/m2) (m)”,
“Distance to intervention zone (5 kW/m2) (m)” and “Distance to domino effect (8 kW/m2)

(m)” were defined as output.

“all_T.json” is read in a Pandas DataFrame. This DataFrame has one row for each simulated
jet-fire case, with all numeric inputs and outputs. It gets polished eliminating redundant and
purely textual rows and passed through a check: verify that every column can be cast to a
numeric dtype (float or int) and if there are missing values; this guarantees that the DataFrame

is ready for machine learning.

3.5 NN model definition

Python in Visual Studio Code

Python is a high-level programming language known for being designed to be easy to read and
write, oriented features, and dynamic semantics. It offers built in data structures and supports
dynamic typing and dynamic binding. Python's syntax promotes modularity and code reuse
through support for modules and packages. Python comes with an extensive standard library
that are available for free for major platforms. Python served as the backbone for data ingestion,
preprocessing, model definition, training loops, and result visualization (Python 2010).
Running Python code in an environment like Visual Studio Code notebooks allows interactive
exploration of dataframes, rapid debugging, and inline plotting of intermediate results. The ease
of writing concise scripts enabled quick iteration on preprocessing pipelines and neural network

architectures.
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PyTorch

PyTorch is an open-source machine learning framework that accelerates the path from research
prototyping to production deployment. Built to offer maximum flexibility and speed, PyTorch
supports dynamic computation graph. Its Pythonic design and deep integration with native
Python tools make it an accessible platform for building and training deep learning models at
scale. Widely adopted across academia and industry, PyTorch has become the framework of
choice for commercial ML applications. It supports a broad range of use cases, from natural
language processing and computer vision to reinforcement learning, through a robust ecosystem
of libraries, tools, and integrations. PyTorch is also optimized for performance across CPUs,
GPUs, and custom hardware accelerators, including support for distributed training and
deployment on cloud platforms and mobile devices (PyTorch 2025). In this jet fire regression
task, PyTorch was employed to define the multi-layer feedforward neural network, implement

custom training loops, and leverage automatic differentiation for backpropagation.

3.5.1 Division of the data between training, validation and test

All these data were extracted as NumPy arrays and divided randomly into three distinguished
sets, including training, validation, and test. The 80% of the total data points were used to
determine the weights (the network training); 10% of the total data points were used to validate
these weights (network validation); and 10% of the total data points were tested with the
developed network, to provide an independent measure of the network performance during and

after training.

3.5.2 NN Architecture

As explained before, MFLNN with consists of input layer, hidden layers and output layer, and
adopts error-based back propagation algorithm. The learning rule is to use the fastest descent
method. The weights and biases of the network are constantly adjusted through Backward

Propagation to minimize the sum of squared errors of the network.
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148 class JetFireModelReg(nn.Module):

141 def __init_ (self, D_in=18, H1=32, H2=16, D_out=5, p_dropout=8.3}:
142

143 # D_in = number of feature in input (1@)

144 #H = number of neurons in each hidden layer
145 # D_out = number of targets to predict (5)

146 # Hn = number of hidden layer

147

148 super().__init_ ()

149 self.net = nn.Sequential(

15@ nn.Linear(D_in, H1),

151 nn.RelU(),

152 nn.Dropout(p_dropout), # regularisation
153 nn.Linegar(H1, H2),

154 nn.RelU(),

155 nn.Dropout (p_dropout),

156 nn.Linear(H2, D_out) # linear output
157 )

158

159 def forward(self, x):

168 return self.net(x)

161

Figure 28. Particular of “Jet_fire_NN.py” script to show the first architecture of the MLFFNN.

With PyTorch library is possible to use JetFireModelReg command, a subclass of nn.Module
implementing a simple feedforward (multi-layer perceptron) for multi-output regression. The
number of the precedent selected features will be constat for the input layer and the output one;
10 and 5 respectively. As first attempt the number of hidden layers was chosen as two and the
number of the neurons for each of them was selected trying to simulate a pyramidal structure
which helps for the regression. Therefore, the first one has 32 neurons and 16 are in the second
layer. As explained in the section 1.4.2 the ReLu function is used between the input and the first
hidden layer, and between the hidden ones. Instead, the purelin between the second hidden

layer and the target (output) layer.

In the first attempts, the and R? results were too good (MSE = 0 and R? = 1), pointing out a
problem of overfitting. This phenomenon occurs when a model learns to reproduce not only the
underlying signal but also the noise in the training data, so it performs poorly on unseen data.
Thus, after each activation function, there’s a “dropout” of 30% of the neurons, which prevent
the overfitting during training by introducing randomness and forcing the network to be more

robust.

Dropout is a regularization technique which randomly zero excludes from the training some

hidden neuron’s output with probability p (30% in this case) on every training step.
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Later in the interference (evaluation) time the dropout is turned off and each weight is
effectively scaled by (1 — p). In PyTorch that scaling is handled automatically so that at test

time inputs are simply passed through the full network without zeroing anything out.

3.5.3 Setting up the Datal.oader

Generally coding for processing data samples could get messy and hard to maintain,

therefore PyTorch provides two data tools: torch.utils.data.Dataloader and

torch.utils.data.Dataset.

A Dataset stores the samples and their corresponding labels, and DatalLoader wraps an

iterative set of data from the Dataset to enable easy access to the samples from the NN.

The Dataset recall dataset’s features and labels one sample at a time. While training a model,
the samples are put in “minibatches” and the data reshuffled at every passage in the training
section to reduce model overfitting and use Python’s multiprocessing to speed up data
retrieval. Dataloader performs an iteration where the dataset is loaded and automates
batching and shuffling. With shuffle=True, after all batches are iterated, the data is shuffled;
necessary for the training Dataloader, not for the validation and testing ones (PyTorch

2025).

3.6 Training

The purpose of the build training loop in the NN is minimizing the Mean Squared Error (MSE)
between the network’s prediction and the true targets. A fundamental concept in NN training is
the epoch: it refers to one complete pass of entire training dataset through the learning
algorithm, and in a MLFFNN each training epoch has two parts: forward pass, and backward

pass.

In forward pass, a batch of input vectors from the “test dataset” (80% if the total dataset) is fed

through the network, layer by layer, to produce an output y. The criterion function, also known
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as the loss function L, is calculated for reducing the error between the expected (from the
experiments or the simulations with PHAST in this case) and the predicted values during

forward propagation and can be expressed as:

N
1
£3.9) =7 ) lyi =7l a1s)
i=1

Where ; is the true target for the sample i and y; the one predicted from the NN over that batch
set by the Datal.oader.

In backpropagation the gradient of the MSE loss is calculated with respect to every weight in
the network by propagating the error @ — y® backward through each layer. These gradients
tell how each weight contributes to the loss. However, the backpropagation algorithm is slow

to converge, and an overfitting problem may occur along with it.

Some regularization techniques (optimizer) have been developed to overcome these issues,
such as Adam in this study, which constantly updates the weighted values between nodes in

each layer:

L
Wity = Wi =150 +a(w; —w;_1) (16)

. . . . . oL .
Where w;, 1 and w; are the weights of the relative iteration, 7 is the learning rate, oo 18 the

gradient of the Loss function, a is a momentum coefficient.

In practice, Adam optimizer integrated through Equation (16) with adaptive learning rates and
momentum terms tend to speed convergence and mitigate oscillations. Its adaptive steps tend
to help prevent the network from fitting noise in the training set. In this study the baseline model
is set using an optimizer with a learning rate of 10 and a weight decay option of 10 for further

regularization.

After updating the weights, forward and backward passes is repeat on the next batch,
continually reducing the network’s mean squared error. Because backpropagation could overfit
the training data an “early stopping action” is employed: monitoring the validation loss at the

end of each epoch (Figure 29). In particular, with a patience of 10, if the loss does not improve
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for ten consecutive epochs, the training is halt training, even if the maximum of 100 epochs is

not reached yet.

185 model = JetFireModelReg(D_in=18, H1=32, H2=16, D_out=5, p_dropout=8.3).to(device)
196

197 criterion = nn.MSELoss()

198 optimizer = optim.Adam(

199 model.parameters(),

208 1r=1e-3,

281 weight_decay=1e-4 # L2 regularization
202 )

203

284 # Early stopping setup

285 import copy

286 patience = 1@

207 best_val_loss = float('inf")

288 best_model_wts = copy.deepcopy(model.state_dict())
2e9 epochs_no_improve = 8

218 num_epochs = 188

211

212 for epoch in range(l, num_spochs+1):

213 # — train —

214 model.train()

215 running_train = @.@

216 for Xb, yb in train_loader:

217 Xb, yb = Xb.to(device), yb.to(device)

218 optimizer.zero_grad()

219 y_pred = model(Xb)

220 loss = criterion(y_pread, yb)

221 loss.backward()

222 optimizer.step()

223 running_train += loss.item() * Xb.sizz(@)
224 train_loss = running_train / len(train_loader.dataset)
225

226 # — validation —

227 model.eval()

228 running_val = @.8

229 with torch.no_grad():

238 for Xb, yb in val_loader:

231 Xb, yb = Xb.to(device), yb.to(device)
232 loss = criterion(model(Xb), yb)

233 running_val += loss.item() * Xb.size(@)
234 val_loss = running_val / len(val_loader.dataset)
235

236 print(f"Epoch {epoch:@3d} Train Loss: {train_loss:.6f} WVal Loss: {val_loss:.&f}")
237

238 # — early stopping control—

239 if val_loss < best_val_loss - 1le-6:

240 best_wal_loss = wval_loss

241 best_model_wts = copy.deepcopy(model.state_dict())
242 epochs_no_improve = @

243 else:

244 epochs_no_improve += 1

245 if epochs_no_improve »= patience:

246 print(f"Early stopping at epoch {epoch}™)
247 break

Figure 29. Training section of “Jet_fire NN.py” script.

In the script extract shown in Figure 29 it is shown that the variable best_model_wts stores the

optimum model weights for the lowest validation MSE seen so far and best_val_loss stores the
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relative MSE results. In each epoch there is a validation section: model.eval disables dropout
and other training-only behaviour, torch.no_grad context avoids computing gradients for
validation (saving memory and computation), loops through val_loader, computes MSE on the

model’s predictions, and sum over the entire validation set.

3.7 NN performance evaluation

To recap the architecture proposed for the Multi-Layer Feedforward Neural Network with
Backpropagation is one input layer with 10 neurons (inputs), two hidden layers with
respectively 32 and 16 neurons, and an output layer of 5 features (outputs); 30% as percentage
of dropout, function loss on MSE; Adam optimizer with learning rate 10~ and weight decay 10°

%100 epoch with early stepping control on MSE of 107 and patience 10.

The Mean Absolute Error, the Mean Square Error and the square of the correlation coefficient
(R?) were used as evaluation criteria to compare the model outputs with the evaluation dataset.

MAE, MSE and R? were calculated as follows:

N
1
MAE = NZ'” _— (17)
i=1
1 N
MSE = ﬁZ(yi - ¥:)? 18)

i=1

Z?’:1(}’i - ?i)z
R =575 19)
Z?’:1()’i —¥:)?

With the best_model_wts loaded, the model was valuated before on the saved 10% of the total

data points; later is used the remaining 10% of the Dataset (test_loader) never used yet.
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# Load the best weights
model.load state dict(best_model wis)
model.eval()

[P

=9

# MSE on test_loader
test_mse = 8.9
with torch.no_grad():
for Xb, yb in test_loader:

Xb, yb = Xb.to(device), yb.to{device)

test_mse += criterion(model(Xb), yb).item()} * Xb.size(®)
test_mse /= len{test_loader.dataset)
print(f"\nTest Loss (MSE): {test_mse:.6f}")

o e @D G =] &houn

# Prediction on all X_test and metrics by target (2ll in real scale)
with torch.no_grad():
y_test _pred_norm = model(X_test.to(device)).cpu().numpy()

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

W bl bl d R R R R R R R RS RS

~ o

y_test_pred = scaler_y.inverse_transform(y_test_pred_norm)
y_test_true = scaler_y.inverse_transform{y_test.cpu().numpy())

3

3

342 print("\nMetrics on TEST set (by target):")

343 for i, name in enumerate(target_cols):

344 mag_i = mean_absolute error(y_test true[:,i], y_test pred[:,i])
345 mse_i = mean_squared_error(y_test_true[:,i], y_test_pred[:,i])
346 r2_i = r2 score(y_test_true[:,i], y_test pred[:,i])

347 print(f"{name}: MAE={mae_i:.3f}, MSE={mse_i:.3f}, R2={r2_1i:.3f}")

Figure 30. Performance evaluation extract of “Jet_fire NN.py” script.

3.8 Optimization of the MLFFNN with BP

A first MLFFNN with BP model was developed and used as a baseline model. The architecture

and model parameters used were the following ones:

- One input layer with 10 neurons.

- Two hidden layers with 32 and 16 neurons, respectively.

- Anoutput layer with 5 neurons.

- Activation function: ReLU.

- Dropout rate: 30%.

- Batch size in the validation section: 32.

- Adam optimizer with a learning rate of 10~ and a weight decay of 10,

- 100 epochs with early stepping control on MSE of 10 and a patience value of 10.
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Afterwards, an optimization on several architecture and model parameters was performed to
optimize the baseline MLFFNN with BP model using as loss function MSE. The analysis was

performed considering 3 sections of the NN architecture:

(1) Model definition: to see how the networking capacity impacts on the validation loss.
Several parameters were tested:

e Network geometries: 4 architectures with two hidden layers but with different
number of neurons for each one, i.e. (16, 8) (32, 16), (64, 32), (128, 64); 1
architecture with 1 hidden layer with 48 neurons; 1 architecture with three hidden
layers with 32, 16 and 8 neurons, respectively.

e Activation functions: ReLU, LeakyReLU, ELU, tanh.

e Dropout rates: 0, 10, 30, 50%.

(2) Datal.oader creation: to analyse how changing the size of the batches in the validation
section influence the results, because smaller batches provide noisier gradients, while
larger batches yield smoother updates but require more memory.

e Batch sizes tested: 16, 32, 64, 128.

(3) Training loop: to analyse if a higher learning rate could lead every gradient step to
overshoot the loss minimum and if'is necessary to keep weights smaller to reduce model
complexity and improve generalization on unseen data; to study the fact that a shorter
patience may avoid overfitting but could also stop training prematurely.

e Learning rate (1072 107, 10*) and weight decay (0, 107, 107, 107) of the
optimizer.

e Early stopping patience: 5, 10, 20.

The best option among all the ones tested was defined and implemented.
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4 Results

4.1 Simulation in PHAST

To get a comprehensive report of the results obtained for HBNG jet fires Pressure Vessel +
Leak with Miller/DNV model, here are shown only the grid-consequence results with the

weather conditions of Table 16.

The first three column charts (Figure 35, 36, 37), represent the release mass flow rate (kg/s),
the flame length (m) and the safety distances according to three vulnerability levels based on
radiation thresholds (m), at a fixed storage pressure of 60 barg, storage temperature of -5 °C,
and changing the orifice diameter (1, 5, 10, 20, 35, 50 mm) with the volumetric composition of
blended hydrogen in the natural gas (0, 5, 10, 20, 24, 30 % vol.). A single, fixed colour is used

to represent each composition.

According to these results, increasing the presence of H» in natural gas decreases the release
mass flow rate, the flame length and the incident radiation in every diameter orifice case. This
is in agreement with the introductive part (see section 1.3.1). On the contrary, enlarging the leak

increases the quantities for a given composition.

For the release mass flow rate (Figure 31), the values go from a minimum value of 0.0067 kg/s
for a mixture of H> 30% vol. with an orifice diameter of 1 mm to a maximum of 20.65 kg/s
with only methane gas with an orifice diameter of 50 mm, which decreases to 19.96 kg/s by
adding 5% vol. of Hz. The flame length (Figure 32) for the reasons already explained goes from
1.39 m with 30% vol. of Hz and 1 mm orifice to 53.46 m with only methane and an orifice of
50 mm, or to 52.57 m for a 5% vol. of H2. Following the same pattern, the minimum and
maximum for the safety distances (Figure 37) are 2.012 m and 87.26 m (85.94 m for 5% vol.
of H») in the alert zone, 1.79 m and 75.52 m (74.6 m for 5% vol. of H») in the intervention zone,
1.64 m and 67.35 m (66.38 m for 5% vol. of Hz) in the domino effect one.
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Figure 31. Release mass flow rate (kg/s) results obtained using PHAST for a setup jet fire with storage pressure of
60 barg and storage temperature of -5 °C considering different orifice diameters (1, 5, 10, 20, 35, 50 mm) and
different hydrogen compositions (0, 5, 10, 20, 24, 30% vol.) in methane.
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Figure 32. Flame length (m) results obtained using PHAST for a setup jet fire with storage pressure of 60 barg and
storage temperature of -5 °C considering different orifice diameters (1, 5, 10, 20, 35, 50 mm) and different hydrogen
compositions (0, 5, 10, 20, 35, 50% vol.) in methane.
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Figure 33. Distance crosswind to intensity level of 3 kW/m? (alert zone), 5 kW/m? (intervention zone), 8 kW/m?
(domino effect zone) obtained using PHAST for a setup jet fire with storage pressure of 60 barg and storage
temperature of -5 °C considering different orifice diameters (1 ,5, 10, 20, 35, 50 mm) and different hydrogen
compositions (0, 5, 10, 20, 35, 50% vol.) in methane.

In Figures 34, 35 and 36 the jet fire outputs considered before are shown considering different
orifice diameters, fixing the volumetric composition of hydrogen (24 % vol.) and the storage
temperature (-5 °C ) and changing, instead, the storage pressure (30, 45, 50, 60, 70, 80, 100,
150 barg). As before, the composition of 24% vol. of Ha.

The storage pressure, as the orifice diameter, has a large influence on the results obtained on
each output variable. In Figure 38, it can be observed that the release mass flow rate goes from
0.0035 kg/s (30 barg, 1 mm) to 45.76 kg/s (150 barg, 50 mm). These differences in the release
flow rate have consequences on the flame length, with a minimum value of 1.02 m (30 barg, 1
mm) to a maximum value of 75.08 m (150 barg, 50 mm) (Figure 39). The same trend is noted
in Figure 40, where the minimum and maximum for the safety distances are 1.48 m and 126.48
m in the alert zone, 1.31 m and 109.50 m in the intervention zone, 1.27 m and 97.14 m in the

domino effect one.
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Figure 34. Release mass flow rate (kg/s) results obtained using PHAST for a setup jet fire with a hydrogen
composition of 24% vol. and a storage temperature of -5 °C considering different orifice diameters (1, 5, 10, 20,

35, 50 mm) and different storage pressures (30, 45, 50, 60, 70, 80, 100, 150 barg).
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Figure 35. Flame length (m) results obtained using PHAST for a setup jet fire with a hydrogen composition of
24% vol. and a storage temperature of -5 °C considering different orifice diameters (1, 5, 10, 20, 35, 50 mm) and
different storage pressures (30, 45, 50, 60, 70, 80, 100, 150 barg).
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Figure 36. Distance crosswind to intensity levels of 3 kW/m? (alert zone), 5 kW/m? (intervention zone), 8 kW/m?
(domino effect zone) obtained using PHAST for a setup jet fire with a hydrogen composition of 24% vol. and a
storage temperature of -5 °C considering different orifice diameters (1, 5, 10, 20, 35, 50 mm) and different storage

pressures (30, 45, 50, 60, 70, 80, 100, 150 barg).

Regarding the influence of the storage temperature in the Pressure Vessel + Leak configuration

to simulate HBNG horizontal jet fire, in ANNEX D are collected the results for 15 and 35 °C.

Increasing this temperature corresponds to a decreasing of the release mass flow rate, the flame
length and the intensity irradiation both in the cases with fixed storage pressure (60 barg) and
the ones with fixed concentrations (24 %vol.), following the same behaviour already plotted in

this section.

Considering the results from all 50,112 cases simulated, the minimum values correspond to

Tstorage = 35 °C, Pstorage = 30 barg and 30 % vol. of H> conditions; and the maximum ones to
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Tstorage = -5 °C, Pstorage = 150 barg and 0% vol. of H» conditions. The respective min and max

values for each condition are:

e Release mass flow rate: 0.003 kg/s and 55.541 kg/s.

e Flame length: 0.940 m and 83.960 m.

e Distance crosswind to intensity level 3 kW/m? for 30 seconds “Alert zone” (m): 1.374
m and 138.750 m.

e Distance crosswind to intensity level 5 kW/m? for 30 seconds “Intervention zone” (m):
1.222 mand 119.917 m.

e Distance crosswind to intensity level 8 kW/m? for 30 seconds “Domino effect zone”

(m): 1.198 m and 106.090 m.

4.2 Performance evaluation of the MLFFNN with Backpropagation

A preview of the 2-dimensional data structure (i.e., DataFrame) before exporting it into a JSON

file format is shown in Figure 37.
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Figure 37. Extract in Visual Code (Python) of the DataFrame.

Showing the training epoch of the NN (Figure 38), there was an early stop at epoch 22, meaning
that the function loss (based on the MSE) did not get better results for 10 consecutive epochs
(i.e., patience was set at 10), so the maximum of 100 epochs was not reached. At the end of
each training section and validation the target values were transformed back to their original

physical units to invert the standardisation applied (see section 3.4.1)
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Epoch 881 Train Loss: 8.2089893 Val Loss: 8.614374
Epoch 882 Train Loss: 8.889765 Val Loss: 8.613987
Epoch 883 Train Loss: 8.881226 Val Loss: 8.618566
Epoch 884 Train Loss: 8.879325 Val Loss: 8.622211
Epoch 885 Train Loss: 8.876681 Val Loss: 8.613915
Epoch 886 Train Loss: 8.874362 Val Loss: 8.628215
Epoch 887 Train Loss: 8.873728 Val Loss: ©.618894
Epoch 888 Train Loss: 8.873931 Val Loss: 8.682481
Epoch 882 Train Loss: 8.872672 Val Loss: 8.687622
Epoch 818 Train Loss: 8.872788 Val Loss: 8.682421
Epoch 811 Train Loss: 8.872767 Val Loss: 8.685994
Epoch 812 Train Loss: 8.872552 Val Loss: 8.885326
Epoch 813 Train Loss: 8.871924 Val Loss: 8.887758
Epoch 814 Train Loss: ©.872428 Val Loss: 8.887578
Epoch 815 Train Loss: 8.869928 Val Loss: 8.688333
Epoch 816 Train Loss: 8.871682 Val Loss: ©.688462
Epoch 817 Train Loss: 8.871287 Val Loss: ©.689633
Epoch 812 Train Loss: 8.8699%2 Val Loss: 8.685118
Epoch 819 Train Loss: 8.876721 Val Loss: ©.685647
Epoch 828 Train Loss: 8.871711 Val Loss: 8.812313
Epoch 821 Train Loss: 8.878587 Val Loss: 8.887893
Epoch 822 Train Loss: 8.878521 Val Loss: 8.612893

Early stopping at epoch 22

Figure 38. Extract in Visual Code (Python) of the training calculations for the proposed Neural Network.

Once the training was completed, the NN model was evaluated on the testing dataset, with the
weights corresponding to the lowest loss function results (related with MSE values) and
obtained during the valuations. Therefore, the results shown in Table 17 and the scatter-plots
on testing dataset (Figures 39 and 40) refer to the best configuration of the original NN using

the architecture summarized in section 3.7

Before proceeding with the test evaluation, the predicted outputs are converted back to the

original scale (see section 3.4.1). Therefore MAE, MSE and R? have the relative units.

Table 17. Statistical metrics (MAE, MSE, R?) obtained using the weights corresponding to the lowest loss function
results in the proposed NN.

Feature MAE MSE R?
Release mass flow rate (kg/s) 0.574 kg/s 1.412 kg?/s? 0.985
Flame length (m) 1.144 m 1.894 m? 0.995
Distance (m) at intensity level of 8 kW/m? (domino effect zone) 1.636 m 3.900 m? 0.995
Distance (m) at intensity level of 5 kW/m? (intervention zone) 1.898 m 5.436 m? 0.995
Distance (m) at intensity level of 3 kW/m? (alert zone) 1.454 m 3.011 m? 0.995
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Figure 39. Scatter plots comparing the true values with the from the first version of NN model with: a) Release

mass flow rate (kg/s); b) Flame length (m).
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Figure 40. Scatter plots comparing the true values with the from the first version of NN model with: a) Distance
(m) crosswind to an intensity level of 3 kW/m?; b) Distance (m) crosswind to an intensity level of 5 kW/m?; c)

Distance (m) crosswind to an intensity level of 8 kW/m?

For the release mass flow rate, in Figure 39 (a), points near the middle (mass rates between 10
and 40 kg/s) lined up well, but at the upper extreme (mass rates 45-50 kg/s) the points laid
below the ideal line, meaning underprediction. Looking at the right side for the flame lengths,
Figure 39 (b), up to circa 60 m the points clustered closely around the diagonal Over this value,
the tendency is a bit different but the point cloud is still around the diagonal. For the distances
(Figure 40) points are slightly below the diagonal, indicating a tendency to underpredict the

safety distances of 4 - 5 meters.

4.3 Optimization results of the MLFFNN with BP model

As explained in section 3.7, the baseline model used in section 4.2 was optimized considering
the following variables: network geometry, activation functions, dropout rates, batch sizes in

the validation section, learning rate with weight decay of the optimizer and patience in the early

stopping.
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In the sensitivity analysis the results of the valuative loss function were computed for each
output parameter and used to choose the best available option. In these tables, MSE does not
have the units, because it is obtained by the standardized features (input and output) used for

training and validation.
According to the results shown in Tables 18, 19 and 20, the best configuration was:

- One input layer with 10 neurons.

- Two hidden layers with 128 and 64 neurons, respectively.

- Anoutput layer of 5 neurons.

- Activation function: LeakyReLU.

- Dropout rate: 0%.

- Batch size in the validation section: 128.

- Adam optimizer with a learning rate 10~ and a weight decay 0.

- 100 epochs with early stepping control on MSE of 10" and a patience value of 20.

Table 18. Sensitivity analysis performed on the model definition variables for the MLFNN with BP network used.

Number of neurons in (1 hidden layer, number 2" hidden layer, etc.) MSE
(16, 8) 0.0218

(32, 16) 0.0062

(64, 32) 0.0026

(128, 64) 0.0014

(48) 0.0034

(32,16, 8) 0.0424
Activation function MSE
ReLU 0.0021
LeakyReLU 0.0017
ELU 0.0033

tanh 0.0059
Dropout rate (%) MSE
0 0.0001
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10 0.0017
30 0.0033
50 0.0059

Table 19. Sensitivity analysis performed on the Datal.oader for the MLFNN with BP network used.

Batch size MSE
16 0.0001

32 0.0001

64 0.0001

128 0.0001

Table 20. Sensitivity analysis performed on the training loop for the MLFNN with BP network used.

Learning rate Weight decay MSE
10 0 0
10 10 0.0001
10 10 0.0002
10 107 0.001
107 0 0
107 10° 0
107 10 0.0001
107 107 0.0007
10 0 0
10 10 0
10 10 0
10 103 0.0007

Early stopping patience MSE
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5 0
10 0
20 0

The graphs in Figures 50 and 51 confirms that the most optimal configuration of MLFFNN

with BP was obtained, because the majority of the points are on, or quite near, the ideal line.

Pred mass_rate

True vs Predicted: mass_rate

60

50

B
o
|

w
(=]
|

]
o
L

10 4

10 20 30 40
True mass_rate

50

60

b)

_length

Pred flame_len

True vs Predicted: flame_length

80 -

(=]
(=]
|

40 4

20+

0 20 40 60 80

True flame_length

Figure 41. Scatter plots comparing the true values with the predicted ones from the optimized MLFFNN: a) Release
mass flow rate (kg/s); b) Flame length (m).
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Figure 42. Scatter plots comparing the true values with the predicted ones from the optimized MLFFNN: a)
Distance (m) crosswind to an intensity level of 3 kW/m?; b) Distance (m) crosswind to an intensity level of 5 kW/m?

¢) Distance (m) crosswind to an intensity level of 8 kW/m?>.
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4.4 Further works

Further work could focus on enhancing both the simulation and validation of HBNG jet fires,

as well as improving the operability of the developed NN model.

First, it would be beneficial to explore more validated experiments and simulations of jet fires
in PHAST not only focusing on horizontal leaks, where the Multi-Point Miller/DNV model
was found to outperform Johnson’s Cone model but also considering vertical flames with
varying hydrogen concentrations. Additionally, expanding the storage pressure range to include

values representative of the natural gas distribution grid would also be of interest.

A sensitivity analysis would be useful to understand how each input and configuration affects
the model's results. For instance, it could reveal how individual weather parameters (e.g., wind

speed, atmospheric stability, humidity, and solar radiation) influence flame behaviour.

Regarding the NN, other ML tools and architectures could be tested. For example
Mashhadimoslem et al. (2023) used in their research not only MLFFNN for the evaluation of
jet fires from the natural gas processing, storage and transport, but also a Radial Basis Function

(RBF) network with only one hidden layer and several neurons.

It would also be useful to perform a sensitivity analysis on the neural network's hyperparameters
not only to achieve a more targeted optimization, but also to better understand how each

parameter influences the training process.

78



Safety distances estimation for hydrogen blended natural gas jet fires using neural network methods

5 Conclusions

The promising opportunities that hydrogen could offer in terms of high energy density and net-
zero emissions, lead to an exponential growth of studies in the production, transportation, and
commercialization. Between the already analysed ways of transports, such as liquified and
compressed gas forms, Hydrogen Blended Natural Gas has prospected as an economical and
viable strategy. In particular, the H> produced is blended in the already exiting NG pipeline.
However, this new mixture is affected by a different behaviour and problems than the normal
natural gas, such as changing in the compressibility factor, energy transmission and
temperature. In particular, due to the small dimension of H» and its high affinity with air, the
common pipeline could be affected by hydrogen embrittlement phenomena, which is the cause
of leaks and breaks in the structure. In addition, the small molecular size and low ignition energy
of the added gas lead rapidly to turbulent jet flames. These high-momentum diffusion flames
radiate heat impinge on nearby structures, and can trigger catastrophic domino events, and
therefore HBNG jet fires represent a newest danger and safety issue in industrial risk-

assessment workflows.

In parallel, new technological tools implementing machine learning offer faster and more
accurate results than the common CFD software. Between the several algorithm, Neural
Networks are optimal instruments, easily to modify and to implement. In particular, a MLFNN
with Backpropagation, could be a simple, but at the same time efficient, structure to be created
and use for simulating the jet mass flowrate, flame length and safety distances of the flames

chosen to discuss.

In this thesis, before developing the indicated NN, were tested different configuration to
simulate scenarios of horizontal HBNG jet fire from NG transmission pipeline, choosing as the

most suitable the Pressure Vessel + Leak setup.

With this configuration a comprehensive database of 50,112 cases was generated in PHAST
and collected in a Grid Consequence, by varying the volumetric concentration of H» blended (0
- 30 vol %), orifice diameter (1 - 50 mm), storage pressure (30 - 150 barg) and temperature (—
5, 15, 35 °C), as well as the meteorological condition (atmospheric stability, wind speed,

ambient temperature and humidity).
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These simulations revealed that increasing Ha content, storage temperature, orifice diameter
and reducing storage pressure each led, respectively, to lower mass release rates, shorter flame

lengths and smaller required safety distances (3, 5 and 8 kW/m? contours).

Building on this database, a MLFFNN was trained using PyTorch, initially with two hidden
layers (32 and 16 neurons) and ReLU activation function, achieving validation MSE = 107 and

R?>0.98 across all outputs.

A subsequent optimization, increasing hidden layer sizes to 128 and 64 neurons respectively,
switching to LeakyReL U, eliminating dropout, enlarging validation batches and tuning Adam’s
learning rate and weight decay, reduced the validation MSE to near zero and pushed R? to >

0.99 for jet mass flow, flame length and all three safety distance predictions.

Merging the full dataset from PHAST and the accuracy of the optimized NN, this one predicts
mass release rates varying from 0.003 to 55.541 kg/s with an average absolute error below 0.58
kg/s, flame lengths spanning 0.94 to 83.96 m with mean deviations under 1.15 m, and crosswind
safety distances for 3 kW/m? (Alert zone), 5 kW/m? (Intervention zone), and 8 kW/m? (Domino
effect zone) ranging respectively from 1.374 to 138.75 m, 1.222 to 119.917 m, and 1.198 to
106.09 m with average errors of 1.45 m, 1.90 m, and 1.64 m

In the end, the developed model provides high accuracy estimates of jet fire consequences
across the full parameter space, offering a practical, computationally efficient tool for rapid risk

assessment in HBNG risk issues.
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ANNEX A: Sustainability report

A.1 Environmental sustainability

The environmental impact of this work can be assessed by quantifying the main source of
emissions, which is the electricity consumed during the research activities. Specifically, these
emissions can be calculated based on the energy mix of Spain. Figure 43 illustrates the daily
distribution of electricity production sources, with wind, photovoltaic, and nuclear energy being
the three primary sources, as indicated by the Electricity Map. This tool also provides data on
the average mass of equivalent CO> emissions per kWh consumed during each hour of the day
Table 21. Carbon dioxide equivalent, as defined from the European Environment Agency, is a
measure used to compare the emissions from various greenhouse gases based upon their global

warming potential (GWP).

To estimate the amount of equivalent CO, emitted during the development of this master thesis,
a standard electricity consumption value for a computer was used. On average, most of the
computers use between 0.8 and 2.5 kWh per hour. The activities primarily took place in the
morning, from 9 am to 1 pm. Considering five hours per day and 100 days as extent of the thesis

work, the total amount of equivalent CO; emitted resulted to be between 3.8 and 11.9 kg COzeq.

12%

19% 25%

= Nuclear = Biomass = Coal = Wind = Photovoltaic = Hydroelectric = Gas = Other

Figure 43. Energy mix of Spain (EMBER 2024.)
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Table 21. Equivalent CO, emission per kWh during the morning hours.

Hour Emissions (g CO2e/kWh)
From 9 a.m. to 10 a.m. 140
From 19 am. to 11 am. 129
From 11 am. to 12 am. 109
From 12 am. to 1 p.m. 97

Additional sources of emissions that should be considered include the energy required to power
and cool the data centre systems that host the servers supporting the software. The use of the
internet itself, involving the transmission and reception of data, also relies on communication
networks, which have their own environmental impact. These elements, however, are difficult

to estimate numerically without precise data from the software providers.

A.2 Economic sustainability

Quantifying the costs associated with the thesis work involves considering both human and
material resources. Regarding material resources, the software tool utilized plays a significant
role. Indeed, PHAST is a commercial software that requires a license, resulting in a financial

expense.

In terms of human resources, the costs encompass the personnel involved in the project,
including the student's own time spent on research, writing and analysis, as well as any expenses
related to supervision or tutoring provided by academic supervisors. Estimating the number of
hours contributed by each person involved is crucial for accurate cost assessment. For example,
the student’s personal involvement in the project averaged four hours per day, resulting in a

total of 420 hours.
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Additional material resources include the use of computer hardware, office supplies and other
equipment necessary for simulations and data analysis. Indirect costs, such as electricity
consumption for running the software and hardware, internet usage and other utilities, should

be also considered.

A.3 Ethical implications

This thesis work responds to the growing need for safe and efficient H> transportation and
usage, particularly in the context of the global shift towards sustainable energy solutions.
Specifically, it addresses the needs of enhancing safety by identifying and calculating in a faster
way the safety distances in case of an accidental jet fire scenario, improving efficiency of

industrial processes and contributing to sustainability by advancing clean energy technologies.

This work adheres to the ethical standards and deontological codes relevant to engineering and
scientific research. This involves accurately reporting and honestly interpreting all data and
findings. Additionally, the work is committed to practices that support long-term environmental
sustainability. Transparency is ensured in the methodologies employed, ensuring that all
procedures utilized throughout the thesis work are explicitly described and documented,

allowing others to comprehend and evaluate the work undertaken.

A.4 Relationship with the Sustainable Development Goals

The Sustainable Development Goals (SDGs), also known as the Global Goals, were adopted
by the United Nations in 2015. United Nations aim to achieve 17 goals by 2030, addressing the
global challenges we face, including those related to poverty, inequality, climate change,

environmental degradation, peace and justice.

This thesis work contributes in part to the Sustainable Development Goals (SDGs) illustrated
in Figure 44. Hydrogen, as previously mentioned, is a clean fuel because its combustion does
not emit GHGs. When produced through sustainable methods (Green Hb), it serves as a source
of clean energy. By analysing potential cases of horizontal HBNG jet fires from transmission

pipelines and developing a predictive tool (MLFFNN) for assessing their consequences, this
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research contributes to innovation in industrial processes and improvements in urban safety.
Notably, it aligns with Goal 11 of the Sustainable Development Goals, which includes the

objective of providing access to safe and sustainable transport systems.

AND INFRASTRUCTURE

ACTION

SUSTAINABLE [T R yreed FTT 13 G

DEVELOPMENT

Ga:ALS

Figure 44. SDGs related to the thesis work.
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ANNEX B: PHAST models

B.1 Source models for pressure vessel leaks

The DISC model implemented in PHAST - DNV (DNV 2023) is a suite of instantaneous and
continuous discharge models for hazardous chemicals stored in vessels. Following a leak in a
vessel or in a pipe attached to a vessel, a discharge will occur to the atmosphere. In particular,
the Orifice model is a conservative and initial-rate discharge model which predicts the worst-
case initial discharge rate and the duration associated with this discharge rate. The chemical
stored in the vessel may be vapour, liquid or two-phase. The model is illustrated in Figure 45
and describes the expansion from pre-release conditions to the orifice. The pre-release or initial
conditions are determined from the user-specified storage conditions according to the scenario
and other settings. Expansion from the orifice to atmospheric conditions is managed by the

Atmospheric Expansion theory (ATEX) model (DNV 2023).

Atmospheric
expansion (ATEX)

Vessel

conditions Orifi d
* rifice conditions
(Pb( T&l ’ TISI)

(Po 'Tu g 110)

Initial

conditions Release rate (Q)

(Pbt ’Th[ ’ nht) I
|
I/N

Vena contracta
Cp)

Atmosphere
(P, T,

Figure 45. Orifice and atmospheric expansion conditions (DNV 2023).

The following equations are used to determine the orifice conditions. By conservation of

energy, assuming initially the material is stagnant:
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2
u
h(Pst' Tstr nst) = h(Pov To' 710) + 70 (20)
Where: h stands for enthalpy (on the left side it is dependent on storage Ps;, storage temperature
Ts; and mass liquid fraction ng; on the right side it is dependent on orifice P,, orifice

temperature T, and orifice mass liquid fraction 7n,), u, is the orifice velocity.

By conservation of entropy s:

S(PstJ Tst' nst) = S(Po:Tor 710) (21)

Note that during this isentropic expansion to the orifice, materials which are initially pure
vapour or liquid can be forced to remain so by setting the model input ‘Phase change upstream
of orifice’. The default setting is ‘Disallow liquid phase change’, also referred to as the
‘metastable liquid’ approach. The assumption is that there is insufficient time for changes in

phase before the material reaches the orifice.
The orifice pressure P, equals the ambient pressure in case of unchoked flow, and is determined
from the choke pressure in case of choked flow:

P, = MAX(P,, P,) 22)

Where: P, is the atmospheric pressure and P, is the choke pressure at the orifice and is defined

as the pressure at which the mass flux G, through the orifice is maximized:

G, = =2
°= . (23)
The specific volume v, is calculated as:
1 —
0 = Mo + ﬂ (24)
PLo Pvo
The mass release rate Q™ is then:
Q" =4,6, (25)

Where 4, is the orifice area.

This represents an idealized flow rate, but the frictional effect of convergent flow at the orifice

(as represented by the vena contracta in Figure 45 effectively reduces this. The convention is to
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achieve this by reducing orifice cross-sectional area (4,, <A, ). The ratio of this reduction is the

discharge coefficient Cp:

A, = CpA, (26)
Q=A4,G, 27

The method used to calculate the discharge coefficient Cj, is calculated as the ratio of the actual
mass flow to that which could be passed through the full area of the orifice, with values in the

range between 0.6 to 1. Finally, the release duration t,..; can be obtained as:

M,
lrel = 0 (28)
For fixed duration runs (i.e. where the user input fixed duration > 0 in PHAST) orifice diameter
is allowed to vary such that the release rate is sufficient to discharge the inventory in the
specified time. As orifice state and mass flux are independent of orifice diameter, we may
calculate G, and Cp, as described above, then use Equation (27) to determine release rate @, and

Equation (26) to determine vena contracta diameter.

B.1.1 Method of solution

The sequence of steps used to determine the orifice conditions is:

1. For a given P,, temperature and liquid fraction are determined from the isentropic-
expansion Equation (23). In terms of vapour (sy) and liquid (s;) entropies, the total

entropy is:
s=mn.5,(P,T) + (1 —n)sy(P,T) 29)

The leak scenario force vapour or liquid discharges to remain the same phase after
expansion, in which cases the liquid fraction is set to one or zero. As liquid entropy is
less than vapour entropy, whether the final state in single-phase can be determined from
Equation (29):

s > sy(P,T) (30)

With n;, = 0 for vapor case.

2. Calculate orifice velocity from conservation-of-energy Equation(20).
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3. Calculate the mass flux from Equation (25).

4. The orifice pressure is iterated until the mass flux is maximized, and P, set according

to Equation (22).
5. Calculate Cp and modified Q and Ay, from Equation (26).

6. Calculate release duration from Equation (28).

B.2 Calculation of still air flame length parameters for non-hydrocarbons

The M-MPS model employs the Kalghatgi’s correlation derived from experiments on the

vertical flames in still air to determine the still air flame length L, for non-hydrocarbon flames.

( Dp

2
3
=0.2 +0.024&(L @3D
LBOWst) $(Lpo)

Where:  Becker and Liang’s flame constant, W, mass fraction of fuel in a stoichiometric

mixture with air, D; combustion or effective source diameter, ¢ Richardson number.

The mass fraction of fuel in a stoichiometric mixture with air, Wy; can be calculated as:

w,, = M. Ce 32)
st Mth + (1 - Ct)wair
Where:
mole of fuel

C: = 7 p 33)

mole of fuel + moles of air

mole of fuel + moles of air
t ff f 34)

"~ mole of combustion products

For the adiabatic combustion temperature T; (K) Miller presented the following correlations
for estimating adiabatic combustion temperature for mixtures containing flammable and inert

gases:
Ty = Ty fuet(—0.7395CD2,;, + 0.0366CD . gyiry + 0.9972) 35)
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T1fuet = 321.08H3 i, — 310.88H5 o i, + 144.03H, oguipy + 2223 (36)
CDequiv = xCD + 0. 84xWA + 0. 59xN2 (37)
xHZequiv
HZ iv — 38
equty xHZequiv + xClequiv @)
XH2equiv = XH2 T Xcm 39
Xclequiv = Xc1 + Xc2 + X3 + Xeq + X, (40)

Where: Ty fy¢; adiabatic combustion temperature for combustible materials (K), xcp, X4,
Xy, mole fractions of carbon dioxide, water vapor and nitrogen in the fuel mixture
(respectively), Xpzequiv Sum of mole fractions of flammable non-hydrocarbons, Xx¢1equiy SUM
of mole fractions of flammable hydrocarbons, xy,, Xy mole fractions of H» and carbon

monoxide (respectively), Xc1, Xc2, X3, Xca, Xc. Mole fractions of hydrocarbons.

B.3 Calculation of flame momentum and lift-off distances

The “frustum lift off”, By, is defined as the distance along the hole axis from the hole to the
point of intersection of the cone axis. For releases inclined vertically or at 45° to the horizontal,

the momentum dominated flame length B, for horizontal release is calculated from:

B
L_M = MAX(0, MIN (e 013NRicharasonlBo 1) 41)
BO

Originally, the Miller model assumes jet flames to burn very close to the source with zero flame
lift-off distance (B). This assumption is somewhat tenable for H», given its high laminar burning
velocity, wide flammability limits, hence, propensity to burn (high combustion
reactivity/potential). For less reactive materials, e.g., hydrocarbons, field/experimental
evidence on jet flames, suggest a finite (flame lift-off) distance exists between the release source

and onset of visible combustion.

As such, the M-MPS model has been extended to support the modelling of a finite flame lift-

off distance (B) given by:
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B =0.2By “42)

B.4 Calculation of radiant heat fraction and radiation characteristics

Miller recommends the following correlation for determining the total heat radiating from the

flame along the flame centrelines (Q;44):

Qraa = FapmHcoyp 43)

Where F,p is the flame radiant heat fraction along the flame centerline:

Fpp = MAX{(xCquuist + xHZequivFHZ)' 0. 05} 44)

F; and Fy, are given by:

Fs = 0.21e79003237% 4 0,11 (45)
Fuz = Feorr(0.1691 — 0.01In(M{p,,,)) (46)
Where for horizontal jet fire:
M, —2m
flux p d% @7
Feorr = 1.36 + 0.076MIN{10,L;/hpc} (48)
hrc = ZEier + MAX(0,(0.66L; — Byy) sin(ap)) 49)

The radiated heat is assumed to be generated from point sources evenly distributed along the

flame centreline L. The amount of heat from each point source is linearly weighted with

minimum values at each end and a maximum at the radiant centre of the flame, 2/3 along Ly.
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ANNEX C: Grid consequences from PHAST HBNG jet fire

simulations

The following table is one of the three “grid consequences” excel create using the simulator
programme PHAST with input configuration Pressure Vessel + Leak in Miller model, for the
simulation of a third of the 50,112 cases set by the parameter in Tables 12, 13 and 14. Indeed
the storage temperature of the jet fire gases was -5 °C here, but were created the relative excel

for 15 °C and 35 °C.

An approach to read the table could be the following:

1. Setting the material (gas mixture): CHy, 5, 10, 20, 24, 30 %vol.

Fixing a pressure storage: 30, 45, 50, 60, 70, 80, 100, 150 barg.

Fixing each orifice diameter: 1, 5, 10, 20, 35, 50 mm.

Trying each one of the different weather conditions: Table 13 and Table 16.

Changing the pressure of storage and repeat point 3 and 4.

A e

Repeat from point 2 to 5 for each composition.

For reasons of space, it was not possible to include all the 16,704 different cases and their results

in Table 22 so only some of them are tabulated to let understand their disposition.

91



MSc. Thesis

Table 22. Selected values of the Jet fire sheet from the grid consequence of a simulated Pressure Vessel + Leak

with Millet/DNV model setup for HBNG horizontal jet fire cases with the input parameter in section 3.4.2.

Distan Distan Distan
. ce ce ce
RIEIzhe e down down down
o Fla g wind ind | wind
Temper interest Jet fire radiat W
Hole ature Pressure (G mass me ion to to to
Path Scenario ‘Weather size Material . (input) lengt . intensi intensi intensi
(@) (:inpl(l:t) (bar) g from ;ate m.tens ty ty ty
(degO) parame ke) (m) ity level 1 level 2 level 3
ters) level G 3 @
(m) L KW/m | kW/m | KW/m
2) (m) 2) (m) 2) (m)
Study 1\Pressu . . Param
re vessel ME L’e“klfm E;’“;e(;l‘g‘ 1 METé{AN 5 30 325 0;23319 f)f;) der | 14171 1'5;‘97 1'33 o8
THANE 30 - = value
StudylWressu |y oy 30 | AclL- METHAN 0003 | 1,00 | P\ ya1sa | 1so0s | 13441
re_vessel ME T 550 1 E -5 30 325 8631 624 eter 5 1 9
THANE 30 - - value
StudylWPressu | 30 | Lowesmi METHAN 99657 | 384 | TEM | si065 | 62110 | 48250
re_vessel ME 50 th 2012 50 E -5 30 325 3 636 eter 5 4 6
THANE 30 = = > value
StudylWressu | v oy 30 | AclL- METHAN 09657 | 382 | FTM | sas00 | 63206 | 48773
re_vessel ME 50 550 50 E -5 30 325 3 978 eter 7 5 3
THANE 30 = — value
StudylWPressu |1 1 45 | Lowesmi METHAN 00060 | 133 | P | yo34 | 19450 | 1.5805
re_vessel ME T th 2012 1 E -5 45 325 6752 71 eter 3 ) 1
THANE 45 - = value
Stdyl\Pressu |y o 45 Al - METHAN 00060 | 133 | DA™ | 130 | 10492 | 15782
re_vessel ME T 5 50 1 E -5 45 325 6752 359 eter 4 4 5
THANE 45 - — value
StdylPressu |y oy 15| 3 METHAN 58975 | 862 | T | jassa | 14591 | 11066
re_vessel ME 050 570 50 E -5 150 325 3 619 eter 3 4 4
THANE_150 = - value
StudylWressu |y oy 15| Fa - METHAN 58975 | 862 | T | o498 | 14504 | 11023
re_vessel ME 050 590 50 E -5 150 325 3 73 eter N 9 9
THANE 150 - - value
SudyliPrest | Leak 30 | Lowesmi ] MIXTURE S % a5 | 00038 | 108 | PR 1305 | 1se9 | 13313
TC_VeSSCL_ 1 th 2012 5 - - 8104 339 cte 9 4 5
0 - = = value
Study 1\Pressu Param
Leak 30 Al - MIXTURE 00038 | 1,08 15654 | 1.3287
re_vessel 5 3 I 550 1 5 -5 30 325 8104 023 eter 1.3936 8 7
0 - = = value
Study 1\Pressu Param
re_vessel 30 Leak_15 3 50 MIXTURE -5 150 325 429 1 737 eter 10858 | 1280 | 9600
050 570 30 6 71 3
150 = - = value
S‘”dym)l‘e;g‘“‘ Leak 15 F3 - . MIXTURE s 150 225 4299 | 17 | P a:am 108.12 | 12518 | 95753
re—veﬁ%— - 050 590 30 - - 6 308 v:ﬁl‘e 7 1 2
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ANNEX D: Results of the simulation in PHAST changing the

storage temperature

a) Tstorage = 15 °C & Pstorage = 60 barg b) Tstorage = 35 °C & Pstorage = 60 barg
20 20
18 _ 18
%5 1 Z
vy
m Methane MY mMethane L %
m5 %vol 2% u5 %vol 23
10 w w0
=10 %vol @ 110 %vol 04
8 g 8 E
m20 %val 5 © u20 %vol 6 8
u24 %val 43 u24 %vol 45
= =
=30 %vol i 2 =30 %vol 111 2
—————— L 0 N — ] | ] ] 0
1 5 10 20 35 50 1 5 10 20 35 50
Orifice diameter (mm) Orifice diameter (mm)

Figure 46. Jet fire mass rate (kg/s) from the grid consequence results of PHAST simulation of a setup jet fire with

storage pressure 60 barg and storage temperature 15 °C (a) and 35 °C (b) at different orifice diameter (10, 20, 35,

50 mm) and different H> blended compositions (0, 5, 10, 20, 35, 50 %).

a) Tstorage = 15 °C & Pstorage = 60 barg b) Tstorage = 35 °C & Pstorage = 60 barg
55 55
50 50
45 45
mMethane 0 E mMethane VE
35 = B =
m5 %vol 30 ‘Eq m5 %vol 30 E\
m10 %vol 25 % =10 %vol 25 %
=20 %vol D E  m20%vol 2 £
15T 15T
=24 %vol III 10 24 %vol 10
5 m30 %vol 5
=30%vol Il III o (][] IIIIII 0
1 5 10 20 35 50 1 5 10 20 35 50
Orifice diameter (mm) Orifice diameter (mm}

Figure 47. Flame length (m) from the grid consequence results of PHAST simulation of a setup jet fire with storage

pressure 60 barg and storage temperature 15°C (a) and 35°C (b) at different orifice diameter (10, 20, 35, 50 mm)

and different H, blended compositions (0, 5, 10, 20, 35, 50 %).
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a) Tstorage =15°C & Pstorage =60 barg
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Figure 48. Distance crosswind to intensity level 3, 5, 8 kW/m? from the grid consequence results of PHAST
simulation of a setup jet fire with storage pressure 60 barg and storage temperature 15°C at different orifice diameter

(10, 20, 35, 50 mm) and different H, blended compositions (0, 5, 10, 20, 35, 50 %).

b) Tstorage = 35 °C & Pstorage = 60 barg
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Figure 49. Distance crosswind to intensity level 3, 5, 8 kW/m? from the grid consequence results of PHAST
simulation of a setup jet fire with storage pressure 60 barg and storage temperature 35°C at different orifice diameter

(10, 20, 35, 50 mm) and different H, blended compositions (0, 5, 10, 20, 35, 50 %).
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a) Tstorage = 15 °C & %H2 = 24 b) Tstorage = -5 °C & %H2 = 24
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Figure 50. Jet fire mass rate (kg/s) from the grid consequence results of PHAST simulation of a setup jet fire with
hydrogen blended compositions 24 %vol and storage temperature 15°C (a) and 35°C (b) at different orifice
diameter (10, 20, 35, 50 mm) and different storage pressure (30, 45, 50, 60, 70, 80, 100, 150 barg).
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Figure 51. Flame length (m) from the grid consequence results of PHAST simulation of a setup jet fire with H»
blended compositions 24 %vol and storage temperature 15°C (a) and 35°C (b) at different orifice diameter (10, 20,
35, 50 mm) and different storage pressure (30, 45, 50, 60, 70, 80, 100, 150 barg).
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Figure 52. Distance crosswind to intensity level 3, 5, 8 kW/m? from the grid consequence results of PHAST
simulation of a setup jet fire with H, blended compositions 24 %vol and storage temperature 15 °C at different

orifice diameter (10, 20, 35, 50 mm) and different storage pressure (30, 45, 50, 60, 70, 80, 100, 150 barg).
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Figure 53. Distance crosswind to intensity level 3, 5, 8 kW/m? from the grid consequence results of PHAST
simulation of a setup jet fire with H, blended compositions 24 %vol and storage temperature 35 °C at different

orifice diameter (10, 20, 35, 50 mm) and different storage pressure (30, 45, 50, 60, 70, 80, 100, 150 barg).
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